
Python Data
Science

Chaolemen Borjigin

Python Data Science

Python Data Science

Chaolemen Borjigin

ISBN 978-981-19-7701-5 ISBN 978-981-19-7702-2 (eBook)
https://doi.org/10.1007/978-981-19-7702-2

The print edition is not for sale in China (Mainland). Customers from China (Mainland) please order the print book from: Publishing House of

Electronics Industry.

ISBN of the Co-Publisher’s edition: 978-7-121-41200-4

© Publishing House of Electronics Industry, Beijing, China 2023

Jointly published with Publishing House of Electronics Industry, Beijing, China

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is con-

cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other

physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar method-

ology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a

specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publishers, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the

date of publication. Neither the publishers nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained

herein or for any errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.

The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Chaolemen Borjigin
Renmin University of China
Beijing, China

https://doi.org/10.1007/978-981-19-7702-2

Preface

“Writing a textbook” holds immeasurable merit as it allows us to save others’ time with our own. In today’s
impetuous and realistic society, I have dedicated myself to writing textbooks, knowing that they may not be
counted among my personal achievements. However, I find immense joy in the process of writing this textbook.
As the old saying goes, “If you’re afraid, don't do it; if you’re doing it, don’t be afraid!” It has taken me 18
months of dedicated effort simply because I want to utilize my time to save the valuable time of the readers.

“Writing a textbook” requires an exceptional top-down design and stepwise refinement. Through years of teaching
experience, I have come to realize the urgent need for an excellent Python textbook for the education of data
science and big data professionals. Existing textbooks face several issues: firstly, they teach (or learn) Python as
if it were Java or C, failing to capture the unique characteristics of Python. Secondly, the style of “knowledge
first, code later” and the dominance of knowledge over practical implementation seem to invert their proper
order of importance. Thirdly, there is no clear distinction between Python textbooks used for data science and
computer science, leading to confusion. Lastly, some authors treat the readers (or themselves) as programming
novices, neglecting the fact that most readers possess prior knowledge of Java or C and are learning Python as a
second programming language. They do not require repetitive explanations of low-level concepts or redundant
explanations of the same knowledge in different languages. Overcoming these limitations and exploring new
teaching and textbook-writing patterns was my original intention in writing this book. Whether or not I have
achieved this goal remains to be seen and depends on your careful reading and fair judgment.

“Writing a textbook” necessitates the knowledge and practice of countless resources. Throughout the writing
process, I extensively referred to monographs, textbooks, papers, open-source projects, and original data. The
reference list contains detailed citations for the sources I have used. However, I may have inadvertently missed
a few. If so, I sincerely apologize to the relevant scholars. This book also incorporates data science research and
engineering projects completed by my team since 2012, as well as the questions and discussions raised by my
students. The course slides, raw data, source codes, and errata list for this textbook can be found at github.com.
For further information, please contact me at chaolemen@ruc.edu.cn.

“Writing a textbook” is impossible without the help of others. The leaders and editors at Springer Press and
Publishing House of Electronics Industry, especially editor Zhang Haitao, have made significant contributions
to the publication of this book. I would like to express my gratitude to the Ministry of Education-IBM Industry-
University Cooperation Collaborative Education Project for their funding and support. Special thanks go to Zhang
Chen, Xiao Jiwen, Liu Xuan, Tianyi Zhang, Meng Gang, Sun Zhizhong, Wang Rui, Liu Yan, Yang Canjun, Li
Haojing, Wang Yuqing, Qu Hanqing, Zhao Qun, Li Xueming, Ji Jiayu, and other students at Renmin University
of China for their invaluable proofreading assistance.

“Writing a textbook” is a lengthy process of iterative refinement. This edition may still have some shortcomings,
and I genuinely welcome your feedback and suggestions. This textbook is my third book after Data Science and
Data Science Theory and Practice. Someone once said to me, “Prof. Chaolemen, you have already achieved
so much, why do you still work so tirelessly? You will become the number one in the field of data science.” I
replied, “No, that is not my purpose. I have undertaken all these endeavors with the belief that I strive to be the
one who works the hardest and is most willing to invest time and energy in this field. As for other matters, I am
not concerned. My hope is that my dedication and effort will inspire you to do the same!

In this textbook, I have aimed to provide a comprehensive and cohesive guide to Python programming. I have
taken great care in addressing the shortcomings I observed in existing textbooks. Rather than treating Python as a
mere translation of Java or C, I have emphasized its unique features and characteristics. The content is structured
in a logical and progressive manner, ensuring that knowledge and practical implementation are presented in the
right order of importance.

V 

mailto:chaolemen@ruc.edu.cn

Throughout the writing process, I have drawn from a wide range of resources, including monographs, textbooks,
research papers, open-source projects, and my team's own data science endeavors. The reference list provides
detailed citations for the sources I have used. While I have made every effort to be thorough, I acknowledge that
there may be a few omissions. For any oversights, I sincerely apologize to the respective scholars.

I am immensely grateful to the leaders and editors at Springer Press and Publishing House of Electronics
Industry, particularly editor Zhang Haitao, for their invaluable contributions to the publication of this book.
Additionally, I would like to express my appreciation to the Ministry of Education-IBM Industry-University
Cooperation Collaborative Education Project as well as The Quality Textbook Support Project for Graduate
Students at Renmin University of China for their support and funding.

I extend my heartfelt thanks to Zhang Chen, Xiao Jiwen, Liu Xuan, Tianyi Zhang, Meng Gang, Sun Zhizhong,
Wang Rui, Liu Yan, Yang Canjun, Li Haojing, Wang Yuqing, Qu Hanqing, Zhao Qun, Li Xueming, Ji Jiayu, and
other students at Renmin University of China for their diligent proofreading of the book.

“Writing a textbook” is a laborious process that requires dedication, perseverance, and continuous refinement.
While I have strived for excellence in this edition, I acknowledge that there may still be areas for improvement.
I genuinely welcome your feedback and advice, as it will contribute to the future enhancement of this textbook.

Once again, I want to emphasize that my purpose in writing this textbook is to share my knowledge and contribute
to the field of data science. It is my hope that through your engagement with this book, my efforts will become
your efforts, and together we can advance the understanding and application of Python programming in the
realm of data science.

Chaolemen Borjigin
May 13, 2023

 VI Preface

Thank you for embarking on this data science journey with me.

Contents

1.  Python and Data Science���  1
1.1  How to learn Python for data science���  2

Q&A���  2
1.2  How to setup my Python IDE for Data Science���  5

Q&A���  5
1.3  How to write and run my Python codes��  8

Q&A���  8
1.3.1 Inputs���  9
1.3.2 Outputs���10
1.3.3 Errors and warnings���11
1.3.4 External data files��12
1.3.5 Tips for Python programming��13

Exercises��16

2.  Basic Python Programming for Data Science��19
2.1  Data Types��20

Q&A���20
2.1.1 Checking data types���21
2.1.2 Testing data types��22
2.1.3 Converting data types��23
2.1.4 Built-in data types��24
2.1.5 Sequences��26

2.2  Variables��27
Q&A���27
2.2.1 Defining variables��28
2.2.2 Dynamically typed language���28
2.2.3 Strongly typed language��28
2.2.4 Variable naming rules��29
2.2.5 Case-sensitivity��29
2.2.6 Variable naming rules��30
2.2.7 Checking IPython variables���31
2.2.8 Checking Python keywords���32
2.2.9 Checking all defined variables���32
2.2.10 Deleting variables��32

2.3  Operators and Expressions��34
Q&A���34
2.3.1 Common used operators��37
2.3.2 Built-in functions���41
2.3.3 Math modules��42
2.3.4 Precedence and associativity���43

2.4  Statements���44
Q&A���44
2.4.1 Writing a statement in a line���45
2.4.2 Writing multiple statements in a single line���45
2.4.3 Splitting a statement into multiple lines��46
2.4.4 Compound statements��46
2.4.5 Empty statements���48

VII 

2.5  Assignment statements��49
Q&A���49
2.5.1 Assigning objects���50
2.5.2 Chained assignment statements���50
2.5.3 Augmented assignment statements��50
2.5.4 Sequence unpacking��51
2.5.5 Swapping two variables���52

2.6  Comments���53
Q&A���53
2.6.1 Line comments��54
2.6.2 Block comments��54

2.7  If statements��56
Q&A���56
2.7.1 Basic syntax���56
2.7.2 Elif statement���57
2.7.3 Ternary operators���58
2.7.4 Advanced syntax��58

2.8  For statements���60
Q&A���60
2.8.1 Basic syntax���61
2.8.2 The range() function���61
2.8.3 Advanced syntax��62

2.9  While statements���64
Q&A���64
2.9.1 Basic syntax���65
2.9.2 Advanced syntax��65

2.10  Lists���67
Q&A���67
2.10.1 Defining lists��68
2.10.2 Slicing��70
2.10.3 Reversing���71
2.10.4 Type conversion���73
2.10.5 the extend and append operator���73
2.10.6 List derivation��74
2.10.7 Insertion and deletion��76
2.10.8 Basic functions��77

2.11  Tuples��82
Q&A���82
2.11.1 Define tuples��83
2.11.2 Main features���84
2.11.3 Basic usage��87
2.11.4 Tuples in data science��88

2.12  Strings���90
Q&A���90
2.12.1 Defining strings��91
2.12.2 Main features���92
2.12.3 String operations��93

2.13  Sequences��98
Q&A���98
2.13.1 Indexing���99
2.13.2 Slicing��99

 VIII Contents

2.13.3 Iteration��100
2.13.4 Unpacking��100
2.13.5 Repeat operator��101
2.13.6 Basic Functions��102

2.14 Sets���105
Q&A���105
2.14.1 Defining sets��106
2.14.2 Main features���106
2.14.3 Basic operations���107
2.14.4 Sets and data science���109

2.15 Dictionaries��110
Q&A���110
2.15.1 Defining dictionaries��111
2.15.2 Accessing dictionary items��111
2.15.3 Dictionary and data science���113

2.16 Functions��114
Q&A���114
2.16.1 Built-in functions���115
2.16.2 Module Functions��115
2.16.3 User-defined functions���115

2.17 Built-in functions���117
Q&A���117
2.17.1 Calling built-in functions���118
2.17.2 Mathematical functions���118
2.17.3 Type conversion functions���119
2.17.4 Other common used functions���120

2.18 Module functions���124
Q&A���124
2.18.1 import module name��124
2.18.2 import module name as alias���126
2.18.3 from module name import function name���126

2.19 User-defined functions���127
Q&A���127
2.19.1 Defining user-defined functions���128
2.19.2 Function docStrings���130
2.19.3 Calling user-defined functions���130
2.19.4 Returning values��131
2.19.5 Parameters and arguments���132
2.19.6 Scope of variables��133
2.19.7 Pass-by-value and pass-by-reference���135
2.19.8 Arguments in functions��136

2.20 Lambda functions��138
Q&A���138
2.20.1 Defining a lambda function���139
2.20.2 Calling a lambda function��139

Exercises��141

3. Advanced Python Programming for Data Science��145
3.1 Iterators and generators��146

Q&A���146
3.1.1 Iterable objects vs. iterators���147
3.1.2 Generator vs. iterators��148

3.2 Modules���150

IX Contents

Q&A���150
3.2.1 Importing and using modules��151
3.2.2 Checking built-in modules list���152

3.3 Packages���153
Q&A���153
3.3.1 Packages vs modules���154
3.3.2 Installing packages��154
3.3.3 Checking installed packages��154
3.3.4 Updating or removing installed packages���155
3.3.5 Importing packages or modules���156
3.3.6 Checking Package Version���156
3.3.7 Commonly used Packages���157

3.4 Help documentation���158
Q&A���158
3.4.1 The help function���159
3.4.2 DocString���159
3.4.3 Checking source code��160
3.4.4 The doc attribute��161
3.4.5 The dir() function��162

3.5 Exception and errors��164
Q&A���164
3.5.1 Try/Except/Finally���165
3.5.2 Exception reporting mode���166
3.5.3 Assertion��167

3.6 Debugging��168
Q&A���168
3.6.1 Enabling the Python Debugger��169
3.6.2 Changing exception reporting modes��170
3.6.3 Working with checkpoints���171

3.7 Search path���172
Q&A���172
3.7.1 The variable search path��173
3.7.2 The module search path���175

3.8 Current working directory���178
Q&A���178
3.8.1 Getting current working directory���179
3.8.2 Resetting current working directory��179
3.8.3 Reading/writing current working directory���179

3.9 Object-oriented programming��181
Q&A���181
3.9.1 Classes���183
3.9.2 Methods���184
3.9.3 Inheritance���185
3.9.4 Attributes���187
3.9.5 Self and Cls��188
3.9.6 __new__ () and __init__()��188

Exercises��191

4. Data wrangling with Python���195
4.1 Random number generation���196

Q&A���196
4.1.1 Generating a random number at a time���197
4.1.2 Generating a random array at a time���198

 X Contents

4.2 Multidimensional arrays��199
Q&A���199
4.2.1 Createting ndarrays��203
4.2.2 Slicing and indexing ndarrays���206
4.2.3 Shallow copy and deep copy���212
4.2.4 Shape and reshape���213
4.2.5 Dimension and size��216
4.2.6 Evaluation of ndarrays���218
4.2.7 Insertion and deletion��221
4.2.8 Handling missing values��222
4.2.9 Broadcasting ndarray���223
4.2.10 Sorting an ndarray���224

4.3 Series��226
Q&A���226
4.3.1 Creating Series���227
4.3.2 Working with Series���229

4.4 DataFrame��233
Q&A���233
4.4.1 Creating DataFrames���236
4.4.2 Index or columns of DataFrames���237
4.4.3 Slicing DataFrames��238
4.4.4 Filtering DataFrames���242
4.4.5 Arithmetic operating on DataFrames���246
4.4.6 Descriptive analysis of DataFrames��251
4.4.7 Sorting DataFrames���253
4.4.8 Importing/Exporting DataFrames��254
4.4.9 Handling missing values with Pandas���255
4.4.10 Grouping DataFrames��260

4.5 Date and time���262
Q&A���262
4.5.1 Creating a time or date object��263
4.5.2 Parsing a string to a time or date object���264
4.5.3 Getting current local data or time object���266
4.5.4 Evaluating the difference between two date or time objects���267
4.5.5 Setting a time or date object as the index of Pandas��267
4.5.6 The pandas.period_range() method���269

4.6 Data visualization��270
Q&A���270
4.6.1 Matplotlib visualization���272
4.6.2 Adjusting plot attributes���274
4.6.3 Changing the type of a plot��278
4.6.4 Changing the value range of the axes of a plot��278
4.6.5 Adjusting the margins of a plot��280
4.6.6 Creating multiple plots on the same coordinates���281
4.6.7 Adding an Axes to the current figure or retrieving an existing Axes�������������������������������������281
4.6.8 Saving plots to image files���282
4.6.9 Creating more complicate plots���283
4.6.10 Data visualization with Pandas��284
4.6.11 Data visualization with Seaborn��286
4.6.12 Data visualization cases projects���289

Exercises��291

XI Contents

5. Data analysis with Python���295
5.1 Statistical modelling with statsmodels���296

Q&A���296
5.1.1 Business understanding���297
5.1.2 Data loading���298
5.1.3 Data understanding��298
5.1.4 Data wrangling��300
5.1.5 Model selection and hyperparameter tuning���301
5.1.6 Fitting model and summarizing the Regression Results���303
5.1.7 Model evaluation���304
5.1.8 Assumptions testing���304
5.1.9 Model optimization and re-selection���306
5.1.10 Model application��309

5.2 Machine learning with scikit-learn��310
Q&A���310
5.2.1 Business understanding���311
5.2.2 Data loading���311
5.2.3 Data understanding��312
5.2.4 Data wrangling��315
5.2.5 Model selection and hyperparameter tuning���317
5.2.6 Model training���317
5.2.7 Predicting with a trained model���318
5.2.8 Model evaluation���318
5.2.9 Model optimization and application��319

5.3 Natural language understanding with NLTK���322
Q&A���322
5.3.1 Business understanding���323
5.3.2 Data loading���323
5.3.3 Data understanding��324
5.3.4 Text normalization���329
5.3.5 Tokenization���330
5.3.6 Extracting high frequency words���331
5.3.7 Generating word clouds���333

5.4 Image processing with OpenCV��335
Q&A���335
5.4.1 Installing and importing opencv-python package���336
5.4.2 Loading image from file��336
5.4.3 Converting a RGB image into Grayscale��336
5.4.4 Detecting faces��337
5.4.5 Showing images���339
5.4.6 Writing images���339

Exercises��340

Appendix I  Best Python Resources for Data Scientists���343

Appendix II  Answers to Chapter Exercises���

 XII Contents

345

1.  Python and Data Science

Python has become the most popular data science programming language in recent years. This chapter will
introduce:

	 How to learn Python for data science

	 How to setup my Python IDE for data science

	 How to write and run my Python code

1 © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_1

https://doi.org/10.1007/978-981-19-7702-2_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_1&domain=pdf

1.1  How to learn Python for data science

Q&A

 2 Python Data Science

Figure 1.1  Three reasons to learn Python

3 Python and Data Science

Tips

iPython is an interactive Shell (programming/computing environment) for Python.
The IPython Notebook is now known as the Jupyter Notebook, in which you can
write Python codes. Jupyter Notebook is widely used in data science/data analysis
projects, and it has many features and functions of iPython. See the iPython official
website (https://ipython.org) for more details.

Figure 1.2  Guido van Rossum (the creator of Python Programming language) and the
official website of Python

 4 Python Data Science

https://ipython.org

1.2  How to setup my Python IDE for Data Science

Q&A

5 Python and Data Science

Tips

Once you have Anaconda installed, you do not need to download or install the editors,
interpreters, packages, or package managers, nor manually edit their configuration
files.

Notes

This book uses Jupyter Notebook/Lab, the most commonly used editor in data
science, and the Python3 kernel (interpreter)

Tips

For more in-depth details about installing Anaconda on macOS or Linux, please
refer to the Anaconda official website: https://anaconda.com.

The Anaconda official website and introduction are shown in Figure 1.3. The menu items and their
usage are shown in Figure 1.4.

Figure 1.3  The Anaconda official website

 6 Python Data Science

https://anaconda.com

Figure 1.4  Windows Start menu items and their usage after Anaconda is installed

Figure 1.5 shows how to use the Jupter Notebook/Lab editor

Figure 1.5  How to use Jupyter Notebook for data science projects

7 Python and Data Science

1.3  How to write and run my Python codes

Q&A

 8 Python Data Science

1.3.1  Inputs

Tips

Jupyter Notebooks documents consist of “cells”: input cells and output cells. We
only need to type the codes in the input cell since the output cell is automatically
evaluated by Jupyter Notebook. For instance, the Output[1] shows the output of codes
in input[1] as the following cell.

In[1] x1=11
x1

Out[1] 11

Notes

When writing Python codes, you need to pay attention to their case sensitivity as well
as code indentation (the spaces at the beginning of a code line). For more information,
please refer to [2.4 Statements].

Tricks

The default shortcut for running a “Cell” in Jupyter Notebook is Ctrl+Enter. For more
shortcuts, you can refer to the Help/Keyboard Shortcuts menu item in the “Menu Bar”
of Jupyter Notebook.

In[2] #define variable x2
x2=12
x2

Out[2] 12

Tips

In an input “Cell” it is not necessary to start a code line with “#” since it denotes a
Python comment statement. A comment in Python starts with the hash character(#),
and extends to the end of the physical line. Please refer to [2.6 Comments] for more
details.

In[3] X3=13
X3

Out[3] 13

Tips

The number of In[] is the sequential order in which the input cell was executed in the
current session in the Jupyter Notebook Kernel.

Notes

When the same “Cell” is executed multiple times, the number in its In[] will be updated
accordingly. This means that the In[] number will reflect the order of execution,
indicating the current iteration of the cell. For more details, refer to [1.3.5 Tips for
Python programming].

9 Python and Data Science

Tricks

To restart or stop the “current session (Session)”, we can restart the kernel of Jupyter
notebook by clicking Kernel > Restart (or stop) from the Jupyter menu.

In[4] x4=14

In[5] x4=x4+1
x4

Out[5] 15

Tips

Python is an interpreted programming language, and we can run the cell as many
times as we want. As a result, the current values of a variable may be updated
simultaneously. For instance, x4=x4+1” is a self-assignment statement, and the value
of x4 is incremented each time the cell is executed.

Notes

Checking the current value of a variable is one of good habits for successful
programmers of data science projects.

In[6] x5=16
x5

Out[6] 16

Notes

In Jupyter Notebook, Python code is executed within “Cell” as the unit, the execution
order is different from the C/Java language, and execute items one by one in a non-
predetermined order (such as from top to bottom). Therefore, the code cells are
executed individually and can be run in a non-sequential order.

Tips

There is no main() function in Python, the execution order of “Cell” is determined by
the user and is independent of their location.

1.3.2  Outputs

Tips

The output cell is displayed to the right of the output variable “Out[]:” in Jupyter
Notebook “Cell” on the side.

In[7] y1=21
y1

Out[7] 21

 10 Python Data Science

Notes

The Output in Jupyter Notebook is shown in a “Cell”, an “Output Cell” is immediately
below the corresponding “Input Cell”. This allows for a clear and organized display of
the code execution and its corresponding output.

In[8] y2=22
y2

Out[8] 22

Tips

The number displayed in the Out[] is the corresponding In[] number of the output
result.

In[9] y3=23
print(y3)

Out[9] 23

Notes

In Jupyter Notebook, instead of using the print() function, you can directly write the
variable name to see the output result. However, in this case, the output result does not
have an Out[] number associated with it.

Tips

Both y2 and print(y3) in In[8] and In[9] can produce the same result. Is there any
difference between the two?

	The former is not the syntax of Python, but the function provided by Jupyter
Notebook to facilitate our programming. In Python, the standard output still needs
to use the print() function;

	The former is the syntax of Jupyter Notebook, which output result into the Out
queue variable of Jupyter Notebook, and has an Out number put the latter will not
be put into Jupyter Notebook In the Out queue variable of, and there is no Out
number;

	(3)The former is the display result after “optimization” by Jupyter Notebook, and
the output effect is often different from the function of print().

1.3.3  Errors and warnings

In[10] z1=31
z

Out[10] ---
NameError 		 Traceback (most recent call last)
<ipy�thon-input-10-8d66e1a13261> in <module>()

 1 z1=31
---->2 z
NameError: name 'z' is not defined

11 Python and Data Science

Notes

The error message indicates that “z is an undefined object” because the name of the
defined variable is not “z”. but “z1”.

Tips

For further details about Python errors or exceptions, please refer to [3.5 Exceptions
and Errors].

1.3.4  External data files

Tips

Prior to reading data source files such as Excel, CSV, or JSON, it is necessary to place
them in the current working D directory.

Tricks

os.getcwd():
 Returns the current working directory of the session.

In[11] import os
print(os.getcwd())

Out[11] C:\Users\soloman\clm

Tips

For further details about current working directory, please refer to [3.8 Current
working directory].

In[12] from pandas import read_csv
data = read_csv('bc_data.csv')
data.head(2)

Out[12]

Notes

The data file, named “bc_data.csv”, needs to be placed in your current working
directory in advance. If the file is not found in the current working directory, it will
raise a “FileNotFoundError” error message.

 12 Python Data Science

Tips

The code in the input cell loads the data file “bc_data.csv” from the local disk
into memory using the read_csv() method from the Pandas library. This method is
specifically designed to read data from CSV files.

Figure 1.6  The running steps of this code

1.3.5  Tips for Python programming

Tips

Tips for Python programming are shown in Figure 1.7.

13 Python and Data Science

Figure 1.7 Seven considerations in Python programming

Tips

Figure 1.8 shows the Edit and Esc state of a cell in Jupyter Notebook.

 14 Python Data Science

Figure 1.8  Edit or Esc state of a Cell in Jupyter Notebook

Tricks

Many valuable learning and reference resources are available in the “Help” menu of
Jupyter Notebook/Lab. Python beginners are advised to take full advantage of these
essential resources, as illustrated in Figure 1.9.

Figure 1.9  “Help” menu

15 Python and Data Science

Exercises

[1]  Python is created by ().
	 A. Wes McKinney
	 B. Guido van Rossum
	 C. James Gray
	 D. Hadley Wickham

[2]  Which of the following is true of Python?
	 A. Python is a programming language that uses compiling.
	 B. Python is a language that represents simplicity.
	 C. Python is a scripting language.
	 D. Python is an advanced language.

[3]  Which of the following is false of Python?
	 A. Python’s syntax is concise.
	 B. Python is a platform dependent language.
	 C. Chinese is supported in Python.
	 D. Python has rich resources of classes and libraries.

[4]  Which of the following is false of programming languages?
	 A. A programming language is a concrete implementation of programming.
	 B. Natural languages are simpler, more rigorous and more precise than programming languages.
	 C. Programming languages are primarily used for interaction between humans and computers.
	 D. A programming language is an artificial language for interaction.

[5]  What is false about the basic programming strategies?
	 A. Input is the beginning of a program.
	 B. Output is the way in which the program displays the results of operations.
	 C. �Processing is the process in which the program calculates the input data and produces the output

results.
	 D. Output is the soul of a program.

[6]  Python is suitable for ()
	 A. hardware development
	 B. mobile development
	 C. data analysis
	 D. game development

[7]  Which of the following is the Python interpreter?
	 A. CPython
	 B. JPython
	 C. ironpython
	 D. All of the above

[8]  Which of the following is false of the indentation in Python?
	 A. Indentation is a part of syntax.
	 B. Indentation does not affect the running of programs.
	 C. Indentation is the only way to represent the containing and hierarchical relationship between codes.
	 D. Indentation is normally represented by 4 spaces or 1 tab.

[9]  Which of the following is false of the Python development environment configuration?
	 A. The installation of Python may vary depending on the operating system.
	 B. Python can be integrated into integrated development environment such as Eclipse, PyCharm.
	 C. Jupyter Notebook editor is widely used in data science and data analysis projects.
	 D. �After installing Anaconda, we need to download the editors and packages required for Python

programming one by one.

 16 Python Data Science

[10]  Which of the following is false of Jupyter Notebook?
	 A. In[1] indicates that the serial number of the input cell executed in the current session is 1.
	 B. Out[2] indicates that the serial number of the output cell corresponding to the output is 2.
	 C. �The line starting with * represents the Python annotation language, which can be entered without

input.
	 D. The output result in Jupyter notebook is displayed immediately below the corresponding input cell.

17 Python and Data Science

2. � Basic Python Programming for Data
Science

Python is a general-purpose language so that it can be used for a wide range of applications, such as data science,
computer science, software engineering, mathematics, life science, linguistics, and journalism. However, learning
Python programming for data science requires its unique specific knowledge tailored to its use in that field. This
chapter will introduce the basics of python syntax for data science, including:

	 Data types (Lists, Tuples, Strings, Sequences, Sets, Dictionaries)

	 Variables

	 Operators and expressions

	 Statements (assignments, comments, if statements, for statements, and while statements)

	 Functions (built-in functions, module functions, user-defined functions, and lambda functions)

19 © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_2

https://doi.org/10.1007/978-981-19-7702-2_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_2&domain=pdf

2.1  Data Types

Q&A

 20 Python Data Science

2.1.1  Checking data types

Tricks

The built-in function type():
  returns the type of an object.

In[1] # int
type(1)

Out[1] int

Notes

The term “built-in functions” refers to the functions that are inherently available in the
Python interpreter and can be used without the need for any additional imports. These
functions are part of the core Python language and are commonly used in various
programming tasks. The most common used functions, such as type(), ininstance(),
dir(), print(), int(), float(), string(). list(), tuple(), and set(), are built-in functions.

In[2] # float
type(1.2)

Out[2] float

In[3] # bool
type(True)

Out[3] bool

Tips

Python Boolean data type has two values: True and False

In[4] # str (string)
type("DataScience")

Out[4] str

Tips

In Python, there is no difference between single and double quoted string. For further
details, please refer to [2.13 Strings]

In[5] # list
type([1,2,3,4,5,6,7,8,9])

Out[5] list

Tips

In Python, to create a list, the elements are placed inside square brackets ([]), separated
by commas. For further details, please refer to [2.10 Lists]

21 Basic Python Programming for Data Science

Notes

In contrast to C and Java, Python does not have a built-in data type called “array”.
Instead, Python uses “list” and “tuple” as its primary data structures for storing
collections of elements.

In[6] # tuple
type((1,2,3,4,5,6,7,8,9))

Out[6] tuple

Tips

In Python, A tuple is created by placing all the items (elements) inside parentheses (),
separated by commas. For further details, please refer to [2.12 Tuples].

In[7] # set
type({1,2,3,4,5,6,7,8,9})

Out[7] set

Tips

In Python, a set or a dictionary can be created by placing all the items (elements) inside
braces {}, including key-value pairs separated by commas (,). A colon (:) separates
each key from its value. For further details, please refer to [2.14 Sets].

In[8] # dict (dictionary)
type({"a":0, "b":1, "c":2})

Out[8] dict

Tips

Dictionary holds key-value pair. The nexus between a dictionary and a set: a dictionary
is a set containing the keys. For further details, please refer to [2.15 Dictionaries].

2.1.2  Testing data types

Tricks

The built-in function isinstance(object, classinfo)

	If the object argument is an instance of the classinfo argument, or of a (direct,
indirect, or virtual) subclass thereof, the function always returns True.

	If object is not an object of the given type, the function always returns False.

	If classinfo is a tuple of type objects (or recursively, other such tuples) or a Union
Type of multiple types, return True if object is an instance of any of the types

In[9] # to test whether x is int
x = 10
isinstance(x, int)

Out[9] True

 22 Python Data Science

In[10] # to test whether y is int
y = 10.0
isinstance(y, int)

Out[10] False

In[11] # to test whether True is int
isinstance(True, int)

Out[11] True

Notes

Here, the output[11] is True in that the Boolean class is implemented as a subclass of
the integer class in Python.

Tips

The difference between type() and isinstances() is as follows:

	type() returns the type of the object we put in as an argument

	isinstance() returns a boolean value(True or False) based on whether the object is
of given type

2.1.3  Converting data types

Notes

In explicit type conversion, also known as type casting, we can convert the data type
of an object to required data type by calling the predefined functions like int(), float(),
str().

In[12] int(1.6)

Out[12] 1

Tips

The built-in function int() :
  Convert a number or string to an integer object.

In[13] # Convert an int object to a float object
float(1)

Out[13] 1.0

Notes

In general, the name of the type casting function matches the name of the target data
type.

In[14] # Convert a int object to a bool object

bool(0)

Out[14] False

23 Basic Python Programming for Data Science

In[15] # Convert a list object to a tuple object

tuple([1,2,1,1,3])

Out[15] (1, 2, 1, 1, 3)

In[16] # Convert a tuple object to a list object

list((1,2,3,4))

Out[16] [1, 2, 3, 4]

Tips

The difference between a list and a tuple: the former is “a mutable object”, while the
latter is “an immutable object”. In Python, mutable objects are those whose value can
be changed after creation, while immutable O objects are those whose value cannot
be modified once they are created. For further details, please refer to [2.10 Lists] as
well as [2.11Tuples].

2.1.4  Built-in data types

Tips

Python provides not only basic data types such as int, float, string, list, tuple and set,
but also some built-in constants including None, Ellipsis, and NotImplemented.

In[17] # None

x = None
print(x)

Out[17] None

Notes

Notice that the output of None always use the print() function, otherwise nothing can
be seen in Jupyter Notebook.

Tricks

The None keyword is used to represent a null value or indicate the absence of a value.
Consequently, None is distinct from 0, False, or an empty string.

In[18] # NotImplemented

print(NotImplemented)

Out[18] NotImplemented

Tips

In Python, NotImplemented is a special value which should be returned by the binary
special methods (e.g. __eq__(), __lt__(), __add__(), __rsub__(), etc.) to indicate that
the operation is not implemented with respect to the other type.

 24 Python Data Science

In[19] # Ellipsis

print(Ellipsis)

Out[19] Ellipsis

Notes

In Python, the Ellipsis keyword, represented by “...” (three dots), is equivalent to the
ellipsis literal. It is a special value commonly used in combination with extended
slicing syntax, particularly for user-defined container data types.

In[20] # the plural(complex) objects

x = 2+3j
print('x = ', x)

Out[20] x = (2+3j)

Tips

The statement 3+4j is equivalent to the statement complex(3,4).

In[21] y=complex(3,4)
print('y = ', y)

Out[21] y = (3+4j)

In[22] #to print the plural(complex) objects

print('x+y = ', x+y)

Out[22] x+y = (5+7j)

Tricks

To access the documentation for the print() function and learn about its arguments and
usage in Python, you can use either “print?” or “?print” in most interactive Python
environments, such as Jupyter Notebook or IPython.

In[28] # scientific notation
9.8e2

Out[28] 980.0

Notes

In this context, the symbol “e” represents 10 in scientific notation, not the mathematical
constant “e” with a value of approximately 2.71828.

25 Basic Python Programming for Data Science

2.1.5  Sequences

Notes

In Python, a sequence refers to a collection of items that are ordered by their positions.
It is a general term that does not specifically refer to an independent data type but
rather encompasses various ordered containers.

In[29] mySeq1 = "Data Science"
mySeq2 = [1,2,3,4,5]
mySeq3 = (11,12,13,14,15)

Tips

There are three basic sequence types: strings, lists, and tuples. The set type is not a
sequence, because its elements have no order.

In[30] # to slice a sequence
mySeq1[1:3], mySeq2[1:3], mySeq3[1:3]

Out[30] ('at', [2, 3], (12, 13))

Tips

Sequences have some common properties(variables) and methods(functions),
including slicing and extending.

In[31] # to extend a sequence by multiplication operator

mySeq1*3

Out[31] 'Data ScienceData ScienceData Science'

Tips

For further details about Sequences, please refer to [2.13 Sequences].

 26 Python Data Science

2.2  Variables

Q&A

27 Basic Python Programming for Data Science

2.2.1  Defining variables

In[1] testBool = True
testlnt = 20
testFloat = 10.6
testStr = "MyStr"
testBool, testlnt, testFloat, testStr

Out[1] (True, 20, 10.6, 'MyStr')

Notes

Unlike languages such as C or Java, Python uses assignment statements to define
variables. In Python, you do not need to explicitly declare the data type of a variable.
The type of the variable is determined dynamically based on the value assigned to it
at runtime. This feature is known as “dynamic typing.”

2.2.2  Dynamically typed language

Notes

Python is a dynamically typed language. We don’t have to declare the type of variable
while assigning a value to a variable in Python. In other words, the python interpretor
doesn’t know about the type of the variable until the code is run.

In[2] x = 10
x = "testMe"

Notes

The following code would raise an error in C or Java, but not in Python.

Tips

Variables in Python do not need to declare their type in advance, and the same
variable can be assigned to different object types.

2.2.3  Strongly typed language

Notes

Python is considered a strongly typed language because the interpreter keeps track
of variable types. Strong typing ensures that the type of a value does not change
unexpectedly.

In[3] "3" + 2

Out[3] ---
TypeError Traceback (most recent call last)
<ipython-input-3-e8240368dace> in <module>
----> 1 "3"+2

TypeError: can only concatenate str (not "int") to str

 28 Python Data Science

Notes

In Python, automatic data type conversion during runtime is not performed by default,
except for conversions between int, float, bool, and complex types.

In[4] 3+True  # Here, no error was raised.

Out[4] 4

In[5] 3+3.3  # Here, no error was raised.

Out[5] 6.3

In[6] 3+(1+3j)  # Here, no error was raised.

Out[6] (4+3j)

2.2.4 Variable naming rules

Notes

In Python, variables are simply names that refer to objects. In other words, a Python
variable is a symbolic name that is a reference or pointer to an object.

In[7] i = 20
i = "myStr"
i = 30.1
i

Out[7] 30.1

Tips

The variable name represents (or is essentially) “a reference to a value”, rather than
“the value of the variable”.

2.2.5  Case-sensitivity

In[8] i = 20
I

Out[8] ---
NameError Traceback (most recent call last)
<ipytho�n-input-8-447541a63ca9> in <module>

1 i=20
----> 2 I

NameError: name ‘I’ is not defined

Tips

Defined variables are named lowercase “i”, while output variables are named
uppercase “I”.

29 Basic Python Programming for Data Science

Tricks

In Python, a NameError is raised when the identifier being accessed is neither defined
in advance nor imported from other modules/packages. Hence, we can correct
NameErrors by:

	declaring it in advance or quoting it to be a string constant

	importing the modules/packages that declared it

2.2.6  Variable naming rules

Notes

In Python, variable naming rules are:

	A variable name must start with a letter or the underscore character.

	A variable name cannot start with a number.

	A variable name can only contain alpha-numeric characters and underscores
(A-z, 0-9, and _)

	Variable names are case-sensitive (age, Age and AGE are three different variables)

In[10] myvariable_2 = 0

In[11] 2_ myvariable = 0

Out[11] File "�<ipython-input-10-6006d03e9e23>", line 1
2_myvariable=0
^

SyntaxError: invalid decimal literal

Tips

The reason for the error is that the variable name starts with a number.

In[12] print = 0 # no error
x = 0
print(x) #error

Out[12] ---
TypeError � Traceback (most recent call last)
<ipytho�n-input-11-c2a031c18500> in <module>

1 print=0
2 x=0

----> 3 print(x)

TypeError: 'int' object is not callable

 30 Python Data Science

Notes

If a keyword is used as a variable name, it will cause the meaning of the keyword to
change, and the original function of the keyword will be invalidated.

Workaround: Restart the session. To do this: Select Kernel→Restart in the menu bar
of Jupyter Notebook.

Tips

Here, the meaning of print is redefined as a reference to the value 0. Hence, within the
scope of the current session of Jupyter Notebook Kernel, the variable “print” refers to
0, not to the original print(output) function.

2.2.7  Checking IPython variables

Notes

IPython is an enhanced interactive Python shell. The IPython Notebook is now known
as the Jupyter Notebook. It is an interactive computational environment, in which you
can combine code execution, rich text, mathematics, plots and rich media. For more
details on the Jupyter Notebook.

Notes

IPython offers numbered prompts (In/Out) with input and output caching, also referred
to as ‘input history’. All input is saved and can be retrieved as variables.

In[13] x = 12+13

Out[13] x

In[14] # to retrieve the In[] variables

In[13]

Out[14] ‘x = 12+13\nx’

Notes

Here, the In[] and Out[] are not Python variables, but a special variable offered by
IPython for editing code conveniently and tracing execution process.

In[15] # to retrieve the Out[] variables

Out[13]

Out[15] 25

In[16] # to retrieve the temporary variables:_
-
The symbol "_" represents "the most recent Out variable".

Out[16] 25

31 Basic Python Programming for Data Science

2.2.8  Checking Python keywords

Notes

The Python built-in module keyword enables us to test for Python keywords.

	keyword.kwlist: Return a sequence containing all the keywords defined for the
interpreter.

	keyword.iskeyword(s): Return True if s is a Python keyword.

In[17] import keyword
print(keyword.kwlist)

Out[17] ['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break', 'class', 'continue', 'def',
'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda',
'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

2.2.9  Checking all defined variables

Notes

The built-in function dir([object]):

	Without arguments, return the list of names in the current local scope.

	With an argument, return a list of valid attributes for that object.

In[18] print(dir())

Out[18] ['In', 'Out', '_', '__', '___', '__builtin__', '__builtins__', '__doc__', '__loader__', '__
name__', '__package__', '__spec__', '_dh', '_i', '_i1', '_i2', '_i3', '_ih', '_ii', '_iii', '_oh',
'exit', 'get_ipython', 'keyword', 'quit', 'x']

2.2.10  Deleting variables

In[19] i = 20
print(i)
del i

Notes

Here you need to restart Jupyter Notebook Kernel, otherwise an error will be raised,
because “print=0” in In[12], that is, print is redefined as a variable name.

In earlier versions of Python, del was a statement, not a function.
Hence, an error will be raised when written as del(i).

Tricks

To restart Kernel: Select Kernel→Restart in the menu of Jupyter Notebook/Lab.

In[20] i

Out[20] ---
NameError Traceback (most recent call last)
<ipython-input-2-397d543883c5> in <module>
----> 1 i
NameError: name 'i' is not defined

 32 Python Data Science

Tips

The naming convention recommended by Guido, the father of Python, includes the
following points.

1.	Module or package names use lowercase letters and underscore-separated words, e.g.
regex_syntax, py_compile, winreg

2.	Class or exception names should capitalize the first letter of each word, e.g.
BaseServer, ForkingMixIn, KeyboardInterrupt

3.	Global constants or class constants use uppercase letters and underscore-
separated words, e.g.
MAX_LOAD

4.	The names of other objects, including method names, function names, and common
variable names, use lowercase letters with underscore-separated words, e.g.
my_thread

5.	If the above objects are private types, name them start with an underscore, e.g.
__init__, _new__

Notes

Considering the specificity of data analysis/data science projects, the naming
convention of this book has fine-tuned for the naming convention recommended by
Guido.

Notes

To write better code in Python, you can follow the guidelines provided by PEP (Python
Enhancement Proposal). PEP8 is specifically focused on the Python Code Writing
Specification, which serves as a style guide for Python code. PEP20, known as “The
Zen of Python,” also provides valuable principles to guide Python programmers.

To access the official PEP documents and read more about them, you can visit the
official website at https://www.python.org/dev/peps/. It is a valuable resource for
understanding the recommended practices and conventions in Python programming.

In addition to PEP, the Google Style Guide is another commonly used coding
specification, particularly in data science practices. It provides guidelines and best
practices for writing code in a consistent and readable manner.

By following these coding specifications, you can enhance the quality, readability, and
maintainability of your Python code.

33 Basic Python Programming for Data Science

https://www.python.org/dev/peps/

2.3 Operators and Expressions

Q&A

 34 Python Data Science

Table 3-1  Arithmetic operators (x=2, y=5)

Operators Meanings Instances Results

+ Addition x + y 7

- Subtraction x - y -3

* Multiplication x * y 10

/ Division y / x 2.5

% Remainder y % x 1

// Floor division y//2 2

** Exponentiation x**y 32

Table 3-2  Relational operators (x=2, y=5)

Operators Meanings Instances Results

== equal to x == y False

!= not equal to x != y True

> greater than x > y False

< less than x < y True

>= greater than or equal to x >= y False

<= less than or equal to x <= y True

Table 3-3  Assignment operators

Operators Instances Equivalence

= y=x y=x

+= y+=x y=y+x

-= y-=x y=y-x

= y=x y=y*x

/= y/=x y=y/x

%= y%=x y=y%x

= y=x y=y**x

//= y//=x y=y//x

Table 3-4  Logical operators (x=2, y=5)

Operators Meanings Instances Results

and Logical AND x and y 5

or Logical OR x or y 2

not Logical NOT not (x and y) False

35 Basic Python Programming for Data Science

Table 3-5 � Bitwise operators(x=2, y=5; Note: You can use the built-in
function bin() to get the corresponding binary.)

Operators Meanings Instances Results

& Bitwise AND x & y 0

| Bitwise OR x | y 7

^ Bitwise XOR x ^ y 7

~ Bitwise NOT ~x -3

<< Bitwise left shift x << y 64

>> Bitwise right shift x >> y 0

Table 3-6  Set operations

Mathematical
symbols

Python operators Description

∈⊄ in be a member of …

∉ not in not be a member of …

= == equal to

≠ != not equal to

⊂ < be a (strict) subset of …

⊆ <= be a subset of …

⊃ > be a (strict) superset of …

⊇ >= be a superset of …

∩ & intersection

∪ | union

-or\ - difference or relative
complement

△ ^ symmetric difference

 36 Python Data Science

The operator precedence in Python is shown in Figure 3.1.

High

Low

Figure 3.1  Precedence of Python operators

2.3.1  Common used operators

In[1] # division(Arithmetic Operators)

x = 2
y = 5
y / x

Out[1] 2.5

Tips

According to PEP8, the Python style guide, it is recommended to use a single
whitespace on each side of assignment operators, comparisons, and boolean operators.
This improves readability and helps make the code more consistent.

In[2] # modules (Arithmetic Operators)

x = 2
y = 5
y % x

Out[2] 1

37 Basic Python Programming for Data Science

In[3] # floor division (Arithmetic Operators)

x = 2
y = 5
y // x

Out[3] 2

In[4] # Exponentiation

x = 2
y = 5
x ** y

Out[4] 32

In[5] # Equal (Comparison Operators)

x = 2
y = 5
x == y

Out[5] False

In[6] # Not equal (Comparison Operators)

x = 2
y = 5
x != y

Out[6] True

Notes

Types Operators Descriptions

identity operators is
is not

Check if the variables on either side of
the operator point to the same object

membership operator in
not in

Check if a value exists in a sequence
or not.

In[7] #is (identity operators)

x = 2
y = 5
x is y

Out[7] False

In[8] # s not (identity operators)

x=2
y=5
x is not y

Out[8] True

In[9] #in (membership operators)

x in [1,2,3,4]

Out[9] True

 38 Python Data Science

In[10] # not in (membership operators)

y in [1,2,3,4]

Out[10] False

In[11] x not in [1,2,3,4]

Out[11] False

In[12] #//=(augmented assignment operators)

x=2
y=5
y//=x
print(x,y)

Out[12] 2.2

Tips

An augmented assignment is generally used to replace a statement where an operator
takes a variable as one of its arguments and then assigns the result back to the same
variable. Hence, y//=x is equivalent to y = y // x.

