&
F
. . P T
e
- . i -
e

e @

L.

}.

PYTHON
DATA STRUCTURES

POCKET PRIMER

ﬂ O. CAMPESATO

PytHON DATA
STRUCTURES

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you
agree that this license grants permission to use the contents contained herein,
including the disc, but does not give you the right of ownership to any of the
textual content in the book / disc or ownership to any of the information or
products contained in it. This license does not permit uploading of the Work
onto the Internet or on a network (of any kind) without the written consent
of the Publisher. Duplication or dissemination of any text, code, simulations,
images, etc. contained herein is limited to and subject to licensing terms for
the respective products, and permission must be obtained from the Publisher
or the owner of the content, etc., in order to reproduce or network any portion
of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accom-
panying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant
the performance or results that might be obtained by using the contents of the
Work. The author, developers, and the Publisher have used their best efforts
to ensure the accuracy and functionality of the textual material and/or pro-
grams contained in this package; we, however, make no warranty of any kind,
express or implied, regarding the performance of these contents or programs.
The Work is sold “as is” without warranty (except for defective materials used
in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Publisher.
The use of “implied warranty” and certain “exclusions” vary from state to state,
and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at
info@merclearning.com.

mailto:info@merclearning.com

PyTHON DATA
STRUCTURES

Pocket Primer

Oswald Campesato

=

MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

Copyright ©2023 by MErcURY LEARNING AND INrForMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced
in any way, stored in a retrieval system of any type, or transmitted by any means,
media, electronic display or mechanical display, including, but not limited to,
photocopy, recording, Internet postings, or scanning, without prior permission in
writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive

Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

O. Campesato. Python Data Structures Pocket Primer.
ISBN: 978-1-68392-757-0

The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products. All brand names and product
names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks, etc.
is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022947023
222324321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service
Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other
digital vendors. Companion files (figures and code listings) for this title are available
by contacting info@merclearning.com. The sole obligation of MERCURY LEARNING AND
INFORMATION to the purchaser is to replace the disc, based on defective materials or
faulty workmanship, but not based on the operation or functionality of the product.

http://www.merclearning.com
mailto:info@merclearning.com
mailto:info@merclearning.com
http://academiccourseware.com

I'd like to dedicate this book to my parents
—may this bring joy and happiness into their lives.

CONTENTS

Preface xiti
Chapter 1: Introduction to Python 1
Some Standard Modules in Python 1
Simple Data Types in Python 2
Working With Numbers 2
Working With Other Bases 3
The chr () Function 4
The round () Function in Python 5
Unicode and UTF-8 5
Working With Unicode 5
Working With Strings 6
Comparing Strings 7
Uninitialized Variables and the Value None in Python 8
Slicing and Splicing Strings 8
Testing for Digits and Alphabetic Characters 8
Search and Replace a String in Other Strings 9
Precedence of Operators in Python 11
Python Reserved Words 11
Working With Loops in Python 12
Python for Loops 12
Numeric Exponents in Python 12
Nested Loops 13
The split () Function With for Loops 14
Using the split () Function to Compare Words 14
Python while Loops 15
Conditional Logic in Python 16
The break/continue/pass Statements 16
Comparison and Boolean Operators 17
The in/not in/is/is not Comparison Operators 17
The and, or, and not Boolean Operators 17

viii © CONTENTS

Local and Global Variables

Scope of Variables

Pass by Reference Versus Value
Arguments and Parameters
User-Defined Functions in Python
Specifying Default Values in a Function

Returning Multiple Values From a Function

Lambda Expressions
Working With Lists
Lists and Basic Operations
Lists and Arithmetic Operations
Lists and Filter-Related Operations
The join(), range(), and split() Functions
Arrays and the append () Function
Other List-Related Functions
Working With List Comprehensions
Working With Vectors
Working With Matrices
Queues
Tuples (Immutable Lists)
Sets
Dictionaries
Creating a Dictionary
Displaying the Contents of a Dictionary
Checking for Keys in a Dictionary
Deleting Keys From a Dictionary
Iterating Through a Dictionary
Interpolating Data From a Dictionary
Dictionary Functions and Methods
Other Sequence Types in Python
Mutable and Immutable Types in Python
Summary

Chapter 2: Recursion and Combinatorics

What Is Recursion?
Arithmetic Series
Calculating Arithmetic Series (Iterative)
Calculating Arithmetic Series (Recursive)
Calculating Partial Arithmetic Series
Geometric Series
Calculating a Geometric Series (Iterative)
Calculating Arithmetic Series (Recursive)
Factorial Values
Calculating Factorial Values (Iterative)
Calculating Factorial Values (Recursive)

18
19
20
21
21
22
23
23
24
24
25
26
26
28
29
30
32
32
33
34
35
36
36
36
37
37
38
38
38
39
39
40

41
42
42
43
44
44
45
45
46
47
48
48

CONTENTS © IX

Calculating Factorial Values (Tail Recursion) 49
Fibonacci Numbers 49
Calculating Fibonacci Numbers (Recursive) 50
Calculating Fibonacci Numbers (Iterative) 50
Task: Reverse a String via Recursion 51
Task: Check for Balanced Parentheses 52
Task: Calculate the Number of Digits 53
Task: Determine if a Positive Integer Is Prime 54
Task: Find the Prime Factorization of a Positive Integer 55
Task: Goldbach’s Conjecture 57
Task: Calculate the GCD (Greatest Common Divisor) 58
Task: Calculate the LCM (Lowest Common Multiple) 60
What Is Combinatorics? 61
Working With Permutations 61
Working With Combinations 62
Task: Calculate the Sum of Binomial Coefficients 63
The Number of Subsets of a Finite Set 64
Task: Subsets Containing a Value Larger Than k 65
Summary 67
Chapter 3: Strings and Arrays 69
Time and Space Complexity 70
Task: Maximum and Minimum Powers of an Integer 70
Task: Binary Substrings of a Number 72
Task: Common Substring of Two Binary Numbers 73
Task: Multiply and Divide via Recursion 74
Task: Sum of Prime and Composite Numbers 75
Task: Count Word Frequencies 77
Task: Check if a String Contains Unique Characters 78
Task: Insert Characters in a String 80
Task: String Permutations 80
Task: Find All Subsets of a Set 81
Task: Check for Palindromes 83
Task: Check for the Longest Palindrome 85
Working With Sequences of Strings 87
The Maximum Length of a Repeated Character in a String 87
Find a Given Sequence of Characters in a String 88
Task: Longest Sequences of Substrings 89
The Longest Sequence of Unique Characters 89
The Longest Repeated Substring 91
Task: Match a String With a Word List (Simple Case) 93
The Harder Case 94
Working With 1D Arrays 95
Rotate an Array 95
Task: Shift Non-Zero Elements Leftward 96

X ® CONTENTS

Task: Sort Array In-Place in O(n) Without a Sort Function 97
Task: Invert Adjacent Array Elements 98
Task: Generate 0 That Is Three Times More Likely Than a 1 100
Task: Invert Bits in Even and Odd Positions 101
Task: Invert Pairs of Adjacent Bits 103
Task: Find Common Bits in Two Binary Numbers 104
Task: Check for Adjacent Set Bits in a Binary Number 106
Task: Count Bits in a Range of Numbers 107
Task: Find the Right-Most Set Bit in a Number 107
Task: The Number of Operations to Make All Characters Equal 108
Task: Compute XOR Without XOR for Two Binary Numbers 109
Working With 2D Arrays 110
The Transpose of a Matrix 111
Summary 112
Chapter 4: Search and Sort Algorithms 113
Search Algorithms 113
Linear Search 114
Binary Search Walk-Through 115
Binary Search (Iterative Solution) 116
Binary Search (Recursive Solution) 116
Well-Known Sorting Algorithms 118
Bubble Sort 118
Find Anagrams in a List of Words 119
Selection Sort 120
Insertion Sort 121
Comparison of Sort Algorithms 123
Merge Sort 123
Merge Sort With a Third Array 123
Merge Sort Without a Third Array 125
Merge Sort: Shift Elements From End of Lists 127
How Does Quick Sort Work? 129
Quick Sort Code Sample 129
Shellsort 131
Summary 132
Chapter 5: Linked Lists 133
Types of Data Structures 133
Linear Data Structures 134
Nonlinear Data Structures 134
Data Structures and Operations 134
Operations on Data Structures 135
What Are Singly Linked Lists? 136
Trade-Offs for Linked Lists 136

Singly Linked Lists: Create and Append Operations 137

CONTENTS © Xi

A Node Class for Singly Linked Lists 137
Appending a Node in a Linked List 138
Python Code for Appending a Node 138
Singly Linked Lists: Finding a Node 139
Singly Linked Lists: Update and Delete Operations 143
Updating a Node in a Singly Linked List 143
Python Code to Update a Node 144
Deleting a Node in a Linked List: Method #1 145
Python Code for Deleting a Node: Method #2 146
Circular Linked Lists 149
Python Code for Updating a Circular Linked List 150
Working With Doubly Linked Lists (DLL) 153
A Node Class for Doubly Linked Lists 153
Appending a Node in a Doubly Linked List 154
Python Code for Appending a Node 155
Python Code for Inserting an Intermediate Node 156
Searching and Updating a Node in a Doubly Linked List 158
Updating a Node in a Doubly Linked List 159
Python Code to Update a Node 159
Deleting a Node in a Doubly Linked List 161
Python Code to Delete a Node 162
Summary 164
Chapter 6: Linked Lists and Common Tasks 165
Task: Adding Numbers in a Linked List (1) 165
Task: Reconstructing Numbers in a Linked List (1) 166
Task: Reconstructing Numbers in a Linked List (2) 168
Task: Display the First k Nodes 169
Task: Display the Last k Nodes 171
Display a Singly Linked List in Reverse Order via Recursion 173
Task: Remove Duplicate Nodes 175
Task: Concatenate Two Lists 178
Task: Merge Two Lists 180
Task: Split a Single List into Two Lists 183
Task: Find the Middle Element in a List 185
Task: Reversing a Linked List 188
Task: Check for Palindromes in a Linked List 190
Summary 192
Chapter 7: Queues and Stacks 193
What Is a Queue? 193
Types of Queues 194
Creating a Queue Using a Python List 195
Creating a Rolling Queue 198

Creating a Queue Using an Array 200

xii © CONTENTS

What Is a Stack?

Use Cases for Stacks

Operations With Stacks
Working With Stacks
Task: Reverse and Print Stack Values
Task: Display the Min and Max Stack Values (1)
Creating Two Stacks Using an Array
Task: Reverse a String Using a Stack
Task: Balanced Parentheses
Task: Tokenize Arithmetic Expressions
Task: Evaluate Arithmetic Expressions
Infix, Prefix, and Postfix Notations
Summary

Index

203
203
204
204
207
208
210
213
214
217
218
221
223

225

PREFACE

WHAT IS THE PRIMARY VALUE PROPOSITION FOR
THIS BOOK?

This book contains a fast-paced introduction to as much relevant infor-
mation about data structures that within reason can possibly be included
in a book of this size. In addition, this book has a task-oriented approach,
so you will see code samples that use data structures to solve various tasks.

Chapter 1 starts with an introduction to Python for beginners,
recursion is discussed in Chapter 2, strings and arrays are covered in
Chapter 3, search and sort algorithms are discussed in Chapter 4, various
types of linked lists and explained in Chapter 5 and Chapter 6, and then
queues and stacks are covered in Chapter 7.

Please keep in mind that a full treatment of all the topics in this book
could easily triple the length of this book (and besides, such books are
already available).

THE TARGET AUDIENCE

This book is intended primarily for people who have a limited back-
ground in data structures. This book is also intended to reach an interna-
tional audience of readers with highly diverse backgrounds. While many
readers know how to read English, their native spoken language is not
English (which could be their second, third, or even fourth language).
Consequently, this book uses standard English rather than colloquial
expressions in order to maximize clarity.

WHAT WILL | LEARN FROM THIS BOOK?

The introductory section of the preface contains a brief outline of
the topics in each of the chapters of this book. As the title suggests, you
will acquire a basic level of knowledge about a variety of data structures.

XIV © PREFACE

Incidentally, you will discover that many code samples contain “com-
mented out” code snippets, which are usually Python print() state-
ments. Feel free to “uncomment” those code snippets, which will enable
you to see the various execution paths in the code. In essence, you will
see the debugging process that was used during the development of the
code samples.

WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?

Most of the code samples are short (usually less than one page and
sometimes less than half a page), and if necessary, you can easily and
quickly copy/paste the code into a new Jupyter notebook. Moreover, the
code samples execute quickly, so you won’t need to avail yourself of the
free GPU that is provided in Google Colaboratory.

DO | NEED TO LEARN THE THEORY PORTIONS OF THIS
BOOK?

Alas, an understanding of the theoretical underpinnings of data struc-
tures does not translate into the ability to solve tasks involving data struc-
tures: it’s necessary knowledge (but not necessarily sufficient). Strive for
an understanding of concepts and minimize the amount of memorization
of code samples. For example, you can determine whether or not a posi-
tive integer n is a power of 2 with a single line of code:

(n > 0) and (n & (n-1)) == 0

Although the preceding code snippet might seem nonintuitive, you
can convince yourself that this is true by setting n=8 and then observe
the following:

n: 1000
n-1: 0111

The key point is this: the binary representation of a power of 2 has a
single 1 in the left-most position, and zeroes to the right of the digit 1 (for
n>=2), whereas the number n-1 contains a 0 in the left-most position,
and all 1s to the right of the digit 0. Therefore, the logical and of n and
(n-1) is clearly 0.

Now that you understand the key idea, there is no need to memorize
anything, and you can write the solution in any programming language
for which you have a very modest level of experience.

The theoretical aspects will help you improve your conceptual under-
standing of the differences and similarities (if any) among various types
of data structures. However, you will gain confidence and also a better

PREFACE * xv

understanding of data structures by writing code because knowledge is often
gained through repetition of tasks that provide reinforcement of concepts.

GETTING THE MOST FROM THIS BOOK

Some programmers learn well from prose, others learn well from
sample code (and lots of it), which means that there’s no single style that
can be used for everyone.

Moreover, some programmers want to run the code first, see what it
does, and then return to the code to delve into the details (and others use
the opposite approach).

Consequently, there are various types of code samples in this book:
some are short, some are long, and other code samples “build” from ear-
lier code samples.

WHAT DO | NEED TO KNOW FOR THIS BOOK?

Current knowledge of Python 3.x is useful because all the code sam-
ples are in Python. Knowledge of data structures will enable you to
progress through the related chapters more quickly. The less technical
knowledge you have, the more diligence will be required in order to
understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book,
glance through some of the code samples to get an idea of how much is
Sfamiliar to you and how much is new for you.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE
SAMPLES?

The primary purpose of the code samples in this book is to show
you solutions to tasks that involve data structures. Therefore, clarity has
higher priority than writing more compact or highly optimized code, For
example, inspect the loops in the Python code sample to see if they can
be made more efficient. Suggestion: treat such code samples as opportu-
nities for you to optimize the code samples in this book.

If you decide to use any of the code in this book in a production web-
site, you ought to subject that code to the same rigorous analysis as the
other parts of your code base.

WHAT ARE THE NONTECHNICAL PREREQUISITES FOR
THIS BOOK?

Although the answer to this question is difficult to quantify, it’s espe-
cially important to have a strong desire to learn about data analytics,

Xvi © PREFACE

along with the motivation and discipline to read and understand the code
samples.

HOW DO | SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to set up a command
shell. The first method is to use Finder to navigate to Applications >
Utilities and then double click on the Utilities application. Next,
if you already have a command shell available, you can launch a new
command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a
MacBook from a command shell that is already visible simply by clicking
command+n in that command shell, and your Mac will launch another
command shell.

If you are a PC user, you can install Cygwin (open source
https:/lcygwin.com/) that simulates bash commands, or use another
toolkit such as MKS (a commercial product). Please read the online doc-
umentation that describes the download and installation process. Note
that custom aliases are not automatically set if they are defined in a file
other than the main start-up file (such as .bash_login).

COMPANION FILES

All the code samples in this book may be obtained by writing to the
publisher at info@merclearning.com.

WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?

The answer to this question varies widely, mainly because the answer
depends heavily on your objectives. If you are interested primarily in
learning more about data structures, then this book is a “stepping stone”
to other books that contain more complex data structures as well as code
samples for the tasks that are not covered in this book (such as deleting a
node from a tree or a doubly linked list).

If you are primarily interested in machine learning, there are some
subfields of machine learning, such as deep learning and reinforcement
learning (and deep reinforcement learning) that might appeal to you.
Fortunately, there are many resources available, and you can perform
an Internet search for those resources. One other point: the aspects of
machine learning for you to learn depend on who you are—the needs of
a machine learning engineer, data scientist, manager, student, or soft-
ware developer all differ from one another.

https://cygwin.com/
mailto:info@merclearning.com

CHAPTER

INTRODUCTION TO PYTHON

his chapter provides an introduction to basic features of Python, includ-

ing examples of working with Python strings, arrays, and dictionaries.

Please keep in mind that this chapter does not contain details about the
Python interpreter: you can find that information online in various tutorials.

You will also learn about useful tools for installing Python modules, basic
Python constructs, and how to work with some data types in Python.

The first part of this chapter shows you how to work with simple data types,
such as numbers, fractions, and strings. The third part of this chapter discusses
exceptions and how to use them in Python scripts.

The second part of this chapter introduces you to various ways to perform
conditional logic in Python, as well as control structures and user-defined
functions in Python. Virtually every Python program that performs useful
calculations requires some type of conditional logic or control structure (or
both). Although the syntax for these Python features is slightly different from
other languages, the functionality will be familiar to you.

The third part of this chapter contains examples that involve nested loops
and user-defined python functions. The remaining portion of the chapter dis-
cusses tuples, sets, and dictionaries.

NOTE The Python scripts in this book are for Python 3.x.

SOME STANDARD MODULES IN PYTHON

The Python Standard Library provides many modules that can sim-
plify your own Python scripts. A list of the Standard Library modules is here:

hittp:/hwww.python.org/doc/

http://www.python.org/doc/

2 ¢ Python Data Structures Pocket Primer

Some of the most important Python modules include cgi, math, os,
pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, and
re. You need to import these modules in order to use them in your code. For
example, the following code block shows you how to import standard python
modules:

import re
import sys
import time

The code samples in this book import one or more of the preceding mod-
ules, as well as other Python modules. The next section discusses primitive
data types in Python.

SIMPLE DATA TYPES IN PYTHON

Python supports primitive data types, such as numbers (integers, float-
ing point numbers, and exponential numbers), strings, and dates. Python also
supports more complex data types, such as lists (or arrays), tuples, and diction-
aries, all of which are discussed later in this chapter. The next several sections
discuss some of the Python primitive data types, along with code snippets that
show you how to perform various operations on those data types.

WORKING WITH NUMBERS

Python provides arithmetic operations for manipulating numbers a
straightforward manner that is similar to other programming languages. The
following examples involve arithmetic operations on integers:

>>> 242
4
>>> 4/3
1
>>> 3*8
24

The following example assigns numbers to two variables and computes

their product:
>>> x = 4
>>> y = 7
>>> x *y
28

The following examples demonstrate arithmetic operations involving
integers:

>>> 242
4

Introduction to Python ¢ 3

>>> 4/3
1
>>> 3%8
24

Notice that division (“/”) of two integers is actually truncation in which only
the integer result is retained. The following example converts a floating point
number into exponential form:

>>> fnum = 0.00012345689000007
>>> "% .14e"S$fnum
'1.23456890000070e-04"

You can use the int () function and the float () function to convert strings
to numbers:

wordl = "123"

word2 = "456.78"

varl = int (wordl)

var?2 = float (word2)

print ("varl: ",varl," var2: ",var2)

The output from the preceding code block is here:

varl: 123 wvar2: 456.78

Alternatively, you can use the eval () function:

wordl = "123"

word2 = "456.78"

varl = eval (wordl)

var?2 = eval (word2)

print ("varl: ",varl," var2: ",var2)

If you attempt to convert a string that is not a valid integer or a floating
point number, Python raises an exception, so it’s advisable to place your code
in a try/except block (discussed later in this chapter).

Working With Other Bases

Numbers in Python are in base 10 (the default), but you can easily convert
numbers to other bases. For example, the following code block initializes the
variable x with the value 1234, and then displays that number in base 2, 8,
and 16, respectively:

>>> x = 1234

>>> bin(x) '0b10011010010"'
>>> oct (x) '002322"

>>> hex (x) '0x4d2'

4 e Python Data Structures Pocket Primer
Use the format () function if you want to suppress the 0b, 0o, or 0x pre-
fixes, as shown here:
>>> format (x, 'b') '10011010010"'
>>> format (x, 'o') '2322"
] X]

>>> format (x,) '4d2!

Negative integers are displayed with a negative sign:

>>> x = -1234
>>> format(x, 'b') '-10011010010"'
>>> format (x, 'x') '-4d4d2'

The chr () Function

The Python chr () function takes a positive integer as a parameter and
converts it to its corresponding alphabetic value (if one exists). The letters A
through z have decimal representation of 65 through 91 (which corresponds
to hexadecimal 41 through 5b), and the lowercase letters a through z have
decimal representation 97 through 122 (hexadecimal 61 through 7b).

Here is an example of using the chr () function to print uppercase A:

>>> x=chr (65)
>>> x
IAI

The following code block prints the ASCIT values for a range of integers:

result = ""
for x in range (65,90):

print (x, chr(x))

result = result+chr(x)+' '
print ("result: ", result)

NOTE Python 2 uses ASCII Strings whereas Python 3 uses UTF-8.

You can represent a range of characters with the following line:
for x in range (65, 90) :
However, the following equivalent code snippet is more intuitive:

for x in range(ord('A'), ord('Z')):

If you want to display the result for lowercase letters, change the preceding
range from (65, 91) to either of the following statements:

for x in range (65,90):
for x in range (ord('a'), ord('z')):

Introduction to Python ® §

The round () Function in Python

The Python round () function enables you to round decimal values to the
nearest precision:

>>> round(1.23, 1)
1.2
>>> round(-3.42,1)
-3.4

Before delving into Python code samples that work with strings, the next
section briefly discusses Unicode and UTF-8, both of which are character
encodings.

UNICODE AND UTF-8

A Unicode string consists of a sequence of numbers that are between 0
and 0x10sff, where each number represents a group of bytes. An encoding is
the manner in which a Unicode string is translated into a sequence of bytes.
Among the various encodings, UTF-8 (Unicode Transformation Format) is
perhaps the most common, and it’s also the default encoding for many systems.
The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas
UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCIT string can
be read as a UTF-8 string without any re-encoding required. In addition, a
Unicode string can be converted into a UTF-8 string.

WORKING WITH UNICODE

Python supports Unicode, which means that you can render characters
in different languages. Unicode data can be stored and manipulated in the
same way as strings. Create a Unicode string by prepending the letter “u,” as
shown here:

>>> u'Hello from Python!'
u'Hello from Python!'

Special characters can be included in a string by specifying their Unicode
value. For example, the following Unicode string embeds a space (which has
the Unicode value 0x0020) in a string:

>>> u'Hello\u0020from Python!’
u'Hello from Python!'

Listing 1.1 displays the contents of Unicodel.py that illustrates how to
display a string of characters in Japanese and another string of characters in
Chinese (Mandarin).

6 ° Python Data Structures Pocket Primer

LISTING 1.1: Unicode1.py

chinesel = u'\u5c07\u63a2\u8ale HTML5 \u53ca\u5176\uded6’
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!"

print ('Chinese:',chinesel)
print ('Hiragana:',hiragana)

The output of Listing 1.1 is here:

Chinese: #HEET HTMLS REHAth
Hiragana: D3 & MA>Z vy TH!

The next portion of this chapter shows you how to “slice and dice” text
strings with built-in Python functions.

WORKING WITH STRINGS

Literal strings in Python 3 are Unicode by default. You can concatenate
two strings using the ‘+” operator. The following example prints a string and
then concatenates two single-letter strings:

>>> 'abc'
'abc!

>>> 'a' + 'b!
labl

You can use “+” or * to concatenate identical strings, as shown here:

>>> lal + lal + lal
'aaa'

>>> 'a' * 3

'aaa'

You can assign strings to variables and print them using the print ()
statement:

>>> print ('abc')

abc

>>> x = 'abc'
>>> print (x)

abc

>>> y = 'def'
>>> print(x + y)
abcdef

You can “unpack” the letters of a string and assign them to variables, as

shown here:

>>> str = "World"

>>> x1,x2,x3,x4,x5 = str
>>> x1

Al

Introduction to Python * 7

>>> x2
lol
>>> x3
|r|
>>> x4
lll
>>> x5
ldl

The preceding code snippets shows you how easy it is to extract the let-
ters in a text string. You can also extract substrings of a string as shown in the
following examples:

>>> x = "abcdef"
>>> x[0]

lal

>>> x[-1]

lfl

>>> x[1:3]

lbcl

>>> x[0:2] + x[5:]
'abf'

However, you will cause an error if you attempt to subtract two strings, as
you probably expect:
>>> 'a' - 'b'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'

The try/except construct in Python (discussed later in this chapter) ena-
bles you to handle the preceding type of exception more gracefully.

Comparing Strings

You can use the methods lower () and upper () to convert a string to
lowercase and uppercase, respectively, as shown here:

>>> 'Python'.lower ()
'python'

>>> 'Python'.upper ()
'PYTHON'

>>>

The methods lower () and upper () are useful for performing a case insensi-
tive comparison of two ASCI T strings. Listing 1.2 displays the contents of Compare .
py that uses the lower () function in order to compare two ASCIT strings.

LISTING 1.2: Compare.py

x = "Abc'
y = 'abc'

8 ¢ Python Data Structures Pocket Primer

if(x == y):

print('x and y: identical')
elif (x.lower () == y.lower()):

print ('x and y: case insensitive match')
else:

print ('x and y: different')

Since x contains mixed case letters and y contains lowercase letters,
Listing 1.2 displays the following output:

x and y: different

Uninitialized Variables and the Value None in Python

python distinguishes between an uninitialized variable and the value None.
The former is a variable that has not been assigned a value, whereas the value
None is a value that indicates “no value.” Collections and methods often return
the value None, and you can test for the value None in conditional logic (shown
later in this chapter).

The next portion of this chapter shows you how to “slice and dice” text
strings with built-in Python functions.

SLICING AND SPLICING STRINGS

Python enables you to extract substrings of a string (called “slicing”) using
array notation. Slice notation is start: stop: step, where the start, stop, and
step values are integers that specify the start value, end value, and the incre-
ment value. The interesting part about slicing in Python is that you can use the
value -1, which operates from the right side instead of the left side of a string.
Some examples of slicing a string are here:

textl = "this is a string"

print ('First 7 characters:',textl[0:7])

print ('Characters 2-4:"',textl[2:4])

print ('Right-most character:',6 textl[-1])

print ('Right-most 2 characters:',textl[-3:-1])

The output from the preceding code block is here:
First 7 characters: this is
Characters 2-4: is
Right-most character: g
Right-most 2 characters: in
Later in this chapter you will see how to insert a string in the middle of

another string.

Testing for Digits and Alphabetic Characters

Python enables you to examine each character in a string and then
test whether that character is a bona fide digit or an alphabetic character.

Introduction to Python © 9

This section provides a precursor to regular expressions that are discussed in
Chapter 8.

Listing 1.3 displays the contents of CharTypes.py that illustrates how to
determine if a string contains digits or characters. In case you are unfamiliar
with the conditional “if” statement in Listing 1.3, more detailed information is
available later in this chapter.

LISTING 1.3: CharTypes.py

strl = "4"

str2 = "4234"
str3 = "b"

strd = "abc"
str5 = "alb2c3"

if(strl.isdigit()):
print ("this is a digit:",strl)

if(str2.isdigit()):
print("this is a digit:",str2)

if (str3.isalpha()):
print ("this is alphabetic:",str3)

if(strd.isalpha()):
print ("this is alphabetic:",str4)

if (not strb.isalpha()):
print ("this is not pure alphabetic:",str))

print ("capitalized first letter:",str5.title())

Listing 1.3 initializes some variables, followed by two conditional tests that
check whether or not strl and str2 are digits using the isdigit () function.
The next portion of Listing 1.3 checks if str3, str4, and str5 are alphabetic
strings using the isalpha () function. The output of Listing 1.3 is here:

this is a digit: 4

this is a digit: 4234

this is alphabetic: b

this is alphabetic: abc

this is not pure alphabetic: alb2c3
capitalized first letter: A1B2C3

SEARCH AND REPLACE A STRING IN OTHER STRINGS

python provides methods for searching and also for replacing a string in
a second text string. Listing 1.4 displays the contents of FindPos1.py that

10 ¢ Python Data Structures Pocket Primer

shows you how to use the find () function to search for the occurrence of one
string in another string.

LISTING 1.4 FindPos1.py

iteml = 'abc'

item2 = 'Abc'

text = '"This is a text string with abc'
posl = text.find(iteml)

pos2 text.find (item2)
print ('posl="',posl)
print ('pos2="',pos2)

Listing 1.4 initializes the variables iteml, item2, and text, and then
searches for the index of the contents of iteml and item2 in the string text.
The Python find () function returns the column number where the first suc-
cessful match occurs; otherwise, the find () function returns a -1 if a match is
unsuccessful. The output from launching Listing 1.4 is here:

posl= 27
pos2= -1

In addition to the find () method, you can use the in operator when you
want to test for the presence of an element, as shown here:

>>> 1st = [1,2,3]
>>> 1 in 1lst
True

Listing 1.5 displays the contents of Replacel.py that shows you how to
replace one string with another string.

LISTING 1.5: Replace1.py

text = 'This is a text string with abc'
print ('text:', text)

text = text.replace('is a', 'was a')
print ('text:', text)

Listing 1.5 starts by initializing the variable text and then printing its con-
tents. The next portion of Listing 1.5 replaces the occurrence of “is a” with
“was a” in the string text, and then prints the modified string. The output from
launching Listing 1.5 is here:

text: This is a text string with abc
text: This was a text string with abc

Introduction to Python ¢ 11

PRECEDENCE OF OPERATORS IN PYTHON

When you have an expression involving numbers, you might remember
that multiplication (“*”) and division (“/”) have higher precedence than addi-
tion (“+”) or subtraction (“~”). Exponentiation has even higher precedence
than these four arithmetic operators.

However, instead of relying on precedence rules, it’s simpler (as well as
safer) to use parentheses. For example, (x/y)+10 is clearer than x/y+10,
even though they are equivalent expressions.

As another example, the following two arithmetic expressions are the

equivalent, but the second is less error prone than the first:

x/y+3*z/8+x*y/z-3*x
(x/y)+(3*%z) /8+ (x*y) /z—- (3*x)

In any case, the following website contains precedence rules for operators
in Python:

http:/www.mathes.emory.edu/~valerie/courses/fall10/155/resources/
op_precedence.html

PYTHON RESERVED WORDS

Every programming language has a set of reserved words, which is a set
of words that cannot be used as identifiers, and Python is no exception. The
Python reserved words are: and, exec, not, assert, finally, or, break,
for, pass, class, from, print, continue, global, raise, def, if,
return, del, import, try, elif, in, while, else, is, with, except,
lambda, and yield.

If you inadvertently use a reserved word as a variable, you will see an “inva-
lid syntax” error message instead of a “reserved word” error message. For
example, suppose you create a Python script testl.py with the following

code:
break = 2
print ('break =', break)

If you run the preceding Python code you will see the following output:

File "testl.py", line 2
break = 2

A

SyntaxError: invalid syntax

However, a quick inspection of the Python code reveals the fact that you
are attempting to use the reserved word break as a variable.

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html
http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html

12 o Python Data Structures Pocket Primer

WORKING WITH LOOPS IN PYTHON

Python supports for loops, while loops, and range () statements. The
following subsections illustrate how you can use each of these constructs.

Python for Loops

Python supports the for loop whose syntax is slightly different from other
languages (such as JavaScript and Java). The following code block shows
you how to use a for loop in Python in order to iterate through the elements
in a list:

>>> x = ['a', 'b', 'c']
>>> for w in x:
print (w)

ow -

The preceding code snippet prints three letters on three separate lines. You
can force the output to be displayed on the same line (which will “wrap” if you
specify a large enough number of characters) by appending a comma *,” in the
print () statement, as shown here:
>>> x = ['a', 'b', 'c']
>>> for w in x:

print (w, end=' ")

abc

You can use this type of code when you want to display the contents of a text
file in a single line instead of multiple lines.

Python also provides the built-in reversed () function that reverses the
direction of the loop, as shown here:

>>>a = [1, 2, 3, 4, 5]
>>> for x 1in reversed(a):
... print (x)

5

4

3

2

1

Note that reversed iteration only works if the size of the current object
can be determined or if the object implements a _ reversed () special
method.

Numeric Exponents in Python

Listing 1.6 displays the contents of Nth_exponent. py that illustrates how
to calculate intermediate powers of a set of integers.

Introduction to Python ¢ 13

LISTING 1.6: Nth_exponent.py

maxPower = 4
maxCount = 4

def pwr (num) :
prod =1
for n in range (1, maxPower+1l) :
prod = prod*num
print (num, 'to the power',n, 'equals',prod)
print ('-———===---- ")

for num in range (1l,maxCount+1l) :
pwr (num)

Listing 1.6 contains a function called pwr () that accepts a numeric value.
This function contains a loop that prints the value of that number raised to the
power n, where n ranges between 1 and maxPower+1.

The second part of Listing 1.6 contains a for loop that invokes the func-
tion pwr () with the numbers between 1 and maxPower+1. The output from
Listing 1.16 is here:

1 to the power 1 equals 1
1 to the power 2 equals 1
1 to the power 3 equals 1
1 to the power 4 equals 1
2 to the power 1 equals 2
2 to the power 2 equals 4
2 to the power 3 equals 8
2 to the power 4 equals 16
3 to the power 1 equals 3
3 to the power 2 equals 9
3 to the power 3 equals 27
3 to the power 4 equals 81
4 to the power 1 equals 4
4 to the power 2 equals 16
4 to the power 3 equals 64
4 to the power 4 equals 256

NESTED LOOPS

Listing 1.7 displays the contents of Triangularl.py that illustrates how
to print a row of consecutive integers (starting from 1), where the length of
each row is one greater than the previous row.

LISTING 1.7: Triangular1.py

max = 8
for x in range (l,max+1):

14 o Python Data Structures Pocket Primer

for y in range (1l,x+1):
print(y, '', end='")
print ()

Listing 1.7 initializes the variable max with the value 8, followed by an outer
for loop whose loop variable x ranges from 1 to max+1. The inner loop has a
loop variable y that ranges from 1 to x+1, and the inner loop prints the value
of y. The output of Listing 1.7 is here:

e
NN NN NN N
Wwwwww
NN NN
RGNS

o oo

A

THE spr1T () FUNCTION WITH FOR LOOPS

Python supports various useful string-related functions, including the
split () function and the join () function. The split () function is useful
when you want to tokenize (“split”) a line of text into words and then use a for
loop to iterate through those words and process them accordingly.

The join () function does the opposite of split (): it “joins” two or more
words into a single line. You can easily remove extra spaces in a sentence by
using the split () function and then invoking the join () function, thereby
creating a line of text with one white space between any two words.

USING THE spr1T () FUNCTION TO COMPARE WORDS

Listing 1.8 displays the contents of Compare2.py that illustrates how to
use the split function to compare each word in a text string with another word.

LISTING 1.8: Compare2.py

x = 'This is a string that contains abc and Abc'
y = 'abc'

identical = 0

casematch = 0

for w in x.split():

if(w == y):
identical = identical + 1
elif (w.lower() == y.lower()):

casematch = casematch + 1

if (identical > 0):
print ('found identical matches:', identical)

Introduction to Python * 15

if (casematch > 0):
print ('found case matches:', casematch)

if (casematch == 0 and identical == 0):
print ('no matches found')

Listing 1.8 uses the split () function in order to compare each word in the
string x with the word abc. If there is an exact match, the variable identi-
cal is incremented. If a match does not occur, a case-insensitive match of the
current word is performed with the string abc, and the variable casematch
is incremented if the match is successful. The output from Listing 1.8 is here:

found identical matches: 1
found case matches: 1

PYTHON wHILE LOOPS

You can define a while loop to iterate through a set of numbers, as shown
in the following examples:

>>> x = 0

>>> while x < 5:
print (x)
x = x + 1

O W NP O

Python uses indentation instead of curly braces that are used in other lan-
guages such as JavaScript and Java. Although the Python 1ist data struc-
ture is not discussed until later in this chapter, you can probably understand
the following simple code block that contains a variant of the preceding while
loop that you can use when working with lists:

1st = [17273741

while 1lst:
print('list:',1lst)
print('item:',1lst.pop())

The preceding while loop terminates when the 1st variable is empty, and
there is no need to explicitly test for an empty list. The output from the preced-
ing code is here:

list: [1, 2, 3, 4]
item: 4

16 e Python Data Structures Pocket Primer

list: [1, 2, 3]
item: 3

list: [1, 2]
item: 2

list: [1]

item: 1

This concludes the examples that use the sp1it () function in order to pro-
cess words and characters in a text string. The next part of this chapter shows
you examples of using conditional logic in Python code.

CONDITIONAL LOGIC IN PYTHON

If you have written code in other programming languages, you have
undoubtedly seen if/then/else (or if-elseif-else) conditional state-
ments. Although the syntax varies between languages, the logic is essentially
the same. The following example shows you how to use if/elif statements
in Python

>>> x = 25
>>> if x < 0:
print ('negative')
elif x < 25:
print ('under 25")

elif x == 25:
print ('exactly 25")
else:

print ('over 25")
exactly 25
The preceding code block illustrates how to use multiple conditional state-
ments, and the output is exactly what you expected.

THE BREAK/CONTINUE/PASS STATEMENTS

The break statement in Python enables you to perform an “early exit”
from a loop, whereas the continue statement essentially returns to the top
of the loop and continues with the next value of the loop variable. The pass
statement is essentially a “do nothing” statement.

Listing 1.9 displays the contents of BreakContinuePass.py that illus-
trates the use of these three statements.

LISTING 1.9: BreakContinuePass.py

print ('first loop')
for x in range(1,4):
if(x == 2):
break
print (x)

Introduction to Python * 17

print ('second loop')
for x in range(1l,4):
if(x == 2):
continue
print (x)

print ('third loop')
for x in range(1l,4):
if(x == 2):
pass
print (x)
The output of Listing 1.9 is here:
first loop
1
second loop
1
3
third loop
1
2
3

COMPARISON AND BOOLEAN OPERATORS

Python supports a variety of Boolean operators, such as in, not in, is,
is not, and, or, and not. The next several sections discuss these operators
and provide some examples of how to use them.

The in/not in/is/is not Comparison Operators

The in and not in operators are used with sequences to check whether
a value occurs or does not occur in a sequence. The operators is and is not
determine whether or not two objects are the same object, which is impor-
tant only matters for mutable objects such as lists. All comparison operators
have the same priority, which is lower than that of all numerical operators.
Comparisons can also be chained. For example, a < b == c tests whether a
is less than b and moreover b equals c.

The and, or, and not Boolean Operators

The Boolean operators and, or, and not have lower priority than com-
parison operators. The Boolean and and or are binary operators whereas the
Boolean or operator is a unary operator. Here are some examples:

* A and B can only be true if both & and B are true
e A or Bis true if either A or B is true
° not (&) is true if and only if & is false

18 e Python Data Structures Pocket Primer

You can also assign the result of a comparison or other Boolean expression
to a variable, as shown here:

>>> stringl, string2, string3 = '', 'b', 'cd'
>>> strd4d = stringl or string2 or string3

>>> strd

lbl

The preceding code block initializes the variables stringl, string2, and
string3, where stringl is an empty string. Next, str4 is initialized via the
or operator, and since the first nonnull value is string2, the value of str4 is
equal to string2.

LOCAL AND GLOBAL VARIABLES

Python variables can be local or global. A Python variable is local to a
function if the following are true:

e a parameter of the function
e on the left side of a statement in the function
® bound to a control structure (such as for, with, and except)

A variable that is referenced in a function but is not local (according to the
previous list) is a non-local variable. You can specify a variable as nonlocal with
this snippet:

nonlocal z

A variable can be explicitly declared as global with this statement:

global z

The following code block illustrates the behavior of a global versus a local
variable:

global z
z =3

def changeVar(z):
z =4
print('z in function:', z)

print ('first global z:', z)
if name == '
changeVar (z)
print ('second global z:',z)

' main

The output from the preceding code block is here:

first global z: 3
z in function: 4
second global z: 3

Introduction to Python ¢ 19

SCOPE OF VARIABLES

The accessibility or scope of a variable depends on where that variable has
been defined. Python provides two scopes: global and local, with the added
“twist” that global is actually module-level scope (i.e., the current file), and
therefore you can have a variable with the same name in different files and
they will be treated differently.

Local variables are straightforward: they are defined inside a function, and
they can only be accessed inside the function where they are defined. Any
variables that are not local variables have global scope, which means that those
variables are “global” only with respect to the file where it has been defined,
and they can be accessed anywhere in a file.

There are two scenarios to consider regarding variables. First, suppose two
files (aka modules) filel.py and file2 . py have a variable called %, and filel.
py also imports file2.py. The question now is how to disambiguate between
the x in the two different modules. As an example, suppose that file2.py con-
tains the following two lines of code:

x =3
print ('unscoped x in file2:', x)

Suppose that filel.py contains the following code:

import file2 as file2

x = 5
print ('unscoped x in filel:', x)
print ('scoped x from file2:', file2.x)

Launch filel.py from the command line, and you will see the following
output:

unscoped x in file2: 3
unscoped x in filel: 5
scoped x from file2: 3

The second scenario involves a program contains a local variable and a
global variable with the same name. According to the earlier rule, the local
variable is used in the function where it is defined, and the global variable is
used outside of that function.

The following code block illustrates the use of a global and local variable
with the same name:

#!/usr/bin/python
a global variable:
total = 0;

def sum(xl, x2):
this total is local:
total = x1+x2;

20 ¢ Python Data Structures Pocket Primer

print ("Local total : ", total)
return total

invoke the sum function
sum(2,3) ;
print ("Global total : "™, total)

When the above code is executed, it produces following result:

Local total : 5
Global total : O

What about unscoped variables, such as specifying the variable x without
a module prefix? The answer consists of the following sequence of steps that
python will perform:

. Check the local scope for the name.

Ascend the enclosing scopes and check for the name.

Perform step 2 until the global scope (i.e., module level).
. Ifxstill hasn't been found, Python checks__builtins__.

P ODN =

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:44:01)

[Clang 12.0.0 (clang-1200.0.32.27)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> x = 1

>>> g = globals/()

>>> g
{'g': {...}, ' _builtins ': <module ' builtin_ ' (built-in)>,
package ': None, 'x': 1, ' name_ ': ' main_ ', ' doc_ ': None}

>>> g.pop('x")
1

>>> x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

You can access the dicts that Python uses to track local and global

NOTE . , ,
scope by invoking locals () and globals () respectively.

PASS BY REFERENCE VERSUS VALUE

All parameters (arguments) in the Python language are passed by refer-
ence. Thus, if you change what a parameter refers to within a function, the
change is reflected in the calling function. For example:

def changeme (mylist) :
#This changes a passed list into this function
mylist.append([1,2,3,4])
print ("Values inside the function: ", mylist)
return

Introduction to Python * 21

Now you can call changeme function

mylist = [10,20,30]

changeme (mylist)

print ("Values outside the function: ", mylist)

Here we are maintaining reference of the passed object and appending
values in the same object, and the result is shown here:

Values inside the function: (10, 20, 30, [1, 2, 3, 4]]
Values outside the function: [1o, 20, 30, [1, 2, 3, 41]

The fact that values are passed by reference gives rise to the notion of
mutability versus immutability that is discussed in Chapter 3.

