Chaolemen Borjigin

Python Data
Science

T REERREEY bR L @ Springer

=w=1 http://www.phei.com.cn

Python Data Science

Chaolemen Borjigin

Python Data Science

@ Springer

Chaolemen Borjigin
Renmin University of China
Beijing, China

ISBN 978-981-19-7701-5 ISBN 978-981-19-7702-2 (eBook)
https://doi.org/10.1007/978-981-19-7702-2

The print edition is not for sale in China (Mainland). Customers from China (Mainland) please order the print book from: Publishing House of
Electronics Industry.
ISBN of the Co-Publisher’s edition: 978-7-121-41200-4

© Publishing House of Electronics Industry, Beijing, China 2023

Jointly published with Publishing House of Electronics Industry, Beijing, China

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is con-
cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar method-
ology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publishers, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the
date of publication. Neither the publishers nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

https://doi.org/10.1007/978-981-19-7702-2

Preface

“Writing a textbook™ holds immeasurable merit as it allows us to save others’ time with our own. In today’s
impetuous and realistic society, I have dedicated myself to writing textbooks, knowing that they may not be
counted among my personal achievements. However, I find immense joy in the process of writing this textbook.
As the old saying goes, “If you’re afraid, don't do it; if you’re doing it, don’t be afraid!” It has taken me 18
months of dedicated effort simply because I want to utilize my time to save the valuable time of the readers.

“Writing a textbook” requires an exceptional top-down design and stepwise refinement. Through years of teaching
experience, I have come to realize the urgent need for an excellent Python textbook for the education of data
science and big data professionals. Existing textbooks face several issues: firstly, they teach (or learn) Python as
if it were Java or C, failing to capture the unique characteristics of Python. Secondly, the style of “knowledge
first, code later” and the dominance of knowledge over practical implementation seem to invert their proper
order of importance. Thirdly, there is no clear distinction between Python textbooks used for data science and
computer science, leading to confusion. Lastly, some authors treat the readers (or themselves) as programming
novices, neglecting the fact that most readers possess prior knowledge of Java or C and are learning Python as a
second programming language. They do not require repetitive explanations of low-level concepts or redundant
explanations of the same knowledge in different languages. Overcoming these limitations and exploring new
teaching and textbook-writing patterns was my original intention in writing this book. Whether or not I have
achieved this goal remains to be seen and depends on your careful reading and fair judgment.

“Writing a textbook™ necessitates the knowledge and practice of countless resources. Throughout the writing
process, I extensively referred to monographs, textbooks, papers, open-source projects, and original data. The
reference list contains detailed citations for the sources I have used. However, I may have inadvertently missed
a few. If so, I sincerely apologize to the relevant scholars. This book also incorporates data science research and
engineering projects completed by my team since 2012, as well as the questions and discussions raised by my
students. The course slides, raw data, source codes, and errata list for this textbook can be found at github.com.
For further information, please contact me at chaolemen@ruc.edu.cn.

“Writing a textbook™ is impossible without the help of others. The leaders and editors at Springer Press and
Publishing House of Electronics Industry, especially editor Zhang Haitao, have made significant contributions
to the publication of this book. I would like to express my gratitude to the Ministry of Education-IBM Industry-
University Cooperation Collaborative Education Project for their funding and support. Special thanks go to Zhang
Chen, Xiao Jiwen, Liu Xuan, Tianyi Zhang, Meng Gang, Sun Zhizhong, Wang Rui, Liu Yan, Yang Canjun, Li
Haojing, Wang Yuqing, Qu Hanqing, Zhao Qun, Li Xueming, Ji Jiayu, and other students at Renmin University
of China for their invaluable proofreading assistance.

“Writing a textbook™ is a lengthy process of iterative refinement. This edition may still have some shortcomings,
and I genuinely welcome your feedback and suggestions. This textbook is my third book after Data Science and
Data Science Theory and Practice. Someone once said to me, “Prof. Chaolemen, you have already achieved
so much, why do you still work so tirelessly? You will become the number one in the field of data science.” I
replied, “No, that is not my purpose. I have undertaken all these endeavors with the belief that I strive to be the
one who works the hardest and is most willing to invest time and energy in this field. As for other matters, I am
not concerned. My hope is that my dedication and effort will inspire you to do the same!