In[13] x=2
y=5
y//=x+8
print(y)

Out[13] 0

Notes

The Ouput[13] y is 0, not 10. For more details, please refer to [2.5 Assignment
statement].

In[14] # Logical Operators
x=True
y=False
x and y

Out[14] False

In[15] x=True
y=False
x or y

Out[15] True

In[16] x=True
not x

Out[16] False

39 Basic Python Programming for Data Science

In[17] # Bitwise operators
x=2
y=3
print(x,y)
print(bin(x),bin(y))

Out[17] 2 3
0b10 0b11

Notes

Bitwise operators and logical operators are two different concepts.

Tips

Decimal data can be converted to binary data with built-in function bin().

In[18] x=2
y=3
x&y

Out[18] 2

Tips

& is a bitwise operator which means “bitwise and”.

In[19] x=2
y=3
bin(x&y)

Out[19] '0b10'

In[20] x=2
y=3
bin(x | y)

Out[20] '0b11'

In[21] bin(x^y)

Out[21] '0b1'

In[22] bin(~x)

Out[22] '-0b11'

In[23] x=2
y=3
bin(x<<y)

Out[23] '0b10000'

 40 Python Data Science

In[24] x=2
y=3
bin(x>>y)

Out[24] '0b0'

2.3.2  Built-in functions

In[25] pow(2,10)

Out[25] 1024

Tips

Built-in functions (BIFs) are functions that are built into the Python interpreter and
can be called directly by their function name.

Notes

pow() is a built-in function, but sin() is not.

Tricks

To get built-in functions: dir(__builtins__)

In[26] round(2.991)

Out[26] 3

Tips

Rounding function: round(number, ndigits). Its function is to round its first argument
number, and retain ndigits significant figures after the decimal point. The ndigits
argument defaults to 0.

In[27] round(2.991,2)

Out[27] 2.99

Tips

The meaning of argument “2” is “retain 2 significant figures after the decimal point”.

Notes

We can get the help information of round() function through “?round” or “round?”.
The help information given by the system is as follows:

round(number[,ndigits])

The arguments placed in [] are optional such as ndigits.

41 Basic Python Programming for Data Science

2.3.3  Math modules

In[28] import math
math.sin(5/2)

Out[28] 0.5984721441039564

Tips

In Python, many commonly used mathematical functions (such as sin(), cos()), and
others, are not built-in functions, but are placed in the math module. The math module
provides a wide range of mathematical operations and functions.

In[29] import math
math.pi

Out[29] 3.141592653589793

Tips

The way to get the value of pi.

In[30] import math
math.sqrt(2.0)

Out[30] 1.4142135623730951

In[31] import math
math.sqrt(-1)

Out[31] ---
ValueError                Traceback (most recent call last)
<ipyth�on-input-31-101bb87dcaf5> in <module>

1 import math
----> 2 math.sqrt(-1)

ValueError: math domain error

Tips

An error will be raised when attempting to take the square root of a negative number
using the math module.

In[32] import cmath
cmath.sqrt(-2)

Out[32] 1.4142135623730951j

 42 Python Data Science

Tips

The functions for complex numbers are in another module called cmath.

2.3.4  Precedence and associativity

In[33] 2**2**3

Out[33] 256

Tips

Operator precedence determines the order in which operators are evaluated in an
expression that contains multiple operators with different precedences. Operators with
higher precedence are evaluated first.

Operator associativity is relevant when two or more operators have the same precedence
in an expression. It determines the order in which operators are evaluated when they
have the same precedence. Associativity can be either left to right (left-associative) or
right to left (right-associative).

Notes

In Python, “2**2**3” is different from “(2**2)**3”

In[34] (2**2)**3

Out[34] 64

In[35] x=2+3
x

Out[35] 5

Notes

The precedence and associativity assignment operators.

In[36] 1+2 and 3+4

Out[36] 7

Tips

Please analyze the reason why the result of the expression “1+2 and 3+4” is “7”.

43 Basic Python Programming for Data Science

2.4  Statements

Q&A

 44 Python Data Science

2.4.1  Writing a statement in a line

Notes

Python statements are usually written in a single line. The newline character marks
the end of the statement.

In[1] i=20
j=30
k=40

Notes

Unlike C and Java, Python does not have statement terminators such as “;”.

Tips

Please refer to PEP8-Style Guide for Python Code and Google Python Style Guide for
the writing specifications of Python code.

2.4.2  Writing multiple statements in a single line

In[2] i=20; j=30; k=40

Tips

Though not typically recommended, you can separate different statements on the
same line with a semicolon “;” in Python.

In[3] i;j;k

Out[3] 40

Tips

In Python, “i, j, k” differs from “i; j; k”. The former creates a tuple, while the latter
represents multiple statements.

In[4] i,j,k

Out[4] (20, 30, 40)

45 Basic Python Programming for Data Science

Notes

In Python, there is a distinct difference between “;” and “,”. The former is used for
representing multiple statements in a single line, while the latter is used for creating
tuples. Detailed information about tuples is described in Section [2.11 Tuples].

In[5] print(i;j;k)

Out[5] File "<ipython-input-5-efd9c261ba8d>", line 1
 print(i;j;k) #Exception, SyntaxError: invalid syntax
 ^
SyntaxError: invalid syntax

Notes

It is easy for beginners to confuse the use of semicolons and commas. For example,
the above code will raise an error.

Tips

Attempting to print a statement like “print(i; j; k)” will result in a SyntaxError (“invalid
syntax”) exception. This is because semicolons represent statement separators in
Python and cannot be used in this context.

2.4.3 Splitting a statement into multiple lines

In[6] print("nin \
hao")

Out[6] nin hao

Notes

Here, “\” refers to the line continuation character. PEP8 recommends that a line of
Python code should be limited to a maximum of 79 characters. If a line needs to
extend beyond this limit, it should generally be split into multiple lines. You can use
the line continuation character “\” to indicate that a line should be continued, although
in many cases, Python allows line continuation inside parentheses, brackets, and
braces without the need for this character.

2.4.4  Compound statements

Tips

Compound statements contain (groups of) other statements. there are three main kinds
of compound statements:

	control flow constructs: for(or while)statements and if statements

	exception handlers: try statements and with statements

	function and class definitions: def statements and class statements

In[7] sum=0
for i in range(1,10):
 sum=sum+i
 print(i)
print(sum)

 46 Python Data Science

Out[7] 1
2
3
4
5
6
7
8
9
45

Notes

In Python, indentation is used to represent the block structure of code, similar to the
way braces “{}” are used in Java and C. However, there are some unique aspects of
Python’s indentation rules:

	A colon (“:”) is required at the end of the line before the start of an indented block.
This is usually at the end of control flow statements like if, for, while, def, and class.

	The consistency of indentation is very important. All lines within the same block
of code must be indented at the same level. This alignment is required to correctly
represent the structure of the code.

Tips

PEP8 recommends to use 4 spaces per indentation level.

In[8] a = 10
if a >� 5:

print("a+1=",a+1)
print("a=",a)

Out[8] a+1= 11
a= 10

Tips

Please note that incorrect indentation can cause SyntaxError exceptions or lead to
unexpected behavior due to the code’s logic being interpreted differently than intended.

Tricks

Python doesn’t require a specific number of spaces for indentation, but by convention
and according to PEP 8 (the official Python style guide), four spaces are typically used
to denote one level of indentation.

Notes

In Python, a colon (:) must be added at the end of the line before starting an indented
block.

47 Basic Python Programming for Data Science

2.4.5  Empty statements

Notes

An empty statement is a statement that does nothing. In Python, the pass statement
serves this purpose, essentially acting as a placeholder for future code and having no
effect when executed.

In[9] x=1
y=2
if x>�y:

pass
else: �

print(y)

Out[9] 2

Tips

Python is often described as being like “executable pseudocode” due to its readability.
In Python, if you need to create an empty block (for instance, a function or a loop that
you have not yet implemented), you would use the pass statement as a placeholder. If
you don’t include a pass statement or some other statement in such a block, Python
will raise a syntax error.

Notes

Unlike C and Java, an empty statement in Python is represented by a pass statement,
not by a semicolon(;).

Notes

Two important versions of Python:
Currently, there are two important versions of Python: Python 2 and Python 3. There
are many differences in syntax between the two. This book observes Python 3 syntax.
The main difference between the two and the ways of porting Python 2 code to Python
3 can be found at https://docs.python.org/3/howto/pyporting.html or https://www.
python.org/.

 48 Python Data Science

https://docs.python.org/3/howto/pyporting.html
https://www.python.org/
https://www.python.org/

2.5  Assignment statements

Q&A

49 Basic Python Programming for Data Science

2.5.1  Assigning objects

In[1] i=1
i

Out[1] 1

Tips

In Python, assignment statements are also used to define new variables.

2.5.2  Chained assignment statements

In[2] i=j=2
i
j

Out[2] 2

Notes

The associativity of assignment operators in most programming languages, including
Python, follows a ‘right-to-left’ rule.

In[3] j=2
i=j
i
j

Out[3] 2

Tips

The chained assignment ‘i = j = 2’ is functionally equivalent to the sequence of
statements ‘j = 2; i = j;’.

2.5.3  Augmented assignment statements

Tips

Augmented assignment, also known as compound assignment, refers to specific
assignment operators in certain programming languages, particularly those derived
from C.

In[4] i=1
i+=20
i

Out[4] 21

 50 Python Data Science

Notes

Operator Description
+= Addition
-= Subtraction
*= Multiplication
/= Division
%= Modulus
<<= Left bit shift
>>= Right bit shift

In[6] a=2
a*=1+3
a

Out[5] 8

Tips

Here, the Out[5] is 8 (not 5) because the right hand side is always evaluated completely
before the assignment when running an augmented assignment.

2.5.4  Sequence unpacking

In[6] a,b,c=1,2,3
a,b,c

Out[6] (1, 2, 3)

Notes

The assignment rule for sequence unpacking follows a ‘position-based’ approach. In
other words, the values on the right side of the assignment operator are assigned to the
variables on the left, according to their respective positions.

Tips

For further details about sequences and their unpacked assignments, please refer to
[2.13 Sequences].

Notes

The output here is a tuple, in other words, numbers with parentheses. Please refer to
[2.11 Tuples].

51 Basic Python Programming for Data Science

2.5.5  Swapping two variables

In[7] a=1
b=2
a,b=b,a
a,b

Out[7] (2, 1)

Tips

Here, a,b is equivalent to the tuple (a,b). Therefore, a,b=b,a is equivalent to (a,b)=(b,a)
which is an example of is a sequence unpacking described in [2.5.4 Sequence
unpacking].

Notes

In C and Java, swapping two variables (a, b) requires the introduction of a third
variable (c), as shown in the sequence ‘c = a; a = b; b = c;’. Python, on the other hand,
allows the same operation to be performed more succinctly with the line ‘a, b = b, a’.
However, this does not necessarily mean that Python consumes less memory than C
or Java. It’s worth noting that in Python, the ‘a, b = b, a’ operation creates temporary
tuples under the hood for the swap, which can consume additional memory beyond
just the variables a and b.

 52 Python Data Science

2.6  Comments

Q&A

53 Basic Python Programming for Data Science

2.6.1  Line comments

Notes

Unlike Java and C, comments in Python start with a hash mark(#) and extend to the
end of the physical line.

In[1] x=1
y=2
print(x)

Out[1] 1

Tricks

The Python interpreter always ignores comments. Therefore, we can prevent a
section of code from executing by commenting it out during the debugging of Python
programs. Additionally, it’s important to prioritize keeping comments up-to-date
when the code changes.

In[2] x=1
y=2
print(y)

Out[2] ---
NameError              Traceback (most recent call last)
<ipyt�hon-input-4-f9b039d12571> in <module>

1 x=1
2 # y=2

----> 3 print(y) # why that exception: the defined part of the variable is the comment
line.

NameError: name 'y' is not defined

Tips

A NameError exception was raised when the Python Interpreter executed In[2] in that
y=2 was commented out.

2.6.2  Block comments

Notes

Python does not have a specific syntax for multiline comments. However, we can
implement multi-line comments in Python either by using single-line comments
consecutively or by using triple-quoted Python strings.

 54 Python Data Science

In[3] x=1
y=2
print(y)
"""
 This is
 a
 multiline comment
 in python
"""

2

Tips

In Jupyter Notebook, we can switch between “code line” and “comment line” by
keyboard shortcut【Ctrl + /】.

Tricks

In Jupyter Notebook, we can conveniently switch between Comment Lines and
Code Lines using the shortcut Ctrl+/. Please note that these shortcut keys in Jupyter
Notebook cannot be used when a non-English input method is active.

Notes

By convention, the triple quotes that appear right after the function, method or class
definition are docstrings (documentation strings). For more details, please refer to
“3.4 Help documetation”.

55 Basic Python Programming for Data Science

2.7  If statements

Q&A

2.7.1  Basic syntax

In[1] a=2
b=3
if(a<b):
 print("a is less than b")
else:
 print("a is not less than b”)

Out[1] a is less than b

 56 Python Data Science

Notes

In Python, indentation serves the same function as braces ({}) in C and Java; that is, it
signifies the scope of compound statements.

Notes

In Python, a colon (:) is required at the end of the line that introduces a new indentation
level, such as the start of a control structure or a function definition. Thus, a colon
often precedes an indentation.

In[2] if(a<=b):
 if(a<b):
 print(a)
 else:
 print(a)
else:
 print(b)

Out[2] 2

Tips

Similar to C and Java, Python supports the nesting of ‘if’ statements.

2.7.2  Elif statement

Notes

In Python, the keyword ‘elif’ is shorthand for ‘else if’. It’s useful in avoiding excessive
indentation and keeping the code concise.

In[3] if(a<=b):
 print(a)
elif(a==b):
 print(a)
else:
 print(b)

Out[3] 2

Tips

Unlike C and Java, the ‘if’ statement in Python can include an ‘elif’ clause. Additionally,
Python’s ‘try-catch’, ‘while’, ‘for’, and other control statements can all include an
‘else’ clause. In Python, the ‘else’ statement signifies that the preceding code block
was exited normally, meaning without a ‘break’, ‘continue’, or an exception being
thrown.

57 Basic Python Programming for Data Science

2.7.3  Ternary operators

Notes

Ternary operators allow us to quickly test a condition, providing a more compact
alternative to a multiline ‘if’ statement.

In[4] x=0
Result="Y" if x>0 else "N"
Result

Out[4] ‘N’

Notes

The ‘if’ statement in Python can be written as a single-line expression, similar to the
ternary conditional operator (?:) in C and Java.

Tips

In Python’s ternary operators, the ‘true’ expression (Y) precedes the ‘if’ statement.

Notes

In Python, the if statements, the for statements, and functions can all be written on
a single line, using ternary operators, list comprehensions, and lambda functions,
respectively.

In[5] x=1
Result="Y" if x>0 else "N"
Result

Out[5] 'Y'

2.7.4  Advanced syntax

In[6] if(a<=b):
else:
 print(b)

Out[6] File "<ipython-input-6-12262625dfcc>", line 2
 �else:

^
IndentationError: expected an indented block

Notes

In Python, each part of an if statement must have some code or statement. If any
part is empty, the Python interpreter will raise an error because Python is executable
pseudocode. You can refer to [2.10 The pass statements (In[1])] for more information.

 58 Python Data Science

Tips

Can I write an empty statement? No.
IndentationError: expected an indented block

Tips

The pass statement is equivalent to the empty statement in other languages.

In[7] if(a<=b):
 pass  # no error
else:
 print(b)

Tips

In this case, the pass statement serves as a placeholder to indicate that no action is
taken when a is less than or equal to b. If a is greater than b, the code will execute
the print(b) statement in the else block.

Tips

To check whether a year is a leap year in Python, you can use the following
suggestion:

In[8] import calendar
calendar.isleap(2019)

Out[8] False

Tricks

Software development projects and data analysis projects are fundamentally
different from each other. Therefore, Python should not be approached in the same
way as C or Java when it comes to data science projects. Let’s take the example of
checking whether a year is a leap year. Instead of attempting to translate Java or
C code directly into Python, it is better to embrace Python’s unique features and
idiomatic style for a more effective solution.

59 Basic Python Programming for Data Science

2.8  For statements

Q&A

 60 Python Data Science

2.8.1  Basic syntax

In[1] sum=0
for i in (1,2,3):
 sum=sum+i
 print(i,sum)

Out[1] 1 1
2 3
3 6

Notes

Unlike C and Java, there is only one way to write the for statement in Python:
[for ... in ...]. Make sure to include the colon at the end of the line and pay attention to
the indentation. You can refer to [2.4 Statements] for more information.

Tips

The in keyword in Python is used to iterate over iterables or iterators. In the given
context, the parentheses () represent a tuple, which is an iterable. For more information
on iterators and decorators, you can refer to [3.1 Iterators and Decorators].

Notes

Before the for statement, it is necessary to assign a value to the sum variable; otherwise,
an error will be raised due to the variable being undefined.

2.8.2  The range() function

In[2] range(1,10)

Out[2] range(1, 10)

Notes

The range() function is commonly used after the in keyword in the for statement,
such as range(1, 10). The range() function returns a “range iterator” that generates a
sequence of numbers from the start value (1 in this case) to the end value (10 in this
case).

Tips

Please refer to [3.1 Iterators and Decorators] for more information on iterators.

In[3] myList=list(range(1,10))
myList

Out[3] [1, 2, 3, 4, 5, 6, 7, 8, 9]

61 Basic Python Programming for Data Science

Tricks

To examine the contents of an iterator, you can use the list() function to convert the
“range iterator” into a list type. This allows you to view all the elements generated by
the iterator.

Notes

In the return value of the range(1, 10) function, the generated sequence includes the
number 1 but excludes the number 10. This is a characteristic of the range() function
in Python, where the end value is exclusive. For more details on working with lists,
you can refer to [2.10 Lists].

2.8.3  Advanced syntax

In[4] sum=0
for i in (1,2,3):
 sum=sum+i
 print(i,sum)
else:
 print("here is esle")

Out[4] 1 1
2 3
3 6
here is esle

Tips

Unlike C and Java, the for statement in Python can be used together with the else
statement.

In[5] myList=list(range(1,10))
for j in [1,3,4,5]:
 print(myList[j])

Out[5] 2
4
5
6

Tips

Similar to C, Java, etc., the for statement in Python supports the break and continue
statements.

 62 Python Data Science

In[6] for k in range(0,16,2):
 if(k==8):
 break
 print(k)

Out[6] 0
2
4
6

Notes

The difference between the break and continue statements is as follows: The break
statement “exits the loop entirely,” while the continue statement “skips the remaining
code inside the loop for the current iteration and moves to the next iteration.”

In[7] for k in range(0,16,2):
 if(k==8):
 continue
 print(k)

Out[7] 0
2
4
6
10
12
14

Tips

In contrast to the break statement, the continue statement in Python means “jump
inside the loop body.” It allows you to skip the remaining statements in the current
iteration of the loop and move on to the next iteration. This means that any code
following the continue statement within the loop for the current iteration will be
bypassed.

63 Basic Python Programming for Data Science

2.9  While statements

Q&A

 64 Python Data Science

2.9.1  Basic syntax

In[1] i=1
sum=0
while(i<=100):
 sum=sum+i
 i+=1
print(sum)

Out[1] 5050

Notes

In Python, the while statement is written in a single way, and there is no equivalent
do-while statement as found in some other programming languages. The while loop
in Python allows you to repeatedly execute a block of code as long as a specified
condition is true. The condition is checked before each iteration, and if it evaluates to
False initially, the loop will not be executed.

2.9.2  Advanced syntax

In[2] i=1
sum=0
while(i<=10):

 sum=sum+i
 i+=1
 if i==6:
 continue
 if i==9:
 break
 print(i,sum)

else:
 print("here is esle")

Out[2] 2 1
3 3
4 6
5 10
7 21
8 28

Notes

To summarize, break exits the loop entirely, while continue skips the remaining
statements within the loop for the current iteration and proceeds to the next iteration.

In[3] i=1
sum=0
while(i<=10):
 sum=sum+i
 i+=1
 print(i,sum)
else:
 print("here is esle")

65 Basic Python Programming for Data Science

Out[3] 2 1
3 3
4 6
5 10
6 15
7 21
8 28
9 36
10 45
11 55
here is esle

Tips

Unlike C and Java, the while statement in Python can indeed include an else clause.
The else clause in a while loop will be executed only when the condition of the loop
becomes False and the loop completes its iterations normally, without encountering
a break or return statement.

Notes

How to distinguish the types of Python code:
(1)  �Code that starts with “#” is a comment statement. You can refer to [2.6 Comments]

for more information.
(2) � Code that starts with “%” is a magic command, which is not part of Python syntax

but belongs to iPython/Jupyter Notebook syntax.
(3) � Code that starts with “@” is a decorator. You can refer to [3.1 Iterators and

Decorators] for more details.
(4)  Code that starts with “!” is a Python pip/conda command.

 66 Python Data Science

2.10  Lists

Q&A

67 Basic Python Programming for Data Science

2.10.1  Defining lists

In[1] myList1 = [21,22,23,24,25,26,27,28,29]
myList1

Out[1] [21, 22, 23, 24, 25, 26, 27, 28, 29]

 68 Python Data Science

Tips

To define a list in Python, you can use the following methods:

Method 1:  Using brackets []

Notes

In the basic Python syntax, parentheses (), brackets [], and braces {} represent tuples,
lists, and sets/dictionaries, respectively.

In[2] myList2=myList1
myList2

Out[2] [21, 22, 23, 24, 25, 26, 27, 28, 29]

Tips

Method 2: � Using an assignment statement, where you assign a defined list variable to
a new list variable.

In[3] myList3=list("Data")
myList3

Out[3] ['D', 'a', 't', 'a']

Tips

Method 3:  Using type casting to convert other types of objects to the list type.

Notes

Negative subscripts or negative indexes can be used in Python to access elements from
the end of a sequence, such as a string or a list.
The positive indexes start from 0, where 0 represents the first element.
The negative indexes start from –1, where –1 represents the last element.

In[4] myList1[-1]

Out[4] 29

In[5] myList1[-9]

Out[5] 21

In[6] myList1[9]

Out[6] ---
IndexError Traceback (most recent call last)
<ipython-input-6-8724c27fc4be> in <module>
----> 1 myList1[9]

IndexError: list index out of range

69 Basic Python Programming for Data Science

Notes

Here, the reason for the error is that the index is out of range.

Tips

The difference between positive indexes and negative indexes in Python is as follows:
Positive indexes start with 0 and are numbered from left to right, while negative
indexes start with –1 and are numbered from right to left.

2.10.2  Slicing

In[7] myList1

Out[7] [21, 22, 23, 24, 25, 26, 27, 28, 29]

Tips

By printing the variable, you can view its current value in your data science project.
It’s indeed important to pay attention to the current values of variables throughout
your project to ensure accurate results and proper data analysis.

In[8] myList1[1:8]

Out[8] [22, 23, 24, 25, 26, 27, 28]

Tips

In Python, we can slice a list using indexes, and the notation for slicing is Start:Stop:Step.

Notes

When a colon (:) appears in the index of a Python sequence, it typically indicates
slicing the sequence. This slicing notation allows you to specify the start, stop, and
step values to extract a portion of the sequence.

In[9] myList1[1:8:2]

Out[9] [22, 24, 26, 28]

Tips

It’s important to note that the start, stop, and step values can be omitted when writing
a slice. When any of these values are omitted, they take on default values:

In[10] myList1[:5]

Out[10] [21, 22, 23, 24, 25]

 70 Python Data Science

Tips

If the start value is omitted, it defaults to the beginning of the sequence. If the stop
value is omitted, it defaults to the end of the sequence.If the step value is omitted,
it defaults to 1, indicating consecutive elements.For more details on working with
sequences and slicing, you can refer to [2.13 Sequences].

Notes

The element with the index of “stop” is not included in the slicing. For example, in
the case of an element with an index of 5, which corresponds to a value of 26 in this
example, it is not included in the slice.

In[11] myList1[:]

Out[11] [21, 22, 23, 24, 25, 26, 27, 28, 29]

Tips

The start, stop and step arguments are omitted.

In[12] myList1[2:]

Out[12] [23, 24, 25, 26, 27, 28, 29]

Tips

The stop and step arguments are omitted.

In[13] myList1[:-1]

Out[13] [21, 22, 23, 24, 25, 26, 27, 28]

Tips

The slicing operation supports negative indexes.

2.10.3  Reversing

In[14] myList1

Out[14] [21, 22, 23, 24, 25, 26, 27, 28, 29]

In[15] myList1[::-1]

Out[15] [29, 28, 27, 26, 25, 24, 23, 22, 21]

71 Basic Python Programming for Data Science

Tricks

Reversing lists can be achieved using the index [::-1], which means setting step to -1.

Notes

Note that there are two colons in myList1[::-1].

In[16] myList1

Out[16] [21, 22, 23, 24, 25, 26, 27, 28, 29]

Notes

In Python, slicing a list does not change the list itself; instead, it creates a new list with
the selected elements.

In[17] myList1[:-1]

Out[17] [21, 22, 23, 24, 25, 26, 27, 28]

Tips

Here, [:-1] has the same meaning as [:n-1]. In data science projects, there is always a
case where the index is -1, which indicates the maximum value of the index.

In[18] reversed(myList1)

Out[18] <list_reverseiterator at 0x18ef35863d0>

Tricks

In Python, to reverse lists, we can also use the built-in function reversed() or the list
method reverse().

Notes

The return value of the reversed() function is an iterator, and its values can be displayed
by passing it to the list() function.

Tips

For information about iterators, you can refer to the section titled “Iterators and
Decorators” in the Python documentation or resource you mentioned, specifically
section 3.1.

In[19] list(reversed(myList1))

Out[19] [29, 28, 27, 26, 25, 24, 23, 22, 21]

 72 Python Data Science

In[20] myList1

Out[20] [21, 22, 23, 24, 25, 26, 27, 28, 29]

Tips

To check the current value of the myList1 list, you can use the reverse() method as
follows: myList1.reverse().

In[21] myList1.reverse()
myList1

Out[21] [29, 28, 27, 26, 25, 24, 23, 22, 21]

Notes

When you use reversed(), it returns an iterator that allows you to iterate over the list
in reverse order without modifying the original list. However, if you use the reverse()
method directly on a list, it will reverse the elements of the list itself.

2.10.4  Type conversion

In[22] list("chaolemen")

Out[22] ['c', 'h', 'a', 'o', 'l', 'e', 'm', 'e', 'n']

Tips

We can use the list() function to convert an object of a different type into a list.

2.10.5  the extend and append operator

In[23] # The addition (+) operator of the list
myList1 = [21,22,23,24,25,26,27,28,29]
myList2=myList1
myList1 + myList2

Out[23] [21, 22, 23, 24, 25, 26, 27, 28, 29, 21, 22, 23, 24, 25, 26, 27, 28, 29]

In[24] myList1 = [21,22,23,24,25,26,27,28,29]
myList2=myList1
myList1.extend(myList2)
myList1

Out[24] [21, 22, 23, 24, 25, 26, 27, 28, 29, 21, 22, 23, 24, 25, 26, 27, 28, 29]

Notes

In Python, the “+” operation for lists and the extend() method of a list have similar
functionality. Both operations are used to concatenate or combine lists.

73 Basic Python Programming for Data Science

In[25] # The append() method of the list
myList1 = [21,22,23,24,25,26,27,28,29]
myList2 = myList1
myList1.append(myList2)
myList1

Out[25] [21, 22, 23, 24, 25, 26, 27, 28, 29, [21, 22, 23, 24, 25, 26, 27, 28, 29]]

Notes

The difference between the append() and extend() methods of a list is that append()
is used to add a single element to the list, while extend() is used to add multiple
individual elements.

In[26] myList1 = [1,2,3,4,5,6,7,8,9]
myList3 = [11,12,13,14,15,16,17,18,19]
[i + j for i, j in zip(myList1, myList3)]

Out[26] [12, 14, 16, 18, 20, 22, 24, 26, 28]

Notes

The zip() function in Python is used to iterate in parallel over two or more iterables. It
takes multiple iterables as input and returns an iterator that generates tuples containing
elements from each iterable, paired together based on their respective positions.

Tips

In Python, list comprehension (or list derivation) is a concise way to create lists based
on existing lists or other iterables. List comprehension is typically written within
square brackets ([]).
You can refer to section 2.10.6 titled “Lists Derivation” for more detailed information
on this topic.

2.10.6  List derivation

In[27] [2 for i in range(20)]
 # Excute the range() function firstly, then the value of i, and finally the value of 2.

Out[27] [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

Tips

List comprehension (or list derivation) must be enclosed within square brackets ([]).
You can refer to section 2.10 titled “Lists” for more information on this topic.

Notes

Since Python provides mechanisms such as list comprehensions, ufunc functions,
vectorized calculations, and more, complex for statements are generally not commonly
found in Python-based data science projects. These mechanisms offer more efficient
and concise ways to perform computations on data structures, allowing for faster and
more readable code. Consequently, Python developers often leverage these techniques
instead of writing complex for loops when working on data science projects.

 74 Python Data Science

Tips

List comprehension is typically written within square brackets ([]), and it allows you
to generate new lists by applying an expression to each item in an iterable, optionally
including conditions for filtering the elements.

In[28] [i for i in range(1, 21)]

Out[28] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

In[29] [i for i in range(1, 21, 2)]

Out[29] [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

In[30] range(10)

Out[30] range(0, 10)

Tips

range(10) is equivalent to range(0,10).

In[31] list(range(0,10,2))

Out[31] [0, 2, 4, 6, 8]

Tips

In the code snippet (range(0,10,2)), the numbers 0, 10, and 2 represent the start, stop,
and step arguments of the iterator, respectively.

In[32] [type(item) for item in [True,"1",1,1.0]]

Out[32] [bool, str, int, float]

In[33] print([ord(i) for i in ['朝', '乐', '门']])

Out[33] [26397, 20048, 38376]

In[34] ["input/%d.txt" % i + "dd%d" % i for i in range(5)]

Out[34] ['input/0.txtdd0',
 'input/1.txtdd1',
 'input/2.txtdd2',
 'input/3.txtdd3',
 'input/4.txtdd4']

Tricks

String placeholders, such as %d, can be used in Python list comprehensions, which are
similar to the placeholders used in the printf() and scanf() functions in C.

75 Basic Python Programming for Data Science

In[35] ["input/%d.txt"%i + "_%d" %i for i in range(5)]

Out[35] ['input/0.txt_0',
 'input/1.txt_1',
 'input/2.txt_2',
 'input/3.txt_3',
 'input/4.txt_4']

Notes

Here, %d is a placeholder that represents an integer value, and %i is another placeholder
that is used to display the corresponding value in the resulting string.

2.10.7  Insertion and deletion

In[36] lst_1 = [10,10,11,12,13,14,15]
lst_1.insert(1, 8)
lst_1

Out[36] [10, 8, 10, 11, 12, 13, 14, 15]

Tips

We can add or insert elements to a list using the insert() method of the list.

Notes

Here, the number “8” represents the element to be inserted, and the number “1”
represents the position at which the element will be inserted into the lst_1 list.

In[37] lst_1 = [10,10,11,12,13,14,15]
lst_1.pop(2)
lst_1

Out[37] [10, 10, 12, 13, 14, 15]

Tips

We can use the pop() method of a list to delete a specific element based on its index.
To remove the element at index 2, you can use the above code.

In[38] lst_1 = [10,10,11,12,13,14,15]
del lst_1[2]
lst_1

Out[38] [10, 10, 12, 13, 14, 15]

Tips

Python supports deleting an element from a list based on its index.

 76 Python Data Science

In[39] lst_1 = [10,10,11,12,13,14,15]
lst_1.remove(10)
lst_1

Out[39] [10, 11, 12, 13, 14, 15]

Tips

In addition to deleting an element based on its index, Python also supports removing
an element from a list based on its value. You can use the remove() method for this
purpose.

Notes

Here, only the first occurrence of 10 is removed, not the second occurrence.

Tips

If you want to remove all occurrences of a particular value from the list, you can use
other techniques such as a list comprehension or a loop.

2.10.8  Basic functions

In[40] len(lst_1)

Out[40] 8

Tips

To calculate the length of a list in Python, you can use the built-in function len().

Notes

This function is named len(), not length().

In[41] lst_1 = [10,10,11,12,11,13,14,15]
sorted(lst_1)

Out[41] [10, 10, 11, 11, 12, 13, 14, 15]

Tips

To sort lists in Python, you can use the built-in function sorted().

In[42] lst_1

Out[42] [10, 10, 11, 12, 11, 13, 14, 15]

77 Basic Python Programming for Data Science

Notes

In Python, the built-in function sorted() does not change the order of the elements in
a list.

In[43] lst_1 = [10,10,11,12,11,13,14,15]
lst_1.sort()
lst_1

Out[43] [10, 10, 11, 11, 12, 13, 14, 15]

Tips

In addition to the built-in function sorted(), the list method sort() can also be used to
sort lists.

Notes

The difference between the built-in function sorted() and the list method sort() is that
the sort() method directly modifies the order of elements within the list itself, while
the sorted() function returns a new sorted list without modifying the original list.

In[44] lst_1 = [10,10,11,12,11,13,14,15]
lst_2=[11,12,13,14]
lst_1.append(lst_2)
print(lst_1)

Out[44] [10, 10, 11, 12, 11, 13, 14, 15, [11, 12, 13, 14]]

Notes

Note the difference between the list methods extend() and append().

Tips

lst_2 is appended as an element of lst_1.

In[45] lst_1 = [10,10,11,12,11,13,14,15]
lst_2=[11,12,13,14]
lst_1.extend(lst_2)
print(lst_1)

Out[45] [10, 10, 11, 12, 11, 13, 14, 15, 11, 12, 13, 14]

Tips

Appending lst_1 directly after lst_2, that is, directly merging the elements in the two
lists.

 78 Python Data Science

In[46] lst_1 = [1,2,3,'Python',True,4.3,None]
lst_2 = [1,2,[2,3]]
print(lst_1, lst_2)

Out[46] [1, 2, 3, 'Python', True, 4.3, None] [1, 2, [2, 3]]

Tips

To print lists in Python, you can use the built-in function print().

In[47] lst_1 = [1,2,3,'Python',True,4.3,None]
list(reversed(lst_1))

Out[47] [None, 4.3, True, 'Python', 3, 2, 1]

Tips

The difference between the built-in function reversed() and the list method reverse()
is that the former does not modify the list itself, while the latter directly modifies the
list itself.

Notes

‘reversed(lst_1)’ returns an iterator that needs to be converted using the list() function
before printing.

In[48] reversed(lst_1)

Out[48] <list_reverseiterator at 0x18ef367bf10>

Notes

In data science projects, it is important to pay attention to whether a “function” or
“method” modifies the value of the object being operated upon.

In[49] lst_1

Out[49] [1, 2, 3, 'Python', True, 4.3, None]

Tips

The reversed() function is a built-in function in Python that does not change the list
itself. Instead, it temporarily returns the list in reverse order as an iterator.

In[50] lst_1 = [1,2,3,'Python',True,4.3,None]
lst_1.reverse()
lst_1

Out[50] [None, 4.3, True, 'Python', 3, 2, 1]

79 Basic Python Programming for Data Science

In[51] str1=[1,2,3,4,5]
str2=[20,21,23,24,25]
print(zip(str1,str2))

Out[51] <zip object at 0x0000018EF368C280>

Tips

To aggregate elements from two lists simultaneously in Python, you can use the zip()
function.

In[52] print(list(zip(str1,str2)))

Out[52] [(1, 20), (2, 21), (3, 23), (4, 24), (5, 25)]

Tips

The return value of the zip() function is an iterator, which needs to be cast by list() to
get its value. Please refer to [3.1 Iterators and Decorators] for details.

In[53] str1=["a","about","c","china","b","beijing"]
[x.upper() for x in str1 if len(x)>1]

Out[53] ['ABOUT', 'CHINA', 'BEIJING']

Tips

Unlike C and Java, Python introduces the concept of list comprehension, which can be
used to simplify complex for statements.

Notes

For a list comprehension, there are three main components:

1. � Before the “for” keyword is the expression or formula that will be executed
repeatedly to generate elements for the new list.

2. � Between the “for” and “in” keywords is the loop variable that is extracted from
the iterator and represents each element from the iterable.

3. � After the “in” keyword is the iterable or iterator from which the loop variable is
extracted, which can also include conditional statements if needed.

In[54] [x**2 for x in range(10)]

Out[54] [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

 80 Python Data Science

Tips

The list derivation above is executed in the following order:
#First execute range(10)
#Then execute x
#Finally execute x**2

In[55] str1=["a","about","c","china","b","beijing"]
[str2.upper() for str2 in str1 if len(str2)>1]

Out[55] ['ABOUT', 'CHINA', 'BEIJING']

Tips

The code above contains the ternary operators of the if statement, please refer to [2.7
The if statement] for details.

In[56] myList=[2,3,5,6,7,3,2]
list(enumerate(myList))

Out[56] [(0, 2), (1, 3), (2, 5), (3, 6), (4, 7), (5, 3), (6, 2)]

Tips

In Python, to track the index of a list, you can use the built-in function enumerate().

Notes

In data science projects, it is important to pay attention to the difference between
writing code for software development and code for data analysis/data science. For
instance, in data science, we often prefer using list comprehension instead of complex
for statements.

List comprehension provides a concise and efficient way to create lists based on
existing lists or other iterables. It simplifies code by condensing multiple lines of
code into a single line, making it more readable and expressive. This approach is
particularly valuable in data analysis and data science tasks that involve working with
large datasets.

By utilizing list comprehension, data scientists can express complex operations more
succinctly and intuitively, resulting in more manageable and error-resistant code.

Therefore, in data science projects, it is important to recognize the advantages of using
list comprehension as a preferable alternative to complex for statements, enhancing
code clarity and efficiency.

81 Basic Python Programming for Data Science

2.11  Tuples

Q&A

 82 Python Data Science

2.11.1  Define tuples

In[1] myTuple1=(1,3,5,7,2)
print(myTuple1)

Out[1] (1, 3, 5, 7, 2)

Notes

To define a tuple in Python, you can use the following methods:

  1.  Using parentheses and commas:

In[2] 1,3,5,7,2

Out[2] (1, 3, 5, 7, 2)

83 Basic Python Programming for Data Science

Notes

In Python, parentheses can be omitted when defining tuples; however, commas cannot
be omitted

Tips

In Python, when a tuple is output or printed, parentheses are automatically added to
encapsulate the comma-separated values. This helps in differentiating a tuple from
other data types.

In[3] myTuple2=myTuple1
print(myTuple2)

Out[3] (1, 3, 5, 7, 2)

Notes

The second method to create a tuple in Python is through tuple unpacking. This
involves using an ‘assignment statement’ to assign the values of an existing tuple to
the variables of a new tuple.

In[4] myTuple3=tuple("Data")
myTuple3

Out[4] ('D', 'a', 't', 'a')

Notes

The third method involves using type casting to convert other data types into tuples.

In[5] myTuple4=1,3,5,7,2
print(myTuple4)

Out[5] (1, 3, 5, 7, 2)

Notes

The fourth method involves using the ‘comma operator’. This means that the
parentheses which are typically used in the first method can be omitted. In Python, a
comma operator signifies a tuple, even without parentheses.

2.11.2  Main features

In[6] 1,3,5,7,2

Out[6] (1, 3, 5, 7, 2)

Tips

Tuples are widely used in Python.

 84 Python Data Science

Notes

In Python, when a list is output in the Jupyter Notebook, it is automatically encapsulated
in square brackets.

In[7] myTuple=1,3,5,7,2
myTuple[2]=100

Out[7] ---
TypeError Traceback (most recent call last)
<ipytho�n-input-7-bab615dd7a09> in <module>

1 myTuple=1,3,5,7,2
----> 2 myTuple[2]=100  # Why that exception: Tuples are immutable objects.

TypeError: 'tuple' object does not support item assignment

Tips

One of the key differences between tuples and lists in Python is that tuples are
‘immutable objects’, which means they cannot be changed after they are created.
Lists, on the other hand, are ‘mutable objects’ and can be modified even after their
creation.

In[8] myList=[1,3,5,7,2]
myList[2]=100
myList

Out[8] [1, 3, 100, 7, 2]

Tips

In this case, no exception is raised when performing certain operations because a ‘list’
is a mutable object in Python, allowing modifications without causing errors.

In[9] myTuple=1,3,5,7,2
myTuple[2:5]

Out[9] (5, 7, 2)

Notes

Similar to lists, tuples support slicing operations because both are sequence types in
Python.

In[10] myTuple=1,3,5,7,2
len(myTuple)

Out[10] 5

Tips

To calculate the length of a tuple in Python, you can use the built-in function, len().

85 Basic Python Programming for Data Science

In[11] myTuple=1,3,5,7,2
print(sorted(myTuple))

Out[11] [1, 2, 3, 5, 7]

Notes

To sort tuples in Python, you can use the built-in function sorted().

Tips

The sorted() function in Python returns a new result that is of type ‘list’, not ‘tuple’.

In[12] myTuple=1,3,5,7,2
myTuple.sort()

Out[12] ---
AttributeError Traceback (most recent call last)
<ipytho�n-input-12-d7b571f24488> in <module>

1 myTuple=1,3,5,7,2
----> 2 myTuple.sort()
     3 # Why that exception: Tuples do not have the method.
AttributeError: 'tuple' object has no attribute 'sort'

Notes

Unlike lists, tuples in Python do not have a sort() method. This is because tuples are
immutable objects and the sort() method would require changing the original object
itself, which is not possible with tuples.

Tips

The code myTuple.sort() causes an error because tuples in Python do not have a sort()
method, given their immutability.

In[13] myTuple=1,3,5,7,2
5 in myTuple

Out[13] True

Tips

The in operator can be used with tuples in Python to check if a specific value exists
within the tuple. For example, 5 in myTuple checks if the number 5 is an element of
the myTuple tuple.

In[14] myTuple=1,3,5,7,2
myTuple.count(11)

Out[14] 0

 86 Python Data Science

Tips

To count the frequency of an element in a tuple, you can use the count() method. For
instance, myTuple.count(11) counts the occurrences of the value 11 in the myTuple
tuple.

In[15] myTuple=1,3,5,7,2
x1,x2,x3,x4,x5=myTuple
x2

Out[15] 3

Tips

In Python, the rule for unpacking tuples is ‘assignment by position’. This means that
variables are assigned to the corresponding values in the tuple based on their positions.

2.11.3  Basic usage

In[16] x,y,z =1,2,3
print(x,y,z)

Out[16] 1 2 3

Tips

Unpacking assignment is a special method in Python where variables are assigned
values from a collection (like a list or tuple) directly in a single line of code.

In[17] myTuple=(1,5,6,3,4)
print(myTuple)
print(len(myTuple))
print(max(myTuple))

Out[17] (1, 5, 6, 3, 4)
5
6

Tips

In Python, a tuple is typically represented by ‘parentheses and commas’. However, the
parentheses can be omitted, and the presence of the comma is what primarily defines
a tuple.

In[18] myTuple=(11,12,13,12,11,11)
a1,a2,a3,a4,a5,a6=myTuple
a3

Out[18] 13

87 Basic Python Programming for Data Science

Tips

In Python, tuples support the feature of unpacking assignment, which allows for the
assignment of tuple values to a corresponding set of variables in a single line of code.

In[19] myTuple=(11,12,13,12,11,11)
myTuple.count(11)

Out[19] 3

Tips

Counting the frequency of value 11 in the myTuple tuple.

2.11.4  Tuples in data science

In[20] def func(args1,*args2):
 print(args1)
 print(args2)
func("a","b","c","d","e","f")

Out[20] a
('b', 'c', 'd', 'e', 'f')

Tips

In Python, a tuple used as a formal parameter with a ‘*’ prefix in function definition
means that the function can receive a variable number of actual arguments. These
arguments are collected into a tuple.

In[21] def func(args1,**args2):
 print(args1)
 print(args2)
func("a",x1="b",x2="c",x3="d",x4="e",x5="f")

Out[21] a
{'x1': 'b', 'x2': 'c', 'x3': 'd', 'x4': 'e', 'x5': 'f'}

Tips

In Python, the ‘’ operator is used to represent a tuple, while the ‘**’ operator is used
to represent a dictionary. The ‘’ operator unpacks elements into a tuple, and the ‘**’
operator unpacks key-value pairs into a dictionary.

Notes

In a dictionary, the keys must be explicitly present in the actual parameters, such as
x1, x2.

 88 Python Data Science

In[22] def func():
 return 1,2,3,4,5
func()

Out[22] (1, 2, 3, 4, 5)

Tips

In Python, the return value of many functions is often a tuple because the syntax
‘return 1, 2, 3’ is equivalent to ‘return (1, 2, 3)’. This shorthand allows multiple values
to be returned as a tuple without explicitly using parentheses.