ARGUMENTS AND PARAMETERS

python differentiates between arguments to functions and parameter dec-
larations in functions: a positional (mandatory) and keyword (optional/default
value). This concept is important because Python has operators for packing
and unpacking these kinds of arguments. Python unpacks positional argu-
ments from an iterable, as shown here:

>>> def foo(x, y):
return x - y

>>> data = 4,5

>>> foo(data) # only passed one arg

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: foo() takes exactly 2 arguments (1 given)
>>> foo(*data) # passed however many args are in tuple
-1

USER-DEFINED FUNCTIONS IN PYTHON

Python provides built-in functions and also enables you to define your own
functions. You can define functions to provide the required functionality. Here
are simple rules to define a function in Python:

e Function blocks begin with the keyword def followed by the function
name and parentheses.

* Any input arguments should be placed within these parentheses.

* The first statement of a function can be an optional statement—the doc-
umentation string of the function or docstring.

e The code block within every function starts with a colon (:) and is indented.

* The statement return [expression] exits a function, optionally passing
back an expression to the caller. A return statement with no arguments is
the same as return “None.”

e If a function does not specify return statement, the function automati-
cally returns “None,” which is a special type of value in Python.

22 ¢ Python Data Structures Pocket Primer

A very simple custom Python function is here:

>>> def func():
print 3

>>> func ()

3

The preceding function is trivial, but it does illustrate the syntax for defin-
ing custom functions in Python. The following example is slightly more useful:
>>> def func(x):

for i in range (0, x) :

print (1)

>>> func (5)

S w N e O

SPECIFYING DEFAULT VALUES IN A FUNCTION

Listing 1.10 displays the contents of Defaultvalues.py that illustrates
how to specify default values in a function.

LISTING 1.10: DefaultValues.py

def numberFunc (a, b=10):
print (a,b)

def stringFunc(a, b='xyz'):
print (a,b)

def collectionFunc (a, b=None) :
if (b is None) :
print ('No value assigned to b')

numberFunc (3)
stringFunc ('one')
collectionFunc([1,2,3])

Listing 1.10 defines three functions, followed by an invocation of each
of those functions. The functions numberFunc() and stringFunc ()
print a list contain the values of their two parameters, and collection-
Func () displays a message if the second parameter is None. The output from
Listing 1.10 is here:

(3, 10)
('one', 'xyz')
No value assigned to b

Introduction to Python ¢ 23

Returning Multiple Values From a Function

This task is accomplished by the code in Listing 1.11, which displays the
contents of MultipleValues.py.

LISTING 1.11: MultipleValues.py

def MultipleValues() :
return 'a', 'b', 'c'

X, y, z = MultipleValues/()

print ('x:',x)
print('y:"',vy)
print('z:"',z)

LAMBDA EXPRESSIONS

Listing 1.12 displays the contents of Lambdal.py that illustrates how to
create a simple lambda function in Python.

LISTING 1.12: Lambda1.py
add = lambda x, y: x + vy

x1 = add(5,7)
X2 add ('Hello', 'Python')

print (x1)
print (x2)

Listing 1.12 defines the lambda expression add that accepts two input
parameters and then returns their sum (for numbers) or their concatenation
(for strings).

The output from Listing 1.12 is here:

12
HelloPython

The next portion of this chapter discusses Python collections, such as
lists (or arrays), sets, tuples, and dictionaries. You will see many short code
blocks that will help you rapidly learn how to work with these data structures
in Python. After you have finished reading this chapter, you will be in a better
position to create more complex Python modules using one or more of these
data structures.

24 e Python Data Structures Pocket Primer

WORKING WITH LISTS

Python supports a list data type, along with a rich set of list-related func-
tions. Since lists are not typed, you can create a list of different data types,
as well as multidimensional lists. The next several sections show you how to
manipulate list structures in Python.

Lists and Basic Operations

A Python list consists of comma-separated values enclosed in a pair of
square brackets. The following examples illustrate the syntax for defining a list
in Python, and also how to perform various operations on a Python list:

>>> list = [1, 2, 3, 4, 5]

>>> list

(1, 2, 3, 4, 5]

>>> 1ist[2]

3

>>> list2 = list + [1, 2, 3, 4, 5]
>>> 1ist?2

[1/ 2! 3/ 4! 5/ lr 2/ 3! 4/ 51
>>> list2.append(6)

>>> 1ist?2

[1/ 2! 3/ 4! 5/ lr 2/ 3! 4/ 5! 6]
>>> len(list)

5

>>> x = ['a', 'b', 'c']
>>> vy = [1, 2, 3]

>>> 7z = [x, V]

>>> z[0]

[lal, lbl, lcl]
>>> len (X)
3

You can assign multiple variables to a list, provided that the number and
type of the variables match the structure. Here is an example:

>>> point = [7,8]
>>> x,y = point
>>> x

7

>>> y

8

The following example shows you how to assign values to variables from a
more complex data structure:

>>> line = ['a', 10, 20, (2023,01,31)]
>>> x1,x2,x3,datel = line

>>> x1

’a’

>>> x2

10

>>> x3

Introduction to Python ¢ 25

20
>>> datel
(2023, 1, 31)

If you want to access the year/month/date components of the datel ele-
ment in the preceding code block, you can do so with the following code block:

>>> line = ['a', 10, 20, (2023,01,31)]
>>> x1,x2,x3, (year,month,day) = line
>>> x1

lal

>>> x2

10

>>> x3

20

>>> year

2023

>>> month

1

>>> day

31

If the number and/or structure of the variables do not match the data, an
error message is displayed, as shown here:

>>> point = (1,2)
>>> x,y,z = point
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: need more than 2 values to unpack

If the number of variables that you specify is less than the number of data
items, you will see an error message, as shown here:

>>> line = ['a', 10, 20, (2014,01,31)]

>>> x1,x2 = line

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: too many values to unpack

Lists and Arithmetic Operations

The minimum value of a list of numbers is the first number in the sorted
list of numbers. If you reverse the sorted list, the first number is the maxi-
mum value. There are several ways to reverse a list, starting with the technique
shown in the following code:

x = [3,1,2,4]

maxList = x.sort ()
minList = x.sort (x.reverse())
minl = min (x)

maxl = max(x)

26 ° Python Data Structures Pocket Primer

print minl
print maxl

The output of the preceding code block is here:

1
4

A second (and better) way to sort a list is shown here:
minList = x.sort (reverse=True)

A third way to sort a list involves the built-in functional version of the
sort () method, as shown here:

sorted(x, reverse=True)

The preceding code snippet is useful when you do not want to modify the
original order of the list or you want to compose multiple list operations on a
single line.

Lists and Filter-Related Operations

Python enables you to filter a list (also called list comprehension) as shown here:
mylist = [1, -2, 3, -5, 6, -7, 8]

pos = [n for n in mylist if n > 0]
neg = [n for n in mylist if n < 0]

print pos
print neg

You can also specify i£/else logic in a filter, as shown here:

mnylist = [1, -2, 3, -5, 6, -7, 8]
negativelist = [n if n < 0 else 0 for n in mylist]
positivelList = [n if n > 0 else 0 for n in mylist]

print positivelist
print negativelist

The output of the preceding code block is here:

(1, 3, 6, 8]

(-2, =5, -7]

[, o, 3, 0, 6, 0, 8]
[OI _21 Or 5! OI _71 O}

THE JOIN(), RANGE(), AND SPLIT() FUNCTIONS

Python provides the join () method for concatenating text strings, as
shown here:

>>> parts = ['Is', 'SF', 'In', 'California?']
>>> ' !'.join(parts)

Introduction to Python o 27

'Is SF In California?'

>>> ', '.join (parts)
'Is,SF,In,California?"’

>>> ''" join(parts) 'IsSFInCalifornia?'

There are several ways to concatenate a set of strings and then print the
result. The following is the most inefficient way to do so:

print "This" + " is"™ + " a" + " sentence"
Either of the following is preferred:

"o

print "%s %s %s %$s" % ("This", "is", "a", "sentence")
print " ".join(["This"™,"is","a", "sentence"])

The next code block illustrates the Python range () function that you can
use to iterate through a list, as shown here:

>>> for i in range(0,5):
print i

B wWw NP O

You can use a for loop to iterate through a list of strings, as shown here:

>>> x

['a', lbl’ lcl]

>>> for w in x:
print w

oo -

You can use a for loop to iterate through a list of strings and provide addi-
tional details, as shown here:

>>> x
['a', ’b’, 'c']
>>> for w in x:
print len(w), w

e e
Q O w .

The preceding output displays the length of each word in the list %, fol-
lowed by the word itself.

You can use the Python split () function to split the words in a text string
and populate a list with those words. An example is here:

28 ¢ Python Data Structures Pocket Primer

>>> x = "this is a string"
>>> list = x.split()
>>> list

["this', 'is', 'a', 'string']

A simple way to print the list of words in a text string is shown here:

>>> x = "this is a string"

>>> for w in x.split():
print w

this

is

a

string

You can search for a word in a string as follows:

>>> x = "this is a string"
>>> for w in x.split():
if(w == 'this'):

print "x contains this"

x contains this

ARRAYS AND THE 2prrenD () FUNCTION

Although Python does have an array type (import array), which is
essentially a heterogeneous list, the array type has no advantages over the list
type other than a slight saving in memory use. You can also define heterogene-
ous arrays:

a = [10, 'hello', [5, "'"77']]

You can append a new element to an element inside a list:

>>> a = [10, 'hello', [5, '77']]
>>> al[2].append('abc')
>>> 3

[10, 'hello', [5, '"77', 'abc'l]l]
You can assign simple variables to the elements of a list, as shown here:

myList = ['a', 'b', 91.1, (2014, 01, 31) 1
x1, x2, x3, x4 = myList

print 'xl:',x1

print 'x2:',x2

print 'x3:',x3

print 'x4:',x4

The output of the preceding code block is here:

x1l: a
x2: b

Introduction to Python ¢ 29

x3: 91.1
x4: (2014, 1, 31)

The Python split () function is more convenient (especially when the
number of elements is unknown or variable) than the preceding sample, and
you will see examples of the split () function in the next section.

OTHER LIST-RELATED FUNCTIONS

Python provides additional functions that you can use with lists, such as
append (), insert (), delete(), pop (), and extend().Pythonakosup-
ports the functions index (), count (), sort (), and reverse (). Examples
of these functions are illustrated in the following code block.

Define a Python list (notice that duplicates are allowed):

>>>a = [1, 2, 3, 2, 4, 2, 5]

Display the number of occurrences of 1 and 2:

>>> print a.count(l), a.count(2)
13

Insert —8 in position 3:

>>> a.insert (3,-8)
>>> a
[, 2, 3, -8, 2, 4, 2, 5]

Remove occurrences of 3:

>>> a.remove (3)
>>> a
[11 2! _87 2/ 4! 2/ 5]

Remove occurrences of 1:

>>> a.remove (1)
>>> a
[21 _81 2! 4/ 2! 5]

Append 19 to the list:

>>> a.append (19)
>>> a
[21 _81 2! 4/ 2! 5/ 19]

Print the index of 19 in the list:

>>> a.index (19)
6

Reverse the list:

>>> a.reverse ()
>>> a
[191 5/ 2! 4/ 2! _81 2]

30 ¢ Python Data Structures Pocket Primer

Sort the list:

>>> a.sort ()
>>> a
[_87 2/ 2! 2/ 4! 5/ 19]

Extend list a with list b:

>>> b = [100,200,300]

>>> a.extend (b)

>>> 3

[-8, 2, 2, 2, 4, 5, 19, 100, 200, 300]

Remove the first occurrence of 2:

>>> a.pop (2)

2

>>> 3

[-8, 2, 2, 4, 5, 19, 100, 200, 300]

Remove the last item of the list:
>>> a.pop ()
300

>>> a
[-8, 2, 2, 4, 5, 19, 100, 200]

WORKING WITH LIST COMPREHENSIONS

A list comprehension is a powerful construct in Python that enables you to
create a list of values in one line of code. Here is a simple example:

letters = [w for w in "Chicago Pizza"]
print (letters)

If you launch the preceding code snippet you will see the following output:
['C', 'h‘, 'i', ‘c', 'a', 'g‘, 'o', 1 ', 'P', 'i‘, 'Z', ‘Z', 'a']
As another example, consider the following two lines of code:
namesl = ["Sara","Dave","Jane","Bill","E1lly", "Dawn"]
names?2 = [name for name in namesl if name.startswith ("D")]
print ("names2:",names?2)

If you launch the preceding code snippet you will see the following output:

names?2: ['Dave', 'Dawn']

Another example involves a “for ... for ...” construct, as shown here:

names3 = ["Sara","Dave'"]
names4 = [char for name in names3 for char in name]

Introduction to Python ¢ 31

If you launch the preceding code snippet you will see the following output:

names3: ['Sara', 'Dave']
names4é: ['S', |a|, vrv, |a|, va, |a|, 'V', 'e'}

The following example illustrates a list comprehension that is an alternative
to the map () function:

squared = [a*a for a in range(l,10)]
print ("squared:", squared)

If you launch the preceding code snippet, you will see the following output:

squared: [1, 4, 9, 16, 25, 36, 49, o064, 81]

The following example illustrates a list comprehension that is an alternative
to the filter () function:

evens = [a for a in range(1,10) if a%2 == 0]
print ("evens:",evens)

If you launch the preceding code snippet, you will see the following output:

evens: [2, 4, 6, 8]

You can also use list comprehensions with two-dimensional arrays, as shown
here:

import numpy as np

arrl = np.random.rand (3, 3)
maxs = [max (row) for row in arrl]
print ("arrl:")
print (arrl)
print ("maxs:")
(

print (maxs)
If you launch the preceding code snippet, you will see the following output:

arrl:
[[0.8341748 0.16772064 0.79493066]
[0.876434 0.9884486 0.86085496]
[0.16727298 0.13095968 0.75362753]]
maxs:
[0.8341747956062362, 0.9884485986312492, 0.7536275263907967]

The complete code sample is 1ist_comprehensions.py and is available
in the companion files for this chapter.

Now that you understand how to use list comprehensions, the next section
shows you how to work with vectors in Python.

32 ¢ Python Data Structures Pocket Primer

WORKING WITH VECTORS

A vector is a one-dimensional array of values, and you can perform vector-
based operations, such as addition, subtraction, and inner product. Listing 1.13
displays the contents of Myvectors.py that illustrates how to perform vector-
based operations.

LISTING 1.13: MyVectors.py

vl = [1,2,3]

v2 = [1,2,3]

v3 = [5,5,5]

sl = [0,0,0]

dl = [0,0,0]

pl =0

print ("Initial Vectors"

print('vl:',vl)

print('v2:"',v2)

print ('v3:',v3)

for i in range(len(1)) :
di[i] = v3[i] - v2[i]
s1[i] = v3[1i] + v2[i]
pl = v3[i] * v2[i] + pl

print ("After operations")

print('dl:"',dl)

print('sl:',sl)

print('pl:',pl)

Listing 1.13 starts with the definition of three lists in Python, each of which
represents a vector. The lists d1 and s1 represent the difference of v2 and
the sum v2, respectively. The number p1 represents the “inner product” (also
called the “dot product”) of v3 and v2. The output from Listing 1.13 is here:

Initial Vectors
vi: [1, 2, 3]
v2: [1, 2, 3]
v3: [5, 5, 5]
After operations
dl: [4, 3, 2]
sl: [6, 7, 8]
pl: 30

WORKING WITH MATRICES

A two-dimensional matrix is a two-dimensional array of values, and you can
easily create such a matrix. For example, the following code block illustrates
how to access different elements in a 2D matrix:

Introduction to Python ¢ 33

mm = [["a","b","c"], ["d","e","f"], ["g","h","i"]l;
print 'mm: ', mm

print 'mm[O]: ',mm[0]

print 'mm[O0][1]:',mm[O0] [1]

The output from the preceding code block is here:

mm: ['a', 'b', 'c'l, ['d', 'e', 'f'], [vgv, 'h', "i']]
mm[O] : ['a', 'b', 'c']

Listing 1.14 displays the contents of My2DMatrix.py that illustrates how
to create and populate 2 two-dimensional matrix.

LISTING 1.14: My2DMatrix.py

rows = 3
cols = 3
my2DMatrix [[0 for 1 in range(rows)] for J in

range (rows)]
print ('Before:',my2DMatrix)

for row in range (rows) :
for col in range (cols):
my2DMatrix[row] [col] = row*rowtcol*col
print ('After: ',my2DMatrix)

Listing 1.14 initializes the variables rows and cols and then uses them to
create the rows x cols matrix my2DMatrix whose values are initially 0. The
next part of Listing 1.14 contains a nested loop that initializes the element of
my2DMatrix whose position is (row, col) with the value row*row+col*col.
The last line of code in Listing 1.14 prints the contents of my2DArray. The
output from Listing 1.14 is here:

Before: [[O, O, 0], [0, O, 0], [0, 0O, 0]]
After: [fo, 1, 41,]

QUEUES

A queue is a FIFO (“First In First Out”) data structure. Thus, the oldest
item in a queue is removed when a new item is added to a queue that is already
full.

Earlier in the chapter you learned how to use a Python list to emulate a
queue. However, there is also a queue object in Python. The following code
snippets illustrate how to use a queue in Python.

>>> from collections import deque

>>> g = deque('',maxlen=10)

>>> for i in range(10,20):
g.append (i)

34 ¢ Python Data Structures Pocket Primer

>>> print g
deque([(10, 11, 12, 13, 14, 15, 16, 17, 18, 19], maxlen=10)

The next section shows you how to use tuples in Python.

TUPLES (IMMUTABLE LISTS)

Python supports a data type called a tuple that consists of comma-sepa-
rated values without brackets (square brackets are for lists, round brackets are
for arrays, and curly braces are for dictionaries). Various examples of Python
tuples are here:

https://docs.python.org/3.6/tutorial/datastructures. html#tuples-and-
sequences

The following code block illustrates how to create a tuple and create new
tuples from an existing type in Python.
Define a python tuple t as follows:

>> t = 1,'a', 2,'hello',3

S>> t

(1, 'a', 2, 'hello', 3)
Display the first element of t:

>>> t[0]
1

Create a tuple v containing 10, 11, and t:
>>> v = 10,11,t
>>> v
(10, 11, (1, 'a', 2, 'hello', 3))
Try modifying an element of t (which is immutable):
>>> t[0] = 1000
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

python “deduplication” is useful because you can remove duplicates from
a set and obtain a list, as shown here:

>>> 1st = list(set(lst))

The “in” operator on a list to search is O(n) whereas the “in” operator on a
setis O(1).

NOTE

The next section discusses Python sets.

https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-sequences

Introduction to Python ¢ 35

SETS

A Python set is an unordered collection that does not contain duplicate
elements. Use curly braces or the set () function to create sets. Set objects
support set-theoretic operations such as union, intersection, and difference.

set () is required in order to create an empty set because {} creates an

NOTE empty dictionary.
The following code block illustrates how to work with a Python set.
Create a list of elements:
>>>l: ['a', lbl, 'a', 'C'J

Create a set from the preceding list:

>>> s = set (1)
>>> s
set(['a', 'c', 'b'])

Test if an element is in the set:

>>> 'a' in s
True

>>> 'd' in s
False

>>>

Create a set from a string:

>>> n = set ('abacad')

>>> n

Set([lal’ ‘C‘, lbl’ ldll)
>>>

Subtract n from s:

>>> s - n
set ([])

Subtract s from n:

>>>n - s
set (['d'])
>>>

The union of s and n:

>>> s | n
Set(['a', |c|, 'b', VdV})

The intersection of s and n:

>>> s & n
set(['a', 'c', 'b'])

36 ° Python Data Structures Pocket Primer

The exclusive-or of s and n:
>>> s ~ n

set(['d'])
The next section shows you how to work with Python dictionaries.

DICTIONARIES

Python has a key/value structure called a “dict” that is a hash table.
A python dictionary (and hash tables in general) can retrieve the value of a
key in constant time, regardless of the number of entries in the dictionary (and
the same is true for sets). You can think of a set as essentially just the keys (not
the values) of a dict implementation.

The contents of a dict can be written as a series of key:value pairs, as
shown here:

dictl = {keyl:valuel, key2:value2, ... }

The “empty dict” is just an empty pair of curly braces {}.

Creating a Dictionary

A Python dictionary (or hash table) contains of colon-separated key/value
bindings inside a pair of curly braces, as shown here:

dictl = {}
{

dictl x' 1, 'y' : 2}

The preceding code snippet defines dictl as an empty dictionary, and
then adds two key/value bindings.

Displaying the Contents of a Dictionary

NOTE

You can display the contents of dict1 with the following code:

>>> dictl = {'x':1,'y':2}

>>> dictl

{'y': 2, '"x': 1}

>>> dictl['x"']

1

>>> dictl['y']

2

>>> dictl['z']

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'z'

The key/value bindings for a dict and a set are not necessarily stored in
the same order that you defined them.

Introduction to Python ¢ 37

Python dictionaries also provide the get method in order to retrieve key
values:

>>> dictl.get ('x")
1
>>> dictl.get('y")
2
>>> dictl.get('z")

As you can see, the Python get method returns None (which is displayed
as an empty string) instead of an error when referencing a key that is not
defined in a dictionary.

You can also use dict comprehensions to create dictionaries from expres-
sions, as shown here:

>>> {x: x**3 for x in (1, 2, 3)}
{1: 1, 2: 8, 3: 37}

Checking for Keys in a Dictionary

You can easily check for the presence of a key in a Python dictionary as
follows:

>>> 'x' in dictl
True
>>> 'z' in dictl
False

Use square brackets for finding or setting a value in a dictionary. For exam-
ple, dict ['abc'] finds the value associated with the key 'abc. ' You can use
strings, numbers, and tuples work as key values, and you can use any type as
the value.

If you access a value that is not in the dict, Python throws a KeyError.
Consequently, use the “in” operator to check if the key is in the dict.
Alternatively, use dict.get (key) which returns the value or None if the
key is not present. You can even use the expression get (key, not-found-
string) to specify the value to return if a key is not found.

Deleting Keys From a Dictionary

Launch the Python interpreter and enter the following statements:

>>> MyDict = {'x' : 5, 'yv' ¢ 7}
>>> MyDict(['z'] = 13

>>> MyDict

{'y': 7, 'x':5, 'z': 13}

>>> del MyDict['x']

>>> MyDict

{'y': 7, 'z': 13}

>>> MyDict.keys ()

[vyv , A J

38 ¢ Python Data Structures Pocket Primer

>>> MyDict.values ()
[13, 7]

>>> 'z' in MyDict
True

Iterating Through a Dictionary

The following code snippet shows you how to iterate through a dictionary:
MyDict = {'x' : 5, 'y' 7, 'z' : 13}

for key, value in MyDict.items() :
print key, value

The output from the preceding code block is here:

7
5
1

N X

3

Interpolating Data From a Dictionary

The % operator substitutes values from a Python dictionary into a string by
name. Listing 1.15 contains an example of doing so.

LISTING 1.15: InterpolateDict1.py

hash = {}
hash['beverage'] = 'coffee'
hash['count'] = 3

%d for int, %s for string

Q

s = 'Today I drank % (count)d cups of % (beverage)s' % hash
print('s:"', s)

The output from the preceding code block is here:

Today I drank 3 cups of coffee

DICTIONARY FUNCTIONS AND METHODS

Python provides various functions and methods for a Python dictionary,

such as cmp (), len(), and str() that compare two dictionaries, return
the length of a dictionary, and display a string representation of a dictionary,
respectively.

You can also manipulate the contents of a Python dictionary using the func-
tions clear () to remove all elements, copy () to return a shall copy, get ()
to retrieve the value of a key, items () to display the (key,value) pairs of a
dictionary, keys () to displays the keys of a dictionary, and values () to return
the list of values of a dictionary.

The next section discusses other Python sequence types that have not been
discussed in previous sections of this chapter.

Introduction to Python ¢ 39

OTHER SEQUENCE TYPES IN PYTHON

Python supports seven sequence types: str, unicode, list, tuple,
bytearray,buﬁer,and xrange.

You can iterate through a sequence and retrieve the position index and cor-
responding value at the same time using the enumerate () function.

>>> for i, v in enumerate(['x', 'y', 'z']):
print i, v

N = O
N X

Bytearray objects are created with the built-in function bytearray ().
Although buffer objects are not directly supported by Python syntax, you can
create them via the built-in buffer () function.

Objects of type xrange are created with the xrange () function. An
xrange object is similar to a buffer in the sense that there is no specific syntax
to create them. Moreover, xrange objects do not support operations such as
slicing, concatenation or repetition.

At this point you have seen all the Python type that you will encounter in
the remaining chapters of this book, so it makes sense to discuss mutable and
immutable types in Python, which is the topic of the next section.

MUTABLE AND IMMUTABLE TYPES IN PYTHON

Python represents its data as objects. Some of these objects (such as lists
and dictionaries) are mutable, which means you can change their content with-
out changing their identity. Objects such as integers, floats, strings and tuples
are objects that cannot be changed. The key point to understand is the differ-
ence between changing the value versus assigning a new value to an object;
you cannot change a string but you can assign it a different value. This detail
can be verified by checking the id value of an object, as shown in Listing 1.16.

LISTING 1.16: Mutability.py

s = "abc"
print('id #1:', id(s))
print ('first char:', s[0])

try:
S[O} — "O"
except:
print ('Cannot perform reassignment')

s = llxyzll
print ('id #2:',id(s))
s += "uvw"

print ('id #3:',1id(s))

40 e Python Data Structures Pocket Primer

The output of Listing 1.16 is here:

id #1: 4297972672

first char: a

Cannot perform reassignment
id #2: 4299809336

id #3: 4299777872

Thus, a Python type is immutable if its value cannot be changed (even
though it’s possible to assign a new value to such a type), otherwise a Python
type is mutable. The Python immutable objects are of type bytes, complex,
float, int, str, or tuple. However, dictionaries, lists, and sets are mutable.
The key in a hash table must be an immutable type.

Since strings are immutable in Python, you cannot insert a string in the
“middle” of a given text string unless you construct a second string using con-
catenation. For example, suppose you have the string:

"this is a string"

and you want to create the following string:

"this is a longer string"

The following Python code block illustrates how to perform this task:
textl = "this is a string"
text?2 = textl[0:10] + "longer" + textl[9:]
print 'textl:', textl
print 'text2:',text2
The output of the preceding code block is here:

textl: this is a string
text2: this is a longer string

SUMMARY

This chapter showed you how to work with numbers and perform arith-
metic operations on numbers, and then you learned how to work with strings
and use string operations. Next, you learned about condition logic, such as i £/
elif statements. You also learned how to work with loops in Python, includ-
ing for loops and while loops.

In addition, you saw how to work with various Python data types. In par-
ticular, you learned about tuples, sets, and dictionaries. Then you learned how
to work with lists and how to use list-related operations to extract sublists.

The next chapter shows you how to work with conditional statements,
loops, and user-defined functions in Python.

CHAPTER

Recursion AND COMBINATORICS

his chapter introduces you to recursion that is illustrated in various
python code samples, followed by an introduction to basic concepts in
combinatorics, such as combinations and permutations of objects.

The first part of this chapter shows you how to calculate arithmetic series
and geometric series using iterative algorithms as well as recursive algorithms.
These examples provide a gentler introduction to recursion if you are new to
this topic (experienced users will breeze through these code samples). Next
you will learn about calculating factorial values of positive integers as well as
Fibonacci numbers. Except for the iterative solution to Fibonacci numbers,
these code samples do not involve data structures.

The second part of this chapter discusses concepts in combinatorics, such
as permutations and combinations. Note that a thorough coverage of combi-
natorics can fill an entire undergraduate course in mathematics, whereas this
chapter contains only some rudimentary concepts.

You might be wondering why recursion is in Chapter 2 instead of a chapter
toward the end of the book, and there are several reasons for doing so. First,
recursion is indispensable when working with algorithms that solve tasks that
involve most data structures, such as singly linked lists, doubly linked lists,
queues, stacks, trees, and graphs.

Second, recursive algorithms exist even for a simple data structure such as
an array of sorted elements: binary search is such an algorithm, and a recursive
as well as iterative solution is discussed in Chapter 3.

Third, some tasks can only be solved via recursive algorithms, such as tra-
versing the elements of a tree or a graph.

If you are new to recursion, be prepared to read the material more than once
and also practice working with the code samples, which will lead to a better
understanding of recursion. However, you can also skip the material in this chap-
ter until you encounter code samples later in this chapter that involve recursion.

42 o Python Data Structures Pocket Primer

WHAT IS RECURSION?

Recursion-based algorithms can provide very elegant solutions to tasks that
would be difficult to implement via iterative algorithms. For some tasks, such
as calculating factorial values, the recursive solution and the iterative solution
have comparable code complexity.

As a simple example, suppose that we want to add the integers from 1 to
n (inclusive), and let n = 10 so that we have a concrete example. If we denote
S as the partial sum of successively adding consecutive integers, then we have
the following:

S =1

S =S + 2
S =S+ 3
S =S + 10

If we denote S (n) as the sum of the first n positive integers, then we have
the following relationship:

S(1) =1
S(n) = S(n-1) + n for n > 1

With the preceding observations in mind, the next section contains code
samples for calculating the sum of the first n positive integers using an iterative
approach and then with recursion.

ARITHMETIC SERIES

This section shows you how to calculate the sum of a set of positive inte-
gers, such as the numbers from 1 to n inclusive. The first algorithm uses an
iterative approach and the second algorithm uses recursion.

Before delving into the code samples, there is a simple way to calculate the
closed form sum of the integers from 1 to n inclusive, which we will denote as
S. Then there are two ways to calculate s, as shown here:

S =1 n-1)
n

+ 2 + 3 oo+ +n
S = + (n-1) + (n-2) + . . . + 2 + 1

There are n columns on the right side of the preceding pair of equations,
and each column has the sum equal to (n+1). Therefore the sum of the right
side of the equals sign is n* (n+1) . Since the left-side of the equals sign has the

sum 2*3, we have the following result:
2*S = n*(n+1)

Now divide both sides by 2 and we get the well-known formula for the
arithmetic sum of the first n positive integers:

S = n*(n+l)/2

Recursion and Combinatorics ¢ 43

Incidentally, the preceding formula was derived by a young student who
was bored with performing the calculation manually: that student was Karl F
Gauss (in third grade).

Calculating Arithmetic Series (Iterative)

Listing 2.1 displays the contents of the arith_sum.py that illustrates how
to calculate the sum of the numbers from 1 to n inclusive using an iterative

approach.

LISTING 2.1: arith_sum.py

def arith sum(n):
sum = 0
for i in range(l,n+l):
sum += i
return sum

max = 20
for j in range (2, max+l):
sum = arith sum(3j)
print ("sum from 1 to",j,"=",sum)

Listing 2.1 starts with the function arith sum() that contains a loop that
literately adds the numbers from 1 to n. The next portion of Listing 2.1 also
contains a loop that iterates through the numbers from 2 to 20 inclusive, and
then invokes arith sum() with each value of the loop variable to calculate
the sum of the integers from 1 to that value. Launch the code in Listing 2.1 and
you will see the following output:

sum from 1 to 2 = 3
sum from 1 to 3 = 6
sum from 1 to 4 = 10
sum from 1 to 5 = 15
sum from 1 to 6 = 21
sum from 1 to 7 = 28
sum from 1 to 8 = 36
sum from 1 to 9 = 45
sum from 1 to 10 = 55
sum from 1 to 11 = 66
sum from 1 to 12 = 78
sum from 1 to 13 = 91
sum from 1 to 14 = 105
sum from 1 to 15 = 120
sum from 1 to 16 = 136
sum from 1 to 17 = 153
sum from 1 to 18 = 171
sum from 1 to 19 = 190
sum from 1 to 20 = 210

Modify the code in Listing 2.1 to calculate the sum of the squares, cubes,
and fourth powers of the numbers from 1 to n, along with your own variations
of the code.

44 ¢ Python Data Structures Pocket Primer

Calculating Arithmetic Series (Recursive)

Listing 2.2 displays the contents of the arith sum recursive.py that
illustrates how to calculate the sum of the numbers from 1 to n inclusive using
a recursion.

LISTING 2.2: arith_sum_recursive.py

def arith sum(n):
if(n == 0):
return n
else:
return n + arith sum(n-1)

max = 20
for j in range (2, max+l):
sum = arith sum(3j)
print ("sum from 1 to",j,"=",sum)

Listing 2.2 starts with the recursive function arith sum() that uses con-
ditional logic to return n if n equals the value 0 (which is the terminating case);
otherwise the code returns the value of n plus the value of arith sum(n-1).
Launch the code in Listing 2.2 and you will see the same output as the previ-
ous section.

Calculating Partial Arithmetic Series

Listing 2.3 displays the contents of the arith partial sum.py thatillus-
trates how to calculate the sum of the numbers from m to n inclusive, where m
and n are two positive integers such that m <= n, using an iterative approach.

LISTING 2.3: arith_partial_sum.py

def arith partial sum(m,n):
if(m >= n):
return 0
else:
return n* (n+l)/ - m* (m+1)/2

max = 20
for j in range (2, max+l):
sum = arith sum(3j)
print ("sum from 1 to",j,"=",sum)

Listing 2.3 is straightforward: the function arith partial sum() that
returns the sum of squares from 1 to n minus the sum of squares from 1 to m.
This function is invoked in a loop in the second part of Listing 2.3, which cal-
culates the difference of the sum of squares from 2 to 20. Launch the code in
Listing 2.3 and you will see the following output:

arithmetic sum from 2 to 2 2
arithmetic sum from 2 to 3 = 3

Recursion and Combinatorics ® 45

arithmetic sum from 2 to 4 = 7
arithmetic sum from 2 to 5 = 12
arithmetic sum from 2 to 6 = 18
arithmetic sum from 3 to 3 = 3
arithmetic sum from 3 to 4 = 4
arithmetic sum from 3 to 5 = 9
arithmetic sum from 3 to 6 = 15
arithmetic sum from 4 to 4 = 4
arithmetic sum from 4 to 5 = 5
arithmetic sum from 4 to 6 = 11
arithmetic sum from 5 to 5 = 5
arithmetic sum from 5 to 6 = 6

Now that you have seen some examples involving arithmetic expressions,
next turn to geometric series, which is the topic of the following section.

GEOMETRIC SERIES

This section shows you how to calculate the geometric series of a set of
positive integers, such as the numbers from 1 to n inclusive. The first algorithm
uses an iterative approach and the second algorithm uses recursion.

Before delving into the code samples, there is a simple way to calculate
the closed form sum of the geometric series of integers from 1 to n inclusive,
where r is the ratio of consecutive terms in the geometric series. Let S denote
the sum, which we can express as follows:

A

S =1+r + "2 + "3 + +
r*s = r+ r"2 + "3 + . . .+

A

r*(n-1)
r

+ r
“(n-1) + r

n
n + r*(n+l)

Now subtract each term in the second row above from the corresponding
term in the first row, and we have the following result:

S - r*s =1 - r*(ntl)

Now factor s from both terms on the left side of the preceding equation
and we get the following result:

S*(1 - r) =1 - r*(ntl)

Now divide both sides of the preceding equation by the term (1-r) to get
the formula for the sum of the geometric series of the first n positive integers:

S =11 -r"(n+tl)1/(1-1)

If r = 1 then the preceding equation returns an infinite value, which
makes sense because S is the sum of an infinite number of occurrences of the
number 1.

Calculating a Geometric Series (Iterative)

Listing 2.4 displays the contents of the geom sum.py that illustrates how to
calculate the sum of the numbers from 1 to n inclusive using an iterative approach.

46 * Python Data Structures Pocket Primer

LISTING 2.4: geom_sum.py

def geom sum(n,ratio):
partial = 0
power =1
for i in range(l,n+1):
partial += power
power *= ratio
return partial

max = 10
ratio = 2
for j in range (2,max+1):
prod = geom sum(Jj,ratio)
print ("geometric sum for ratio=",ratio,
"from 1 to",j,"=",prod)

Listing 2.4 starts with the function geom sum () that contains a loop that
calculates the sum of the powers of the numbers from 1 to n, where the power
is the value of the variable ratio. The second part of Listing 2.4 contains a
loop that invokes the function geom sum () with the values 2, 3, .. ., n, and a
fixed value of 2 for the variable ratio. Launch the code in Listing 2.4 and you
will see the following output:

geometric sum for ratio= 2 from 1 to 2 = 3
geometric sum for ratio= 2 from 1 to 3 = 7
geometric sum for ratio= 2 from 1 to 4 = 15
geometric sum for ratio= 2 from 1 to 5 = 31
geometric sum for ratio= 2 from 1 to 6 = 63
geometric sum for ratio= 2 from 1 to 7 = 127
geometric sum for ratio= 2 from 1 to 8 = 255
geometric sum for ratio= 2 from 1 to 9 = 511
geometric sum for ratio= 2 from 1 to 10 = 1023

Calculating Arithmetic Series (Recursive)

Listing 2.5 dmpkqsthe contents of the geom sum recursive.py that
illustrates how to calculate the sum of the geometric series of the numbers
from 1 to n inclusive using recursion. Note that the following code sample uses
tail recursion.

LISTING 2.5: geom_sum_recursive.py

def geom sum(n,ratio,term,sum) :

if(n == 1):
return sum
else:

term *= ratio
sum += term
return geom sum(n-1,ratio,term, sum)

max = 10
ratio = 2

Recursion and Combinatorics ® 47

sum = 1
term = 1

for j in range(2,max+1l):
prod = geom sum(j,ratio,term, sum)
print ("geometric sum for ratio=",ratio,"from 1 to",j,"=",prod)

Listing 2.5 contains the function geom sum () that takes four parameters:
n (the current value of the upper range), ratio (which is the exponent 2 in this
code sample), term (which is the current intermediate term of the sum), and
sum (the target sum).

As you can see, the code returns the value 1 when n equals 1; otherwise, the
values of term and sum are updated, and the function geom_sum () is invoked
whose only difference is to decrement n by 1.

This code sample illustrates tail recursion, which is more efficient than reg-
ular recursion, and perhaps a little more intuitive as well. The second part of
Listing 2.5 contains a loop that invokes the function geom_sum () as the loop
iterates from 2 to max inclusive. Launch the code in Listing 2.5 and you will
see the same output as the previous section.

FACTORIAL VALUES

This section contains three code samples for calculating factorial values:
one code sample uses a loop and the other two code samples use recursion.

As a reminder, the factorial value of a positive integer n is the product of all
the numbers from 1 to n (inclusive). Therefore, we have the following values:

Factorial(2) = 2*1 = 2

Factorial (3) = 3*2*1 = 6

Factorial (4) = 4*3*2*]1 = 24
Factorial (5) = 5*4#*3*2*]1 = 120
Factorial (6) = 6*5*4*3*2*]1 = 720
Factorial (7) = 7*6*5*4*3*2*1 = 5040

If you look at the preceding list of calculations, you can see some interest-
ing relationships among factorial numbers:

Factorial (3) = 3 * Factorial (2)
Factorial (4) = 4 * Factorial (3)
Factorial (5) = 5 * Factorial (4)
Factorial (6) = 6 * Factorial (5)
Factorial (7) = 7 * Factorial (6)

Based on the preceding observations, it’s reasonably intuitive to infer the
following relationship for factorial numbers:

Factorial (1) 1
Factorial(n) = n * Factorial(n-1) for n > 1

The next section uses the preceding formula in order to calculate the
factorial value of various numbers.

48 e Python Data Structures Pocket Primer

Calculating Factorial Values (lterative)

Listing 2.6 displays the contents of the Factoriall.py that illustrates
how to calculate factorial numbers using an iterative approach.

LISTING 2.6: Factorial1.py

def factorial(n):
prod = 1
for i in range(l,n+1):
prod *= i
return prod

max = 20
for n in range (0,max) :
result = factorial (n)
print ("factorial",n,"=",result)

Listing 2.6 starts with the function factorial() that contains a loop
to multiply the numbers from 1 to n and storing the product in the variable
prod whose initial value is 1. The second part of Listing 2.6 contains a loop
that invokes factorial () with the loop variable that ranges from 0 to max.
Launch the code in Listing 2.6 and you will see the following output:

factorial 0 = 1
factorial 1 1
factorial 2 = 2
factorial 3 = 6
factorial 4 = 24
factorial 5 = 120
factorial 6 = 720
factorial 7 = 5040
factorial 8 = 40320
factorial 9 = 362880

factorial 10 = 3628800

factorial 11 = 39916800

factorial 12 = 479001600
factorial 13 = 6227020800
factorial 14 = 87178291200
factorial 15 = 1307674368000
factorial 16 = 20922789888000
factorial 17 = 355687428096000
factorial 18 = 6402373705728000
factorial 19 = 121645100408832000

Calculating Factorial Values (Recursive)

Listing 2.7 displays the contents of the Factorial2.py that illustrates
how to calculate factorial values using recursion.

LISTING 2.7: Factorial2.py

def factorial(n):
if(n <= 1):

Recursion and Combinatorics ¢ 49

return 1
else:
return n * factorial (n-1)

max = 20
for n in range (0,max) :
result = factorial (n)
print ("factorial",n,"=",result)

Listing 2.7 starts with the function factorial () that is the same function
that you saw in Listing 2.6. Notice that the second portion of Listing 2.7 is the
same as the second portion of Listing 2.6. Now launch the code in Listing 2.7
and you will see the same output as the preceding example.

Calculating Factorial Values (Tail Recursion)

Listing 2.8 displays the contents of the Factorial3.py that illustrates
how to calculate factorial values using tail recursion.

LISTING 2.8: Factorial3.py

def factorial(n, prod):

if(n <= 1):
return prod
else:

return factorial (n-1, n*prod)

max = 20
for n in range (0,max) :
result = factorial(n, 1)
print ("factorial",n,"=",result)

Listing 2.8 starts with the recursive function factorial () that uses tail
recursion, which is somewhat analogous to the tail recursion in Listing 2.5. The
second portion of Listing 2.8 is the same as the second portion of Listing 2.5.
Launch the code in Listing 2.8 and you will see the same output as the preced-
ing example.

FIBONACCI NUMBERS

Fibonacci numbers are simple yet interesting, and also appear in nature
(such as the pattern of sunflower seeds). Here is the definition of the
Fibonacci sequence:

Fib(0) = 0
Fib(l) =1
Fib(n) = Fib(n-1)+Fib(n-2) for n >= 2

Note that it’s possible to specify different “seed” values for Fib (0) and
Fib (1), but the values 0 and 1 are the most commonly used values.

50 ¢ Python Data Structures Pocket Primer

Calculating Fibonacci Numbers (Recursive)

Listing 2.9 displays the contents of the Fibonaccil.py that illustrates
how to calculate Fibonacci numbers using recursion.

LISTING 2.9: Fibonaccil.py

very inefficient:
def fibonacci (n):
if n <= 1:
return n
else:
return fibonacci (n-2) + fibonacci (n-1)

max=20
for i in range (0,max) :
fib = fibonacci (i)
print ("fibonacci", i, "=",fib)

Listing 2.9 starts the recursive function fibonacci () that returns 1 if n
equals 1. If n is greater than 1, the code returns the sum of two invocations of
fibonacci () : the first with the value n-2 and the second with the value n-1.

The second part of Listing 2.9 contains another loop that invokes the func-
tion fibonacci () with the values of the loop variable that iterates from 0 to
max. Now launch the code in Listing 2.9 and you will see the following output:

fibonacci 0 = 0

fibonacci 1 =1
fibonacci 2 =1
fibonacci 3 = 2
fibonacci 4 = 3
fibonacci 5 = 5
fibonacci 6 = 8
fibonacci 7 = 13
fibonacci 8 = 21
fibonacci 9 = 34
fibonacci 10 = 55
fibonacci 11 = 89
fibonacci 12 = 144
fibonacci 13 = 233
fibonacci 14 = 377
fibonacci 15 = 610
fibonacci 16 = 987
fibonacci 17 = 1597
fibonacci 18 = 2584
fibonacci 19 = 4181

Calculating Fibonacci Numbers (lIterative)

Listing 2.10 displays the contents of the Fibonacci2.py that illustrates
how to calculate Fibonacci numbers using an iterative approach.