In this textbook, I have aimed to provide a comprehensive and cohesive guide to Python programming. I have
taken great care in addressing the shortcomings I observed in existing textbooks. Rather than treating Python as a
mere translation of Java or C, I have emphasized its unique features and characteristics. The content is structured
in a logical and progressive manner, ensuring that knowledge and practical implementation are presented in the
right order of importance.

mailto:chaolemen@ruc.edu.cn

VI Preface

Throughout the writing process, I have drawn from a wide range of resources, including monographs, textbooks,
research papers, open-source projects, and my team's own data science endeavors. The reference list provides
detailed citations for the sources I have used. While I have made every effort to be thorough, I acknowledge that
there may be a few omissions. For any oversights, I sincerely apologize to the respective scholars.

I am immensely grateful to the leaders and editors at Springer Press and Publishing House of Electronics
Industry, particularly editor Zhang Haitao, for their invaluable contributions to the publication of this book.
Additionally, T would like to express my appreciation to the Ministry of Education-IBM Industry-University
Cooperation Collaborative Education Project as well as The Quality Textbook Support Project for Graduate
Students at Renmin University of China for their support and funding.

I extend my heartfelt thanks to Zhang Chen, Xiao Jiwen, Liu Xuan, Tianyi Zhang, Meng Gang, Sun Zhizhong,
Wang Rui, Liu Yan, Yang Canjun, Li Haojing, Wang Yuqing, Qu Hanqging, Zhao Qun, Li Xueming, Ji Jiayu, and
other students at Renmin University of China for their diligent proofreading of the book.

“Writing a textbook™ is a laborious process that requires dedication, perseverance, and continuous refinement.
While I have strived for excellence in this edition, I acknowledge that there may still be areas for improvement.
I genuinely welcome your feedback and advice, as it will contribute to the future enhancement of this textbook.

Once again, [want to emphasize that my purpose in writing this textbook is to share my knowledge and contribute
to the field of data science. It is my hope that through your engagement with this book, my efforts will become
your efforts, and together we can advance the understanding and application of Python programming in the
realm of data science.

Thank you for embarking on this data science journey with me.

Chaolemen Borjigin
May 13, 2023

Contents

1. Python and Data SCIEIICEccc.uiiiiiiiiiiiieeeee ettt ettt ettt e et e st e st e e s bt e e sbeeebeesabeesabeesaneenns 1
1.1 How to learn Python fOr data SCIENCEccouiiiiiiiiiiiieiceteete ettt 2
QA ettt bt ettt et a e n e a et e tebe bt bt bt st e st ententetennan 2

1.2 How to setup my Python IDE for Data SCIENCEccocerviiriirieniiiiiiieieesieeieee sttt 5
QEA ettt ettt bbbt bbbt et aes 5

1.3 How to write and run my Python COES.........cciiiiiiiiiiiieiiiiecieeee et 8
QA ettt bbbt bt h bttt et bbbt bttt ne st e tetetan 8

T3 T THPULS ot ettt ettt e et e sab e e b e et st e st e et e st e bt e eaae s 9

1.3.2 OULPULS. ..ttt ettt ettt ettt e et e e et e e ate e bt e e bt e eateeeaseesabeeseeeasteeabeeenbeesaseeanseesaneeneean 10

1.3.3 ErTOrS Qnd WAITHINZS . ..evventieiieiieeiteeiteteeteeetesttesttenteeaeesstesstenseenseensesseeseenseensesseenseenseensesnsensean 11

1.3.4 EXternal data fIlESc.ooiiiiiiiiie ettt et ettt et n 12

1.3.5 Tips for Python programming............cceeceeierierienieeieesiesteneeete et see st et seeesseeseensesneeseees 13
EIXETCISES -ttt sttt et ettt s a e e bt ettt et a ettt b ettt ennenee 16
2. Basic Python Programming for Data SCIBNCE.........cccuirviiriiniiiiiiiiiiceee ettt 19
B B D - 1 T) o TSRS PSTUURI 20
QEA ettt b ettt nes 20

2.1.1 CRECKING AAtA EYP@S ..uveietieetieeiieeit et ettt te et e et esibeesiteeateeabeeeabeeeabeesaeeesbeeeaseesaseesabeesnseanns 21