In[23] 1,2

Out[23] (1, 2)

Notes

For example, (1, 2, 3) represents a tuple of three elements, while 1, 2, 3 without
parentheses would be treated as separate values rather than a tuple.

Tips

It’s important to note that the parentheses are not part of the tuple itself; they are added
for clarity and readability.

In[24] x=1
y=2
x,y=y,x
print(x,y)

Out[24] 2 1

Tricks

In Python, swapping the values of two variables can be achieved using tuples. This is
commonly known as “tuple unpacking”.

Tips

For more details, please refer to [2.5.5 Swap Two Variables].

89 Basic Python Programming for Data Science

2.12  Strings

Q&A

 90 Python Data Science

2.12.1  Defining strings

In[1] print('abc')
print("abc")

Out[1] abc
abc

Tips

Unlike in C and Java, the concepts of ‘character’ and ‘string’ are more closely
unified in Python, resulting in fewer practical distinctions between them. In Python, a
character is typically represented as a string of length 1, which allows it to be treated
as a special case of a string.

Tips

Strings can be enclosed either with single quotes or double quotes in Python.

In[2] print("abc'de'f")

Out[2] abc'de'f

Tips

When the string itself contains single quotes, it should be enclosed with double quotes,
and vice versa.

Notes

In this case, the argument of the print() function is enclosed within single quotes.

In[3] print('abc"de"f')

Out[3] abc"de"f

Notes

In this case, when using the print() function, the output is enclosed within double
quotes.

In[4] str1='"
Hello
world
!
'"
str1

Out[4] '\n Hello \n world \n !\n'

91 Basic Python Programming for Data Science

Tips

Triple quotes can also be used in Python to indicate strings with newlines. For more
details, please refer to the official Python documentation on string literals.

2.12.2  Main features

In[5] str1[1:4]="2222"
Why that exception: TypeError: 'str' object does not support item assignment

Out[5] ---
TypeError Traceback (most recent call last)
<ipython-input-5-d80a51ea9762> in <module>()
 1
----> 2 str1[1:4]="2222"
3 # Why that exception: TypeError: 'str' object does not support item assignment
TypeError: 'str' object does not support item assignment

Tips

The first feature: Strings in Python are “immutable objects”.

In[6] str1="abc"
str1="defghijk"
str1[1:4]

Out[6] 'efg'

Tips

The execution of the above code will not raise an error, because Python is a dynamically
typed language. Please refer to [2.2.2 Dynamically Typed Language].

Notes

“Immutable object” means that the value of the object cannot be altered locally, and
“dynamically typed language” is a different concept from “Immutable object”.

Tips

The second feature of strings in Python is that they are considered ‘sequences’. This
means that all operators and functions that support sequences can be used with strings.
For instance, strings in Python support operations like slicing, which allows you to
extract portions of a string by specifying a range of indices.

In[7] 'clm'[0:2]

Out[7] 'cl'

 92 Python Data Science

Tips

Strings in Python support the operation of slicing. The rule for slicing is that it
includes the beginning index but excludes the ending index. For example, when
slicing a string, the resulting substring will include the element at index 0 but not
the element at index 2.

In[8] str3="chaolemen"
str4=str3[1:3]
str4

Out[8] 'ha'

In[9] "chaolemen"[:6]

Out[9] 'chaole'

2.12.3  String operations

In[10] '-'.join(['c', 'l'])

Out[10] 'c-l'

Tips

String concatenation in Python refers to the process of combining multiple strings
into a single string. It is commonly achieved using the ‘+’ operator or the ‘str.join()’
method.

In[11] 'c' + 'lm'

Out[11] 'clm'

In[12] "chaolemen ".strip()

Out[12] 'chaolemen'

Tips

Removing whitespaces at the beginning and end of a string, such as spaces, newlines.

In[13] 'c' in 'clm'

Out[13] True

Tips

To check if a character or string appears within another string in Python, you can use
the in keyword.

In[14] len('clm')

Out[14] 3

93 Basic Python Programming for Data Science

Tips

To calculate the length of a string in Python, you can use the built-in function len().

In[15] print(ord('A'))
print(chr(97))

Out[15] 65
a

Tips

In Python, you can use the built-in function ord() to obtain the Unicode value of a
character.

Notes

The built-in function chr() in Python is indeed the counterpart of the ord() function. It
takes a Unicode value as an argument and returns the corresponding character string.

In[16] print(ord('朝'))
print(chr(26397))

Out[16] 26397
朝

Tips

By importing the sys module and calling the sys.getdefaultencoding() function from
it, you can obtain the default character encoding used in Python.

In[17] s='a\tbbc'
s

Out[17] 'a\tbbc'

Tips

Escape character.

In[18] print(s)

Out[18] a    bbc

Notes

When a string contains ‘escape characters’, there is a difference between the output
of s and print(s). The difference is that the former does not interpret or process the
escape characters, while the latter does perform the necessary escaping and displays
the string accordingly.

 94 Python Data Science

In[19] str(1234567)

Out[19] '1234567'

Tips

The integer can be converted into a string using the str() function.

In[20] "abc".upper()

Out[20] 'ABC'

Tips

To convert uppercase characters to lowercase, you can use the lower() method.
Conversely, to convert lowercase characters to uppercase, you can use the upper()
method.

Tips

When working with special characters and path strings in Python, it is important to
be mindful of certain issues. For example, assigning a path string to a variable, such
as s1 = “E:\SparkR\My\T”, can lead to unexpected behavior due to the interpretation
of backslashes as escape characters.

In[21] s1="E:\SparkR\My\T"
s1

Out[21] 'E:\\SparkR\\My\\T'

Tips

In the Jupyter notebook, printing the string s1 directly is different from the output of
the built-in function print().

In[22] s1=r"http://www.chaolemen.org"
s1

Out[22] 'http://www.chaolemen.org'

Notes

In Python, strings prefixed with r or R, such as r’...’ or r”...”, are referred to as raw
strings.

Raw strings treat backslashes (\) as literal characters instead of escape characters.
This means that they preserve the original backslashes and do not interpret them as
escape sequences.

Tricks

Raw strings are commonly used when dealing with regular expressions, file paths, or
any situation where backslashes need to be handled as literal characters.

95 Basic Python Programming for Data Science

http://www.chaolemen.org
http://www.chaolemen.org

Tips

In Python 3, the use of Unicode string literals (string literals prefixed by u) is no longer
necessary. While they are still valid, they are primarily maintained for compatibility
purposes with Python 2.

In[23] sepStr = "-"
iterObj = ("a", "b", "c")
sepStr.join(iterObj)

Out[23] 'a-b-c'

Tips

The join() method in Python returns a string by concatenating all the elements of an
iterable object (iterObj), separated by a specified string separator (sepStr). For more
detailed information about iterable objects, please refer to the relevant sections on
iterators and generators in the appropriate Python documentation.

Notes

The argument of the join() method in Python is a sequence, and the variable before
the dot (referred to as seq_str here) represents the separator. The join() method
concatenates all the elements of the sequence, using seq_str as the separator between
them.

In[24] str1=["abc","aaba","adefg","bb","c"]
str1.sort()
str1

Out[24] ['aaba', 'abc', 'adefg', 'bb', 'c']

Tips

In Python, you can use the set() function to convert a string into a set data structure.

In[28] print("set(str1)=",set(str1))

Out[28] set(str1)= {'c', 'adefg', 'bb', 'abc', 'aaba'}

Notes

The re module in Python provides support for regular expressions, including regular
expression syntax, pattern matching, and various operations for working with
patterns. It offers powerful tools for pattern matching, searching, substitution, and
other advanced operations involving text processing based on regular expressions.

In[29] import re
p1 = re.compile('[a-dA-D]')
r1 = p1.findall('chaolemen@ruc.edu.cn')
r1

Out[29] ['c', 'a', 'c', 'd', 'c']

 96 Python Data Science

mailto:chaolemen@ruc.edu.cn

Tips

Useful functions of the re module:

	re.compile():  Compile a regular expression pattern into a regular expression
object,,which can be used for matching using its findall(), search() and other
methods.

	re.findall(): Return all non-overlapping matches of pattern in string, as a list of
strings or tuples

	re.search(): Scan through string looking for the first location where the regular
expression pattern produces a match, and return a corresponding match object.

Notes

The syntax of regular expressions in Python can be found in the official documentation.
For Python 3, the documentation can be accessed at: https://docs.python.org/3/library/
re.html.

97 Basic Python Programming for Data Science

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

2.13  Sequences

Q&A

 98 Python Data Science

2.13.1  Indexing

Notes

In Python, a sequence is a positionally ordered collection of items
There are three basic sequence types: lists, tuples, and range objects

In[1] myString="123456789"
myString[1]

Out[1] '2'

Tips

An element of sequence can be accessed by index/subscript.

In[2] myList=[11,12,13,14,15,16,17,18,19]
myList[1]

Out[2] 12

In[3] myTuple=(21,22,23,24,25,26,27,28,29)
myTuple[1]

Out[3] 22

2.13.2  Slicing

In[4] myString="123456789"
myString[1:9:2]

Out[4] '2468'

Tips

Slicing can be used through [start: stop: step]. For further details, please refer to [2.10
Lists]

In[5] myList=[11,12,13,14,15,16,17,18,19]
myList[1:9:2]

Out[5] [12, 14, 16, 18]

In[6] myTuple=(21,22,23,24,25,26,27,28,29)
myTuple[1:9:2]

Out[6] (22, 24, 26, 28)

99 Basic Python Programming for Data Science

2.13.3  Iteration

In[7] myString="123456789"
for i in myString:
 print(i,end=" ")

Out[7] 1 2 3 4 5 6 7 8 9

Tips

A sequence is an example of an iterable data type that can be iterated over using the
for statement in Python.

In[8] myList=[11,12,13,14,15,16,17,18,19]
for i in myList:
 print(i,end=" ")

Out[8] 11 12 13 14 15 16 17 18 19

In[9] myTuple=(21,22,23,24,25,26,27,28,29)
for i in myTuple:
 print(i,end=" ")

Out[9] 21 22 23 24 25 26 27 28 29

2.13.4  Unpacking

In[10] myString="123456789"
a1,a2,a3,a4,a5,a6,a7,a8,a9=myString
a1,a2,a3,a4,a5,a6,a7,a8,a9

Out[10] ('1', '2', '3', '4', '5', '6', '7', '8', '9')

Tips

Sequences support “unpacking assignment”, sometimes called “parallel assignment”.
The rule of assignment is “assigned by positions”.

In[11] myList=[11,12,13,14,15,16,17,18,19]
a1,a2,a3,a4,a5,a6,a7,a8,a9=myList
a1,a2,a3,a4,a5,a6,a7,a8,a9

Out[11] (11, 12, 13, 14, 15, 16, 17, 18, 19)

In[12] myTuple=(21,22,23,24,25,26,27,28,29)
a1,a2,a3,a4,a5,a6,a7,a8,a9=myTuple
a1,a2,a3,a4,a5,a6,a7,a8,a9

Out[12] (21, 22, 23, 24, 25, 26, 27, 28, 29)

 100 Python Data Science

2.13.5  Repeat operator

In[13] myString="123456789"
myString * 3

Out[13] '123456789123456789123456789'

Tips

The multiplication operator of sequences is *.

Notes

In Python, the * operator, when used with a sequence, performs a “repeat operation”
rather than a “multiplication” operation. This means that the sequence is repeated a
certain number of times to create a new sequence.

In[14] myList=[11,12,13,14,15,16,17,18,19]
myList * 3

Out[14] [11,
 12,
 13,
 14,
 15,
 16,
 17,
 18,
 19,
 11,
 12,
 13,
 14,
 15,
 16,
 17,
 18,
 19,
 11,
 12,
 13,
 14,
 15,
 16,
 17,
 18,
 19]

101 Basic Python Programming for Data Science

In[15] myTuple=(21,22,23,24,25,26,27,28,29)
myTuple * 3

Out[15] (21,
 22,
 23,
 24,
 25,
 26,
 27,
 28,
 29,
 21,
 22,
 23,
 24,
 25,
 26,
 27,
 28,
 29,
 21,
 22,
 23,
 24,
 25,
 26,
 27,
 28,
 29)

2.13.6  Basic Functions

In[16] myString="123456789"
myList=[11,12,13,14,15,16,17,18,19]
myTuple=(21,22,23,24,25,26,27,28,29)
len(myString),len(myList),len(myTuple)

Out[16] (9, 9, 9)

Notes

In Python, all objects of “sequence”, regardless of their data type (such as lists, tuples,
strings), support common functions.

Tips

In Python, the built-in function len() is used to calculate the length of sequences. This
function can be applied to various sequence types, such as lists, tuples, and strings, to
determine the number of elements they contain.

 102 Python Data Science

In[17] sorted(myString),sorted(myList),sorted(myTuple)

Out[17] (['1', '2', '3', '4', '5', '6', '7', '8', '9'],
 [11, 12, 13, 14, 15, 16, 17, 18, 19],
 [21, 22, 23, 24, 25, 26, 27, 28, 29])

Tips

In Python, the sorted() function is used to sort sequences. It takes an iterable as input
and returns a new sorted list containing the elements of the original sequence.

In[18] reversed(myString),reversed(myList),reversed(myTuple)

Out[18] (<reversed at 0x15bad2819a0>,
 <list_reverseiterator at 0x15bad281070>,
 <reversed at 0x15bad2d6af0>)

Tips

In Python, the reversed() function is used to reverse sequences. It takes an iterable
as input and returns a reverse iterator object that can be converted into a reversed
sequence or used in a loop.

In[19] list(reversed(myString))

Out[19] ['9', '8', '7', '6', '5', '4', '3', '2', '1']

Notes

What the reversed() function returns is an iterator, which supports lazy evaluation, and
can be converted into a list using the built-in function list().

In[20] enumerate(myString),enumerate(myList),enumerate(myTuple)

Out[20] (<enumerate at 0x15bad2d1280>,
 <enumerate at 0x15bad2cb500>,
 <enumerate at 0x15bad2cb300>)

Tips

In Python, the enumerate() function is used to track and enumerate indexes while
iterating over a sequence. It returns an iterator that generates pairs of index and value
for each element in the sequence.

In[21] list(enumerate(myString))

Out[21] [(0, '1'),
 (1, '2'),
 (2, '3'),
 (3, '4'),
 (4, '5'),
 (5, '6'),
 (6, '7'),
 (7, '8'),
 (8, '9')]

103 Basic Python Programming for Data Science

Notes

The enumerate() function returns an iterator that can be converted to a list using list().

In[22] zip(myList,myTuple)

Out[22] <zip at 0x15bad2d7600>

Tips

In Python, the zip() function is used to aggregate elements from two or more iterables
into tuples. It takes multiple iterables as input and returns an iterator that generates
tuples containing elements from each iterable, paired together.

In[23] list(zip(myList,myTuple))

Out[23] [(11, 21),
 (12, 22),
 (13, 23),
 (14, 24),
 (15, 25),
 (16, 26),
 (17, 27),
 (18, 28),
 (19, 29)]

Notes

The built-in function zip() returns an iterator, which can be converted into a list
using another built-in function list(). For details, please refer to [3.1 Iterators and
Decorators].

Tips

In contrast with list, tuple, set, and dictionary, “sequence” is not an independent data
type in Python, but a general term for multiple data types including list, tuple, and
string.

 104 Python Data Science

2.14  Sets

Q&A

105 Basic Python Programming for Data Science

2.14.1  Defining sets

In[1] mySet1={1,2,3,4,1,2,23}
mySet1

Out[1] {1, 2, 3, 4, 23}

Tips

In Python, there are several methods to define sets. The first method involves directly
defining a set using braces {}.

From this definition, it’s clear that a set is essentially an unordered data structure
consisting only of values with no keys.

In[2] mySet2=mySet1
mySet2

Out[2] {1, 2, 3, 4, 23}

Tips

The second method: use the assignment statement to assign values to new set variables
from pre-existing defined set variables.

In[3] myList1=[1,2,3,3,2,2,1,1]
mySet3=set(myList1)
mySet3

Out[3] {1, 2, 3}

Tips

The third method: use the set() function to convert objects of other types into a set
object.

In[4] mySet4=set("chaolemen")
mySet4

Out[4] {'a', 'c', 'e', 'h', 'l', 'm', 'n', 'o'}

2.14.2  Main features

In[5] 2 in mySet3

Out[5] True

Tips

A key feature of a set is certainty: for any given set and any specific element, that
element either belongs to the set or it does not. There is no ambiguity permitted.

 106 Python Data Science

In[6] mySet4[2]

Out[6] ---
TypeError Traceback (most recent call last)
<ipython-input-6-78241c857f8a> in <module>
 1  # Unordered
 2 � # The elements in the sets are unordered, so the elements in the

#  set cannot be accessed with indexes
----> 3 �mySet4[2]  # Why that exception: TypeError: 'set' object does not support

indexing

TypeError: 'set' object is not subscriptable

Tips

Unordered: The elements in sets are unordered, meaning they don’t have a specific
arrangement. Therefore, in Python, it’s not possible to use indices to access elements
within a set.

Notes

TypeError: ‘set’ object does not support indexing.
The reason of error: The set is disordered and can’t be indexed.

In[7] mySet5={1,2,3}
mySet6={1,2,1,1,3}
mySet5==mySet6

Out[7] True

Tips

Uniqueness: The elements in a set are distinct from each other, meaning each element
appears only once. Therefore, in Python, two sets with the same elements, regardless
of their order, are considered equal.

2.14.3  Basic operations

In[8] mySet7={1,3,5,10}
mySet8={2,4,6,10}

In[9] # Include
3 in mySet7

Out[9] True

In[10] # Not include
3 not in mySet7

Out[10] False

In[11] # Equal to
mySet7 == mySet8

Out[11] False

107 Basic Python Programming for Data Science

In[12] # Not equal to
mySet7 != mySet8

Out[12] True

In[13] # Subset
{1,5} < mySet7

Out[13] True

In[14] # Union
mySet7|mySet8

Out[14] {1, 2, 3, 4, 5, 6, 10}

In[15] # Intersection
mySet7&mySet8

Out[15] {10}

In[16] # Difference
mySet7-mySet8

Out[16] {1, 3, 5}

In[17] # Symmetric difference
mySet7^mySet8

Out[17] {1, 2, 3, 4, 5, 6}

In[18] #To check whether one set is a subset of another set in Python
print({1,3}.issubset(mySet7))

Out[18] True

In[19] #To check whether one set is a superset of another set in Python
print({1,3,2,4}.issuperset(mySet7))

Out[19] False

In[20] mySet9={1,2,3,4}
mySet9.add(4)
mySet9.remove(1)
mySet9

Out[20] {2, 3, 4}

Tips

In Python, there are two types of sets: set and frozenset.

The set type is mutable, meaning that after its creation, you can modify it by adding,
removing, or changing elements.

In[21] mySet10=frozenset({1,2,3,4})
mySet10

Out[21] frozenset({1, 2, 3, 4})

 108 Python Data Science

Tips

The frozenset is an immutable type of set in Python. This means that once a frozenset
is created, it cannot be modified – you can’t add or remove elements from it.

Notes

In data science projects, to safeguard data from unintentional modifications during the
analysis process, we typically employ immutable objects.

In[22] mySet10.add(5)

Out[22] ---
AttributeError Traceback (most recent call last)
<ipython-input-22-d051a89f1878> in <module>
----> 1 mySet10.add(5) # Why that exception: AttributeError: 'frozenset' object has no
attribute 'add'

AttributeError: 'frozenset' object has no attribute 'add'

Notes

In Python, trying to modify a frozenset object, such as adding or removing elements,
will raise an error since frozenset is an immutable object.

2.14.4  Sets and data science

In[23] myList=["d","a","t","a"]
mySet11=set(myList)
mySet11

Out[23] {'a', 'd', 't'}

Tips

Due to the uniqueness of elements in sets, they are commonly used to perform
deduplication operations in data analysis and data science projects.

Notes

Python supports single-line expressions for certain constructs, commonly used as
follows:

1. � Single-line if statements, using ternary operators. Refer to section [2.7 If
statements].

2. � Single-line for statements, using list comprehensions. Refer to section [2.10
Lists].

3. � Single-line function definitions, using lambda functions. Refer to section [2.20
Lambda functions].

These methods offer concise alternatives to their respective standard, multi-line
constructs.

109 Basic Python Programming for Data Science

2.15  Dictionaries

Q&A

 110 Python Data Science

2.15.1  Defining dictionaries

Notes

A dictionary (dict) is a mapping structure, which is an unordered container where each
key maps to its own value.

In[1] myDict1 = {'name': 'Jerry', 'age': 23,9:20}
myDict1

Out[1] {'name': 'Jerry', 'age': 23, 9: 20}

Tips

A dictionary in Python is more equivalent to a named list in R.

Notes

When defining a dictionary in Python, you should:
1.  Use braces {}.
2.  Separate keys and values with a colon (:).
3.  Separate different key-value pairs with a comma (,).

In[2] myDict3={"grade":2,"gender":"M","grade":15,"grade":5}
myDict3

Out[2] {'grade': 5, 'gender': 'M'}

Tips

In Python dictionaries, duplicate keys are not allowed. If you provide duplicate keys,
the value of the last key will be preserved, effectively overwriting previous assignments
to that key.

2.15.2  Accessing dictionary items

Notes

We can access the items of a dictionary by referring to its key name.

In[3] myDict1['name']

Out[3] 'Jerry'

Notes

In Python, if the key of a dictionary is a string, it must be enclosed in single or double
quotes. If the quotes are omitted, Python will interpret the key as a variable name. If
there’s no variable with such a name, Python will raise a NameError.

111 Basic Python Programming for Data Science

In[4] myDict1[name]

Out[4] ---
NameError Traceback (most recent call last)
<ipython-input-1-9f850ce95d5e> in <module>
 1 myDict2={2:2,2:3,4:5}
----> 2 myDict2[name]

NameError: name 'name' is not defined

Tips

There are two distinct approaches to correct this:

1.  Enclose it in quotes, e.g., my_dict1[‘name’].

2.  Declare it first, e.g.,
   a = ‘name’
   my_dict1[a]

Notes

In Python, you can change the value of a specific item in a dictionary by referring to
its key name and assigning a new value to it.

In[5] myDict1 = {'name': 'Jerry', 'age': 23,9:20}
myDict1['name']="chao"
myDict1

Out[5] {'name': 'chao', 'age': 23, 9: 20}

Tips

In Python, dictionary keys must be hashable. An object is considered hashable if it
maintains a constant hash value throughout its lifetime. Immutable data types, such
as tuple, frozenset, str, bytes, and numeric types, are all hashable. Note, however,
that a tuple is considered hashable only if all its elements are hashable.

In[6] dct3={[2,3]:[4,4], 5:5}

Out[6] ---
TypeError Traceback (most recent call last)
<ipython-input-7-36fc453a24ae> in <module>
----> 1 dct3={[2,3]:[4,4], 5:5}

TypeError: unhashable type: 'list'

Tips

Here, the key [2,3] is a list (unhashable objects) so that the unhashable type error
was raised.

 112 Python Data Science

Tricks

In Python, a TypeError will be raised when an unhashable data type is used in code
that requires hashable data.

2.15.3  Dictionary and data science

In[7] def func(args1,**args2):
 print(args1)
 print(args2)
func("a",x1="b",x2="c",x3="d",x4="e",x5="f")

Out[7] a
{'x1': 'b', 'x2': 'c', 'x3': 'd', 'x4': 'e', 'x5': 'f'}

Tips

Dictionaries are widely utilized in data science projects for various purposes, including
but not limited to storing temporary data, such as function arguments using **args.
However, dictionaries have broader applications in tasks like data preprocessing,
feature engineering, configuration parameter storage, categorical variable mapping,
and efficient data retrieval.

Notes

In the formal parameters of a function, the parameters prefixed with * and **
respectively represent the formal parameters for receiving variable-length tuples
(values without keys) and dictionaries (values with keys) as actual parameters.

Tips

In Python, when passing a dictionary as an actual parameter to a function, you must
explicitly specify the corresponding key in the function call. This ensures that the
function receives the correct value associated with the desired key from the dictionary.

113 Basic Python Programming for Data Science

2.16 Functions

Q&A

 114 Python Data Science

2.16.1  Built-in functions

In[1] i=20
type(i)

Out[1] int

Notes

There are three types of functions in Python: built-in functions, functions inside
modules, and user-defined functions.

User-defined functions can be written as single-line functions, known as “lambda
functions”.

User-defined functions can be defined both inside and outside a class. This is because
Python supports both object-oriented programming and procedural programming
paradigms.

Tips

A built-in function (BIF) refers to a function that is included as part of the Python
programming language. These functions are built into the Python interpreter and can
be called directly by their function name.

Notes

For more details, please refer to [2.17 Built-in Functions].

2.16.2  Module Functions

In[2] import math as mt
mt.sin(1.5)

Out[2] 0.9974949866040544

Tips

A function inside a module, also known as a module function, refers to a function that
is defined within a Python module. To call a module function, you first need to import
the module to which it belongs, and then you can use its name to invoke the function.

Notes

For more details, please refer to [2.18 Module functions].

2.16.3  User-defined functions

In[3] def myFunc():
 j=0
 print('hello world')
myFunc()

Out[3] hello world

115 Basic Python Programming for Data Science

Tips

User-defined function” refers to a function defined by the user, allowing us to define
custom functions in Python. These functions can be called directly by their function
name, once they have been defined.

Notes

To define a user-defined function in Python, you use the def keyword. This keyword is
followed by the name of the function, parentheses for any parameters, and a colon to
indicate the start of the function block.

Notes

For more details, please refer to [2.19 User-defined functions].

Tips

In Python, user-defined functions can be written as single-line functions called
“lambda functions.” For more information, please refer to [2.20 Lambda functions].

Notes

Python supports both object-oriented and procedural programming paradigms. As a
result, user-defined functions can be defined both inside or outside of a class. When
defined inside a class, they are referred to as “methods,” while functions defined outside
of a class are simply called “functions.” It is important for beginners to understand and
distinguish between the concepts of “function” and “method.” For more information,
please refer to [3.9 Object-oriented programming].

 116 Python Data Science

2.17  Built-in functions

Q&A

117 Basic Python Programming for Data Science

2.17.1  Calling built-in functions

In[1] i=20
type(20)

Out[1] int

Tips

An example of a built-in function is the type() function, which is used to determine
the type of an object. You can call it directly by using the function name followed by
parentheses and passing the object as an argument.

Notes

The difference between a method and a function is as follows: A method is a function
in object-oriented programming that is associated with an object. It includes code that
is called by the object’s name. On the other hand, a function can be directly called by
its name without being associated with an object.

In summary, a method is called by its name but is associated with an object, while a
function can be called directly by its name.

Tips

To enhance performance and efficiency, many built-in functions in Python are
implemented in languages like C or C++. This allows them to be executed at a lower
level, closer to the system hardware, compared to pure Python code. By implementing
critical parts of Python’s functionality in lower-level languages, the built-in functions
can often achieve faster execution times.

Tricks

To check the built-in function: the built-in function dir().
dir(__builtins__)

2.17.2  Mathematical functions

In[2] abs(-1)

Out[2] 1

Tips

Evaluating the absolute value.

In[3] min([1,2,3])

Out[3] 1

Tips

Evaluating the minimum value.

In[4] max([1,2,3])

Out[4] 3

 118 Python Data Science

Tips

Evaluating the maximum value.

In[5] pow(2,10)

Out[5] 1024

Tips

Evaluating 2 to the 10th power.

In[6] round(2.991,2)

Out[6] 2.99

Tips

The round() function in Python is used for rounding numbers. The second argument
of the round() function specifies the number of decimal places to retain after rounding,
rather than the number of digits after the decimal point.

2.17.3  Type conversion functions

In[7] int(1.134)

Out[7] 1

Tips

To cast to int (integer): int()

Notes

In general, the function names used for casting in Python are often similar to the
names of the target data types.

In[8] bool(1)

Out[8] True

Tips

To cast to bool (boolean): bool()

In[9] float(1)

Out[9] 1.0

119 Basic Python Programming for Data Science

Tips

To cast to float (floating-point number): float()

In[10] str(123)

Out[10] '123'

Tips

To cast to str (string): str()

In[11] list("chao")

Out[11] ['c', 'h', 'a', 'o']

Tips

To cast to list: list()

In[12] set("chao")

Out[12] {'a', 'c', 'h', 'o'}

Tips

To cast to set: set()

In[13] tuple("chao")

Out[13] ('c', 'h', 'a', 'o')

Tips

To cast to tuple: tuple()

2.17.4  Other common used functions

In[14] i=0
type(i)

Out[14] int

Tips

To check data types: type()

 120 Python Data Science

In[15] isinstance(i, int)

Out[15] True

Tips

In Python, you can use the isinstance() function to check the data type of an object.
The isinstance() function takes two arguments: the object you want to check and the
data type you want to compare it against. It returns True if the object is an instance of
the specified data type, and False otherwise.

In[16] dir()

Out[16] ['In',
 'Out',
 '_',
 '_1',
 '_10',
 '_11',
 ……
 '_ih',
 '_ii',
 '_iii',
 '_oh',
 'exit',
 'get_ipython',
 'i',
 'quit']

Tips

To check the search path for a variable in Python, you can use the dir() function or
the magic commands %whos and %who in interactive environments like IPython or
Jupyter Notebook.

In[17] help(dir)

Out[17] Help on built-in function dir in module builtins:

dir(...)
 dir([object]) -> list of strings

 If called without an argument, return the names in the current scope.
 Else, return an alphabetized list of names comprising (some of) the attributes
 of the given object, and of attributes reachable from it.
 If the object supplies a method named __dir__, it will be used; otherwise
 the default dir() logic is used and returns:
   for a module object: the module’s attributes.
   for a class object: its attributes, and recursively the attributes
    of its bases.
   for any other object: its attributes, its class’s attributes, and
    recursively the attributes of its class’s base classes.

121 Basic Python Programming for Data Science

Tips

To ask for help: help()

In[18] myList=[1,2,3,4,5]
len(myList)

Out[18] 5

Tips

To evaluate length: len()

In[19] range(1,10,2)

Out[19] range(1, 10, 2)

Tips

To quickly generate sequences: range()

Tips

The range(1, 10, 2) function is used to generate an iterator that begins at 1 (inclusive),
ends at 10 (exclusive), and increments by a step size of 2. Please refer to [2.10 Lists]
for more details.

In[20] list(range(1,10,2))

Out[20] [1, 3, 5, 7, 9]

Tips

The range() function in Python returns an iterator object, which is a form of lazy
evaluation. To evaluate and print the values of the iterator, you can use the list()
function to convert the iterator into a list.

In[21] callable(dir)

Out[21] True

Tips

To check whether the function can be called: callable()

 122 Python Data Science

In[22] bin(8)

Out[22] '0b1000'

Tips

To convert decimal number to binary number: bin()

In[23] hex(8)

Out[23] '0x8'

Tips

To convert decimal number to hexadecimal number: hex()

Notes

Python and its third-party packages offer various features and programming concepts
that better support the specific needs of data science projects compared to traditional
software development. These features are outlined below, along with the corresponding
references for further reading:

  1. � Interactive programming and interpreted language. For more information,
please refer to [1.3 How to read and execute the code in this book].

  2. � Strongly typed language. For more information, please refer to [2.2.3 Strongly
typed language (In[3])].

  3. � Dynamically typed language. For more information, please refer to [2.2.2
Dynamically Typed Language (In[2])].

  4. � Explicit indexing. For more information, please refer to [4.4 DataFrame
(In[5])].

  5. � Duck typing. For more information, please refer to [3.4.5 dir() function
(In[13])].

  6. � Ufunc and vectorized calculation. For more information, please refer to [4.2.6
Evaluation of ndarrays (In[69])].

  7. � Broadcasting mechanism. For more information, please refer to [4.2.9
Broadcasting ndarray (In[81])].

  8. � Lazy evaluation. For more information, please refer to [3.1 Iterators and
Decorators (In[5])].

  9. � Data protection and in-place modification mechanism. For more information,
please refer to [4.4 DataFrame (In[34])].

10. �Slicing and list derivation methods. For more information, please refer to [2.10
Lists (In[27])].

These features and concepts, combined with the extensive capabilities of Python’s
third-party packages, make it a versatile language for data science projects.

123 Basic Python Programming for Data Science

2.18  Module functions

Q&A

2.18.1  import module name

In[1] import math
math.sin(1.5)

Out[1] 0.9974949866040544

 124 Python Data Science

Tips

To call a module function, you can use the following method: import the module by
its name.

Notes

To call the function in the module: module_name. function_name()

Notes

“Unlike built-in functions, functions inside a module are defined within packages or
modules provided by third parties. To call these functions, you need to first import the
module where the function is defined. The function is usually called using the module
name followed by the function name.

Notes

In Python, there are multiple ways to import modules, and each method corresponds
to a different way of calling functions from the imported modules.

Tricks

Before importing a third-party package or module, it is necessary to download it from
PyPi or Conda server using tools like PIP or Conda. For more details, please refer to
[3.3 Packages (In[2])] and [3.2 Modules (In[1])]. However, to facilitate programming,
common packages in data science are often pre-installed in Jupyter Notebook. As a
result, the packages mentioned in this book generally do not need to be downloaded
and installed before importing.

In[2] cos(1.5)

Out[2] ---
NameError Traceback (most recent call last)
<ipython-input-3-edeaf624fe76> in <module>
----> 1 cos(1.5) # Why that exception: NameError: name 'cos' is not defined

NameError: name 'cos' is not defined

Tips

NameError: name ‘cos’ is not defined.
The reason of error: When the cos() function is called, the module name “math” has
not been imported.

In[3] math.cos(1.5)

Out[3] 0.0707372016677029

Tips

Workaround: <module_name>.<function_name>

The statement appears to suggest using a workaround to resolve a particular issue or
problem. The recommended approach is to specify the module name followed by the
function name, indicating that the function belongs to the specified module.

125 Basic Python Programming for Data Science

2.18.2  import module name as alias

In[4] import math as mt
mt.sin(1.5)

Out[4] 0.9974949866040544

Tips

The second method: import module name as alias

Tips

In principle, we have the flexibility to create our own “alias” when using the syntax
“import module_name as alias”. However, in the practice of data science, it is common
to follow conventional “alias” names to ensure the readability of the source code.

Notes

To call the function in this module: alias.function_name()

2.18.3 

In[5] from math import cos
cos(1.5)

Out[5] 0.0707372016677029

Tips

The third method: from module name import function name

Notes

To call the functions imported in modules with this method: function_name()

Tips

It is recommended to carry out a comparative analysis with In[2]. The reason why the
interpreter does not raise an error here is that the method of importing module has
changed.

In[6] from math import sin
sin(1.5)

Out[6] 0.9974949866040544

Tips

By using the method of importing specific functions from a module, you can
directly import the desired function and use it without needing to reference the
module name.

 126 Python Data Science

from module name import function name

2.19  User-defined functions

Q&A

127 Basic Python Programming for Data Science

2.19.1  Defining user-defined functions

Notes

Unlike C and Java, a user-defined function is defined using the “def” keyword in
Python.

Notes

Python supports the definition of “inner functions,” which means that a function can
be defined within another function. If the inner function, func2(), references a local
variable (not a global variable) from the outer function, it is referred to as a “closure.”

 128 Python Data Science

In[1] def func1():
 j=0
 print('hello world')

 def func2(i):
 print('pass'+str(i)+str(j))

 return func2

Tips

The inner function, func2(), is a local function that can only be accessed within
the outer function, func1(). This means that func2() can only be called from within
func1(). The return func2 statement in the outer function is used to return the inner
function itself. Without this statement, func2() would not be executed since there are
no other statements to call it.

Notes

The method of calling outer functions is as follows.

In[2] func1()

Out[2] hello world
<function __main__.func1.<locals>.func2(i)>

Notes

The method of calling inner functions is as follows.

In[3] func1()(2)

Notes

According to the definition in [1], func2 is the return value of func1(). Therefore, in
terms of the running process, calling func1() with the argument 2 is similar to calling
func2(2).

Out[3] hello world
pass20

Tips

When func1() is executed, the return func2 statement will also be executed. As a result,
func2() will be returned and can be subsequently executed. If the return statement is
not present, the system will automatically return None, and an error will be raised
with the message “TypeError: ‘NoneType’ object is not callable.”

129 Basic Python Programming for Data Science

2.19.2  Function docStrings

Notes

When defining a function, it is recommended to include docstrings. Docstrings are
used to provide a description of the function’s purpose, behavior, and usage.

Notes

DocStrings need to be enclosed in three single quotes or three double quotes.

In[4] def get_name(msg):
 '"Get the user name according to the user prompt msg. If the input is blank, the
default is Anonymous User'"
 name = input(msg) or 'Anonymous User'
 return name

Notes

Docstrings serve as documentation for functions and can be accessed using either
the built-in help() function or the ? symbol in certain Python environments, such as
Jupyter Notebook or IPython.

In[5] help(get_name)

Out[5] Help on function get_name in module __main__:

get_name(msg)
 Get the user name according to the user prompt msg. If the input is blank, the default
is Anonymous User

In[6] get_name?

2.19.3  Calling user-defined functions

Notes

To call a user-defined function, you can simply use the function name directly followed
by parentheses.

In[7] get_name('plz enter your name : ')

Out[7] plz enter your name : chaolemen
'chaolemen'

 130 Python Data Science

Tricks

We can use the built-in function callable() to check whether the function is “callable”.

In[8] print(callable(get_name))

Out[8] True

2.19.4  Returning values

Notes

In Python, when defining a function, you have the option to use the return statement
to specify the value or values that the function should return.

In[9] def myfunc(i,j=2):
 j=i+1
 return j
print(myfunc(3))

Out[9] 4

Notes

In Python, if a function does not have a return statement, the return value of the
function is None. In Python, None is a special object that represents the absence of a
value or a missing value.

In[10] def myfunc(i,j=2):
 j=i+1
print(myfunc(3))

Out[10] None

Notes

When multiple values are returned, they are usually bundled together in a tuple data
structure.

In[11] def myfunc(i,j=2):
 j=i+1
 return i,j
a,b =myfunc(3)
a,b

Out[11] (3, 4)

131 Basic Python Programming for Data Science

2.19.5  Parameters and arguments

In[12] def my_func(x1,*x2,x3,x5=5,x4=4):
 print(x1)
 print(x2)
 print(x3)
 print(x4)
 print(x5)
my_func(1,2,4,x3=3,x5=5)

Tips

From the perspective of function definition, formal parameters are divided into
optional parameters and required parameters. The way to distinguish them is that the
parameters with default values are called “optional parameters,” which can be called
without giving arguments, such as x4 and x5.

Tips

In Python, from the perspective of function calling methods, “arguments” are
divided into “positional arguments” and “keyword arguments” (also known as named
arguments). The way to distinguish them is by the presence of parameter names. For
example, x3=3 and x5=5 are considered “keyword arguments,” while 1, 2, and 4 are
considered “positional arguments.”

Notes

All “keyword arguments” must appear after “positional arguments” in Python;
otherwise, an error will be raised with the message: “SyntaxError: positional argument
follows keyword.”

Out[12] 1
(2, 4)
3
4
5

Notes

In Python, a “parameter” refers to a variable listed in the function definition, while an
“argument” refers to the actual value or expression that is passed to the function when
it is called.

Notes

After the “formal parameters” corresponds to the “arguments”, the remaining (2 and
4) become an element and pass in the arguments x2.

Tips

The **parameter syntax allows a function to accept a variable number of keyword
arguments (key-value pairs) as a dictionary. Inside the function, the **parameter is
treated as a dictionary that contains the keyword arguments passed during the function
call.

In[13] my_func(1,2,x4=4,x3=3,x5=5)

 132 Python Data Science

Tips

The header of the corresponding “function definition” is def my_func(x1,*x2,x3,x5
= 5, x4 = 4):

Out[13] 1
(2,)
3
4
5

Notes

From the perspective of function definition, any “formal parameters” defined after
the *parameter in Python are called “forced named parameters.” In the example def
my_func(x1, *x2, x3, x5=5, x4=4):, the parameters x3, x5, and x4 are considered
forced named parameters.

Notes

When calling a function with parameters defined after the *parameter (also known as
a “starred parameter” or “splat parameter”), you must use explicit parameter names
in the arguments. If you omit the parameter names, the Python interpreter will raise
an error.

In[14] my_func(1,2,4,x3=3,x5=5)

Out[14] 1
(2, 4)
3
4
5

2.19.6  Scope of variables

Notes

Local variables in Python are variables that are defined or declared inside a function’s
body. These variables have a local scope, meaning they can only be accessed and used
within that specific function.

In[15] x=0
def myFunc(i):
 x=i
 print(x)

myFunc(1)
print(x)

Tips

The second x is not the same one as the x in the first line. The second x is a local
variable.

133 Basic Python Programming for Data Science

Out[15] 1
0

Notes

To convert a local variable to a global variable in Python, you can use the global
keyword followed by the variable name. Simply declaring global x will make the
variable x accessible and modifiable in the global scope.

In[16] x=0
def myFunc(i):
 global x
#Then x is the global variable, not a local variable.
#
 x=i
 print(x)
myFunc(1)
print(x)

Tips

Here, the statement “global x” must be written on a single line and cannot be written
as just “global” without specifying the variable name “x”.

Out[16] 1
1

Notes

Similar to global variables, Python also has “nonlocal” variables, which are used in
inner functions. The usage of nonlocal variables is similar to that of global variables,
but they are specific to inner functions rather than being accessible globally.

In[17] x=0
def myFunc(i):
 x=i
 def myF():
 nonlocal x #this statement must be written on a single line.
 x=2
 print(x)
 print(x)
myFunc(1)
print(x)

Tips

Both the statements “global x” and “nonlocal x” must be written on a single line.

Out[17] 1
0

 134 Python Data Science

2.19.7  Pass-by-value and pass-by-reference

Notes

Argument passing rules in Python can be described as follows:

1. � Immutable objects (int, float, str, bool, tuple): Pass-by-value. Changes to formal
parameters do not affect the original arguments.

2. � Mutable objects (list, set, dict): Pass-by-reference. Changes to formal parameters
affect the original arguments.

Notes

(1) Pass-by-value: When the “argument” is an immutable object (int, float, str, bool,
tuple), the “argument” and the “formal parameter” occupy different memory spaces,
that is, when the “formal parameter” is modified by the “calling function”, the value
of the argument will not be changed.

In[18] i=100
def myfunc(j,k=2):
 j+=2
myfunc(i)
print(i)

Tips

In Python, parameters with default values are often referred to as “optional parameters”.
These parameters allow the function to be called without explicitly providing a value
for them.

Out[18] 100

Notes

(2) Pass-by-reference: when the “argument” is a mutable object (list, set, dict), the
argument and the “formal parameter” share the same memory space, that is, when the
“formal parameter” is changed, the “argument” will also be changed.

In[19] i=[100]
def myfunc(j,k=2):
 j[0]+=2
myfunc(i)
print(i)

Out[19] [102]

Notes

The principle of passing data between “arguments” and “formal parameters” is that
“arguments” should correspond to “formal parameters” one by one. Except for the
special parameters like “self” and “cls”, they do not need to pass to the “arguments”,
such as:
def class_func(cls):
def __init__(self, name, age):

135 Basic Python Programming for Data Science

2.19.8  Arguments in functions

Notes

When using user-defined functions, we have to pay attention to the following three
problems.

Notes

Firstly, “arguments” are divided into “positional arguments” and “keyword arguments”.
The distinction between them is not based on the presence of a default value. Instead,
it lies in how the arguments are provided during function calls.

Notes

All “keyword arguments” must appear after “positional arguments” in Python;
otherwise, an error is raised with the message: “SyntaxError: positional argument
follows keyword”.

In[20] def myfunc(j,k=2):
 j+=k
 j
d=myfunc(2,3)
d

Tips

If there is no return statement in a Python function, the return value of the function is
None. In Python, the value None is commonly used to represent a missing or empty
value.

In[21] def myfunc(k=2,j):
 j+=k
 j
d=myfunc(2,3)
d

Out[21] File "C:\Users\szz\AppData\Local\Temp\ipykernel_17668\2076857993.py", line 1
 def myfunc(k=2,j):
 ^
SyntaxError: non-default argument follows default argument

Tips

Syntax error: non-default argument follows default argument.

The reason for this error is that in Python, when defining function parameters,
non-default arguments (positional arguments) must come before default arguments
(keyword arguments). The order should be: non-default arguments first, followed by
default arguments.

 136 Python Data Science

Notes

Secondly, if a return statement is not explicitly written in a function, the default return
value will be None. The value None can be displayed using the print() function or by
accessing it directly.

In[22] def myfunc(j,k=2):
 j+=k
 j
#If there is no return statement, None will be returned automatically.
d=myfunc(3)
print(d)
#Output of None: If the built-in function print() is not used, None will not be displayed.

Out[22] None

In[23] d is None

Out[23] True

Notes

Thirdly, functions are treated as objects in Python. This means that in Python, the
language follows the philosophy of “everything is an object.” Functions can be
assigned to variables, passed as arguments to other functions, stored in data structures,
and have attributes just like any other object in Python.