Recursion and Combinatorics ® 51

LISTING 2.10: Fibonacci2.py

import numpy as np

max=20

arrl = np.zeros (max)
arrl[0] =0

arrl= 1

for i in range (2,max):
arrl[i] = arrl[i-1] + arrl[i-2]
print ("fibonacci",i,"=",arrl[i])

Listing 2.10 also calculates the values of Fibonacci numbers; however,
this code sample stores intermediate values in an array. Despite the overhead
of an array, this code is much more efficient than the code in Listing 2.9. Now
launch the code in Listing 2.10 and you will see the same output as the previ-
ous section.

TASK: REVERSE A STRING VIA RECURSION

Listing 2.11 displays the contents of the Python file reverse.py that illus-
trates how to use recursion in order to reverse a string.

LISTING 2.11: reverse.py
import numpy as np
def reverser (str):

if (str == None or len(str) == 0):
return str

print ("all-but-first chars:",str[1l:])
return reverser (str[l:])+list(str[0])
names = np.array(["Nancy", "Dave", "Dominic"])

for name in names:

str list = list(name)

result = reverser(str list)

print ("=> Word: ",name," reverse: ",result)
print ()

Listing 2.11 starts with the recursive function reverser () that invokes
itself with a substring that omits the first character, which is appended to the
result of invoking reverser () recursively, as shown here:

return reverser (str[l:])+1list(str[0])

The second part of Listing 2.11 contains a loop that invokes the reverser ()
method with different strings that belong to an array. Launch the code in
Listing 2.11 and you will see the following output:

52 ¢ Python Data Structures Pocket Primer

all-but-first
all-but-first
all-but-first
all-but-first
all-but-first
=> Word:

all-but-first
all-but-first
all-but-first
all-but-first
=> Word:

all-but-first
all-but-first
all-but-first
all-but-first
all-but-first
all-but-first
all-but-first
=> Word:

Dave

chars:
chars:
chars:
chars:
chars:
Nancy

chars:
chars:
chars:
chars:
reverse:

chars:
chars:
chars:
chars:
chars:
chars:
chars:
Dominic

reverse:

reverse:

TASK: CHECK FOR BALANCED PARENTHESES

This task involves only round parentheses: later you will see an exam-
ple of checking for balanced parentheses that can include square brackets
and curly braces. Here are some examples of strings that contain round
parentheses:

s1 ="
s2 ="
S3
S4
S5 = "

As you can see, the strings s1, s2, and s4 have balanced parentheses,
whereas the strings s2 and 5 has unbalanced parentheses.

Listing 2.12 displays the contents of the Python file balanced paren-
theses.py that illustrates how to determine whether or not a string consists
of balanced parentheses.

LISTING 2.12: balanced_parentheses.py
import numpy as np

def check balanced (text) :
counter = 0

text len = len(text)

for 1 in range(text len):
if (text[i] == "("):

Recursion and Combinatorics ¢ 53

counter += 1
else:
if (text[i] ==
counter -= 1

if (counter < 0):
break

if (counter == 0):

print ("balanced string:", text)
else:

print ("unbalanced string:", text)
print ()

exprs = np.array (["0O O O", "(OOO0)","0,"CO)","0 0
("1)

for str in exprs:
check balanced(str)

Listing 2.12 starts with the iterative function check_balanced () that uses
conditional logic to check the contents of the current character in the input
string. The code increments the variable counter if the current character is a
left parenthesis “(*, and decrements the variable counter if the current char-
acter is a right parentheses “)”. The only way for an expression to consist of a
balanced set of parentheses is for counter to equal 0 when the loop has finished
execution.

The second part of Listing 2.12 contains a loop that invokes the func-
tion check balanced() with different strings that are part of an array
of strings. Launch the code in Listing 2.12 and you will see the following
output:

exprs = np.array(["(O) O O", "OOO)","OC,"CO)","0 0]
balanced string: () () ()

balanced string: (() () ())
unbalanced string: () (
balanced string: (())

unbalanced string: () () (

TASK: CALCULATE THE NUMBER OF DIGITS

Listing 2.13 displays the contents of the Python file count digits.py
that illustrates how to calculate the number of digits in positive integers.

54 o Python Data Structures Pocket Primer

LISTING 2.13: count_digits.py
import numpy as np

def count digits(num, result):
if (num ==) :
return result
else:
#print ("new result:",result+l)
#print ("new number:",int (num/10))
return count_digits(int(num/lO), result+1)

numbers = np.array([1234, 767, 1234321, 101])

for num in numbers:
result = count digits(num, O0)
print ("Digits in ",num," = ", result)

Listing 2.13 starts with the Python function count digits () that recur-
sively invokes itself with the term int (num/10), where num is the input
parameter. Moreover, each invocation of count digits() increments the
value of the parameter result. Eventually num will be equal to 0 (the terminat-
ing condition), at which point the value of result is returned.

If the logic of this code is not clear to you, try tracing through the code with
the numbers 5, 25, 150, and you will see that the function count_digits ()
returns the values 1, 2, and 3, respectively. Now launch the code in Listing 2.13
and you will see the following output:

Digits in 1234 = 4
Digits in 767 = 3
Digits in 1234321 = 7
Digits in 101 = 3

TASK: DETERMINE IF A POSITIVE INTEGER IS PRIME

Listing 2.14 displays the contents of the Python file check prime.py that
illustrates how to calculate the number of digits in positive integers.

LISTING 2.14: check_prime.py

import numpy as np

PRIME =1
COMPOSITE = 0

def is prime (num) :
div = 2

while (div*div < num) :

if(num % div != 0):
div += 1

Recursion and Combinatorics ® 55

else:
return COMPOSITE
return PRIME

upperBound = 20

for num in range (2, upperBound) :

result = is prime (num)
if (result == True):

print (num,": is prime")
else:

print (num,": is not prime")

Listing 2.14 starts with the Python function is prime () that contains a
loop that checks whether or not any integer in the range of 2 to sqrt (num)
divides the parameter num, and then returns the appropriate result.

The second portion of Listing 2.14 contains a loop that iterates through the
numbers from 2 to upperBound (which has the value 20) to determine which
numbers are prime. Now launch the code in Listing 2.14 and you will see the
following output:

2 is prime
3 is prime
4 is not prime
5 is prime
6 is not prime
7 is prime
8 is not prime
9 : 1s not prime
10 : is not prime
11 : is prime
12 : is not prime
13 : is prime
14 : is not prime
15 : is not prime
16 : is not prime
17 : is prime
18 : is not prime
19 : is prime

TASK: FIND THE PRIME FACTORIZATION OF A POSITIVE INTEGER

Listing 2.15 displays the contents of the Python file prime divisors.py
that illustrates how to find the prime divisors of a positive integer.

LISTING 2.15: prime_divisors.py
import numpy as np

PRIME = 1
COMPOSITE = 0

56 ¢ Python Data Structures Pocket Primer

def is prime (num) :
div = 2

while (div < num) :
if(num % div != 0):
div += 1
else:

return COMPOSITE

#print ("found prime:", num)
return PRIME

def find prime divisors (num) :
div = 2

prime divisors = ""

while (div <= num) :

prime = is prime (div)
if (prime == True):
#print ("=> prime number:",div)
if(num % div == 0):
prime divisors += " "+str(div)
num = int (num/div)
else:
div += 1
else:
div += 1

return prime divisors
upperBound = 20

for num in range (4, upperBound) :
result = find prime divisors (num)

print ("Prime divisors of ",num,":",result)

Listing 2.15 starts with the Python function is_prime () from Listing 2.14
that determines whether or not a positive integer is a prime number. Next,
the Python function find prime divisors () contains a loop that iterates
through the integers from 2 to num that checks which of those numbers is a

prime number.

When a prime number is found, the code checks if that prime number is
also a divisor of num: if so, that prime divisor is appended to the string prime
divisors. The final portion of Listing 2.15 returns the string prime divi-
sors that contains the prime factorization of the parameter num. Now launch
the code in Listing 2.15 and you will see the following output:

Prime divisors of 2 2
Prime divisors of 4 2 2
Prime divisors of 5 5
Prime divisors of 6 2 3

Recursion and Combinatorics ® 57

Prime divisors of 7 7
Prime divisors of 8 : 2 2 2
Prime divisors of 9 33
Prime divisors of 10 : 2 5
Prime divisors of 11 : 11
Prime divisors of 12 : 2 2 3
Prime divisors of 13 : 13
Prime divisors of 14 : 2 7
Prime divisors of 15 : 3 5
Prime divisors of 16 : 2 2 2 2
Prime divisors of 17 : 17
Prime divisors of 18 : 2 3 3
Prime divisors of 19 : 19

TASK: GOLDBACH’S CONJECTURE

Goldbach’s conjecture states that every even number greater than 3 can be
expressed as the sum of two odd prime numbers.

Listing 2.16 displays the contents of the Python file goldbach conjec-
ture.py that illustrates how to determine a pair of prime numbers whose sum
equals a given even number.

LISTING 2.16: goldbach_conjecture.py
import numpy as np

PRIME = 1
COMPOSITE = 0

def prime (num) :
div = 2

while (div < num) :
if(num $ div != 0):
div += 1

return COMPOSITE
return PRIME

def find prime factors(even num):
for num in range (3, int(even num/2)):

if (prime (num) == 1):
if (prime (even num-num) == 1):
print(even num , " =" , num , "+" , (even num-

num))
upperBound = 30

for num in range (4, upperBound) :
find prime factors (num)

58 e Python Data Structures Pocket Primer

Listing 2.16 also starts with the function prime () that determines whether
or not the parameter num is a prime number. Next, the function find prime
factors () contains a loop whose loop variable num iterates from 3 to half the
value of the parameter even_num. If numis a prime number, then the condi-
tional logic in Listing 2.16 invokes prime () with the number even_num-num.

If both num and even_numare prime, then they are a solution to Goldbach’s
conjecture because the sum of these two numbers equals the parameter even
num. Now launch the code in Listing 2.16 and you will see the following output:

8 = 3+ 5
10 = 3 + 7
12 = 5+ 7
14 = 3 + 11
16 = 3 + 13
16 = 5+ 11
18 = 5+ 13
18 = 7 + 11
20 = 3 + 17
20 = 7 + 13
22 3 + 19
22 5+ 17
24 = 5 + 19
24 = 7 + 17
24 = 11 + 13
26 = 3 + 23
26 = 7 + 19
28 = 5 + 23
28 = 11 + 17

As you can see from the preceding output, the numbers 16, 18, 20, 22, 26,
and 28 have two solutions to Goldbach’s conjecture, and the number 24 has
three such solutions.

TASK: CALCULATE THE GCD (GREATEST COMMON DIVISOR)

Listing 2.17 displays the contents of the python file ged. py, which is the
first of two solutions for calculating the GCD of two positive integers (both
solutions rely on Euclid’s algorithm).

LISTING 2.17: ged.py
import numpy as np

def gcd(numl, num?2):

if (numl % num2 == 0):
return num?2;

elif (numl < num2):
#print ("Switching",numl, "and", num2)
return gcd(num2, numl);

else:
#print ("Reducing", numl, "and", num?2)
return gcd (numl-num2, num?2)

Recursion and Combinatorics ® 59

arrl = np.array([24, 36, 50, 100, 2001])
arr2 = np.array([1l0, 18, 11, 64, 1201)

for i in range(0,len(arrl)):

numl = arrl[i]

num2 = arr2[i]

result = gcd(numl, num2)

print ("The GCD of",numl, "and",num2,"=",result)

Listing 2.17 starts with the Python function ged () that takes two param-
eters and repeatedly subtracts the smaller from the larger, and simultaneously
invoking itself recursively. Eventually numl % num2 equals zero, at which
point the GCD equals num2, which is the value that is returned.

The second portion of Listing 2.17 contains a loop that iterates through
the values of two arrays of positive integers; during each iteration, the func-
tion ged () is invoked with a pair of corresponding numbers from the two
arrays. Now launch the code in Listing 2.17 and you will see the following
output:

The GCD of 24 and 10 = 2
The GCD of 36 and 18
The GCD of 50 and 11 = 1
The GCD of 100 and 64 = 4
The GCD of 200 and 120 = 40

I
=
©

Listing 2.18 displays the contents of simple gcd.py thatisa more concise
way to compute the GCD of two positive integers (and also uses recursion).
LISTING 2.18: simple_gcd.py

import numpy as np

def gcd(xl, x2):
if not x2:
return x1
return gcd(x2, x1 % x2)

arrl = np.array([10, 24, 50, 17, 100])
arr2 = np.array([24, 10, 15, 17, 12501])

for idx in range(0,len(arrl)):

numl = arrl[idx]

num?2 = arr2[idx]

result = gcd(numl, num?2)

print ("gced of",numl, "and",num2,"=",result)

Listing 2.19 is a more compact implementation of Euclid’s algorithm that
achieves the same result as Listing 2.18; if the logic is unclear, review the
details of Listing 2.18 to convince yourself that the logic in both code samples
is the same. Now launch the code in Listing 2.19 and you will see the following
output:

60 ° Python Data Structures Pocket Primer

[
= o N

[

gcd of 10 and 24
gcd of 24 and 10
gcd of 50 and 15 =
gcd of 17 and 17 =

gcd of 100 and 1250 50

Now that we can calculate the GCD of two positive integers, we can use
this code to easily calculate the LCM (lowest common multiple) of two positive
integers, as discussed in the next section.

TASK: CALCULATE THE LCM (LOWEST COMMON MULTIPLE)

Listing 2.19 displays the contents of the python file simple lcm.py that
illustrates how to calculate the LCM of two positive integers.
LISTING 2.19: simple_lcm.py
import numpy as np
def gcd(xl, x2):
if not x2:

return x1
return gcd(x2, x1 % x2)

def lcm(numl, num2) :
gcdl = gcd(numl, num2)
lcml = numl*num2/gcdl

return lcml

arrl = np.array([24, 36, 50, 100, 2001])
arr2 = np.array([10, 18, 11, 64, 1207])

for i in range (0,len(arrl)):

numl = arrl[i]

num2 = arr2[i]

result = lcm(numl, num?2)

print ("The LCM of",numl, "and",num2,"=",result)

Listing 2.19 contains the function gecd () to calculate the GCD of two posi-
tive integers. The next function lcm() calculates the LCM of two numbers
numl and num2 by making the following observation:

LCM (numl, num2) = numl*num2/GCD (numl, num?2)

The final portion of Listing 2.19 contains a loop that iterates through two
arrays of positive integers to calculate the LCM of pairs of integers. Now
launch the code in Listing 2.19 and you will see the following output:

The LCM of 24 and 10 = 120.0
The LCM of 36 and 18 = 36.0

Recursion and Combinatorics ¢ 61

The LCM of 50 and 11 = 550.0
The LCM of 100 and 64 = 1600.0
The LCM of 200 and 120 = 600.0

This concludes the portion of the chapter regarding recursion. The next
section introduces you to combinatorics (a well-known branch of mathemat-
ics), along with some code samples for calculating combinatorial values and the
number of permutations of objects.

WHAT IS COMBINATORICS?

In simple terms, combinatorics involves finding formulas for counting the
number of objects in a set. For example, how many different ways can five
books can be ordered (i.e., displayed) on a book shelf? The answer involves
permutations, which in turn is a factorial value; in this case, the answer is
5! = 120.

As a second example, suppose how many different ways can you select
three books from a shelf that contains five books? The answer to this ques-
tion involves combinations. Keep in mind that if you select three books
labeled A, B, and C, then any permutation of these three books is consid-
ered the same (the set {A, B, C} and the set {B, A, C} are considered the
same selection).

As a third example, how many 5-digit binary numbers contain exactly three
1 values? The answer to this question also involves calculating a combinatorial
value. In case you're wondering, the answeris ¢ (5,3) = 5!/[3! * 21] =
10, provided that we allow for leading zeroes. In fact, this is also the answer to
the preceding question about selecting different subsets of books.

You can generalize the previous question by asking how many 4-digit,
5-digit, and 6-digit numbers contain exactly three 1s? The answer is the sum of
these values (provided that leading zeroes are permitted):

C(4,3) + C(5,3) + C(6,3) =4 + 10 + 20 = 34

Working With Permutations

Consider the following task: given six books, how many ways can you dis-
play them side by side? The possibilities are listed here:

position #1: 6 choices
position #2: 5 choices
position #3: 4 choices
position #4: 3 choices
position #5: 2 choices
position #6: 1 choices

The answer is 6x5x4x3x2x1 = 6! = 720. In general, if you have n books, there
are n! different ways that you can order them (i.e., display them side by side).

62 ° Python Data Structures Pocket Primer

Working With Combinations

Here is a slightly different question: how many ways can you select three
books from those six books? Here’s the first approximation:

® position #1: six choices
* position #2: five choices
* position #3: four choices

Since the number of books in any position is independent of the other posi-
tions, the first answer might be 6x5x4 = 120. However, this answer is incorrect
because it includes different orderings of three books, but the sequence of
books (A, B, C) is the same as (B, A, C) and every other re-ordering of the
letters A, B, and C.

As a concrete example, suppose that the books are labeled book #1, book
#2, ..., book #6, and suppose that you select book #1, book #2, and book #3.
Here list a list of all the different orderings of those three books:

123
132
213
231
312
321

The number of different permutations of three books is 3x2x1 = 3! = 6.
However, from the standpoint of purely selecting three books, we must treat
all six orderings as the same. Therefore, the preceding list of six orderings are
indistinguishable from each other. As a result, we must divide the number of
permutations by the number of orderings that are considered the same. As a
result, the correct answer is N = 6x5x4/[3x2x1] = 120/3! = 120/6 = 20.

Now watch what happens when we multiply the numerator and the denom-
inator of the number N by 3x2x1:

N = 6x5x4/[3x2x1] = 6x5x4x3x2x1/[3x2x1 x 3x2x1] = 6!/[3! x 3!]

If we perform the preceding task of selecting three books from eight books
instead of six books, we get this result:

8x7x6/[3x2x1] = 8x7x6x5x4x3x2x1/[3x2x1 * 5x4x3x2x1] = 8!/[3! * 5!]

Now suppose you select twelve books from a set of thirty books. The num-
ber of ways that this can be done is shown here:

30x29x28x...x19/[12x11x...x2x1]
= 30x29x28x...x19x18x17x16x...x2x1/[12x11x...x2x]1 * 18x17x16x...x2x1]
= 30!/[12! * 18!]

The general formula for calculating the number of ways to select k books
fromn booksisn!/[k! * (n-k)!], which is denoted by the term C (n, k).

Recursion and Combinatorics ¢ 63

Incidentally, if we replace k by n-k in the preceding formula we get this
result:

n!/[(n-k)! * (n-(n-k))!7 =n!/[(n-k)! * k)!1 = C(n,k)

Notice that the left-side of the preceding snippet equals C (n, n-k), and
therefore we have shown that ¢ (n, n-k) = C(n, k)

TASK: CALCULATE THE SUM OF BINOMIAL COEFFICIENTS

Recall from the previous section that the value of the binomial coefficient
C(n, k) can be computed as follows:

C(n,k) = n!/[k! * (n-k)!]

Given any positive integer n, the following result (details are in the next
section) is true:

2**n = C(n,0)+C(n,1)+C(n,2)+. . . +C(n,n-1)+C(n,n)

Listing 2.20 displays the contents of the Python file sum_binomial.py
that calculates the sum of a set of binomial coefficients.

LISTING 2.20: sum_binomial.py

import numpy as np

def factorial (num) :
fact =1
for i in range (0, num) :
fact *= (i+1)
return int (fact)

def binom_ coefficient (n, k) :
global fact values
coeff = fact values([n]/[fact values[k] * fact values[n-k]]
#print ("calculated coeff:", coeff)
return int (coeff)

def sum binomials (exp) :
binomials = np.array([]) .astype (int)
coeff sum = 0
for num in range (0,exp+l) :
coeff value = binom coefficient (exp, num)
#print ("n:",exp-2,"k:",num, "found coeff value:", coeff value)
coeff sum += coeff value

print ("sum of binomial coefficients for",exp,"=",int (coeff sum))

64 ° Python Data Structures Pocket Primer

exponent = 12
populate an array with factorial values:
fact values = np.array([]).astype(int)

for j in range (0, exponent) :
fact = factorial (3)
fact values = np.append(fact values, fact)

for exp in range(l,exponent-1):
sum binomials (exp)

Listing 2.20 starts with the function factorial() to calculate the facto-
rial value of a positive integer (whose code you saw earlier in this chapter).
Next, the Python function binom coeficient () calculates the binomial of
two integers whose formula was derived in a previous section.

The third function is sum_binomials () that calculate the sum of a range
of binomial values by invoking the function binom_coeficient (), where the
latter invokes the function factorial (). Now launch the code in Listing 2.20
and you will see the following output:

sum of binomial coefficients for 1 = 2
sum of binomial coefficients for 2 = 4

sum of binomial coefficients for 3 = 8

sum of binomial coefficients for 4 = 16
sum of binomial coefficients for 5 = 32
sum of binomial coefficients for 6 = 64
sum of binomial coefficients for 7 = 128
sum of binomial coefficients for 8 = 256
sum of binomial coefficients for 9 = 512
sum of binomial coefficients for 10 = 1024

THE NUMBER OF SUBSETS OF A FINITE SET

In the preceding section, if we allow k to vary from 0 to n inclusive, then
we are effectively looking at all possible subsets of a set of n elements, and the
number of such sets equals 2~n. We can derive the preceding result in two
ways.

Solution #1

The first way is the shortest explanation (and might seem like clever hand
waving) and it involves visualizing a row of n books. In order to find every pos-
sible subset of those n books, we need only consider that there are two actions
for the first position: either the book is selected or it is not selected.

Similarly, there are two actions for the second position: either the second
book is selected or it is not selected. In fact, for every book in the set of n
books there are the same two choices. Keeping in mind that the selection (or
not) of a book in a given position is independent of the selection of the books
in every other position, the number of possible choices equals 2x2x..x2 (n
times) = 2”n

Recursion and Combinatorics ¢ 65

Solution #2

Recall the following formulas from algebra:

(x+ty) "2 = "2 + 2*x*y + y"2
= C(2,0)*x"2 + C(2,1)*x*y + C(2,2)*y"2

(x+y) "3 = x"3 + 4*x"2*%y + 6*x"x*y"2 + 4*x*y"2 + y*3
= C(3,0)*x"3 + C(3,0)*x"2*y + C(3,0)*x"x*y"2 +
C(3,0)*x*y*"2 + C(3,0)*y"3
In general, we have the following formula:
n
(x+y)"n = SUM C(n, k) *x"k*y”" (n-k)
k=0

Now set x=y=1in the preceding formula and we get the following result:
2”"n = SUM C(n, k)

The right side of the preceding formula is the sum of the number of all pos-
sible subsets of a set of n elements, which the left side shows is equal to 2" n.

TASK: SUBSETS CONTAINING A VALUE LARGER THAN K

The more complete description of the task for this section is as follows:
given a set N of numbers and a number k, find the number of subsets of N that
contain at least one number that is larger than k. This counting task is an exam-
ple of a coding task that can easily be solved as a combinatorial problem: you
might be surprised to discover that the solution involves a single (and simple)
line of code. Define the following set of variables:

*N = a set of numbers

® |N| = # of elements in N (= n)

® NS = the non-empty subsets of N

® P(NS) = the number of non-empty subsets of N (= |NS]|)
M = the numbers {n| n < k} where n is an element of N
e | M| = # of elements in M (= m)

e MS = the non-empty subsets of M

® P(MS) = the number of non-empty subsets of M (= |MS]|)
®0 = subsets of N that contain at least one number

larger than k

Note that the set NS is partitioned into the sets 0 and M, and that the union
of ¢ and Mis Ns. In other words, a nonempty subset of N is either in Q or in M,
but not in both. Therefore, the solution to the task can be expressed as: |01 =
P(NS) - P(MS).

66 ° Python Data Structures Pocket Primer

Moreover, the sets in M do not contain any number that is larger than k,
which means that no element (i.e., subset) in M is an element of Q, and con-
versely, no element of Q is an element of M.

Recall from a previous result in this chapter that if a set contains m elements,
then the number of subsets is 2**m, and the number of nonempty subsets is
2**m - 1. Therefore, the answer for this taskis (2**n - 1) - (2**m - 1).

Listing 2.21 displays the contents of subarrays_max_k.py that calculates
the sum of a set of binomial coefficients.

LISTING 2.21: subarrays_max_k.py

import numpy as np
Time Complexity: O(1)

FHAFH A S
N = a set with n elements

M = a set with m elements

#

N has 2”n - 1 non-empty subsets

M has 2”"m - 1 non-empty subsets

#

O = subsets of N with at least one element > k
P = subsets of N with all numbers <= k

#

|P| = 2*%*m-1

and |O| = |N|] - |P| = (2**n-1) - (2**m-1)

#

iiadassssdassdsdsdsssdadadaddiaiaiaia iR R

number of subarrays whose maximum element > k
def count subsets(n, m):

count = (2**n - 1) - (2**m - 1)

return count

arr = [1, 2, 3, 4, 5]
print ("contents of array: ")
for num in arr:

print (num, end=" ")

print ()

arrk = [1,2,3,4]

for overk in arrk:
arr len = len(arr)
count = count subsets(arr len, overk)
print ("overk: ",overk)
print ("count: ",count)
print("--——--——--—————- ")

Listing 2.21 contains the Python code that implements the details that are
described at the beginning of this section. Although the set N in Listing 2.21
contains a set of consecutive integers from 1 to n, the code works correctly for

Recursion and Combinatorics ® 67

unsorted arrays or arrays that do not contain consecutive integers. In the latter
case, you would need a code block to count the number of elements that are
less than a given value of k.

SUMMARY

This chapter started with an introduction to recursion, along with vari-
ous code samples that involve recursion, such as calculating factorial values,
Fibonacci numbers, the sum of an arithmetic series, the sum of a geometric
series, the GCD of a pair of positive integers, and the LCM of a pair of positive
integers.

Finally, you learned about concepts in combinatorics, and how to derive
the formula for the number of permutations and the number of combinations
of sets of objects.

CHAPTER

STRINGS AND ARRAYS

his chapter contains Python-based code samples that solving various

tasks involving strings and arrays. The code samples in this chapter

consists of the following sequence: examples that involve scalars and
strings, followed by examples involving vectors (explained further at the end of
this introduction), and then some examples involving 2D matrices. In addition,
the first half of Chapter 2 is relevant for the code samples in this chapter that
involve recursion.

The first part of this chapter starts with a quick overview of the time com-
plexity of algorithms, followed by various Python code samples such as finding
palindromes, reversing strings, and determining if the characters in a string are
unique.

The second part of this chapter discusses 2D arrays, along with Numpy-
based code samples that illustrate various operations that can be performed
on 2D matrices. This section also discusses 2D matrices, which are 2D arrays,
along with some tasks that you can perform on them. This section also dis-
cusses multidimensional arrays, which have properties that are analogous to
lower-dimensional arrays.

One other detail to keep in mind pertains to the terms vectors and arrays.
In mathematics, a vector is a one-dimensional construct, whereas an array has
at least two dimensions. In software development, an array can refer to a one-
dimensional array or a higher-dimensional array (depending on the speaker).
In this book a vector is always a one-dimensional construct. However, the term
array always refers to a one-dimensional array; higher dimensional arrays will
be referenced as “2D array,” “3D array,” and so forth. Therefore, the tasks
involving 2D arrays start from the section titled “Working With 2D Arrays”.

70 ¢ Python Data Structures Pocket Primer

TIME AND SPACE COMPLEXITY

Algorithms are assessed in terms of the amount of space (based on input
size) and the amount of time required for the algorithms to complete their
execution, which is represented by “big O” notation. There are three types of
time complexity: best case, average case, and worst case. Keep in mind that
an algorithm with very good best case performance can have a relatively poor
worse case performance.

Recall that 0 (n) means that an algorithm executes in linear time because
its complexity is bounded above and below by a linear function. For example,
if three algorithms require 2*n, 5*n, or n/2 operations, respectively, then all
of them have O(n) complexity.

Moreover, if the best, average, and worst time performance for a linear
search is 1, n/2, and n operations, respectively, then those operations have
O(1), O(n), and O(n), respectively. In general, if there are two solutions T1 and
T2 for a given task such T2 is more efficient than T1, then T2 requires either
less time or less memory. For example, if T1 is an iterative solution for calculat-
ing factorial values (or Fibonacci numbers) and T2 involves a recursive solu-
tion, then T1 is more efficient than T2 in terms of time, but T1 also requires an
extra array to store intermediate values.

The time-space trade-off refers to reducing either the amount of time or the
amount of memory that is required for executing an algorithm, which involves
choosing one of the following:

* execute in less time and more memory
* execute in more time and less memory

Although reducing both time and memory is desirable, it’s also a more chal-
lenging task. Another point to keep in mind is the following inequalities (loga-
rithms can be in any base that is greater than or equal to 2) for any positive
integer n > 1:

O(log n) < O(n) < O(n*log n) < O0(n"2)

In addition, the following inequalities with powers of n, powers of 2, and
factorial values are also true:

O(n**2) < O(n**3) < O(2**n) < O(n!)

If you are unsure about any of the preceding inequalities, perform an online
search for tutorials that provide the necessary details.

TASK: MAXIMUM AND MINIMUM POWERS OF AN INTEGER

The code sample in this section shows you how to calculate the largest
(smallest) power of a number num whose base is k that is less than (greater
than) num, where num and k are both positive integers.

Strings and Arrays ¢ 71

For example, 16 is the largest power of two that is less than 24 and 32 is the
smallest power of two that is greater than 24. As another example, 625 is the
largest power of five that is less than 1000 and 3125 is the smallest power of
five that is greater than 1000.

Listing 3.1 displays the contents of max min power k2.py that illus-
trates how to calculate the largest (smallest) power of a number whose base is
k that is less than (greater than) a given number. Just to be sure that the task is
clear: num and k are positive integers, and the purpose of this task is two-fold:

e find the largest number powk such that k**powk <= num
e find the smallest number powk such that k**powk >= num

LISTING 3.1: min_max_power_k2.py

def min max powerk (num, k) :
powk =1
while (powk <= num) :
powk *= k
if (powk > num) :
powk /= k
return int (powk), int (powk*k)

nums = [24,17,1000]
powers = [2,3,4,5]

for num in nums:
for k in powers:
lowerk,upperk = min max powerk (num, k)
print ("num:",num, "lower", lowerk, "upper:", upperk)
print ()

Listing 3.1 starts with the function max_min_powerk () that contains a
loop that repeatedly multiplies the local variable powk (initialized with the
value 1) by k. When powk exceeds the parameter num, then powk is divided by
k so that we have the lower bound solution.

Note that this function returns powk and powk*k because this pair of num-
bers is the lower bound and higher bound solutions for this task. Launch the
code in Listing 3.1 and you will see the following output:

num: 24 lower 16 upper: 32
num: 24 lower 9 upper: 27
num: 24 lower 16 upper: 64
num: 24 lower 5 upper: 25

num: 17 lower 16 upper: 32
num: 17 lower 9 upper: 27
num: 17 lower 16 upper: 64
num: 17 lower 5 upper: 25

num: 1000 lower 512 upper: 1024
num: 1000 lower 729 upper: 2187
num: 1000 lower 256 upper: 1024
num: 1000 lower 625 upper: 3125

72 ¢ Python Data Structures Pocket Primer

TASK: BINARY SUBSTRINGS OF A NUMBER

Listing 3.2 displays the contents of the binary numbers.py that illus-
trates how to display all binary substrings whose length is less than or equal to
a given number.

LISTING 3.2: binary_numbers.py
import numpy as np

def binary values (width):
print ("=> binary values for width=",width,":")
for i in range (0,2**width) :
bin value = bin (i)
str value = str(bin value)
print (str value([2:])
print ()

max width = 4
for ndx in range(l,max width) :
binary values (ndx)

Listing 3.2 starts with the function binary values () whose loop iterates
from 0 to 2**width, where width is the parameter for this function. The loop
variable is 1 and during each iteration, bin_value is initialized with the binary
value of i.

Next, the variable str value is the string-based value of bin value,
which is stripped of the two leading characters 0b. Now launch the code in
Listing 3.2 and you will see the following output:

=> binary values for width= 1
0
1

=> binary values for width= 2
0
1
10
11

=> binary values for width= 3
0

1

10

11

100

101

110

111

Strings and Arrays © 73

TASK: COMMON SUBSTRING OF TWO BINARY NUMBERS

Listing 3.3 displays the contents of common_bits.py that illustrates how
to find the longest common substring of two binary strings.

LISTING 3.3: common_bits.py

def common bits(numl, num2) :

bin numl = bin (numl)
bin num2 = bin (num2)
bin numl = bin numl[2:]
bin num2 = bin num2[2:]

if (len(bin num2) < len(bin numl)):
while (len(bin num2) < len(bin numl)):

bin num2 = "0" + bin num2
print (numl, "=",bin numl)
print (num2, "=",bin num?2)
common bits2 = 0
for 1 in range(0,len(bin numl)):
if((bin numl[i] == bin num2[i]) and (bin numl[i]

=='1")):
common bits2 += 1
return common bits2

numsl = [61,28, 7,100,189]
nums2 = [51,14,28,110, 14]

for idx in range (0, len (numsl)) :

numl = numsl[idx]
num2 = nums2 [idx]
common = common bits(numl, num2)

print (numl, "and", num2, "have", common, "bits in common")
print ()

Listing 3.3 starts with the function common bits () that initializes the
binary numbers bin numl and bin num2 with the binary values of the two
input parameters, after which the initial string 0b is removed from both
numbers.

Next, a loop iterates from 0 to the length of the string bin_numl in order
to check each digit to see whether or not it equals 1. Each time that the digit
1 is found, the value of common bits2 (initialized with the value 0) is incre-
mented. When the loop terminates, the variable common bits2 equals the
number of times that bin numl and bin num2 have a 1 in the same position.

The final portion of Listing 3.3 iterates through a pair of arrays with posi-
tive integers values and invokes common bits () during each iteration of the
loop. Now launch the code in Listing 3.3 and you will see the following output:

74 < Python Data Structures Pocket Primer

61 = 111101
51 = 110011
61 and 51 have 3 bits in common

28 = 11100
14 = 01110
28 and 14 have 2 bits in common

7 =111
28 = 11100
7 and 28 have 3 bits in common

100 = 1100100
110 = 1101110
100 and 110 have 3 bits in common

189 = 10111101
14 = 00001110
189 and 14 have 2 bits in common

TASK: MULTIPLY AND DIVIDE VIA RECURSION

Listing 3.4 displays the contents of the recursive multiply.py
that illustrates how to compute the product of two positive integers via
recursion.

LISTING 3.4: recursive_multiply.py
import numpy as np

def add repeat (num, times, sum):
if (times == 0):
return sum
else:
return add repeat (num, times-1, num+sum)

arrl = np.array([5,13,25,17,100])
arr2 = np.array([9,10,25,10,1007)

for i in range (0,len(arrl)):

numl = arrl[i]

num2 = arr2[i]

prod = add repeat (numl, num2, O0)

print ("product of",numl, "and",num2,"=",prod)

Listing 3.4 starts with the function add repeat (num, times, sum)
that performs repeated addition by recursively invokes itself. Note that this

Strings and Arrays © 7§

function uses tail recursion: each invocation of the function replaces times with
times-1 and also replaces sum with num+sum (the latter is the tail recursion).

The terminating condition is when times equals 0, at which point the
function returns the value of sum. Now launch the code in Listing 3.4 and you
will see the following output:

product of 5 and 9 = 45
product of 13 and 10 = 130
product of 25 and 25 = 625
product of 17 and 10 = 170
product of 100 and 100 = 10000

Listing 3.5 displays the contents of the recursive divide.py that illus-
trates how to compute the quotient of two positive integers via recursion.

LISTING 3.5: recursive_divide.py
import numpy as np

def sub repeat (numl, num2, remainder):
if (numl < num?2) :
return numl
else:
#print ("numl-num?2:", numl-num?2, "num2:", num?2)
return sub repeat (numl-num2, num2, remainder)

arrl = np.array([9,13,25,17,100])
arr2 = np.array([5,10,25,10,1007)

for i in range(0,len(arrl)):

numl = arrl[i]

num2 = arr2[i]

prod = sub repeat (numl, num2, 0)

print ("remainder of",numl,"/",num2,"=",prod)

Listing 3.5 contains code that is very similar to Listing 3.3: the difference
involves replacing addition with subtraction. Launch the code in Listing 3.5
and you will see the following output:

remainder of 9 / 5 = 4
remainder of 13 / 10
remainder of 25 / 25 =
remainder of 17 / 10 =
remainder of 100 / 100

I o w

TASK: SUM OF PRIME AND COMPOSITE NUMBERS

Listing 3.6 displays the contents of the pair sum sorted.py that illus-
trates how to determine whether or not a sorted array contains the sum of two
specified numbers.

76 ° Python Data Structures Pocket Primer

LISTING 3.6: pair_sum_sorted.py

import numpy as np

PRIME NUM
COMPOSITE =
prime sum =
comp sum
prime list = np.array([])

comp list = np.array([])

arrl = np.array([5,10,17,23,30,47,50])

|
[eNeNeN

def is prime (num) :
div = 2

while (div < num) :
if(num % div != 0):
div += 1
else:
return COMPOSITE

return PRIME NUM

for ndx in range(0,len(arrl)):
num = arrl [ndx]

if (is_prime (num) == PRIME NUM) :
prime list = np.append(prime list, num)
prime sum += num

else:
comp list = np.append(comp list, num)
comp_sum += num

print ("prime list:",prime list)
print ("comp list:",comp list)
print ("prime sum: ",prime sum)
print ("comp sum: ",comp sum)

Listing 3.6 starts with the function is prime () that determines whether
or not its input parameter is a prime number. The next portion of code in
Listing 3.6 is a loop that ranges from 0 to the number of elements. During
each iteration, the current number is added to the variable prime sumif that
number is a prime; otherwise, it is added to the variable comp_sum. The final
portion of Listing 3.6 displays the sum of the even numbers and the sum of the
odd numbers in the input array arr1. Launch the code in Listing 3.6 and you
will see the following output:

prime list: [5. 17. 23. 47.]
comp list: [10. 30. 50.]
prime sum: 92

comp sum: 90

Strings and Arrays © 77

The next portion of this chapter contains various examples of string-related
tasks. If need be, you can review the relevant portion of Chapter 1 regarding
some of the Python built-in string functions, such as int () and len ().

TASK: COUNT WORD FREQUENCIES

Listing 3.7 displays the contents of the word frequency.py that illus-
trates how to determine the frequency of each word in an array of sentences.

LISTING 3.7: word_frequency.py

import numpy as np

def word count (words,check word) :
count = 0
for word in words:
if (word.lower () == check word.lower()):
count += 1
return count

sents = np.array([["I", "love", "thick", "pizza"],
["I", "love", "deep", "dish","pizza"],
["Pepperoni", "and", "sausage", "pizza"],
["Pizza", "with", "mozzarrella"]],dtype=object)
words = np.array([])
for sent in sents:
for word in sent:
words = np.append (words,word)
word_counts = {}
for word in words:
count = word count (words,word)
word_counts[word] = count

print ("word counts:")
print (word counts)

Listing 3.7 starts with the function word count () that counts the number of
occurrences of a given word in a sentence. The next portion of Listing 3.7 contains a
loop that iterates through each sentence of an array of sentences. For each sentence,
the code invokes the function word count () with each word in the current sen-
tence. Launch the code in Listing 3.7 and you will see the following output:

word counts:

{'1': 2, 'love': 2, 'thick': 1, 'pizza': 4, 'deep': 1,
'dish': 1, 'Pepperoni': 1, 'and': 1, 'sausage': 1, 'Pizza'
4, 'with': 1, 'mozzarrella': 1}

Listing 3.8 displays the contents of the word frequency2.py that illustrates
another way to determine the frequency of each word in an array of words.

78 ¢ Python Data Structures Pocket Primer

LISTING 3.8: word_frequency2.py

import numpy as np

sents = np.array([["I", "love", "thick", "pizza"],
["Ill’ lllOVell’ lldeepll’ lldish"’llpizza"} ,
["Pepperoni", "and", "sausage", "pizza"],
["Pizza", "with", "mozzarrella"]],dtype=object)
word_counts = dict()

for sent in sents:

for word in sent:
word = word.lower ()
print ("word:",word)

if (word not in word counts.keys()):
word_counts [word] 0

word counts[word] += 1

print ("word counts:")
print (word counts)

Listing 3.8 is similar to Listing 3.7, with the following difference: the for-
mer contains a simple loop that populates a Python dictionary word_counts
with word frequencies whereas the latter contains a nested loop to accomplish
the same task. Launch the code in Listing 3.8 and you will see the following
output:

word counts:

{'i': 2, 'love': 2, 'thick': 1, 'pizza': 4, 'deep': 1, 'dish': 1,
'pepperoni': 1, 'and': 1, 'sausage': 1, 'with': 1, 'mozzarrella': 1}

TASK: CHECK IF A STRING CONTAINS UNIQUE CHARACTERS

The solution involves keeping track of the number of occurrences of each
ASCII character in a string, and returning False if that number is greater
than 1 for any character (otherwise return True). Therefore, one constraint
for this solution is that it’s restricted to Indo-European languages that do not
have accent marks.

Listing 3.9 displays the contents of the unique str.py that illustrates
how to determine whether or not a string contains unique letters.

LISTING 3.9: unique_chars.py
import numpy as np

def unique chars(str):
if (len(str) > 128):
return false

Strings and Arrays © 79
str = str.lower ()
char set = np.zeros([128])

for i in range (0,len(str)):
char = str[i]
val = ord('z') - ord(char)
#print ("val:",val)

if (char set[val] == 1):
found duplicate character
return False

else:
char set[val] =1

return True

arrl = np.array(["a string", "second string", "hello
world"])

for str in arrl:
print ("string:", str)
result = unique chars(str)
print ("unique:", result)
print ()

Listing 3.9 starts with the function unique chars () that converts its
parameter str to lower case letters and then initializes the 1x128 integer
array char_set whose values are all 0. The next portion of this func-
tion iterates through the characters of the string str and initializes the
integer variable val with the offset position of each character from the
character z.

If this position in char_set equals 1, then a duplicate character has been
found; otherwise, this position is initialized with the value 1. Note that the
value False is returned if the string str contains duplicate letters, whereas
the value True is returned if the string str contains unique characters. Now
launch the code in Listing 3.9 and you will see the following output:

string: a string
unique: True

string: second string
unique: False

string: hello world
unique: False

80 ¢ Python Data Structures Pocket Primer

TASK: INSERT CHARACTERS IN A STRING

Listing 3.10 displays the contents of the insert_chars.py that illustrates
how to insert each character of one string in every position of another string.

LISTING 3.10: insert_chars.py

def insert char(strl, chr):
result = strl

result = chr + strl
for i in range (0,len(strl)):
left = strl[:1i+1]
right = strl[i+1:]
#print ("left:",left,"right:", right)
inserted = left + chr + right

result = result + " " + inserted
return result

strl = "abc"
str2 = "def"
print ("strl:",strl)
print ("str2:",str2)

insertions = ""

for i in range (0,len(str2)):
new str = insert char(strl, str2[i])
#print ("new str:",new str)
insertions = insertions+ " " + new str

print ("result:",insertions)

Listing 3.10 starts with the function insert char () that hasastring str1
and a character chr as input parameters. The next portion of code is a loop
whose loop variable is 1, which is used to split the string str1 into two strings:
the left substring from positions 0 to i, and the right substring from position
i+1. A new string with three components is constructed: the left string, the
character chr, and the right string.