2.1.2 TeStNGZ AALA LYPES -veurerrierieieeteritesteente et sttestteteeteettestee bt enteeatesbeesbeenseeasesseesseenseensesseesseenseans 22

2.1.3 CONVETtING AALA LYPES ..eeeveeetieeiiieeiieeite ettt et te et e et e sttt e stteeateeabeeeabeeanseesaeeesseeeaseeeaseesabeesnseenns 23

2.1.4 BUIIE-IN QALA EYP@S..eurertietieiieteetiestteste et st e st et et et e stee bt eteeatesbtesbeenseentesaeesseenseensesaeesseenseans 24

2.1.5 SEQUETICES ...ttt ettt ettt ettt ettt e et e e ab e e ateebteeabee st e e eabeeeateeebbeebeeenbeeeabeesnreenns 26

2.2 VATIADIES ...ttt ettt ettt a e et nr e e eae 27
QEA e ettt b be et 27

2.2.1 DefiNing VAriabIesc.coiiuiiiiiiiiieiie ettt et ettt ettt e sb e et sbee b e sareenae 28

2.2.2 Dynamically typed JangUagecooueioiiriiiiiriieieeieeeeste ettt 28

2.2.3 Strongly typed LanZUAZEceeuieiuiiiiieeiie ettt ettt ettt ettt ebee e e e 28

2.2.4 Variable NAmMING TUIEScociiiiiiiiiieieeie ittt sttt et sbtesb e et et satesbeeneeens 29

2.2.5 CaS-SENSILIVILY w.euveuririieteeteetenit sttt stt sttt ettt e sbe et e et e satesbtesaeeateeesesbeesaeeaeeanesaeenbeenneens 29

2.2.6 Variable NAmMING TUIEScccuiiiiiiiiieieee ettt ettt ettt et sb e et ebesaeesbeenteens 30

2.2.7 Checking IPython variablescoiiiiiiiiiiiieieeie ettt et 31

2.2.8 Checking Python KEYWOTASooiiriiiiiiiiiiiieiieieete ettt sttt st s 32

2.2.9 Checking all defined variables..........cccceouiriiriiriiiiiiniinieeeeteeee ettt 32

2.2.10 Deleting VAriablescc.eeruiriiriiriieiieie ettt ettt et sttt ettt st sbe et ens 32

2.3 Operators and EXPIESSIONS.ceiuiiriiriiiiiniieie ettt ettt ettt st sb ettt e s bt e bt etesatesbeesbeenteeaee 34
QEA e bbb b bbbt h e bbbt b et e b aen 34

2.3.1 COMMON USEA OPETALOTS ...veuveeriiieiietienteeitesttenteeteeete st esteebeestesbtesbeeseenbeesbesstenseenseensesnsenaean 37

2.3.2 BUIIt-IN FUNCHOMS ..ttt ettt ettt ettt saeeae e s saeenneeas 41

2.3.3 Math MOAUIESccoeiiiiiiiiiiiieieeeee ettt s 42

2.3.4 Precedence and aSSOCIALIVILYeevuiiriieiriieiiieeieeei ettt ettt sttt et e bt et eeabeesabeesaeeenae 43

24 SEABINEIILS ...eevveeiteeieeettete ettt ettt et s bt et et e st e s bt et e et s bt e s bt e bt e aaesaeesbe et e eaeesaeesae e bt et seeesaeenneeaneeae 44
QA ettt b b e bttt a sttt e et e be bt bt bt s e st ententetenan 44

2.4.1 Writing a Statement N @ TNcoouiiiiiiiiiiiiiieieeeee ettt s 45

2.4.2 Writing multiple statements in a single lineccociviiiiiiiiiiiiniceeee 45

2.4.3 Splitting a statement into MUItIPIE TINEScc.eiiiiiiiiiiiiiii e 46

2.4.4 Compound STALEIMENIES.eeueeuieieieieteete ettt ettt ettt sttt e ee e e e s saesae e e enn s eaene 46

2.4.5 EMPLY SEALEITIEILS ¢...eeiuttieiieetieeitee sttt eite et e et e et e sttt e suteesateeabeeeabeesabeeeateesaeeenbbeebeesabeesabeennbeenns 48