In[24] myfunc=abs
print(type(myfunc))
#Like other objects, Python function names can be used as arguments of type (), and
the return value is the function type.
print(myfunc(-100))

Out[24] <class 'builtin_function_or_method'>
100

137 Basic Python Programming for Data Science

2.20  Lambda functions

Q&A

 138 Python Data Science

2.20.1  Defining a lambda function

Notes

The essence of a lambda function in Python is that it is a single-line anonymous
function. Lambda functions are defined using the lambda keyword and are typically
used for creating small, one-time functions without explicitly naming them.

Tips

The lambda function has a colon (:). Before the colon are the formal parameters, and
after the colon is the function’s return value.

In[1] x=2
y= lambda x:x+3
y(2)

Out[1] 5

Notes

The lambda function in “in[1]” is equivalent to the following common function.

In[2] x=2
def myfunc(x):
 return x+3
myfunc(2)

Out[2] 5

2.20.2  Calling a lambda function

Notes

In data science projects, lambda functions are commonly used as arguments for other
functions, with the filter() function being a common example.

In[3] MyList = [1,2,3,4,5,6,7,8,9,10]
filter(lambda x: x % 3 == 0, MyList)

139 Basic Python Programming for Data Science

Tips

The filter() function uses an iterative reading mode, which reads the value of each
element in the order of subscript from the second argument (e.g., MyList), and assigns
it to the variable x in the first argument (a lambda function).

Out[3] <filter at 0xb656ac27f0>

Notes

In Python, the return value of the filter() function is an iterator. This iterator’s values
can be displayed after converting it into a list. For more information, refer to section
‘3.1 Iterators and Generators’.

In[4] list(filter(lambda x: x % 3 == 0, MyList))

Out[4] [3, 6, 9]

Notes

Take the map() function as an example.

In[5] list(map(lambda x: x * 2, MyList))

Out[5] [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Notes

Take the reduce() function as an example.

In[6] from functools import reduce
reduce(lambda x, y: x + y, MyList)

Tips

The reduce() function is no longer a built-in function in Python since version 3. It
has been moved to the functools module.

Out[6] 55

 140 Python Data Science

Exercises

[1]	 Which of the following is not a sequence type?
	 A.	 list
	 B.	 tuple
	 C.	 set
	 D.	 str

[2]	 Which of the following variables complies with the naming rules?
	 A.	 3q
	 B.	 _
	 C.	 while
	 D.	 ds@

[3]	 Which of the following statements is illegal in Python?
	 A.	 x = y = z = 1
	 B.	 x = (y = z + 1)
	 C.	 x,y = y,x
	 D.	 x += y

[4]	 What is the output of the following program?
	 x = 20
	 y = True
	 print(x+y)

	 A.	 1
	 B.	 True
	 C.	 21
	 D.	 raise an exception

[5]	 Which of the following evaluates to False?
	 A.	 'abc' < 'ABC'
	 B.	 5 > 3 > 1
	 C.	 2 < 1 and 12 < 3 or 2 > 1
	 D.	 (1 is 3) == 0

[6]	 Which of the following is false of Python
	 A.	 Compound statements after if are indented instead of braces(curly brackets).
	 B.	 Use elif instead of else if in Python.
	 C.	 If can be written as a one line expression.
	 D.	 There can be empty statements in the if statement.

[7]	 How many times will the following while loop be executed?
	 k = 100
	 while k > 1:
	 print(k)
	 k = k // 2

	 A.	 3
	 B.	 4
	 C.	 5
	 D.	 6

141 Basic Python Programming for Data Science

[8]	 What is the output of the following program?
	 lst1 = [3,4,5,6,7,8]
	 lst1.insert(2,3)
	 print(lst1)

	 A.	 [3,4,5,3,6,7,8]
	 B.	 [3,4,3,5,6,7,8]
	 C.	 [3,4,5,6,7,8,[2,3]]
	 D.	 [3,4,5,6,7,8,2,3]

[9]	 Which of the following is false of Python?
	 A.	 Tuples are immutable, and usually contain a heterogeneous sequence of elements.
	 B.	 Lists are mutable, and their elements are usually homogeneous.
	 C.	 Elements inside tuples can be sorted with the sort method.
	 D.	 The frequency of elements inside tuples can be executed with the count method.

[10]	 Which of the following is not used in Python 3 to solve the problem of special characters in the path?
	 A.	 s = “D:\test”
	 B.	 s = r”D:\test”
	 C.	 s = u”D:\test”

[11]	 What is the output of the following program?
	 lst = [1,2,3]
	 tpl = 1,2,3
	 print(list(zip(lst,tpl)))

	 A.	 [(1, 1), (2, 2), (3, 3)]
	 B.	 ([1,1],[2,2],[3,3])
	 C.	 [2,4,6]
	 D.	 (2,4,6)

[12] Which of the following data structures is unordered?
	 A.	 list
	 B.	 tuple
	 C.	 set
	 D.	 string

[13]	 Which of the following data structures is normally used to duplicate removal in Python?
	 A.	 list
	 B.	 tuple
	 C.	 set
	 D.	 string

[14]	 Which of the following cannot be used as keys in the dictionary?
	 A.	 number
	 B.	 string
	 C.	 tuple
	 D.	 list

[15]	 Which of the following is true of calling method of the built-in functions?
	 A.	 First import the module to which it belongs, and then call through the module name.
	 B.	 Call directly with the function name.
	 C.	 Call with the def keyword.

 142 Python Data Science

[16]		 What will the following program print out?
	 	 set("happy")

	 	 A. ['h','a','p','p','y']
	 	 B. ('h','a','p','p','y')
	 	 C. {'h','a','p','p','y'}

[17]		 Which of the following code will run with errors?
	 	 A. import time
	 	   time.localtime()
	 	 B. import time as ti
	 	   ti.localtime()
	 	 C. import time as ti
	 	   localtime()
	 	 D. from time import localtime
	 	   localtime()

[18]		 What is the output of the following program?
	 	 def InputInt(a):
	 	 a = 15
	 	 b = 2
	 	 InputInt(b)
	 	 print(b)
	 	 A. 15
	 	 B. 2
	 	 C. raise an exception

[19]		 Which of the following statements about the user-defined function is wrong?
	 	 A. The mutable variable of the user-defined function is passed by position.
	 	 B. Immutable variables of the user-defined function are passed by value.
	 	 C. The user-defined functions cannot be placed in a class.
	 	 D. The user-defined functions can be written as single line functions.

[20]		 Which of the following statements about the lambda function is wrong?
	 	 A. Small anonymous functions can be created with the the lambda keyword.
	 	 B. �Like nested function definitions,the lambda functions can reference variables from the containing

scope.
	 	 C. The lambda functions are syntactically restricted to a single expression.
	 	 D. All of the above

143 Basic Python Programming for Data Science

3. � Advanced Python Programming for Data
Science

This chapter will introduce the advanced Python programming concepts and skills necessary to excel as a data
scientist. The topics we will cover include:

	 Iterators and generators

	Modules

	 Packages

	 Help documentations

	 Exception and errors

	 Debugging

	 Search path

	 Current working directory

	 Object-oriented programming

145 © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_3

https://doi.org/10.1007/978-981-19-7702-2_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_3&domain=pdf

3.1  Iterators and generators

Q&A

 146 Python Data Science

3.1.1  Iterable objects vs. iterators

Notes

In Python, an iterator is an object that is obtained by passing an iterable object to the
built-in iter() function. Not only can functions that accept iterable objects receive
iterators, but they can also use the iter() function to convert iterable objects into
iterators directly.

Tips

1. � Iterable object: An object that can be used directly in a loop statement, such as a
‘for’ loop.

2. � Iterator: An object that can be called by the built-in next() function and will
continuously return the next value in sequence.

Notes

(1) � While all iterators are iterable, the converse is not necessarily true. That is, iterable
objects are not always iterators.

In[1] myList=[1,2,3,4,5]
next(myList)

Out[1] TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_3880\2514634475.py in <module>
 1 myList=[1,2,3,4,5]
----> 2 next(myList)

TypeError: 'list' object is not an iterator

Tips

Report errors: TypeError: ‘list’ object is not an iterator.
Cause analysis: Although myList is an iterable object, it is not an iterator.

Notes

To test whether an object is an iterable, use the built-in isinstance() function in
conjunction with the collections module.

In[2] myList=[1,2,3,4,5]
from collections.abc import Iterable
result = isinstance(myList, Iterable)

Notes

(2) � The built-in iter() function in Python is used to convert iterable objects into
iterators.

147 Advanced Python Programming for Data Science

In[3] myIterator=iter(myList)
print(next(myIterator))
print(next(myIterator))
print(next(myIterator))

Tips

The built-in next() function in Python is a method used to traverse items in an iterator,
retrieving them one at a time.

Out[3] 1
2
3

3.1.2  Generator vs. iterators

Notes

A generator in Python is a special kind of function that returns a generator iterator.
The key differences between a generator and a regular function are:

1.  Generators use the yield keyword instead of the return keyword.

2. � Instead of immediate execution, generators use a ‘lazy execution’ strategy. This
means that when a generator function is called, it isn’t executed immediately.
Instead, execution is deferred until each element needs to be processed.”

Notes

(1) � In Python, a generator is a special type of function that does not return a single
value. Instead, it returns an iterator object that generates a sequence of values.
This is accomplished by using yield statements instead of return statements.

In[4] def myGen():
 x=range(1,11)
 for i in x:
 yield i+2

Notes

(2) � Generators in Python exhibit a characteristic known as ‘lazy execution.’ This
means they do not compute the results immediately when they’re defined. Instead,
they generate each value on-the-fly as you iterate over them. This feature allows
them to represent potentially infinite data structures and also saves memory usage
for large sequences.

In[5] myGen()

Tips

In this case, the output is <generator object myGen at 0x00000213EA679E58>. This
is the representation of a generator object in Python, rather than a specific return value.

Out[5] <generator object myGen at 0x00000213EA679E58>

 148 Python Data Science

Notes

(3) � One of the key features of a generator is that its elements are executed only when
they are accessed or called. This behavior is part of the ‘lazy execution’ model
followed by generators in Python.

In[6] for x in myGen():
 print(x,end=",")

Tricks

“To directly display the items produced by a generator, use the print() function with
the unpacking operator (*), as in the following example: print(*mygen()).

Out[6] 3,4,5,6,7,8,9,10,11,12,

149 Advanced Python Programming for Data Science

3.2  Modules

Q&A

 150 Python Data Science

3.2.1  Importing and using modules

Tips

In Python, we can import a module into our code using the import statement. The
import statement performs two operations: searching for the named module and
binding the search results to a name in the local scope.

There are three types of the import statements:
	 import module_name
	 import module_name as alias_name
	 from module_name import function_name

Notes

Step 1:  Importing a module:
import module_name

Step 2:  Calling functions in the module:
module_name.function_name()

In[1] import math
math.sin(1.5)

Out[1] 0.9974949866040544

In[2] cos(1.5)

out[2] NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_25560\176693822.py in <module>
----> 1 cos(1.5)
NameError: name 'cos' is not defined

Tips

NameError: name ‘cos’ is not defined.
To use the cos() function, which calculates the cosine of a value, you need to specify
the module name math.

Notes

Step 1:  Importing a module with an alias:
import module_name as alias

Step 2:  Calling functions in the module using the alias:
alias.function_name()

In[3] import math as mt
mt.sin(1.5)

Out[3] 0.9974949866040544

151 Advanced Python Programming for Data Science

Notes

Step 1:  Importing a function from a module:
from module_name import function_name

Step 2:  Calling the imported function:
function_name()

In[4] from math import cos
cos(1.5)

Out[4] 0.0707372016677029

3.2.2  Checking built-in modules list

Notes

sys.builtin_module_names() is a function in Python’s sys module that returns a tuple
of strings. This tuple contains the names of all modules that are compiled into the
Python interpreter.

In[5] import sys
print(sys.builtin_module_names)

Out[5] ('_abc', '_ast', '_bisect', '_blake2', '_codecs', '_codecs_cn', '_codecs_hk', '_codecs_
iso2022', '_codecs_jp', '_codecs_kr', '_codecs_tw', '_collections', '_contextvars', '_csv',
'_datetime', '_functools', '_heapq', '_imp', '_io', '_json', '_locale', '_lsprof', '_md5', '_
multibytecodec', '_opcode', '_operator', '_pickle', '_random', '_sha1', '_sha256', '_sha3',
'_sha512', '_signal', '_sre', '_stat', '_statistics', '_string', '_struct', '_symtable', '_thread',
'_tracemalloc', '_warnings', '_weakref', '_winapi', '_xxsubinterpreters', 'array', 'atexit',
'audioop', 'binascii', 'builtins', 'cmath', 'errno', 'faulthandler', 'gc', 'itertools', 'marshal',
'math', 'mmap', 'msvcrt', 'nt', 'parser', 'sys', 'time', 'winreg', 'xxsubtype', 'zlib')

 152 Python Data Science

3.3  Packages

Q&A

153 Advanced Python Programming for Data Science

3.3.1  Packages vs modules

Notes

In Python:

1. � A module is a file with a .py extension that contains a collection of functions and
global variables. It serves as a reusable component that can be imported into other
Python programs.

2. � A package is a directory that contains a collection of related modules. It provides
a way to organize and structure code by grouping related functionality together.

Notes

The two most commonly used tools for managing Python packages or modules are:

1. � Pip: Pip is the recommended tool by the Python Packaging Authority for installing
packages from the Python Package Index (PyPI).

2. � Conda: Conda is a cross-platform package and environment manager that not
only installs and manages conda packages from the Anaconda repository but also
supports packages from the Anaconda Cloud.

3.3.2  Installing packages

Notes

To install packages, you can use either pip or conda depending on your package
management setup. Here’s the syntax for installing packages with each tool:

1.  Using pip:pip install package_name

2.  Using conda:conda install package_name

Notes

In Python, when you run the command pip install scipy, it prompts “Requirement
already satisfied: scipy in c:\anaconda\lib\site-packages”. This indicates that the scipy
package is already installed and there is no need to reinstall it. However, when you run
the command pip install orderPy, there is no such prompt.

3.3.3  Checking installed packages

Notes

pip list
or
conda list

 154 Python Data Science

3.3.4  Updating or removing installed packages

Notes

To update installed packages:
pip install --upgrade a package’s name
or
conda update a package’s name

Tips

Run pip uninstall and conda uninstall to remove the package installed.

Notes

To remove installed packages, you can use either pip or conda, depending on your
package management setup. Here’s the syntax for uninstalling packages with each
tool:

1.  Using pip: pip uninstall package_name

2.  Using conda:conda uninstall package_name

155 Advanced Python Programming for Data Science

3.3.5  Importing packages or modules

Notes

(1) Import a module: Use a conventional aliase followed by as.

In[1] import pandas as pd

Notes

(2) Import multiple modules: Separate them with commas.

In[2] import pandas as pd, numpy as np, math as math

Tips

To import multiple modules and provide aliases, you should use separate import
statements for each module and alias.

Notes

(3) Only import specific functions in a module.
In “from pandas import DataFrame”, the first argument
pandas is the module name, the second argument DataFrame is a function name in
this module.

In[3] from pandas import DataFrame

Notes

(4) Import packages with the hierarchical filesystem structure:Use dots to
represent the hierarchical relationship.

In[4] import Graphics.Primitive.fill

Notes

If you are unable to download or install a package using pip or conda commands,
you can visit the official website of the package. From there, you can download the
package and follow the installation steps outlined in the official documentation.

3.3.6  Checking Package Version

Notes

To check the version of a package using its built-in attributes and methods, you can
typically access the __version__ attribute of the package.

In[5] pd.__version__

 156 Python Data Science

3.3.7  Commonly used Packages

Notes

In data science projects, commonly used basic packages include the following:

  1.  Pandas: For handling data frames (relational tables) and series
  2.  NumPy: For multidimensional array (matrix) processing
  3.  Scikit-learn, TensorFlow, and PyTorch: For machine learning
  4.  Matplotlib: For statistical visualization
  5.  Seaborn: For enhanced data visualization
  6.  StatsModels: For statistical analysis
  7.  Pandasql: For SQL programming with pandas
  8.  Scrapy: For web scraping
  9.  PySpark: For programming with Apache Spark
 10.  NLTK, spaCy: For natural language processing in English
 11.  pynlpir, Jieba: For natural language processing in Chinese
 12.  Wordcloud: For generating word clouds
 13.  Random: For generating random numbers

157 Advanced Python Programming for Data Science

3.4  Help documentation

Q&A

 158 Python Data Science

3.4.1  The help function

Notes

The most basic and generic way to check help information is the built-in help()
function.

In[1] help(len)

Out[1] Help on built-in function len in module builtins:

len(obj, /)
 Return the number of items in a container.

3.4.2  DocString

Notes

In IPython, a convenient way to access help information for objects, functions, or
modules is to use the question mark (?) character.

In[2] len?

Tips

The IPython (or IPython-based Jupyter Notebook/Lab) system displays help
information as follows:

Notes

The syntax to check help information using the question mark character (?) is a
functionality provided by IPython, an enhanced interactive Python shell, and is not a
syntax inherent to the Python language.

In[3] myList1=[1,2,3,4]
myList1.append?

Tips

The help information printed is as follows.

159 Advanced Python Programming for Data Science

Notes

The help document consulted by docstring is a multiple-lines explanatory text bounded
by three instances of a quotation mark (”)

In[4] def testDocString():
 """This is docString,
 You can use "?" to view the help information"""
 return(1)

testDocString?

Notes

The iPython (or iPython-based Jupyter Notebook/Lab, etc.) system display help
information as following:

In[5] ?testDocString

Tips

The iPython (or iPython-based Jupyter Notebook/Lab, etc.) system display the same
help information as In[4].

3.4.3  Checking source code

Notes

The ?? syntax, when used in Python environments such as IPython or Jupyter
Notebook/Lab, allows you to access the source code of a function or object.

In[6] testDocString??

 160 Python Data Science

Tips

The help information printed by the system is consistent with In[4].

Notes

Prerequisite: The target object must be written in Python, as the source code cannot
be checked if it is not. In such cases, the functionality of ?? becomes the same as ?.

Notes

To check the help information for the built-in len() function, we can use len?

In[7] len?

Notes

The iPython (or iPython-based Jupyter Notebook/Lab, etc.) system display help
information as following:

In[8] len??

Tips

“len??” has the same output as “len?”.
Reason analysis: The built-in len() function is not written in Python.

3.4.4  The doc attribute

Notes

The __doc__ attribute, enclosed by double underscores (__), is a default attribute
automatically added to each class in Python’s object-oriented programming method.
It contains the documentation string (docstring) for the class. For more details, refer
to section ‘3.9 Object-oriented programming.

In[9] testDocString.__doc__

Out[9] 'This is docString,\nYou can use "?" to view the help information'

In[10] len.__doc__

Out[10] 'Return the number of items in a container.'

161 Advanced Python Programming for Data Science

3.4.5  The dir() function

Notes

The dir() function is used to retrieve a list of all attributes and methods available in
the specified object.

In[11] dir(print)

Out[11] ['__call__',
 '__class__',
 '__delattr__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__gt__',
 '__hash__',
 '__init__',
 '__le__',
 '__lt__',
 '__module__',
 '__name__',
 '__ne__',
 '__new__',
 '__qualname__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__self__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 '__text_signature__']

 162 Python Data Science

In[12] dir(len)

Out[12] ['__call__',
 '__class__',
 '__delattr__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__gt__',
 '__hash__',
 '__init__',
 '__init_subclass__',
 '__le__',
 '__lt__',
 '__module__',
 '__name__',
 '__ne__',
 '__new__',
 '__qualname__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__self__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 '__text_signature__']

In[13] dir?

Tips

Python follows a principle called ‘duck typing’ in its programming style. The term
‘duck typing’ refers to a concept that focuses on an object’s behavior rather than its
specific type or class. In other words, if an object walks like a duck (supports certain
attributes and methods) and quacks like a duck (exhibits expected behavior), then it is
considered a ‘duck’, regardless of its actual class or type.

163 Advanced Python Programming for Data Science

3.5  Exception and errors

Q&A

 164 Python Data Science

3.5.1  Try/Except/Finally

Notes

In Python, Errors that occur at runtime (after passing the syntax test) are called
exceptions.

Notes

In Python’s try/except/finally statements, a colon (:) is placed after try, except, and
finally to signify the start of a code block associated with each statement.

In[1] try:
 f=open('myfile.txt','w')
 while True:
 s=input("please enter Q")
 if s.upper()=='Q':break
 f.write(s+'\n')
except KeyboardInterrupt:
 print("program interruption")
finally:
 f.close()

Tips

The finally section refers to the code that will be executed regardless of whether
an exception occurs or not. The finally block is useful for releasing resources and
performing cleanup operations.

Notes

Unlike the C and Java languages, in Python, the else statement can be added to
exception handling constructs even when no exceptions occur.

Out[1] please enter Qa
please enter QQ

Notes

The syntax template for try/except/finally statements in Python is as follows:

try:
  #  Statements that may raise exceptions
except Ex1:
  #  Statement to be executed when exception Ex1 occurs
except (Ex2, Ex3):
  #  Statement to be executed when exception Ex2 or Ex3 occurs
except:
  #  Statement to be executed when other exceptions occur
else:
  #  Statement to be executed when there is no exception
finally:
  # � Statement to be executed regardless of whether an exception occurs, such as

releasing file, database, or graphics handle resources

165 Advanced Python Programming for Data Science

3.5.2  Exception reporting mode

Notes

IPython or Jupyter Notebook provides us with a magic command %xmode to switch
modes for the exception handlers.

%xmode takes a single argument, the mode, and there are four modes: Plain,
Context, Verbose, and Minimal. The default mode is Context.

Notes

To switch the exception reporting mode to “Plain”:
 %xmode Plain

In[2] %xmode Plain
x=1
x1

Out[2] Exception reporting mode: Plain
Traceback (most recent call last):

 File "C:\Users\szz\AppData\Local\Temp\ipykernel_4976\3044902845.py", line 3, in
<module>
 x1

NameError: name 'x1' is not defined

Notes

To switch the exception reporting mode to “Verbose”:
 %xmode Verbose

In[3] %xmode Verbose
x=1
x1

Out[3] Exception reporting mode: Verbose

NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_4976\719643460.py in <module>
 1 get_ipython().run_line_magic('xmode', 'Verbose')
 2 x=1
----> 3 x1
 global x1 = undefined

NameError: name 'x1' is not defined

Tips

Python defines a wide range of exception classes (Exceptions) and error classes
(Errors). More detailed information about these classes can be obtained from the
Python official website’s tutorial on errors and exceptions: https://docs.python.org/3/
tutorial/errors.html.

 166 Python Data Science

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html

Notes

To switch the exception reporting mode to “Context”:
 %xmode Context

In[4] %xmode Context
x=1
x1

Out[4] Exception reporting mode: Context

NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_4976\320895153.py in <module>
 1 get_ipython().run_line_magic('xmode', 'Context')
 2 x=1
----> 3 x1

NameError: name 'x1' is not defined

3.5.3  Assertion

Notes

In data science projects, Assertion is mainly used to set Check Points and to test if
certain assumptions remain true.

Notes

When encountering an assert statement, Python evaluates the accompanying
expression, which is expected to be true. If the expression evaluates to false, Python
raises an AssertionError exception.

In[5] a=1
b=2
assert b!=0 , “The denominator can't equal 0”

Notes

When encountering an assert statement, Python evaluates the accompanying
expression, which is expected to be true. If the expression evaluates to false, Python
raises an AssertionError exception, optionally displaying an error message.

In[6] a=1
b=0
assert b!=0 , "The denominator can't equal 0"

Out[6] ---
AssertionError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_4976\796219993.py in <module>
 1 a=1
 2 b=0
----> 3 assert b!=0 , "The denominator can't equal 0"

AssertionError: The denominator can't equal 0

167 Advanced Python Programming for Data Science

3.6  Debugging

Q&A

 168 Python Data Science

3.6.1  Enabling the Python Debugger

Notes

When Python raises an exception or error message, it is recommended to use the
Python Debugger (PDB) to debug the program.

In[1] x=1
x1

Tips

Here, a NameError is raised that name ‘x1’ is not defined

Out[1] ---
NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_19180\372800001.py in <module>
 1 x=1
----> 2 x1

NameError: name 'x1' is not defined

Notes

To open the Python Debugger (PDB), you can type the magic command %debug in
IPython or Jupyter Notebook.

In[2] %debug

Notes

To exit the Python Debugger (PDB), you can press ‘q’ or type ‘quit’ while in the
debugger mode.

Tips

In addition to PDB, Pylint and Pychecker is commonly used Python debuggers.

Out[2] > c:\users\szz\appdata\local\temp\ipykernel_19180\372800001.py(2)<module>()

ipdb> x
1
ipdb> x1
*** NameError: name 'x1' is not defined
ipdb> x
1
ipdb> q

169 Advanced Python Programming for Data Science

3.6.2  Changing exception reporting modes

Notes

%xmode toggles between different modes of exception handling in IPython, including
plain, context, and verbose.

In[3] %xmode Plain
y=1
Y

Out[3] Exception reporting mode: Plain
Traceback (most recent call last):

 File "C:\Users\szz\AppData\Local\Temp\ipykernel_19180\265797083.py", line 3, in
<module>
 Y

NameError: name 'Y' is not defined

In[4] %xmode Verbose
y=1
Y

Out[4] Exception reporting mode: Verbose

NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_19180\3286916471.py in <module>
 1 get_ipython().run_line_magic('xmode', 'Verbose')
 2 y=1
----> 3 Y

 global Y = undefined

NameError: name 'Y' is not defined

In[5] %debug

Out[5] > c:\users\szz\appdata\local\temp\ipykernel_19180\3286916471.py(3)<module>()

ipdb> y
1
ipdb> Y
*** NameError: name 'Y' is not defined
ipdb> y
1
ipdb> quit

 170 Python Data Science

3.6.3  Working with checkpoints

Notes

In data science, assertions (or assert statements) can be used as checkpoints to validate
assumptions and ensure data integrity.

In[6] a=1
b=0
assert b!=0,"The denominator can't equal 0"

Tips

If the condition is false, an AssertionError is raised.

Notes

When coding an assert statement in Python, don’t forget to include a comma (,) to
separate the expression being evaluated from an optional error message.

Out[6] ---
AssertionError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_19180\3245325190.py in <module>
 1 a=1
 2 b=0
----> 3 assert b!=0,"The denominator can't equal 0"
 global b = 0

AssertionError: The denominator can't equal 0

In[7] %debug

Out[7] > c:\users\szz\appdata\local\temp\ipykernel_19180\3245325190.py(3)<module>()

ipdb> a
ipdb> b
ipdb> a
ipdb> quit

171 Advanced Python Programming for Data Science

3.7  Search path

Q&A

 172 Python Data Science

3.7.1  The variable search path

Notes

To see all variables that exist in the search path of the Python interpreter, you can use
the built-in dir() function or the magic commands %whos and %who.

In[1] myList=[1,2,3,4,5]
next(myList)

Out[1] ['In',
 'Out',
 '_',
 '__',
 '___',
 '__builtin__',
 '__builtins__',
 '__doc__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 '_dh',
 '_i',
 '_i1',
 '_ih',
 '_ii',
 '_iii',
 '_oh',
 'exit',
 'get_ipython',
 'quit']

Tips

To add a variable to the search path, you can define a new variable using an assignment
statement. For example:

In[2] vi=1

Tips

To display the search path in Python and check whether the newly defined variable “vi”
is present, you can use the dir() function or the %whos magic command in IPython.

In[3] dir()

173 Advanced Python Programming for Data Science

Out[3] ['In',
 'Out',
 '_',
 '_1',
 '_2',
 '_3',
 '__',
 '___',
 '__builtin__',
 '__builtins__',
 '__doc__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 '_dh',
 '_i',
 '_i1',
 '_i2',
 '_i3',
 '_i4',
 '_i5',
 '_ih',
 '_ii',
 '_iii',
 '_oh',
 'exit',
 'get_ipython',
 'quit',
 'vi']

Notes

To remove a variable from the search path, use the del statement followed by the
variable name.

In[4] del vi

Tips

Delete the vi variable.

Notes

In Python data science projects, the common cause of a “NameError” is when a
variable is not found in the search path or the current scope.

In[5] vi

 174 Python Data Science

Tips

NameError: name ‘vi’ is not defined.

The reason for this error is that the variable ‘vi’ has been deleted or is not defined in
In[4].

Out[5] ---
NameError Traceback (most recent call last)
<ipython-input-5-c5bfa1c921c4> in <module>()
----> 1 vi

NameError: name 'vi' is not defined

3.7.2  The module search path

Notes

To check the module search path in Python, you can use the path attribute provided by
the sys module and the python -m site command in the Anaconda prompt.

In[6] import sys
sys.path

Notes

“sys.path” is an attribute in Python and should not be treated as a method. It cannot
be parenthesized.

Out[6] [",
 'C:\\Anaconda\\python36.zip',
 'C:\\Anaconda\\DLLs',
 'C:\\Anaconda\\lib',
 'C:\\Anaconda',
 'C:\\Anaconda\\lib\\site-packages',
 'C:\\Anaconda\\lib\\site-packages\\win32',
 'C:\\Anaconda\\lib\\site-packages\\win32\\lib',
 'C:\\Anaconda\\lib\\site-packages\\Pythonwin',
 'C:\\Anaconda\\lib\\site-packages\\IPython\\extensions',
 'C:\\Users\\soloman\\.ipython']

Notes

To add a new path to the module search path in Python, you can use the sys.path.
append() method.

In[7] import sys
sys.path.append('H:\\Python\\Anaconda')

In[8] sys.path

175 Advanced Python Programming for Data Science

Tips

To display the module search path in Python and check whether the newly added path
from In[7] has appeared, you can use the sys.path attribute. Here’s an example of how
you can do it:

Out[8] ['C:\\Users\\szz',
 'D:\\Anacoda\\python37.zip',
 'D:\\Anacoda\\DLLs',
 'D:\\Anacoda\\lib',
 'D:\\Anacoda',
 '',
 'C:\\Users\\szz\\AppData\\Roaming\\Python\\Python37\\site-packages',
 'D:\\Anacoda\\lib\\site-packages',
 'D:\\Anacoda\\lib\\site-packages\\pyquery-1.4.3-py3.7.egg',
 'D:\\Anacoda\\lib\\site-packages\\cssselect-1.1.0-py3.7.egg',
 'D:\\Anacoda\\lib\\site-packages\\pip-21.1.1-py3.7.egg',
 'D:\\Anacoda\\lib\\site-packages\\win32',
 'D:\\Anacoda\\lib\\site-packages\\win32\\lib',
 'D:\\Anacoda\\lib\\site-packages\\Pythonwin',
 'D:\\Anacoda\\lib\\site-packages\\IPython\\extensions',
 'C:\\Users\\szz\\.ipython',
 'H:\\Python\\Anaconda']

Notes

To remove a path from the module search path, you can use the sys.path.remove()
method.

In[9] sys.path.remove('H:\\Python\\Anaconda')

In[10] sys.path

Tips

We can display the module search path again and check whether the path that was
removed in In[9] is no longer displayed on the module search path.

 176 Python Data Science

Out[10] ['C:\\Users\\szz',
 'D:\\Anacoda\\python37.zip',
 'D:\\Anacoda\\DLLs',
 'D:\\Anacoda\\lib',
 'D:\\Anacoda',
 '',
 'C:\\Users\\szz\\AppData\\Roaming\\Python\\Python37\\site-packages',
 'D:\\Anacoda\\lib\\site-packages',
 'D:\\Anacoda\\lib\\site-packages\\pyquery-1.4.3-py3.7.egg',
 'D:\\Anacoda\\lib\\site-packages\\cssselect-1.1.0-py3.7.egg',
 'D:\\Anacoda\\lib\\site-packages\\pip-21.1.1-py3.7.egg',
 'D:\\Anacoda\\lib\\site-packages\\win32',
 'D:\\Anacoda\\lib\\site-packages\\win32\\lib',
 'D:\\Anacoda\\lib\\site-packages\\Pythonwin',
 'D:\\Anacoda\\lib\\site-packages\\IPython\\extensions',
 'C:\\Users\\szz\\.ipython']

177 Advanced Python Programming for Data Science

3.8  Current working directory

Q&A

 178 Python Data Science

3.8.1  Getting current working directory

Notes

The “current working directory” in Python refers to the default path where files
and folders are read from or written to. For instance, in the book [4.44 DataFrame
and Pandas], when referring to an external file such as “bc_data.csv,” it needs to
be placed in the “current working directory” beforehand to be accessed without
specifying the full file path.

Notes

To obtain the current working directory in Python, you can use the getcwd() method
provided by the os module.

In[1] import os
print(os.getcwd())

Out[1] C:\Users\szz

3.8.2  Resetting current working directory

Notes

To change the current working directory in Python, you can use the chdir() function
from the os module.

Tips

Before changing the current working directory, you need to create a new working
directory to replace the original current working directory. For example, you can
create a new directory named ‘Python projects’ on the E: drive.

In[3] os.chdir('E:\PythonProjects')
print(os.getcwd())

Out[3] E:\PythonProjects

Notes

The data analyst needs to choose the appropriate file import method based on the type
of the target data file and the requirements of the analysis work. There are various
methods available, including using the built-in open() function or utilizing the read_
csv() and read_excel() functions from the third-party extension package Pandas.

Notes

For example, read the file “bc_data.csv” from the current working directory into the
data dataframe.

179 Advanced Python Programming for Data Science

3.8.3 Reading / writing current working directory

In[4] from pandas import read_csv
data = read_csv('bc_data.csv')
data.head(5)

Notes

Here, executing the statement read_csv(‘bc_data.csv’) assumes that the target file
‘bc_data.csv’ has been placed in the current working directory, such as “E:\Python
projects”.

Tips

Readers can find the data file ‘bc_data.csv’ in the supporting resources provided with
this book.

 180 Python Data Science

3.9  Object-oriented programming

Q&A

181 Advanced Python Programming for Data Science

 182 Python Data Science

3.9.1  Classes

Notes

Python is a versatile programming language that supports multiple programming
paradigms, including object-oriented programming (OOP) and functional
programming (FP). This chapter does not aim to provide an introduction to the object-
oriented programming paradigm itself.

Notes

In Python, class definitions begin with the keyword “class,” followed by the name of
the class and a colon.

In[1] class Person:
 nationality = 'China' #Define nationality/nationality as a public attribute here
 _deposit=10e10 #Python protected attribute names start with an underscore.
Here, the
 deposit quantity / deposit is defined as the protected attribute.
 __gender="M" #Python private attribute names start with two underscores.
 Here, gender is defined as the private attribute.

 def __init__(self, name, age):
 self.name = name #Instance attribute
 age = age # local variable

 def say_hi(self):
 print(self.name)

p1 = Person('Tom', 30)
p1.say_hi()

Notes

The method of defining attribute and method visibility in Python differs from that of
languages like C++, C#, and Java. In Python, the convention is to use one underscore
or two underscores at the beginning of the name to indicate different levels of visibility,
distinguishing between protected and private attributes and methods.

Tips

Person (‘Tom’, 30) does two things: create a new object and initialize it to return the
instance P1.

Tips

The three essential methods in Python are as follows:

1.  __init__(): Initialization function or constructor
2.  __new__(): Constructor function (rarely used)
3.  __del__(): Destructor function

Out[1] Tom

183 Advanced Python Programming for Data Science

3.9.2  Methods

Notes

The difference between a method and a function lies in their relationship to object-
oriented programming. In object-oriented programming, a method is a function that is
associated with a class or object.

Notes

In Python, there are three types of the user-defined methods: instance methods, class
methods and static methods.

In[2] class Person:
 """
 Here is the docString of class Person

 """
 nationality = 'China'
 _deposit=10e10
 __gender="M"

 def __init__ (self, name, age):
 age = age #age is a local variable in the function __ init__ ()
 self.name = name #Unlike the age variable, self.name is the instance attribute

The definition syntax of an instance is similar to that of a general function, except
for formal parameters.
The first parameter of the instance method must be the positional parameter self.
Otherwise, TypeError is raised "TypeError: * * * () function has a positive arguments
error".

#self :A reference of the current instance, indicating that the method is an "instance
method".
#The instance method can be accessed in the form of "instance name. function name".

 def say_hi(self):
 print(self.name)

Class method: add a line @ classmethod in front of a method.
In the definition of class method, the first parameter must be "class reference cls",
that is, #the function can be called through the class name.

 @classmethod
 def class_func(cls):
 cls.nationality = 'CHINA'
 print('I live in {0}'. Format(cls.nationality))
Static method: add a line @ staticmethod in front of a method.
Characteristics of static method: no cls or self in the formal parameters, or even no
parameters

Functions without any parameters are generally defined as "static methods".
 @staticmethod
 def static_func(x, y):
 print(x+y)

p1 = Person('Tom', 20)
p1.say_hi()

 184 Python Data Science

Out[2] Tom

Notes

A static method can be called from either a class or object reference.

In[3] Person.static_func(200,300) # use class name to call "static method".

Out[3] 500

In[4] p1.static_func(200,300) # use instance name to call "static method".

Out[4] 500

Tips

A class method can be called from either a class or object reference

In[5] Person.class_func() # use class name to call "class method".

Out[5] I live in CHINA

In[6] p1.class_func() # use instance name to call "class method".

Out[6] I live in CHINA

3.9.3  Inheritance

Notes

In Python, the syntax for specifying inheritance between classes is unique. When
defining a class, you can indicate its parent class or classes by putting the parent class
name(s) in parentheses after the class name.

In[7] class Teacher(Person):
 pass

t1=Teacher("zhang",20)

In[8] Person.class_func()

Out[8] I live in CHINA

In[9] t1.class_func()

Tips

As you can see from the above output, the class Teacher has inherited its parent class
Person’s class_func () method.

185 Advanced Python Programming for Data Science

Out[9] I live in CHINA

In[10] t1.static_func(1,10)

Out[10] 11

In[11] Person.static_func(2,10)

Out[11] 12

In[12] t1._deposit

Tips

A subclass can inherit the protected attribute from its parent class, such as the _deposit
attribute in In[12].

Out[12] 100000000000.0

In[13] t1. _ _gender #AttributeError: 'Teacher' object has no attribute '__gender'

Tips

A subclass can not inherit the private attribute from its parent class, such as the

—gender attribute in In[2].

Out[13] ---
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_18396\514368724.py in <module>
----> 1 t1.__gender

AttributeError: 'Teacher' object has no attribute '—gender'

Notes

Use the following operations to check the docString of the Teacher class and its parent
class Person.

In[14] Person?
Teacher?

Notes

To check the name of a class in Python, you can use the __name__ attribute.

In[15] Person.__name__

Out[15] 'Person'

 186 Python Data Science

Notes

In Python, theSystem-defined names are also known as “dunder” names. These names
are defined by the interpreter and its implementation (including the standard library.
Commonly used dunder attributes are as follows:
	__name__:  Return the class name
	__doc__:  Return the docString of the class
	__bases__:  Return the tuple of all parent classes of the class
	__dict__:  Return a list of all attributes and methods of a class
	__module__: � Return the name of the module where the class definition is located
	__class__:  Return the class corresponding to the instance

3.9.4  Attributes

Notes

Unlike Java and C++, Python does not use the private keyword to define private
variables. Instead, the convention in Python is to use “double underscores” at the
beginning of variable names to indicate privacy, although it does not enforce true
encapsulation.

In[16] class Student:
 __name="Zhang"

#__name is a private variable, but age is not.
 age=18
 @property
 def get_name(self):
#If self is not written here, the arguments mismatch error will be thrown: "TypeError:
#get_name() take s 0 positional arguments but 1 was given".
 print(self.__name)
#If self is not written here, error will be thrown: "NameError: name '_Student__
#name' is not defined".

#Private variables can be called neither by class name nor by instance.
stdnt1=Student()

#@property decorator calls a method or function as an attribute.
stdnt1.get_name

Notes

A function decorated with the @property decorator in Python cannot be called using
(), and it must be accessed as an attribute. If you attempt to call a property-decorated
function with parentheses, you will encounter a TypeError stating that the function
takes no positional arguments.

Out[16] Zhang

187 Advanced Python Programming for Data Science

3.9.5  Self and Cls

Notes

In Python, self and cls are passed to the methods in the first argument. The self and cls
means a references to an instance and a class, respectively.

	Always use self for the first argument to instance methods.
	Always use cls for the first argument to class methods.

For instance, when defining a class, self stands for “instance reference”, as is often
used in __ init__ ()； cls stands for “a reference to a class”, as often used in __ new__ ().

In[17] class Student:
 age=0
 name="z"
 def __init__(self):
#The self can only appear in formal parameters.
 self.name="zhang"
#The self. name is an instance variable, which is different from another class variable
#name.
 age=10
#The age here is a local variable in "__init__ ()".
s1=Student()
s2=Student()
s1.name="song"
s1.age=30
Student.age=20
#The age is a class attribute.
Student.name="li"
The name is a class attribute.
s1.name, s1.age,s2.name, s2.age

Tips

In Python object-oriented programming, class attributes (such as name) and instance
attributes (such as age) occupy their own independent storage space in memory
without mutual influence, and the search rule of instance attributes is “first search the
memory of instance attributes to find the corresponding attributes, it can’t be found
such as s2.age. The class attribute value will replace the instance attribute value with
the same name”. Readers are advised to use Python general attribute “.__dic__” to
track the attributes and attribute values of each class and instance, such as s1.__dict__
or Student.__dict__.

Out[17] ('song', 30, 'zhang', 20)

3.9.6 __new__ () and __init__()

Notes

It is important to note that if the __new__() method of your class does not return an
instance of the class (cls), the __init__() method will not be called. This means that
the initialization step will be skipped, and the object will not be properly initialized.

 188 Python Data Science

In[18] class Student:
 name="wang"
 __age=16

 def __new__(cls,name,age):
 print('__new__() is called')

 def __init__(self,name,age):
 print('__init__() is called')
 self.name = name
 self.age = age
 def sayHi(self):
 print(self.name,self.age)

s1= Student("zhang", 18)

Out[18] __new__() is called

In[19] print(s1)

Notes

There is no return statement in __new_ (), Hence, the value of s1 is NoneType.

Tips

In Python, the __new__() method is called when an object is created, and it is responsible
for creating and returning a new instance of the class. The __init__() method, on the
other hand, is called after the __new__() method and is used to initialize the newly
created object.

Out[19] None

Tips

The__new__() function is used to produce an “object”;
The __init__() function is used to produce an “instance”.

Out[19] None

Tips

The output result is <generator object myGen at 0x00000213EA679E58>, not a
specific return value.

189 Advanced Python Programming for Data Science

In[20] s1.sayHi()

Tips

Here, the Python interpreter will raise an AttributeError that ‘NoneType’ object has
no attribute ‘sayHi’

Out[20] ---
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_18396\2394443593.py in <module>
----> 1 s1.sayHi()

AttributeError: 'NoneType' object has no attribute 'sayHi'

Tips

The AttributeError is raised in that there is no return statement in the __new__() function.
To modify: Add return object. __new__() (cls) to the __new__() function.

In[21] class Student:
 name="wang"
 __age=16

 def __new__(cls,*args, **kwargs):
 print('__new__() is called')
 return object.__new__(cls)

 def __init__(self,name,age):
 print('__init__() is called')
 self.name = name
 self.age = age

 def sayHi(self):
 print(self.name,self.age)

s1= Student("zhang", 18)
s1.sayHi()

Tips

Adding a return statement (return object.__new__(cls)) in the __new__() method will
ensure that the __init__() method is invoked. By calling object.__new__(cls), you are
explicitly creating a new instance of the class.

Out[21] __new__() is called
__init__() is called
zhang 18

 190 Python Data Science

Exercises

[1]	� Which of the following statements about the iterable object and the iterator object in Python is wrong?
	 A. Functions that can receive the iterator objects can receive the iterable objects.
	 B. �The iterator object can be called by the next function, constantly returning the object of the next

value.
	 C. The iter function can convert the iterable object into the iterator object.
	 D. The iterable objects are not necessarily the iterator objects.

[2]	 Which of the following is true of Python?
	 A. Calling the range function returns to the generator object.
	 B. The return statements are generally used in the generator objects to return results.
	 C. �The result will not be returned immediately when the generator is called, because the generator

follows lazy calculation.
	 D. The generator objects contain the iterator objects.

[3]	 Which of the following is a benefit of using modules in python?
	 A. It greatly improves the maintainability of the code.
	 B. Writing code does not have to start from scratch to improve efficiency.
	 C. Avoid conflicts between function names and variable names.
	 D. All of the above

[4]	 Which of the following statements about modules is wrong?
	 A. Modules are normally .py file.
	 B. �The search order of modules is: modules already loaded in memory - > built-in modules

- >The module contained in the sys.path.
	 C. The user cannot customize the module.
	 D. �No matter how many times import is executed, the single module in the whole program will be

imported only once.

[5]	 Which of the following statements about the relationship between modules and packages is false?
	 A. Packages can be used to group a set of modules under a common package name.
	 B. A package can only correspond to one module.
	 C. Each package directory will have an init.py, and init.py itself is a module.