The next portion of Listing 3.10 contains a loop that iterates through each
character of str2; during each iteration, the code invokes insert char ()
with string str1 and the current character. Launch the code in Listing 3.10
and you will see the following output:

strl: abc
str2: def
result: dabc adbc abdc abcd eabc aebc abec abce fabc afbc abfc abcef

TASK: STRING PERMUTATIONS

There are several ways to determine whether or not two strings are permu-
tations of each other. One way involves sorting the strings alphabetically: if the
resulting strings are equal, then they are permutations of each other.

Strings and Arrays * 81

A second technique is to determine whether or not they have the same
number of occurrences for each character. A third way is to add the numeric
counterpart of each letter in the string: if the numbers are equal and the strings
have the same length, then they are permutations of each other.

Listing 3.11 displays the contents of the string permute.py that illus-
trates how to determine whether or not two strings are permutations of each
other.

LISTING 3.11: string_permute.py

import numpy as np

def permute(strl,str2):
strld = sorted(strl)
str2d = sorted(str2)
permute = (strld == str2d)

print ("stringl: ",strl)

print ("string2: ",str2)

print ("permuted:",permute)
(

print ()
stringsl = ["abcdef", "abcdef"]
strings2 = ["efabcf", "defabc"]

for idx in range (0, len(stringsl)):
strl = stringsl[idx]
str2 = strings2[idx]
permute (strl, str2)

Listing 3.11 starts with the function permute () that takes the two strings
strl and str2 as parameters. Next, the strings strild and str2d are initial-
ized with the result of sorting the characters in the strings strl and str2,
respectively. At this point, we can determine whether or not strl and str2
are permutations of each other by determining whether or not the two strings
strld and str2d are equal. Launch the code in Listing 3.11 and you will see
the following output:

stringl: abcdef
string2: efabcf
permuted: False

stringl: abcdef
string2: defabc
permuted: True

TASK: FIND ALL SUBSETS OF A SET

Listing 3.12 displays the contents of the powerset . py that illustrates how
to list all the subsets of a set.

82 ¢ Python Data Structures Pocket Primer

LISTING 3.12: powerset.py

import numpy as np

strings of the form:

[a0, al, ., an]

def create array(width):

arrl
for 1 in
strl
arrl
return arrl

range (0,

np.array([])

width) :

"a"+str (1)
np.append (arrl,strl)

def binary values(arrl,width):

print ("=> binary

values for width=",width,

for num in range(0,2**width) :
bin value = bin (num)

str value

bin value[2:]

left-pad with "O" characters:
for i in range(0,width-len(str value)):

str value

subset = ""

check for '1'

"0" + str value

in a right-to-left loop:

for ndx in range(len(str value)-1,-1,-1):

chr = str value[ndx]
if(chr == "1"):
subset = subset + " " +arrl[ndx]
if (subset == ""):
print ("{}")
else:
if (subset[0] == " "):
subset = subset[1l:]

print (subset)
width =
arrl
print ("arrl:",arrl)
binary values(arrl,

4

Listing 3.12 starts with the function create array that creates (and even-
tually returns) an array arr1 whose values are of the form [a0, al,

create array(width)

width)

an], where n equals the value of the parameter width.

The next portion of Listing 3.12 is the function binary values with the
parameters arrl and width. This function contains a loop whose loop variable

num iterates from 0 to 2#*width.

During each iteration of the loop, a binary version bin_value of the vari-
able num is generated. Next, the variable str_value is initialized with the
contents of bin_value, starting from index 2 so that the left-most pair of char-

acters 0b are excluded.

Strings and Arrays * 83

The next portion of Listing 3.12 contains loop in which str value right-
padded with 0 until its width equals the value width. Listing 3.12 initializes
the variable subset as an empty string, followed by yet another loop during
which an element of the powers is created.

The key idea involves iterating through the contents of str value, and
each time that the value 1 is found, update the string subset as follows:

subset = subset + " " +arrl[ndx]

When the loop has completed execution, print the string {} if subset is
an empty string; otherwise, print the contents of subset (and skip any initial
whitespace).

The final portion of Listing 3.12 invokes the function binary values with
an array whose width is the value width, along with an array arr1 of labeled
entries of the form [a0, al, . .., an]. Now launch the code in Listing
3.12 and you will see the following output:

arrl: ['a0' 'al' 'a2' 'a3']
=> binary values for width= 4
{}

a3

a2

a3 a2

al

a3 al

a2 al

a3 a2 al

a0

a3 a0

az a0

a3 a2 a0

al a0

a3 al a0

a2 al a0

a3 a2 al a0

TASK: CHECK FOR PALINDROMES

One way to determine whether or not a string is a palindrome is to compare
the string with the reverse of the string: if the two strings are equal, then the
string is a palindrome. Moreover, there are two ways to reverse a string: one
way involves the Python reverse () function, and another way is to process
the characters in the given string in a right-to-left fashion, and to append each
character to a new string.

Another technique involves iterate through the characters in a left-to-right
fashion and compare each character with its corresponding character that is
based on iterating through the string in a right-to-left fashion.

Listing 3.13 displays the contents of the palindromel.py that illustrates
how to determine whether or not a string or a positive integer is a palindrome.

84 ¢ Python Data Structures Pocket Primer

LISTING 3.13: palindrome1.py

import numpy as np

def palindromel (str) :
full len = int(len(str))
half len = int(len(str)/2)

for i in range (0,half len):
lchar = str[i]
rchar = str([full len-1-i]
if (lchar != rchar):
return False
return True

arrl = np.array(["rotor", "tomato", "radar","maam"])
arr?2 list([123, 12321, 5551])

CHECK FOR STRING PALINDROMES:
for str in arrl:
print ("check string:",str)
result = palindromel (str)
print ("palindrome: ", result)
print ()

CHECK FOR NUMERIC PALINDROMES:
for num in arr2:
print ("check number:",num)
strl = np.str (num)
strz2 = ""
for digit in strl:
str2 += digit

result = palindromel (str2)
print ("palindrome: ",result)
print ()

Listing 3.13 starts with the function palindromel () with parameter str
that is a string. This function contains a loop that starts by comparing the left-
most character with the right-most character of the string str. The next itera-
tion of the loop advances to the second position of the left-side of the string,
and compares that character with the character whose position is second from
the right end of the string. This step-by-step comparison continues until the
middle of the string is reached. During each iteration of the loop, the value
False is returned if the pair of characters is different. If all pairs of characters
are equal, then the string must be a palindrome, in which case the value True
is returned.

The next portion of Listing 3.13 contains an array arrl of strings and an
array arr2 of positive integers. Next, another loop iterates through the ele-
ments of arrl and invokes the palindromel function to determine whether
or not the current element of arrl is a palindrome. Similarly, a second loop

Strings and Arrays © 85

iterates through the elements of arr2 and invokes the palindromel function
to determine whether or not the current element of arr2 is a palindrome.
Launch the code in Listing 3.13 and you will see the following output:

check string: rotor
palindrome: True

check string: tomato
palindrome: False

check string: radar
palindrome: True

check string: maam
palindrome: True

check number: 123
palindrome: False

check number: 12321
palindrome: True

check number: 555
palindrome: True

TASK: CHECK FOR THE LONGEST PALINDROME

This section extends the code in the previous section by examining sub-
strings of a given string. Listing 3.14 displays the contents of the longest
palindrome.py that illustrates how to determine the longest palindrome in a
given string. Note that a single character is always a palindrome, which means
that every string has a substring that is a palindrome (in fact, any single charac-
ter in any string is a palindrome).

LISTING 3.14: longest_palindrome.py

import numpy as np

def check string(str):
result = 0
str len = len(str)
str len2 = int(len(str)/2)

for i in range(0,str len2):
if(str[i] != strstr len-i-1]):
result = 1
break

if (result == 0):
#print (str, "is a palindrome")

86 ° Python Data Structures Pocket Primer

return str

else:
#print (str, "is not a palindrome")
return None

my strings = ["abc","abb","abccba","azaaza", "abcdefgabccb
ax"]

max_pal str
max pal len

nw

0

for my str in my strings:

max pal str = ""

max pal len = 0

for 1 in range(0,len(my str)-1):

for j in range(0,len(my str)-i+l):

sub str = my str[i:i+7]
#print ("checking:",sub str,"in =>",my str)
a str = check string(sub_str)

if(a str != None):

if (max pal len < len(a str)):
max pal len = len(a str)
max pal str = a str

print ("string:",my str)
print ("maxpal:",max pal str)
print ()

Listing 3.14 contains logic that is very similar to Listing 3.13. However, the
main difference is that there is a loop that checks if substrings of a given string
are palindromes. The code also keeps track of the longest palindrome and then
prints its value and its length when the loop finishes execution.

Note that its possible for a string to contain multiple palindromes of
maximal length: the code in Listing 3.14 finds only the first such palindrome.
However, it might be a good exercise to modify the code in Listing 3.14 to find
all palindromes of maximal length. Now launch the code in Listing 3.14 and
you will see the following output:

string: abc
maxpal: a

string: abb
maxpal: bb

string: abccba
maxpal: abccba

string: azaaza
maxpal: azaaza

string: abcdefgabccbax
maxpal: abccba

Strings and Arrays * 87

WORKING WITH SEQUENCES OF STRINGS

This section contains Python code samples that search strings to deter-
mine the following:

e the maximum length of a sequence of consecutive 1s in a string
e a given sequence of characters in a string
e the maximum length of a sequence of unique characters

After you complete this section, you can explore variations of these tasks
that you can solve using the code samples in this section.

The Maximum Length of a Repeated Character in a String

Listing 3.15 displays the contents of max_char sequence.py that illus-
trates how to find the maximal length of a repeated character in a string.

LISTING 3.15: max_char_sequence.py

import numpy as np

def max seqg(my str,char):

max = 0
left = 0
right = 0
counter = 0
for 1 in range(0,len(my str)):
curr char = my str[i]
if (curr_char == char):
counter += 1
right = 1
if (max < counter) :
max = counter
#print ("new max:",max)
else:
counter = 0
left = 1
right = 1

print ("my str:",my str)
print ("max sequence of",char,":",max)
print ()

str list = np.array(["abcdef","aaaxyz", "abcdeeefghij"])
char list = np.array(["a","a","e"])

for idx in range(0,len(str list)):
my str = str list[idx]
char = char list[idx]
max_ seq(my str,char)

88 ¢ Python Data Structures Pocket Primer

Listing 3.15 starts with the function max seq() whose parameters are a
stringmy str and a character char. This function contains a loop that iterates
through each character of my str and performs a comparison with char. As
long as the characters equal char, the value of the variables right and coun-
ter are incremented: right represents the right-most index and counter
contains the length of the substring containing the same character.

However, if a character in my_str differs from char, then counter is reset
to 0, and left is reset to the value of right, and the comparison process
begins anew. When the loop has completed execution, the variable counter
equals the length of the longest substring consisting of equal characters.

The next portion of Listing 3.15 initializes the array str 1ist that contains
a list of strings and the array char 1ist with a list of characters. The final loop
iterates through the elements of str 1ist and invokes the function max_seq ()
with the current string and the corresponding character in the array char 1list.
Now launch the code in Listing 3.15 and you will see the following output:

my str: abcdef
max sequence of a : 1

my str: aaaxyz
max sequence of a : 3

my str: abcdeeefghij
max sequence of e : 3

Find a Given Sequence of Characters in a String

Listing 3.16 displays the contents of max _substr sequence.py thatillus-
trates how to find the right-most substring that matches a given string.

LISTING 3.16: max_substr_sequence.py

import numpy as np

def rightmost substr(my str,substr):
left = -1
len substr = len(substr)

check for substr from right to left:

for 1 in range(len(my str)-len substr,-1,-1):
curr_str = my str([i:i+len_ substr]
#print ("checking curr str:",curr str)

if (substr == curr str):
left = 1
break

if (left >= 0):
print (substr,"is in index",left,"of:",my str)
else:

Strings and Arrays * 89

print (substr, "does not appear in",my str)
print ()

str list = np.array(["abcdef", "aaaxyz", "abcdeeefghij"])
substr list = np.array(["bcd","aaa","cde"])

for idx in range(0,len(str list)):
my str = str list[idx]
substr = substr list[idx]
print ("checking:", substr,"in:",my str)
rightmost substr (my str,substr)

Listing 3.16 starts with the function rightmost substr whose param-
eters are a string my str and a substring sub_str. This function contains
a loop that performs a right-most comparison of my str and sub_str, and
iteratively moves leftward one position until the loop reaches the first index
position of the string my_str.

After the loop has completed its execution, the variable 1eft contains the
index position at which there is a match between my str and sub_str |,
and its value will be non-negative. If there is no matching substring, then the
variable left will retain its initial value of -1. In either case, the appropriate
message is printed. Now launch the code in Listing 3.16 and you will see the
following output:

checking: bcd in: abcdef
bcd is in index 1 of: abcdef

checking: aaa in: aaaxyz
aaa is in index 0 of: aaaxyz

checking: cde in: abcdeeefghij
cde is in index 2 of: abcdeeefghij

TASK: LONGEST SEQUENCES OF SUBSTRINGS

This section contains Python code samples that search strings to deter-
mine the following:

e the longest subsequence of unique characters in a given string
e the longest subsequence that is repeated in a given string

After you complete this section you can explore variations of these tasks
that you can solve using the code samples in this section.

The Longest Sequence of Unique Characters

Listing 3.17 displays the contents of longest_unique.py that illustrates
how to find the longest sequence of unique characters in a string.

90 ¢ Python Data Structures Pocket Primer

LISTING 3.17: longest_unique.py

import numpy as np

def rightmost substr(my str):
left = 0
right = 0
sub str = ""
longest = ""
my dict = dict()

for pos in range(0,len(my str)):
char = my str[pos]
if (char not in my dict.keys()):
my dict[char] =1
unique = my str[left:pos+l]
#print ("new unique:", unique)

if(len(longest) < len(unique)):
longest = unique
right = pos
else:
my dict = dict()
left = pos+l
right = pos+1l

print ("longest unique:", longest)
print ()

str list = np.array(["abcdef", "aaaxyz", "abcdeeefghij"])

for idx in range(0,len(str list)):
my str = str list[idx]
print ("checking:",my str)
rightmost substr (my str)

Listing 3.17 starts with the function rightmost substr whose param-
eter is a string my str. This function contains a right-to-left loop and stores
the character in the current index position in the dictionary my dict. If the
character has already been encountered, then it’s a duplicate character, at
which point the length of the current substring is compared with the length of
the longest substring that has been found thus far, at which point the variable
longest is updated with the new value. In addition, the left position left
and the right position right are reset to pos+1, and the search for a unique
substring begins anew.

After the loop has completed its execution, the value of the variable 1ong-
est equals the length of the longest substring of unique characters.

The next portion of Listing 3.17 initializes the variable str list as an
array of strings, followed by a loop that iterates through the elements of str_
list. The function rightmost_substr () is invoked during each iteration in

Strings and Arrays * 91
order to find the longest unique substring of the current string. Now launch
the code in Listing 3.17 and you will see the following output:

checking: abcdef
longest unique: abcdef

checking: aaaxyz
longest unique: axyz

checking: abcdeeefghij
longest unique: efghij

The Longest Repeated Substring

Listing 3.18 displays the contents of max_repeated substr.py thatillus-
trates how to find the longest substring that is repeated in a given string.

LISTING 3.18: max_repeated_substr.py

def check string(my str, sub str, pos):
str len = len(my str)
sub len = len(sub_ str)
#print ("my str:",my str,"sub_str:",sub_str)
match = None

part str = ""
left = 0
right = 0

for 1 in range(0,str len-sub_ len-pos):
left = pos+sub len+i
right = left+sub len
#print ("left:",left,"right:", right)
part str = my str[left:right]

if (part str == sub str):
match = part str
break

return match, left

print ("==> Check for repeating substrings of length at
least 2")

my strings = ["abc","abb","abccba","azaaza", "abcdefgabccba
XYZ "]

for my str in my strings:
half len = int(len(my str)/2)
max len = 0
max_str = ""
for i in range(0,half len+l):
for j in range(2,half len+l):
sub str = my str[i:i+7]
a str,left = check string(my str, sub str,i)

92 ¢ Python Data Structures Pocket Primer

if(a_str != None):
print (a_str,"appears in pos",i,"and pos",left,"in
=>",my str)
if (max len < len(a_str)):
max len = len(a str)
max str = a str

if (max _str != ""):

print ("=> Maximum repeating substring:",max str)
else:

print ("No maximum repeating substring:",my str)
print ()

Listing 3.18 starts with the function check string() that counts the
number of occurrences of the string sub_str in sub_str, starting from
index position pos.

This function initializes some scalar values, such as str lenand sub len
that are initialized, respectively, with the length of the search string and the
length of a substring. The next portion of this function contains a loop that
initializes a string part str that is a substring of my str, starting from the
value of i (which is the loop variable). If there is a match, the loop terminates
and the function returns this matching substring and the left-most position of
this substring in the original string.

The second part of Listing 3.18 initializes the variable my_strings with a
list of strings to be checked for a repeating substring of maximal length, fol-
lowed by a triply nested loop that iterates through each string inmy_strings.
The intermediate loop iterates with the loop variable i from the value 0 to
the value half len+1, which is 1 greater than half the length of the current
substring my str. The innermost loop iterates with the variable j from 2 to
half len+1, in order to initialize the variable sub_str whose contents are the
characters from position i through i+3j of the string my str.

At this point the function check string() is invoked with the string
sub_str, and if the returned string is non-empty and has length greater
than max len, then the variables max len and max str are updated
accordingly. Now launch the code in Listing 3.18 and you will see the fol-
lowing output:

==> Check for repeating substrings of length at least 2
No maximum repeating substring: abc
No maximum repeating substring: abb

No maximum repeating substring: abccba

az appears in pos 0 and pos 3 in => azaaza
aza appears in pos 0 and pos 3 in => azaaza
za appears in pos 1 and pos 4 in => azaaza
=> Maximum repeating substring: aza

Strings and Arrays * 93

ab appears in pos 0 and pos 7 in => abcdefgabccbaxyz

abc appears in pos 0 and pos 7 in => abcdefgabccbaxyz
bc appears in pos 1 and pos 8 in => abcdefgabccbaxyz

=> Maximum repeating substring: abc

TASK: MATCH A STRING WITH A WORD LIST (SIMPLE CASE)

This task requires you to tokenize a string into the set of words in a given word
list, where multiple matches of the same word are allowed. For example, the string
“toeattoeat” can be tokenized by the words in the word list ["to", "eat"],
where there are two occurrences of “to” as well as “eat” in the string. However,
the string “batsit” cannot be tokenized by the word list ["bat", "it"].

Listing 3.19 displays the contents of multi word match.py that illus-
trates how to solve the simplified version of this task.

LISTING 3.19: multi_word_match.py

import numpy as np

this sequence will not work:
#my strings = np.array([["bitsandbites"]])
#word dicts = np.array([["bit","and","bites"]])

these strings can be tokenized:
my strings = np.array([["bitsandbites"], ["funstuff"], ["funst
ufffun"], ["toeattoeattoeat"]])

word dicts = np.array([["bits","and","bites"], ["fun", "stuff"],
["fun", "Stuﬁ'"} , [lltoll, "eat"] })

for idx in range(0, len(my strings)):

one strl = my strings[idx]
the dict = word dicts[idx]
curr str = one strl[0]
matches = np.array([])

print ("=> CURRENT STRING: ",curr str)
while ((len (curr str) > 0)):
for word in the dict:
if (curr str.startswith (word)):
#print (curr str, " starts with ",word)
curr str = curr str[len(word):len(curr str)]
#print ("new curr str: ", curr str)

if (len (matches) == 0):

matches = np.array([word])
else:

matches = np.append (matches, [word])
#print ("NEW match list = ",matches)

if (len(curr_str) == 0):

94 ¢ Python Data Structures Pocket Primer

print ("=> FINAL MATCHES: ",matches)
break

else:
print ("curr str = ",curr str)

if (len(curr_str) > 0):
print ("Cannot split: ", one strl[0])
print ("-----mmmm e \n")

Listing 3.19 starts by initializing the variable my strings as a NumPy array
of strings, followed by the variable word_dicts that contains a set of strings
that are used to tokenize the strings in the variable my_strings.

The next portion of Listing 3.19 contains a loop that iterates through the
elements of the variable my strings. Several variables are initialized before
each iteration, such as the dict that contains the tokenization tokens that
will be used to determine whether or not the current string in my strings
can be fully tokenized.

Next, a while loop executes as long as curr str has positive length,
which is successively reduced by removing a matching token string, starting
from index 0, using the startswith() function. Note that the process of
matching the tokens is performed by a for loop that is nested inside the while
loop. Launch the code in Listing 3.19 and you will see the following output:

=> CURRENT STRING: bitsandbites

curr str = andbites
curr _str = Dbites
=> FINAL MATCHES: ["bits' 'and' 'bites']

=> CURRENT STRING: funstuff
curr str = stuff
=> FINAL MATCHES: ['fun' 'stuff']

=> CURRENT STRING: funstufffun

curr str = stufffun
curr str = fun
=> FINAL MATCHES: ['fun' 'stuff' 'fun']

=> CURRENT STRING: toeattoeattoeat

curr str = eattoeattoeat

curr str = toeattoeat

curr str = eattoeat

curr str = toeat

curr_str = eat

=> FINAL MATCHES: ["to!' 'Teat' 'to' 'eat' 'to' 'eat']

The Harder Case

An example of the more difficult case for this task involves a string that can-
not be tokenized in a left-to-right fashion, as shown here:

Strings and Arrays © 95

#my strings = np.array([["bitsandbites"]])
#word dicts = np.array([["bit","and","bites"]])

The first pass will remove the string “bit”, so the new string to tokenize
is now “sandbites”. Now you can either use the find () function to check
which words (if any) in the word list match this new string, and then invoke
the replace () function to replace the matching word with an empty string.

Notice that there are two words that match the string: “and” as well as
“bites”. If you match with “and” and remove this word, the new substring is
“sbites”, which now matches “bites”, and the final irreducible string is sim-
ple “s”. Alternatively, if you match with “bites” and remove this word, the
new substring is “sand”, which now matches “and”, and the final irreducible
string is also “s”.

Use the information in the preceding paragraph to modify the code in
Listing 3.19 (or create another Python script) in order to match intermediate

locations of a string with words that appear in a word list.

WORKING WITH 1D ARRAYS

A one-dimensional array in Python is a one-dimensional construct whose
elements are homogeneous (i.e., mixed data types are not permitted). Given
two arrays & and B, you can add or subtract them, provided that they have the
same number of elements. You can also compute the inner product of two vec-
tors by calculating the sum of their component-wise products.

Now that you understand some of the rudimentary operations with one-
dimensional matrices, the following subsections illustrate how to perform vari-
ous tasks on arrays in Python.

Rotate an Array

Listing 3.20 displays the contents of the Python script rotate list.py
that illustrates how to rotate the elements in a list.

LISTING 3.20: rotate_list.py
import numpy as np

mylist = [5,10,17,23,30,47,50]
print ("original:",mylist)

shift count = 2

for ndx in range(0,shift count):
item = mylist.pop (0)
arrl = mylist.append(item)

print ("rotated: ",list)

Listing 3.20 initializes the variable my1ist as a list of integers and the vari-
able shift_count with the value 2: the latter is the number of positions to

96 ° Python Data Structures Pocket Primer

shift leftward the elements in 1ist. The next portion of Listing 3.20 is a loop
that performs two actions: 1) “pop” the left-most element of mylist and 2)
append that element to mylist so that it becomes the new right-most ele-
ment. The loop is executed shift_count iterations, after which the elements
in mylist have been rotated the specified number of times. Launch the code
in Listing 3.20 and you will see the following output:

original: [5, 10, 17, 23, 30, 47, 50]
rotated: (17, 23, 30, 47, 50, 5, 10]

TASK: SHIFT NON-ZERO ELEMENTS LEFTWARD

Listing 3.21 displays the contents of shift nonzeroes left.py that
illustrates how to shift non-zero values toward the left while maintaining the
relative positions of the non-zero elements.

LISTING 3.21: shift_nonzeroes_left.py

import numpy as np

left=-1
arrl = np.array([0,10,0,0,30,60,0,200,07)

print ("Initial:")

for i in range (0,len(arrl)):
print(arrl[i],end=" ")

print ()

find the right-most index with value 0:
for i in range (0,len(arrl)):
if(arrl[i] == 0):

left = 1
else:
left += 1
break
print ("non-zero index: ", left)

ex: 0 10 0 0 30 60 0 200 O
right shift positions left-through- (idx-1):

for idx in range(left+l,len(arrl)):

if (arrl[idx] == 0):
for j in range (idx-1,left,-1):
arrl[j+1] = arrl[j]
arrl[left] = 0

print ("shifted non-zero position ", left)
left += 1

Strings and Arrays ® 97

print ("switched:")

for i in range(0,len(arrl)):
print (arrl[i],end=" ")

print ()

Listing 3.21 initializes the variable 1ist as alist of integers and the variable
shift count with the value 2: the latter is the number of positions to shift
leftward the elements in 1ist. The next portion of Listing 3.21 is a loop that
performs two actions:

1. “Pop” the left-most element of 1ist.

2. Append that element to 1ist so that it becomes the new right-most element.

The loop is executed shift count iterations, after which the elements
in list have been rotated the specified number of times. Launch the code in
Listing 3.21 and you will see the following output:

Initial:
0 10 0 0 30 60 0 200 O
non-zero index: 1

shifted non-zero position
shifted non-zero position
shifted non-zero position
shifted non-zero position
switched:

00 0O0O0 30 30 60 200

SN

TASK: SORT ARRAY IN-PLACE IN O(N) WITHOUT A SORT
FUNCTION

Listing 3.22 displays the contents of the Python script simple sort.py
that illustrates a very simple way to sort an array containing an equal number
of values 0, 1, and 2 without using another data structure.

LISTING 3.22: simple_sort.py

arrl = [0,1,2,2,1,0,0,1,2]
zeroes = 0

print ("Initial:")

for i in range(0,len(arrl)):
print(arrl[i],end=" ")

print ()

for i in range(0,len(arrl)):
if(arrl[i] == 0):
zeroes += 1

third = int (len(arrl) /3)
for i in range (0, third):

98 ¢ Python Data Structures Pocket Primer

arrl[i] =0
arrl[third+i] =1
arrl[2*third+i] = 2

print ("Sorted:")

for i in range(0,len(arrl)):
print(arrl[i],end=" ")

print ()

Listing 3.22 initializes arr1 with a list of multiple occurrences the values
0, 1, and 2, and then displays the contents of arr1. The second loop counts the
number of occurrences the value 0 in the variable arr1. The third loop uses a
“thirds” technique to assign the values 0, 1, and 2 to contiguous locations: all
the 0 values appear first, followed by all the 1 values, and then all the 2 values.
The key word in this task is “equal”, which is shown in bold at the top of this
section. Launch the code in Listing 3.22 and you will see the following output:

Initial:
012210012
Sorted:
000111222

TASK: INVERT ADJACENT ARRAY ELEMENTS

Listing 3.23 displays the contents of the Python script invert items.py
that illustrates how to perform a pairwise inversion of adjacent elements in an
array. Specifically, index 0 and index 1 are switched, then index 2 and index 3
are switched, and so forth until the end of the array.

LISTING 3.23: invert_items.py
import numpy as np

arrl = np.array([5,10,17,23,30,47,50])
print ("original:",arrl)

mid point = int(len(arrl)/2)

for temp in range (0,mid point+2,2):
temp = arrl[ndx]
arrl[ndx] = arrl[ndx+1]
arrl[ndx+1l] = temp

print ("inverted:",arrl)

Listing 3.23 starts with the array arrl of integers and the variable mid
point that is the mid point of arr1. The next portion of Listing 3.23 contains
a loop that iterates from index 0 to index mid point+2, where the loop vari-
able ndx is incremented by 2 (not by 1) after each iteration. As you can see,
the code performs a standard “swap” of the contents of arr1 in index positions

Strings and Arrays © 99

ndx and ndx+1 by means of a temporary variable called temp. Launch the
code in Listing 3.23 and you will see the following output:

original: [5 10 17 23 30 47 50]
inverted: [10 5 23 17 47 30 50]

Listing 3.24 displays the contents of the Python script swap . py that illustrates
how to invert adjacent values in an array without using an intermediate temporary
variable. Notice that Listing 3.23 uses a temporary variable temp to switch adja-
cent values, whereas Listing 3.24 does not require a temporary variable.

LISTING 3.24: swap.py
import numpy as np

def swap (numl,num?2) :
delta = num2 - numl
#print ("numl:",numl, "num2:", num?2)

num?2 = delta

numl = numl+delta

num2 = numl-delta

#print ("numl:", numl, "num2:", num2)
return numl, num2

arrl = np.array([15,4,23,35,80,50])
print ("BEFORE arrl:",arrl)

for idx in range(0,len(arrl),2):

numl, num2 = swap (arrl[idx],arrl[idx+1l])
arrl[idx] = numl
arrl[idx+1] = num?2

#print ("arrl:",arrl)
print ("AFTER arrl:",arrl)

Listing 3.24 starts with the function swap that switches the values of two
numbers. If this section of code is not clear to you, try manually executing this
code with hard-coded values for num1 and num2. The next portion of Listing
3.24 initializes the array arrl with integers, followed by a loop that iterates
through the values of arr1, and invokes the function swap during each itera-
tion. Launch the code in Listing 3.24 and you will see the following output:

BEFORE arrl: [15 4 23 35 80 50]
AFTER arrl: [4 15 35 23 50 80]

This concludes the portion of the chapter that discusses strings and string-
related tasks. The next portion of the chapter contains Python code samples
that illustrate how to perform bit-related operations on binary numbers. When
you look at the various data structures that are discussed in this book, binary

100 ¢ Python Data Structures Pocket Primer

numbers are more closely aligned to strings or one-dimensional vectors than,
say, linked lists, queues, or stacks. However, if you do not need to work with
binary numbers, you can treat the following section as optional, and you can
return to this section at some point in the future if circumstances make it nec-
essary to do so.

TASK: GENERATE 0 THAT IS THREE TIMES MORE LIKELY
THAN A 1

This solution to this task is based on the observation that an AND opera-
tor with two inputs generates three Os and a single 1: we only need to ran-
domly generate a 0 and a 1 and supply those random values as input to the AND
operator.

Listing 3.25 displays the contents of three zeroes and one.py that
illustrates how to generate Os and 1s with the expected frequency.

LISTING 3.25: three_zeroes_and_one.py

import random

PART 1

COUNT = 10
ones =0
zeroes = 0

for idx in range (0, COUNT) :

x = random.randrange (2)
y = random.randrange (2)
ans = x & y

print ("input #1: ",x," input #2: ",y, "AND: ",ans)
if (ans == 1): ones += 1
else: zeroes += 1

print ("Percentage of 0Os: ",100*zeroes/COUNT)
print ("Percentage of 1s: ",100*ones/COUNT)

print (" \n")

PART 2

import math

ones =0

zeroes = 0

for idx in range (0, COUNT) :
X = int (math.floor (random.random () *2))
y = int (math.floor (random.random () *2))
ans = int(x) & int(y)

print ("input #1: ",x," input #2: ",y, "AND: ",ans)
if (ans == 1): ones += 1
else: zeroes += 1

Strings and Arrays ¢ 101

print ("Percentage of 0Os: ",100*zeroes/COUNT)
print ("Percentage of 1s: ",100*ones/COUNT)

Listing 3.25 starts by initializing several variables, followed by a loop that
iterates through the values 0 through COUNT (which is initialized with the value
10). Inside the loop the variables x and y are initialed as random integers that
can equal either O or 1. Next, the variable ans is initialized as the logical “and”
of x and y. If the value of ans is 1 then ones is incremented; otherwise, the
variable zeroes is incremented.

In case the logic of the preceding loop is not clear, remember that the
logical “and” of two variables that can equal 0 or 1 will be 1 only when the vari-
ables are both equal to 1, and in the other three situations the result equals 0.
Thus, the the value 0 occurs three times as often as the value 1, as an expected
outcome.

Now launch the code in Listing 3.25 and you will see the following output:

input #1: O input #2: O AND: O
input #1: 1 input #2: 0 AND: O
input #1: O dinput #2: 1 AND: O
input #1: O input #2: O AND: O
input #1: 0 input #2: 0 AND: O
input #1: 1 dinput #2: 1 AND: 1
input #1: O input #2: 1 AND: O
input #1: 0 input #2: 0 AND: O
input #1: 1 dinput #2: 1 AND: 1
input #1: O input #2: O AND: O
Percentage of 0Os: 80.0

Percentage of 1s: 20.0

input #1: 1 input #2: 1 AND: 1
input #1: 1 dinput #2: 1 AND: 1
input #1: 1 input #2: 1 AND: 1
input #1: O input #2: 1 AND: O
input #1: 1 input #2: 0 AND: O
input #1: O input #2: O AND: O
input #1: 1 input #2: O AND: O
input #1: 1 input #2: 0 AND: O
input #1: 1 input #2: 0 AND: O
input #1: 1 input #2: O AND: O

Percentage of 0Os: 70.0
Percentage of 1s: 30.0

TASK: INVERT BITS IN EVEN AND ODD POSITIONS

This solution to this task involves two parts: the first part “extracts” the bits
in the even positions and shifts the result one bit to the right, followed by the
second part that extracts the bits in the odd positions and shifts the result one
bit to the right. Listing 3.26 displays the contents of swap_adjacent bits.py
that illustrates how to solve this task.

102 ¢ Python Data Structures Pocket Primer

LISTING 3.26: swap_adjacent_bits.py

swap adjacent bits of a decimal number:
def swap(n):

return ((n & OxAAAAAAAA) >> 1) | ((n & 0x55555555) << 1)
arrl = [70, 1000, 12341234]
for num in arrl:

print ("Decimal: ",num)

print ("Binary: ",bin (num))

print ("Swapped: ", swap (num))

print ("Swapped: ",bin (swap (num)))

print ("----------————- - \n")

Listing 3.26 defines the python function swap () that returns the logical
“or” of two strings. The first string is the logical “and” of the parameter n and a
four-byte string consisting of the hexadecimal value a, after which this result is
right-shifted by one bit. The second string is the logical “and” of the parameter
n and a four-byte string consisting of the hexadecimal value 5, after which this
result is left-shifted by one bit.

The following simplified example might help to understand why the strings
in the swap () function are the required values. Consider the decimal value
102 for the parameter n, whose binary value is 1111, and perform the opera-
tions in the swap () function, using two-byte hard-coded strings instead of
their four-byte counterparts. Since the binary value of 102 equals 01100110,
we have the following calculations:

n & OxAA = 0110 0110 & 1010 1010 = 0010 0010
(n & OXAA) >> 1 = 0010 0010 >> 1 = 0001 0001

n & 0x55 = 0110 0110 & 0101 0101 = 0100 0100
(n & 0x55) << 1 = 0100 & 0100 << 1 = 1000 1000

0001 0001 | 1000 1000 = 1001 1001

Compare the preceding code snippet shown in bold with the binary value
of 102 and observe that the adjacent bit positions have been switched.

The next portion of Listing 3.26 contains a loop that iterates through the
numbers in the list arrl in order to display their decimal values, as well as
their “swapped” values. Now launch the code in Listing 3.26 and you will see
the following output:

Decimal: 70
Binary: 0b1000110
Swapped: 137
Swapped: 0b10001001

Decimal: 1000
Binary: 0b1111101000

Strings and Arrays * 103

Swapped: 980
Swapped: 0b1111010100

Decimal: 12341234

Binary: 0b101111000100111111110010
Swapped: 8163313

Swapped: 0b11111001000111111110001

TASK: INVERT PAIRS OF ADJACENT BITS

This solution is similar to the code in the previous section, which also
involves two parts: the “even” part extracts the bits in pairs of adjacent posi-
tions, starting from bit positions 2 and 3, and shifts the result two bits to the
right, followed by the second part that extracts pairs of bits in the “odd” posi-
tions, starting from 0 and 1, and shifts the result two bits to the left. Listing
3.27 displays the contents of swap adjacent pairs.py that illustrates how
to solve this task.

LISTING 3.27: swap_adjacent_pairs.py

def swapAdjacentPairBits (num) :
even mask: 11001100 => CC
odd mask: 00110011 => 33
return ((num & OxCCCC) >> 2) | ((num & 0x3333) << 2)

max = 200000
arrl = [1i for i1 in range (0,max)]

for num in arrl:
swapped = swapAdjacentPairBits (num)
binl = bin(swapped) [2:]
decl = int(binl, 2)

print (f'Binary: {bin (num) : 20} decimal: {num:8}")
print (f'Swapped: {bin(swapped):20} decimal: {decl:8}")
print (u n)

Listing 3.27 generalizes the code in Listing 3.26: instead of swapping
adjacent bits, the code in this section swaps adjacent pairs of bits. Therefore,
the Python function swapAdjacentbPairBits () specifies the hard-coded
strings 0xcccc and 0x3333 (shown in bold), respectively, instead of 0xaAAA
and 0x5555 that are specified in Listing 3.26. Launch the code in Listing 3.27
and you will see the following output:

Decimal: 70
Binary: 0bO decimal: 0
Swapped: 0b0 decimal: 0

104 ¢ Python Data Structures Pocket Primer

Binary: O0bl decimal: 1
Swapped: 0b100 decimal: 4
Binary: 0bl0 decimal: 2
Swapped: 0b1000 decimal: 8
Binary: O0bll decimal: 3
Swapped: 0b1100 decimal: 12
Binary: 0b100 decimal: 4
Swapped: 0bl decimal: 1
// output omitted for brevity

Binary: 0b110000110100111011 decimal: 199995
Swapped: 0b11111001110 decimal: 1998
Binary: 0b110000110100111100 decimal: 199996
Swapped: 0b11111000011 decimal: 1987
Binary: 0b110000110100111101 decimal: 199997
Swapped: 0b11111000111 decimal: 1991
Binary: 0b110000110100111110 decimal: 199998
Swapped: 0b11111001011 decimal: 1995
Binary: 0b110000110100111111 decimal: 199999
Swapped: 0b11111001111 decimal: 1999

At this point we can generalize this code sample even further to reverse
groups of four bits, where the “odd group” is the right-most four bits (with a
binary mask of 00001111) and the “even group” is the (left-most four bits (with
a binary mask of 11110000): modify the code to switch adjacent triples of bits.
Convert the binary masks to their corresponding hexadecimal values, which
are OF and FO, respectively.

Now replace the masks in the swapAdjacentpPairsBits () function in
Listing 3.27 with the new pair of masks, and also perform left and right shifts
of 4 bits instead of 2, as shown here:

def swapAdjacentPairBits (num) :
odd mask: 00001111 => OF
even mask: 11110000 => FO
return ((num & OxFOFO0) >> 4) | ((num & OxOFOF) << 4)

TASK: FIND COMMON BITS IN TWO BINARY NUMBERS

Listing 3.28 displays the contents of common_bits.py that illustrates how
to solve this task.

LISTING 3.28: common_bits.py

def common bits(numl, num2) :
bin numl = bin (numl)
bin num2 = bin (num2)

Strings and Arrays * 105

bin numl = bin numl[2:]
bin num2 = bin num2[2:]

if (len(bin num2) < len(bin numl)):
while (len(bin num2) < len(bin numl)):

bin num2 = "0" + bin num2
print (numl, "=",bin numl)
print (num2, "=",bin num?2)
common _bits2 = 0
for 1 in range(O,len(bin_numl)):
if ((bin numl[i] == bin num2[i]) and (bin numl[i] =='1")):

common bits2 += 1
return common bits2

numsl = [61,28, 7,100,189]
nums2 = [51,14,28,110, 14]

for idx in range (0, len (numsl)) :

numl = numsl[idx]
num2 = nums2 [idx]
common = common bits(numl, num2)

print (numl, "and",num2, "have", common, "bits in common")
print ()

Listing 3.28 defines the function common_bits () that initializes the vari-
ables bin_numl and bin_num2 as the binary values for the parameters num1
and num2, respectively. Notice that the first two index positions are skipped:
this is necessary in order to exclude the string “0b” that appears in the binary
values bin numl and bin num2.

The next portion of Listing 3.28 initializes the lists nums1 and nums2 with lists
of positive integers, followed by a loop that iterates through these lists in order
to determine the number of bits that are in common to each pair of array values.
Now launch the code in Listing 3.28 and you will see the following output:

61 111101
51 = 110011
61 and 51 have 3 bits in common

28 = 11100
14 = 01110
28 and 14 have 2 bits in common

7 =111
28 = 11100
7 and 28 have 3 bits in common

100 1100100
110 = 1101110
100 and 110 have 3 bits in common

106 ¢ Python Data Structures Pocket Primer

189 = 10111101
14 = 00001110
189 and 14 have 2 bits in common

TASK: CHECK FOR ADJACENT SET BITS IN A BINARY NUMBER

Listing 3.29 displays the contents of check_adjacent_bits.py thatillus-
trates how to solve this task.

LISTING 3.29: check_adjacent_bits.py

true if adjacent bits are set in num:
def check (num) :
return num & (num << 1)

arrl = [15, 16, 17, 50, 67, 99]
for num in arrl:

print ("Decimal: ",num)

print ("Binary: ",bin (num))

if check (num) :
print ("Adjacent pair of set bits found")

else:
print ("No adjacent pair of set bits found")
print("--——------—--——~ \n")

Listing 3.29 defines the Python function check () that returns the result of
the logical “and” of the parameter n with the value (n<<1), which does detect
the presence of adjacent bits that are set equal to 1. Now launch the code in
Listing 3.29 and you will see the following output:

15 in binary = 0bl111
Adjacent pair of set bits found

16 in binary = 0b10000
No adjacent pair of set bits found

17 in binary = 0b10001
No adjacent pair of set bits found

50 in binary = 0b110010
Adjacent pair of set bits found

67 in binary = 0b1000011
Adjacent pair of set bits found

99 in binary = 0b1100011
Adjacent pair of set bits found

Strings and Arrays © 107

TASK: COUNT BITS IN A RANGE OF NUMBERS

Listing 3.30 displays the contents of count_bits.py that illustrates how
to solve this task.

LISTING 3.30: count_bits.py

Given an integer num, return an array of the number of 1's in
the binary representation of every number in the range [0, num]

def count bits(num) :
num bin = bin (num)
count = 0
for 1 in range (0, len(num bin)):
if num bin[i] == '1':
count += 1
#print (num, "has", count, "bits")
return count

number = 20

total bits = 0

bit list = list()

for i in range (0, number) :
total bits += count bits (i)
bit list.append(count bits(i))

print ("=> Array of bit counts for numbers between 0
and", number, ":")

print (bit list)

Listing 3.30 defines the function count bits () that initializes the vari-
able num_bin as the binary counterpart to the parameter num, followed by a
loop that counts the number of occurrences of the string ‘1" in num_bin, whose
value is returned by this function.

The next portion of Listing 3.30 initializes several variables, including the
list variable bit 1ist, followed by a loop that counts the number of bits
that appear in the numbers 0 through number (which is initialized with the
value 20). Now launch the code in Listing 3.30 and you will see the following
output:

=> Array of bit counts for numbers between 0 and 20
to, 1, 1, 2, %, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3]

TASK: FIND THE RIGHT-MOST SET BIT IN A NUMBER

This solution to this task involves Listing 3.31 displays the contents of the
Python script right most set bit.py that illustrates how to solve this
task.