VIII Contents

2.5 ASSIZNMENE STALEIMICIIEStiiuiietieetie et ie ettt ettt ettt et e et e e et e eeateesbbeeabeeeabeesabeesabeeaseeenbeeenbeeenbeesabeesaseananean 49
QEA e ettt 49
2.5.1 ASSIZNING ODJECES c.uueeiutiiitieetie ettt ettt ettt et et e et e esabeeateeabeeeabeeenbeesaseesbbeenbbeeseesabeesnbeanns 50
2.5.2 Chained asSigNmEent SLALEIMEIILSeevveerverurertiertieteetesitesteesteetesitesteeteetesatesbeenseesesaeesbeenseens 50
2.5.3 Augmented assigNMENt SLALEIMEIIESceiueieiuiieiieatieetee it eriteebteebeeebeesiteesbbeesbeeebeesabeesabeenns 50
2.5.4 SeqUENCE UNPACKINEZeevviiiiiiiiiieitieste ettt ettt ettt et sb e sbe et et esatesbe e bt ensesatesbeenaeens 51
2.5.5 SWaPPING tWO VATIADIESeoutiiiiiieiiieiie ettt ettt et sat e eaee e e sabeeas 52
2.0 COMUIIEIILS ...ttt et sttt ettt et s bt ettt e st e s bt et et e s bt e s bt e bt eaaesaeesbe e bt emteeaeesaeesbeemneeanesaeenbeenneenne 53
QA ettt bt bt heea e a e e a et et e te et e bt bt bt st et entententetas 53
2.6.1 LINE COMIMENLSveiuiiriiiiiiiieiiritenttente ettt ettt sttt et e et saee bt ebeesaesatesaeeneemnesanesaeenneens 54
2.6.2 BIOCK COIMIMENILSeiieiieiieeiieeiiesiieesieesiteetteeteeeteeseseessseesseenseesnseeanseesnseessseensseenseesnseesnseenns 54
B A § N v 1<) 111 L £ STUUS 56
QEA e bbbt b ettt b ettt et a e 56
2.7.1 BASIC SYMEAX c.eetteutieiteittenttete ettt sttt ettt sb e ettt e et sbt e s bt et e e atesbtesbe e bt et e sbtesbeebeeabesatesbeenbeens 56
2.7.2 BIE SEALETIICNT.....cvetiiieiieiieiietetentest ettt ettt ettt ettt et eb bbb b et bt sbe bt b seesnenaennenaes 57
2.7.3 TEINATY OPETALOTS ...cevevientienteeuteritesttenteeteeetesbtesbeeateeatesbtesbeebeeatesbeesbeeateeatesbtesbeebeenbesatesbeenaeens 58
2.7.4 AAVANCEA SYNMEAX .eeutteiniiiiiiietie ettt ettt ettt et e sttt e bt e bt e s bt e et e e sabeesbbeenbeeebeesabeesabeenns 58
2.8 FOT SEALEIMEINLS ..c.euviieiieiieietetent ettt ettt ettt ettt ettt b sttt b et s bbbt ebe et et et e sbesbesbeebeeseennennennenee 60
QA et b e bbbt bt a e a ettt bbbt n et nt e tentetan 60
2.8.1 BSIC SYMEAX 1.veeutieuiieiteeiieetiete et et e stte bt et e eatestte bt et e eatesate st enteeasesatesbeenseensesstesseenseensesntesseenseans 61
2.8.2 The 1ange() TUNCHIONcccuiiiitiieiie ettt ettt et e et et e et e et e e sateesseeeseeenbeesnneanns 61
2.8.3 AAVANCE SYNMEAX c..viruiiiiiiiieiiete ettt et ettt e bt et e stte s bt e bt eatesatesbeenteensesstesseeseensesnresseenseens 62
2.9 WHILE STALBIMNEILSeovevieiienienieteriesteett ettt ettt ettt et et b et ae bt eae et e e s e s bt sbesbe e eseennennennenne 64
QEA ettt b bbbt h e h et b et bbbt bt bt et ene et e beaen 64
2.9.1 BASIC SYMEAX 1..eetieuiieiieitieettete ettt st et et e eate st te bt et e eatesuee st e enteeatesaeesbeenseensesatesbeebeensesatesseenteens 65
2.9.2 AdVANCEA SYNLAX c..veutiriiiiiiiieteritest ettt ettt et ettt e bt et sbt e sbe et et e satesbe e bt ete st e naeenteens 65