[6]	 Which of the following is not a built-in module?
	 A. sys
	 B. random
	 C. os
	 D. image

[7]	 Which of the following will run with errors?
	 A. from file1.file2 import test
	 B. import file1.file2.test as test
	 C. import seaborn,jieba as sns,jieba
	 D. import seaborn as sns,jieba as jieba

[8]	 Which of the following is false of package?
	 A. It is a folder that always contain__ init__. py module.
	 B. Packages are a way of organizing and managing code.
	 C. Other modules and subpackages are generally contained.
	 D. The package cannot be customized.

191 Advanced Python Programming for Data Science

[9]	 Which of the following has a syntax error?
	 A. dir([])
	 B. dir(?)
	 C. dir(‘’)
	 D. dir()

[10]  Which of the following statements about help documents is false?
	 A. __ doc__ is preceded and followed by a short underline.
	 B. When using help (module_name), we need to import the module first.
	 C. The object in help (object) is the content that needs help.
	 D. If we use help (object) or help (‘object'), press q directly when exiting.

[11]  Which of the following is true?
	 A. The try, except and finally statements always be used at the same time.
	 B. The finally statement has the same capacity as the else clauses.
	 C. �The assert statement is mainly used to set checkpoint. When the check condition is true, AssertionError

will be raised.
	 D. The assertion contents of the assert statement can be empty.

[12]  SyntaxError indicates()
	 A. suspicious syntax warning
	 B. invalid arguments passed in
	 C. syntax error
	 D. indentation error

[13]  Which of the following will appear when an error occerred while encoding Unicode?
	 A. UnicodeError	
	 B. UnicodeDecodeError	
	 C. UnicodeEncodeError	
	 D. UnicodeTranslateError

[14]  If Chinese characters or punctuation are mistakenly typed in the code, the system will prompt ()
	 A. Not ImplementedError
	 B. IndentationError
	 C. EOFError
	 D. SyntaxError

[15]  What will the following program print out?
	 import math
	 def f(n):
	 assert n>0,’n must be positive’
	 return math.sqrt(n)
	 f(4)

	 A. 2.0
	 B. AssertionError: n must be positive
	 C. AssertionError: n must be positive
	  2.0

[16]  Which of the following is false of Python Pdb?
	 A. The prompt of debugger is Pdb.
	 B. The debugger is not extensible.
	 C. The pdb module defines an interactive source code debugger for Python programs.
	 D. pdb supports post debugging, which can be imported under program control.

 192 Python Data Science

[17]  Which of the following statements about object-oriented technology is false?
	 A. Class is used to specify a set of objects with the same attributes and methods.
	 B. Class variables are common throughout the instantiated objects.
	 C. The functions defined in the class are called variables.
	 D. Instances of data structures defined by classes are called objects.

[18]  Which of the following statements about variables in a class is true?
	 A. self represents an instance of a class which is required when defining methods of a class.
	 B. The value of a class variable cannot be shared among all instances of this class.
	 C. Class variables can be accessed directly in internal or external classes.
	 D. self is a keyword in Python and cannot be modified.

[19]  What is the output of the following program?
	 x=1
	 y=2
	 del y
	 z=x*y

	 A. NameError
	 B. SyntaxError
	 C. ValueError
	 D. AssertionError

[20]  Which of the following statements about the current working directory is false?
	 A. The getcwd function in the os module is used to check the current working directory.
	 B. Current working path can be modified with os.chdir(path).
	 C. �The current working directory is the search path, which refers to the default read-write path of files

and folders in Python.
	 D. The open function is a common file import function.

193 Advanced Python Programming for Data Science

4.  Data wrangling with Python

Data wrangling is the process of transforming and mapping data from one raw data form into another format with
the intent of making it more appropriate and valuable for data science purposes. This chapter will introduce the
essential data wrangling skills for data scientists, including:

1.  Random number generation

2.  Multidimensional arrays

3.  Series

4.  DataFrames

5.  Date and time manipulation

6.  Data visualization

These skills are crucial for data scientists to effectively manipulate, analyze, and visualize data in their projects.

195 © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_4

https://doi.org/10.1007/978-981-19-7702-2_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_4&domain=pdf

4.1  Random number generation

Q&A

 196 Python Data Science

4.1.1  Generating a random number at a time

Tips

There are two common methods for generating random numbers from a computer:
Pseudo-Random Number Generators (PRNGs) and True Random Number Generators
(TRNGs).

PRNGs rely on a seed number and an algorithm to generate numbers that appear to
be random but are actually predictable. They are widely used in computer programs
and simulations.

In contrast, TRNGs generate randomness from physical phenomena using hardware
and integrate it into a computer. These generators provide a higher level of true
randomness compared to PRNGs.

Notes

The Python standard library provides a module called random that offers a suite of
functions for generating pseudo random numbers.

In[1] import random
random.seed(3)

Tricks

random.seed(): Initialize the random number generator. The random number
generator needs a number to start with (a seed value), to be able to generate a random
number. By default the random number generator uses the current system time.

Tips

The random package is not the only package in Python that generates random numbers.
Other packages such as NumPy, SciPy, and scikit-learn also provide functions for
generating random numbers.

Notes

The random module contains several functions that allows you to generate random
numbers. For instance, the randint(a,b) function generates random integers from a
(inclusive) to b (exclusive).

In[2] import random
random.seed(3)
random.randint(1, 100)

Out[2] 31

Notes

Random.uniform(a,b): Generates a random floating point number from a uniform
distribution.

197 Data wrangling with Python

In[3] import random
random.seed(3)
random.uniform(-10, 10)

Out[3] -5.240707458162173

Notes

The “2” in “round(random.uniform(-10, 10),2)” means that the round function will
return random.uniform(-10, 10) rounded to 2 precision after the decimal point.

In[4] random.seed(3)
round(random.uniform(-10, 10),2)

Out[4] -5.24

4.1.2  Generating a random array at a time

Tips

The basic steps of generating a random array with Numpy package:
The first step is to define random variable generator (e.g rand) with Numpy.
The second step is to select the specific method of the rand generator according to
the features of the target array (such as uniform distribution or normal distribution),
including randint(), rand(), or randn().

In[6] # to create a container for pseudo-random number generator

import numpy as np
rand=np.random.RandomState(32)

Notes

numpy.random.RandomState(seed):Container for the Mersenne Twister pseudo-
random number generator. Here, the seed is used to initialize the pseudo-random
number generator.

In[7] # to generate a random array

x=rand.randint(0,10,(3,6))
x

Out[7] array([[7, 5, 6, 8, 3, 7],
 [9, 3, 5, 9, 4, 1],
 [3, 1, 2, 3, 8, 2]])

Notes

RandomState.randint(a, b, shape): Return random integers from a (inclusive) to b
(exclusive) with the output shape.

 198 Python Data Science

4.2  Multidimensional arrays

Q&A

199 Data wrangling with Python

 200 Python Data Science

201 Data wrangling with Python

 202 Python Data Science

4.2.1  Createting ndarrays

Notes

NumPy offers powerful N-dimensional arrays(ndarray) that support linear algebra
routines, comprehensive mathematical functions, random number generators, and
more.

In[1] # To import the NumPy module

import numpy as np

Notes

An ndarray object represents a multidimensional, homogeneous array of fixed-size
items.

Notes

Ndarray can be created in several ways, one of which is using the np.arange () function.
For instance, numpy.arange(a,b) returns evenly spaced values within the half-open
interval [a, b). In other words, the interval including a but excluding b.

In[2] MyArray1 = np.arange(1,20)
MyArray1

Out[2] array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])]

Tricks

The difference between range() and numpy.arange():
	 range() is a built-in function in Python that returns a range object, as described in

[2.8 The For Statement].
	 numpy.arange() is a function in the third-party model NumPy, which returns the

ndarray of NumPy.
For integer arguments, the numpy.arange() function is equivalent to the Python

built-in range() function, but returns an ndarray rather than a list.

Tips

numpy.arange() :return evenly spaced values within the half-open interval [start, stop). In
other words, the interval including start but excluding stop.

In[3] # to call the python built-in function range()

range(1,10,2)

Out[3] range(1, 10, 2)

Notes

In Python 2, the python built-in function range() creates a list, and it is effectively
eagerly evaluated. In Python 3, it creates a range object, whose individual values are
lazily evaluated. In other words, In Python2, range() returns a list, which is equivalent
to list(range()) in Python3.

203 Data wrangling with Python

In[4] # to convert a Range object to a List object

list(range(1,10,2))

Out[4] [1, 3, 5, 7, 9]

Notes

numpy.arange() returns an ndarray object.
In contrast to Python’s built-in data types such as lists or tuples, ndarray objects
consume less memory and are convenient to use.

In[5] np.arange(1,10,2)

Out[5] array([1, 3, 5, 7, 9])

Notes

The second way to create an ndarray is by calling the np.array() function from the
NumPy module.

In[6] MyArray2=np.array([1,2,3,4,3,5])
MyArray2

Out[6] array([1, 2, 3, 4, 3, 5])

Tips

The expression np.array(range(1,10,2)) is equivalent to np.arange(1,10,2) in NumPy.
Both expressions generate an ndarray containing the values [1, 3, 5, 7, 9].

In[7] np.array(range(1,10,2))

Out[7] array([1, 3, 5, 7, 9])

Notes

The third way to create an ndarray is by calling functions like np.zeros(), np.ones(),
and others provided by NumPy. These functions allow you to create arrays filled with
zeros, ones, or specific values.

In[8] MyArray3=np.zeros((5,5))
MyArray3

Out[8] array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])

Notes

In np.zeros((5,5)), the argument (5,5) represents the shape of the target array, which is
an array of 5 rows and 5 columns.

 204 Python Data Science

In[9] MyArray4=np.ones((5,5))
MyArray4

Out[9] array([[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]])

Notes

numpy.full (shape, fill_value, dtype=None):
Return a new array of given shape and data type(dtype), filled with fill_value.

In[10] # To create a new array with 3 rows and 5 columns, filled with 2

np.full((3,5),2)

Out[10] array([[2, 2, 2, 2, 2],
 [2, 2, 2, 2, 2],
 [2, 2, 2, 2, 2]])

Notes

To generate random arrays using np.random(), please refer to section [4.1.2 Generating
a random array at a time] for detailed instructions and examples.

In[11] rand=np.random.RandomState(30)
MyArray5=rand.randint(0,100,[3,5])
MyArray5

Out[11] array([[37, 37, 45, 45, 12],
 [23, 2, 53, 17, 46],
 [3, 41, 7, 65, 49]])

Notes

Here, 0 and 100 represent the range of the random value, and [3,5] represents the
shape of the target array with 3 rows and 5 columns.

Notes

Two important features of the ndarray in NumPy:
(1)  shape: the shape of a multidimensional array

  Its value is a tuple or a list.
  For instance, shape = (2,15) represents an array with 2 rows and 15 columns.

(2)  dtype: The data type of the element in the multidimensional array
  Its value is the data type provided by the NumPy module such as np.int.
  �For instance, dtype = np.int represents that the data type of the array elements

is int in NumPy.
NumPy supports a much greater variety of numerical types than Python does,
including numpy.int, numpy.short, numpy.int_ and numpy.longlong.

In[12] import numpy as np
MyArray4=np.zeros(shape=(2,15) ,dtype=np.int)
MyArray4

205 Data wrangling with Python

Out[12] array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

Tricks

MyArray4 = np.zeros((2, 15), dtype=np.int)

In this statement, the phrase “shape =” can be omitted, and the np.int data type does not
require double quotes.

Notes

The shape argument represents the shape of the array, and its value can be a tuple,
such as (3,5).

In[13] np.ones((3,5),dtype=float)

Out[13] array([[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]])

Notes

The value of the shape argument can also be specified as a list, such as [3, 5].

In[14] np.ones([3,5],dtype=float)

Out[14] array([[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]])

4.2.2  Slicing and indexing ndarrays

Notes

Both Lists in Python and ndarrays in NumPy allow slicing and indexing, and they
share a similar syntax.

In[15] # to create the test dataset

import numpy as np
myArray=np.array(range(1,10))

myArray

Out[15] array([1, 2, 3, 4, 5, 6, 7, 8, 9])

Notes

(1) The index of the first item/element is 0.

 206 Python Data Science

In[17] myArray[0]

Out[17] 1

Notes

(2) Python supports negative indexes, please refer to [2.10 Lists] for details.

In[18] myArray[-1]

Out[18] 9

Notes

(3) Several ways of indexing items/elements

In[19] # to create and show the current value of the variable myArray
import numpy as np
myArray=np.array(range(0,10))

print("myArray=",myArray)

Out[19] myArray= [0 1 2 3 4 5 6 7 8 9]

Tips

Slicing means taking elements from one given index to another given index.

Notes

1, 9 and 2 are the start, end and step index of the slicing respectively.

In[20] print("myArray[1:9:2]=",myArray[1:9:2])

Out[20] myArray[1:9:2]= [1 3 5 7]

Notes

The start index can be omitted.

In[21] print("myArray[:9:2]=",myArray[:9:2])

Out[21] myArray[:9:2]= [0 2 4 6 8]

Notes

The start and stop index can be omitted.

In[22] print("myArray[::2]=",myArray[::2])

Out[22] myArray[::2]= [0 2 4 6 8]

207 Data wrangling with Python

Notes

The start, stop and step index can all be omitted.

In[23] print("myArray[::]=",myArray[::])

Out[23] myArray[::]= [0 1 2 3 4 5 6 7 8 9]

Notes

The start and stop index can be omitted.

In[24] print("myArray[:8:]=",myArray[:8:])

Out[24] myArray[:8:]= [0 1 2 3 4 5 6 7]

Notes

The step index can be omitted.

In[25] print("myArray[:8]=",myArray[0:8])

Out[25] myArray[:8]= [0 1 2 3 4 5 6 7]

Notes

The stop and step index can be omitted.

In[26] print("myArray[4::]=",myArray[4::])

Out[26] myArray[4::]= [4 5 6 7 8 9]

Notes

The value of the step index can be negative.

In[27] print("myArray[9:1:-2]=",myArray[9:1:-2])
print("myArray[::-2]=",myArray[::-2])

Out[27] myArray[9:1:-2]= [9 7 5 3]
myArray[::-2]= [9 7 5 3 1]

Tips

Fancy indexing refers to the practice of using an array of indices to access multiple
elements of an array simultaneously.

 208 Python Data Science

Notes

Fancy Indexing is a very flexible way of slicing, which means to support a non-iterative
way to slice the elements irregularly. The notation of fancy indexing is the nesting of
[], that is, another [] appears in the []. For example, myArray[[2,5,6]] means to locate
the three elements with indexes 2, 5 and 6.

In[28] print("myArray[[2,5,6]]=",myArray[[2,5,6]])

Out[28] myArray[[2,5,6]]= [2 5 6]

Notes

In NumPy, it is possible to use an expression containing the array name itself as an
index, which acts as a filtering condition. For more details, please refer to In[29].

In[29] print("myArray[myArray>5]=",myArray[myArray>5])

Out[29] myArray[myArray>5]= [6 7 8 9]

Notes

In slicing, the start index is inclusive (e.g., “0” in this code), but the stop index is
exclusive (e.g., “2” in this code). This is because the slicing rule in Python is “including
the start but excluding the stop”.

In[30] myArray[0:2]

Out[30] array([0, 1])

Notes

When slicing an ndarray, it will return a view of the elements in the original array, not
a shallow copy. This means that any modifications made to the sliced array will affect
the original array as well.

In[31] myArray

Out[31] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Notes

(4) � To access non-consecutive elements of an array, you can use slicing. Please refer
to [2.10 Lists] for more details.

In[32] myArray=np.array(range(1,11))
myArray

Out[32] array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Notes

When the index is irregular, an error will be raised if fancy indexing is not used.
Fancy indexing refers to passing an array of indices to access multiple array elements
at once. For more details, please refer to the section on Fancy Indexing in [4.2
Multidimensional arrays].

209 Data wrangling with Python

In[33] myArray[1,3,6]

IndexError Traceback (most recent call last)
<ipython-input-30-13b1cd8a6af6> in <module>()
 1
----> 2 myArray[1,3,6]
 3

IndexError: too many indices for array

Tricks

Raise an exception: too many indices for array.
To correct this exception, please use Fancy Indexing as follows:

In[34] myArray[[1,3,6]]

Out[34] array([2, 4, 7])

Notes

In data science projects, it is often necessary to generate a special matrix called a
“feature matrix”. From the output above, the current value of myArray is a row of
records, which does not meet the requirements of a feature matrix and needs to be
normalized.

In[35] myArray

Out[35] array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Tricks

In NumPy, the np.newaxis is an alias for the Python constant None, hence, wherever
we use np.newaxis we could also use None:

 210 Python Data Science

In[36] myArray[:,np.newaxis]

Out[36] array([[1],
 [2],
 [3],
 [4],
 [5],
 [6],
 [7],
 [8],
 [9],
 [10]])

Tricks

Here, the np.newaxis is generally used with slicing. It indicates that you want to add an
additional dimension to the array. In addition, the colon (:) cannot be omitted here.

Tips

Here, the codes of In[39] are equivalent to those of In[40].

Notes

To get the shape of a given ndarray, you can use the .shape attribute. For example, if
arr is an ndarray, you can access its shape using arr.shape.

In[37] myArray[:,np.newaxis].shape

Out[37] (10, 1)

Notes

To convert the shape of an ndarray in NumPy, you can use the numpy.reshape()
function. It allows you to reshape an array into a specified shape while keeping the
same elements.

In[38] myArray2=np.arange(1,21).reshape([5,4])
myArray2

Out[38] array([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12],
 [13, 14, 15, 16],
 [17, 18, 19, 20]])

Notes

An example of slicing an ndarray is myArray2[[2,4],3].

211 Data wrangling with Python

In[39] myArray2[[2,4],3]

Out[39] array([12, 20])

Tips

Here, the codes of In[39] are equivalent to those of In[40].

In[40] x=[2,4]
myArray2[x,3]

Out[40] array([12, 20])

4.2.3  Shallow copy and deep copy

Tips

Assignment statements in Python do not copy objects, they create bindings between a
target and an object. Hence, the numpy provides two distinct methods: generic shallow
and deep copy operations
	 A shallow copy means the copied array contains only a reference to the original array.
	 A deep copy means copying each element of the original array into the copied array

In[41] import numpy as np
myArray1=np.array(range(0,10))
myArray2=myArray1
myArray2[1]=100
myArray1

Out[41] array([0, 100, 2, 3, 4, 5, 6, 7, 8, 9])

Tricks

Here, the value of myArray has changed in that myArray1 and myArray2 share the same
memory adrrress

Notes

Deep copy: A deep copy creates a new array object with its own separate copy of the
original array’s data. Any modifications made to the data in one array will not affect
the other. You can create a deep copy using the numpy.copy() function.

In[42] import numpy as np
myArray1=np.array(range(0,10))
myArray2=myArray1.copy()
myArray2[1]=200
myArray1

Out[42] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Tricks

The myArray1 here has not changed. The reason is that ‘myArray2 = myArray1.copy()’
creates a deepcopy, resulting in myArray1 and myArray2 being mutually independent.

 212 Python Data Science

4.2.4  Shape and reshape

Notes

Reshape means returning a transformed array with the new shape specifies in the
numpy method reshpe().

In[43] import numpy as np
MyArray5=np.arange(1,21)
MyArray5

Out[43] array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

Notes

In numpy, to check the shape of an array, you can use the attribute ndarray.shape.

In[44] MyArray5.shape

Out[44] (20,)

Notes

(1)	 to change the shape of ndarray:
ndarray.reshape() or ndarray.resize()

In[45] MyArray6=MyArray5.reshape(4,5)
MyArray6

Out[45] array([[1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10],
 [11, 12, 13, 14, 15],
 [16, 17, 18, 19, 20]])

Notes

In numpy, the numpy.reshape() function does not modify an array in place. Instead, it
returns a new reshaped array while leaving the original array unchanged.

In[46] MyArray5.shape
MyArray5

Out[46] (20,)
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

Tips

The numpy.reshape() function returns a new array with a modified shape but preserves the
original data of the array. It does not modify the array in place.

213 Data wrangling with Python

In[47] MyArray5.reshape(5,4)

Out[47] array([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12],
 [13, 14, 15, 16],
 [17, 18, 19, 20]])

Notes

ValueError: cannot reshape array of size 20 into shape (5,5).

In[48] MyArray5.reshape(5,4)

ValueError Traceback (most recent call last)
<ipython-input-46-8920a583f59a> in <module>()
----> 1 MyArray5.reshape(5,5)
 2

ValueError: cannot reshape array of size 20 into shape (5,5)

Tips

Here, a value error is raised in that the python interpreter cannot reshape array of size
20 into shape (5,5).

In[49] MyArray5

Out[49] array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

Notes

The resize() method in NumPy can be used to change the shape of an array in-place.
Unlike reshape(), resize() modifies the array itself rather than returning a new array.

In[50] MyArray5.resize(4,5)
MyArray5

Out[50] array([[1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10],
 [11, 12, 13, 14, 15],
 [16, 17, 18, 19, 20]])

Tips

The main difference between resize() and reshape() in NumPy is that resize() performs
in-place modification, meaning it modifies the array itself, while reshape() returns a new
array with the specified shape without modifying the original array.

 214 Python Data Science

Notes

(3)  The swapaxes() method in NumPy allows you to interchange two axes of an array.

In[51] MyArray5.swapaxes(0,1)

Out[51] array([[1, 6, 11, 16],
 [2, 7, 12, 17],
 [3, 8, 13, 18],
 [4, 9, 14, 19],
 [5, 10, 15, 20]])

Notes

Swapaxes(0,1) does not change the array itself.

In[52] MyArray5

Out[52] array([[1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10],
 [11, 12, 13, 14, 15],
 [16, 17, 18, 19, 20]])

Tricks

In data science, it is important to pay attention to whether the evaluation of a data object
changes the data itself or returns a copy of the new value.

Notes

(4) Use the flatten() method to convert a multidimensional array into a one-dimensional
array.

In[53] MyArray5.flatten()

Out[53] array([1, 6, 11, 16, 2, 7, 12, 17, 3, 8, 13, 18, 4, 9, 14, 19, 5, 10, 15, 20])

Tips

ndarray.flatten():
Return a copy of the array collapsed into one dimension.

Notes

(5) Use the tolist() method to convert the multidimensional array to a nested list.

215 Data wrangling with Python

In[54] MyArray5.tolist()

Out[54] [[1, 6, 11, 16],
 [2, 7, 12, 17],
 [3, 8, 13, 18],
 [4, 9, 14, 19],
 [5, 10, 15, 20]]

Tips

ndarray.tolist():
Return the array as an a.ndim-levels deep nested list of Python scalars.

Notes

(6) The data type of array elements can be reset.

In[55] MyArray5.astype(np.float)

Out[55] array([[1., 6., 11., 16.],
 [2., 7., 12., 17.],
 [3., 8., 13., 18.],
 [4., 9., 14., 19.],
 [5., 10., 15., 20.]])

Tips

numpy.ndarray.astype():
  Returns a copy of the array, cast to a specified type.

Notes

When executing MyArray5.astype(np.float), the array MyArray5 itself does not
change, but a new array of the specified data type (in this case, np.float) is returned.

In[56] MyArray5

Out[56] array([[1, 6, 11, 16],
 [2, 7, 12, 17],
 [3, 8, 13, 18],
 [4, 9, 14, 19],
 [5, 10, 15, 20]])

4.2.5  Dimension and size

Notes

(1) To evaluate the number of array dimensions: rank() or ndim().

 216 Python Data Science

In[57] np.rank(MyArray5)

C:\Anaconda\lib\site-packages\ipykernel_launcher.py:3: VisibleDeprecationWarning:
‘rank’ is deprecated; use the ‘ndim’ attribute or function instead. To find the rank of a
matrix see ‘numpy.linalg.matrix_rank’.
  This is separate from the ipykernel package so we can avoid doing imports until

Out[57] 2

Tricks

The system prompts “‘rank’ is deprecated”, indicating that this method has been deprecated.
The system prompts “use the ‘ndim’ attribute or function instead”.
Variations of this naming convention are common among Python third-party packages.

In[58] np.ndim(MyArray5)

Out[58] 2

Notes

There are two usages of ndim in numpy: as an attribute (MyArray5.ndim) and as a
method (np.ndim(MyArray5)).

In[59] MyArray5.ndim

Out[59] 2

Notes

(2) To get the shape of the array: the shape() method or the shape attribute.

In[60] np.shape(MyArray5)

Out[60] (5, 4)

Notes

In NumPy, the shape attribute supports functional calls. For example,
np.shape(MyArray4) is equivalent to MyArray4.shape.

In[61] MyArray5.shape

Out[61] (5, 4)

Tips

numpy.shape() is the equivalent function to ndarray.shape, and numpy.ndim() is the
equivalent function to ndarray.ndim(). They both provide the same functionality to
retrieve the shape and number of dimensions of a NumPy array.

217 Data wrangling with Python

Notes

(3) � In NumPy, the numpy.size function can be used to evaluate the number of elements
in an array. It returns the total number of elements present in the array, regardless
of its shape or dimensions.

In[62] MyArray5.size

Out[62] 20

Tips

In NumPy, the ndarray.shape attribute returns a tuple of array dimensions, indicating
the size of each dimension of the array.

The ndarray.size attribute returns the total number of elements in the array, providing
the overall size or length of the array.

Notes

(4) �To check the type of the array:
the built-in function type().

In[63] type(MyArray5)

Out[63] numpy.ndarray

Tips

Here,the type() function is a built-in function in Python and not specific to NumPy.
Therefore, you do not need to prefix it with np when using it to determine the type of a
NumPy array.

4.2.6  Evaluation of ndarrays

Notes

(1) Multiplication with arrays.

In[64] MyArray5*10

Out[64] array([[10, 60, 110, 160],
 [20, 70, 120, 170],
 [30, 80, 130, 180],
 [40, 90, 140, 190],
 [50, 100, 150, 200]])

Tips

There are three common used ways to multiply NumPy ndarrays in data science:
	 numpy.dot(array a, array b) : returns the dot product of two arrays.
	 numpy.multiply(array a, array b) : returns the element-wise matrix multiplication

of two arrays.
	 numpy.matmul(array a, array b) : returns the matrix product of two arrays.

 218 Python Data Science

Notes

(2) Horizontal split: the split() method.
[3,5] is the index of the split position.

In[65] x=np.array([11,12,13,14,15,16,17,18])
x1,x2,x3=np.split(x,[3,5])
print(x1,x2,x3)

Out[65] [11 12 13] [14 15] [16 17 18]

Notes

The np.vsplit() method is used to perform a vertical split of an array. Here, MyArray5.
reshape(4, 5) is split into two parts at index 2 along the vertical axis. The resulting
splits are assigned to the variables upper and lower using unpacking assignment.

In[66] upper,lower=np.vsplit(MyArray5.reshape(4,5),[2])
print("The upper part is\n",upper)
print("\n\nThe lower part is\n",lower)

Out[66] The upper part is
 [[1 6 11 16 2]
 [7 12 17 3 8]]

The lower part is
 [[13 18 4 9 14]
 [19 5 10 15 20]]

Notes

(3) To merge the arrays: np.concatenate().

In[67] np.concatenate((lower,upper),axis=0)

Out[67] array([[13, 18, 4, 9, 14],
 [19, 5, 10, 15, 20],
 [1, 6, 11, 16, 2],
 [7, 12, 17, 3, 8]])

Tricks

Here, axis = 0 means that the axis along which the arrays will be joined. If axis is None,
arrays are flattened before use. Default is 0.

Notes

(4) �np.vstack() and np.hstack() support horizontal or vertical merging(stacking)
respectively.

The premise of calling np.vstack(): the number of columns of the arrays is the same.

219 Data wrangling with Python

In[68] np.vstack([upper,lower])

Out[68] array([[1, 6, 11, 16, 2],
 [7, 12, 17, 3, 8],
 [13, 18, 4, 9, 14],
 [19, 5, 10, 15, 20]])

Notes

The premise of calling np.hstack(): the number of rows of the arrays is the same.

In[69] np.hstack([upper,lower])

Out[69] array([[1, 6, 11, 16, 2, 13, 18, 4, 9, 14],
 [7, 12, 17, 3, 8, 19, 5, 10, 15, 20]])

Tips

	 numpy.vstack() : Stack arrays in sequence vertically (row wise).
	 numpy.vsplit() : Split an array into multiple sub-arrays vertically (row-wise).
	 numpy.hstack() : Stack arrays in sequence horizontally (column wise).
	 numpy.hsplit() : Split an array into multiple sub-arrays horizontally (column-

wise).

Notes

In NumPy, function evaluations on arrays are commonly implemented as “ufunc
functions,” which operate element-wise on entire arrays. These ufunc functions allow
for efficient vectorized computations without the need for explicit loop statements.

In[70] np.add(MyArray5,1)

Out[70] array([[2, 7, 12, 17],
 [3, 8, 13, 18],
 [4, 9, 14, 19],
 [5, 10, 15, 20],
 [6, 11, 16, 21]])

Tricks

The same function, which is summing the elements of an array, can be achieved using both
the built-in Python function sum() and the NumPy function numpy.sum().

Tips

A ufunc (universal function) is a function that operates on ndarrays in an element-by-
element fashion. That is, a ufunc is a “vectorized” wrapper for a function that takes a
fixed number of specific inputs and produces a fixed number of specific outputs

 220 Python Data Science

4.2.7  Insertion and deletion

Notes

To delete a specific element in a NumPy array, you can use the np.delete() function.

In[71] import numpy as np
myArray1=np.array([11,12,13,14,15,16,17,18])
np.delete(myArray1,2)

Out[71] array([11, 12, 14, 15, 16, 17, 18])

Tips

numpy.delete(arr, obj, axis=None) is a function that returns a new array with sub-
arrays along a specified axis deleted. The arr parameter represents the input array, obj
specifies the indices or slice objects of the elements to be deleted, and axis (optional)
indicates the axis along which the deletion should occur.

Notes

To insert a specific element: np.insert().

In[72] np.insert(myArray1,1,88)

Out[72] array([11, 88, 12, 13, 14, 15, 16, 17, 18])

Tips

numpy.insert(arr, obj, values, axis=None) is a function that inserts values into an array
along a specified axis before the given indices.

221 Data wrangling with Python

4.2.8  Handling missing values

Notes

To check if each element of an array is a missing value: np.isnan().

In[73] np.isnan(myArray)

Out[73] array([False, False, False, False, False, False, False, False, False, False])

Notes

To check if there is at least one missing value in the array: np.any().

In[74] np.any(np.isnan(myArray))

Out[74] False

Notes

To check if all elements in an array are missing values: np.all().

In[75] np.all(np.isnan(myArray))

Out[75] False

Tips

numpy.isnan: to test element-wise for NaN and return result as a boolean array.
Numpy.all(): to test whether all array elements along a given axis evaluate to True.
Numpy.any(): to test whether any array element along a given axis evaluates to True.

Notes

In many function evaluations, if missing values are encountered, an error may be raised
or a NaN (Not a Number) value may be obtained as the result. To handle missing
values in such cases, you can use NaN-safe functions provided by NumPy, such as
np.nansum().

In[76] MyArray=np.array([1,2,3,np.nan])
np.nansum(MyArray)

Out[76] 6.0

Notes

The difference between np.nan and None.:
	 None is a data type provided by Python syntax and cannot participate in arithmetic

operations.
	 The np.nan data type is provided by NumPy, which belongs to the float type and can

participate in arithmetic operations.

In[77] np.sum(MyArray)

Out[77] nan

 222 Python Data Science

4.2.9  Broadcasting ndarray

Tips

In NumPy, broadcasting refers to the mechanism by which arrays with different shapes
are treated during arithmetic operations. When performing operations between arrays
of different shapes, NumPy automatically adjusts the shapes of the arrays to make
them compatible, following a set of rules or constraints.

Notes

Rule 1: If the number of dimensions is the same, but the size of at least one dimension is
different, broadcasting is performed by replicating the array along the dimension with a
smaller size. The operation is completed by iterating over the arrays in a loop.

In[78] import numpy as np
A1=np.array(range(1,10)).reshape([3,3])
A1

Out[78] array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

Notes

A1 and A2 have the same number of columns and different number of rows.

In[79] A2=np.array([10,10,10])
A2

Out[79] array([10, 10, 10])

Notes

Before A1+A2 is executed, the operation of broadcasting is performed row by row. After
A1 and A2 are converted to the same structure, the evaluation will be executed.

In[80] A1+A2

Out[80] array([[11, 12, 13],
 [14, 15, 16],
 [17, 18, 19]])

Notes

Rule 2: If the shapes of the arrays being operated on are not compatible, meaning they have
different numbers of dimensions and the size of at least one dimension is different (except
when one of the dimensions is 1).

In[81] A3=np.arange(10).reshape(2,5)
A3

Out[81] array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])

223 Data wrangling with Python

Notes

A3 is 2 rows x 5 columns, and A4 is 4 rows x 4 columns.

In[82] A4=np.arange(16).reshape(4,4)
A4

Out[82] array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])

Notes

An error is raised: ValueError: operands could not be broadcast together with shapes
(2,5) (4,4)

In[83] A3+A4

ValueError Traceback (most recent call last)
<ipython-input-86-0fe8480883de> in <module>()
----> 1 A3+A4
 2 �ValueError: operands could not be broadcast together with shapes (2,5)

(4,4)

ValueError: operands could not be broadcast together with shapes (2,5) (4,4)

4.2.10  Sorting an ndarray

Notes

(1) To return a sorted copy of an array
np.sort().

In[84] import numpy as np
myArray=np.array([11,18,13,12,19,15,14,17,16])
myArray

Out[84] array([11, 18, 13, 12, 19, 15, 14, 17, 16])

In[85] np.sort(myArray)

Out[85] array([11, 12, 13, 14, 15, 16, 17, 18, 19])

Notes

(2) To return the indices that would sort an array:
 np.argsort().

In[86] np.argsort(myArray)

Out[86] array([0, 3, 2, 6, 5, 8, 7, 1, 4], dtype=int64)

 224 Python Data Science

Tricks

In NumPy, multidimensional arrays can be sorted along a specified axis by using the axis
parameter in the np.sort() function.

In[87] MyArray=np.array([[21, 22, 23, 24,25],
 [35, 34,33, 32, 31],
 [1, 2, 3, 100, 4]])
np.sort(MyArray,axis=1)

Out[87] array([[21, 22, 23, 24, 25],
 [31, 32, 33, 34, 35],
 [1, 2, 3, 4, 100]])

Tips

Here, axis = 1 means the axis along which to sort. If None, the array is flattened before
sorting. The default is –1, which sorts along the last axis.

In[88] np.sort(MyArray,axis=0)

Out[88] array([[1, 2, 3, 24, 4],
 [21, 22, 23, 32, 25],
 [35, 34, 33, 100, 31]])

225 Data wrangling with Python

4.3  Series

Q&A

 226 Python Data Science

4.3.1  Creating Series

Notes

Pandas Series is a one-dimensional array of indexed data. It can be thought of as a
special type of Python dictionary. It is a data structure that maps typed keys to a set
of typed values. The keys of a Series are explicitly defined indexes that can be of any
data type. The values of the Series correspond to these indexes and can also be of any
data type.

Tricks

Series in Pandas can be thought of as enhanced versions of Dict in Python. Both of
them stored data in Key-Value data model.

Notes

There are two main arguments in pandas.Series():
	 data: Contains data stored in a Series. the argument data should be array-like,

Iterable, dict, or scalar value.
	 index: Contains the explicit index of data stored in the Series. Values must be

hashable and have the same length as data. Non-unique index values are allowed.

Tips

Series has two types of index.
	 The explicit index is defined with typed label names when creating a series.
	 The implicit index is defined automatically with an ordered sequence of numbers

like “0,1,2,3...”.
Unlike software development projects, explicit index is usually used instead of implicit
index in data science projects, because the implicit index is difficult to locate if the
dataset is large.

In[1] import pandas as pd
mySeries1=pd.Series(data = [11,12,13,14,15,16,17], index=["a","b","c","d","e","f","g"])
mySeries1

Out[1] a 11
b 12
c 13
d 14
e 15
f 16
g 17
dtype: int64

Tricks

When defining a Series in Pandas, the length of the index and the length of the data
should be the same. If the lengths do not match, an exception will be raised indicating
the mismatch between the index and data lengths.

227 Data wrangling with Python

In[2] import pandas as pd
mySeries1=pd.Series([11,12,13,14,15,16,17], index=[a,b,c,d,e,f,g])

mySeries1

NameError Traceback (most recent call last)
<ipython-input-3-88cdcb222886> in <module>()
 1 import pandas as pd
----> 2 �mySeries1=pd.Series([11,12,13,14,15,16,17],

index=[a,b,c,d,e,f,g])
 3
 4 mySeries1

NameError: name 'a' is not defined

Tips

Here, a NameError is raised because we missing the quotation marks of the string ‘a’.
Strings in python should be surrounded by either single quotation mark, or double
quotation marks.

Notes

If the “data” parameter is only one value, the pd.series() method will assign the same
value to each index.

In[3] mySeries2=pd.Series(10, index=["a","b","c","d","e","f","g"])
mySeries2

Out[3] a 10
b 10
c 10
d 10
e 10
f 10
g 10
dtype: int64

 228 Python Data Science

Notes

When defining a Series in Pandas, if the “data” parameter contains more than one
value, the length of both the data values and the index should be the same. This ensures
that each data value is paired with a corresponding index value. If the lengths do not
match, an exception will be raised.

In[4] mySeries3=pd.Series([1,2,3,4,5], index=["a","b","c"])
mySeries3

ValueError Traceback (most recent call last)
<ipython-input-5-e8a37d3e2b30> in <module>()
----> 1 �mySeries3=pd.Series([1,2,3,4,5], index=["a","b","c"])
 2 mySeries3
 91
 92 @property

ValueError: Wrong number of items passed 5, placement implies 3

Tricks

There is another kind of exception: ValueError: Wrong number of items passed 5,
placement implies 3.
The reason that this exception raised is the length of the indexes is not same as data
values.

4.3.2  Working with Series

Notes

(1) Getting the index labels of the given Series object.

In[5] import pandas as pd
mySeries4=pd.Series([21,22,23,24,25,26,27], index=["a","b","c","d","e","f","g"])
mySeries4.index

Out[5] Index(['a', 'b', 'c', 'd', 'e', 'f', 'g'], dtype='object')

Tricks

The returned data type is index, which is a special type defined in Pandas.

Notes

(2) Getting all the values in the given Series object.

In[6] mySeries4.values

Out[6] array([21, 22, 23, 24, 25, 26, 27], dtype=int64)

229 Data wrangling with Python

Notes

(3) Slicing a Series with its explicit index

In[7] mySeries4['b']

Out[7] 22

Notes

The Series also supports Fancy Indexing to pass an array of indices to access multiple
elements at once.

In[9] mySeries4[["a","b","c"]]

Out[9] a 21
b 22
c 23
dtype: int64

Notes

In NumPy, explicit indexes can be used as start and stop positions for slicing operations.
Unlike in Python, both the start and stop indices will be included in the returned result.
This means that the sliced array will contain elements starting from the start index up
to and including the stop index.

In[10] mySeries4["a":"d"]

Out[10] a 21
b 22
c 23
d 24
dtype: int64

Notes

(4) Slicing a Series with its implicit index.

In[11] mySeries4[1:4:2]

Out[11] b 22
d 24
dtype: int64

In[12] mySeries4

Out[12] a 21
b 22
c 23
d 24
e 25
f 26
g 27
dtype: int64

 230 Python Data Science

Tips

Notice that when slicing with an explicit index (i.e. mySeries4[“a”:”d”), the
final index is included in the slice, while when slicing with an implicit index (i.e.
mySeries4[1:4:2]), the final index is excluded from the slice.

Notes

(5) Checking whether a value is an element of the explicit index(labels) of a series
or not.

In[13] "c" in mySeries4

Out[13] True

In[14] "h" in mySeries4

Out[14] False

Notes

(6) The series.reindex() method is used to reset the explicit index.

In[15] import pandas as pd
mySeries4=pd.Series([21,22,23,24,25,26,27], index=["a","b","c","d","e","f","g"])
mySeries5=mySeries4.reindex(index=["b","c","a","d","e","g","f"])
mySeries5

Out[15] b 22
c 23
a 21
d 24
e 25
g 27
f 26
dtype: int64

Tricks

The series.reindex() method changes the the index labels of a series, but the
correspondence between key and value is not be destroyed.

Notes

Regardless of the results order, the index and values of mySeries4 itself has not
changed.

231 Data wrangling with Python

In[16] mySeries5=mySeries4.reindex(index=["b","c","a","d","e","g","f"])
mySeries4

Out[16] a 21
b 22
c 23
d 24
e 25
f 26
g 27
dtype: int64

Notes

The series.reindex() method is used to create a new index and reindex the DataFrame.
By default, holes in the new index that do not have corresponding records in the
DataFrame are assigned NaN.

In[17] mySeries5=mySeries4.reindex(index=["new1","c","a","new2","e","g","new3"])
mySeries5

Out[17] new1 NaN
c 23.0
a 21.0
new2 NaN
e 25.0
g 27.0
new3 NaN
dtype: float64

Notes

The Series.reindex() method does not modify the explicit index of the original Series
object.

In[18] mySeries4

Out[18] a 21
b 22
c 23
d 24
e 25
f 26
g 27
dtype: int64

 232 Python Data Science

4.4  DataFrame

Q&A

233 Data wrangling with Python

 234 Python Data Science

235 Data wrangling with Python

4.4.1  Creating DataFrames

Notes

There are two common ways to create a DataFrame in data science projects.
The first way is to type values in Python pandas directly, and this way is rarely used.
The second commonly used way is to load the datasets from existing files.
(1) The pd.DataFrame() method is used to type values.

In[1] import numpy as np
import pandas as pd
df1=pd.DataFrame(np.arange(10).reshape(2,5))
df1

Out[1] 0 1 2 3 4

0 0 1 2 3 4
1 5 6 7 8 9

Tricks

The “data” parameter of pd.DataFrame() can be assigned ndarray, list, dictionary,
tuple, Series, etc.

Notes

(2) � When importing values from existing files into Python using the pandas package,
the data stored on computer will be automatically converted into a DataFrame
object

In[2] df2 = pd.read_csv('bc_data.csv')
df2.shape

Out[2] (569, 32)

Tips

The difference between numpy.ndarrays and pandas.DataFrame are:
	 numpy.ndarrays represents a matrix-like data whereas pandas.DataFrame

represents a SQL-table-like data.
	 numpy.ndarrays can be multi-dimensional whereas pandas.DataFrame can only

be two-dimensional.

Notes

We use the Fancy Indexing method here to select the “id”, “diagnosis”, “area_mean”
columns of the df2 object. Refers to this book [4.2 Multidimensional arrays].

In[3] df2=df2[["id","diagnosis","area_mean"]]
df2.head()

Out[3] id diagnosis area_mean

0 842302 M 1001.0
1 842517 M 1326.0
2 84300903 M 1203.0
3 84348301 M 386.1
4 84358402 M 1297.0

 236 Python Data Science

Tips

The .head() function and the .tail() function are two functions commonly used in
data science projects, which are used to return the first and last n (the default value is
5) rows. If we have a large amount of data, it is not possible or necessary to display
all of the rows.

4.4.2  Index or columns of DataFrames

Notes

The .index attribute is used to retrieve the axis labels of a pandas object, such as a
DataFrame or a Series.

In[4] df2.index

Out[4] RangeIndex(start=0, stop=569, step=1)

Notes

The .index.size attribute is used to get the number of elements in the underlying data.

In[5] df2.index.size

Out[5] 569

Notes

The .columns attribute is used to get the column labels of the DataFrame.

In[6] df2.columns

Out[6] Index([‘id’, ‘diagnosis’, ‘area_mean’], dtype=’object’)

Notes

The .columns.size attribute is used to get the number of columns.

In[7] df2.columns.size

Out[7] 3

Notes

The .shape attribute is used to get the shape of the DataFrame at the same time, i.e. the
number of rows and columns.

In[8] df2.shape

Out[8] (569, 3)

237 Data wrangling with Python

Notes

In this case. The tuple represents the dimensions of the DataFrame ‘df2’, with the
first element indicating the number of rows and the second indicating the number of
columns. Therefore, ‘df2.shape[0]’ accesses the 0th element of the tuple (the number
of rows), and ‘df2.shape[1]’ accesses the 1st element (the number of columns).

In[9] print("the number of rows:", df2.shape[0])
print("the number of columns:", df2.shape[1])

Out[9] the number of rows: 569
the number of columns: 3

4.4.3  Slicing DataFrames

Notes

The way of accessing elements in a Python DataFrame is unique and differs from
other programming languages. For instance, you cannot use the same syntax as C
and Java, i.e., ‘df2[1][2]’. Similarly, you cannot use the syntax from R language, i.e.,
‘df2[1,2]’. Instead, in pandas, we access data through methods like .iloc, .loc, or by
column labels.

Notes

(1)  Reading values by column name:
One common method for accessing data in a DataFrame is using the column name
within square brackets.

In[10] df2["id"].head()

Out[10] 0 842302
1 842517
2 84300903
3 84348301
4 84358402
Name: id, dtype: int64

Notes

Method 2:  Using the column name as an attribute of the DataFrame.