108 ¢ Python Data Structures Pocket Primer

LISTING 3.31: right_most_set_bit.py

import numpy as np
import math

def getFirstSetBitPos (num) :
return math.log2 (num & -num)+1

arrl = np.array([12,18,29,66]
for num in arrl:

bnum = bin (num)

bnum2 = bnum[2:]

rbit = (int(getFirstSetBitPos (num)))

#print (f'num: ",num," bnum: ",bnum," bnum2: ",bnum2," rbit: ",rbit)

print (f'num: {num:6} bnum: {bnum:10} bnum2: {bnum2:8} rbit:
{rbit:6}")

Listing 3.31 defines the function getFirstSetBitPos () that returns 1
plus the logarithm (base 2) of the parameter num and the “and” of (-num). The
next portion of Listing 3.31 initializes the variable arrl as a Numpy array of
positive integers, followed by a loop that iterates through each value in arr1.
The variable bnum? is initialized with the binary representation of num (which
is an element of arr1), starting from index 2 in order to skip the string “0b”.

Next, the variable bit is assigned as the integer result of invoking the func-
tion getFirstSetBitPos () with the variable num, and then displays the val-
ues of bnum, bnum2, and rbit. Now launch the code in Listing 3.31 and you
will see the following output:

num: 12 bnum: 0b1100 bnum2: 1100 rbit: 3
num: 18 bnum: 0b10010 bnum2: 10010 rbit: 2
num: 29 bnum: 0b11101 bnum2: 11101 rbit: 1
num: 66 bnum: 0b1000010 bnum2: 1000010 «rbit: 2

TASK: THE NUMBER OF OPERATIONS TO MAKE ALL CHARACTERS
EQUAL

This solution to this task involves Listing 3.32 displays the contents of the
Python script flip_bit count.py that illustrates how to solve this task.

LISTING 3.32: flip_bit_count.py

determine the minimum number of operations
to make all characters of the string equal
def minOperations(the string):

count = 0; # track the # of changes

for i in range(l, len(the string)):
are adjacent characters equal?
if (the string[i] != the string[i - 1]):
count += 1;

Strings and Arrays © 109

return (count) ;

arrl = ["0101010101"™, ™1111010101™, "™100001™, ™111111"]
for strl in arrl:

print ("String: ",strl)

print ("Result: ", minOperations(strl));

print ("--—-————————————~ \n")

Listing 3.32 defines the function minOperations () that contains aloop to
count the number of times that adjacent characters (of a string) are different:
this number equals the number of positions that must be “flipped” in order to
make all characters equal.

The next portion of Listing 3.32 initials the variable arr1 as a list of strings
that consist of either 0 or 1, followed by a loop that iterates through the ele-
ments of arrl and then invokes the function minOperations () to calculate
the number of flips that are required. Now launch the code in Listing 3.32 and
you will see the following output:

String: 0101010101
Result: 9

String: 1111010101
Result: 6

String: 100001
Result: 2

String: 111111
Result: O

TASK: COMPUTE XOR WITHOUT XOR FOR TWO BINARY NUMBERS

This solution to this task involves Listing 3.33 displays the contents of the
Python script xor_without xor.py that illustrates how to solve this task.

LISTING 3.33: xor_without_xor.py

perform the XOR of two numbers without XOR:
def findBits(x, y):

return (x | y) - (x & V)
arrx = [65,15]
arry = [80,240]

for idx in range(0,len(arrx)):
X = arrx[idx]
arry[idx]

=
Il

110 ¢ Python Data Structures Pocket Primer

xory = bin(x|y)

xandy = bin(x&y)

print ("Decimal x: ",x)

print ("Decimal y: ",v)

print ("Binary x: ",bin(x))

print ("Binary vy: ", bin(y))

print ("x OR y: ", xory)

print ("x AND y: ", xandy)

print ("x XOR y ",bin (findBits (x,vy)))
print ("--=-=-——-—————————~ \n")

Listing 3.33 defines the function findBits () that calculates the xOR value
of its parameters x and y by computing (and returning) the quantity (x | y)
- (x & y),which is logically equivalent to computing the X0OR value of x and
y. Launch the code in Listing 3.33 and you will see the following output:

Decimal x: 65

Decimal y: 80

Binary x: 0b1000001
Binary y: 0b1010000
x OR y: 0b1010001
X AND y: 0b1000000
X XOR y: 0b10001
Decimal x: 15

Decimal y: 240

Binary x: Ob1l111
Binary y: 0b11110000
x OR vy: Ob11111111
x AND vy: 0b0

x XOR y: Obl11111111

WORKING WITH 2D ARRAYS

A two-dimensional array in Python is a two-dimensional construct whose
elements are homogeneous (i.e., mixed data types are not permitted). Given
two arrays A and B, you can add or subtract them, provided that they have the
same number of rows and columns.

Multiplication works differently: if A is an mxn matrix that you want to mul-
tiply (on the right of &) by B, then B must be an nxp matrix. The rule for matrix
multiplication is as follows: the number of columns of 2 must equal the num-
ber of rows of B.

In addition, the transpose of matrix & is another matrix at such that the
rows and columns are interchanged. Thus, if A is an mxn matrix then At is an
nxm matrix. The matrix A is symmetric if 2 = At. The matrix A is the identity

Strings and Arrays ¢ 111

matrix I if the values in the main diagonal (upper left to lower right) are 1 and
the other values are 0. The matrix 2 is invertible if there is a matrix B such that
A*B = B*A = I. Based on the earlier discussion regarding the product of two
matrices, both 2 and B must be square matrices with the same number of rows
and columns.

Now that you understand some of the rudimentary operations with matri-
ces, the following subsections illustrate how to perform various tasks on matri-
ces in Python.

THE TRANSPOSE OF A MATRIX

As a reminder, the transpose of matrix A is matrix At, where the rows and
columns of a are the columns and rows, respectively, of matrix At.

Listing 3.34 displays the contents of the mat transpose.py that illus-
trates how to find the transpose of an mxn matrix.

LISTING 3.34: mat_transpose.py

import numpy as np

the transpose of a matrix is a 90 degree rotation
def transpose(A,rows,cols):
for i in range (0, rows) :
for j in range(i,cols):
#print ("switching",A[i,]J],"and",A[],1])
temp = A[i, 7]
Ali,3] = A[j, 1]
Alj,i] = temp
return A

A = np.array([[100,3],[500,711)
print ("=> original:")

print (A)

At = transpose (A, 2, 2)

print ("=> transpose:")

print (At)

print ()

example 2:

A = np.array([[100,3,-1],([30,500,7]1,1[123,456,789]11)
print ("=> original:")

print (A)

At = transpose (A, 3, 3)

print ("=> transpose:")

print (At)

Listing 3.34 is actually straightforward: the function transpose () con-
tains a nested loop that uses a temporary variable temp to perform a simple
swap of the values of A[1, 3] and A[J, 1] in order to generate the transpose of
the matrix A. The next portion of Listing 3.34 initializes a 2x2 array A and then

112 e Python Data Structures Pocket Primer

invokes the function transpose to generate its transpose. Launch the code in
Listing 3.35 and you will see the following output:

=> original:

[[100 3]
[500 711
=> transpose:
[[100 500]
[3 711

=> original:
[[100 3 -1]
[30 500 7]
[123 456 789]]

=> transpose:

[[100 30 123]
[3 500 456]
[-1 7 78911

In case you didn’t notice, the transpose At of a matrix a is actually a 90
degree rotation of matrix A. Therefore, if A is a square matrix of pixels values
for a PNG, then At is a 90 degree rotation of the PNG. However, if you take the
transpose of At, the result is the original matrix A.

SUMMARY

This chapter started with an introduction to one-dimensional vectors,
and how to calculate their length and the inner product of pairs of vectors.
Then you were taught how to perform various tasks involving numbers, such
as multiplying and dividing two positive integers via recursive addition and
subtraction, respectively.

In addition, you learned about working with strings; and how to check a
string for unique characters, how to insert characters in a string, and how to
find permutations of a string. Next, you learned about determining whether or
not a string is a palindrome.

Then you learned how to perform bit-related operations to solve various
tasks in Python, such as reversing adjacent bits in a binary number, counting
the number common occurrences of a 1 in two binary numbers, and how to
find the right-most bit that equals 1 in a binary number. Finally, you learned
how to calculate the transpose of a matrix, which is the equivalent of rotating a
bitmap of an image by 90 degrees.

CHAPTER

SEARCH AND SORT ALGORITHMS

known search algorithms, followed by the second half that discusses
various sorting algorithms.

The first section of this chapter introduces search algorithms such as linear
search and binary search, that you can use when searching for an item (which
can be numeric or character-based) in an array. A linear search is inefficient
because it requires an average of n/2 (which has complexity O(n)) compari-
sons to determine whether or not the search element is in the array, where n is
the number of elements in the list or array.

By contrast, a binary search required O (log n) comparisons, which is vastly
more efficient with larger sets of items. For example, if an array contains 1,024

The first half of this chapter provides an introduction to some well-

items, a most ten comparisons are required in order to find an element because
2#x10 = 1024, so log(1024) = 10. However, a binary search algorithm requires
a sorted list of items.

The second part of this chapter discusses some well-known sorting algo-
rithms, such as the bubble sort, selection sort, insertion sort, the merge sort,
and the quick sort that you can perform on an array of items.

SEARCH ALGORITHMS

The following list contains some well-known search algorithms that will be
discussed in several subsections:

e linear search

* binary search

® jump search

e I"ibonacci search

114 Python Data Structures Pocket Primer

A linear search algorithm is probably the simplest of all the search
algorithms: this algorithm checks every element in an array until either the
desired item is located or the end of the array is reached.

However, as you learned in the introduction for this chapter, a linear search
is inefficient when an array contains a large number of values. If the array is
very small, the difference in performance between a linear search and a binary
search can also be very small; in this case, a linear search might be an accept-
able choice of algorithms.

In the RDBMS (relational database management system) world, tables
often have an index (and sometimes more than one) in order to perform
a table search more efficiently. However, there is some additional compu-
tational overhead involving the index, which is a separate data structure
that is stored on disk. Additionally, a linear search involves only the data
in the table. As a rule of thumb, an index-based search is more efficient
when tables have more than 300 rows (but results can vary). The next sec-
tion contains a code sample that performs a linear search on an array of
numbers.

Linear Search

Listing 4.1 displays the contents of the 1inear search.py thatillustrates
how to perform a linear search on an array of numbers.

LISTING 4.1: linear_search.py

import numpy as np

found = -1
item = 123
arrl = np.array([1,3,5,123,400])

for i in range(0,len(arrl)):
if (item == arrl[i]):
found = 1
break

if (found >= 0):

print ("found",item,"in position", found)
else:

print (item, "not found")

Listing 4.1 starts with the variable found that is initialized with the value
-1, followed by the search item 123, and also the array arr1l that contains an
array of numbers. Next, a loop that iterates through the elements of the array
arrl of integers, comparing each element with the value of item. If a match
occurs, the variable found is set equal to the value of the loop variable i,
followed by an early exit.

Search and Sort Algorithms ¢ 115

The last portion of Listing 4.1 checks the value of the variable found:
if it’s nonnegative then the search item was found (otherwise it’s not in
the array). Launch the code in Listing 4.1 and you will see the following
output:

found 123 in position 3

Keep in mind the following point: although the array arr1 contains a sorted
list of numbers, the code works correctly for an unordered list as well.

Binary Search Walk-Through

A binary search requires a sorted array and can be implemented via an itera-
tive algorithm as well as a recursive solution. The key idea involves comparing
the middle element of an array of sorted elements with a search element. If they
are equal, then the item has been found; if the middle element is smaller than
the search element then repeat the previous step with the right half of the array;
if the middle element is larger than the search element then repeat the previous
step with the left half of the array. Eventually the element will be found (if it
appears in the array) or the repeated splitting of the array terminates when the
subarray has a single element (i.e., no further splitting can be performed).

Let’s perform a walk-through of a binary search that searches for an item in
a sorted array of integers.

Example #1: let item = 25 and arrl = [10,20,25,40,100], so the

midpoint of the array is 3. Since arr1[3] = item, the algorithm terminates
successfully.
Example #2: let item = 25and arrl = [1,5,10, 15, 20, 25, 401,

which means that the midpoint is 4.

First iteration: since arrl[4] < item, we search the array [20,25,40]

Second iteration: the midpoint is 1, and the corresponding value is 25.

Third iteration: 25 and the array is the single element [25], which matches
the item.

Example #3:letitem = 25and arrl = [10, 20, 25, 40, 100,150,400],
so the midpoint is 4.

First iteration: since arr1[4] > 25, we search the array [10,20,25].

Second iteration: the midpoint is 1, and the corresponding value is 20.

Third iteration: 25 and the array is the single element [25], which matches
the item.

Example #4: item = 25 and arrl = [1,5,10, 15, 20, 30, 40],sothe
midpoint is 4.

First iteration: since arrl[4] < 25, we search the array [20,30,40].

Second iteration: the midpoint is 1, and the corresponding value is 30.

Third iteration: 25 and the array is the single element [20], so there is no match.

As mentioned in the first paragraph of this section, a binary search can be
implemented with an interactive solution, which is the topic of the next section.

116 ¢ Python Data Structures Pocket Primer

Binary Search (Iterative Solution)

Listing 4.2 displays the contents of the binary search.py thatillustrates
how to perform a binary search with an array of numbers.

LISTING 4.2: binary_search.py
import numpy as np

arrl = np.array([1,3,5,123,400])

left =0

right = len(arrl)-1
found = -1

item = 123

while(left <= right):
mid = int (left + (right-left)/2)

if (arrl[mid] == item):
found = mid
break

elif (arrl[mid] < item):
left = mid+1

else:
right = mid-1

print ("array:",arrl)

if(found >= 0):

print ("found",item, "in position", found)
else:

print (item, "not found")

Listing 4.2 initializes an array of numbers and some scalar variables to keep
track of the left and right index positions of the subarray that we will search
each time that we split the array. The next portion of Listing 4.2 contains con-
ditional logic that implements the sequence of steps that you saw in the exam-
ples in the previous section. Launch the code in Listing 4.2 and you will see
the following output:

array: [1 3 5 123 400]
found 123 in position 3

Binary Search (Recursive Solution)

Listing 4.3 displays the contents of the binary search recursive.py
that illustrates how to perform a binary search recursively with an array of
numbers.

LISTING 4.3: binary_search_recursive.py

import numpy as np
def binary search(data, item, left, right):

Search and Sort Algorithms ¢ 117

if left > right:
return False

else:
incorrect (can result in overflow) :
mid = (left + right) / 2

mid = int (left + (right-left)/2)

if item == data[mid]:

return True
elif item < data[mid]:

recursively search the left half

return binary search(data, item, left, mid-1)
else:

recursively search the right half

return binary search(data, item, mid+1, right)

arrl = np.array([1,3,5,123,400])
items = [-100, 123, 200, 400]

print ("array: ",arrl)
for item in items:
left =0
right = len(arrl)-1
result = binary search(arrl, item, left, right)
print ("item: ",item, " found: ", result)

Listing 4.3 start with the function binary search() with parameters
data, item, left, and right) that contain the current array, the search
item, the left index of data, and the right index of data, respectively. If the
left index left is greater than the right index right then the search item does
not exist in the original array.

Contrastingly, if the left index 1eft is less than the right index right then
the code assigns the middle index of data to the variable mid. Next, the code
performs the following three-part conditional test:

If item == data[mid] then the search item has been found in the array.

If item < data[mid] then the function binary search() is invoked
with the left-half of the data array.

If item > data[mid] then the function binary search() is invoked
with the right-half of the data array.

The next portion of Listing 4.3 initializes the sorted array arr1 with num-
bers and initializes the array items with a list of search items, and also initial-
izes some scalar variables to keep track of the left and right index positions of
the subarray that we will search each time that we split the array.

The final portion of Listing 4.3 consists of a loop that iterates through each
element of the items array and invokes the function binary search() to
determine whether or not the current item is in the sorted array. Launch the
code in Listing 4.3 and you will see the following output:

array: [1 3 5 123 400]
item: -100 found: False
item: 123 found: True
item: 200 found: False

item: 400 found: True

118 ¢ Python Data Structures Pocket Primer

WELL-KNOWN SORTING ALGORITHMS

Sorting algorithms have a best case, average case, and worst case in terms
of performance. Interestingly, sometimes an efficient algorithm (such as quick
sort) can perform the worst when a given array is already sorted.

The following subsections contain code samples for the following well-
known sort algorithms:

¢ bubble sort

e selection sort
e insertion sort
* Merge sort

e Quick sort

¢ BucketSort

e Shell Sort

e Shell Sort

¢ Heap Sort

® BucketSort

e InplaceSort
¢ CountingSort
e RadixSort

If you want to explore sorting algorithms in more depth, perform an
Internet search for additional sorting algorithms.

Bubble Sort

A bubble sort involves a nested loop whereby each element of an array is
compared with the elements to the right of the given element. If an array ele-
ment is less than the current element, the values are interchanged (“swapped”),
which means that the contents of the array will eventually be sorted from
smallest to largest value.

Here is an example:

arrl = np.array([40, 10, 30, 20]);

Item = 40;

Step 1: 40 > 10 so switch these elements:
arrl = np.array([10, 40, 30, 20]);

Item = 40;

Step 2: 40 > 30 so switch these elements:
arrl = np.array([10, 30, 40, 20]);

Item = 40;

Step 3: 40 > 20 so switch these elements:
arrl = np.array([10, 30, 20, 40]);

As you can see, the smallest element is in the left-most position of the array
arrl. Now repeat this process by comparing the second position (which is
index 1) with the right-side elements.

Search and Sort Algorithms © 119

arrl = np.array([10, 30, 20, 40]);

Item = 30;

Step 4: 30 > 20 so switch these elements:
arrl = np.array([10, 20, 30, 40]);

Item = 30;

Step 4: 30 < 40 so do nothing

As you can see, the smallest elements two elements occupy the first two
positions in the array arr1l. Now repeat this process by comparing the third
position (which is index 2) with the right-side elements.

arrl = np.array([10, 20, 30, 40]);
ITtem = 30;
Step 4: 30 < 40 so do nothing

The array arr1 is now sorted in increasing order (in a left-to-right fashion).
If you want to reverse the order so that the array is sorted in decreasing order
(in a left-to-right fashion), simply replace the “
tor in the preceding steps.

Listing 4.4 displays the contents of the bubble sort.py that illustrates
how to perform a bubble sort on an array of numbers.

« _»

>” operator with the “<” opera-

LISTING 4.4: bubble_sort.py

import numpy as np
arrl = np.array([40, 10, 30, 20]);

for i in range(l,arrl.length-1):
for j in range(i+l,arrl.length):
if(arrl[i] > arrl([j]):
temp = arrl[i];
arrl[i] = arrl[j];
arrl[j] = temp;

You can manually perform the code execution in Listing 4.4 to convince
yourself that the code is correct (hint: it’s the same sequence of steps that you
saw earlier in this section). Launch the code in Listing 4.4 and you will see the
following output:

initial: [40 10 30 20]
sorted: [10 20 30 40]

Find Anagrams in a List of Words

Recall that the variable word1 is an anagram of word2 if word2 is a permu-
tation of word1. Listing 4.5 displays the contents of the anagrams2.py that
illustrates how to check if two words are anagrams of each other.

LISTING 4.5: anagrams2.py

def is anagram(strl, str2):
sortedl = sorted(strl)

120 ¢ Python Data Structures Pocket Primer

sorted2 = sorted(str2)
return (sortedl == sorted?)

words = ["abc","evil","Z","cab","live", "xyz","zyx", "bac"]
print ("=> Initial words:")

print (words)

print ()

for i in range (0, len (words)-1):
for j in range (i+l,len (words)) :
result = is anagram(words[i], words[]J])
if (result == True):
print (words[i]," and ",words[j]," are anagrams")

Listing 4.5 defines the function is_anagram () that takes parameters str1
and str2 whose sorted values are used to initialize the variables sortedl and
sorted2, respectively. The function returns the result of comparing sorted1
with sorted2: if they are equal then str1 is a palindrome.

The next portion of Listing 4.5 initializes the variable words as a list of
strings, followed by a nested loop. The outer loop uses the variable i to range
from 0 to len (words) -1, and the inner loop uses the variable j to range from
i+1 to len (words). The inner loop initializes the variable result with the
value returned by the function is_anagram() that is invoked with the strings
words [i] and words [§]. The two words are palindromes if the value of the
variable result is True. Launch the code in Listing 4.5 and you will see the
following output:

=> Initial words:
['abc', 'evil', 'Z', 'cab', 'live', 'xyz', 'zyx', 'bac']

abc and cab are anagrams
abc and bac are anagrams
evil and 1live are anagrams
cab and Dbac are anagrams
xyz and zyx are anagrams

SELECTION SORT

Listing 4.6 displays the contents of the selection_sort.py that illus-
trates how to perform a selection sort on an array of numbers.

LISTING 4.6: selection_sort.py
import sys
arrl = [64, 25, 12, 22, 11]

Traverse through all array elements
for i in range(len(arrl)):
Find the minimum element in remaining unsorted array

Search and Sort Algorithms ¢ 121

min idx = i
for j in range (i+l, len(arrl)):
if arrl[min idx] > arrl[j]:
min idx = J

Swap the found minimum element with the first element
arrl[i], arrl[min idx] = arrl[min idx], arrl[i]

print ("Initial:")

print (arrl)

print ("Sorted: ")

for i in range(len(arrl)):
print ("%d" %arrl[i],end=" ")

print ()

Listing 4.6 starts by initializing the array arr1 with some integers, followed
by a loop that iterates through the elements of arr1. During each iteration of
this loop, another inner loop compares the current array element with each
element that appears to the right of the current array element. If any of those
elements is smaller than the current array element, then the index position
of the former is maintained in the variable min_idx. After the inner loop has
completed execution, the current element is “swapped” with the small element
(if any) that has been found via the following code snippet:

arrl[i], arrl[min idx] = arrl[min idx], arrl[i]

In the preceding snippet, arr1 [1] isthe “current” element,andarrl [min_
idx] is element (to the right of index 1) that is smaller than arr1 [i]. If these
two values are the same, then the code snippet swaps arrl[i] with itself.
Now launch the code in Listing 4.6 and you will see the following output:

Initial:

[64, 25, 12, 22, 11]
Sorted:

11 12 22 25 64

INSERTION SORT

Listing 4.7 displays the contents of the insertion_sort.py that illus-
trates how to perform a selection sort on an array of numbers.

LISTING 4.7: insertion_sort.py

def insertionSort (arrl):
Traverse through 1 to len(arrl)
for i in range (1, len(arrl)):
key = arrl[i]

Move elements of arrl[0..1i-1], that are
greater than key, to one position ahead
of their current position

122 ¢ Python Data Structures Pocket Primer

J o= i-1

while j >=0 and key < arrl[j]:
arrl[j+1] = arrl[j]
Jo-=1

arrl[j+1] = key
print ("New order:",arrl)

arrl = [12, 11, 13, 5, 6]
print ("Initial: ", arrl)

insertionSort (arrl)

print ("Sorted:",end=" ")

for i in range(len(arrl)):
print ("%d" %arrl[i],end=" ")

print ()

Listing 4.7 starts with the function insertionSort () and contains a loop
that iterates through the elements of the array arr1. During each iteration of
this loop, the variable key is assigned the value of the element of array arr1
whose index value is the loop variable i. Next, a while loop shift a set of ele-
ments to the right of index 3, as shown here:

j = 1i-1

while j >=0 and key < arrl([j]
arrl[j+1] = arrl[j]
j =1

arrl[j+1] = key

For example, after the first iteration of the inner while loop we have the
following output:

Initial: (12, 11, 13, 5, 6]
New order: [11, 12, 13, 5, 6]

The second iteration of the inner loop does not produce any changes, but
the third iteration shifts some of the array elements, at which point we have
the following output:

Initial: [12, 11, 13, 5, 6]
New order: [11, 12, 13, 5, 6]
New order: [11, 12, 13, 5, 6]
New order: [5, 11, 12, 13, 6]

The final iteration of the outer loop results in an array with sorted elements.
Now launch the code in Listing 4.7 and you will see the following output:

Initial: (12, 11, 13, 5,
New order: [11, 12, 13, 5, 6]
New order: [11, 12, 13, 5, 6]
New order: [5, 11, 12, 13, 6]
New order: [5, 6, 11, 12, 13]
Sorted: 56 11 12 13

Search and Sort Algorithms ¢ 123

COMPARISON OF SORT ALGORITHMS

A bubble sort is rarely used: it's most effective when the data value is
already almost sorted. A selection sort is used infrequently: while this algo-
rithm is effective for very short lists, the insertion sort is often superior. An
insertion sort is useful if the data are already almost sorted, or if the list is very
short (e.g., at most 50 items).

Among the three preceding algorithms, only insertion sort is used in prac-
tice, typically as an auxiliary algorithm in conjunction with other more sophis-
ticated sorting algorithms (e.g., quicksort or merge sort).

MERGE SORT

A merge sort involves merging two arrays of sorted values. In the following
subsections you will see three different ways to perform a merge sort. The first
code sample involves a third array, whereas the second and third code samples
do not require a third array. Moreover, the third code sample involves one
while loop whereas the second code sample involves a pair of nested loops,
which means that the third code sample is simpler and also more memory
efficient.

Merge Sort With a Third Array

The simplest way to merge two arrays involves copying elements from
those two arrays to a third array, as shown here:

A B C

fo———- + tom— - + fom— - +

[20 | 50 [20 | A

[80 | | 70 | | 50 | B

| 200 | + | 100 | = | 70 | B

| 300 | +-———- + | 80 | A

| 500 | [100 | B

- + | 200 | A
| 300 | A
| 500 | A
fom— - +

The right-most column in the preceding diagram lists the array (either & or
B) that contains each number. As you can see, the order ABBABARR switches
between array A and array B. However, the final three elements are from array
A because all the elements of array B have been processed.

Two other possibilities exist: array a is processed and B still has some ele-
ments, or both A and B have the same size. Of course, even if 2 and B have the
same size, it’s still possible that the final sequence of elements is from a single
array.

For example, array B is longer than array A in the example below, which
means that the final values in array ¢ are from B:

124 ¢ Python Data Structures Pocket Primer

>
|

[20,80,200,300,500]
B = [50,70,100]

The following example involves array A and array B with the same length:

A = [20,80,200]
B = [50,70,300]

The next example also involves array A and array B with the same length,
but all the elements of A are copied to B and then all the elements of B are
copied to C:

A = [20,30,40]
B = [50,70,300]

Listing 4.8 displays the contents of the merge sortl.py that illustrates
how to perform a merge sort on two arrays of numbers.

LISTING 4.8: merge_sort1.py
import numpy as np

itemsl = np.array([20, 30, 50, 3001])
items2 = np.array([80, 100, 2001])

def merge items():

items3 - np.array([])
ndxl = 0
ndx2 = 0

always add the smaller element first:
while (ndxl < len(itemsl) and ndx2 < len(items2)):
#print ("itemsl data:",itemsl[ndx1],"items?2
data:",items2[ndx2])

datal = itemsl [ndx1]

data?2 = items2[ndx2]

if (datal < data?):
#print ("adding datal:",datal)
items3 = np.append(items3,datal)
ndxl += 1

else:
#print ("adding data2:",data2)
items3 = np.append(items3,data2)
ndx2 += 1

append any remaining elements of itemsl:
while (ndxl < len(itemsl)):
#print ("MORE itemsl:",itemsl [ndx1])
items3 = np.append(items3,datal)
ndxl += 1

Search and Sort Algorithms ¢ 125

append any remaining elements of items2:
while (ndx2 < len(items2)):
#print ("MORE items2:",items2[ndx2])
items3 = np.append(items3,data2)
ndx2 += 1
return items3

display the merged list:
items3 = merge items()
print ("itemsl:",itemsl)
print ("items2:",items?2)
print ("items3:",items3)

Listing 4.8 initializes the NumPy arrays itemsl and items2, followed by
the function merge_items () that creates an empty NumPy array items3 and
the scalar variables ndx1 and ndx2 that keep track of the current index posi-
tion in itemsl and items2, respectively.

The key idea is to compare the value of itemsl[ndx1] with the value
of items2 [ndx2]. If the smaller value is items1 [ndx1], then this value is
appended to items3 and ndx1 is incremented. Otherwise, items2 [ndx2] is
appended to items3 and ndx2 is incremented.

The second part of the function merge items () contains a loop that
appends any remaining items in items1 to items3, followed by another loop
that appends any remaining items in items2 to items3. The final portion of
Listing 4.8 invokes the merge_items () function and then displays the con-
tents of items1, items2, and items3.

There are several points to keep in mind regarding the code in Listing 4.8. First,
the initial loop in merge items () iterates through both itemsl and items2
until the final element is reached in one of these two arrays: consequently, only one
of these two arrays can be nonempty (and possibly both are empty), which means
that only the second loop or the third loop is executed, but not both.

Second, this algorithm will only work if the elements in arrays i tems1 and
items2 are sorted: to convince yourself that this is true, change the elements
in itemsl (or in items2) so that they are no longer sorted and you will see
that the output is incorrect. Third, this algorithm populates the array items3
with the sorted list of values; later you will see an example of a merge sort that
does not require the array items3. Now launch the code in Listing 4.8 and you
will see the following output:

itemsl: [20 30 50 300]
items2: [80 100 200]
items3: [20 30 50 80 100 200 300]

Merge Sort Without a Third Array

Listing 4.9 displays the contents of the merge sort2.py that illus-
trates how to perform a merge sort on two sorted arrays without using a
third array.

126 ¢ Python Data Structures Pocket Primer

LISTING 4.9: merge_sort2.py

import numpy as np

itemsl = np.array([20, 30, 50, 300, O, 0O, 0O, 01)
items2 = np.array([80, 100, 2001])

print ("merge items2 into itemsl:")
print ("INITIAL itemsl:",itemsl)
print ("INITIAL items2:",items2)

def merge arrays():
ndxl = 0
ndx2 = 0
lastl = 4 # do not count the 0 values

merge elements of items2 into itemsl:
while (ndx2 < len(items2)):
#print ("itemsl data:",itemsl[ndx1],"items?2
data:",items2 [ndx2])
datal = itemsl [ndx1]
data?2 = items2[ndx2]

while (datal < data?):

prevl = ndxl

fprint ("incrementing ndx1:",ndx1)
ndxl += 1

datal = itemsl [ndx1]

for idx3 in range(lastl,ndxl,-1):
#print ("shift",itemsl[idx3],"to the right")
itemsl[idx3] = itemsl[idx3-1]

insert data2 into itemsl:

itemsl[ndxl] = data?2
ndx1 =0
ndx2 += 1
lastl += 1

#print ("=> shifted itemsl:",itemsl)

merge arrays ()
print ("UPDATED itemsl:",itemsl)

Although Listing 4.9 is an implementation of a merge sort algorithm, it
differs from Listing 4.8 because a third array (such as items3 in Listing 4.8)
is not required. As you can see, Listing 4.8 starts by initializing two Numpy
arrays itemsl and items2 with integer values, and then displays their
contents.

However, there is a key difference: the right-most four elements of i tems1
are O—these values will be replaced by the elements in items2, whose length
is 3 (i.e., smaller than the number of available “zero” slots).

Search and Sort Algorithms © 127

The next portion of Listing 4.9 defines the function merge arrays () that
starts by defining the scalar variables ndx1 and ndx2 that keep track of the cur-
rent index position in items1 and items2, respectively. The variable 1ast1 is
initialized as 4, which is the right non-zero element in items1.

Listing 4.9 then defines a loop that iterates through the elements of
items2 in order to determine where to insert each of its elements in items1.
Specifically, for each element items2[ndx2], another loop determines the
index position ndx1 to insert items2[ndx2]. Note that before the inser-
tion can be performed, the code shifts non-zero values to the right by one
index position. As a result, an “open slot” becomes available for inserting
items2 [ndx2]. The final portion of Listing 4.9 invokes the function and then
prints the contents of items1.

Keep in mind the following point: this code sample relies on the assump-
tion that the right-most four values are 0 and that none of these values is a
“legal” value in the array itemsl. However, the code sample in the next sec-
tion removes this assumption. Now launch the code in Listing 4.9 and you will
see the following output:

merge items2 into itemsl:

INITIAL itemsl: [20 30 50 300 0 0 0 0]
INITIAL items2: [80 100 200]
UPDATED itemsl: [20 30 50 80 100 200 300 0]

Merge Sort: Shift Elements From End of Lists

In this scenario we assume that matrix A has enough uninitialized elements
at the end of the matrix in order to accommodate all the values of matrix B, as
shown here:

A B A

- + - + - +

| 20 | | 50 | | 20 | A
[80 | | 70 | | 50 | B
| 200 | 4+ | 100 | = | 70 | B
| 300 | +-——— + | 80 | A
| 500 | | 100 | B
| xxx | | 200 | A
| xxx | | 300 | A
| xxx | | 500 | A
- + - +

Listing 4.10 displays the contents of the merge _sort3.py that illustrates
how to perform a merge sort on two sorted arrays without using a third array.

LISTING 4.10: merge_sort3.py
import numpy as np

itemsl = np.array([20, 30, 50, 300])

128 ¢ Python Data Structures Pocket Primer

items2 = np.array([80, 100, 2001])

lastl = len(itemsl)
last2 = len(itemsl)
print ("=> merge items2 into itemsl <=")

print ("INITIAL itemsl:",itemsl)
print ("INITIAL items2:",items2)

append None to itemsl for "empty slots":
for i in range (0, len(items2)):

itemsl = np.append(itemsl, None)
#print ("AFTER itemsl:",itemsl)

lenl = len(itemsl)
len2 = len(items?2)

start from the end of itemsl and items2
and shift items to the end of itemsl
def merge arrays(itemsl,items2,lenl,len2):

ndxl = lenl-1

ndx2 = len2-1

lastl len(itemsl) -1

last2 = len(items2)-1

merge elements of items2 into itemsl:
while (ndxl >=0 and ndx2 >=0):
#print ("ndx1:",ndx1l, "ndx2:",ndx2)
datal = itemsl [ndx1]
data?2 = items2[ndx2]
#print ("Bitemsl data:",datal, "ndxl:",ndx1)
#print ("Bitems2 data:",data2,"ndx2:",ndx2)

if (datal > dataZ2?):
itemsl[lastl] = datal

ndxl -= 1
lastl -= 1
else:
itemsl[lastl] = data?2
ndx2 -= 1
lastl -= 1

#print ("Citemsl:", itemsl)
#print ("Citems2:", items?2)

merge arrays (itemsl,items2,lastl,len2)
print ("MERGED itemsl:",itemsl)

The code for Listing 4.10 does not require an inner loop, and therefore
Listing 4.10 is simpler than Listing 4.9. The code starts with two sorted arrays
itemsl and items2, after which itemsl is padded with the value None
so that it can accommodate the integers from items2. Launch the code in
Listing 4.10 and you will see the following output:

merge items2 into itemsl:

=> merge items2 into itemsl <=
INITIAL itemsl: [20 30 50 300]

Search and Sort Algorithms © 129

INITIAL items2: [80 100 200]
MERGED itemsl: [20 30 50 80 100 200 300]

HOW DOES QUICK SORT WORK?

The quick sort algorithm uses a divide-and-conquer approach to sort an
array of elements. The key idea involves selecting an item in a given list as the
pivot item (which can be any item in the list) that is used for partitioning the
given list into two sublists and then recursively sorting the two sublists.

Due to the recursive nature of this algorithm, each recursive invocation
results in smaller sublists. Therefore, the sublists eventually reach the base
cases where the sublists have either 0 or 1 elements (which are obviously
sorted).

Another key point: one sublist contains values that are less than the pivot
item, and the other sublist contains values that are greater than the pivot item.
In the ideal case, both sublists have approximately the same length. This results
in a binary-like splitting of the sublists, which involves 1og N invocations of the
quick sort algorithm, where N is the number of elements in the list.

There are several points to keep in mind regarding the quick sort algo-
rithm. First, the case in which the two sublists are approximately the same
length is the more efficient case. However, this case involves a prior knowledge
of the data distribution in the given list in order to achieve optimality.

Second, if the list contains values that are close to randomly distributed, in
which case the first value or the last value are common choices for the pivot item.
Third, quick sort has its worst performance when the values in a list are already
sorted. In this scenario, select the pivot item in one of the following ways:

e Select the middle item in the list.
e Select the median of the first, middle, and last items in the list.

QUICK SORT CODE SAMPLE

Listing 4.11 displays the contents of the Python file quick_sort.py that
illustrates how to perform a quick sort on an array of numbers.

LISTING 4.11: quick_sort.py

def partition(start, end, array):
Initializing pivot's index to start
pivot index = start
pivot = array[pivot index]

This loop runs till start pointer crosses

end pointer, and when it does we swap the

pivot with element on end pointer

while start < end:
Increment the start pointer till it finds an
element greater than pivot

130 ¢ Python Data Structures Pocket Primer

while start < len(array) and array[start] <= pivot:
start += 1

Decrement the end pointer till it finds an
element less than pivot
while arrayl[end] > pivot:

end -= 1

If start and end have not crossed each other,
swap the numbers on start and end
if (start < end):
array[start], arrayl[end] = arraylend], arrayl[start]

Swap pivot element with element on end pointer.

This puts pivot on its correct sorted place.

array[end], arrayl[pivot index] = array[pivot index],
arrayl[end]

Returning end pointer to divide the array into 2
return end

def quick sort(start, end, array):
if (start < end):
p is partitioning index, array([p] is at right place
p = partition(start, end, array)

Sort elements before partition and after partition
quick sort(start, p - 1, array)
quick sort(p + 1, end, array)

array = [10, 7, 8, 9, 1, 5]
quick sort (0, len(array) - 1, array)

print (f'Sorted array: {array}')

Listing 4.11 starts with the definition of the partition() function that
takes three parameters start, end, and array, which represent the left index,
the right index, and an array variable, respectively.

The next portion of Listing 4.11 is an outer loop that executes while the
value of the start variable is less than the end variable. During each itera-
tion of the outer loop, another while loop executes and increment start by 1
as long as the value of start is less than the length of array and the value of
array[start] is less than or equal to the pivot value.

Next, another while loop decrements the value of the variable end
as long as the value of array[end] is greater than the value of the end
value. Thus, start moves in a left-to-right fashion through the elements of
array, whereas end moves in a right-to-left fashion through the elements
of array.

The next snippet of conditional logic checks if start is less than end, and if
so, then array “swaps” the values in index start and index end, as shown here:

array[start], arrayl[end] = arraylend], arrayl[start]

Search and Sort Algorithms ¢ 131

After the outer loop has completed execution, the next portion of the par-
tition () function swaps the values of the index position end and the index
position pivot index, as shown here:

arraylend], array[pivot index] = array([pivot index], arraylend]

The final code snippet in the partition () function returns the value of
the end variable.

The next portion of Listing 4.11 is the quick sort () function that has the
same parameters as the partition () function, along with conditional logic
checks if start is less than end. If the latter is true, then the variable p is ini-
tialized with the result of invoking the partition () function, after which the
quick_sort () function is recursively invoked twice, as shown here:

quick sort(start, p - 1, array)
quick sort(p + 1, end, array)

The final portion of Listing 4.11 initializes the variable array with a list
of integers, invokes the quick_sort () function, and then displays the sorted
array. Now launch the code in Listing 4.11 and you will see the following
output:

Sorted array: [1, 5, 7, 8, 9, 10]

SHELLSORT

The Shellsort (by Donald L. Shell) is similar to the bubble sort: both algo-
rithms compare pairs of elements and then swap them if they are out of order.
However, unlike bubble sort, shell sort does not compare adjacent elements
until the last iteration. Instead, it first compares elements that are widely sepa-
rated, shrinking the size of the gap with each pass. In this way, it deals with
elements that are significantly out of place early on, reducing the amount of
work that later passes must do.

Listing 4.12 displays the contents of the shell sort.py that illustrates
how to implement the shell sort algorithm in Python.

LISTING 4.12: shell_sort.py

def shell sort(arr, num):
gap = int (num/2)
while (gap > 0):
#for i in range (gap,num-1):
for i in range (gap,num) :
j = i-gap
while(j >= 0 and arr[j] > arr[j+gap]):
swap arr[]j] and arr[j+gap]
temp = arr([j]
arr[j] = arr[j+gap]
arr[j+gap] = temp

132 e Python Data Structures Pocket Primer
j = j-gap
gap = int (gap/2)
return arr

num = 6

arr = [50,20,80,-100,500,200]
print ("Original:",arr)

result = shell sort (arr,num)
print ("Sorted: ", result)

Listing 4.12 defines the function shell sort () whose two parameters
are a list arr of numbers and an integer num that equals the length of the list.
Next, the variable gap is initialized as num/2, followed by a while loop that
executes as long as num is greater than 0.

Inside the while loop is a for loop that iterates through the integers from
gap to num, which is initially from 3 to 6, respectively. The variable J is initial-
ized as i-gap, which means that the initial value of 7 is 0.

The next while loop is the key portion of the code: notice that when a
number on the left-side of gap is larger than a corresponding value on the
right-side of gap is detected, this pair of numbers is “swapped” so that the
numbers on the right-side of gap will all be greater than the numbers on the
left-side of gap.

When the while loop has completed and its “parent” for loop has also
completed, gap is replaced with gap/2, and the preceding process is repeated.
When gap is assigned the value 0, the function returns the list arr that con-
tains the reshuffled numbers that are ordered from smallest to largest. Launch
the code in Listing 4.12 and you will see the following output:

Original: [50, 20, 80, -100, 500, 200]
Sorted: [-100, 20, 50, 80, 200, 500]

SUMMARY

This chapter started with search algorithms, such as linear search and binary
search (iterative and recursive). Next, you learned about the well-known bub-
ble sort, selection sort, and insertion sort. You also saw how to perform the
merge sort which can be performed in multiple ways. Finally, you learned
about the quick sort and the shell sort.

CHAPTER

LINKED LISTS

structures, such as singly linked lists, doubly linked lists, and circular

lists. These data structures are dynamically created, and therefore you
do not need to know the number of elements in advance, which is an advantage
of linked lists over linear lists (described later).

The first part of this chapter introduces you to singly linked lists, followed
by examples of performing various operations on singly linked lists, such as
creating and displaying the contents of linked lists, as well as updating nodes
and deleting nodes in a singly linked list.

The second part of this chapter introduces you to doubly linked lists, fol-
lowed by examples of performing various operations on doubly linked lists,
which are the counterpart to the code samples for singly linked lists.

One important point to keep in mind for this chapter (as well as the other
chapters) in this book: the code samples provide a solution that prefers clarity
over optimization. In addition, many code samples contain “commented out”
print () statements.

If the code samples confuse you, uncomment the print () statements in
order to trace the execution path of the code: doing so can make the code
easier to follow and also save you a lot of time. Indeed, after you have read
each code sample and you fully understand the code, try to optimize the code,
or perhaps use a different algorithm, which will enhance your problem solving

This chapter contains an introduction to various types of linked list data

skills as well as increase your confidence level.

TYPES OF DATA STRUCTURES

This section introduces you to the concept of linear data structures (stacks
and queues) and nonlinear data structures (trees and graphs). This chapter
and Chapter 6 are devoted to singly linked lists and doubly linked lists. This

134 ¢ Python Data Structures Pocket Primer

chapter contains the theoretical aspects of linked lists, whereas Chapter 6 con-
tains tasks for which those data structures are well-suited (e.g., inserting new
elements or finding existing elements).

Linear Data Structures

Linear data structures are data structures whose elements occur in
sequential memory locations or are logically connected, such as stacks and
queues. As you will see in Chapter 7, stacks are last-in-first-out (LIFO) data
structures, which means that the last element inserted is the first element
removed. Moreover, operations are performed from one end of the stack. A
real-life counterpart to a stack is an elevator that has a single entrance that
is also the exit.

In Chapter 7, you will learn about queues, which are first-in-first-out
(FIFO) data structures, which means that the first element inserted is the first
element removed. By contrast with a stack, insert operations are performed at
the so-called “front” of the queue and delete operations are performed at the
“rear” of the queue. A real-life counterpart to a queue is a line of people wait-
ing to purchase tickets to a movie.

Nonlinear Data Structures

Nonlinear data structures are data structures whose elements are not
sequential, such as trees and graphs.

A tree has a single node called the root node that has no parent node,
whereas every other node has exactly one parent node. Two nodes are related
if there is edge connecting the two nodes. In fact, the nodes in a tree have a
hierarchical relationship.

A graph is a generalization of a tree, and nodes in a graph can have mul-
tiple parent nodes. Moreover, a graph does not have a root node: instead,
a graph can have a “source” and a “sink” that are somewhat analogous to
a “start” node and an “end” node. This designation appears in graphs that
represent transport networks in which edges can have weights assigned to
them. Think of trucks that transport food or other commodities from a ware-
house (the “source”) and have multiple routes to reach their destination (the
“sink”).

DATA STRUCTURES AND OPERATIONS

In this book, the data structure for singly linked lists is a custom Node class
that consists of the following:

1. akey/value pair

2. apointer to the next node

The data structure for doubly linked lists is a custom Node class that con-
sists of the following:

Linked Lists ¢ 135

1. akey/value pair
2. apointer to next node

3. apointer to the previous node

The simplest data structure for a stack is a Python list, which involves the
following:

a LIFO (last-in-first-out) structure

a set of values (can be any type)

a method to check if the stack is empty or full
a method to insert a new element

a method to remove the “top” element

The simplest data structure for a queue is a Python list, which involves the
following:

a FIFO (first-in-first-out) structure

a set of values (can be any type)

a method to check if the queue is empty

a method to insert a new element

a method to remove the first/front element

Note that Python provides a built-in Queue class that defines all the
required methods for you. In addition, you could use a NumPy array to imple-
ment a stack or a queue.

The data structure for trees is a custom Node class that consists of the
following:

1. akey/value pair
2. apointer to a left (child) node
3. apointer to a right (child) node

The data structure for a hash table is a Python dictionary. The preceding
structures are based on simplicity; however, please keep in mind that other
structures are possible as well. For example, you can use an array to implement
a list, a stack, a queue, and even a tree.

Operations on Data Structures

In this chapter and the next, the operations on these data structures usually
involve the following:

insert (which includes append)
delete

search

B oo

update (an existing element)

136 ¢ Python Data Structures Pocket Primer

5. check for empty structure

6. check for full structure (queues and stacks)

WHAT ARE SINGLY LINKED LISTS?

Although arrays are useful data structures, one of their disadvantages is that
the size or the number of elements in an array must be known in advance. One
alternative that does not have this disadvantage is a “linked list,” which is the
topic of this chapter.

A singly linked list is a collection of data elements, which are commonly
called nodes. Nodes contain two things:

1. avalue that is stored in the node, and

2. the location of the next node (called its successor)

By way of analogy, think of a conga line of dances. Each dancer is a node,
and the dancer places his or her hands on the hips of another dancer: the latter
dancer is the location of the next node.

Unlike arrays, linked lists are dynamically created on an as-needed basis.
Moreover, the preceding analogy makes the following point clear: there is a
“last” node that does not have a next node. Thus, the last node in a list has None
as its successor (i.e., next node).

In general, a node in a singly linked list can be one of the following three

types:

1. the “root” node
2. an intermediate node

3. the last node (no next element)

Of course, when a linked list is empty, then the nodes in the preceding list
are all None.

Trade-Offs for Linked Lists

Every data structure has trade-offs (i.e., advantages and disadvantages),
and you need to consider these trade-offs before you select a data structure
for your data.

Advantages of Linked Lists:

e Linked lists are dynamic data structures.

® There is efficient memory utilization.

* Memory is allocated whenever it is required.

e It is easy to deallocate memory when it is no longer needed.
e Insertion and deletions are easier and efficient.

Linked Lists ¢ 137

* The number of elements in a list is not required in advance.
* No “shifting over” is required during operations.
e Elements of linked lists can be primary data type or user-defined data types.

Disadvantages of Linked Lists:

e Elements must be accessed sequentially from the first node (no random
access).

e Binary search with linked lists is not possible.

e It is more difficult to sort a linked list.

* Accessing an element requires traversing (on average) half the list.

e It is more complex to create a linked list than an array.

* Extra memory is required for a pointer for every element in the list.

Thus, arrays work better when the number of elements is known in advance
and there are no insertions or deletions (only updates), whereas linked lists
are more efficient when insertions or deletions are allowed, neither of which
requires knowing the number of data elements in advance.

The preceding trade-offs and observations apply to singly linked lists, circu-
lar lists, and doubly linked lists. Note that inserting a new node and deleting an
existing node doubly linked lists are slightly more complicated than the same
operations with singly linked lists.

The elements of linked lists are dynamically constructed, and unlike arrays,
the elements of a linked list can be stored in noncontiguous memory locations:
the value of the next field provides the location of the next node in the linked
list (except for the LAST node that has None as its next node).

SINGLY LINKED LISTS: CREATE AND APPEND OPERATIONS

Linked lists support several operations, including insert (add a new node),
delete (an existing node), update (change the value of an existing node), and
traverse (list all the nodes). The following subsections discuss the preceding
operations in more detail.

A Node Class for Singly Linked Lists

Listing 5.1 displays the contents of the Python file SLNode.py that illus-
trates how to define a simple Python class that represents a node in a singly

linked list.

LISTING 5.1: SLNode.py

class SLNode:
def init (self, data):
self.data = data
self.next = None

138 ¢ Python Data Structures Pocket Primer

nodel = SLNode ("Jane")
node?2 = SLNode ("Dave")
node3 = SLNode ("Stan")
node4 = SLNode ("Alex")

print ("nodel.data:",nodel.data)
print ("node2.data:",node2.data)
print ("node3.data:",node3.data)
print ("node4d.data:",node4.data)

Listing 5.1 is straightforward: it defines the Python class sLNode, followed
by four instances of the sLNode class. The last portion of Listing 5.1 displays
the contents of the four nodes. Now launch the following command from the
command line and you will see the following output:

nodel.data: Jane
node?2.data: Dave
node3.data: Stan
node4.data: Alex

Appending a Node in a Linked List

When you create a linked list, you must always check if the root node is
empty: if so, then you create a root node, otherwise you append the new node
to the last node. Let’s translate the preceding sentence into pseudocode that
describes how to add a new element to a linked list:

Let ROOT be the root node (initially NULL) of the linked list
Let LAST be the last node (initially NULL) of the linked list
Let NEW be a new node and let NEW->next = NULL

decide where to insert the new node:
if (ROOT == NULL)
{

ROOT NEW;

LAST = NEW;

}

else

{
LAST->next = NEW;
LAST = NEW;

The last node in a linked list points to a NULL element.

Python Code for Appending a Node

Listing 5.2 displays the contents of the Python file append slnode.py
that illustrates a better way to create a linked list and append nodes to that list.

LISTING 5.2: append_sinode.py
import numpy as np

class SLNode:

Linked Lists 139

def init (self, data):
self.data = data
self.next = None

a standalone function that is not part of SLNode
def append node (ROOT, LAST, item):

if (ROOT == None) :

ROOT = SLNode (item)

#print ("1Node:", ROOT.data)
else:

if (ROOT.next == None) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

ROOT = None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Sally", "Alex"])
for item in items:

ROOT, LAST = append node (ROOT, LAST, item)

display items in list:
CURR = ROOT
while (CURR != None):
print ("Node:", CURR.data)
CURR = CURR.next

Listing 5.2 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list.

Now launch the code in Listing 5.2 from the command line and you will see
the following output:

Node: Stan
Node: Steve
Node: Sally
Node: Alex

SINGLY LINKED LISTS: FINDING A NODE

The previous section showed you how to create a linked list by appending
items to a singly linked list, whereas this section shows you how to find a node
and how to insert a node in a singly linked list.

140 ¢ Python Data Structures Pocket Primer

Listing 5.3 displays the contents of the Python file find slnode.py that
illustrates how to find a node in a linked list.

LISTING 5.3: find_slnode.py

class SLNode:
def init (self, data):
self.data = data
self.next = None

def find item(ROOT,item) :
found = False
CURR = ROOT
print ("=> Search for:",item)
while (CURR != None):
print ("Checking:",CURR.data)
if (CURR.data == item) :
print ("=> Found",item)
found = True
break;
else:
CURR = CURR.next

if (found == False):
print ("*", item, "not found *")
print ("-—————————--——————~ \n")
ROOT = None
LAST = None

nodel = SLNode ("Jane")
ROOT = nodel

node?2 = SLNode ("Dave")
LAST = node2
ROOT.next = LAST

node3 = SLNode ("Stan")
LAST.next = node3
LAST = node3

noded = SLNode ("Alex")
LAST.next = noded
LAST = node4

items = np.array(["Stan", "Steve", "Sally", "Alex"])

for item in items:
find item (ROOT, item)

Listing 5.3 is straightforward: it initializes the variables msg and num with
the specified values. Now launch the code in Listing 5.3 from the command
line and you will see the following output:

Linked Lists » 141

=> Search for: Stan
Checking: Jane
Checking: Dave
Checking: Stan
=> Found Stan

=> Search for: Steve
Checking: Jane
Checking: Dave
Checking: Stan
Checking: Alex

* Steve not found *

=> Search for: Sally
Checking: Jane
Checking: Dave
Checking: Stan
Checking: Alex

* Sally not found *

=> Search for: Alex
Checking: Jane
Checking: Dave
Checking: Stan
Checking: Alex

=> Found Alex

Listing 5.3 is efficient for a small number of nodes. For linked lists that
contain a larger number of nodes, we need a scalable way to construct a list of
nodes, which is discussed in the next section.

Listing 5.4 displays the contents of the Python file find slnode2.py that
illustrates how to find a node in a singly linked list.

LISTING 5.4: find_slnode2.py (Method #2)

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
#print ("1Node:", ROOT.data)
else:
if (ROOT.next == None) :
NEWNODE = SLNode (item)
LAST = NEWNODE

142 ¢ Python Data Structures Pocket Primer

ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

def find item(ROOT, item) :
found = False
CURR = ROOT
print ("=> Search for:",item)
while (CURR != None) :
print ("Checking:",CURR.data)
if (CURR.data == item):
print ("=> Found", item)
found = True
break;
else:
CURR = CURR.next

if (found == False):
print ("*",item, "not found *")
print ("-----—————————————— \n")
ROOT = None
LAST = None
items = np.array(["Stan", "Steve", "Sally", "Alex"])

for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

for item in items:
find item (ROOT, item)

Listing 5.4 starts with the definition of the Python class SLNode, followed
by the append () function that has ROOT, LAST, item as parameters. If ROOT
is empty, then ROOT is assigned the SLNode instance that has item as its
data value. If ROOT . next is empty, then ROOT . next is assigned the SLNode
instance that has item as its data value. However, if ROOT . next is not None,
then LAST.next assigned the SLNode instance that has item as its data
value.

The next portion of Listing 5.4 defines the find_item () function that takes
ROOT and item as parameters. Next, the variable CURR is initialized as ROOT,
followed by a loop that iterates through the list of nodes. During each iteration,
the value of CURR. i tem is compared with item: if they are equal, then the vari-
able found is set equal to True and we exit the loop. Otherwise, if CURR. item
never equals item, then the item will not be found and the variable found will
maintain its initial value of False. The final portion of this function returns the

Linked Lists 143

value True or False depending on whether or not the value of found is True or
False, respectively.

The next portion of Listing 5.4 initializes the variable items as a NumPy
array of strings, followed by a loop that iterates through the values in items.
During each iteration, the function append_node () is invoked in order to
append a new node to a singly linked list. The final portion of Listing 5.4 also
iterates through the elements in the variable items and invokes the find_ele-
ment () function to search for each element (which obviously will be found in
every case). Now launch the code in Listing 5.4 from the command line and
you will see the following output:

node data: Jane

=> Search for: Stan
Checking: Stan

=> Found Stan

=> Search for: Steve
Checking: Stan
Checking: Steve
=> Found Steve

=> Search for: Sally
Checking: Stan
Checking: Steve
Checking: Sally

=> Found Sally

=> Search for: Alex
Checking: Stan
Checking: Steve
Checking: Sally
Checking: Alex

=> Found Alex

SINGLY LINKED LISTS: UPDATE AND DELETE OPERATIONS

In the previous section you saw how to find a node in a singly linked list. In
this section you will learn how to update a node in a linked list as also how to
delete a node in a linked list.

Updating a Node in a Singly Linked List

The following pseudocode explains how to search for an element, and
update its contents if the element is present in a linked list.

CURR = ROOT
Found = False

144 Python Data Structures Pocket Primer

OLDDATA = "something old";
NEWDATA = "something new";
If (ROOT == NULL)

{
print ("* EMPTY LIST *");
}

while (CURR != NULL)
{
if (CURR->data = OLDDATA)
{
print ("found node with value",OLDDATA) ;
CURR->data = NEWDATA;

if (Found == True) { break; }
PREV = CURR;
CURR = CURR->next;

}

Python Code to Update a Node

Listing 5.5 displays the contents of the Python file update slnode.py
that illustrates how to update a node in a linked list.

LISTING 5.5: update_slnode.py
import numpy as np
class SLNode:
def init (self, data):
self.data = data

self.next = None

def append node (ROOT, LAST, item):

if (ROOT == None) :

ROOT = SLNode (item)

#print ("1Node:", ROOT.data)
else:

if (ROOT.next == None) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

Linked Lists » 145

ROOT
LAST

None
None

append items to list:
items = np.array(["Stan", "Steve", "Sally", "Alex"])
for item in items:

ROOT, LAST = append node (ROOT, LAST, item)

display items in list:

print ("=> list items:")
CURR = ROOT
while (CURR != None):

print ("Node:", CURR.data)
CURR = CURR.next
print ()

update item in list:
curr val = "Alex"

new val = "Alexander"
found = False

CURR = ROOT

while (CURR != None):
if (CURR.data == curr val):
print ("Found: ", CURR.data)

CURR.data = new val
print ("Updated:", CURR.data)
found = True
break
else:
CURR = CURR.next

if (found == False):
print ("* Item",curr val,"not in list *")

Listing 5.5 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list.

Now launch the code in Listing 5.5 from the command line and you will see
the following output:

=> list items:
Node: Stan
Node: Steve
Node: Sally
Node: Alex

Found: Alex
Updated: Alexander

DELETING A NODE IN A LINKED LIST: METHOD #1

The following pseudocode explains how to search for an element and then
delete the element if it is present in a linked list:

146 ¢ Python Data Structures Pocket Primer

CURR = ROOT

PREV = ROOT

item = <node-value>
Found = False

if (ROOT == NULL)
{

print"* EMPTY LIST *");
}

while (CURR != NULL)

{
if (CURR.data == item)
{

print ("found node with value",item);

Found = True
if (CURR == ROOT)
{
ROOT = CURR.next // the list is now empty
}

else

{
PREV.next = CURR.next;
}

if (found == True) { break; }

PREV = CURR;
CURR = CURR.next;

return ROOT

Now that you have seen the pseudocode, let’s look at the code for deleting
anode in a linked list, which is discussed in the next section.

PYTHON CODE FOR DELETING A NODE: METHOD #2

Listing 5.6 displays the contents of the python file delete_slnode.
py that illustrates how to delete a node in a linked list. This code sample
is longer than the code samples in the previous sections because the code
needs to distinguish between deleting the root node versus a nonroot node.

LISTING 5.6: delete_slnode.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

Linked Lists o 147

def append node (ROOT, LAST, item):

if (ROOT == None) :

ROOT = SLNode (item)

#print ("1Node:", ROOT.data)
else:

if (ROOT.next == None) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

def delete item(ROOT, item):
PREV = ROOT
CURR = ROOT
found = False

print ("=> searching for item:",item)
while (CURR != None) :
if (CURR.data == item):
print ("=> Found node with value",item)

found = True

if (CURR == ROOT) :
ROOT = CURR.next
print ("NEW ROOT")
else:
print ("REMOVED NON-ROOT")
PREV.next = CURR.next

if (found == True) :
break

PREV = CURR
CURR = CURR.next

if (found == False):
print("* Item",item,"not in list *")

return ROOT

def display items (ROOT) :
print ("=> list items:")
CURR = ROOT
while (CURR != None):
print ("Node:", CURR.data)
CURR = CURR.next
print ()

148 ¢ Python Data Structures Pocket Primer

ROOT = None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Sally",
"George","Alex"])
for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

display items (ROOT)

items2 = np.array(["Stan", "Alex", "Sally", "Steve",
"George"])
for item2 in items2:

ROOT = delete item(ROOT, item2)

display items (ROOT)

Listing 5.6 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list. Now launch the code in Listing 5.6 from
the command line and you will see the following output:

=> list items:
Node: Stan
Node: Steve
Node: Sally
Node: George
Node: Alex

=> searching for item: Stan
=> Found node with value Stan
NEW ROOT

=> list items:

Node: Steve

Node: Sally

Node: George

Node: Alex

=> searching for item: Alex
=> Found node with value Alex
REMOVED NON-ROOT

=> list items:

Node: Steve

Node: Sally

Node: George

=> searching for item: Sally
=> Found node with value Sally
REMOVED NON-ROOT

=> list items:

Node: Steve

Node: George

Linked Lists 149

=> searching for item: Steve
=> Found node with value Steve
NEW ROOT

=> list items:

Node: George

=> searching for item: George
=> Found node with value George
NEW ROOT

=> list items:

CIRCULAR LINKED LISTS

The only structural difference between a singly linked list and a circular
linked list is that the “last” node in a circular linked list has a “next” node
equal to the initial (root) node. Operations on circular singly linked lists are the
same as operations on singly linked lists, whereas operations on circular doubly
linked lists are the same as operations on doubly linked lists. However, the
algorithms for singly linked lists (and doubly linked lists) need to be modified
in order to accommodate circular linked lists (and circular doubly linked lists).

Listing 5.7 displays the contents of the Python file circular slnode.py
that illustrates how to delete a node in a linked list. This code sample is longer
than the code samples in the previous sections because the code needs to dis-
tinguish between deleting the root node versus a nonroot node.

LISTING 5.7: circular_slnode.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
ROOT.next = ROOT
LAST = ROOT
print ("1ROOT:", ROOT.data)
else:
if (ROOT.next == ROOT) :
NEWNODE = SLNode (item)
LAST = NEWNODE
ROOT.next = LAST
LAST.next = ROOT
print ("2ROOT:", ROOT.data)
print ("2LAST:", LAST.data)
else:
NEWNODE = SLNode (item)

150 ¢ Python Data Structures Pocket Primer

NEWNODE.next = LAST.next
LAST.next = NEWNODE

LAST = NEWNODE

print ("3Node:", NEWNODE.data)

return ROOT, LAST

ROOT = None
LAST = None

insert items in circular linked list:
items = np.array(["Stan", "Steve", "Sally", "Alex"])
for item in items:

ROOT, LAST = append node (ROOT, LAST, item)
print ()

display items in list:

print ("=> list items:")
CURR = ROOT
while (CURR != LAST) :

print ("Node:", CURR.data)
CURR = CURR.next

print the last node as well:
print ("Node:", LAST.data)
print ()

Listing 5.7 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list.

Now launch the code in Listing 5.7 from the command line and you will see
the following output:

1ROOT: Stan
2RO0T: Stan
2LAST: Steve
3Node: Sally
3Node: Alex

=> list items:
Node: Stan
Node: Steve
Node: Sally
Node: Alex

PYTHON CODE FOR UPDATING A CIRCULAR LINKED LIST

As a reminder: the only structural difference between a singly linked list
and a circular linked list is that the “last” node in the latter has a “next” node
equal to the initial (root) node.

Linked Lists » 151

Listing 5.8 displays the contents of circular update slnode.py that
illustrates how to delete a node in a linked list. This code sample is longer than
the code samples in the previous sections because the code needs to distin-
guish between deleting the root node versus a nonroot node.

LISTING 5.8: circular_update_slnode.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
ROOT.next = ROOT
LAST = ROOT
print ("1ROOT:", ROOT.data)
else:
if (ROOT.next == ROOT) :
NEWNODE = SLNode (item)
LAST = NEWNODE
ROOT.next = LAST
LAST.next = ROOT

print ("2ROOT:", ROOT.data)
print ("2LAST:", LAST.data)
else:

NEWNODE = SLNode (item)
NEWNODE .next = LAST.next
LAST.next = NEWNODE

LAST = NEWNODE

print ("3Node:", NEWNODE.data)

return ROOT, LAST

display items in list:
def display items (ROOT) :
print ("=> list items:")

CURR = ROOT

while (CURR != LAST) :
print ("Node:", CURR.data)
CURR = CURR.next

print the last node as well:
print ("Node:", LAST.data)
print ()

update item in list:
def update item(ROOT,curr val,new val):

152 ¢ Python Data Structures Pocket Primer

print ("=> update list items:")

found = False
CURR = ROOT

while (CURR != LAST) :
if (CURR.data == curr val):
print ("Found data:", curr val)

CURR.data = new val
found = True
break
else:
CURR = CURR.next

check the last node as well:

if (found == False):
if (LAST.data == curr val):
print ("Found data in LAST:", curr val)

LAST.data = new val
found = True
if (found == False):
print ("*",curr val,"not found *")

return ROOT, LAST

ROOT = None
LAST = None

insert items in circular linked list:
items = np.array(["Stan", "Steve", "Sally", "Alex"])
for item in items:
ROOT, LAST = append node (ROOT, LAST, item)
print ()

display items (ROOT)

curr val = "Alex"
new val = "Alexander"
ROOT, LAST = update item(ROOT,curr val,new val)

display items (ROOT)

Listing 5.8 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list. Now launch the code in Listing 5.8 from
the command line and you will see the following output:

1ROOT: Stan
1ROOT: Stan
2RO0T: Stan
2LAST: Steve
3Node: Sally
3Node: Alex

Linked Lists * 153

=> list items:
Node: Stan
Node: Steve
Node: Sally
Node: Alex

=> update list items:
Found data in LAST: Alex

=> list items:
Node: Stan
Node: Steve
Node: Sally
Node: Alexander

WORKING WITH DOUBLY LINKED LISTS (DLL)

A doubly linked list is a collection of data elements, which are commonly
called nodes. Every node in a doubly linked list contains three items:

1. a value that is stored in the node, and
2. the location of the next node (called its successor)

3. The location of the prevknw node (called its predecessor)

Using the same “conga line” analogy as described in a previous section
about singly linked lists, each person is touching the “next” node with one
hand, and is touching the “previous” node with the other hand (not the best
analogy, but you get the idea).

Operations on doubly linked lists are the same as the operations on singly
linked lists; however, there are two pointers (the successor and the predeces-
sor) to update instead of just one (the successor).

A Node Class for Doubly Linked Lists

Listing 5.9 displays the contents of the Python file DLNode. py that illus-
trates how to define a simple Python class that represents a single node in a

linked list.

LISTING 5.9: DLNode.py

class DLNode:
def init (self, data):
self.data = data
self.next None
self.prev = None

nodel = DLNode ("Jane")
node2 = DLNode ("Dave")
node3 = DLNode ("Stan")
noded4 = DLNode ("Alex")

154 Python Data Structures Pocket Primer

print ("nodel.data:",nodel.data
print ("node2.data:",node2.data
print ("node3.data:",node3.data
print ("node4d.data:",node4d.data

)
)
)
)

Listing 5.9 is straightforward: it defines the Python class DLNode and then
creates four such nodes. The final portion of Listing 5.9 displays the contents
of the four nodes. Now launch the following command from the command line
and you will see the following output:

nodel.data: Jane
node2.data: Dave
node3.data: Stan
node4.data: Alex

Once again, a node in a doubly linked list can be one of the following three types:

1. the "root" node
2. an intermediate node

3. the last node (no next element)

Of course, when a linked list is empty, the nodes in the preceding list are
all None.

APPENDING A NODE IN A DOUBLY LINKED LIST

When you create a linked list, you must always check if the root node is
empty: if so, then you create a root node, otherwise you append the new node
to the last node. Let’s translate the preceding sentence into pseudocode that
describes how to add a new element to a linked list:

Let ROOT be the root node (initially NULL) of the linked list
Let LAST be the last node (initially NULL) of the linked list
Let NEW be a new node with NEW->next = NULL and NEW->prev = NULL

decide where to insert the new node:
if (ROOT == NULL)
{

ROOT = NEW;

ROOT->next = NULL;

ROOT->prev = NULL;

LAST = NEW;
LAST->next NULL;
LAST->prev = NULL;

}

else

{
NEW->prev = LAST;
LAST->next = NEW;
NEW->next = NULL;
LAST = NEW;

Linked Lists * 155

The last node in a doubly linked list in Python always points to a None ele-
ment, whereas pseudocode typically uses NULL or NIL as the counterpart to a
None element.

Python Code for Appending a Node

Listing 5.10 displays the contents of the Python file append_dlnode.py
that illustrates a scalable way to create a linked list and append nodes to that list.

LISTING 5.10: append_dInode.py
import numpy as np

class DLNode:
def init (self, data):
self.data = data
self.prev None
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = DLNode (item)
print ("1Node:", ROOT.data)
else:
if (ROOT.next == None) :
NEWNODE = DLNode (item)
NEWNODE .prev = ROOT
LAST = NEWNODE

ROOT.next = NEWNODE

print ("2Node:", NEWNODE.data)
else:

NEWNODE = DLNode (item)

NEWNODE .prev = LAST

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)
return ROOT, LAST

ROOT = None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Sally", "Alex"])
for item in items:

ROOT, LAST = append node (ROOT, LAST, item)

display items in list:
CURR = ROOT
while (CURR != None) :
print ("Node:", CURR.data)
CURR = CURR.next

156 ¢ Python Data Structures Pocket Primer

Listing 5.10 defines a Node class as before, followed by the Python func-
tion append node () that contains the logic for initializing a singly linked list
and also for appending nodes to that list. Now launch the code in Listing 5.10
from the command line and you will see the following output:

1ROOT: Stan
2RO0T: Stan
2LAST: Steve
3Node: Sally
3Node: Alex

=> list items:
Node: Stan
Node: Steve
Node: Sally
Node: Alex

=> uypdate list items:
Found data in LAST: Alex

=> list items:
Node: Stan
Node: Steve
Node: Sally
Node: Alexander

Python Code for Inserting an Intermediate Node

Listing 5.11 displays the contents of the Python file new_inter slnode.
py that illustrates a scalable way to create a linked list and append nodes to
that list.

LISTING 5.11: new_inter_slnode.py
import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

display items in list:
def display list (ROOT) :
CURR = ROOT
while (CURR != None):
print ("Node:", CURR.data)
CURR = CURR.next

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
#print ("1Node:", ROOT.data)
else:

Linked Lists 157

if (ROOT.next == None) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

insert intermediate item in list:
def insert node (ROOT, new val):
CURR = ROOT
PREV = CURR
while (CURR != None) :
#print ("Node:", CURR.data)
if (CURR.data < new val):
if (CURR == ROOT) :
ROOT2 = SLNode (new val)
ROOT2.next = ROOT
ROOT = ROQT2

#print ("new root:", ROOT.data)
break
elif (CURR.next == None):
print ("found last element:", CURR.data)

PENULT = SLNode (new val)
PREV.next = PENULT
PENULT.next = CURR
break
else:
print ("intermediate element:", CURR.data)
INTERM = SLNode (new_val)
INTERM.next = CURR
PREV.next = INTERM
break
elif (CURR.next == None):
the new item is smaller than the last element:
LAST = SLNode (new val)
CURR.next = LAST
break

PREV = CURR
CURR = CURR.next
return ROOT

ROOT None
LAST = None

append items to list:
items = np.array([200, 150, 100, 10])
for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

158 ¢ Python Data Structures Pocket Primer

#new val = 250
#new val = 175
#new val = 50
new val = 5

print ("Initial List:")
display list (ROOT)

print ("=> Insert Value:",new val)
ROOT = insert node (ROOT, new val)
print ("Updated List:")
display list (ROOT)

Listing 5.11 defines a Node class as before, followed by the Python func-
tion append node () that contains the logic for initializing and appending
nodes to a singly linked list.

The function insert node () handles four cases that can arise when
inserting a new node into a singly linked list:

® a new root node

¢ a new node in a list with only one node

e a new final node

¢ an intermediate node before the final node

The final portion of Listing 5.11 initializes the Numpy array with sev-
eral integer values and displays the contents of the array. Next, the function
insert node () inserts a node with a new value. Notice that the code does
not check if the new value is equal to an existing value: you can modify the
code to handle this scenario. Now launch the code in Listing 5.11 from the
command line and you will see the following output:

Initial List:

Node: 200
Node: 150
Node: 100
Node: 10

=> Insert Value: 5
Updated List:

Node: 200
Node: 150
Node: 100
Node: 10
Node: 5

SEARCHING AND UPDATING A NODE IN A DOUBLY LINKED LIST

The following pseudocode explains how to traverse the elements of a linked
list, after which you will learn how to update the contents of a given node:

CURR = ROOT

while (CURR != NULL)

Linked Lists ¢ 159

print ("contents:",CURR->data) ;
CURR = CURR->next;

If (ROOT == NULL)
{

print ("* EMPTY LIST *");
}

Updating a Node in a Doubly Linked List

The following pseudocode explains how to search for an element: if the ele-
ment is present in a linked list, then the code updates its contents:

CURR = ROOT
Found = False

OLDDATA = "something old";
NEWDATA = "something new";
If (ROOT == NULL)

{
print ("* EMPTY LIST *");
}

while (CURR != NULL)
{
if (CURR->data = OLDDATA)
{
print ("found node with value",OLDDATA) ;
CURR->data = NEWDATA;

if (Found == True) { break; }

PREV = CURR;
CURR = CURR->next;

As you now know, some operations on doubly linked lists involve updating a
single pointer, and other operations involve updating two pointers.

Python Code to Update a Node

Listing 5.12 displays the contents of the Python file update dlnode.py
that illustrates how to update a node in a linked list.

LISTING 5.12: update_dInode.py
import numpy as np
class DLNode:

def init (self, data):
self.data = data

160 ¢ Python Data Structures Pocket Primer

self.prev None
self.next = None

display items in list:

def display items (ROOT) :
print ("=> items in list:")
CURR = ROOT

while (CURR != None) :
print ("Node:", CURR.data)
CURR = CURR.next

print ()

def append node (ROOT, LAST, item):

if (ROOT == None) :

ROOT = DLNode (item)

fprint ("1Node:", ROOT.data)
else:

if (ROOT.next == None) :

NEWNODE = DLNode (item)
NEWNODE .prev = ROOT
LAST = NEWNODE

ROOT.next = NEWNODE

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = DLNode (item)

NEWNODE .prev = LAST

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)
return ROOT, LAST

update list item:

def update item(ROOT,curr val,new val):
found = False
CURR = ROOT

while (CURR != None) :

if (CURR.data == curr val):
print ("Found data:",curr val)
CURR.data = new val
print ("New value: ",new val)
found = True
break

else:

CURR = CURR.next

ROOT None
LAST = None

create an array of items:
items = np.array(["Stan", "Steve", "Sally",

"Alex"])

Linked Lists 161

for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

display items (ROOT)

curr val = "Alex"
new val = "Alexander"
update item(ROOT, curr val, new val)
display items (ROOT)

Listing 5.12 defines a Node class as before, followed by the Python func-
tion append_node () that contains the logic for initializing a singly linked list
and also for appending nodes to that list. Now launch the code in Listing 5.12

from the command line and you will see the following output:
Found: Alex

=> items in list:

Node: Stan

Node: Steve

Node: Sally

Node: Alex

Found data: Alex

New value: Alexander
=> items in list:
Node: Stan

Node: Steve

Node: Sally

Node: Alexander

DELETING A NODE IN A DOUBLY LINKED LIST

The following pseudocode explains how to search for an element, and also

delete the element if it is present in a linked list:
CURR = ROOT

PREV = ROOT

ANODE <a-node-to-delete>

Found = False

If (ROOT == NULL)
{

print ("* EMPTY LIST *");
}

while (CURR != NULL)
{
if (CURR->data = ANODE->data)
{
print ("found node with value",ANODE->data) ;

Found = True
if (CURR == ROOT)
{

162 ¢ Python Data Structures Pocket Primer

ROOT = NULL; // the list is now empty
}
else
{
PREV->next = CURR->next;
}

if (Found == True) { break; }
PREV = CURR;
CURR = CURR->next;

Python Code to Delete a Node

Listing 5.13 displays the contents of the Python file delete dlnode.py
that illustrates how to delete a node in a doubly linked list.

LISTING 5.13: delete_dInode.py

import numpy as np

class DLNode:
def init (self, data):
self.data = data
self.prev = None
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = DLNode (item)
print ("1Node:", ROOT.data)
else:
if (ROOT.next == None) :
NEWNODE = DLNode (item)
NEWNODE .prev = ROOT
LAST = NEWNODE

ROOT.next = NEWNODE

print ("2Node:", NEWNODE.data)
else:

NEWNODE = DLNode (item)

NEWNODE.prev = LAST

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)
return ROOT, LAST

def display nodes (ROOT) :
CURR = ROOT

Linked Lists » 163

while (CURR != None) :
print ("Node value:",CURR.data)
CURR = CURR.next

def delete node (ROOT) :
CURR = ROOT

while (CURR != None):
if (CURR.data == item val):
print ("Found: ", CURR.data)

delete the current node:
if (CURR == ROOT) :
print ("2matching root:",RO0T.data)

if (CURR.next == None) :
ROOT = None
else:

CURR.next.prev = ROOT
ROOT = ROOT.next
print ("updated new root:",ROOT.data)
break
else:
PREV = CURR.prev
PREV.next = CURR.next
if (CURR.next != None):
CURR.next.prev = PREV

found = True
break
else:
CURR = CURR.next
print ("3returning root:",RO0T.data)
return (ROOT)

ROOT = None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Sally", "Alex"])
for item in items:

ROOT, LAST = append node (ROOT, LAST, item)

display items in list:
print ("=> list items:")
display nodes (ROOT)

remove item from list:
item val = "Alex"
found = False

items = np.array(["Stan", "Steve", "Sally", "Alex"])

ROOT = delete node (ROOT)
display nodes (ROOT)

164 ¢ Python Data Structures Pocket Primer

Listing 5.13 defines a Node class as before, followed by the Python func-
tion append node () that contains the logic for initializing a doubly linked list
and also for appending nodes to that list. Now launch the code in Listing 5.13
from the command line and you will see the following output:

1Node: Stan
2Node: Steve

=> list items:
Node value: Stan
Node value: Steve
Node value: Sally
Node value: Alex
Found: Alex
3returning root: Stan
Node value: Stan
Node value: Steve
Node value: Sally

SUMMARY

This chapter started with a description of linked lists, along with their
advantages and disadvantages. Then you learned how to perform several oper-
ations on singly linked lists such as append, insert, delete, and update.

Next, you learned about doubly linked lists, and how to perform the same
operations on doubly linked lists that you performed on singly linked lists. You
also saw how to work with circular lists in which the last element “points™ to
the first element in a list.

CHAPTER

LINKED LisTs AND CoOMMON TASKS

lists, and circular lists, and how to perform basic operations on those
data structures. This chapter shows you how to perform a variety of
tasks that involve more than the basic operations in the previous chapter.

The first part of this chapter contains code samples for displaying the first
k nodes in a linked list as well as the last k nodes of a linked list. This section
also shows you how to display the contents of a list in reverse order and how to
remove duplicates.

The second part of this chapter contains code samples for concatenating
two linked lists, merging two linked lists, and splitting a single linked list. In
addition you will see how to remove the middle element in a list and how to
determine whether or not a linked list contains a loop. The final code sample
checks for palindromes in a linked list.

The previous chapter introduced you to singly linked lists, doubly linked

TASK: ADDING NUMBERS IN A LINKED LIST (1)

Listing 6.1 displays the contents of the Python file sum slnodes.py that
illustrates how to append a set of numbers in a linked list.

LISTING 6.1: sum_slnodes.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

166 ¢ Python Data Structures Pocket Primer

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
ROOT.next = ROOT
LAST = ROOT
print ("1ROOT:", ROOT.data)
else:
if (ROOT.next == ROOT) :
NEWNODE = SLNode (item)
LAST = NEWNODE
ROOT.next = LAST
LAST.next = ROOT

print ("2ROOT:", ROOT.data)
print ("2LAST:", LAST.data)
else:

NEWNODE = SLNode (item)
NEWNODE .next = LAST.next
LAST.next = NEWNODE

LAST = NEWNODE

print ("3Node:", NEWNODE.data)

return ROOT, LAST

ROOT = None
LAST = None

append items to list:
items = np.array([1,2,3,4])
for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

compute the sum of the numbers:

sum = 0
CURR = ROOT
while (CURR != None):

sum += CURR.data
CURR = CURR.next

print ("list of numbers:",items)
print ("Sum of numbers: ",sum)

Listing 6.1 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list.

Now launch the code in Listing 6.1 from the command line and you will see
the following output:

list of numbers: [1 2 3 4]
Sum of numbers: 10

TASK: RECONSTRUCTING NUMBERS IN A LINKED LIST (1)

Listing 6.2 displays the contents of the Python file sum slnodes.py that
illustrates how to add the numbers in a linked list.

Linked Lists and Common Tasks ¢ 167

LISTING 6.2: sum_slnodes.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
ROOT.next = ROOT
LAST = ROOT

print ("1ROOT:", ROOT.data)
else:
if (ROOT.next == ROOT) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

LAST.next = ROOT

print ("2ROOT:", ROOT.data)

print ("2LAST:", LAST.data)
else:

NEWNODE = SLNode (item)

NEWNODE .next = LAST.next

LAST.next = NEWNODE

LAST = NEWNODE

print ("3Node:", NEWNODE.data)

return ROOT, LAST

append items to list:
items = np.array([1,2,3,4])
for item in items:
ROOT, LAST = append node (ROOT, LAST,

note: [1,2,3,4] => 4,321

compute the sum of the numbers:
sum = 0

pow = 0

base 10

CURR = ROOT
while (CURR != None):
term = CURR.data * (base**pow)
sum += term
pow += 1
CURR = CURR.next

print ("list of digits: ",items)
print ("Original number: ", sum)

item)

168 ¢ Python Data Structures Pocket Primer

Listing 6.2 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list.

Now launch the code in Listing 6.2 from the command line and you will see
the following output:

list of digits: [1 2 3 4]
Original number: 4321

TASK: RECONSTRUCTING NUMBERS IN A LINKED LIST (2)

Listing 6.3 displays the contents of the Python file sum_slnodes.py that
illustrates how to add the numbers in a linked list.

LISTING 6.3: sum_slnodes.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
ROOT.next = ROOT
LAST = ROOT
print ("1ROOT:", ROOT.data)
else:
if (ROOT.next == ROOT) :
NEWNODE = SLNode (item)
LAST = NEWNODE
ROOT.next = LAST
LAST.next = ROOT
print ("2RO0T:", ROOT.data)
print ("2LAST:", LAST.data)
else:
NEWNODE = SLNode (item)
NEWNODE.next = LAST.next
LAST.next = NEWNODE
LAST = NEWNODE
print ("3Node:", NEWNODE.data)

return ROOT, LAST

def reverse sum(node, sum,pow,base) :
if (node == None) :
print ("lreverse: empty node")
return sum

if (node.next == None) :
print ("2no child node value:",node.data)

Linked Lists and Common Tasks ¢ 169

term = node.data * (base**pow)
print ("returning sum:", sum+term)
return sum + term

if (node.next != None):
term = node.data * (base**pow)
print ("data:",node.data, "3finding next node...")
return reverse sum(node.next, sumt+term, pow+l, base)
print ("4node value:",node.data, "sum:", sum, "pow:",pow)

ROOT = None
LAST = None

append items to list:
items = np.array([1,2,3,4])
for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

note: [1,2,3,4] => 1,234
compute the sum of the numbers:

sum = 0
pow =0
base = 10
print ("list of digits: ",items)

sum = reverse sum(ROOT, sum, pow,base)
print ("Reversed sum:", sum)

Listing 6.3 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list.

Now launch the code in Listing 6.3 from the command line and you will see
the following output:

list of digits: [1 2 3 4]
data: 1 3finding next node...
data: 2 3finding next node...
data: 3 3finding next node...
2no child node value: 4
returning sum: 4321
Reversed sum: 4321

TASK: DISPLAY THE FIRST K NODES

Listing 6.4 displays the contents of the Python file first k_nodes. py that
illustrate how to find the first k nodes in a linked list.

LISTING 6.4: first_k_nodes.py
import numpy as np

class SLNode:
def init (self, data):

170 ¢ Python Data Structures Pocket Primer

self.data data
self.next = None

def append node (ROOT, LAST, item):

if (ROOT == None) :

ROOT = SLNode (item)

#print ("1Node:", ROOT.data)
else:

if (ROOT.next == None) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

def first k nodes (ROOT, num) :

count = 0

CURR = ROOT

print ("=> Display first",num, "nodes")

while (CURR != None):
count += 1
print ("Node", count, "data:",CURR.data)
CURR = CURR.next

if (count >= num) :

break
ROOT = None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Sally",
"AleX", "George" , "Fred", "Bob"])

for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

print ("initial list:")
print (items)
first k nodes (ROOT, 3)

Listing 6.4 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list. Now launch the code in Listing 6.4 from
the command line and you will see the following output:
initial list:

["Stan' 'Steve' 'Sally' 'Alex' 'George' 'Fred' 'Bob']

Linked Lists and Common Tasks ¢ 171

=> Display first 3 nodes
Node 1 data: Stan

Node 2 data: Steve

Node 3 data: Sally

TASK: DISPLAY THE LAST K NODES

Listing 6.5 displays the contents of the Python file 1ast k nodes.py that
illustrates how to find the last k nodes in a singly linked list.

LISTING 6.5: last_k_nodes.py
import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)

#print ("1Node:", ROOT.data)
else:
if (ROOT.next == None) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

def count nodes (ROOT) :
count = 0
CURR = ROOT
while (CURR != None) :
count += 1
CURR = CURR.next
return count

def skip nodes (ROOT, skip count) :

count = 0
CURR = ROOT
while (CURR != None) :

count += 1
CURR = CURR.next
if (count >= skip count):
break
return CURR

172 ¢ Python Data Structures Pocket Primer

def last k nodes (ROOT, node count, num):
count = 0
node count = count nodes (ROOT)
START NODE = skip nodes (ROOT, node count-num)

CURR = START_NODE

while (CURR != None) :
count += 1
print ("Node", count, "data:",CURR.data)
CURR = CURR.next

if (count >= num) :

break
ROOT = None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Sally",
"Alexl', "George" , "Fred", "Bob"])

for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

print ("=> Initial list:")
print (items)
print ()

list length = count nodes (ROOT)

node count = 3

print ("Last",node count,"nodes:")

last k nodes (ROOT, list length,node count)

Listing 6.5 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
then appending nodes to that list. There are three cases:

1. an empty list
2. asingle-node list

3. alist with two or more nodes

Each of the three preceding cases is handled in the append_node () func-
tion. Now launch the code in Listing 6.5 from the command line and you will
see the following output:

=> Initial list:
["Stan' 'Steve' 'Sally' 'Alex' 'George' 'Fred' 'Bob']

Last 3 nodes:

Node 1 data: George
Node 2 data: Fred
Node 3 data: Bob

Linked Lists and Common Tasks ¢ 173

DISPLAY A SINGLY LINKED LIST IN REVERSE ORDER VIA
RECURSION

Listing 6.6 displays the contents of the Python file reverse sllist.py
that illustrates how to reverse the contents of a linked list.