In[11] df2.id.head()

Out[11] 0 842302
1 842517
2 84300903
3 84348301
4 84358402
Name: id, dtype: int64

 238 Python Data Science

Notes

Method 3:  Using column name and row number together.

In[12] df2["id"][2]

Out[12] 84300903

Tricks

In pandas, the 0th axis refers to the DataFrame’s rows and the 1st axis refers to its
columns. Hence, we first specify the column (‘id’) and then the row (2). This is why
‘df2[2][“id”]’ is not valid and will raise an exception - it incorrectly assumes row-first
indexing.

Notes

Method 4:  Using attribute name and row number together.

In[13] df2.id[2]

Out[13] 84300903

Notes

Method 5——Using slices.

In[14] df2["id"][[2,4]]

Out[14] 2 84300903
4 84358402
Name: id, dtype: int64

Notes

(1)  Reading values by label(s) or a boolean array (explicit index).
The .loc indexer in pandas allows us to access a data point in the DataFrame using
explicit labels for both rows and columns.

In[15] df2.loc[1,"id"]

Out[15] 842517

Notes

(2)  Reading values by integer-location (implicit index).
The .iloc indexer in pandas allows us to access a data point in the DataFrame using
implicit integer-based indexing, which is similar to standard list indexing in Python.

In[16] df2.iloc[1,0]

Out[16] 842517

239 Data wrangling with Python

Tricks

The main difference between .loc and .iloc lies in how they handle indexing:

(1).  loc[] is label-based.

(2).  iloc[] is integer position-based.

Tips

The .loc, .iloc, and .ix indexers in pandas are accessed using square brackets (e.g., ‘df.
loc[]’, ‘df.iloc[]’), not parentheses. It’s worth noting that the .ix indexer was available
in earlier versions of pandas, but it has been deprecated since version 0.20.0. Thus,
for current versions of pandas, only .loc and .iloc should be used for label-based and
integer-based indexing, respectively.

Notes

(3)  Accessing non-consecutive elements by Fancy Indexing.

In[17] df2[["area_mean","id"]].head()

Out[17] area_mean id

0 1001.0 842302

1 1326.0 842517

2 1203.0 84300903

3 386.1 84348301

4 1297.0 84358402

Notes

(4) Rows and columns of a DataFrame each have their unique explicit indices (or
labels).

The ‘index’ attribute of the DataFrame is used to get the labels of the rows.

The ‘columns’ attribute is used to get the labels of the columns.

In[18] df2.index

Out[18] RangeIndex(start=0, stop=569, step=1)

 240 Python Data Science

Tricks

The return value of ‘df2.index’ is a RangeIndex object, which is a kind of iterator used
for lazy evaluation in pandas. To print all values of the index directly, we can use the
‘*’ operator within a print function, like so: ‘print(*df2.index)’.

In[19] df2.columns

Out[19] Index(['id', 'diagnosis', 'area_mean'], dtype='object')

Notes

(5)  Using explicit index and the .head() function together.

In[20] df2["id"].head()

Out[20] 0 842302
1 842517
2 84300903
3 84348301
4 84358402
Name: id, dtype: int64

Notes

(6)  The reset_index() method is used to reset the index.

In[21] df2.reindex(index=["1","2","3"], columns=["1","2","3"])
df2.head()

Out[21] id diagnosis area_mean
0 842302 M 1001.0

1 842517 M 1326.0

2 84300903 M 1203.0

3 84348301 M 386.1

4 84358402 M 1297.0

Tricks

Just like with Series, the reindex() method in a DataFrame can be used to create a
new object with the data conformed to a new index. This function does not modify the
explicit index of the original DataFrame.

In[22] df2.reindex(index=[2,3,1], columns=["diagnosis","id","area_mean"])

Out[22] diagnosis id area_mean
2 M 84300903 1203.0

3 M 84348301 386.1

1 M 842517 1326.0

241 Data wrangling with Python

Notes

In pandas, we can add a new column during the reindexing process, effectively
creating an explicit index for that column. For instance, if we want to add a new
column named ‘MyNewColumn’, we can include it in the list of columns when
calling the reindex method:

In[23] df3=df2.reindex(index=[2,3,1], columns=["diagnosis","id","area_mean",
"MyNewColumn"],fill_value=100)
df3

Out[23] diagnosis id area_mean MyNewColumn

2 M 84300903 1203.0 100

3 M 84348301 386.1 100

1 M 842517 1326.0 100

4.4.4  Filtering DataFrames

Notes

The pandas.read_csv() function is used to read a CSV (Comma Separated Values)
file and convert it into a pandas DataFrame.

In[24] import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2.head()

Out[24] id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2 84300903 M 1203.0
3 84348301 M 386.1
4 84358402 M 1297.0

Notes

When used with an argument like ‘df2.drop([2])’, the ‘2’ is interpreted as a label-
based (or explicit) index, rather than a positional (or implicit) index.

In[25] df2.drop([2]).head()

Out[25] id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
3 84348301 M 386.1
4 84358402 M 1297.0
5 843786 M 477.1

 242 Python Data Science

Notes

The .drop() method in pandas does not modify the original DataFrame unless the
‘inplace’ parameter is set to True.

In[26] df2.head()

Out[26] id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2 84300903 M 1203.0
3 84348301 M 386.1
4 84358402 M 1297.0

In[27] import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2.drop([3,4], axis=0, inplace=True)
df2.head()

Out[27] id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2 84300903 M 1203.0
5 843786 M 477.1
6 844359 M 1040.0

Tricks

Running these lines of code may raise exceptions if the initial state of ‘df2’ isn’t
preserved. This could be due to previous operations that have modified ‘df2’.

Tricks

The first parameter of the ‘df2.drop()’ function in pandas is ‘labels’, which refers to
the labels of the rows or columns you want to drop. The ‘labels’ parameter can accept
a single label or a list-like object containing multiple labels.

Tricks

If ‘inplace=True’ is specified, the operation is performed inplace, modifying the
original DataFrame. No new DataFrame is returned, and the original DataFrame is
changed.

If ‘inplace=False’ is specified (which is the default setting), a new DataFrame is
returned with the changes, while the original DataFrame remains unchanged.

Whether to modify the
data itself (in-place
modification)

whether to return a new
value (return a new value)

inplace=True Yes No

inplace=False No Yes

243 Data wrangling with Python

In[28] import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2.drop([3,4], axis=0, inplace=False)

df2.head()

Out[28] id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2 84300903 M 1203.0
3 84348301 M 386.1
4 84358402 M 1297.0

Notes

There are several ways to remove a column from a pandas DataFrame:

One method is to use the del statement.

In[29] import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
del df2["area_mean"]
df2.head()

Out[29] id diagnosis
0 842302 M
1 842517 M
2 84300903 M
3 84348301 M
4 84358402 M

Notes

Another method is to use the .drop() function with the ‘columns’ parameter.

In[30] import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2.drop(["id","diagnosis"], axis=1, inplace=True)

df2.head()

Out[30] area_mean
0 1001.0
1 1326.0
2 1203.0
3 386.1
4 1297.0

 244 Python Data Science

Notes

A common way to filter a DataFrame by certain column values is by using Boolean
indexing, or creating a condition that returns a series of True and False value. For
instance, to select all rows from the DataFrame ‘df2’ where the value in the ‘area_
mean’ column is greater than 1000, you would write:

In[31] import pandas as pd
df2 =pd.read_csv('bc_data.csv')

df2=df2[["id","diagnosis","area_mean"]]
df2[df2.area_mean> 1000].head()

Out[31] id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2 84300903 M 1203.0
4 84358402 M 1297.0
6 844359 M 1040.0

Notes

To select and display only the ‘id’ and ‘diagnosis’ columns for the first five rows where
‘area_mean’ is greater than 1000 in the DataFrame ‘df2’, you can use the following
command.

In[32] df2[df2.area_mean> 1000][["id","diagnosis"]].head()

Out[32] id diagnosis
0 842302 M
1 842517 M
2 84300903 M
4 84358402 M
6 844359 M

245 Data wrangling with Python

4.4.5  Arithmetic operating on DataFrames

Notes

When performing arithmetic operations between two DataFrames, it’s important that
they have the same structure or the operation might not behave as expected. One way
to ensure this is to align the DataFrames on their explicit index before the operation.

In[33] df4=pd.DataFrame(np.arange(6).reshape(2,3))
df4

Out[33] 0 1 2

0 0 1 2

1 3 4 5

Tricks

In languages like C and Java, calculations involving arrays or lists are commonly
performed based on position indices (implicit indices). However, in Python, particularly
when using the pandas library, operations can be performed based on explicit indices
as well as position indices.

In[34] df5=pd.DataFrame(np.arange(10).reshape(2,5))
df5

Out[34] 0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

In[35] df4+df5

Out[35] 0 1 2 3 4

0 0 2 4 NaN NaN

1 8 10 12 NaN NaN

 246 Python Data Science

Notes

When performing arithmetic operations using operators like +, -, *, etc., the resulting
DataFrame may include NaN values if the operation involves NaN. To handle these
cases, pandas provides specific methods such as add(), sub(), mul(), and div(), which
can be more effective.

In[36] df6=df4.add(df5,fill_value=10)
df6

Out[36] 0 1 2 3 4

0 0 2 4 13.0 14.0

1 8 10 12 18.0 19.0

Tips

Though basic arithmetic operators like ‘+’, ‘-’, ‘*’, and ‘/’ can be used in data science
tasks with pandas, it’s generally recommended to use corresponding pandas DataFrame
methods such as add(), sub(), mul(), and div() instead. This is because these methods
are more flexible and allow for additional parameters to be set.

Notes

When performing arithmetic operations with broadcasting rules, we need to ensure the
DataFrames involved have compatible shapes. This is so that the smaller DataFrame
can be ‘broadcast’ across the larger DataFrame, meaning its values are reused to
match the shape of the larger DataFrame.

In[37] s1=pd.Series(np.arange(3))
s1

Out[37] 0 0
1 1
2 2
dtype: int32

In[38] df6-s1

Out[38] 0 1 2 3 4

0 0.0 1.0 2.0 NaN NaN

1 8.0 9.0 10.0 NaN NaN

Notes

We can perform arithmetic operations between a pandas Series and a DataFrame.
These operations are executed based on the explicit index (labels) of the Series and
DataFrame.

In[39] df5=pd.DataFrame(np.arange(10).reshape(2,5))
s1=pd.Series(np.arange(3))
df5-s1

Out[39] 0 1 2 3 4

0 0.0 0.0 0.0 NaN NaN

1 5.0 5.0 5.0 NaN NaN

247 Data wrangling with Python

Notes

We can also apply the sub() function in pandas, setting the axis parameter to 1 to perform
subtraction between DataFrames across columns. The add(), sub(), mul(), and div()
functions in pandas correspond to the arithmetic operators +, -, *, and /, respectively.

In[40] df5=pd.DataFrame(np.arange(10).reshape(2,5))
s1=pd.Series(np.arange(3))
df5.sub(s1,axis=1)

Out[40] 0 1 2 3 4

0 0.0 0.0 0.0 NaN NaN

1 5.0 5.0 5.0 NaN NaN

Notes

In pandas, setting the parameter axis=1 during an operation signifies the following:

1.  The number of rows remains the same before and after the operation.
2.  The operation is performed across all columns in each row.
3.  Each column is considered as a whole during the operation.

Notes

When performing arithmetic operations along the vertical axis (axis=0) in pandas, we
are applying these operations across all rows for each column. Before we can do this,
we must first ensure that the DataFrames involved have the same number of columns.

In[41] df5=pd.DataFrame(np.arange(10).reshape(2,5))
s1=pd.Series(np.arange(3))
df5.sub(s1,axis=0)

Out[41] 0 1 2 3 4

0 0.0 1.0 2.0 3.0 4.0

1 4.0 5.0 6.0 7.0 8.0

2 NaN NaN NaN NaN NaN

In[42] df7=pd.DataFrame(np.arange(20).reshape(4,5))
df7

Out[42] 0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

2 10 11 12 13 14

3 15 16 17 18 19

In[43] df7+2

Out[43] 0 1 2 3 4

0 2 3 4 5 6

1 7 8 9 10 11

2 12 13 14 15 16

3 17 18 19 20 21

 248 Python Data Science

Notes

Additionally, pandas provides many more functions to support a wide variety of
data processing needs. For operations that need to be performed on a column-by-
column basis without crossing between columns, pandas allows you to set axis=0.
This ensures that the operation is applied individually to each column, treating each
one as a separate entity.

In[44] print(df7)
print("df7.cumsum=",df7.cumsum())

Out[44] 0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
df7.cumsum= 0 1 2 3 4
0 0 1 2 3 4
1 5 7 9 11 13
2 15 18 21 24 27
3 30 34 38 42 46

In[45] df7

Out[45] 0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

2 10 11 12 13 14

3 15 16 17 18 19

Notes

In the line df7.rolling(2).sum(), we are performing a rolling sum operation on the
DataFrame df7. This calculates the sum of every two adjacent elements in the
DataFrame, indicating that the size of the rolling window for calculations is 2.

In[46] df7.rolling(2).sum()

Out[46] 0 1 2 3 4

0 NaN NaN NaN NaN NaN

1 5.0 7.0 9.0 11.0 13.0

2 15.0 17.0 19.0 21.0 23.0

3 25.0 27.0 29.0 31.0 33.0

In[47] df7.rolling(2,axis=1).sum()

Out[47] 0 1 2 3 4

0 NaN 1.0 3.0 5.0 7.0

1 NaN 11.0 13.0 15.0 17.0

2 NaN 21.0 23.0 25.0 27.0

3 NaN 31.0 33.0 35.0 37.0

249 Data wrangling with Python

Notes

The DataFrame.cov() function is used to compute pairwise covariance of columns,
excluding NA/null values.

In[48] df7.cov()

Out[48] 0 1 2 3 4

0 41.666667 41.666667 41.666667 41.666667 41.666667

1 41.666667 41.666667 41.666667 41.666667 41.666667

2 41.666667 41.666667 41.666667 41.666667 41.666667

3 41.666667 41.666667 41.666667 41.666667 41.666667

4 41.666667 41.666667 41.666667 41.666667 41.666667

Notes

The DataFrame.corr() function is used to compute pairwise correlation of columns,
excluding NA/null values.

In49] df7.corr()

Out[49] 0 1 2 3 4
0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0 1.0

Notes

The .T attribute is used to transpose index and columns.

In[50] import pandas as pd
df2 = pd.read_csv('bc_data.csv')

df2=df2[["id","diagnosis","area_mean"]][2:5]
df2.T

Out[50] 2 3 4

id 84300903 84348301 84358402

diagnosis M M M

area_mean 1203 386.1 1297

In[51] print(df6)

Out[51] 0 1 2 3 4
0 0 2 4 13.0 14.0
1 8 10 12 18.0 19.0

 250 Python Data Science

In[52] df6>5

Out[52] 0 1 2 3 4

0 False False False True True

1 True True True True True

In[53] print(s1)

Out[53] 0 0
1 1
2 2
dtype: int32

In[54] df6>s1

Out[54] 0 1 2 3 4

0 False True True False False

1 True True True False False

4.4.6  Descriptive analysis of DataFrames

Notes

pandas.DataFrame.describe() generates descriptive statistics include those that
summarize the central tendency, dispersion and shape of a dataset’s distribution,
excluding NaN values.

In[55] import numpy as np
import pandas as pd

df2 = pd.read_csv('bc_data.csv')

df2=df2[["id","diagnosis","area_mean"]]

df2.describe()

Out[55] id area_mean

count 5.690000e+02 569.000000

mean 3.037183e+07 654.889104

std 1.250206e+08 351.914129

min 8.670000e+03 143.500000

25% 8.692180e+05 420.300000

50% 9.060240e+05 551.100000

75% 8.813129e+06 782.700000

max 9.113205e+08 2501.000000

Tricks

The pandas.DataFrame.info() method prints comprehensive information about a
DataFrame. This includes details about the index data type, columns, the count of
non-null values in each column, and memory usage.

251 Data wrangling with Python

Notes

A commonly used method to filter a DataFrame by column value is to apply the
filtering condition directly to the DataFrame object. When using the syntax df2[df2.
diagnosis == ‘M’], the expression df2.diagnosis == ‘M’ evaluates to a Boolean Series
where each element is either True or False, indicating whether the corresponding row
satisfies the condition.

In[56] dt = df2[df2.diagnosis=='M']

Notes

In data science projects, the amount of data can be large, and it’s often unnecessary to
access all rows of the data at once. Instead, it’s common to only need the first or last
few rows for analysis or inspection purposes. This is particularly applicable when the
data has a consistent structure, with each row having the same set of columns.

In[57] dt.head()

Out[57] id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2 84300903 M 1203.0
3 84348301 M 386.1
4 84358402 M 1297.0

Notes

By using functions like .head() or .tail(), you can easily access a specified number
of rows from the beginning or end of the DataFrame, respectively. These functions
are efficient ways to quickly examine a subset of the data without loading the entire
dataset, which can be time-consuming and resource-intensive.

In[58] dt.tail()

Out[58] id diagnosis area_mean
563 926125 M 1347.0
564 926424 M 1479.0
565 926682 M 1261.0
566 926954 M 858.1
567 927241 M 1265.0

Tricks

The function DataFrame.tail(n=5) in pandas returns the last ‘n’ rows from the
DataFrame based on their position. This function is particularly useful for quickly
verifying data, such as after performing sorting or appending rows to the DataFrame.

Notes

The count() method counts the number of non-null (non-empty) values for each
column by default.

In[59] df2[df2.diagnosis=='M'].count()

Out[59] id 212
diagnosis 212
area_mean 212
dtype: int64

 252 Python Data Science

Notes

In pandas DataFrame, fancy indexing refers to accessing non-consecutive rows or
columns using specific indices or boolean conditions.

In[60] df2[["area_mean","id"]].head()

Out[60] area_mean id
0 1001.0 842302
1 1326.0 842517
2 1203.0 84300903
3 386.1 84348301
4 1297.0 84358402

4.4.7  Sorting DataFrames

Notes

Firstly we check the first 8 rows of the df2 object.

In[61] df2.head(8)

Out[61] id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2 84300903 M 1203.0
3 84348301 M 386.1
4 84358402 M 1297.0
5 843786 M 477.1
6 844359 M 1040.0
7 84458202 M 577.9

Notes

The sort_values() method in pandas can be used to sort the DataFrame by the values
along either axis, which can be the rows (axis=0) or the columns (axis=1).”

In[62] df2.sort_values(by="area_mean",axis=0,ascending=True).head()

Out[62] id diagnosis area_mean
101 862722 B 143.5
539 921362 B 170.4
538 921092 B 178.8
568 92751 B 181.0
46 85713702 B 201.9

Notes

The sort_index() method in pandas is used to sort an object (e.g., DataFrame or Series)
by its labels along a specified axis. By default, it sorts the object based on the index
labels, but you can also specify axis=1 to sort along the columns.

253 Data wrangling with Python

In[63] df2.sort_index(axis=1).head(3)

Out[63] area_mean diagnosis id

0 1001.0 M 842302

1 1326.0 M 842517

2 1203.0 M 84300903

Notes

Setting axis=0 in pandas implies that the operation is applied vertically to all rows in
each column, while maintaining the same number of columns. Each row is treated as
a collective entity during the operation.

In[64] df2.sort_index(axis=0,ascending=False).head(3)

Out[64] id diagnosis area_mean

568 92751 B 181.0

567 927241 M 1265.0

566 926954 M 858.1

4.4.8  Importing/Exporting DataFrames

Notes

The prerequisite for importing and exporting a DataFrame is to know the current
working directory, as described in [3.8 Current working directory]. To retrieve the
current working directory of a process, you can use the getcwd() method from the os
package.

In[65] import os
print(os.getcwd())

Out[65] C:\Users\soloman\clm

Notes

The to_***() method :writes a DataFrame object to a file, including:
	 pandas.DataFrame.to_csv(): Write object to a comma-separated values (csv)

file.
	 pandas.DataFrame.to_excel(): Write object to an Excel sheet.
	 pandas.DataFrame.to_json(): Convert the object to a JSON string.
	 pandas.DataFrame.to_html(): Render a DataFrame as an HTML table.
	 pandas.DataFrame.to_xml(): Render a DataFrame to an XML document.
	 pandas.DataFrame.to_sql(): Write records stored in a DataFrame to a SQL

database.

In[66] df2.head(3).to_csv("df2.csv")

Notes

The read_***() method reads a file into DataFrame, including:
	 pandas.read_csv(): Read a comma-separated values (csv) file into DataFrame.
	 pandas.read_excel(): Read an Excel file into a pandas DataFrame.
	 pandas.read_json() : Convert a JSON string to pandas object.
	 pandas.read_html(): Read HTML tables into a list of DataFrame objects.
	 pandas.read_xml(): Read XML document into a DataFrame object.
	 pandas.read_sql(): Read SQL query or database table into a DataFrame.

 254 Python Data Science

In[67] import pandas as pd
df3 = pd.read_csv('df2.csv')
df3

Out[67] Unnamed: 0 id diagnosis area_mean

0 0 842302 M 1001.0

1 1 842517 M 1326.0

2 2 84300903 M 1203.0

Notes

One more example is calling the to_excel() method to write the first 3 rows of
DataFrame df2 to an Excel sheet named “df3.xls”.

In[68] df2.head(3).to_excel("df3.xls")

Notes

Next, we can use the read_excel() method to read the Excel file ‘df3.xls’ into a pandas
DataFrame and save it as ‘df3’.

In[69] df3 = pd.read_excel("df3.xls")
df3

Out[69] id diagnosis area_mean

0 842302 M 1001

1 842517 M 1326

2 84300903 M 1203

4.4.9  Handling missing values with Pandas

Notes

When accessing the .empty attribute of a DataFrame, if the DataFrame is empty (i.e., it
has no rows or columns), it will return True. On the other hand, if the DataFrame has
any data (at least one row or column), it will return False.

In[70] df3.empty

Out[70] False

Notes

np.nan is a numeric value and None is an object in Python. As a result, np.nan can be
used in mathematical operations, while None cannot.

In[71] np.nan-np.nan +1

Out[71] nan

In[72] np.nan-np.nan

Out[72] nan

255 Data wrangling with Python

Notes

The exception TypeError: unsupported operand type(s) for +: ‘NoneType’ and
‘int’ is raised because None cannot be used as a numerical value in mathematical
operations.

In[73] None+1

TypeError Traceback (most recent call last)
<ipython-input-83-6e170940e108> in <module>()
----> 1 None+1

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

In[74] import pandas as pd
import numpy as np
A=pd.DataFrame(np.array([10,10,20,20]).reshape(2,2),columns=list("ab"),
index=list("SW"))
A

Out[74] a b
S 10 10

W 20 20

Notes

Here, the list(“ab”) method is used to convert a string, such as “ab”, into a list of
individual strings, [‘a’, ‘b’], in Python. For more details, please refer to [2.17 Built-in
Functions].

In[75] list("ab")

Out[75] ['a', 'b']

In[76] B=pd.DataFrame(np.array([1,1,1,2,2,2,3,3,3]).reshape(3,3),
columns=list("abc"),index=list("SWT"))
B

Out[76] a b c

S 1 1 1

W 2 2 2

T 3 3 3

Notes

Here are the revised tips for Python beginners:

1. � Arithmetic operations in pandas DataFrames are performed based on the explicit
index of rows and columns.

2. � Missing values in pandas DataFrames can be filled with NaN (Not a Number) to
ensure that arithmetic operations do not raise exceptions.

3. � The basic process for performing arithmetic operations on DataFrames is as
follows: First, ensure that the DataFrames have compatible shapes by aligning their
indices. Then, fill any missing values with NaN in the resulting DataFrame. Finally,
perform the desired arithmetic operations.

 256 Python Data Science

In[77] C=A+B
C

Out[77] a b c

S 11.0 11.0 NaN

T NaN NaN NaN

W 22.0 22.0 NaN

Notes

In the expression A.add(B, fill_value=0), the fill_value=0 parameter specifies that any
missing values in A should be filled with 0 before adding B to A.

In[78] A.add(B,fill_value=0)

Out[78] a b c

S 11.0 11.0 1.0

T 3.0 3.0 3.0

W 22.0 22.0 2.0

Notes

The parameter “fill_value = A.stack().mean()” in the expression A.add(B, fill_value=A.
stack().mean()) means that existing missing values in A should be filled with the mean
of all the values in A.

In[79] A.add(B,fill_value=A.stack().mean())

Out[79] a b c

S 11.0 11.0 16.0

T 18.0 18.0 18.0

W 22.0 22.0 17.0

Notes

A.mean(axis=1) calculates the mean of all rows in each column of DataFrame A. By
specifying axis=1, the mean() function calculates the mean value for each row in every
column of A.

In[80] A.mean()

Out[80] a 15.0
b 15.0
dtype: float64

Notes

In pandas, the stack() method is used to pivot a DataFrame from a wide format to a
long format by creating a multi-level index. It essentially “stacks” or compresses the
columns of the DataFrame into a single column, resulting in a reshaped DataFrame or
Series with a multi-level index.

257 Data wrangling with Python

In[81] A.stack()

Out[81] S a 10
 b 10
W a 20
 b 20
dtype: int32

In[82] A.stack().mean()

Out[82] 15.0

In[83] C

Out[83] a b c

S 11.0 11.0 NaN

T NaN NaN NaN

W 22.0 22.0 NaN

Notes

There are four important functions in pandas to handle missing values in a DataFrame:
isnull(), notnull(), dropna(), and fillna().

Notes

(1)  isnull(): This function returns a Boolean mask that identifies missing values in the
DataFrame.

In[84] C.isnull()

Out[84] a b c

S False False True

T True True True

W False False True

Notes

(2)  notnull(): This function is the opposite of isnull().

In[85] C.notnull()

Out[85] a b c

S True True False

T False False False

W True True False

 258 Python Data Science

Notes

(3) dropna(): This function is used to remove or drop rows or columns that contain
missing values.

In[86] C.dropna(axis='index')

Out[86] a b c

Notes

(4) fillna(): This function is used to fill missing values in the DataFrame with a specified
value or a calculated value.

In[87] C.fillna(0)

Out[87] a b c

S 11.0 11.0 0.0

T 0.0 0.0 0.0

W 22.0 22.0 0.0

Notes

By specifying method=”ffill”, missing values in the DataFrame are filled with the last
known non-null value.

In[88] C.fillna(method="ffill")

Out[88] a b c

S 11.0 11.0 NaN

T 11.0 11.0 NaN

W 22.0 22.0 NaN

Notes

By specifying method=“bfill”, missing values in the DataFrame are filled with the next
non-null value.

In[89] C.fillna(method="bfill",axis=1)

Out[89] a b c

S 11.0 11.0 NaN

T NaN NaN NaN

W 22.0 22.0 NaN

259 Data wrangling with Python

4.4.10  Grouping DataFrames

In[90] import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2.head()

Out[90] id diagnosis area_mean

0 842302 M 1001.0

1 842517 M 1326.0

2 84300903 M 1203.0

3 84348301 M 386.1

4 84358402 M 1297.0

Tips

In[91] df2.groupby("diagnosis")["area_mean"].mean()

Out[91] diagnosis
B 462.790196
M 978.376415
Name: area_mean, dtype: float64

Notes

To aggregate using one or more operations over the specified axis, we can call the
method the aggregate().

In[92] df2.groupby("diagnosis")["area_mean"].aggregate(["mean","sum","max",
np.median])

Out[92] mean sum max median

diagnosis

B 462.790196 165216.1 992.1 458.4

M 978.376415 207415.8 2501.0 932.0

Tricks

The DataFrame.aggregate() method provides us with the flexibility to apply multiple
functions at once or pass a list of functions to each group. In this example, we aggregate
a list of operation names such as ‘mean’, ‘sum’, ‘max’, and ‘np.median’.

 260 Python Data Science

Notes

The pandas.DataFrame.unstack() method performs the following actions:

It returns a DataFrame with a new level of column labels, where the innermost level
consists of the pivoted index labels.

If the index of the DataFrame is not a MultiIndex (hierarchical index), the output will
be a Series. This is analogous to the stack() operation when the columns are not a
MultiIndex.

In[93] df2.groupby("diagnosis")["area_mean"].aggregate(["mean","sum"]).
unstack()

Out[93] diagnosis
mean B 462.790196
 M 978.376415
sum B 165216.100000
 M 207415.800000
dtype: float64

Tricks

The stack(), unstack(), pivot(), and melt() methods are commonly used in data science
to convert data formats:

  1. � pandas.DataFrame.stack(): This method returns a reshaped DataFrame or Series
with a multi-level index. It adds one or more new inner-most levels compared to
the current DataFrame, creating a hierarchical structure.

  2. � pandas.DataFrame.unstack(): The unstack() method returns a DataFrame with
a new level of column labels. The inner-most level of the resulting DataFrame
consists of the pivoted index labels. This operation is useful for reshaping data
from long to wide format.

  3. � pandas.DataFrame.pivot(): The pivot() method reshapes data, essentially
producing a “pivot” table. It uses unique values from specified index/columns
to form axes of the resulting DataFrame, allowing for easy restructuring of data
based on column values.

  4. � pandas.DataFrame.melt(): The melt() method is used to transform a DataFrame
into a specific format.

Notes

By utilizing the apply() method in pandas, you can apply a user-defined function to
groups within a DataFrame.

In[94] def myfunc(x):
 x["area_mean"]/=x["area_mean"].sum()
 return x

df2.groupby("diagnosis").apply(myfunc).head()

Out[94] id diagnosis area_mean

0 842302 M 0.004826

1 842517 M 0.006393

2 84300903 M 0.005800

3 84348301 M 0.001861

4 84358402 M 0.006253

261 Data wrangling with Python

4.5  Date and time

Q&A

 262 Python Data Science

Tips

By utilizing the combination of the built-in datetime module and third-party
packages such as dateutil or pandas, Python developers can effectively manage and
manipulate dates and times in a wide range of scenarios, from basic operations to
sophisticated time series analysis.

4.5.1  Creating a time or date object

Notes

(1) to create a time object: datetime.time()

In[1] import datetime as dt
myTime = dt.time(12,34,59)
print("myTime:",myTime)
print("myTime.hour:",myTime.hour)
print("myTime.minute:",myTime.minute)
print("myTime.second:",myTime.second)

Out[1] myTime: 12:34:59
myTime.hour: 12
myTime.minute: 34
myTime.second: 59

Tricks

The python built-in module datetime provides three different classes for creating dates
or times:
	datetime.time() returns an idealized time, independent of any particular day,

including attributes: hour, minute, second, microsecond.
	datetime.date() returns an idealized naïve date with attributes: year, month, and

day.
	datetime.datetime() returns a combination of a date and a time, including attributes:

year, month, day, hour, minute, second, microsecond, and tzinfo.

Notes

(2) to create a combination of a date and a time

In[2] dt.datetime(year = 2018,month = 3,day = 3)

Out[2] datetime.datetime(2018, 3, 3, 0, 0)

Tricks

Here, you can access the documentation of datetime.datetime by typing ‘dt.datetime?’.

263 Data wrangling with Python

In[3] dt.datetime?

Out[3] Init signature: dt.datetime(self, /, *args, **kwargs)
Docstring:
datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])

The year, month and day arguments are required. tzinfo may be None,
or an instance of a tzinfo subclass. The remaining arguments may be ints.
File:
c:\users\administrator\appdata\local\programs\python\python36\lib\datetime.py
Type: type

Notes

In the dt.datetime() function, the year, month, and day arguments are required. The
tzinfo argument may be set to None or an instance of a tzinfo subclass. The remaining
arguments are optional but must be integers.

In[4] dt.datetime(month=3,day=3,second=59)

TypeError Traceback (most recent call last)
<ipython-input-5-6fbb4e101d77> in <module>()
----> 1 dt.datetime(month=3,day=3,second=59)

TypeError: Required argument ‘year’ (pos 1) not found

Notes

However, the second, minute, and hour arguments are optional for the datetime.
datetime() function.

In[5] dt.datetime(year = 2018,month = 3,day = 3)

Out[5] datetime.datetime(2018, 3, 3, 0, 0)

4.5.2  Parsing a string to a time or date object

Tips

There are many formats used to represent time or date, such as ‘3rd of July, 2022’,
‘2022-1-3’, and ‘2022-07-03 00:00:00’. However, most of these formats are not
represented in the standard format of the Python built-in module datetime. Attempting
to parse these formats using the standard datetime module can raise an exception.

In[6] dt.datetime("3th of July,2022")

TypeError Traceback (most recent call last)
<ipython-input-8-c7659db11b43> in <module>()
----> 1 dt.datetime("3th of July,2022")

TypeError: an integer is required (got type str)

 264 Python Data Science

In[7] dt.datetime("2022-1-3")

TypeError Traceback (most recent call last)
<ipython-input-9-c1b53c571977> in <module>()
----> 1 dt.datetime("2022-1-3")

TypeError: an integer is required (got type str)

Tricks

In data science, there are common methods used for parsing a string into a standard
date or time format:

  1.  The parser.parse() method in the dateutil package

  2.  The to_datetime() method in the pandas package

Notes

(1)  parser.parse()

In[8] # to parse the string "3th of July,2022" to a datetime

from dateutil import parser
date= parser.parse("3th of July,2022")
print(date)

Out[8] 2022-07-03 00:00:00

In[9] # to parse the string "2022-1-3" to a datetime

date= parser.parse("2022-1-3")
print(date)

Out[9] 2022-01-03 00:00:00

Notes

(2)  panadas. to_datetime()

In[10] # to parse the string "3th of July,2022" to a datetime

import pandas as pd
pd.to_datetime("3th of July,2018")

Out[10] Timestamp('2022-07-03 00:00:00')

In[11] # to parse the string "2022-1-3" to a datetime

import pandas as pd
pd.to_datetime("2022-1-3")

Out[11] Timestamp('2022-01-03 00:00:00')

265 Data wrangling with Python

4.5.3  Getting current local data or time object

Notes

(1) � To obtain the current local date and time, you can use the datetime.datetime.now()
function.

In[12] dt.datetime.now()

Out[12] datetime.datetime(2022, 5, 24, 21, 39, 50, 155634)

Notes

(2) � To obtain the current local date, you can use the datetime.datetime.today()
function.

In[13] dt.datetime.today()

Out[13] datetime.datetime(2022, 5, 24, 21, 39, 50, 913872)

Notes

(3) � To obtain a string representation of a date, controlled by an explicit format string,
you can use the datetime.datetime.strftime() method.

In[14] now=dt.datetime.now()
now.strftime("%W"),now.strftime("%a"),now.strftime("%A"),
now.strftime("%B"),now.strftime("%C"),now.strftime("%D")

Out[14] ('51', 'Sun', 'Sunday', 'December', '20', '12/23/18')

Tricks

The format codes in datetime.strftime():
	%I	 Hour (12-hour clock) as a zero-padded decimal number.
	%p	 Locale’s equivalent of either AM or PM.
	%M	 Minute as a zero-padded decimal number.
	%S	 Second as a zero-padded decimal number.
	%f	 Microsecond as a decimal number, zero-padded to 6 digits.
	%z	� UTC offset in the form ±HHMM[SS[.ffffff]] (empty string if the object is

naive).
	%Z	 Time zone name (empty string if the object is naive).
	%j	 Day of the year as a zero-padded decimal number.
	%U	� Week number of the year (Sunday as the first day of the week) as a zero-

padded decimal number. All days in a new year preceding the first Sunday
are considered to be in week 0.

	%W	� Week number of the year (Monday as the first day of the week) as a
zero-padded decimal number. All days in a new year preceding the first
Monday are considered to be in week 0.

	%c	 Locale’s appropriate date and time representation.
	%x	 Locale’s appropriate date representation.
	%X	 Locale’s appropriate time representation.
	%%	 A literal ‘%’ character.

 266 Python Data Science

4.5.4  Evaluating the difference between two date or time objects

Notes

You can evaluate the duration, or the difference between two date or time objects,
by subtracting one object from another.

In[15] d1=dt.datetime.now()
d2=dt.datetime(year=2017,month=3,day=3)
(d1-d2).days

Out[15] 447

Tricks

Here, the .days attribute means the unit of evaluation.

4.5.5  Setting a time or date object as the index of Pandas

Notes

(1) Create a datetime index: pandas. DatetimeIndex()

In[16] myindex=pd.DatetimeIndex(["2023-1-1","2024-1-2","2023-1-3","2023-1-4",
"2023-1-5"])

Notes

(2) Set the datetime index: pandas.DataFrame() or pandas.Series()

In[16] data=pd.Series([1,2,3,4,5],index=myindex)
data

Out[16] 2023-01-01 1
2024-01-02 2
2023-01-03 3
2023-01-04 4
2023-01-05 5
dtype: int64

Notes

(3) Access a data item by slicing a DataFrame or Series

In[17] data["2023-1-2"]

Out[17] Series([], dtype: int64)

267 Data wrangling with Python

In[18] data["2023"]

Out[18] 2023-01-01 1
2023-01-03 3
2023-01-04 4
2023-01-05 5
dtype: int64

In[19] data- data["2023-1-4"]

Out[19] 2023-01-01 NaN
2023-01-03 NaN
2023-01-04 0.0
2023-01-05 NaN
2024-01-02 NaN
dtype: float64

In[20] # to show the current value of the data object

data

Out[20] 2023-01-01 1
2024-01-02 2
2023-01-03 3
2023-01-04 4
2023-01-05 5
dtype: int64

Notes

(4)  To cast data to a PeriodArray or PeriodIndex at a specific frequency: .to_period()

In[21] data.to_period(freq="D")

Out[21] 2023-01-01 1
2024-01-02 2
2023-01-03 3
2023-01-04 4
2023-01-05 5
Freq: D, dtype: int64

Notes

Here, “freq = “M”” means the time unit is Month.
	 A, Y: year end frequency
	M: month end frequency
	W: weekly frequency
	 D: calendar day frequency
	 B: business day frequency
	 C: custom business day frequency
	 Q: quarter end frequency
	 H: hourly frequency
	 T, min: minutely frequency
	 S: secondly frequency

 268 Python Data Science

In[22] data.to_period(freq="M")

Out[22] 2023-01 1
2024-01 2
2023-01 3
2023-01 4
2023-01 5
Freq: M, dtype: int64

Notes

(5) evaluate the result of an expression by datetime index

In[23] data- data[3]

Out[23] 2023-01-01 -3
2024-01-02 -2
2023-01-03 -1
2023-01-04 0
2023-01-05 1
dtype: int64

In[24] data- data["20230104"]

Out[24] 2023-01-01 NaN
2023-01-03 NaN
2023-01-04 0.0
2023-01-05 NaN
2024-01-02 NaN
dtype: float64

4.5.6 The pandas.period_range() method

Notes

To get a fixed freqeuency PeriodIndex: pandas. period_range()

In[25] pd.period_range("2024-1",periods=10, freq="D")

Out[25] PeriodIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04',
 '2024-01-05', '2024-01-06', '2024-01-07', '2024-01-08',
 '2024-01-09', '2024-01-10'],
 dtype='period[D]', freq='D')

In[26] pd.period_range("2024-1",periods=10, freq="M")

Out[26] PeriodIndex(['2024-01', '2024-02', '2024-03', '2024-04', '2024-05', '2024-06',
'2024-07', '2024-08', '2024-09', '2024-10'],
 dtype='period[M]', freq='M')

Tricks

pandas.period_range(start=None, end=None, periods=None, freq=None, name=
None)
	start: Left bound for generating periods.
	end: Right bound for generating periods.
	periods: Number of periods to generate.
	freq: frequency, e.g. “D” for daily frequency.
	name: Name of the resulting PeriodIndex

269 Data wrangling with Python

4.6  Data visualization

Q&A

 270 Python Data Science

271 Data wrangling with Python

4.6.1  Matplotlib visualization

Tips

Matplotlib, Seaborn, and Pandas are widely used and important packages for data
visualization in Python.

Notes

Matplotlib is a comprehensive library for creating static, animated, and interactive
visualizations in Python. It excels at making simple tasks easy and enabling complex
tasks to be achieved. Some key features of Matplotlib include:

1.  Create publication-quality plots
2.  Make interactive figures3.
3.  Customize visual style and layout
4.  Export to various file formats
5.  Embed in JupyterLab and Graphical User Interfaces
6.  Extensive ecosystem of third-party packages

Notes

The matplotlib is organized in a hierarchy. At the top of the hierarchy is the matplotlib
“state-machine environment” which is provided by the matplotlib.pyplot module. At
this level, simple functions are used to add plot elements (lines, images, text, etc.) to
the current axes in the current figure.

In[1] import matplotlib.pyplot as plt

Tricks

Matplotlib is the whole package;
matplotlib.pyplot is a module in matplotlib;
matplotlib.pylab is a module that gets installed alongside matplotlib.

In[2] import matplotlib.pyplot as plt

%matplotlib inline

Tricks

When %matplotlib inline is used in a Jupyter notebook or compatible environment,
it enables the inline backend for Matplotlib. This means that the output of plotting
commands will be displayed directly below the code cell that produced it, within the
notebook interface.

Notes

You can also use the magic command “%matplotlib notebook” to create interactive
figures if your environment allows it.

In[3] women = pd.read_csv('women.csv',index_col =0)
women.head()

Out[3] height weight
1 58 115
2 59 117
3 60 120
4 61 123
5 62 126

 272 Python Data Science

Notes

To plot y versus x as lines and/or markers : matplotlib.pyplot.plot().

In[4] plt.plot(women["height"], women["weight"])
plt.show()

Out[4]

Tricks

If you don’t write plt.show(), it will display [<matplotlib.lines.Line2D at
0x2064770b550>]

Notes

To generate a dataset t for visualization purposes, you can use the np.arange function
with the specified parameters:

In[5] import numpy as np
t=np.arange(0.,4.,0.1)
t

Out[5] array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ,
 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1,
 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3. , 3.1, 3.2,
 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9])

Notes

The method to display multiple lines in a figure using Matplotlib is to pass multiple
arguments to the plt.plot() function. The argument format is as follows: “x1, y1, x2,
y2, x3, y3, x4, y4, ...”.

273 Data wrangling with Python

In[6] plt.plot(t,t,t,t+2,t,t**2,t,t+8)
plt.show()

Out[6]

4.6.2  Adjusting plot attributes

Notes

(1)	 To set the Mrkers
‘.’	 point marker
‘,’	 pixel marker
‘o’	circle marker
‘v’	triangle_down marker
‘^’	triangle_up marker
‘<’	triangle_left marker
‘>’	triangle_right marker
‘1’	tri_down marker
‘2’	tri_up marker
‘3’	tri_left marker
‘4’	tri_right marker
‘s’	 square marker
‘p’	pentagon marker
‘*’	star marker
‘h’	hexagon1 marker
‘H’	hexagon2 marker
‘+’	plus marker
‘x’	x marker
‘D’	diamond marker
‘d’	thin_diamond marker
‘|’	 vline marker
‘_’	hline marker

 274 Python Data Science

In[7] plt.plot(women["height"], women["weight"],"o")
plt.show()

Out[7]

Notes

(2) to set line styles and colors , e.g. ‘ g--’ for green dashed line style(‘--’).
Line Styles:

‘-’	 solid line style
‘--’	 dashed line style
‘-.’	 dash-dot line style
‘:’	 dotted line style

Colors:
‘b’	 blue
‘g’	 green
‘r’	 red
‘c’	 cyan
‘m’	 magenta
‘y’	 yellow
‘k’	 black
‘w’	 white

In[8] plt.plot(women["height"], women["weight"],"g--")
plt.show()

Out[8]

275 Data wrangling with Python

Notes

One more example of setting line styles and colors is “rD”, which means “red+diamond”.
More arguments, please refer to Matplotlib’s official website documentation.
You can learn more about the meaning of the third argument of plt.plot() through the
help documentation. The specific command is: plt.plot?

In[9] plt.plot(women["height"], women["weight"],"rD")
plt.show()

Out[9]

Notes

(3) � To set the title of a plot and change axis labels:plt.title(), plt.xlabel() and plt.
ylabel().

In[10] plt.plot(women["height"], women["weight"],"g--")
plt.title("plotting the dataset women")
plt.xlabel("height")
plt.ylabel("weight")

plt.show()

Out[10]

 276 Python Data Science

Tricks

plt.title(), plt.xlabel() and plt.ylabel() correspond to the title, X-axis label and X-axis
label.

Tricks

The correct placement of plt.title(), plt.xlabel(), and plt.ylabel() within plt.plot() and
between plt.show() ensures that the plot is configured with the desired title and axis
labels before it is shown.

Notes

(4) to set the location of the legend: plt.legend(loc = “location”).

In[11] plt.plot(women["height"], women["weight"],"g--")
plt.title(“plotting the dataset women”)
plt.xlabel("height")
plt.ylabel("weight")

plt.legend(loc="upper left",labels=["Legend"])

plt.show()

Out[11]

Tricks

The argument loc=“upper left” in the context of plt.legend() specifies that the legend
should be positioned in the upper left corner of the plot.

To gain more information about the available options for the loc argument, you can
refer to the docstring of plt.legend().

277 Data wrangling with Python

4.6.3  Changing the type of a plot

Notes

To switch the plotting functions in Matplotlib, such as changing from plt.plot() to plt.
scatter() to create a scatter plot, you can use the appropriate function based on the type
of plot you want to generate.