LISTING 6.6: reverse_sllist.py
import numpy as np
class SLNode:
def init (self, data):
self.data = data

self.next = None

def append node (ROOT, LAST, item):

if (ROOT == None) :

ROOT = SLNode (item)

#print ("1Node:", ROOT.data)
else:

if (ROOT.next == None) :

NEWNODE = SLNode (item)
LAST = NEWNODE
ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

def reverse list(node, rev list):
if (node == None):
print ("lrev list:",rev list)
return rev list

if (node.next == None):
#print ("2rev_list:",rev list)
return [node.data] + rev list

if (node.next != None):
#print ("3finding next node...")
rev_list = [node.data] + rev list
#print ("3rev_list:",rev_list)
return reverse list(node.next, rev list)

ROOT = None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Sally", "Alex"])

174 Python Data Structures Pocket Primer

for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

display items in list:

print ("=> Original list items:")
CURR = ROOT
while (CURR != None):

print ("Node:", CURR.data)
CURR = CURR.next

print ()
print ("=> Reversed list of items:")
rev_list = []

reversed = reverse list (ROOT, rev list)
print (reversed)

Listing 6.6 defines a Node class as before, followed by the Python function
append_node () whose contents are the same as the corresponding code in
Listing 6.5. The next portion of Listing 6.6 contains the logic for initializing a
singly linked list and also for appending nodes to that list.

The next portion of Listing 6.6 defines the function reverse list()
that is invoked recursively in order to reverse the order of the elements in the
parameter rev_1ist (which is a list of elements). Each time that the function
reverse list () isinvoked, there are three possible cases. First, the param-
eter node might be empty, in which case rev_list is returned. The second possi-
bility is that node does not have a successor node: in this case, the code invokes
the reverse list () function as shown here:

return reverse list(node.next, rev list)

As you can see, the successor of node becomes the new node to process in
reverse list().

The third possibility is that node and node . next are nonempty, in which
case the following code snippet is executed:

return reverse list(node.next, rev list)

The next portion of Listing 6.6 initializes items as a NumPy array of strings,
followed by a loop that constructs a linked list from the array items.

The final block of code displays the contents of the linked list, followed by
an invocation of the reverse 1ist () function in order to reverse the ele-
ments in the constructed linked list:

reversed = reverse 1list (ROOT, rev list)

Now launch the code in Listing 6.6 from the command line and you will see
the following output:

Linked Lists and Common Tasks ¢ 175

=> Original list items:
Node: Stan

Node: Steve

Node: Sally

Node: Alex

=> Reversed list of items:
["Alex', 'Sally', 'Steve', 'Stan']

TASK: REMOVE DUPLICATE NODES

Listing 6.7 displays the contents of the Python file remove_duplicates.
py that illustrates how to remove duplicate nodes in a linked list.

LISTING 6.7: remove_duplicates.py
import numpy as np
class SLNode:

def init (self, data):

self.data = data
self.next = None

def append node (ROOT, LAST, item):

if (ROOT == None) :

ROOT = SLNode (item)

#print ("1Node:", ROOT.data)
else:

if (ROOT.next == None) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

def delete duplicates (ROOT) :
PREV = ROOT
CURR = ROOT
found = False

print ("=> searching for duplicates"w)
duplicate = 0
while (CURR != None) :

SEEK = CURR

while (SEEK.next != None):

176 e Python Data Structures Pocket Primer

if (SEEK.next.data == CURR.data) :
duplicate += 1
print ("=> Found duplicate node #",duplicate,"with
value:",item)
SEEK.next = SEEK.next.next
else:
SEEK = SEEK.next
CURR = CURR.next
return ROOT

def display items (ROOT) :
print ("=> list items:")
CURR = ROOT
while (CURR != None) :
print ("Node:", CURR.data)
CURR = CURR.next

print ()
ROOT = None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Stan",
"George","Stan"])
for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

display items (ROOT)

items2 = np.array(["Stan", "Alex", "Sally", "Steve",
"George"])
for item2 in items2:

ROOT = delete duplicates (ROOT)

display items (ROOT)

items3 = np.array(["Stan", "Steve", "Stan",
"George","Stan"])

print ("original:")

print (items3)

print ("unique:")
print (display items (ROOT))

Listing 6.7 defines a Node class as before, followed by the Python function
append_node () that contains the logic for initializing a singly linked list and
also for appending nodes to that list.

The new function in Listing 6.7 is delete duplicates () that sequen-
tially processes the elements in the linked list, using the variable CURR that is

Linked Lists and Common Tasks ¢ 177

initially equal to the root node. During each iteration, the variable SEEK iter-
ates through the successors to the CURR node: whenever there is a match, the
latter node is deleted simply by skipping over that node, as shown here:

SEEK.next = SEEK.next.next

The final portion of Listing 6.7 initializes the arrays items, items2, and
items3 to test the code with three different arrays of strings. Now launch
the code in Listing 6.7 from the command line and you will see the following
output:

=> list items:
Node: Stan
Node: Steve
Node: Stan
Node: George
Node: Stan

=> searching for duplicates

=> Found duplicate node # 1 with value: Stan
=> Found duplicate node # 2 with value: Stan
=> list items:

Node: Stan

Node: Steve

Node: George

=> searching for duplicates
=> list items:

Node: Stan

Node: Steve

Node: George

=> searching for duplicates
=> list items:

Node: Stan

Node: Steve

Node: George

=> searching for duplicates
=> list items:

Node: Stan

Node: Steve

Node: George

=> searching for duplicates
=> list items:

Node: Stan

Node: Steve

Node: George

original:
["Stan' 'Steve' 'Stan' 'George' 'Stan']
unique:

178 ¢ Python Data Structures Pocket Primer

=> list items:
Node: Stan
Node: Steve
Node: George

TASK: CONCATENATE TWO LISTS

Listing 6.8 displays the contents of the Python file append _sllists.py
that illustrates how to concatenate two linked lists.

LISTING 6.8: append_sllists.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):

if (ROOT == None) :

ROOT = SLNode (item)

#print ("1Node:", ROOT.data)
else:

if (ROOT.next == None) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

#print ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

def display items (ROOT) :
print ("=> list items:")
CURR = ROOT

while (CURR != None):
print ("Node:", CURR.data)
CURR = CURR.next

print ()

append items to listl:
ROOT1 = None
LAST1 = None

Linked Lists and Common Tasks ¢ 179

#itemsl = np.array([300, 50, 30, 80, 100, 2007)
itemsl = np.array([300, 50, 301])
for item in itemsl:
ROOT1, LAST1 = append node (ROOT1, LAST1l, item)
if (count == index):
node2 = LASTI1
count += 1
display items (ROOT1)
append items to list2:
ROOT2 = None
LAST2 = None
#items2 = np.array([300, 50, 30, 80, 100])
items2 = np.array([80, 100, 2001])
for item in items2:
ROOT2, LAST2 = append node (ROOT2, LAST2, item)

if (count == index) :
node?2 = LAST2
count += 1

display items (ROOTZ2)

concatenate the two lists:
LAST1.next = ROOT2
display items (ROOT1)

Listing 6.8 contains a function to create a linked list and another function
that displays the contents of the the linked list. The next portion of Listing 6.8
initializes the NumPy arrays items1 and items2 and creates two linked lists

with the contents of these two arrays.

The final portion of Listing 6.8 concatenates the two linked lists by setting
the successor node of LAST1 (which is the last node in the first linked list)
equal to the root node of the second linked list. Launch the code in Listing 6.8
and you will see the following output for the list of even length:

=> List of items:

Node: 300
Node: 50
Node: 30

=> List of items:

Node: 80
Node: 100
Node: 200

Now concatenate the two lists
=> List of items:

Node: 300

Node: 50

180 ¢ Python Data Structures Pocket Primer

Node: 30
Node: 80
Node: 100
Node: 200

TASK: MERGE TWO LISTS

Listing 6.9 displays the contents of the Python file merge sllists.py
that illustrates how to merge two linked lists.

LISTING 6.9: merge_sslists.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)

#print ("1Node:", ROOT.data)
else:
if (ROOT.next == None) :

NEWNODE = SLNode (item)
LAST = NEWNODE
ROOT.next = LAST
#print ("2Node:", NEWNODE.data)
else:
NEWNODE = SLNode (item)
LAST.next = NEWNODE
LAST = NEWNODE
#print ("3Node:", NEWNODE.data)

return ROOT, LAST

def display items (ROOT) :

print ("=> list items:")
CURR = ROOT
while (CURR != None):
print ("Node:", CURR.data)
CURR = CURR.next
print ()

append items to listl:

ROOT1 = None

LAST1 = None

itemsl = np.array([20, 75, 100, 150, 300])
for item in itemsl:

Linked Lists and Common Tasks ¢ 181

ROOT1, LAST1 = append node (ROOT1, LAST1l, item)
if (count == index):

node2 = LASTI1
count += 1

display items (ROOT1)

append items to list2:
ROOT2 = None
LAST2 = None
items2 = np.array([80, 100, 2001])
for item in items2:
ROOT2, LAST2 = append node (ROOT2, LAST2, item)
if (count == index):
node2 = LAST2
count += 1

display items (ROOTZ2)

merge the two lists:

print ("Merging the two lists:")
CURR1 ROOT1

LAST1 = ROOT1

CURR2 = ROOT2

LAST2 = ROOT2

ROOT3 = None

LAST3 = None

#itemsl = np.array([20, 300, 50, 30])
#items2 = np.array([80, 100, 200])

while (CURRL != None and CURR2 != None):
print ("currl.data:",CURRl.data)
print ("curr2.data:",CURR2.data)

if (CURRl.data < CURR2.data):
ROOT3, LAST3 = append node (ROOT3, LAST3, CURRl.data)
print ("adding currl.data:",CURRl.data)
CURR1 = CURRI1.next

else:
ROOT3, LAST3 = append node (ROOT3, LAST3, CURR2.data)
print ("adding curr2.data:",CURR2.data)
CURR2 = CURR2.next

append any remaining elements of itemsl:
if (CURR1 != None) :
while (CURRL != None) :
print ("MORE currl.data:",CURRl.data)
ROOT3, LAST3 = append node (ROOT3, LAST3, CURRl.data)
CURR1 = CURR1l.next

append any remaining elements of items2:
if (CURR2 != None) :

182 ¢ Python Data Structures Pocket Primer

while (CURR2 != None) :
print ("MORE curr2.data:",CURR2.data)
ROOT3, LAST3 = append node (ROOT3, LAST3, CURR2.data)
CURR2 = CURR2.next

display the merged list:
display items (ROOT3)

Listing 6.9 creates two linked lists from the two NumPy arrays items1 and
items2. The second half of Listing 6.9 contains a loop that iterates through
the elements of these two linked lists. During each iteration, the smaller value
of the two values CURR1 . data and CURR2.data is appended to the linked list
items3. When the loop finishes execution, then either items1 is empty or
items2 is empty: therefore, only one of the two subsequent loops will append
“left over” elements from one of these lists to items3 (and it’s also possible
that both of these list are empty). The logic for this code is the same as the cor-
responding code sample in Chapter 5. Launch the code in Listing 6.9 and you
will see the following output for the list of even length:

=> List of items:

Node: 20
Node: 75
Node: 100
Node: 150
Node: 300

=> List of items:

Node: 80
Node: 100
Node: 200

Merging the two lists:
currl.data: 20
curr2.data: 80
adding currl.data: 20
currl.data: 75
curr2.data: 80
adding currl.data: 75
currl.data: 100
curr2.data: 80
adding curr2.data: 80
currl.data: 100
curr2.data: 100
adding curr2.data: 100
currl.data: 100
curr2.data: 200
adding currl.data: 100
currl.data: 150
curr2.data: 200
adding currl.data: 150
currl.data: 300
curr2.data: 200

Linked Lists and Common Tasks ¢ 183

adding curr2.data: 200
MORE currl.data: 300
=> List of items:

Node: 20
Node: 75
Node: 80
Node: 100
Node: 100
Node: 150
Node: 200
Node: 300

TASK: SPLIT A SINGLE LIST INTO TWO LISTS

There are several ways to perform this task. One approach is to iterate
through a given list and dynamically create a list of smaller items as well as a list
of larger items in the loop. However, the logic is more complex, and therefore
MOTe EITor prone.

A simpler approach involves appending the smaller items to a Python list
and then appending the remaining items to a larger list, and then return the
two lists. At this point you can invoke the append () function to create two
linked lists.

Listing 6.10 displays the contents of the Python file split_sllists.py
that illustrates how to split a linked list into two lists.

LISTING 6.10: split_sllists.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
#print ("1Node:", ROOT.data)
else:
if (ROOT.next == None) :
NEWNODE = SLNode (item)
LAST = NEWNODE
ROOT.next = LAST
#print ("2Node:", NEWNODE.data)
else:
NEWNODE = SLNode (item)
LAST.next = NEWNODE
LAST = NEWNODE
#print ("3Node:", NEWNODE.data)

184 ¢ Python Data Structures Pocket Primer

return ROOT, LAST
def delete node (node) :
found = False

if (node != None) :
if (node.next != None):
found = True
print ("curr node:",node.data)
node.data = node.next.data
node.next = node.next.next
print ("new node:",node.data)

if (found == False):
print ("* Item",node.data,"not in list *")

def split 1list (ROOT, value):
node = ROOT
smaller = list ()
larger = list()

while (node != None):

if (node.data < wvalue):
print ("LESS curr node:",node.data)
smaller.append (node.data)

else:
print ("GREATER curr node:",node.data)
larger.append (node.data)

node = node.next

return smaller, larger

def display items (ROOT) :
print ("=> list items:")
CURR = ROOT
while (CURR != None) :
print ("Node:", CURR.data)
CURR = CURR.next
print ()

ROOT = None
LAST = None

append items to list:
items = np.array([10, 50, 30, 80, 100])
for item in items:
ROOT, LAST = append node (ROOT, LAST, item)
if (count == index):
node2 = LAST
count += 1

Linked Lists and Common Tasks ¢ 185

display items (ROOT)

value = node2.data

smaller, larger = split 1list (ROOT, value)
print ("smaller list:",smaller)

print ("larger 1list:",larger)

Listing 6.10 starts with the definition of the Python class SLNode for ele-
ments in a singly linked list, followed by the methods append node () and
delete node () that you have already seen in previous examples in this
chapter.

The next portion of Listing 6.10 defines the split list () method that
creates a new singly linked list of elements whose values are smaller than the
parameter value. Note that the comparison starts from the root node of an
already constructed singly linked list. If a node contains a value that is larger
than the variable value, then the node is appended to another singly linked list
called 1arger. The final code snippet in Listing 6.10 returns the singly linked
lists smaller and larger.

The next portion of Listing 6.10 defines the display items () method
that you have also seen in previous examples, followed by a code block that
constructs an initial singly linked list of numbers. The final code block invokes
the split_list () method and then displays the two singly linked lists that
are returned by this method. Launch the code in Listing 6.10 and you will see
the following output for the list of even length:

=> Initial list of items:

Node: 10
Node: 50
Node: 30
Node: 80
Node: 100

LESS curr node: 10

GREATER curr node: 50

GREATER curr node: 30

GREATER curr node: 80

GREATER curr node: 100

smaller list: [10]

larger 1list: [50, 30, 80, 100]

TASK: FIND THE MIDDLE ELEMENT IN A LIST

One solution involves counting the number of elements in the list and
then finding the middle element. However, this task has the following
constraints:

® Counting the number of elements is not allowed

® No additional data structure can be used

® No element in the list can be modified or marked
®lists of even length can have two middle elements

186 ¢ Python Data Structures Pocket Primer

This task belongs to a set of tasks that use the same technique: one vari-
able iterates sequentially through a list and a second variable iterates twice as
quickly through the same list.

Listing 6.11 displays the contents of the Python file middle slnode.py
that determines the middle node in a singly linked list.

LISTING 6.11: middle_slnode.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):

if (ROOT == None) :

ROOT = SLNode (item)

#fprint ("1Node:", ROOT.data)
else:

if (ROOT.next == None) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

#fprint ("2Node:", NEWNODE.data)
else:

NEWNODE = SLNode (item)

LAST.next = NEWNODE

LAST = NEWNODE

#print ("3Node:", NEWNODE.data)

return ROOT, LAST

def find middle (node) :

if (node == None):
return None, -1
elif (node.next == None):

return node, 1

MIDP = None
CURR = node
SEEK = node

even odd = -1

while (SEEK != None):
print ("SEEK:", SEEK.data)
if (SEEK == None) :

print ("lbreak: null node")
even odd = 0
break

elif (SEEK.next == None) :
print ("2break: null node")
even odd =1

Linked Lists and Common Tasks ¢ 187

elif (SEEK.next.next == None) :
print ("3break: null node")
even odd = 0

else:
SEEK = SEEK.next.next
CURR = CURR.next

if (even odd >= 0):
print ("returning middle:",CURR.data)
return CURR, even odd

ROOT = None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Sally", "Alex",
"Dave"])
#items = np.array(["Stan", "Steve", "Sally", "Alex"])
for item in items:

ROOT, LAST = append node (ROOT, LAST, item)

print ()
print ("=>items:")

print (items)

CURR = ROOT

while (CURR != None):
print ("Node:", CURR.data)
CURR = CURR.next

middle,even odd = find middle (ROOT)

if (even odd == 1):

print ("list has an odd number of items")
else:
print ("list has an even number of items")

Listing 6.11 starts with the definition of the Python class SLNode for ele-
ments in a singly linked list, followed by the methods append node () and
delete node () that you have already seen in previous examples in this
chapter.

The next portion of Listing 6.11 defines the find_middle() method that will
locate the middle element of a singly linked list. After handling a corner case,
this method initializes the variables MIDP, CURR, and SEEK with the values
None, node, and node, respectively. Note that the variable node is a param-
eter whose value is actually the ROOT node of a list that is constructed later in
this code sample. In addition, the variable SEEK is the variable that will trav-
erse the nodes of the singly linked list.

The next code block is a while loop that iterates through the singly linked
list, as long as the variable SEEK is not null. The while loop performs condi-
tional logic to check for the following three scenarios:

188 ¢ Python Data Structures Pocket Primer

1. SEEK is None
2. SEEK.next is None
3. SEEK.next.next is None

The three preceding cases initialize the value of even_odd to 0, 1, and 0,
respectively, which indicates whether or not the list has even length or odd
length. Notice that the final else statement is where the variable SEEX is
advanced twice, whereas the variable CURR is advanced only once. Therefore,
when SEEK reaches the end of the singly linked list, the variable CURR will be
at the middle of the linked list.

The next portion of Listing 6.11 constructs a singly linked list, followed by
an invocation of the method find_middle () with the newly constructed singly
linked list. If the value of even_odd is 1, the linked list has odd length, and if
the value of even_odd is 0 then the list has even length.

Launch the code in Listing 6.11 and you will see the following output for
the list of even length:

=> List of items:

["Stan' 'Steve' 'Sally' 'Alex']
Node: Stan

Node: Steve

Node: Sally

Node: Alex

SEEK: Stan

SEEK: Sally

3break: null node

returning middle: Steve

list has an even number of items

Now switch to the list of odd length in Listing 6.12 and when you launch
the code you will see the following output for the list of odd length:

=> List of items:

["Stan' 'Steve' 'Sally' 'Alex' 'Dave']
Node: Stan

Node: Steve

Node: Sally

Node: Alex

Node: Dave

SEEK: Stan
SEEK: Sally
SEEK: Dave

2break: null node
returning middle: Sally
list has an odd number of items

TASK: REVERSING A LINKED LIST

Listing 6.12 displays the contents of the Python file reverse sllist.py
that illustrates how to reverse the elements in a linked list.

Linked Lists and Common Tasks ¢ 189

LISTING 6.12: reverse_sllist.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
ROOT.next = ROOT
LAST = ROOT
print ("1ROOT:", ROOT.data)
else:
if (ROOT.next == ROOT) :
NEWNODE = SLNode (item)
LAST = NEWNODE
ROOT.next = LAST
LAST.next = ROOT
print ("2ROOT:", ROOT.data)
print ("2LAST:", LAST.data)
else:
NEWNODE = SLNode (item)
NEWNODE .next = LAST.next
LAST.next = NEWNODE
LAST = NEWNODE
print ("3Node:", NEWNODE.data)

return ROOT, LAST

def reverse list(node, rev list):
if (node == None):
print ("lrev list:",rev list)
return rev list

if (node.next == None) :
#print ("2rev list:",rev list)
return [node.data] + rev list

if (node.next != None):
#print ("3finding next node...")
rev _list = [node.data] + rev list
#print ("3rev list:",rev list)
return reverse list(node.next, rev list)

ROOT None
LAST = None

append items to list:
items = np.array(["Stan", "Steve", "Sally", "Alex"])
for item in items:

190 ¢ Python Data Structures Pocket Primer

ROOT, LAST = append node (ROOT, LAST, item)

display items in list:

print ("=> Original list items:")
CURR = ROOT
while (CURR != None):

print ("Node:", CURR.data)
CURR = CURR.next
print ()

print ("=> Reversed list of items:")

rev list = []

reversed = reverse 1list (ROOT, rev list)
print (reversed)

Listing 6.12 defines a Node class as before, followed by the Python func-
tion append_node () that contains the logic for initializing a singly linked list
and also for appending nodes to that list.

Now launch the code in Listing 6.12 from the command line and you will
see the following output:

=> Original list items:
Node: Stan

Node: Steve

Node: Sally

Node: Alex

=> Reversed list of items:
["Alex', 'Sally', 'Steve', 'Stan']

TASK: CHECK FOR PALINDROMES IN A LINKED LIST

A palindrome is a string (either numeric, character, or combination) that is
the same as its reversed string. Examples of palindromes include 121, 1234321,
radar, rotor, and so forth.

Listing 6.13 displays the contents of the Python file palindrome.py that
illustrates how to determine whether or not a list contains a palindrome.

LISTING 6.13: palindrome.py

import numpy as np

class SLNode:
def init (self, data):
self.data = data
self.next = None

def append node (ROOT, LAST, item):
if (ROOT == None) :
ROOT = SLNode (item)
ROOT.next = ROOT
LAST = ROOT

Linked Lists and Common Tasks ¢ 191

print ("1ROOT:", ROOT.data)
else:
if (ROOT.next == ROOT) :

NEWNODE = SLNode (item)

LAST = NEWNODE

ROOT.next = LAST

LAST.next = ROOT

print ("2ROO0T:", ROOT.data)

print ("2LAST:", LAST.data)
else:

NEWNODE = SLNode (item)

NEWNODE .next = LAST.next

LAST.next = NEWNODE

LAST = NEWNODE

print ("3Node:", NEWNODE.data)

return ROOT, LAST

def reverse sum(node, sum,pow,base) :
if (node == None):
print ("lreverse: empty node")
return sum

if (node.next == None) :
print ("2no child node value:",node.data)
term = node.data * (base**pow)
print ("returning sum:", sum+term)

return sum + term

if (node.next != None):
term = node.data * (base**pow)
print ("data:",node.data, "3finding next node...")
return reverse sum(node.next, sumt+term, pow+l, base)
print ("4node value:",node.data,"sum:", sum, "pow:", pow)

ROOT = None
LAST = None

append items to list:

items = np.array([uau, "b", "C", "b", uauJ)
#items = np.array(["a", "b", "c", "b", "c"])
#items = str(1234321)

for item in items:
ROOT, LAST = append node (ROOT, LAST, item)

display items in list:
print ("=> Original list items:")
CURR = ROOT
while (CURR != None) :
print ("Node:", CURR.data)
CURR = CURR.next
print ()

print ("=> Original list of items:")
print (items)
print ()

192 ¢ Python Data Structures Pocket Primer

print ("=> Reversed list of items:")
rev_list = []

reversed = reverse 1list (ROOT, rev list)
print (reversed)

same = True
for ndx in range (0, len(items)):
if (items[ndx] != reversed[ndx]):
same = False
break
if (same == True) :
print ("found a palindrome")
else:

print ("not a palindrome")

Listing 6.13 defines a Node class as before, followed by the Python func-
tion append node () that contains the logic for initializing a singly linked list
and also for appending nodes to that list.

Now launch the code in Listing 6.13 from the command line and you will
see the following output:

=> Original list items:
Node:
Node:
Node:
Node:
Node:

O o0 0w

=> Original list of items:
['a' lbl ICI lbl lal]

=> Reversed list of items:
['a', lbl, 'c', lbl, 'a']
found a palindrome

SUMMARY

This chapter started with code samples for displaying the first k nodes in
a list as well as the last k nodes of a list. Then you learned how to display the
contents of a list in reverse order and how to remove duplicates.

In addition, you saw how to concatenate and merge two linked lists, and
how to split a single linked list. Then you learned how to remove the middle
element in a list and how to determine whether or not a linked list contains a
loop.

Finally, you learned how to calculate the sum of the elements in a singly
linked list and how to check for palindromes in a singly linked list.

CHAPTER

QUEUES AND STACKS

his chapter introduces you to queues and stacks that were briefly intro-

duced in Chapter 4. The first part of this chapter explains the concept

of a queue, along with Python code samples that show you how to
perform various operations on a queue. Some of the code samples also contain
built-in functions for queues, such as isEmpty (), isFull(), push(), and
dequeue ().

The second part of this chapter explains the concept of a stack, along with
Python code samples that show you how to perform various operations on a
stack. In addition, you will see code samples for finding the largest and smallest
elements in a stack and reversing the contents of a stack.

The final section contains three interesting tasks that illustrate the useful-
ness of a stack data structure. The first task determines whether or not a string
consists of well-balanced round parentheses, square brackets, and curly braces.
The second task parses an arithmetic expression that can perform addition,
subtraction, multiplication, or division, as well as any combination of these four
arithmetic operations. The third task converts infix notation to postfix notation.

WHAT IS A QUEUE?

A queue consists of a collection of objects that uses the FIFO (first-in-
first-out) rule for inserting and removing items. By way of analogy, consider
a toll booth: the first vehicle that arrives is the first vehicle to pay the neces-
sary toll and also the first vehicle to exit the tool booth. As another analogy,
consider customers standing in a line (which in fact is a queue) in a bank: the
person at the front of the queue is the first person to approach an available
teller. The”back” of the queue is the person at the end of the line (i.e., the last
person).

194 ¢ Python Data Structures Pocket Primer

A queue has a maximum size MAX and a minimum size of 0. In fact, we can
define a queue in terms of the following methods:

* isEmpty () returns True if the queue is empty

e isFull () returns True if the queue is full

e queueSize () returns the number of elements in the stack

® add (item) adds an element to the back of the queue if the queue is not

full

* dequeue () removes the front element of the queue if the queue is not

empty

In order to ensure that there is no overflow (too big) or underflow (too
small), we must always invoke isEmpty () before “popping” an item from the
top of the front of a queue and always invoke isFull () before “pushing”
(appending) an item as the last element of a queue.

Types of Queues

The following list various types of queues that can be created, most of
which are extensions of a generic queue, followed by a brief description:

* queue

e circular queue
* dequeue

® priority queue

A queue is a linear list that supports deletion from one end and insertion at
the other end. A queue is a FIFO (first-in-first-out), just like a line of people
waiting to enter a movie theater or a restaurant: the first person in line enters
first, followed by the second person in line, and so forth. The term enqueue
refers to adding an element to a queue, whereas dequeue refers to removing
an element from a queue.

A circular queue is a linear list with the following constraint: the last ele-
ment in the queue “points” to the first element in the queue. A circular queue
is also called a ring buffer. By way of analogy, a conga line is a queue: if the
person at the front of the queue is “connected” to the last person in the conga
line, that is called a circular queue.

A Dequeue is a linear list that is also a double ended queue which insertions
and deletions can be performed at both ends of the queue. In addition, there
are two types of Doueues:

e Input restricted means that insertions occur only at one end.
* Output restricted means that deletions occur only at one end.

A priority queue is a queue that allows for removing and inserting items in
any position of the queue. For example, the scheduler of the operating system

Queues and Stacks ¢ 195

of your desktop and laptop uses a priority queue to schedule programs for
execution. Consequently, a higher priority task is executed before a lower pri-
ority task.

Moreover, after a priority queue is created, it’s possible for a higher priority
task to arrive: in this scenario, that new and higher priority task is inserted into
the appropriate location in the queue for task execution. In fact, Unix has the
so-called nice command that you can launch from the command line in order
to lower the execution priority of tasks. Perform an online search for more
information regarding the queues discussed in this section.

Now let’s turn our attention to creating a basic queue along with some sim-
ple enhancements, which is the topic of the next several sections.

CREATING A QUEUE USING A PYTHON LIST

Listing 7.1 displays the contents of the Python file myqueue. py that illus-
trates how to use a Python List class in order to define Python functions to
perform various operations on a queue.

LISTING 7.1: myqueue.py
import numpy as np

MAX = 4 # 100
myqueue = list ()

def isEmpty() :

return len (myqueue) == 0
def isFull():
return len (myqueue) == MAX

def dequeue () :
if myqueue:
front = myqueue.pop (0)
print ("returning front:", front)
return front
else:
print ("* myqueue is empty *")

def push (item) :

if isFull() == False:
myqueue.append (item)
else:

print ("* myqueue is full *")

print ("pushing values onto myqueue:")
push (10)

print ("myqueue:",myqueue)

push (20)

print ("myqueue:", myqueue)

196 ¢ Python Data Structures Pocket Primer

push (200)

print ("mygqueue:",myqueue)
push (50)

print ("myqueue:",myqueue)
push (-123)

print ("mygqueue:",myqueue)
print ("myqueue:",myqueue)
print ()

print ("dequeue values from myqueue:")
dequeue ()

print ("mygqueue:",myqueue)
dequeue ()

print ("myqueue:", myqueue)
dequeue ()

print ("myqueue:",myqueue)
dequeue ()

print ("mygqueue:",myqueue)
dequeue ()

print ("myqueue:", myqueue)

Listing 7.1 starts by initializing myqueue as an empty list and assigning the
value 4 to the variable MAX, which is the maximum number of elements that
the queue can contain. (Obviously you can change this value.)

The next portion of Listing 7.1 defines several functions: the isEmpty
function that returns True if the length of myqueue is 0 (and false otherwise),
followed by the function isFull () that returns True if the length of myqueue
is MAX (and False otherwise).

The next portion of Listing 7.1 defines the function dequeue that invokes
the pop () method in order to remove the front element of myqueue, provided
that myqueue is not empty. Next, the function push () invokes the append ()
method in order to add a new element to the end of myqueue, provided that
myqueue is not full.

The final portion of Listing 7.1 invokes the push () function to append var-
ious numbers to myqueue, followed by multiple invocations of the dequeue ()
method to remove elements from the front of the queue. Launch the code in
Listing 7.1 and you will see the following output:

pushing values onto myqueue:
myqueue: [10]

myqueue: [10, 20]

myqueue: [10, 20, 200]
myqueue: [10, 20, 200, 50]

* myqueue is full *

myqueue: [10, 20, 200, 50]
myqueue: [10, 20, 200, 50]

dequeue values from myqueue:
returning front: 10

myqueue: [20, 200, 50]
returning front: 20

myqueue: [200, 50]

Queues and Stacks ¢ 197

returning front: 200
myqueue: [50]
returning front: 50
myqueue: []

* mygqueue is empty *
myqueue: []

Listing 7.2 displays the contents of the Python file myqueue2.py that

illustrates how to define a queue and perform various operations on the queue.

LISTING 7.2: myqueue2.py

import numpy as np

MAX = 4 # 100
myqueue = list ()

def isEmpty () :

return len (myqueue) == 0
def isFull():
return len (myqueue) == MAX

def dequeue () :
if myqueue:
front = myqueue.pop (0)
print ("returning front:", front)
return front
else:
print ("* myqueue is empty *")

def push(item):

if isFull() == False:
myqueue . append (item)
else:

print ("* myqueue is full *")
arrl = np.array([10,20,200,50,-123])

print ("pushing values onto myqueue:")
for num in range(0,len(arrl)):

push (num)

print ("mygqueue:",myqueue)

print ("dequeue values from myqueue:")
while (len (myqueue) > 0):

dequeue ()

print ("mygqueue:",myqueue)

Listing 7.2 starts by initialing myqueue as an empty list and assigning the
value 4 to the variable MAX, which is the maximum number of elements that
the queue can contain. (Obviously you can change this value.)

198 ¢ Python Data Structures Pocket Primer

The next portion of Listing 7.2 defines several functions: the i sEmpty func-
tion that returns True if the length of myqueue is 0 (and False otherwise),
followed by the function isFull that returns True if the length of myqueue is
MAX (and False otherwise).

The next portion of Listing 7.2 defines the function dequeue 90 that invokes
the pop () method in order to remove the front element of myqueue, provided
that myqueue is not empty. Next, the function push () invokes the append ()
method in order to add a new element to the back of myqueue, provided that
myqueue is not full.

The final portion of Listing 7.2 invokes the push () function to append var-
ious numbers to myqueue, followed by multiple invocations of the dequeue ()
method to remove elements from the front of the queue. Launch the code in
Listing 7.2 and you will see the same output at Listing 7.1.

CREATING A ROLLING QUEUE

Listing 7.3 appends and deletes elements from a queue, but we can make
the code even simpler by combining a push and delete operation in the same
function. Listing 7.3 displays the contents of the Python file rolling queue.
py that illustrates how to make sure that it’s always possible to insert an ele-
ment as the first element in a queue.

LISTING 7.3: rollingqueue.py
import numpy as np

MAX = 5 # maximum queue size
myqueue = list ()

def isEmpty() :

return len (myqueue) == 0
def isFull():
return len (myqueue) == MAX

def dequeue () :
if myqueue:
front = myqueue.pop (0)
print ("returning front:", front)
return front
else:
print ("* myqueue is empty *")

def push(item) :
if isFull() == True:
remove last item:
last_item = myqueue.pop ()
print ("removed last item: ",last_item)

add new front item:

myqueue. insert (0,
print("new first item:

max =

arrl = [1 for i1 in

item)

range (0, max)]

print ("pushing values onto myqueue:")

for num in range (0,

push (num)

len (arrl)) :

#print ("myqueue:", myqueue)

print ("dequeue values from myqueue:")

while (isEmpty () ==
dequeue ()

False) :

print ("myqueue:",myqueue)

",item," queue:

Queues and Stacks ¢ 199

", myqueue)

100 # the number of elements for the queue

Listing 7.3 is similar with Listing 7.2, along with a simple modification: if
the queue is full, the push() method removes the final element of the queue
and then inserts an element as the new first element of the queue. If need be,
you can compare the code shown in bold in Listing 7.3 with the corresponding
code in Listing 7.2. Now launch the code in Listing 7.3 and you will see the

following output:

=> pushing values onto myqueue:

new first item: 0 queue: [0]

new first item: 1 queue: [1, 0]

new first item: 2 queue: [2, 1, 0]

new first item: 3 queue: [3, 2, 1, 0]
new first item: 4 queue: (4, 3, 2, 1, 0]
removed last item: O

new first item: 5 queue: [5, 4, 3, 2, 1]
removed last item: 1

new first item: 6 queue: [6, 5, 4, 3, 2]
removed last item: 2

new first item: 7 queue: [7, 6, 5, 4, 3]
removed last item: 3

new first item: 8 queue: (g, 7, 6, 5, 4]
removed last item: 4

new first item: 9 queue: [9, 8, 7, 6, 5]

removed last item: 5

new first item: 10 queue:
// details omitted for brevity
new first item: 99 queue: [99,

=> dequeue values from myqueue:
returning front: 99

98, 97, 96, 95]

myqueue: [98, 97, 96, 95]
returning front: 98
myqueue: [97, 96, 95]

returning front: 97

200 < Python Data Structures Pocket Primer

myqueue: [96, 95]
returning front: 96
myqueue: [95]
returning front: 95
mygqueue: []

CREATING A QUEUE USING AN ARRAY

Listing 7.4 displays the contents of the Python file queue array.py that
illustrates how to use a Python List class in order to define a queue using an
array.

LISTING 7.4: queue_array.py

import numpy as np

MAX = 6 # 100

mygueue = [None] * MAX
print ("mygqueue:",myqueue)
print ()

lpos = 2

rpos = 4

myqueue= 222

myqueue= 333

print ("manually inserted two values:")
print ("mygqueue:",myqueue)

def isEmpty () :
return lpos == rpos

def isFull():
return rpos >= MAX

def dequeue () :
global lpos, rpos
if (lpos < rpos):
front = myqueue[lpos]

print ("dequeued value:", front)
myqueue [1lpos] = None
lpos +=1
return front
else:

print ("* myqueue is empty *")

def shift left (myqueue) :
global lpos, rpos

for i in range (0, rpos-1lpos) :
myqueue [i] = myqueue[lpos+i]

replace right-most element with None:
for i in range (rpos-1lpos, rpos) :

#print ("updating pos:",1)

myqueue [i1] = None

Queues and Stacks ¢ 201

print ("Completed myqueue shift:",myqueue)
rpos -= lpos

lpos = 0

return myqueue

def push (myqueue, item):
global lpos, rpos

if isFull() == False:
print ("rpos=", rpos, "pushing item onto myqueue:",item)
myqueue [rpos] = item
rpos += 1
else:
if (lpos == 0):
print ("*** myqueue is full: cannot push item:",item)
print ()
else:
print ()
print ("Call shift left to shift myqueue")
(

print ("before shift:",myqueue)

print ("left shift count:", lpos)

myqueue = shift left (myqueue)

print ("rpos=", rpos, "pushing item:",item)

now push the current item:
print ("rpos=", rpos, "Second try: pushing item onto
myqueue:",item)
myqueue [rpos] = item
rpos += 1
return myqueue

arrl = np.array([1000,2000,8000,5000,-10007])

print ("=> Ready to push the following values onto
myqueue:")

print(arrl)

print ()

for i in range (0,len(arrl)):
myqueue = push (myqueue,arrl[i])
if isFull() == False:
print ("appended",arrl[i], "to mygqueue:",myqueue)

print ("=> Ready to dequeue values from myqueue:")
while (lpos < rpos):
dequeue ()

print ("lpos:", lpos, "rpos:", rpos)
print ("popped myqueue:",myqueue)

Listing 7.4 starts by initializing the variables MAX (for the maximum size of
the queue), myqueue (which is an array-based queue), along with the integers
lpos and rpos that are the index positions of the first element and the last
element, respectively, of the queue.

202 e Python Data Structures Pocket Primer

The next portion of Listing 7.4 defines the familiar functions isEmpty ()
and isFull() that you have seen in previous code samples. However, the
dequeue() function has been modified to handle cases in which elements are
popped from myqueue: each time this happens, the variable 1pos is incre-
mented by 1. Note that this code block is executed only when 1pos is less than
rpos: otherwise, the queue is empty.

The function shift left isinvoked when lpos is greater than 0 and rpos
equals MAX: this scenario occurs when there are open “slots” at the front of the
queue and the right-most element is occupied. This function shifts all the ele-
ments toward the front of the queue, thereby freeing up space so that more ele-
ments can be appended to myqueue. Keep in mind that every element in array is
occupied when 1pos equals 0 and rpos equals MAX, in which the only operation
that we can perform is to remove an element from the front of the queue.

The final portion of Listing 7.4 initializes the NumPy array arrl with a set
of integers, followed by a loop that iterates through the elements of arr1 and
invokes the push() function in order to append those elements to myqueue.
When this loop finishes execution, another loop invokes the dequeue () func-
tion to remove elements from the front of the queue.

Change the value of MaX so that its value is less than, equal to, or greater
than the number of elements in the array arr1l. Doing so will exhibit differ-
ent execution paths in the code. Note that in Listing 7.4, there are numerous
print () statements that generate verbose output, thereby enabling you to
see the sequence in which the code is executed (you can “comment out” those
statements later). Now launch the code in Listing 7.4 and you will see the fol-
lowing output:

myqueue: [None, None, None, None, None, None]

manually inserted two values:

myqueue: [None, None, 222, 333, None, None]

=> Ready to push the following values onto myqueue:
[1000 2000 8000 5000 -1000]

rpos= 4 pushing item onto myqueue: 1000
appended 1000 to myqueue: [None, None, 222, 333, 1000, None]
rpos= 5 pushing item onto myqueue: 2000

Call shift left to shift myqueue

before shift: [None, None, 222, 333, 1000, 2000]

left shift count: 2

Completed myqueue shift: [222, 333, 1000, 2000, None, None]
rpos= 4 pushing item: 8000

rpos= 4 Second try: pushing item onto myqueue: 8000
appended 8000 to myqueue: [222, 333, 1000, 2000, 8000, None]
rpos= 5 pushing item onto myqueue: 5000

*** myqueue is full: cannot push item: -1000

=> Ready to dequeue values from myqueue:
dequeued value: 222

Queues and Stacks ¢ 203

lpos: 1 rpos: 6

popped myqueue: [None, 333, 1000, 2000, 8000, 5000]
dequeued value: 333

lpos: 2 rpos: 6

popped myqueue: [None, None, 1000, 2000, 8000, 5000]
dequeued value: 1000

lpos: 3 rpos: 6

popped myqueue: [None, None, None, 2000, 8000, 5000]
dequeued value: 2000

lpos: 4 rpos: 6

popped myqueue: [None, None, None, None, 8000, 5000]
dequeued value: 8000

lpos: 5 rpos: 6

popped mygqueue: [None, None, None, None, None, 5000]
dequeued value: 5000

lpos: 6 rpos: 6

popped myqueue: [None, None, None, None, None, None]

This concludes the portion of the chapter pertaining to queues. The
remainder of this chapter discusses the stack data structure, which is based on
a LIFO structure instead of a FIFO structure of a queue.

WHAT IS A STACK?

In general terms, a stack consists of a collection of objects that follow the
LIFO (last-in-first-out) principle. By contrast, a queue follows the FIFO (first-
in-first-out) principle.

As a simple example, consider an elevator that has one entrance: the last
person who enters the elevator is the first person who exits the elevator. Thus,
the order in which people exit an elevator is the reverse of the order in which
people enter an elevator.

Another analogy that might help you understand the concept of a stack is a
stack of plates in a cafeteria:

e A plate can be added to the top of the stack if the stack is not full.
* A plate can be removed from the stack if the stack is not empty.

Based on the preceding observations, a stack has a maximum size MAX and
a minimum size of 0.

Use Cases for Stacks

The following list contains use applications and use cases for stack-based
data structures:

® recursion

* keeping track of function calls

e evaluation of expressions

e reversing characters

e servicing hardware interrupts

* solving combinatorial problems using backtracking

204 < Python Data Structures Pocket Primer

Operations With Stacks

Earlier in this chapter you saw Python functions to perform operations on
queues; in an analogous fashion, we can define a stack in terms of the follow-
ing methods:

* isEmpty () returns True if the stack is empty

e isrFull () returns True if the stack is full

e stackSize () returns the number of elements in the stack

* push (item) adds an element to the "top" of the stack if the stack is not
full

* pop () removes the top-most element of the stack if the stack is not
empty

In order to ensure that there is no overflow (too big) or underflow (too
small), we must always invoke isEmpty () before popping an item from the
stack and always invoke isFull () before “pushing” an item onto the stack.
The same methods (with different implementation details) are relevant when
working with queues.

WORKING WITH STACKS

Listing 7.5 displays the contents of the Python file mystack.py that illus-
trates how to define a stack and perform various operations on the stack.

LISTING 7.5: mystack.py
import numpy as np

MAX = 3 # 100
mystack = list ()

def isEmpty() :

return len(mystack) == 0
def isFull():

return len (mystack) == MAX
def pop():

if len(mystack) > O:
top = mystack.pop ()
#print ("returning top:", top)
return top
else:
print ("* mystack is empty *")

def push (item) :

if isFull() == False:
mystack.append (item)
else:

print ("* mystack is full *")

Queues and Stacks ¢ 205

print ("pushing values onto mystack:")

push (10)

print ("mystack:",mystack)
push (20)

print ("mystack:",mystack)
push (200)

print ("mystack:",mystack)
push (-123)

print ("mystack:",mystack)
push (50)

print ("mystack:",mystack)
print ()

print ("popping values from mystack:")

pop ()
print ("mystack:",mystack)

pop ()
print ("mystack:",mystack)

pop ()
print ("mystack:",mystack)

pop ()
print ("mystack:",mystack)

pop ()
print ("mystack:",mystack)

Listing 7.5 is very similar to Listing 7.1, except that we are working with
a stack instead of a queue. In particular, Listing 7.5 starts by initializing mys-
tack as an empty list and assigning the value 3 to the variable MAX, which is
the maximum number of elements that the stack can contain. (Obviously you
can change this number.)