In[12] plt.scatter(women["height"], women["weight"])
plt.show()

Out[12]

Tricks

I highly recommend accessing the example plots provided on the official Matplotlib
website (https://matplotlib.org/stable/gallery/index.html). Each example not only
showcases the visualization effects but also provides the corresponding source code.

4.6.4  Changing the value range of the axes of a plot

Notes

plt.xlim(11, –2) means “the value range of the x-axis is from 11 to –2”.
plt.ylim(2.2, –1.3) means “the value range of the y-axis is from 2.2 to -1.3”.

In[13] import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
x=np.linspace(0,10,100)

plt.plot(x,np.sin(x))
plt.xlim(11,-2)
plt.ylim(2.2,-1.3)

 278 Python Data Science

https://matplotlib.org/stable/gallery/index.html

Out[13] (2.2, -1.3)

Notes

To get or set various axis properties in Matplotlib, you can use the matplotlib.pyplot.
axis() function.

In[14] plt.plot(x,np.sin(x))
plt.axis([-1,21,-1.6,1.6])

Out[14] (-1.0, 21.0, -1.6, 1.6)

Notes

To set equal scaling for both the x-axis and y-axis by changing the axis limits: plt.
axis(“equal”)

279 Data wrangling with Python

In[15] plt.plot(x,np.sin(x))
plt.axis([-1,21,-1.6,1.6])
plt.axis("equal")

Out[15] (-0.5, 10.5, -1.0993384025373631, 1.0996461858110391)

4.6.5  Adjusting the margins of a plot

Notes

To set limits just large enough to show all data and disable further autoscaling: plt.
axis(“tight”)

In[16] plt.plot(x,np.sin(x))
plt.axis([-1,21,-1.6,1.6])
plt.axis("tight")

Out[16] (-0.5, 10.5, -1.0993384025373631, 1.0996461858110391)

 280 Python Data Science

4.6.6  Creating multiple plots on the same coordinates

Notes

To create multiple plots on the same coordinates, you can write multiple functions
in the same cell and call plt.legend() to display multiple labels for the plots.

In[17] plt.plot(x,np.sin(x),label="sin(x)")
plt.plot(x,np.cos(x),label="cos(x)")
plt.axis("equal")
plt.legend()

Out[17] <matplotlib.legend.Legend at 0x124156820>

4.6.7 � Adding an Axes to the current figure or retrieving an existing
Axes

Notes

To add an Axes to the current figure or retrieve an existing Axes, you can call the plt.
subplot(x, y, z) function before each code line of creating a plot.

In[18] plt.subplot(2,3,5)
plt.scatter(women["height"], women["weight"])

plt.subplot(2,3,1)
plt.scatter(women["height"], women["weight"])
plt.show()

281 Data wrangling with Python

Out[18]

4.6.8  Saving plots to image files

Notes

To save the current plot : plt.savefig().

In[19] women = pd.read_csv('women.csv')
plt.plot(women.height, women.weight)
plt.savefig("sagefig.png")

Out[19]

Tricks

The code plt.savefig(“savefig.png”) will save the current plot to the current working
directory with the filename “savefig.png”. However, you can customize the file
name and path by providing the desired directory and filename in the plt.savefig()
function.

 282 Python Data Science

4.6.9  Creating more complicate plots

Notes

First, generate the experimental datasets X and y that will be used for visualization.
The make_blobs function is used to generate a random dataset that conforms to a
normal distribution.

In[20] from sklearn.datasets import make_blobs
X,y=make_blobs(n_samples=300,centers=4,random_state=0, cluster_std=1.0)
plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow")

Out[20] <matplotlib.collections.PathCollection at 0x127316910>

Tricks

The arguments of make_blobs(n_samples=300,centers=4,random_state=0, cluster_
std=1.0) mean:
	n_samples: The number of samples, that is, the number of rows.
	n_features: The number of features of each sample, that is, the number of

columns. #centers: The number of categories.
	random_state: how random numbers are generated.
	cluster_std: variance of each category.
	return value, there are two:
	X : Test set, type is array, shape is [n_samples, n_features].
	y : Label of each member, also an array, shape is [n_samples].

Tricks

The arguments of the plt.scatter() function are as follows.
	[:,0] and X[:,1] are the x-coordinate and y-coordinate respectively.
	c is the color.
	s is the size of the point.
	cmap is the color map which is a supplement to c.

The meaning of X[:,0] is to read the 0th column of the dataframe X, refer to [4.4
DataFrame].

283 Data wrangling with Python

4.6.10  Data visualization with Pandas

Notes

Pandas provides several different options for visualizing data with .plot() and their
usage is similar to matplotlib.

In[21] import pandas as pd
women = pd.read_csv('women.csv',index_col =0)
women.plot(kind="bar")
plt.show()

Out[21]

Tricks

The kind of plot to produce:
	‘line’ : line plot (default)
	‘bar’ : vertical bar plot
	‘barh’ : horizontal bar plot
	‘hist’ : histogram
	‘box’ : boxplot
	‘kde’ : Kernel Density Estimation plot
	‘density’ : same as ‘kde’
	‘area’ : area plot
	‘pie’ : pie plot
	‘scatter’ : scatter plot (DataFrame only)
	‘hexbin’ : hexbin plot (DataFrame only)

In[22] women.plot(kind="barh")
plt.show()

 284 Python Data Science

Out[22]

In[23] women.plot(kind="bar",x="height",y="weight",color="g")
plt.show()

Out[23]

In[24] women.plot(kind="kde")
plt.show()

Out[24]

285 Data wrangling with Python

In[25] women.plot(kind="bar",x="height",y="weight",color="g")
plt.legend(loc="best")
plt.show()

Out[25]

4.6.11  Data visualization with Seaborn

Notes

Seaborn is a Python data visualization library based on matplotlib. It provides a
high-level interface for drawing attractive and informative statistical graphics.

Tricks

Note that the function name for drawing plots in Seaborn is lmplot, which is different
from the function name in Matplotlib. Additionally, the arguments for lmplot also
differ from those in Matplotlib.

In[26] import pandas as pd
import seaborn as sns
sns.set(style="ticks")
df_women = pd.read_csv('women.csv', index_col=0,header=0)
sns.lmplot(x="height", y="weight", data=df_women)

 286 Python Data Science

Out[26] <seaborn.axisgrid.FacetGrid at 0x13aa055b0>

Notes

To create a Kernel Density Estimation (KDE) plot for visualizing the distribution of
observations in a dataset : sns.kdeplot().

In[27] sns.kdeplot(women.height, shade=True)

Out[27] <matplotlib.axes._subplots.AxesSubplot at 0x135acc9a0>

287 Data wrangling with Python

Notes

To visualize the univariate or bivariate distribution of data : sns.distplot().

In[28] sns.distplot(women.height)

Out[28] <matplotlib.axes._subplots.AxesSubplot at 0x135b8c6a0>

Notes

To plot pairwise relationships in a dataset : sns.pairplot().

In[29] sns.pairplot(women)

Out[29] <seaborn.axisgrid.PairGrid at 0x135c44eb0>

Notes

To create a plot of two variables with bivariate and univariate graphs : sns.jointplot()

 288 Python Data Science

In[30] sns.jointplot(women.height,women.weight,kind="reg")

Out[30] <seaborn.axisgrid.JointGrid.at.0x22d35c20280>

4.6.12  Data visualization cases projects

Notes

(1) Read data
Check the current working directory and ensure that the data file “salaries.csv” is
located in the current working directory.

In[31] # to show the current working directory
import os
os.getcwd()

Out[31] 'C:\\Users\\Administrator\\Desktop'

Tricks

The data file salaries.csv is available in the electronic resources of this book.

Notes

Calling the pandas.read_csv() method to read the file “salaries.csv” and store the
data in a DataFrame object called df_salaries.

In[32] import pandas as pd
df_salaries = pd.read_csv(‘salaries.csv’, index_col=0)

Notes

Calling the df_salaries.head() method to display the first 6 rows of the DataFrame
object df_salaries. For detailed descriptions, please refer to [4.4 DataFrame].

289 Data wrangling with Python

In[33] df_salaries.head(6)

Out[33] rank discipline yrs.since.phd yrs.service sex salary

1 Prof B 19 18 Male 139750

2 Prof B 20 16 Male 173200

3 AsstProf B 4 3 Male 79750

4 Prof B 45 39 Male 115000

5 Prof B 40 41 Male 141500

6 AssocProf B 6 6 Male 97000

Notes

(2) Import the seaborn package

In[34] import seaborn as sns

Notes

(3) Visualize the data with the seaborn package
	To set the parameters that control the general style of the plots with sns.set_

style()
	To create a scatter plot with sns.stripplot().
	To create a box plot with sns.boxplot()

In[35] sns.set_style('darkgrid')

sns.stripplot(data=df_salaries, x='rank', y='salary', jitter=True, alpha=0.5)

sns.boxplot(data=df_salaries, x='rank', y='salary')

Out[35] <matplotlib.axes._subplots.AxesSubplot at 0xd770b38>

Tricks

Here, the argument “jitter=True” is used to add a small random noise to the data
points in order to prevent them from overlapping and make the distribution more
visible. The argument “alpha=0.5” is used to adjust the transparency of the data
points, where 0.5 represents a medium level of opacity.

 290 Python Data Science

Exercises

[1]  What will the following program print out?
	 import random
	 random.random()

	 A. 1
	 B. 4.063647000164759
	 C. 0.09656393185717627
	 D. -0.885155622826353

[2]  What will the following program print out?
	 import random
	 random.randrange(0, 100, 2)

	 A. 69
	 B. 70
	 C. 100
	 D. 200

[3]  What will the following program print out?
	 import random
	 round(random.uniform(-101,101),3)

	 A. 0
	 B. 101
	 C. -6.007
	 D. 11.070

[4]  What will the following program print out?
	 import random
	 print(random.randint(0,9))

	 A. 1
	 B. 4.063647000164759
	 C. 0.09656393185717627
	 D. -0.885155622826353

[5]  What will the following program print out?
	 import numpy as np
	 np.arange(1,20,4)

	 A. array([2, 6, 10, 14, 18])
	 B. array([1, 5, 9, 13, 17])
	 C. array([1, 4, 8, 12, 16])

[6]  Which of the following is true of Python arrays?
	 A. �When execute array1 + array2, if the number of rows or columns of this two arrays is

different, the interpreter will raise ValueError.
	 B. Array is a special variable that can contain multiple values at a time.
	 C. �When viewing the shape of an array or refactoring an array, the reshape method will modify

the its elements.
	 D. Elements in an array cannot be modified.

291 Data wrangling with Python

[7]  Which of the following is true of Python arrays?
	 A. The length of an array is fixed, and the data structures of the elements can be different.
	 B. The length of an array is fixed, and the data structures of the elements always be the same.
	 C. The length of an array is variable, and the data structures of the elements can be different.
	 D. The length of an array is variable, and the data structures of the elements always be the same.

[8]  Which of these data structures in Python is mutable?
	 A. list only
	 B. tuple
	 C. string
	 D. list and array

[9]  What will the following program print out?
	 import pandas as pd
	 mySeries2=pd.Series([10,10], index=["a","b","c","d"])
	 mySeries2

	 A. NameError
	 B. ValueError
	 C.

	 a 10
	 b 10
	 c 10
	 d 10
	 dtype: int64
	 D.
	 a 10
	 b 10
	 dtype: int64

10.  What will the following program print out?
	 import pandas as pd
	 mySeries=pd.Series([10,9,8,7,6,5,4,3,2,1], index=["a","b","c","d","e","f","g","h","i","j"])
	 mySeries[3:9:3]
	 A. ValueError
	 B.
	 d 7
	 g 4
	 dtype: int64
	 C.
	 c 8
	 f 5
	 dtype: int64

[11]  What will the following program print out?
	 import pandas as pd
	 mySeries=pd.Series([1,2,3,4,5], index=["a","b","c","a","b"])
	 mySeries[["a","b"]]

	 A. NameError
	 B.
	 a 1
	 b 2
	 c 4
	 d 5
	 dtype: int64

 292 Python Data Science

	 C.
	 a 1
	 a 4
	 b 2
	 b 5
	 dtype: int64

[12]  What will the following program print out?
	 import numpy as np
	 import pandas as pd
	 mySeries1=pd.Series([1,2,3,4,5], index=["a","b","c","d","e"])
	 mySeries2=mySeries1.reindex(index=["b","c","a","d","e"])
	 np.all(mySeries2.values==mySeries1.values)

	 A. False
	 B. True
	 C. ValueError

[13]  What will the following program print out?
	 import pandas as pd
	 mySeries4=pd.Series([21,22,23,24,25,26,27], index=["a","b","c","d","e","f","g"])
	 "c" in mySeries4

	 A. False
	 B. True
	 C. ValueError

[14]  What will the following program print out?
	 import numpy as np
	 import pandas as pd
	 df=pd.DataFrame(np.arange(1,21).reshape(5,4))
	 df.iloc[3,2]

	 A. 18
	 B. 10
	 C. 15

[15]  Which of the following is wrong of dataframe?
	 A. The dataframe with only one-dimensional data is series, both of which are under the Pandas package.
	 B. The row name of the dataframe can be accessed with the rows attributes.
	 C. The column name of the dataframe can be accessed with the columns attributes.

[16]  For the following code:
	 {import datetime as dt}
	 Which of the following time and date definitions is wrong?

	 A. dt.datetime(2019,12,12,23,23,23)
	 B. dt.datetime(2019,0,0,23,23,23)
	 C. dt.datetime(2019,12,12,0)
	 D. dt.time(23,23,23)

[17]  When calculating the time difference, the calculating unit can be()
	 A. days
	 B. seconds
	 C. microseconds
	 D. All of the above

293 Data wrangling with Python

[18]  Which of the following is false of the period_range method?
	 A. start: the lefthand side is the generation period
	 B. end: the righthand side limits generation period
	 C. periods: frequency of generation
	 D. freq: frequency alias

[19]  Which of the following is not a visual drawing tool?
	 A. matplotlib
	 B. seaborn
	 C. plotnine
	 D. Pandas

[20]  Which of the following statements is false about matplotlib and seaborn?
	 A. Both are drawing libraries.
	 B. matplotlib is more encapsulated than seaborn.
	 C. matplotlib has high flexibility in parameter setting details.
	 D. seaborn can color by itself, which is beautiful and generous.

 294 Python Data Science

5.  Data analysis with Python

Data analysis is one of the most critical stages in data science life cycle. This chapter will introduce various data
analysis skills including:

	 Statistical modelling with statsmodels

	Machine learning with sci-kit learn

	 Natural language understanding with NLTK

	 Image processing with OpenCV

295 © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_5

https://doi.org/10.1007/978-981-19-7702-2_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_5&domain=pdf

5.1  Statistical modelling with statsmodels

Q&A

 296 Python Data Science

Notes

There are two main concepts in statistical analysis: the feature matrix and the target
vector.

Taking y = F(X) as an example, X represents the feature matrix. The feature matrix
is assumed to be two-dimensional, with a shape of [n_samples, n_features]. It is
typically stored in a NumPy array or a Pandas DataFrame, although some Scikit-
Learn models also accept SciPy sparse matrices. Each sample in the feature matrix is
stored in a separate row.

Notes

y is the dependent variable and also termed “target vector” or “target array”.

The target vector is usually one dimensional, with length n_samples. It is commonly
stored in a NumPy array or Pandas Series.

5.1.1  Business understanding

Notes

Business understanding serves as the initial step in a data science project.
In this chapter, the business objective is to analyze the relationship between women’s
height and women’s weight, in other words, predict a woman’s weight by her height.
The original data are obtained from The World Almanac and Book of Facts (1975).
This data set gives the average heights and weights for American women aged 30–39.
It is a data frame with 15 observations on 2 variables. It is structured as a data frame
with 15 observations on 2 variables.
	women[,1]:height(in):numeric
	women[,2]:weight (lbs):numeric

297 Advanced Python Programming for Data Science

5.1.2  Data loading

In[1] # To obtain the current working directory in Python, you can use the os.getcwd()
method.

import os
print(os.getcwd())

Out[1] C:\Users\soloman\clm

Tips

To get the current working directory in Python, you can use the os.getcwd()
method. And if you want to change the current working directory, you can use the
os.chdir(path) method.

In[2] # to load data from the current working directory into Panda’s DataFrame

import pandas as pd

df_women = pd.read_csv('women.csv', index_col=0)

print(df_women.head())
Out[2]

height weight

1 58 115

2 59 117

3 60 120

4 61 123

5 62 126

Tips

pd.read_csv() : Read a comma-separated values (csv) file into DataFrame.

Tips

The women.csv file is available in the learning resources for this textbook.

5.1.3  Data understanding

In[3] # to get shape or dimensions of the df_women DataFrame

df_women.shape
Out[3] (15, 2)

 298 Python Data Science

Tips

(1) pandas.DataFrame.shape: Returns a tuple representing the dimensionality of the
DataFrame. For further details, please refer to [4.4 DataFrame].

In[4] # to show column names (properties) of the df_women DataFrame

print(df_women.columns)
Out[4] Index(['height', 'weight'], dtype='object')

Tips

(2) pandas.DataFrame.columns: Shows the column labels of the DataFrame. For
further details, please refer to [4.4 DataFrame].

In[5] # to generate descriptive statistics for the df_women DataFrame

df_women.describe()
Out[5] height weight

count 15.000000 15.000000

mean 65.000000 136.733333

std 4.472136 15.498694

min 58.000000 115.000000

25% 61.500000 124.500000

50% 65.000000 135.000000

75% 68.500000 148.000000

max 72.000000 164.000000

Tips

(3) pandas.DataFrame.describe:Generates descriptive statistics. For further details,
please refer to [4.4 DataFrame].

In[6] # to plot the df_women DataFrame

import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter(df_women["height"], df_women["weight"])
plt.show()

299 Advanced Python Programming for Data Science

Out[6]

Tips

(4) For further details, please refer to [4.6 Data visualization].

5.1.4  Data wrangling

Tips

(4) The data visualization chart indicates that the relationship between dependent
variable and independent variable is linear. So we can conduct a linear regression
analysis. Firstly, we need to arrange data into a feature matrix and target vector.

In[7] X = df_women["height"]
y = df_women["weight"]

Out[7] (15, 2)

In[8] X
Out[8] 1	 58

2	 59
3	 60
4	 61
5	 62
6	 63
7	 64
8	 65
9	 66
10	 67
11	 68
12	 69
13	 70
14	 71
15	 72
Name: height, dtype: int64

 300 Python Data Science

In[9] y
Out[9] 1	 115

2	 117
3	 120
4	 123
5	 126
6	 129
7	 132
8	 135
9	 139
10 142
11 146
12 150
13 154
14 159
15 164
Name: weight, dtype: int64

Tips

“In fact, the data type of ‘y’ here is not the correct one for the target vector we
require. We can check its data type using the ‘type(y)’ function. Subsequent lines
of code won’t raise exceptions, as the ‘statsmodels’ package automatically handles
data type conversions. However, if other packages, such as ‘Scikit-Learn’, are used,
exceptions may occur. To prevent this, we can use the ‘np.ravel()’ function to adjust
the data type as needed.”

5.1.5  Model selection and hyperparameter tuning

In[10] # to import the statsmodels package

import statsmodels.api as sm

Tips

Statsmodels, statistics, and scikit-learn are three popular packages used for statistical
analysis and machine learning in Python.

In[11] X
Out[11] 1 58

2 59
3 60
4 61
5 62
6 63
7 64
8 65
9 66
10 67
11 68
12 69
13 70
14 71
15 72
Name: height, dtype: int64

301 Advanced Python Programming for Data Science

Notes

By default, an intercept is included when we execute an OLS model using the sm.add_
constant() method.

Notes

Please do not write “X_add_const=sm.add_constant(X)” as “X=sm.add_constant(X)”,
otherwise the value of X will change when “X=sm.add_constant(X)” is run multiple
times.

In[12] X_add_const=sm.add_constant(X)
X_add_const

Out[12] const height

1 1.0 58

2 1.0 59

3 1.0 60

4 1.0 61

5 1.0 62

6 1.0 63

7 1.0 64

8 1.0 65

9 1.0 66

10 1.0 67

11 1.0 68

12 1.0 69

13 1.0 70

14 1.0 71

15 1.0 72

Tips

statsmodels.tools.tools.add_constant(): Add a column of ones to an array

In[13] # to describe a model

myModel = sm.OLS(y, X_add_const)

Tips

statsmodels is using endog and exog as names for the data, the observed variables that
are used in an estimation problem. For further details, please refer to https://www.
statsmodels.org/stable/endog_exog.html.

The first two arguments of the sm.OLS() function are endog(y) and exog(X_add_
const).

 302 Python Data Science

https://www.statsmodels.org/stable/endog_exog.html
https://www.statsmodels.org/stable/endog_exog.html

5.1.6  Fitting model and summarizing the Regression Results

In[14] # to fit the model
results = myModel.fit()

to summarize the model
print(results.summary())

Out[14] OLS Regression Results
===

Dep. Variable: weight R-squared: 0.991

Model: OLS Adj. R-squared: 0.990

Method: Least Squares F-statistic: 1433.

Date: Sat, 09 Apr 2022 Prob (F-statistic): 1.09e-14

Time: 09:32:10 Log-Likelihood: -26.541

No. Observations: 15 AIC: 57.08

Df Residuals: 13 BIC: 58.50

Df Model: 1

Covariance Type: nonrobust
===

 coef std err t P>|t| [0.025 0.975]

--

const -87.5167 5.937 -14.741 0.000 -100.343 -74.691

height 3.4500 0.091 37.855 0.000 3.253 3.647
===

Omnibus: 2.396 Durbin-Watson: 0.315

Prob(Omnibus): 0.302 Jarque-Bera (JB): 1.660

Skew: 0.789 Prob(JB): 0.436

Kurtosis: 2.596 Cond. No. 982.
===

Notes:
[1] � Standard Errors assume that the covariance matrix of the errors is correctly specified.
C:\Users\zc\Anaconda3\lib\site-packages\scipy\stats\stats.py:1604: UserWarning: kurtosistest
only valid for n>=20 ... continuing anyway, n=15
  “anyway, n=%i” % int(n))

In[15] # to show the coefficients of the linear regression model

results.params

Out[15] const -87.516667
height 3.450000
dtype: float64

303 Advanced Python Programming for Data Science

Tips

Here, the results object has many useful attributes. For further details, please refer to
the official website of the statsmodels package.

5.1.7  Model evaluation

Notes

R-squared (the coefficient of determination) is a goodness-of-fit measure in linear
regression models to show how well the data fit the regression model.

In[16] # to show R-squared
results.rsquared

Out[16] 0.9910098326857506

Tips

R-squared values range from 0 to 1. The closer its value is to 1, the better the regression
line fits the data.

5.1.8  Assumptions testing

Notes

When conducting data science projects with statistical methods, it is not only necessary
to evaluate the model results, but also to test the underlying statistical assumptions.

Notes

In statistical analysis, all parametric tests make certain assumptions about the data. It’s
important to test these assumptions to ensure valid results. Taking linear regression as
an example, these assumptions include:

The first assumption is that a linear relationship exists between the dependent and
independent variables. This can be tested by calculating the F-statistic.

The second assumption is that there’s no autocorrelation in the residuals. This can be
tested using the Durbin-Watson statistic.

The third assumption is that the underlying residuals are normally distributed, or
approximately so. The Jarque–Bera test is a goodness-of-fit test of normality.

In[17] # to show(extract) the p-value in F test

results.f_pvalue
Out[17] 1.0909729585997406e-14

Notes

The F-test of overall significance indicates whether the regression model provides a
better fit to the data than a model that contains no independent variables.

 304 Python Data Science

Tricks

A p-value less than some significance level (e.g. α = .05) is statistically significant.
It indicates strong evidence against the null hypothesis, as there is less than a 5%
probability the null is correct. Hence, we reject the null hypothesis and accept the
alternative hypothesis.

In[18] # to show the Durbin Watson statistic

sm.stats.stattools.durbin_watson(results.resid)
Out[18] 0.31538037486218456

Notes

The Durbin Watson statistic is a test for autocorrelation in the residuals from regression
models. The Durbin-Watson statistic will always have a value ranging between 0 and
4. A value of 2 indicates there is no autocorrelation detected in the samples.

In[19] # to show the Jarque–Bera statistic and its p-value

sm.stats.stattools.jarque_bera(results.resid)
Out[19] (1.6595730644310005,

 0.43614237873238126,
 0.7893583826332368,
 2.5963042257390314)

Tips

The sm.stats.stattools.jarque_bera() function returns four values -- JB, JBpv, skew,
kurtosis, respectively.

Notes

In statistics, the Jarque–Bera test serves as a goodness-of-fit test of whether sample
data have the skewness and kurtosis matching a normal distribution. The normal
distribution of residuals is one of the assumptions of linear regression analysis.

In[20] # to make a prediction with the model

y_predict=results.predict()
y_predict

Out[20] array([112.58333333, 116.03333333, 119.48333333, 122.93333333,
 126.38333333, 129.83333333, 133.28333333, 136.73333333,
 140.18333333, 143.63333333, 147.08333333, 150.53333333,
 153.98333333, 157.43333333, 160.88333333])

Tips

In the statasmodels package, after a model has been fit predict returns the fitted values

305 Advanced Python Programming for Data Science

5.1.9  Model optimization and re-selection

In[21] # to visualize the predictions and compare against observations

plt.rcParams['font.family']="simHei"
plt.plot(df_women["height"], df_women["weight"],"o") # the observations
plt.plot(df_women["height"], y_predict) # the predictions
plt.title('Linear regression analysis of women's weight and height')
plt.xlabel('height')
plt.ylabel('weight')

Out[21] Text(0, 0.5, 'weight')

Tips

In addition to the statistics (e.g. R-squared), we can also display the goodness-of-fit
by data visualization.

Notes

As can be seen from the above figure, the effect of simple linear regression in this case
may be further optimized. Hence, we replace simple linear regression with polynomial
regression.

In[22] # to conduct data wrangling

import pandas as pd
import numpy as np
df_women = pd.read_csv('women.csv', index_col=0)
X = df_women["height"]
y = df_women["weight"]

X=np.column_stack((X, np.power(X,2), np.power(X,3)))

 306 Python Data Science

Tips

In the polynomial regression analysis, the feature matrix X consists of 3 parts ---X, the
square of X, and the cube of X.

In[23] X_add_const=sm.add_constant(X)

X_add_const
Out[23] array([[1.00000e+00, 5.80000e+01, 3.36400e+03, 1.95112e+05],

 [1.00000e+00, 5.90000e+01, 3.48100e+03, 2.05379e+05],
 [1.00000e+00, 6.00000e+01, 3.60000e+03, 2.16000e+05],
 [1.00000e+00, 6.10000e+01, 3.72100e+03, 2.26981e+05],
 [1.00000e+00, 6.20000e+01, 3.84400e+03, 2.38328e+05],
 [1.00000e+00, 6.30000e+01, 3.96900e+03, 2.50047e+05],
 [1.00000e+00, 6.40000e+01, 4.09600e+03, 2.62144e+05],
 [1.00000e+00, 6.50000e+01, 4.22500e+03, 2.74625e+05],
 [1.00000e+00, 6.60000e+01, 4.35600e+03, 2.87496e+05],
 [1.00000e+00, 6.70000e+01, 4.48900e+03, 3.00763e+05],
 [1.00000e+00, 6.80000e+01, 4.62400e+03, 3.14432e+05],
 [1.00000e+00, 6.90000e+01, 4.76100e+03, 3.28509e+05],
 [1.00000e+00, 7.00000e+01, 4.90000e+03, 3.43000e+05],
 [1.00000e+00, 7.10000e+01, 5.04100e+03, 3.57911e+05],
 [1.00000e+00, 7.20000e+01, 5.18400e+03, 3.73248e+05]])

Tips

Here, the purpose of calling the sm.add_constant() function is to add a column of ones
to the feature matrix, which represents the intercept term in the regression model.

In[24] # to describe a new model
myModel_updated = sm.OLS(y, X_add_const)

In[25] # to fit the model
results_updated = myModel_updated.fit()

to summarize the model
print(results_updated.summary())

307 Advanced Python Programming for Data Science

Out[25] OLS Regression Results
===

Dep. Variable: weight R-squared: 1.000

Model: OLS Adj. R-squared: 1.000

Method: Least Squares F-statistic: 1.679e+04

Date: Sat, 09 Apr 2022 Prob (F-statistic): 2.07e-20

Time: 09:32:21 Log-Likelihood: 1.3441

No. Observations: 15 AIC: 5.312

Df Residuals: 11 BIC: 8.144

Df Model: 3

Covariance Type: nonrobust
===

coef std err t P>|t| [0.025 0.975]

const -896.7476 294.575 -3.044 0.011 -1545.102 -248.393

x1 46.4108 13.655 3.399 0.006 16.356 76.466

x2 -0.7462 0.211 -3.544 0.005 -1.210 -0.283

x3 0.0043 0.001 3.940 0.002 0.002 0.007
===

Omnibus: 0.028 Durbin-Watson: 2.388

Prob(Omnibus): 0.986 Jarque-Bera (JB): 0.127

Skew: 0.049 Prob(JB): 0.939

Kurtosis: 2.561 Cond. No. 1.25e+09
===

Notes:
[1] � Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] � The condition number is large, 1.25e+09. This might indicate that there are strong

multicollinearity or other numerical problems.
C:\Users\zc\Anaconda3\lib\site-packages\scipy\stats\stats.py:1604: UserWarning: kurtosistest
only valid for n>=20 ... continuing anyway, n=15
 “anyway, n=%i” % int(n))

In[26] # to show(extract) the p-value in F test

print('Display const and intercept: ',results_updated.params)
Out[26] Display const and intercept: const -896.747633

x1 46.410789
x2 -0.746184
x3 0.004253
dtype: float64

In[27] # to make a prediction with the new model

y_predict_updated=results_updated.predict()
y_predict_updated

 308 Python Data Science

Out[27] array([114.63856209, 117.40676937, 120.18801264, 123.00780722,
 125.89166846, 128.86511168, 131.95365223, 135.18280543,
 138.57808662, 142.16501113, 145.9690943, 150.01585147,
 154.33079796, 158.93944911, 163.86732026])

In[28] # to visualize the predictions and compare against observations

plt.rcParams['font.family']="simHei"
plt.scatter(df_women["height"], df_women["weight"])
plt.plot(df_women["height"], y_predict_updated)
plt.title('Linear regression analysis of women weight and height')
plt.xlabel('height')
plt.ylabel('weight')

Out[28] Text(0, 0.5, 'weight')

5.1.10  Model application

In[29] h=63.5
results_updated.predict([1,h,np.power(h,2),np.power(h,3)])

Out[29] array([130.39340008])

Tips

We can apply the fitted model to predict new data. For instance, it can be used to
predict the weight of a woman who stands 63.5 inches tall.

Notes

The argument structure for the ‘predict()’ method should match the form of the model
‘s independent variables. We can access the DocStrings by typing ‘results.predict?’

309 Advanced Python Programming for Data Science

5.2 Machine learning with scikit-learn

Q&A

 310 Python Data Science

Notes

In Machine Learning, the original dataset is usually split into three independent
subsets:
	 The training set is a subset to train a model.
	 The test set is a subset to test the trained model after training.
	 The validation set is a subset to validate model performance during training,

especially to tune the hyperparameters and make model selection.

5.2.1  Business understanding

Notes

Business understanding is the first phase of a data science project process.

Tips

In this chapter, we provide a case project with the Scikit-learn.
The dataset used in this case is obtained from Wisconsin Breast Cancer Database

(https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)).
The dataset involves the columns(attributes) such as ID number, Diagnosis

(M = malignant, B = benign) and 10 real-valued features are calculated for each cell
nucleus. They are:

 1)  radius (mean of distances from the center to points on the perimeter)
 2)  texture (standard deviation of gray-scale values)
 3)  perimeter
 4)  area
 5)  smoothness (local variation in radius lengths)
 6)  compactness (perimeter^2 / area - 1.0)
 7)  concavity (severity of concave portions of the contour)
 8)  concave points (number of concave portions of the contour)
 9)  symmetry
10) fractal dimension (“coastline approximation” - 1)

The main objective of this case project is to understand the application of machine
learning in data science.

Firstly, we split the training set and test set from the dataset – “bc_data.csv”.
Secondly, a k-Nearest-Neighbors (KNN) model is trained on the training set.
Then, we use the trained model to predict the diagnosis on the test set.
Finally, the prediction results of KNN are compared against the diagnostic results

of bc_data.csv to measure the accuracy of the KNN classifier.

5.2.2  Data loading

In[1] # Using os.getcwd() method to get current working directory

import pandas as pd
import numpy as np
import os
os.chdir(r'C:\Users\soloman')

print(os.getcwd())

Out[1] C:\Users\soloman\clm

311 Advanced Python Programming for Data Science

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)

Tips

Here, ‘C:\Users\soloman\clm’ is the working directory on the author’s computer.

In[2] # to load data from the current working directory into Panda's DataFrame

bc_data = pd.read_csv('bc_data.csv', header=0)
bc_data.head()

Out[2] id diagnosis radius_
mean

... concave_
points_worst

symmetry_
worst

fractal_
dimension_

worst

0 842302 M 17.99 ... 0.2654 0.4601 0.11890

1 842517 M 20.57 ... 0.1860 0.2750 0.08902

2 84300903 M 19.69 ... 0.2430 0.3613 0.08758

3 84348301 M 11.42 ... 0.2575 0.6638 0.17300

4 84358402 M 20.29 ... 0.1625 0.2364 0.07678
5 rows × 32 columns

Tips

The original data file, ‘bc_data.csv’, can be found in the learning resources associated
with this textbook.

Tips

The bc_data.head() method returns the first 5 rows. For further details, please refer to
[4.4 DataFrame].

5.2.3  Data understanding

In[3] # to get the shape of the bc_data DataFrame

print(bc_data.shape)

Out[3] (569, 32)

Tips

For further details, please refer to [4.4 DataFrame].

 312 Python Data Science

In[4] # to get the column names(properties) of the bc_data DataFrame

print(bc_data.columns)
Out[4] Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',

'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean',
'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se',
'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se',
'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_
worst', 'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst',
'concave_points_worst', 'symmetry_worst', 'fractal_dimension_worst'], dtype='object')

Tips

For further details, please refer to [4.4 DataFrame].

In[5] ## to generate descriptive statistics for the bc_data DataFrame

print(bc_data.describe())
Out[5] id radius_

mean
texture_

mean
perimeter_

mean
area_mean\

count 5.690000e+02 569.000000 569.000000 569.000000 569.000000

mean 3.037183e+07 14.127292 19.289649 91.969033 654.889104

std 1.250206e+08 3.524049 4.301036 24.298981 351.914129

min 8.670000e+03 6.981000 9.710000 43.790000 143.500000

25% 8.692180e+05 11.700000 16.170000 75.170000 420.300000

50% 9.060240e+05 13.370000 18.840000 86.240000 551.100000

75% 8.813129e+06 15.780000 21.800000 104.100000 782.700000

max 9.113205e+08 28.110000 39.280000 188.500000 2501.000000

smoothness_
mean

compactness_
mean

concavity_
mean

concave points_
mean\

count 569.000000 569.000000 569.000000 569.000000

mean 0.096360 0.104341 0.088799 0.048919

std 0.014064 0.052813 0.079720 0.038803

min 0.052630 0.019380 0.000000 0.000000

25% 0.086370 0.064920 0.029560 0.020310

50% 0.095870 0.092630 0.061540 0.033500

75% 0.105300 0.130400 0.130700 0.074000

max 0.163400 0.345400 0.426800 0.201200

313 Advanced Python Programming for Data Science

symmetry_mean ... radius_worst texture_worst \
count 569.000000 ... 569.000000 569.000000
mean 0.181162 ... 16.269190 25.677223
std 0.027414 ... 4.833242 6.146258
min 0.106000 ... 7.930000 12.020000
25% 0.161900 ... 13.010000 21.080000
50% 0.179200 ... 14.970000 25.410000
75% 0.195700 ... 18.790000 29.720000
max 0.304000 ... 36.040000 49.540000

perimeter_worst area_worst smoothness_worst compactness_worst\
count 569.000000 569.000000 569.000000 569.000000
mean 107.261213 880.583128 0.132369 0.254265
std 33.602542 569.356993 0.022832 0.157336
min 50.410000 185.200000 0.071170 0.027290
25% 84.110000 515.300000 0.116600 0.147200
50% 97.660000 686.500000 0.131300 0.211900
75% 125.400000 1084.000000 0.146000 0.339100
max 251.200000 4254.000000 0.222600 1.058000

concavity_worst concave_points_worst symmetry_worst\
count 569.000000 569.000000 569.000000
mean 0.272188 0.114606 0.290076
std 0.208624 0.065732 0.061867
min 0.000000 0.000000 0.156500
25% 0.114500 0.064930 0.250400
50% 0.226700 0.099930 0.282200
75% 0.382900 0.161400 0.317900
max 1.252000 0.291000 0.663800

fractal_dimension_worst
count 569.000000
mean 0.083946
std 0.018061
min 0.055040
25% 0.071460
50% 0.080040
75% 0.092080
max 0.207500

[8 rows x 31 columns]

Tips

For further details, please refer to [4.4 DataFrame].

 314 Python Data Science

5.2.4  Data wrangling

Notes

Data wrangling is one of the crucial phases in data science projects. In this case,
it refers to the process of defining the feature matrix and target vector, as well as
splitting the dataset into the training set and test set.

In[6] # to remove the id column from the bc_data DataFrame
data = bc_data.drop(['id'], axis=1)
print(data.head())

Out[6] diagnosis radius_mean texture_mean perimeter_mean area_mean\
0 M 17.99 10.38 122.80 1001.0
1 M 20.57 17.77 132.90 1326.0
2 M 19.69 21.25 130.00 1203.0
3 M 11.42 20.38 77.58 386.1
4 M 20.29 14.34 135.10 1297.0

smoothness
_mean

compactness_mean concavity_mean concave points_mean\

0 0.11840 0.27760 0.3001 0.14710
1 0.08474 0.07864 0.0869 0.07017
2 0.10960 0.15990 0.1974 0.12790
3 0.14250 0.28390 0.2414 0.10520
4 0.10030 0.13280 0.1980 0.10430

symmetry_mean ... radius_worst texture_worst\

0 0.2419 ... 25.38 17.33
1 0.1812 ... 24.99 23.41
2 0.2069 ... 23.57 25.53
3 0.2597 ... 14.91 26.50
4 0.1809 ... 22.54 16.67

perimeter_worst area_worst smoothness_worst compactness_
worst\

0 184.60 2019.0 0.1622 0.6656
1 158.80 1956.0 0.1238 0.1866
2 152.50 1709.0 0.1444 0.4245
3 98.87 567.7 0.2098 0.8663
4 152.20 1575.0 0.1374 0.2050

concavity_worst concave_points_worst symmetry_worst\
0 0.7119 0.2654 0.4601
1 0.2416 0.1860 0.2750
2 0.4504 0.2430 0.3613
3 0.6869 0.2575 0.6638
4 0.4000 0.1625 0.2364

    fractal_dimension_worst
0 0.11890
1 0.08902
2 0.08758
3 0.17300
4 0.07678

[5 rows x 31 columns]

315 Advanced Python Programming for Data Science

Tips

Here, the ID column is not an independent variable, so we will remove it from the
data DataFrame and create a new feature matrix named X_data.

In[7] X_data = data.drop(['diagnosis'], axis=1)
X_data.head()

Out[7] radius_
mean

texture_
mean

... concave_points_
worst

symmetry_
worst

fractal_
dimension_

worst
0 17.99 10.38 ... 0.2654 0.4601 0.11890

1 20.57 17.77 ... 0.1860 0.2750 0.08902

2 19.69 21.25 ... 0.2430 0.3613 0.08758

3 11.42 20.38 ... 0.2575 0.6638 0.17300

4 20.29 14.34 ... 0.1625 0.2364 0.07678

5 rows × 30 columns

Notes

Here,
Axis=0 will act on all the ROWS in each COLUMN;
Axis=1 will act on all the COLUMNS in each ROW;

In[8] # to create the target vetor
y_data = np.ravel(data[['diagnosis']])
y_data[0:6]

Out[8] array(['M', 'M', 'M', 'M', 'M', 'M'], dtype=object)

Tips

np.ravel() function converts a two-dimensional array into a one-dimensional array
and returns a contiguous flattened array.

Notes

In data science projects, the np.ravel() function can be used to define target
vectors(arrays).

In[9] # to split the original data into training subsets and test subsets

from sklearn.model_selection import train_test_split
X_trainingSet, X_testSet, y_trainingSet, y_testSet = train_test_split(X_data,
y_data, random_state=1)

Tips

The sklearn.model_selection .train_test_split() function is used to split arrays or
matrices into random train and test subsets.

 316 Python Data Science

Tips

Here, X_trainingSet is the feature matrix and y_trainingSet is the target vector of
training set. Besides, X_testSet is the feature matrix and y_testSet is the target vector
of test set.

In[10] # to show(extract) the shape of the feature matrix in training set

print(X_trainingSet.shape)
Out[10] (426, 30)

In[11] # to show(extract) the shape of the feature matrix in testing set

print(X_testSet.shape)
Out[11] (143, 30)

5.2.5  Model selection and hyperparameter tuning

In[12] # to import KNeighborsClassifier for training the k-nearest neighbors model

from sklearn.neighbors import KNeighborsClassifier

Tips

The first step is to select an appropriate algorithm. In this case we select KNN, so
KNeighborsClassifier is imported.

In[13] # to describe the algorithm and set its hyperparemters

myModel = KNeighborsClassifier(algorithm='kd_tree')

Tips

The second step is to describe the machine learning algorithm and set the
hyperparameter——algorithm=‘kd_tree’.
The KNN classifier implement different algorithms (BallTree, KDTree or Brute
Force) to calculate the nearest neighbors.

5.2.6  Model training

In[14] # to train a model on the training set

myModel.fit(X_trainingSet, y_trainingSet)
Out[14] KNeighborsClassifier(algorithm='kd_tree')

Tips

Here,
X_trainingSet is the feature matrix in the training set.
y_trainingSet is the target vector of the training set.

317 Advanced Python Programming for Data Science

5.2.7  Predicting with a trained model

Notes

The trained model can be utilized to predict the labels for the test set.

In[15] # to predict the target vector for the test set

y_predictSet = myModel.predict(X_testSet)

Tips

Here, X_testSet is the feature matrix(independent variables) of test set.

In[16] # to print the predicted labels

print(y_predictSet)
Out[16] ['M' 'M' 'B' 'M' 'M' 'M' 'M' 'M' 'B' 'B' 'B' 'M' 'M' 'B' 'B' 'B' 'B' 'B'

 'B' 'M' 'B' 'B' 'M' 'B' 'M' 'B' 'B' 'M' 'M' 'M' 'M' 'B' 'M' 'B' 'B' 'B'
 'M' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'M' 'B' 'B' 'B' 'M' 'M' 'M' 'B' 'B'
 'B' 'B' 'B' 'M' 'B' 'B' 'B' 'M' 'B' 'M' 'B' 'B' 'B' 'M' 'B' 'B' 'B' 'B'
 'M' 'M' 'B' 'M' 'B' 'B' 'B' 'M' 'B' 'M' 'B' 'M' 'B' 'B' 'M' 'B' 'M' 'B'
 'B' 'M' 'B' 'B' 'M' 'M' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B'
 'M' 'M' 'B' 'B' 'B' 'B' 'M' 'M' 'B' 'B' 'B' 'B' 'B' 'M' 'M' 'B' 'B' 'M'
 'M' 'M' 'M' 'M' 'B' 'B' 'B' 'M' 'B' 'M' 'M' 'M' 'B' 'B' 'M' 'M' 'B']

In[17] # to print the labels in the test set and compare against the predicted labels

print(y_testSet)
Out[17] ['B' 'M' 'B' 'M' 'M' 'M' 'M' 'M' 'B' 'B' 'B' 'M' 'M' 'B' 'B' 'B' 'B' 'B'

 'B' 'M' 'B' 'B' 'M' 'B' 'M' 'B' 'B' 'M' 'M' 'M' 'M' 'B' 'M' 'M' 'B' 'B'
 'M' 'B' 'M' 'B' 'B' 'B' 'B' 'B' 'B' 'M' 'B' 'B' 'B' 'M' 'M' 'M' 'B' 'B'
 'B' 'B' 'B' 'M' 'B' 'B' 'B' 'M' 'B' 'B' 'B' 'B' 'B' 'M' 'B' 'B' 'B' 'B'
 'M' 'M' 'B' 'M' 'M' 'M' 'B' 'M' 'B' 'M' 'B' 'M' 'B' 'B' 'M' 'B' 'M' 'B'
 'B' 'M' 'B' 'B' 'M' 'M' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B' 'B'
 'M' 'M' 'M' 'B' 'B' 'B' 'M' 'M' 'B' 'B' 'B' 'B' 'B' 'M' 'M' 'B' 'B' 'M'
 'M' 'B' 'M' 'M' 'B' 'B' 'B' 'M' 'B' 'M' 'M' 'B' 'B' 'B' 'M' 'M' 'B']

5.2.8  Model evaluation

Notes

The accuracy_score() function is called to calculate the performance of classification
based upon Confusion Matrix.

 318 Python Data Science

In[18] # to calculate the accuracy score of the trained model

from sklearn.metrics import accuracy_score
print(accuracy_score(y_testSet, y_predictSet))

Out[18] 0.9370629370629371

Tips

Here,
y_testSet refers to the test set;
y_ predictSet refers to the predicted values.

5.2.9 Model optimization and application

Notes

We use elbow method to select the optimal number of clusters for KNN clustering.

In[19] # to create a for loop that trains various KNN models with different k values

from sklearn.neighbors import KNeighborsClassifier
NumberOfNeighbors = range(1,23)
KNNs = [KNeighborsClassifier(n_neighbors=i) for i in NumberOfNeighbors]
scores = [KNNs[i].fit(X_trainingSet, y_trainingSet).score(X_testSet,y_testSet) for i
in range(len(KNNs))]

scores

Out[19] [0.9230769230769231,
 0.9020979020979021,
 0.9230769230769231,
 0.9440559440559441,
 0.9370629370629371,
 0.9230769230769231,
 0.9300699300699301,
 0.9230769230769231,
 0.9230769230769231,
 0.9230769230769231,
 0.9230769230769231,
 0.9230769230769231,
 0.9230769230769231,
 0.9230769230769231,
 0.9230769230769231,
 0.916083916083916,
 0.916083916083916,
 0.916083916083916,
 0.916083916083916,
 0.916083916083916,
 0.916083916083916,
 0.9090909090909091]

319 Advanced Python Programming for Data Science

Tips

Measuring the accuracy scores of the KNN model for values of k ranging from 1 to
23, and storing them in a list named “scores”.

In[20] # to visualize the accuracy scores of the KNN models with k=1 to 23

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(NumberOfNeighbors,scores)
plt.rcParams['font.family'] = 'simHei'
plt.xlabel('k value')
plt.ylabel('score')
plt.title('Elbow Curve')
plt.xticks(NumberOfNeighbors)
plt.show()

Out[20]

Tips

We can see that the optimal number of clusters(k) is 4.

In[21] # to retrain KNN model with the best K value(k=4) and calculate its accuracy score

from sklearn.neighbors import KNeighborsClassifier
myModel = KNeighborsClassifier(algorithm='kd_tree',n_neighbors=4)
myModel.fit(X_trainingSet, y_trainingSet)
y_predictSet = myModel.predict(X_testSet)
from sklearn.metrics import accuracy_score
print(accuracy_score(y_testSet, y_predictSet))

Out[21] 0.9440559440559441

 320 Python Data Science

Tips

The accuracy score is increased to 0.9440559440559441.

Notes

The metrics.plot_roc_curve() function is used to plot receiver operating characteristic
(ROC) curve.

In[22] # to plot the ROC curve

import matplotlib.pyplot as plt
from sklearn import metrics
metrics.plot_roc_curve(myModel,X_testSet, y_testSet)
plt.show()

Out[22]

​

Tips

For further details, please refer to the official website —— https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.plot_roc_curve.html.

321 Advanced Python Programming for Data Science

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_roc_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_roc_curve.html

5.3  Natural language understanding with NLTK

Q&A

 322 Python Data Science

5.3.1  Business understanding

Notes

Natural Language Tool Kit (NLTK) and spaCy are two of the most popular English
Natural Language Processing (NLP) tools available in Python.

Notes

In this chapter, we will use NLTK (Natural Language Toolkit) to analyze the inaugural
speeches of the US presidents from 1789 to 2017 and compare the first speeches
of four presidents: Clinton, Bush, Obama, and Trump. The data consists of multiple
inaugural speeches collected from the inaugural corpus of NLTK.

5.3.2  Data loading

Notes

The official website of the NLTK package is https://www.nltk.org/, we recommend
readers to access the official website for further details.

In[1] # to import the packages needed for this project

import numpy as np
import pandas as pd
import re
import matplotlib.pyplot as plt
%matplotlib inline
import nltk

In[2] # to download the NLTK corpus "inaugural"
nltk.download('inaugural')

Tips

If the output is “True”, it means that the download has been completed. If the download
speed is slow or the download fails, an alternative option is to directly download that
package on GitHub (https://github.com/nltk/nltk_data), and put it in the path of file
“nltk_data”.

In[3] # to check the file IDs in the "inaugural" dataset

from nltk.corpus import inaugural
print(inaugural.fileids())

Out[3] ['1789-Washington.txt', '1793-Washington.txt', '1797-Adams.txt', '1801-Jefferson.
txt', '1805-Jefferson.txt', '1809-Madison.txt', '1813-Madison.txt', '1817-Monroe.
txt', '1821-Monroe.txt', '1825-Adams.txt', '1829-Jackson.txt', '1833-Jackson.
txt', '1837-VanBuren.txt', '1841-Harrison.txt', '1845-Polk.txt', '1849-Taylor.
txt', '1853-Pierce.txt', '1857-Buchanan.txt', '1861-Lincoln.txt', '1865-Lincoln.
txt', '1869-Grant.txt', '1873-Grant.txt', '1877-Hayes.txt', '1881-Garfield.txt',
'1885-Cleveland.txt', '1889-Harrison.txt', '1893-Cleveland.txt', '1897-McKinley.
txt', '1901-McKinley.txt', '1905-Roosevelt.txt', '1909-Taft.txt', '1913-Wilson.
txt', '1917-Wilson.txt', '1921-Harding.txt', '1925-Coolidge.txt', '1929-Hoover.txt',
'1933-Roosevelt.txt', '1937-Roosevelt.txt', '1941-Roosevelt.txt', '1945-Roosevelt.txt',
'1949-Truman.txt', '1953-Eisenhower.txt', '1957-Eisenhower.txt', '1961-Kennedy.txt',
'1965-Johnson.txt', '1969-Nixon.txt', '1973-Nixon.txt', '1977-Carter.txt', '1981-Reagan.
txt', '1985-Reagan.txt', '1989-Bush.txt', '1993-Clinton.txt', '1997-Clinton.txt', '2001-
Bush.txt', '2005-Bush.txt', '2009-Obama.txt', '2013-Obama.txt', '2017-Trump.txt']

323 Advanced Python Programming for Data Science

https://www.nltk.org/
https://github.com/nltk/nltk_data

Tips

After the corpus is downloaded successfully, we import the package directly without
executing nltk.download().

In[4] #to count the file IDs in the "inaugural" dataset

len(inaugural.fileids())

Out[4] 58

Tips

It is evident that there are 58 documents in the inaugural corpus. We first analyze all
the documents, and then select a few presidential inaugural speeches for in-depth
comparative analysis.

5.3.3  Data understanding

Notes

First, We create an empty DataFrame (df_inaugural) with four columns of “year”,
“president name”, “president”, and “speech text”.

In[5] # to create a list and define 4 column names
cols = ['year','president name','president', 'speech text']

#to create an empty DataFrame with the column names
df_inaugural = pd.DataFrame(columns=cols)
df_inaugural

Out[5]
year president name president speech text

Notes

We fill in the DataFrame with the speech year, president name, combination of time
and name, speech text.

In[6] for i in inaugural.fileids():
 year = i[0:4]
 name = re.findall(r'\-(.*)\.',i)[0]
 president = year+name
 text = inaugural.raw(i)
 df_inaugural = df_inaugural.append({'year':year,'president
name':name,'president':president,'speech text':text}, ignore_index=True)

df_inaugural.head()

 324 Python Data Science

Out[6] year president name president speech text

0 1789 Washington 1789Washington Fellow-Citizens of the Senate and of the House...

1 1793 Washington 1793Washington Fellow citizens, I am again called upon by the...

2 1797 Adams 1797Adams When it was first perceived, in early times, t...

3 1801 Jefferson 1801Jefferson Friends and Fellow Citizens:\n\nCalled upon to...

4 1805 Jefferson 1805Jefferson Proceeding, fellow citizens, to that qualifica...

Tips

The first column is used to render the first four digits of the file name, i.e. speech year.
The second column indicates the president’s name which are extracted from the
characters between the symbol “-“ and the symbol “.” with the regular expression
method.
The third column is used to render the combination of time and name.
The forth column refers to president’s speech text.

Notes

To fill in a DataFrame with speech year, president name, combination of time and
name, and speech text, you can use the DataFrame.apply() method. This method
allows you to apply a function to each row or column of the DataFrame.

In[7] df_inaugural['"America" count'] = df_inaugural['speech text'].apply(lambda x:
x.count('America'))
df_inaugural['"we" count'] = df_inaugural['speech text'].apply(lambda x: x.count('we'
or 'We'))
df_inaugural['"you" count'] = df_inaugural['speech text'].apply(lambda x: x.count('you'
or 'You'))

df_inaugural.head()

Out[7]

year
president

name
president speech text

“America”
count

“we”
count

“you”
count

0 1789 Washington 1789 Washington
Fellow-Citizens of

the Senate and of
the House...

2 10 13

1 1793 Washington 1793 Washington
Fellow citizens,

I am again called
upon by the...

1 0 1

2 1797 Adams 1797 Adams
When it was first

perceived, in early
times, t...

8 23 1

3 1801 Jefferson 1801 Jefferson
Friends and Fellow
Citizens:\n\nCalled

upon to...
0 18 14

4 1805 Jefferson 1805 Jefferson
Proceeding, fellow

citizens, to that
qualifica...

1 22 8

325 Advanced Python Programming for Data Science

Tips

“America”, “we”, and “you” were selected as keywords, and the value of frequencies
these three words appeared in the speech text are returned.

In[8] # to plot the frequency of those words

fig = plt.figure(figsize=(16,5))
plt.xticks(size = 8, rotation = 60)

plt.plot(df_inaugural['president'],df_inaugural['"America" count'],c='r',label='"America"
count')
plt.plot(df_inaugural['president'],df_inaugural['"we" count'],c='g',label='"we" count')
plt.plot(df_inaugural['president'],df_inaugural['"you" count'],c='y',label='"you" count')

plt.legend()
plt.title("The number of times the three words 'America', 'we', and 'you' appear in the
presidents' inaugural speeches")

plt.show()

Out[8]

Tips

The word “we” appeared most frequently, and “we” is the most common word in
Van Buren’s speech in 1837. The word “America” was used frequently by Trump
in 2017.

Notes

We count the number of words in each speech by splitting words with spaces.

In[9] df_inaugural['word count'] = df_inaugural['speech text'].apply(lambda x: len(str(x).
split(" ")))
df_inaugural.head()

 326 Python Data Science

Out[9] year president
name

president speech text “America”
count

“we”
count

“you”
count

word
count

0 1789 Washington 1789Washington Fellow-Citizens of
the Senate and of

the House...

2 10 13 1426

1 1793 Washington 1793Washington Fellow citizens,
I am again called

upon by the...

1 0 1 135

2 1797 Adams 1797Adams When it was first
perceived, in early

times, t...

8 23 1 2306

3 1801 Jefferson 1801Jefferson Friends and
Fellow Citizens:\n\
nCalled upon to...

0 18 14 1725

4 1805 Jefferson 1805Jefferson Proceeding, fellow
citizens, to that

qualifica...

1 22 8 2153

Notes

We also plot a bar chart of the total number of words in each speech text.

In[10] fig = plt.figure(figsize=(16,5))
plt.xticks(np.arange(len(df_inaugural['president'])), df_inaugural['president'],size = 8,
rotation = 60)
plt.bar(np.arange(len(df_inaugural['word count'])),df_inaugural['word count'], color='blue',
alpha=0.5)
plt.title("The number of words in the presidents' inaugural speeches")

Out[10] Text(0.5, 1.0, "The number of words in the presidents’ inaugural speeches")

Notes

The sent_tokenize() function in the NLTK.tokenize package can be used to split a text
to sentences.

327 Advanced Python Programming for Data Science

In[11] from nltk.tokenize import sent_tokenize
df_inaugural['sentence count'] = df_inaugural['speech text'].apply(lambda x: len(sent_
tokenize(x)))
df_inaugural.head()

Out[11] year president
name

president speech text “America”
count

“we”
count

“you”
count

word
count

sentence
count

0 1789 Washington 1789
Washington

Fellow-Citizens
of the Senate

and of the
House...

2 10 13 1426 23

1 1793 Washington 1793
Washington

Fellow citizens,
I am again

called upon by
the...

1 0 1 135 4

2 1797 Adams 1797
Adams

When it was
first perceived,
in early times,

t...

8 23 1 2306 37

3 1801 Jefferson 1801
Jefferson

Friends
and Fellow
Citizens:\n\

nCalled upon
to...

0 18 14 1725 41

4 1805 Jefferson 1805
Jefferson

Proceeding,
fellow

citizens, to that
qualifica...

1 22 8 2153 45

In[12] fig = plt.figure(figsize=(16,5))
plt.xticks(np.arange(len(df_inaugural['president'])), df_inaugural['president'],size = 8,
rotation = 60)
plt.bar(np.arange(len(df_inaugural['sentence count'])),df_inaugural['sentence count'],
color='purple', alpha=0.5)
plt.title("The number of sentences in the presidents' inaugural speeches")

Out[12] Text(0.5, 1.0, "The number of sentences in the presidents’ inaugural speeches")

 328 Python Data Science

Tips

It can be seen that Van Buren’s speech text had a relatively high number of words and
sentences in 1837, while Washington’s speech had a relatively low number in 1793.

Notes

Next, we choose the speeches of Trump, Obama, Bush and Clinton for analysis.
Since there are some presidents who are re-elected, we choose the speeches of their
first inauguration ——“2017-Trump.txt”, “2009-Obama.txt”, “2001-Bush.txt”,
“1993-Clinton.txt”.

In[13] president_speech = df_inaugural[df_inaugural['year'].isin(['2017','2009','2001','1993'
])]
president_speech = president_speech.reset_index(drop=True)
president_speech

Out[13] year president
name

president speech text “America”
count

“we”
count

“you”
count

word
count

sentence
count

0 1993 Clinton 1993Clinton My fellow
citizens, today

we celebrate
the mys...

33 57 12 1583 81

1 2001 Bush 2001Bush President
Clinton,

distinguished
guests and

my...

20 43 9 1580 97

2 2009 Obama 2009Obama My fellow
citizens:\n\

nI stand here
today humb...

15 75 18 2383 110

3 2017 Trump 2017Trump Chief Justice
Roberts,

President
Carter, Presi...

35 37 23 1425 90

5.3.4  Text normalization

In[14] president_speech['speech text'] = president_speech['speech text'].apply(lambda x: " ".
join(x.lower() for x in x.split()))
president_speech['speech text']

Out[14] 0  my fellow citizens, today we celebrate the mys...
1  president clinton, distinguished guests and my...
2  my fellow citizens: i stand here today humbled...
3  chief justice roberts, president carter, presi...
Name: speech text, dtype: object

Tips

Converting all characters to lowercase.

329 Advanced Python Programming for Data Science

In[15] president_speech['speech text'] = president_speech['speech text'].str.replace('[^\
w\s]','')
president_speech['speech text']

Out[15] 0  my fellow citizens today we celebrate the myst...
1  president clinton distinguished guests and my ...
2  my fellow citizens i stand here today humbled ...
3  chief justice roberts president carter preside...
Name: speech text, dtype: object

Tips

Removing all special characters except space from a string.

Tips

Regular Expression is used. It is a sequence of characters that forms a search pattern.
In the above code, “\w” returns a match where the string contains any word characters
(characters from a to Z, digits from 0-9, and the underscore _ character); “\s” returns
a match where the string contains a white space character.

5.3.5  Tokenization

Notes

One of the major forms of tokenization is to filter out stopwords.

Notes

Stopwords are words that are extremely common in human language but carry
minimal meaning since they represent highly frequent words such as “the”, “to”,”
“of,” and “to.”

In[16] from nltk.corpus import stopwords
stop_words = stopwords.words('english')
president_speech['speech text'] = president_speech['speech text'].apply(lambda x:
" ".join(x for x in x.split() if x not in stop_words))
president_speech['speech text']

Out[16] 0  fellow citizens today celebrate mystery americ...
1  president clinton distinguished guests fellow ...
2  fellow citizens stand today humbled task us gr...
3  chief justice roberts president carter preside...
Name: speech text, dtype: object

Tips

NLTK includes a list of 40 stop words, including: “a”, “an”, “the”, “of”, “in”, etc.

 330 Python Data Science

In[17] add_stopwords = ['us','i','in','shall']
stop_words.extend(add_stopwords)
stop_words=set(stop_words)
president_speech['speech text'] = president_speech['speech text'].apply(lambda x: " ".
join(x for x in x.split() if x not in stop_words))
president_speech['speech text']

Out[17] 0  fellow citizens today celebrate mystery americ...
1  president clinton distinguished guests fellow ...
2  fellow citizens stand today humbled task grate...
3  chief justice roberts president carter preside...
Name: speech text, dtype: object

Tips

There are still some useless words (such as “us”) after filtering out stopwords. So we
add custom stopwords and then remove them from speech texts.

Tips

The custom stopwords are “us”, “i”, “in”, “shall”.

5.3.6  Extracting high frequency words

Notes

We recorded the frequency of word occurrences in each of the four presidents’
speeches. The 5 words with the highest frequency are extracted as high frequency
words.

In[18] speech_1993Clinton = president_speech['speech text'][0]
freq_words_1993Clinton = pd.Series(speech_1993Clinton.split()).value_counts()[:5]

speech_2001Bush = president_speech['speech text'][1]
freq_words_2001Bush = pd.Series(speech_2001Bush.split()).value_counts()[:5]

speech_2009Obama = president_speech['speech text'][2]
freq_words_2009Obama = pd.Series(speech_2009Obama.split()).value_counts()[:5]

speech_2017Trump = president_speech['speech text'][3]
freq_words_2017Trump = pd.Series(speech_2017Trump.split()).value_counts()[:5]

Tips

The pd.Series().value_counts() function returns a series containing counts of unique
values.

331 Advanced Python Programming for Data Science

In[19] freq_words_2017Trump

Out[19] america	 19
american	 11
people	 10
country	 9
one	 8
dtype: int64

Tips

The high frequency words in Trump’s speech are “america”, “american”, “people”,
“country”, “one”. The word “america” appears 19 times in his speech.

In[20] plt.figure(figsize=(16,16))

fig,ax = plt.subplots(2, 2, figsize=(10,6))
plt.subplots_adjust(wspace=1.0, hspace=0.3)

ax[0][0].barh(freq_words_1993Clinton.index, freq_words_1993Clinton, color='red',
alpha=0.3)
ax[0][0].set_title("High-frequency words in Clinton's inaugural speech in 1993")

ax[0][1].barh(freq_words_2001Bush.index,  freq_words_2001Bush,  color='green',
alpha=0.3)
ax[0][1].set_title("High-frequency words in Bush's inaugural speech in 2001")

ax[1][0].barh(freq_words_2009Obama.index,  freq_words_2009Obama, color='yellow',
alpha=0.3)
ax[1][0].set_title("High-frequency words in Obama's inaugural speech in 2009")

ax[1][1].barh(freq_words_2017Trump.index, freq_words_2017Trump, color='teal',
alpha=0.3)
ax[1][1].set_title("High-frequency words in Trump's inaugural speech in 2017")

plt.show()

Out[20] <Figure size 1152x1152 with 0 Axes>

Tips

The horizontal bar charts of high frequency words are drawn with matplotlib.

 332 Python Data Science

Tips

The plt.subplots(2, 2) method stacks subplots in two directions.

5.3.7  Generating word clouds

Notes

Finally, we import the wordcloud package to generate word clouds for the speeches of
the four presidents, respectively.

In[21] # to generate the word cloud of Clinton's inaugural speech in 1993

from wordcloud import WordCloud
word_cloud = WordCloud(font_path='calibri.ttf',
 background_color='white',
 stopwords=stop_words)
word_cloud.generate(speech_1993Clinton)
plt.subplots(figsize=(8,5))
plt.imshow(word_cloud)
plt.axis('off')
plt.title("Word cloud of Clinton's inaugural speech in 1993")

Out[21] Text(0.5, 1.0, "Word cloud of Clinton’s inaugural speech in 1993")

In[22] # to generate the word cloud of Bush's inaugural speech in 2001

word_cloud.generate(speech_2001Bush)
plt.subplots(figsize=(8,5))
plt.imshow(word_cloud)
plt.axis('off')
plt.title("Word cloud of Bush's inaugural speech in 2001")

333 Advanced Python Programming for Data Science

Out[22] Text(0.5, 1.0, "Word cloud of Bush's inaugural speech in 2001")

In[23] # to generate the word cloud of Obama's inaugural speech in 2009

word_cloud.generate(speech_2009Obama)
plt.subplots(figsize=(8,5))
plt.imshow(word_cloud)
plt.axis('off')
plt.title("Word cloud of Obama's inaugural speech in 2009")

Out[23] Text(0.5, 1.0, "Word cloud of Obama’s inaugural speech in 2009")

In[24] # to generate the word cloud of Trump's inaugural speech in 2017

word_cloud.generate(speech_2017Trump)
plt.subplots(figsize=(8,5))
plt.imshow(word_cloud)
plt.axis('off')
plt.title("Word cloud of Trump's inaugural speech in 2017")

Out[24] Text(0.5, 1.0, “Word cloud of Trump’s inaugural speech in 2017”)

 334 Python Data Science

5.4  Image processing with OpenCV

Q&A

335 Advanced Python Programming for Data Science

5.4.1  Installing and importing opencv-python package

Notes

The command to download opencv-python package is “pip install opencv-python”.

Notes

Here, the module import name name(cv2) differs from the package name(opencv-
python). cv2 (old interface in old OpenCV versions was named as cv) is the name that
OpenCV developers chose when they created the binding generators.

In[1] # to import the opencv package

import cv2

Tips

OpenCV (Open Source Computer Vision Library) is an open-source library that
includes several hundreds of computer vision algorithms. In this chapter, we use the
haarcascades algorithm, which is a machine learning-based object detection algorithm,
for face detection.

5.4.2  Loading image from file

Notes

To load the image file “test.jpg” into the image object named “image,” you can use the
imread() method from the “opencv-python” package.

In[2] # to load(read) the mage file from the current working directory

image = cv2.imread("test.jpg")

Tips

The image file “test.jpg” is available in the learning resources for this textbook.

5.4.3  Converting a RGB image into Grayscale

Notes

In OpenCV-Python, it is necessary to convert an RGB image into grayscale before
using the faceCascade.detectMultiScale() function, as it expects grayscale inputs.

 336 Python Data Science

Notes

To display the converted grayscale image object “gray” in OpenCV-Python, we can
use the imshow() function and the waitKey() function from the cv2 module.

In[3] # to convert an image from colour to grayscale

gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

to show the grayscale
cv2.imshow("Showing gray image", gray)
cv2.waitKey(0)

Out[3] -1

Tips

The cv2.imshow() method is used to display an image in a window. Its argument
“Showing gray image” returns a string representing the name of the window in which
image to be displayed. Its argument gray refers to the image that is to be displayed.

Tips

The waitkey() function allows users to display a window for given milliseconds or
until any key is pressed.
Here, the waitkey(0) means that it will display the window infinitely until users
actually press any key.

5.4.4  Detecting faces

In[4] # to load the haarcascade frontalface classifier

faceCascade=cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_
default.xml")

to show the value of cv2.data.haarcascades
cv2.data.haarcascades

Out[4] 'C:\\ProgramData\\Anaconda3\\lib\\site-packages\\cv2\\data\\'

337 Advanced Python Programming for Data Science

Tips

A Haar-Cascade Classifier is a machine learning classifier that works with Haar-
like features. Haar-like features are digital image features widely used in object
recognition. For further detail, please refer to the paper “Viola, P., & Jones, M. (2001,
December). Rapid object detection using a boosted cascade of simple features. In
Proceedings of the 2001 IEEE computer society conference on computer vision and
pattern recognition. CVPR 2001 (Vol. 1, pp. I-I). Ieee.”

Tips

A range of Haar cascade XML files are provided in OpenCV, each of which holds
the Haar features for different objects. In this data science project, we employ a pre-
defined Haar cascade XML file (haarcascade_frontalface_default.xml) in order to
detect frontal faces in an image. You can access the list of Haar cascade XML files
from this link: https://github.com/opencv/opencv/tree/master/data/haarcascades.

Notes

In OpenCV-Python, we can use the CascadeClassifier.detectMultiScale() function to
detect faces in an image. This function takes an image as input and returns a list of
rectangles representing the detected faces.

In[5] faces=faceCascade.detectMultiScale(gray
,scaleFactor=1.1
,minNeighbors=5
,minSize=(30,30))

Out[5] 'C:\\ProgramData\\Anaconda3\\lib\\site-packages\\cv2\\data\\'

Tips

In the CascadeClassifier.detectMultiScale() function:
  1. � The scaleFactor is an argument that specifies how much the image size is reduced

at each image scale.
  2. � The minNeighbors is an argument that specifies how many neighbors each

candidate rectangle should have to retain it.
  3. � The minSize is an argument that determines the minimum size of the object you

want to detect.

Notes

In OpenCV-Python, we can use the cv2.rectangle() function to draw a rectangle on the
image for each detected face.

In[6] # to draw a rectangle on the image for each detected face

for (x,y,w,h) in faces:
cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2)

Tips

In the cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2) function:

(x,y) is the argument that determines the starting coordinates of the rectangle.

(x+w,y+h) is the argument that determines the ending coordinates of the rectangle.

(0,255,0) refers to the color of the border line of the rectangle to be drawn. For
example, (0,0,255) corresponds to the color red.

2 determines the thickness of the rectangle’s border line in pixels

 338 Python Data Science

https://github.com/opencv/opencv/tree/master/data/haarcascades

5.4.5  Showing images

Notes

We call the cv2.imshow() function to display the image with the detected face and the
added rectangle border.

In[5] # to show the image

cv2.imshow("Window Name", image)
cv2.waitKey(0)

Out[5] -1

5.4.6  Writing images

Notes

To write an image with rectangles according to the specified format in the current
working directory using OpenCV-Python, you can use the cv2.imwrite() function.

In[6] # to write the image

cv2.imwrite("test.png",image)
Out[6] True

339 Advanced Python Programming for Data Science

Exercises

[1]  Select the appropriate option to complete the following code.
	 import statsmodels.api as sm
	 #Set the super parameter of intercept
	 ()
	 X_add_const
	 Model = sm.OLS(y, X_add_const)

	 A. X_add_const=sm.add_constant(X)
	 B. X=sm.add_constant(X)
	 C. X_add_const=sm.add(X)

[2] � Which of the following founction will be used to execute the variance of array data when using
Python for statistical analysis?

	 A. data.mean()
	 B. data.median()
	 C. data.var()
	 D. data.std()

[3]  Which of the following is false of data consolidation?
	 A. Two tables can be stacked horizontally or vertically with the concat method.
	 B. Two tables can be stacked horizontally or vertically with the append method.
	 C. �When the argument axis in the concat function is 0, it indicates vertical operation, and when axis is 1,

it indicates horizontal operation.
	 D. �The argument join in the concat function indicates whether other indexes in the axial direction are

merged by intersection or union.

[4]  Which of the following statements about the characteristics of Min-max normalization is false?
	 A. The overall distribution of data will not change with Min-max normalization.
	 B. When the data is equal to the minimum value, the data will become 1 with Min-max normalization.
	 C. If the range of data is too large, the difference between the normalized data will be very small.
	 D. �If a value in the dataset is too large, the normalized value will be close to zero with Min-max

normalization.

[5]  Select the appropriate code to reduce the dimension of the column quantity.
	 import pandas as pd
	 import numpy as np
	 import os
	 data = pd.read_csv(‘data.csv’, header=0
	 sort_data = ____(data[[‘quantity’]])

	 A. pd.ravel
	 B. np.ravel
	 C. os.ravel

[6]  Which of the following is false of the regression algorithm?
	 A. �Linear regression is applicable to the case where there is a linear relationship between the dependent

variable and the independent variable.
	 B. �Logistic regression is generally applicable to the case where the dependent variable has two values: 1

and 0 (yes or no).
	 C. �Ridge regression is applicable to the case of multicollinearity between independent variables.
	 D. �Principal component regression is applicable to the case where there is no collinearity between

independent variables.

 340 Python Data Science

[7] � According to the generation mode of individual learners, ensemble learning can be roughly divided
into two categories. One is a parallelization method that can be generated simultaneously without
strong dependency between individual learners. The representative of this method is ()

	 A. boosting
	 B. bagging
	 C. decision tree
	 D. reboot

[8]  Which of the following algorithms has no corresponding API in sklearn?
	 A. Support vector machine
	 B. K nearest neighbor classification
	 C. Gauss naive Bayes
	 D. Bayes

[9]  Which of the following is not an evaluation indicator of the classification model?
	 A. Accuracy rate
	 B. Recall rate
	 C. Mean square error
	 D. ROC curve

10.  Which of the following is flase of the arguments in the train_ test_ Is function?
	 A. Test size represents the size of the test set.
	 B. Train size represents the size of the training set.
	 C. Random state represents random seed number, which by default is 1.
	 D. shuffle represents whether to sample with or without replacement.

[11]  Which of the following is not a method of the sklearn converter?
	 A. fit
	 B. transform
	 C. fit transform
	 D. transform fit

[12]  Which of the following is a package for Chinese natural language processing in Python?
	 A. NTLK
	 B. spaCy
	 C. Jieba

[13]  Which of the following function can be used to customize vocabulary?
	 A. pynlpir.AddUserWord()
	 B. nlpir.AddUserWord()
	 C. pynlpir.get_key_words()
	 D. pynlpir.nlpir.AddUserWord()

[14]  What are the features of text corpus?
	 A. Word count in text
	 B. Vector annotation of words
	 C. Part of speech tag
	 D. Basic dependency grammar
	 E. All of the above

[15]  Which of the following indicator can be used to calculate the distance between two word vectors?
	 A. Lemmatization
	 B. Euclidean distance
	 C. N-grams

341 Advanced Python Programming for Data Science

[16] Which of the following is false of the lifting algorithm?
	 A. �Each step of boosting algorithm will create a weak prediction model. Finally, all weak prediction

models will be accumulated and summarized to obtain a total model.
	 B. �The generation of each weak prediction model will depend on the gradient decline of the loss

function.
	 C. �GDBT and AdaBoost are both methods in boosting learning.
	 D. �AdaBoost can only use the decision tree (CART) as the weak classifier, and the loss function used by

GDBT is still the least squares loss function.

[17]  Which of the following is false of face recognition?
	 A. �Face recognition is a technology that can recognize or verify the identity of the subject in the image

or video.
	 B. �Face recognition has become one of the most studied topics in the field of computer vision and

biometrics.
	 C. �Faces in-the-wild have a high degree of variability.
	 D. �Face recognition is inherently invasive, which means that it is the most natural and intuitive biometric

method.

[18]  Which of the following is not a face recognition application?
	 A. Face unlock
	 B. Safety protection
	 C. Retinal recognition
	 D. Signature identification

[19]  Which of the following is not an application of face recognition technology?
	 A. �Automatically capture and scan records when people or vehicles enter and leave the community,

eliminating manual records and saving time and effort.
	 B. �Quickly extract the focus of attention in user comments, directly reflect the subjective feelings of

brands or products, facilitate market, operation, products and other relevant personnel to collect
market information, and adjust or optimize products and strategies.

	 C. �AI scanning and capturing instruments are used for face recognition and license plate recognition,
and the images captured through the network of recognition instruments are clustered and analyzed
by peers.

	 D. �The identification technology is used to classify and identify the resident population and floating
population in the community, and early warning the action track of suspicious persons in advance.

[20]  Which of the following statements about face recognition is true?
	 A. �The four features of face recognition include geometric features, model-based features, statistics-

based features and neural network-based features.
	 B. �The three main technologies of face recognition include face detection technology based on features,

face detection technology based on template matching and face detection technology based on
statistics.

	 C. �Face recognition is mainly based on human facial image features. How to recognize the facial changes
caused by posture has become one of the difficulties of this technology.

	 D. �All of the above

 342 Python Data Science

Appendix I  Best Python Resources for Data
Scientists
1  Websites

[1].	 python official website: https://www.python.org
[2].	 Python packages index: https://pypi.org/project/pip/
[3].	 Free Interactive Python Tutorial: LearnPython.org
[4].	 Learn R, Python & Data Science Online: https://www.datacamp.com/
[5].	 The pydata community for developers and users of open source data tools https://pydata.org/
[6].	 pystatsmodels: https://groups.google.com/forum/#!forum/pystatsmodels
[7].	 Python cheat sheet: https://ehmatthes.github.io/pcc/cheatsheets/README.html
[8].	 PEP 8: The Style Guide for Python Code: https://www.python.org/dev/peps/pep-0008/
[9].	 Kaggle Machine Learning and Data Science Community: https://www.kaggle.com
[10].	Python Weekly: https://www.pythonweekly.com/
[11].	The GitHub open source community: https://github.com/open-source
[12].	Stack Overflow: https://stackoverflow.com/

2.  Books
[1].	 �VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. O’Reilly

Media, Inc.
[2].	 �McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and

IPython.O’Reilly Media, Inc.
[3].	 Kirk, M. (2017). Thoughtful machine learning with Python: a test-driven approach.O’Reilly Media, Inc.
[4].	 Ramalho, L. (2015). Fluent Python: Clear, concise, and effective programming.O’Reilly Media, Inc.
[5].	 �Chambers, B., & Zaharia, M. (2018). Spark: The definitive guide: Big data processing made

simple.O’Reilly Media, Inc.
[6].	 Grus J. Data science from scratch: first principles with python[M]. O’Reilly Media, 2019.
[7].	 Lutz, M. (2013). Learning python: Powerful object-oriented programming.O’Reilly Media, Inc.
[8].	 �Matthes, E. (2019). Python crash course: A hands-on, project-based introduction to programming. No

Starch Press.

3.  Python Packages
[1].	 Data Wrangling: Pandas,Numpy,Scipy
[2].	 Data Visualization: Matplotlib,Seaborn,Bokeh,Basemap,Plotly,NetworkX
[3].	 Machin Learning: SciKit-Learn, PyTorch, TensorFlow, Theano,Keras
[4].	 Statistical analysis: Statsmodels
[5].	 �Natural Language Processing: Natural Language Toolkit (NLTK), Gensim CoreNLP,spaCy,TextBlob,

PyNLPl
[6].	 Web Scraping :Scrapy,Beautiful Soup, Requests,Urllib
[7].	 Image Processing:OpenCV,Scikit-Image, Mahotas,SimplelTK,Pillow

343 © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2

https://www.python.org
https://pypi.org/project/pip/
https://www.datacamp.com/
https://pydata.org/
https://groups.google.com/forum/#!forum/pystatsmodels
https://ehmatthes.github.io/pcc/cheatsheets/README.html
https://www.python.org/dev/peps/pep-0008/
https://www.kaggle.com
https://www.pythonweekly.com/
https://github.com/open-source
https://stackoverflow.com/
https://doi.org/10.1007/978-981-19-7702-2

Appendix II  Answers to Chapter Exercises
Chapter I  Python and Data Science

1.B 2.A 3.B 4.B 5.D

6.C 7.D 8.B 9.D 10.C

Chapter II  Basic Python Programming for Data Science

1.C 2.B 3.B 4.D 5.A

6.D 7.D 8.B 9.C 10.C

11.A 12.C 13.C 14.D 15.B

16.C 17.C 18.B 19.C 20.D

Chapter III  Advanced Python Programming for Data Science

1.A 2.C 3.D 4.C 5.B

6.D 7.C 8.D 9.B 10.A

11.D 12.C 13.C 14.D 15.A

16.B 17.C 18.A 19.A 20.C

Chapter IV  Data wrangling with Python

1.C 2.B 3.C 4.A 5.B

6.B 7.B 8.D 9.B 10.B

11.C 12.A 13.B 14.C 15.B

16.B 17.D 18.C 19.D 20.D

Chapter V  Data analysis with Python

1.A 2.C 3.B 4.B 5.B

6.D 7.B 8.D 9.C 10.C

11.D 12.C 13.D 14.E 15.B

16.D 17.D 18.D 19.B 20.D

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2

345 

https://doi.org/10.1007/978-981-19-7702-2

	Preface
	Contents
	1. Python and Data Science
	1.1 How to learn Python for data science
	1.2 How to setup my Python IDE for Data Science
	1.3 How to write and run my Python codes
	1.3.1 Inputs
	1.3.2 Outputs
	1.3.3 Errors and warnings
	1.3.4 External data files
	1.3.5 Tips for Python programming

	Exercises

	2. Basic Python Programming for Data Science
	2.1 Data Types
	2.1.1 Checking data types
	2.1.2 Testing data types
	2.1.3 Converting data types
	2.1.4 Built-in data types
	2.1.5 Sequences

	2.2 Variables
	2.2.1 Defining variables
	2.2.2 Dynamically typed language
	2.2.3 Strongly typed language
	2.2.4 Variable naming rules
	2.2.5 Case-sensitivity
	2.2.6 Variable naming rules
	2.2.7 Checking IPython variables
	2.2.8 Checking Python keywords
	2.2.9 Checking all defined variables
	2.2.10 Deleting variables

	2.3 Operators and Expressions
	2.3.1 Common used operators
	2.3.2 Built-in functions
	2.3.3 Math modules
	2.3.4 Precedence and associativity

	2.4 Statements
	2.4.1 Writing a statement in a line
	2.4.2 Writing multiple statements in a single line
	2.4.3 Splitting a statement into multiple lines
	2.4.4 Compound statements
	2.4.5 Empty statements

	2.5 Assignment statements
	2.5.1 Assigning objects
	2.5.2 Chained assignment statements
	2.5.3 Augmented assignment statements
	2.5.4 Sequence unpacking
	2.5.5 Swapping two variables

	2.6 Comments
	2.6.1 Line comments
	2.6.2 Block comments

	2.7 If statements
	2.7.1 Basic syntax
	2.7.2 Elif statement
	2.7.3 Ternary operators
	2.7.4 Advanced syntax

	2.8 For statements
	2.8.1 Basic syntax
	2.8.2 The range() function
	2.8.3 Advanced syntax

	2.9 While statements
	2.9.1 Basic syntax
	2.9.2 Advanced syntax

	2.10 Lists
	2.10.1 Defining lists
	2.10.2 Slicing
	2.10.3 Reversing
	2.10.4 Type conversion
	2.10.5 the extend and append operator
	2.10.6 List derivation
	2.10.7 Insertion and deletion
	2.10.8 Basic functions

	2.11 Tuples
	2.11.1 Define tuples
	2.11.2 Main features
	2.11.3 Basic usage
	2.11.4 Tuples in data science

	2.12 Strings
	2.12.1 Defining strings
	2.12.2 Main features
	2.12.3 String operations

	2.13 Sequences
	2.13.1 Indexing
	2.13.2 Slicing
	2.13.3 Iteration
	2.13.4 Unpacking
	2.13.5 Repeat operator
	2.13.6 Basic Functions

	2.14 Sets
	2.14.1 Defining sets
	2.14.2 Main features
	2.14.3 Basic operations
	2.14.4 Sets and data science

	2.15 Dictionaries
	2.15.1 Defining dictionaries
	2.15.2 Accessing dictionary items
	2.15.3 Dictionary and data science

	2.16 Functions
	2.16.1 Built-in functions
	2.16.2 Module Functions
	2.16.3 User-defined functions

	2.17 Built-in functions
	2.17.1 Calling built-in functions
	2.17.2 Mathematical functions
	2.17.3 Type conversion functions
	2.17.4 Other common used functions

	2.18 Module functions
	2.18.1 import module name
	2.18.2 import module name as alias
	2.18.3 From module name import function name

	2.19 User-defined functions
	2.19.1 Defining user-defined functions
	2.19.2 Function docStrings
	2.19.3 Calling user-defined functions
	2.19.4 Returning values
	2.19.5 Parameters and arguments
	2.19.6 Scope of variables
	2.19.7 Pass-by-value and pass-by-reference
	2.19.8 Arguments in functions

	2.20 Lambda functions
	2.20.1 Defining a lambda function
	2.20.2 Calling a lambda function

	Exercises

	3. Advanced Python Programming for Data Science
	3.1 Iterators and
	3.1.1 Iterable objects vs. iterators
	3.1.2 Generator vs. iterators

	3.2 Modules
	3.2.1 Importing and using modules
	3.2.2 Checking built-in modules list

	3.3 Packages
	3.3.1 Packages vs modules
	3.3.2 Installing packages
	3.3.3 Checking installed packages
	3.3.4 Updating or removing installed packages
	3.3.5 Importing packages or modules
	3.3.6 Checking Package Version
	3.3.7 Commonly used Packages

	3.4 Help documentation
	3.4.1 The help function
	3.4.2 DocString
	3.4.3 Checking source code
	3.4.4 The doc attribute
	3.4.5 The dir() function

	3.5 Exception and errors
	3.5.1 Try/Except/Finally
	3.5.2 Exception reporting mode
	3.5.3 Assertion

	3.6 Debugging
	3.6.1 Enabling the Python Debugger
	3.6.2 Changing exception reporting modes
	3.6.3 Working with checkpoints

	3.7 Search path
	3.7.1 The variable search path
	3.7.2 The module search path

	3.8 Current working directory
	3.8.1 Getting current working directory
	3.8.2 Resetting current working directory
	3.8.3 Reading / writing current working directory

	3.9 Object-oriented programming
	3.9.1 Classes
	3.9.2 Methods
	3.9.3 Inheritance
	3.9.4 Attributes
	3.9.5 Self and Cls
	3.9.6 __new__ () and __init__()

	Exercises

	4. Data wrangling with Python
	4.1 Random number generation
	4.1.1 Generating a random number at a time
	4.1.2 Generating a random array at a time

	4.2 Multidimensional arrays
	4.2.1 Createting ndarrays
	4.2.2 Slicing and indexing ndarrays
	4.2.3 Shallow copy and deep copy
	4.2.4 Shape and reshape
	4.2.5 Dimension and size
	4.2.6 Evaluation of ndarrays
	4.2.7 Insertion and deletion
	4.2.8 Handling missing values
	4.2.9 Broadcasting ndarray
	4.2.10 Sorting an ndarray

	4.3 Series
	4.3.1 Creating Series
	4.3.2 Working with Series

	4.4 DataFrame
	4.4.1 Creating DataFrames
	4.4.2 Index or columns of DataFrames
	4.4.3 Slicing DataFrames
	4.4.4 Filtering DataFrames
	4.4.5 Arithmetic operating on DataFrames
	4.4.6 Descriptive analysis of DataFrames
	4.4.7 Sorting DataFrames
	4.4.8 Importing/Exporting DataFrames
	4.4.9 Handling missing values with Pandas
	4.4.10 Grouping DataFrames

	4.5 Date and time
	4.5.1 Creating a time or date object
	4.5.2 Parsing a string to a time or date object
	4.5.3 Getting current local data or time object
	4.5.4 Evaluating the difference between two date or time objects
	4.5.5 Setting a time or date object as the index of Pandas
	4.5.6 The pandas.period_range() method

	4.6 Data visualization
	4.6.1 Matplotlib visualization
	4.6.2 Adjusting plot attributes
	4.6.3 Changing the type of a plot
	4.6.4 Changing the value range of the axes of a plot
	4.6.5 Adjusting the margins of a plot
	4.6.6 Creating multiple plots on the same coordinates
	4.6.7 Adding an Axes to the current figure or retrieving an existing Axes
	4.6.8 Saving plots to image files
	4.6.9 Creating more complicate plots
	4.6.10 Data visualization with Pandas
	4.6.11 Data visualization with Seaborn
	4.6.12 Data visualization cases projects
	Exercises

	5. Data analysis with Python
	5.1 Statistical modelling with statsmodels
	5.1.1 Business understanding
	5.1.2 Data loading
	5.1.3 Data understanding
	5.1.4 Data wrangling
	5.1.5 Model selection and hyperparameter tuning
	5.1.6 Fitting model and summarizing the Regression Results
	5.1.7 Model evaluation
	5.1.8 Assumptions testing
	5.1.9 Model optimization and re-selection
	5.1.10 Model application

	5.2 Machine learning with scikit-learn
	5.2.1 Business understanding
	5.2.2 Data loading
	5.2.3 Data understanding
	5.2.4 Data wrangling
	5.2.5 Model selection and hyperparameter tuning
	5.2.6 Model training
	5.2.7 Predicting with a trained model
	5.2.8 Model evaluation
	5.2.9 Model optimization and application

	5.3 Natural language understanding with NLTK
	5.3.1 Business understanding
	5.3.2 Data loading
	5.3.3 Data understanding
	5.3.4 Text normalization
	5.3.5 Tokenization
	5.3.6 Extracting high frequency words
	5.3.7 Generating word clouds

	5.4 Image processing with OpenCV
	5.4.1 Installing and importing opencv-python package
	5.4.2 Loading image from file
	5.4.3 Converting a RGB image into Grayscale
	5.4.4 Detecting faces
	5.4.5 Showing images
	5.4.6 Writing images
	Exercises

	Appendix I Best Python Resources for Data Scientists
	Appendix II Answers to Chapter Exercises