The next portion of Listing 7.5 defines several functions: the i sEmpty func-
tion that returns True if the length of mystack is 0 (and False otherwise),
followed by the function isFull that returns True if the length of mystack
is MAX (and false otherwise).

The next portion of Listing 7.5 defines the function dequeue that invokes
the pop () method in order to remove the front element of mystack, provided
that mystack is not empty. Next, the function push () invokes the append ()
method in order to add a new element to the top of mystack, provided that
myqueue is not full.

The final portion of Listing 7.5 invokes the push () function to append var-
ious numbers to mystack, followed by multiple invocations of the dequeue ()
method to remove elements from the top of mystack. Launch the code in
Listing 7.5 and you will see the following output:

pushing values onto mystack:
mystack: [10]

mystack: [10, 20]

mystack: [10, 20, -123]

* mystack is full *

mystack: [10, 20, -123]

* mystack is full *

mystack: [10, 20, -123]

206 * Python Data Structures Pocket Primer

popping values from mystack:
mystack: [10, 20]

mystack: [10]

mystack: T[]

* mystack is empty *
mystack: T[]

* mystack is empty *
mystack: []

Listing 7.6 displays the contents of the Python file mystack2.py that
illustrates how to define a stack and perform various operations on the
stack.

LISTING 7.6: mystack2.py
import numpy as np

MAX =

3 00
mystack

1

= list ()

def isEmpty():

return len (mystack) ==

def isFull():
return len (mystack) == MAX

def pop():
if len(mystack) > 0:
top = mystack.pop ()
#print ("returning top:", top)
return top
else:
print ("* mystack is empty *")

def push(item) :

if isFull() == False:
mystack.append (item)
else:

print ("* mystack is full *")
arrl = np.array([10,20,-123,200,50])

print ("pushing values onto mystack:")
for num in range(0,len(arrl)):

push (num)
print ("mystack:",mystack)
print ()

print ("popping values from mystack:")
for num in range(0,len(arrl)):

pop ()

print ("mystack:",mystack)
print ("mystack:",mystack)

Queues and Stacks ¢ 207

Listing 7.6 is straightforward because it’s a direct counterpart to Listing 7.2:
the latter involves a queue whereas the former involves a stack. Launch the
code in Listing 7.6 and you will see the following output:

pushing values onto mystack:
mystack: [O0]

mystack: [0, 1]

mystack: [0, 1, 2]

* mystack is full *

mystack: [0, 1, 2]

* mystack is full *

mystack: [0, 1, 2]

popping values from mystack:
mystack: [0, 1]

mystack: [0]

mystack: []

* mystack is empty *
mystack: []

* mystack is empty *
mystack: T[]

TASK: REVERSE AND PRINT STACK VALUES

Listing 7.7 displays the contents of the Python file reverse stack.py
that illustrates how to define a stack and print its contents in reverse order.
This code sample uses a NumPy array as a stack data structure.

LISTING 7.7: reverse_stack.py
import numpy as np

MAX =

8 00
mystack

1

= list ()

def isEmpty () :

return len (mystack) == 0

def isFull():
return len (mystack) == MAX

def pop():
#print ("len (mystack) =", len (mystack))
if len(mystack) > O:
top = mystack.pop()
#print ("returning top:", top)
return top
else:
print ("* mystack is empty *")
return None

def push(item) :
if isFull() == False:

208 e Python Data Structures Pocket Primer

mystack.append (item)
else:
print ("* mystack is full *")

arrl = np.array([10,20,-123,200,501])

print ("pushing values onto mystack:")
for i in range (0,len(arrl)):
push (arrl[i])
#print ("mystack:",mystack)
print ("mystack:",mystack)
print ()

reversed = []
print ("popping values from mystack:")
for num in range(0,len(arrl)):
top = pop ()
reversed.append (top)
#print ("reversed:", reversed)
print ("reversed:", reversed)

Listing 7.7 contains the code in Listing 7.6, along with a loop that invokes
the push () function to insert the elements of the NumPy array arrl (which
contains integers) in the variable mystack.

After the preceding loop finishes execution, another loop iterates through
the elements of mystack by invoking the pop () method, and in turn appends
each element to the array reversed. As a result, the elements in the array
reversed are the reverse order of the elements in mystack. Launch the code
in Listing 7.7 and you will see the following output:

pushing values onto mystack:
mystack: [10, 20, -123, 200, 50]

popping values from mystack:
reversed: [50, 200, -123, 20, 10]

TASK: DISPLAY THE MIN AND MAX STACK VALUES (1)

Listing 7.8 displays the contents of the Python file stack min max.py
that illustrates how to define a stack and perform various operations on the
stack. This code sample uses a “regular” stack data structure.

LISTING 7.8: stack_min_max.py
import numpy as np

MAX = 6 # 100

mystack = [None] * MAX
lindex = 0

rindex = 0

min val = np.Infinity

max val = -np.Infinity

Queues and Stacks ¢ 209

def isEmpty () :
return lindex == rindex

def isFull():
return rindex >= MAX

def pop () :
#print ("len (mystack) =", len(mystack))
if len(mystack) > O:
top = mystack.pop ()
fprint ("returning top:", top)
return top
else:
print ("* mystack is empty *")

def update min max values(item):
global min val, max val

if (min val > item):
min val = item

if (max val < item):
max val = item

def min () :
return min val

def max () :
return max val

def push (mystack, item):
global rindex

if isFull() == False:
#print ("lrindex=", rindex, "pushing item onto
mystack:",item)
#mystack[rindex] = item
mystack.append (item)
rindex += 1
#print ("push 5rindex:", rindex)
update min max values (item)
else:
print ("* mystack is full *")
print ("Cannot push item:",item)
print ("push 6rindex:", rindex)
return mystack

arrl = np.array([1000,2000,8000,5000,-10007)

print ("pushing values onto mystack:")
for i in range(0,len(arrl)):
mystack = push (mystack,arrl[i])
print ("mystack:",mystack)
print ()

print ("min value:",min val)
print ("max value:",max val)

210 e Python Data Structures Pocket Primer

Listing 7.8 contains the familiar functions isEmpty (), isFull(), and
pop () that have been discussed in previous code samples. Notice that the
function pop () invokes the function update min max values () each time
that an element is removed from the stack. The latter method updates the
variables min_val and max_val to keep track of the smallest and largest ele-
ments, respectively, in the stack. Launch the code in Listing 7.8 and you will
see the following output:

=> Pushing list of values onto mystack:
[1000 2000 8000 5000 -1000]

min value: -1000
max value: 8000

CREATING TWO STACKS USING AN ARRAY

Listing 7.9 displays the contents of the Python file stack_array2.py that
illustrates how to use an array in order to define two adjacent stacks and per-
form various operations on the stack.

LISTING 7.9: stack_array2.py
import numpy as np

MAX = 6 # 100

mystack = [None] * MAX * 2
lindexl = 0
rindexl = 0

lindex2 = int (MAX/2)
rindex2 = int (MAX/2)

def isEmpty (num) :

if(num == 1):

return lindexl == rindexl
else:

return lindex2 == rindex2

def isFull (num) :
if (num == 1) :
return rindexl >= int (MAX/2)
else:
return rindex2 >= int (MAX)

def pop (num) :
global lindexl,rindexl, lindex2,rindex2

if(num == 1):
if (lindexl <= rindexl):
print ("pop position:", rindexl)
rear = mystack[rindexl]
print ("popped value:", rear)
mystack[rindexl] = None

Queues and Stacks ¢ 211

rindexl -= 1
return rear

else:
print ("* mystack is empty *")
return None

else:

if (lindex2 <= rindex2):
print ("pop position:",rindex2)
rear = mystack|[rindex2]
print ("popped value:", rear)
mystack[rindex2] = None
rindex2 -= 1
return rear

else:
print ("* mystack is empty *")
return None

def push (mystack, num, item):
global rindexl,rindex?2

if (num == 1) :
if isFull (num) == False:
print ("lrindex1l=",rindexl, "pushing item onto
mystack:",item)
mystack|[rindexl] = item
rindexl += 1
print ("push Srindexl:",rindexl)
else:
print ("* mystack is full *")
print ("Cannot push item:",item)
print ("push 6rindexl:",rindexl)
return mystack
else:
if isFull (num) == False:
print ("lrindex2=",rindex?2, "pushing item onto
mystack:",item)
mystack[rindex2] = item
rindex2 += 1
print ("push Srindex2:",rindex2)
else:
print ("* mystack is full *")
print ("Cannot push item:",item)
print ("push 6rindex2:",rindex2)
return mystack

print ("=> Pushing list of values onto mystack:")
arrl = np.array([1000,2000,8000,5000,-10007)
print (arrl)

print ()

#print ("Alindex1:",lindex1l,"rindex1l:", rindexl)
#print ("Alindex2:",lindex2,"rindex2:", rindex2)

for i in range(0,len(arrl)):
rand = np.random.rand ()
if(rand > 0.5):

212 e Python Data Structures Pocket Primer

num = 1
else:
num = 2
print ("=> selected stack:",num)

mystack = push (mystack,num, arrl[i])

#print ("Blindex1l:",lindexl,"rindex1l:", rindex1)
#print ("Blindex2:", lindex2, "rindex2:", rindex2)

print ("-——————————-——————— ")

print ("left stack:")

for idx in range (lindexl, rindexl) :
print (mystack[idx])

print ()

print ("right stack:")

for idx in range(lindex2,rindex?2) :
print (mystack([idx])

print m-—-—— ")

Listing 7.9 defines two stacks inside the stack mystack (which is an array):
the left stack occupies the left half of mystack and the right stack occupies
the right half of mystack. In addition, the variables 1index1 and rindex1
are the left-most and right-most index positions for the left stack, whereas the
variables 1index2 and rindex2 are the left-most and right-most index posi-
tions for the right stack.

Notice that the usual functions isEmpty (), isFull (), and push() per-
form their respective operations based on the currently “active” stack, which
is based on the value of the variable num: the values 1 and 2 correspond to the
left stack and right stack, respectively.

One more difference is the loop that generates random numbers and then
populates the two stacks based on whether or not each generated random
number is greater than 0.5 (or not).

Launch the code in Listing 7.9 and you will see the following output:.

=> Pushing list of values onto mystack:
[1000 2000 8000 5000 -1000]

=> selected stack: 2

lrindex2= 3 pushing item onto mystack: 1000
push 5rindex2: 4

=> selected stack: 1

lrindexl= 0 pushing item onto mystack: 2000
push S5rindexl: 1

=> selected stack: 1

lrindexl= 1 pushing item onto mystack: 8000
push S5rindexl: 2

=> selected stack: 2

lrindex2= 4 pushing item onto mystack: 5000
push 5rindex2: 5

=> selected stack: 1

Queues and Stacks ¢ 213

lrindexl= 2 pushing item onto mystack: -1000
push 5rindexl: 3

left stack:

2000

8000

-1000

right stack:
1000
5000

TASK: REVERSE A STRING USING A STACK

Listing 7.10 displays the contents of the python file reverse string.py
that illustrates how to use a stack in order to reverse a string.

LISTING 7.10: reverse_string.py
import numpy as np

MAX = 20 # 100
mystack = list ()

def isEmpty() :

return len(mystack) == 0
def isFull():
return len (mystack) == MAX
def pop():
#print ("len (mystack) =", len (mystack))

(
if len(mystack) > O:
top = mystack.pop ()
#print ("returning top:", top)
return top
else:
print ("* mystack is empty *")
return None

def push(item) :

if isFull() == False:
mystack.append (item)
else:

print ("* mystack is full *")
my str = "abcdxyz"

#print ("pushing values onto mystack:")
for 1 in range(0,len(my str)):
push (my str[I])

214 e« Python Data Structures Pocket Primer

#print ("mystack:",mystack)
#print ()

reversed = ""
#print ("popping values from mystack:")
for num in range(0,len(my str)):

top = pop ()
reversed += top
#print ("reversed:", reversed)

print ("string: ",my str)
print ("reversed:", reversed)

Listing 7.10 starts by initializing mystack as an empty list, followed by the
usual functions 1 sEmpty (), isFull (), and pop () that perform their respec-
tive operations. The next portion of Listing 7.10 initializes the variable my str
as a string of characters, and then pushes each character onto mystack. Next,
a for loop removes each element from mystack and then appends each ele-
ment to the string reversed (which initialized as an empty string). Launch the
code in Listing 7.10 and you will see the following output:.

string: abcdxyz
reversed: zyxdcba

TASK: BALANCED PARENTHESES

Listing 7.11 displays the contents of the file array balanced parens.
py that illustrates how to use a NumPy array in order to determine whether or
not a string contains balanced parentheses.

LISTING 7.11: array_balanced_parens.py
import numpy as np

def check balanced (my expr) :

left chars = " ([{"
right chars = ")]}"
balan pairs = np.array (["(O","[I1", "{}"])

my stack = np.array([])

for idx in range(0,len(my expr)) :
char = my expr[idx]
#print ("char:", char)
if char in left chars:
my stack = np.append(my stack, char)
#print ("appended to my stack:",my stack)
elif char in right chars:
if (my stack.size > 0):
top = my stack[len(my stack)-1]
two chars = top + char
#print ("=> two_chars:", two_chars)
if (two _chars in balan pairs):

Queues and Stacks ¢ 215

#print ("old stack:",my stack)
#remove right-most element:
my stack = my stack[:-1]
if (my stack.size == 0):
my stack = np.array([])
#print ("new stack:",my stack)
continue
else:
#print ("non-match:", char)
break
else:
print ("empty stack: invalid string",my expr)
return False
else:
print ("invalid character:",char)
return False

return (my stack.size == 0)

main code starts here:
expr list = np.array (["[(
IV[(
((
((

for expr in expr list:
if (check balanced(expr) == True):
print ("balanced string:",expr)
else:
print ("unbalanced string:",expr)

Listing 7.11 is the longest code sample in this chapter that also reveals
the usefulness of combining a stack with recursion in order to solve the task
at hand, which is to determine which strings comprise balanced parentheses.

Listing 7.11 starts with the function check balanced that takes a string
called my_expr as its lone parameter. Notice the way that the following vari-
ables are initialized:

left chars = " ([{"
right chars = ")]}"
balan pairs = np.array (["O","[1", "{}"])

The variable left chars and right chars contain the left-side paren-
theses and right-side parentheses, respectively, that are permissible in a well-
balanced string. Next, the variable balan pairs is an array of three strings
that represent a balanced pair of round parentheses, square parentheses, and
curly parentheses, respectively.

The key idea for this code sample involves two actions and a logical com-
parison, as follows:

1. Whenever a left parenthesis is encountered in the current string, this pa-
rentheses is pushed onto a stack.

216 * Python Data Structures Pocket Primer

2. Whenever a right parenthesis is encountered in the current string, we
check the top of the stack to see if it equals the corresponding left pa-
renthesis.

3. If the comparison in #2 is true, we pop the top element of the stack.

4. If the comparison in #2 is false, the string is unbalanced.

Repeat the preceding sequence of steps until we reach the end of the
string: if the stack is empty, the expression is balanced, otherwise the expres-
sion is unbalanced.

For example, suppose we the string my expr is initialized as “()”. The first
character is “(”, which is a left parenthesis: step #1 above tells us to push “(”
onto our (initially empty) stack called mystack. The next characterinmy_expr
is)7, which is a right parenthesis: step #2 above tells us to compare “)” with
the element in the top of the stack, which is “(" . Since “(” and *)” constitute a
balanced pair of parentheses, we pop the element “(” from the stack. We have
also reached the end of my expr, and since the stack is empty, we conclude
that “()” is a balanced expression (which we knew already).

Now suppose that we the string my expr is initialized as “((”. The first
character is “(”, which is a left parentheses, and step #1 above tells us to push
“(” onto our (initially empty) stack called mystack. The next character in
my expr is “(”, which is a left parenthesis: step #1 above tells us to push “(”
onto the stack. We have reached the end of my expr and since the stack is
nonempty, we have determined that my_expr is unbalanced.

As a third example, suppose that we the string my expr is initialized as
“(()". The first character is “(”, which is a left parentheses: step #1 above tells
us to push “(” onto our (initially empty) stack called mystack. The next char-
acter in my_expr is “(”, which is a left parenthesis: step #1 above tells us push
another “(“ onto the stack. The next character in my expr is)", and step #2
tells us to compare “)” with the element in the top of the stack, which is “(*.
Since “(“ and “)” constitute a balanced pair of parentheses, we pop the top-
most element of the stack. At this point we have reached the end of my expr,
and since the stack is nonempty, we know that my expr is unbalanced.

Try tracing through the code with additional strings consisting of a sequence
of parentheses. After doing so, the code details in Listing 7.11 will become
much simpler to understand.

The next code block in Listing 7.11 initializes the variable my_ expr as an
array of strings, each of which consists of various parentheses (round, square,
and curly). The next portion is a loop that iterates through the elements of my
expr and in turn invokes the function check balanced to determine which
ones (if any) comprise balanced parentheses. Launch the code in Listing 7.11
and you will see the following output:

balanced string: [()]{}{
unbalanced string: [()]{
unbalanced string: (()]{
unbalanced string: (()) (

Queues and Stacks ¢ 217

Consider enhancing Listing 7.11 so that the invalid character is displayed
for strings that consists of unbalanced parentheses.

TASK: TOKENIZE ARITHMETIC EXPRESSIONS

The code sample in this section is a prelude to the task in the next section
that involves parsing arithmetic expressions: in fact, the code in Listing 7.12
is included in the code in Listing 7.11. The rationale for the inclusion of a
separate code sample is to enable you to tokenize expressions that might not
be arithmetic expressions.

Listing 7.12 displays the contents of tokenize expr.py that illustrates
how to tokenize an arithmetic expression and also remove white spaces and
tab characters.

LISTING 7.12: tokenize_expr.py

import shlex

try:

from StringIO import StringIO
except ImportError:

from io import StringIO

expr list = [" 2789 * 3+47-8- 9",
|v4 /2 + 1!1,
"2 - 3 + 4 "

for expr in expr list:
input = StringIO (expr)
result = list(shlex.shlex (input))
print ("string:", expr)
print ("result:",result)

Listing 7.12 starts with a try/except block that imports StringI0 from
the appropriate location, followed by the variable expr 1ist that contains a
list of arithmetic expressions that include extra white spaces (including nonvis-
ible tab characters).

The next portion of Listing 7.12 contains a loop that iterates through each
element of expr list and then invokes the shlex.shlex function that
tokenizes each element. Launch the code in Listing 7.12 and you will see the
following output:

string: 2789 * 3+7-8- 9

result: ['2789', 'x', '3', 4T, Vv, v-v, ovgr, T-v, QU]
string: 4/2 + 1

result: ['4', '/', '2', '+', '1']

string: 2 - 3 + 4

result: ['2', '=-', '3', '"+', '4"']

218 e Python Data Structures Pocket Primer

TASK: EVALUATE ARITHMETIC EXPRESSIONS

Evaluating arithmetic expressions is an interesting task because there are
various ways to approach this problem. First, some people would argue that
the “real” way to solve this task involves lexers and parsers. However, the pur-
pose of this task is to familiarize you with parsing strings, after which you will
be better equipped to do so with nonarithmetic expressions.

Second, perhaps the simplest way involves the eval () function, which is
a one-line solution and therefore the simplest solution. However, this solution
does not familiarize you with parsing expressions.

After you have finished reading the code sample, you can enhance the code
in several ways. For example, the operators “*” and /7 have equal priority,
both of which have higher priority than “+” and “-” (and the latter pair have
equal priority). The current code sample dos not take into account this prior-
ity, which means that “2+3%4” is evaluated as 20 (which is incorrect) instead of
14 (which is the correct answer). So, one variation involves adding the priority
constraint for arithmetic operators.

The current code sample does not support round parentheses, square
brackets, curly braces, or exponentiation (try adding these additional features
after you finish reading this section).

Listing 7.13 displays the contents of the file parse expr.py that illus-
trates how to parse and evaluate an arithmetic expression using a stack.

LISTING 7.13: parse_expr.py

import numpy as np
import re

try:

from StringIO import StringIO
except ImportError:

from io import StringIO
import shlex

performs "numl oper num2"

and returns the result

def reduction (numl,num2,oper) :
numl = float (numl)
num?2 = float (num?2)
reduced = 0.0

#print ("RED string:",numl, oper, num2)
if(oper == "*"):
reduced = numl*num2
elif (oper == "/"):
reduced = numl/num2
elif (oper == "+"):
reduced = numl+num?2
elif (oper == "-"):

Queues and Stacks ¢ 219

reduced = numl-num2

else:
print ("Binvalid operator:", oper)
#print ("returning reduced value:", reduced)

return reduced

a function that finds numl and oper
and reduces "numl oper num2" and

then puts this result on the stack
def reduce stack(my stack):

num2 = my stack[len(my stack)-1]
oper = my stack[len(my stack)-2]
numl = my stack[len(my stack)-3]
#print ("Anuml:",numl, "oper:", oper, "num2:", num2)

remove the right-most three elements:
my stack = my stack[:-3]

reduced = reduction (numl,num?2, oper)

my stack = np.append(my stack, reduced)
#print ("Creturning my stack:",my stack)
return my stack

a function to place tokens on the stack
and determine when to reduce the stack
def reduce expr (my expr):

mathisymbols = ["*","/","+","_"]
#digits = [1 for 1 in range(0,10)]
digits = [str(i) for i in range(0,10)]
my stack = np.array([])

oper = nn

my expr = strip white spaces (my expr)

for idx in range (0, len(my expr)):

token = my expr[idx]

if token in math symbols:
my stack = np.append(my stack, token)
oper = token

else:
floatnum = float (token)
#print ("found number in expr:",token)
my stack = np.append(my stack,floatnum)
if (oper != ""):

my stack = reduce stack(my stack)

oper = ""

return my_ stack

strip white spaces and tokenize symbols:

def strip white spaces(my expr):
expr2 = re.split(r'[]',my expr)
my expr = [token for token in expr2 if token != '']
my expr = "".join(my expr)

220 e Python Data Structures Pocket Primer

tokenize string with symbols and no spaces (ex: '3+7-8-")
input = StringIO (my expr)

new expr = list(shlex.shlex (input))

#print ("string:",my expr)

#print ("result:",new_expr)

return new_ expr

expr list = ["4 /2 + 1",
"2 - 3 + 4 v,
" 125 * 3+47-8- 9"]

for expr in expr list:

print ("=> string:",expr)
result = reduce expr (expr)
print ("=> result:",result)
print ()

Listing 7.13 starts with a try/except block in order to import the Python
shlex library, which will handle the “heavy lifting” in this code sample.

The next portion of Listing 7.13 contains the function reduction, that
takes three parameters, where the first two are strings containing numbers
and the third parameter is the arithmetic parameter to invoke on the first
two parameters. After converting numl and num2 to floating point num-
bers, an 1 £/e1if code block determine the value of oper, and then applies
it to the other two parameters. For example, if num1, num2, and oper have
the values 3, 4, and “*”, the result is 3*4 = 12, which is returned to the call-
ing function.

The next portion of Listing 7.13 contains the function reduce_stack ()
that takes a single parameter that is our current stack. This function pops the
top three values from the stack and assigns them to num2, oper, and numl,
respectively. Next, this function invokes the function reduction () to deter-
mine the result operating on the two numeric values, as shown here:

reduced = reduction (numl,num?2, oper)
my stack = np.append(my stack, reduced)

As you can see, the purpose of this function is to perform a stack reduc-
tion operation. The next portion of Listing 7.13 contains the function reduce
expr () that starts by initializing the following variables:

* math symbols consists of the four standard arithmetic operators

e digits is assigned the digits in the range of 0 to 9

e my stack is initialized as an empty NumPy array

® oper is an empty string (and assigned something in math_symbols later)

The next portion of the function reduce expr () initializes my expr as
the result of invoking the function strip white spaces (), which is where
the “heavy lifting” is performed in this code sample.

Queues and Stacks ¢ 221

The next section in reduce_expr () contains a loop that iterates through each
character called token in the string my expr, and performs the following logic:

e If token is a math symbol, append it to my stack and set oper equal
to token.

* Otherwise, append the floating point version of token to the stack, and if
oper is not null, invoke the reduce stack () function (described above).

When the preceding loop finishes execution, the function returns the
updated contents of my_stack to the calling function.

The important function strip white spaces() removes redundant
white spaces from my _expr and assigns the result to expr2, after which expr2
is tokenized and then used to reinitialize the contents of my expr. Then the
join () operations concatenates all the elements of my_ expr. At this point, we
invoke shlex () that returns a perfectly parsed arithmetic expression.

The final portion of Listing 7.13 initializes the variable expr 1ist as an
array of arithmetic expressions, followed by a loop that invokes the function
reduce_expr with each element of expr 1ist, and then prints the evaluated
expression. Now launch the code in Listing 7.13 and you will see the following
output:

=> string: 4 /2 + 1
=> result: ['3.0"]

=> string: 2 - 3 + 4
=> result: ['3.0"']

=> string: 125 * 3+7-8- 9
=> result: ['365.0']

INFIX, PREFIX, AND POSTFIX NOTATIONS

There are three well-known and useful techniques for representing arith-
metic expressions.

Infix notation involves specifying operators between their operands, which
is the typical way that we write arithmetic expressions (example: 3+4%*5).

Prefix notation (also called Polish notation) involves specifying operators
before their operands, an example of which is here:

3+4*5 becomes + 3 * 45
3+4 becomes + 3 4

Postfix notation (also called Reverse Polish Notation) involves specifying
operators affer their operands, an example of which is here:

3+4#%5 becomes 34 5 * +

222 o Python Data Structures Pocket Primer

The following table contains additional examples of expressions using infix,
prefix, and postfix notation.

Infix Prefix Postfix
x+y +Xy xy+
X-y Xy XY=
x/y /Ry xy/
X*y *Xy Xy*
X"y ~yx yx”
(x+y) *z *(xty)z (x+y)z*
(x+ty) *z *(+xy) z (xy+) z*

Let’s look at the following slightly more complex infix expression (note the
“/” that is shown in bold):

[[x+(y/z)=-d]"2]/ (x+y)

We will perform an iterative sequence of steps to convert this infix expres-
sion to a prefix expression by applying the definition of infix notation to the
top-level operator. In this example, the top-level operator is the “/” symbol that
is shown in bold. We need to place this “/” symbol in the left-most position, as
shown here (and notice the “A” symbol shown in bold):

/[[x+y/z=d]*2] (x+y)

Now we need to place this “*” symbol immediately to the left of the second
left square bracket, as shown here (and notice the “/” shown in bold):

/[N [x+(y/z)=d] 2] (+xy)

Now we need to place this “/” symbol immediately to the left of the variable
y, as shown here (and notice the “+” shown in bold):

/M Ix+(/yz) -d]2] (+xy)

Now we need to place this “+” symbol immediately to the left of the vari-
able x, as shown here (and notice the “/” shown in bold):

/1M % (/yz) -d12] (+xy)

Now we need to place this “/” symbol immediately to the left of the vari-
able x, as shown here, which is now an infix expression:

/I [=-(+(/yz))dl2] (+xy)
The relative priority of arithmetic operators can be specified as follows:

precedence={""":5,"'"* "4, /4, 43, =03, (M:2,") 1)

Queues and Stacks ¢ 223

SUMMARY

This chapter started with an introduction to queues, along with real-world
examples of queues. Next, you learned about several functions that are associ-
ated with a queue, such as isEmpty (), isFull(), push(),and dequeue ().

Next you learned about stacks, which are LIFO data structures, along with
some Python code samples that showed you how to perform various opera-
tions on stacks. Some examples included reversing the contents of a stack and
also included determining whether or not the contents of a stack formed a
palindrome.

In the final portion of this chapter, you learned how to determine whether
or not a string consists of well-balanced round parentheses, square brackets,
and curly braces; how to parse an arithmetic expression; and also how to con-
vert infix notation to postfix notation.

A

append () function, 28-29

append node () function, 154156,
165-166

Arguments and parameters, 21

Arrays, 28

B

Binary search algorithms, 115-117
Boolean operators, 17-18
break statement, 16

Bubble sort, 118-119

C
check balanced () function, 52-53
Circular linked lists, 149-153
Circular queue, 194
Combinatorics, 61-63
counting task, 65-67
subsets of a finite set, 64—65
sum_binomials () function, 63-64
common_bits () function, 104-106
Comparison operators, 17
Conditional logic, 16
continue statement, 16
count bits () function, 107
count digits () function, 53-54

D
Data structures, linked lists
for doubly linked lists, 134-135

INDEX

for hash table, 135
linear, 134
nonlinear, 134
operations, 135-136
for queue, 135
for singly linked lists, 134
for stack, 135
for trees, 135
delete duplicates|()
function, 175-178
Dequeue, 194
Dictionaries
checking for keys, 37
create, 36
data interpolation, 38
deleting keys, 37-38
display the contents, 36-37
functions and methods, 38
iterate through, 38
Doubly linked lists
append_node () function, 154-156
data structures, 134-135
delete a node, 161-164
insert node () function, 156-158
search and update a node, 158-161

F

find middle () method, 185-188

find prime divisors()
function, 55-57

for loop, 12

226 * Python Data Structures Pocket Primer

G
gcd () function, 58-60
getFirstSetBitPos ()

function, 107-108
Global variables, 18
Goldbach’s conjecture, 57-58

|

Infix notation, 221

Insertion sort, 121-122

insert node () function, 156-158
is prime () function, 54-55

J
join () method, 26-27

L
Lambda expressions, 23
lcm () function, 60—61
Linear data structures, 134
Linear search algorithm, 114-115
Linked lists

advantages, 136-137

append_node () function, 165-166

circular linked lists, 149-153
concatenate two lists, 178-180
data structures
for doubly linked lists, 135
for hash table, 135
linear data structures, 134
nonlinear data structures, 134
for queue, 135
for singly linked lists, 134-135
for stack, 135
for trees, 135
delete duplicates|()
function, 175-178
disadvantages, 137
doubly linked lists

append_node () function, 154-156

delete a node, 161-164

insert node () function, 156-158
search and update a node, 158-161

find middle () method, 185-188
first k nodes, 169-171

last k nodes, 171-172

merge two lists, 180-183
palindromes, 190-192
reconstructing numbers in, 166—169
reverse the elements, 188-190

singly linked lists, 136
create and append operations, 137-139
find a node in, 139-143
nodes in, 136
reverse order via recursion, 173-175
trade-offs, 136-137
update and delete operations, 143-149
split list () method, 183-185
Lists
additional functions, 29-30
arithmetic operations, 25-26
basic operations, 24-25
comprehensions, 26, 30-31
filter-related operations, 26
Local variables, 18
Loops
for loop, 12
nested loops, 13-14
numeric exponents, 12-13
split () function
to compare words, 14-15
with for loops, 14
while loop, 15-16

M

max_min_powerk () function, 70-71
Merge sort, 123-129

minOperations () function, 108-109
Mutable and immutable types, 39-40

N
Nested loops, 13-14
Nonlinear data structures, 134

(0
One-dimensional array, 95-96

P
Palindrome

in linked lists, 190—192

for strings and arrays, 85-86
palindromel () function, 83-85
Pass by reference vs. value, 20-21
pass statement, 16
permute () function, 80-81
Postfix notation, 221
Precedence of operators, 11
Prefix notation, 221
Primitive data types

numbers, 2-5

strings, 6-10
Unicode and UTF-8, 5-6
Priority queue, 194-195

Python

append () function, 28-29
arguments and parameters, 21
arrays, 28
Boolean operators, 17-18
break statement, 16
comparison operators, 17
conditional logic, 16
continue statement, 16
dictionaries
checking for keys, 37
create, 36
data interpolation, 38
deleting keys, 37-38
display the contents, 36-37
functions and methods, 38
iterate through, 38
join () method, 26-27
lambda expressions, 23
list comprehensions, 30-31
lists
additional functions, 29-30
arithmetic operations, 25-26
basic operations, 24-25
filter-related operations, 26
loops
for loop, 12
nested loops, 13-14
numeric exponents, 12-13
split () function, 14-15
while loop, 15-16
matrices, 32-33

mutable and immutable types, 3940
pass by reference vs. value, 20-21

pass statement, 16
precedence of operators, 11
primitive data types
numbers, 2-5
strings, 6-10
Unicode and UTF-8, 5-6
queues, 33-34
range () method, 27
reserved words, 11
sequence types, 39
sets, 35-36

specify default values in a function, 22-23

split () function, 27-28

Index o 227

Standard Library modules, 1-2
tuples, 34
user-defined functions, 21-22
variables

local or global, 18

scope of variables, 19-20
vectors, 32

Q
Queues, 33-34

arrays, 200-203
circular queue, 194
data structures, 135
definition, 194
Dequeue, 194
priority queue, 194-195
Python List class, 195-198
rolling queue, 198-200
Quick sort algorithm, 129-131

R
range () method, 27
Recursion, 42
arithmetic series, 42-43
arith partial sum()
function, 44-45
iterative approach, 43
recursive function, 44
check balanced () function, 52-53
count digits () function, 53-54
factorial values
iterative approach, 48
recursive function, 48—49
tail recursion, 49
Fibonacci numbers
iterative approach, 50-51
recursion, 50
find prime divisors()
function, 55-57
gcd () function, 58-60
geometric series
iterative approach, 45-46
recursive function, 4647
Goldbach’s conjecture, 57-58
is prime () function, 54-55
lcm () function, 60-61
reverse a string, 51-52
Reserved words, 11
Reverse Polish Notation, 221
Rolling queue, 198-200

228 o Python Data Structures Pocket Primer

S
Scope of variables, 19-20
Search algorithms
binary search, 115-117
linear search algorithm, 114-115
Selection sort, 120-121
Sequences of strings, 87-89
Sets, 35-36
Shellsort, 131-132
Singly linked lists, 136

generate Os and 1s, 100-101
getFirstSetBitPos ()

function, 107-108
inversion of adjacent elements, 98-100
list all subsets of a set, 81-83
longest palindrome, 85-86
longest sequences of substrings, 89-93
match string with word list, 93-95
max min_powerk () function, 70-71
minOperations () function, 108-109

create and append operations, 137-139
find a node in, 139-143
nodes in, 136
reverse order via recursion, 173-175
trade-offs, 136-137
update and delete operations, 143-149
Sorting algorithms
bubble sort, 118-119
comparison of, 123
insertion sort, 121-122
is_anagram() function, 119-120
merge sort, 123-129
quick sort algorithm, 129-131
selection sort, 120-121
Shellsort, 131-132
Space complexity, 70
split () function, 27-28
to compare words, 14-15
with for loops, 14
Stack
balanced parentheses, 214-217
evaluate arithmetic expressions,
218-221
min and max stack values, 208-210
operations, 204-207
reverse and print stack values, 207-208
reverse a string, 213-214
tokenize arithmetic expressions, 217
use cases, 203
using array, 210-213
Standard Library modules, 1-2
Strings and arrays
binary substrings, 72
check () function, 106
common_bits () function, 104-106
common substring of two binary
strings, 73-74
compute XOR without XOR, 109-110
count bits () function, 107

multiply and divide via recursion, 74-75

one-dimensional array, 95-96

palindromel () function, 83-85

permute () function, 80-81

sequences of strings, §7-89

shift non-zero values to left, 96-97

sort array, 97-98

sum of prime and composite numbers,
75-77

swapAdjacentPairBits ()
function, 103-104

swap () function, 101-103

time and space complexity, 70

transpose () function, 111-112

two-dimensional array, 110-111

unique chars () function, 78-79

word_count () function, 77-78

swapAdjacentPairBits () function,
103-104
swap () function, 101-103

T

Time complexity, 70

Time-space trade-off, 70
transpose () function, 111-112
Tuples, 34

Two-dimensional array, 110-111

U
unique chars () function, 78-79
User-defined functions, 21-22

v
Vectors, 32

w
while loop, 15-16
word count () function, 77-78

	Cover
	Title Page
	Copyright
	Dedication
	Contents
	Preface
	Chapter 1: Introduction to Python
	Some Standard Modules in Python
	Simple Data Types in Python
	Working With Numbers
	Working With Other Bases
	The chr() Function
	The round() Function in Python

	Unicode and UTF-8
	Working With Unicode
	Working With Strings
	Comparing Strings
	Uninitialized Variables and the Value None in Python

	Slicing and Splicing Strings
	Testing for Digits and Alphabetic Characters

	Search and Replace a String in Other Strings
	Precedence of Operators in Python
	Python Reserved Words
	Working With Loops in Python
	Python for Loops
	Numeric Exponents in Python

	Nested Loops
	The split() Function With for Loops
	Using the split() Function to Compare Words
	Python while Loops
	Conditional Logic in Python
	The break/continue/pass Statements
	Comparison and Boolean Operators
	The in/not in/is/is not Comparison Operators
	The and, or, and not Boolean Operators

	Local and Global Variables
	Scope of Variables
	Pass by Reference Versus Value
	Arguments and Parameters
	User-Defined Functions in Python
	Specifying Default Values in a Function
	Returning Multiple Values From a Function

	Lambda Expressions
	Working With Lists
	Lists and Basic Operations
	Lists and Arithmetic Operations
	Lists and Filter-Related Operations

	The join(), range(), and split() Functions
	Arrays and the append() Function
	Other List-Related Functions
	Working With List Comprehensions
	Working With Vectors
	Working With Matrices
	Queues
	Tuples (Immutable Lists)
	Sets
	Dictionaries
	Creating a Dictionary
	Displaying the Contents of a Dictionary
	Checking for Keys in a Dictionary
	Deleting Keys From a Dictionary
	Iterating Through a Dictionary
	Interpolating Data From a Dictionary

	Dictionary Functions and Methods
	Other Sequence Types in Python
	Mutable and Immutable Types in Python
	Summary

	Chapter 2: Recursion and Combinatorics
	What Is Recursion?
	Arithmetic Series
	Calculating Arithmetic Series (Iterative)
	Calculating Arithmetic Series (Recursive)
	Calculating Partial Arithmetic Series

	Geometric Series
	Calculating a Geometric Series (Iterative)
	Calculating Arithmetic Series (Recursive)

	Factorial Values
	Calculating Factorial Values (Iterative)
	Calculating Factorial Values (Recursive)
	Calculating Factorial Values (Tail Recursion)

	Fibonacci Numbers
	Calculating Fibonacci Numbers (Recursive)
	Calculating Fibonacci Numbers (Iterative)

	Task: Reverse a String via Recursion
	Task: Check for Balanced Parentheses
	Task: Calculate the Number of Digits
	Task: Determine if a Positive Integer Is Prime
	Task: Find the Prime Factorization of a Positive Integer
	Task: Goldbach’s Conjecture
	Task: Calculate the GCD (Greatest Common Divisor)
	Task: Calculate the LCM (Lowest Common Multiple)
	What Is Combinatorics?
	Working With Permutations
	Working With Combinations

	Task: Calculate the Sum of Binomial Coefficients
	The Number of Subsets of a Finite Set
	Task: Subsets Containing a Value Larger Than k
	Summary

	Chapter 3: Strings and Arrays
	Time and Space Complexity
	Task: Maximum and Minimum Powers of an Integer
	Task: Binary Substrings of a Number
	Task: Common Substring of Two Binary Numbers
	Task: Multiply and Divide via Recursion
	Task: Sum of Prime and Composite Numbers
	Task: Count Word Frequencies
	Task: Check if a String Contains Unique Characters
	Task: Insert Characters in a String
	Task: String Permutations
	Task: Find All Subsets of a Set
	Task: Check for Palindromes
	Task: Check for the Longest Palindrome
	Working With Sequences of Strings
	The Maximum Length of a Repeated Character in a String
	Find a Given Sequence of Characters in a String

	Task: Longest Sequences of Substrings
	The Longest Sequence of Unique Characters
	The Longest Repeated Substring

	Task: Match a String With a Word List (Simple Case)
	The Harder Case

	Working With 1D Arrays
	Rotate an Array

	Task: Shift Non-Zero Elements Leftward
	Task: Sort Array In-Place in O(n) Without a Sort Function
	Task: Invert Adjacent Array Elements
	Task: Generate 0 That Is Three Times More Likely Than a 1
	Task: Invert Bits in Even and Odd Positions
	Task: Invert Pairs of Adjacent Bits
	Task: Find Common Bits in Two Binary Numbers
	Task: Check for Adjacent Set Bits in a Binary Number
	Task: Count Bits in a Range of Numbers
	Task: Find the Right-Most Set Bit in a Number
	Task: The Number of Operations to Make All Characters Equal
	Task: Compute XOR Without XOR for Two Binary Numbers
	Working With 2D Arrays
	The Transpose of a Matrix
	Summary

	Chapter 4: Search and Sort Algorithms
	Search Algorithms
	Linear Search
	Binary Search Walk-Through
	Binary Search (Iterative Solution)
	Binary Search (Recursive Solution)

	Well-Known Sorting Algorithms
	Bubble Sort
	Find Anagrams in a List of Words

	Selection Sort
	Insertion Sort
	Comparison of Sort Algorithms
	Merge Sort
	Merge Sort With a Third Array
	Merge Sort Without a Third Array
	Merge Sort: Shift Elements From End of Lists

	How Does Quick Sort Work?
	Quick Sort Code Sample
	Shellsort
	Summary

	Chapter 5: Linked Lists
	Types of Data Structures
	Linear Data Structures
	Nonlinear Data Structures

	Data Structures and Operations
	Operations on Data Structures

	What Are Singly Linked Lists?
	Trade-Offs for Linked Lists

	Singly Linked Lists: Create and Append Operations
	A Node Class for Singly Linked Lists
	Appending a Node in a Linked List
	Python Code for Appending a Node

	Singly Linked Lists: Finding a Node
	Singly Linked Lists: Update and Delete Operations
	Updating a Node in a Singly Linked List
	Python Code to Update a Node

	Deleting a Node in a Linked List: Method #1
	Python Code for Deleting a Node: Method #2
	Circular Linked Lists
	Python Code for Updating a Circular Linked List
	Working With Doubly Linked Lists (DLL)
	A Node Class for Doubly Linked Lists

	Appending a Node in a Doubly Linked List
	Python Code for Appending a Node
	Python Code for Inserting an Intermediate Node

	Searching and Updating a Node in a Doubly Linked List
	Updating a Node in a Doubly Linked List
	Python Code to Update a Node

	Deleting a Node in a Doubly Linked List
	Python Code to Delete a Node

	Summary

	Chapter 6: Linked Lists and Common Tasks
	Task: Adding Numbers in a Linked List (1)
	Task: Reconstructing Numbers in a Linked List (1)
	Task: Reconstructing Numbers in a Linked List (2)
	Task: Display the First k Nodes
	Task: Display the Last k Nodes
	Display a Singly Linked List in Reverse Order via Recursion
	Task: Remove Duplicate Nodes
	Task: Concatenate Two Lists
	Task: Merge Two Lists
	Task: Split a Single List into Two Lists
	Task: Find the Middle Element in a List
	Task: Reversing a Linked List
	Task: Check for Palindromes in a Linked List
	Summary

	Chapter 7: Queues and Stacks
	What Is a Queue?
	Types of Queues

	Creating a Queue Using a Python List
	Creating a Rolling Queue
	Creating a Queue Using an Array
	What Is a Stack?
	Use Cases for Stacks
	Operations With Stacks

	Working With Stacks
	Task: Reverse and Print Stack Values
	Task: Display the Min and Max Stack Values (1)
	Creating Two Stacks Using an Array
	Task: Reverse a String Using a Stack
	Task: Balanced Parentheses
	Task: Tokenize Arithmetic Expressions
	Task: Evaluate Arithmetic Expressions
	Infix, Prefix, and Postfix Notations
	Summary

	Index