2100 LSS ettt b et h bt et s bt bt et eae e s he e eh e et sbeenbeenre e 67
QEA et a e et 67
2.10.1 DEIINING TISES 1.ttt ettt ettt ettt et e st et e et e e bt e et e e sateesbbeebeeenbeesabeesabeanns 68
2102 STCINE .ttt ettt b et ettt sb et e bt e st e s bt e sb e et e eatesbtesbe et e eatesatesbeenbeenseeatesbeenteens 70
2.10.3 REVEISINE ..ttt ettt ettt ettt ettt ettt et e et eeab e e sttt ebteeabeeeabeeeateeeaseenbteabeeenseesabeesnreanns 71
2.10.4 TYPE CONMVETSION ...euteereiienieeiteeitesttesteeteeitesttesteenteeatesutesbeenteeatesbtesbeenseensesstesbeeseensesasesbeenseans 73
2.10.5 the extend and apPend OPETALOTc...eeiuiiiitiiiiiieiie et ettt et et e et et e st e e sbeeebeesbeesabeenns 73
2.10.6 LSt AETIVALION ..ottt ettt ettt et snenes 74
2.10.7 Insertion and delEtIONcocueriiriiniiiiieiiiii ettt sttt et nae e 76
2.10.8 BaSIC fUNCHIONS ...ttt ettt st nes 77
2UTT TUPLES et s h et 82
QEA et h bbbttt b bttt et beaes 82
2.11.1 DefINe TUPIES ...ttt s 83
2.11.2 MAIN FEALUTES ...ttt ettt ettt ettt sae et et saeeae e esaeesaeenneens 84
2. 11.3 BASIC USAZE ..ttt ettt ettt sttt et 87
2.11.4 Tuples iN data SCIETICEeeeuieeuiieriiieiie ettt ettt ettt ettt et e et e et e st esbteenbeesabeesabeesabeenns 88
212 SEIINES ettt ettt a e ettt e b e e a bt e eh et e bt e bt e et e eab e e ea bt e bt e e bt e e bt e e bt e st e e sabeeaae s 90
QA ettt bt bt he et e a e a et e be et et e bbbt st et entententeaan 90
2.12.1 DEIINING SIINZS. ceuuttittietieitte et ettt ettt ettt e et e e sat e e bt e eabe e e bt e et e esaseesbbeenbeeebeesabeesabeenns 91
2.12.2 IMLAIN FRALUTESeeuveeeieeiieetieeite et e et e ettt e e e teeebeeseseesaseesbeenseeenseeenseasnseessseensseenseesnseesnseanns 92
2.12.3 StrINZ OPETALIONS ...ceeueiieiiieiieeiiee ettt ettt ettt ettt e et esat e e bt e eab e e s bt e et e e sabeesbbeenbbesbeesabeesabeenns 93
2,13 SEQUEIICES. ...ttt ettt ettt e st e eat e e b et e b b et eab e e e a bt e bt e e bt e et e et e e st e e sabeeaae s 98
QA ettt bbbttt a sttt be bbbt n et e st e tenbeaan 98
2131 INAEXINEZ .ttt ettt ettt ettt et et e bt e bt et e satesbe et e enbesateebeebeenbeeatesaeenbeens 99

2132 SHCINZ ..ttt 99

Contents IX

2133 TEETALION ...ttt ettt ettt ettt ettt ettt s b et eb e ebe et e st et e b et e sbesbeebeebeebeennennensentens 100
2134 UNPACKINEttt ettt sttt sttt et sbe e bt ettt sbeesbe e e eaee 100

2.13.5 REPEAL OPCTALOTeeiutiiiuiieeiteeeetee ittt ettt e et e sttt e bt e et e st esabeeabbe e bt e eabeeeabeesabeesaseenaaean 101

2.13.6 BASIC FUNCHIONS.eiiiiiieiiieiie ettt ettt e et e st e et e e s nteesneeeseeenees 102

214 SES .ttt b bbbt h st b et bt e bt bt e bt b £ ea e eaten b et et et e bt ebeebeeb e e st et enbebenten 105
QEA ettt ettt a et snenen 105

2,141 DEIINING SELS c...eeeuiiteiieetieetie et ettt ettt et e et e et e st e e steeestteebeeeabeesabeessseeseeenseeenseasnseesaseenanean 106

2.14.2 MAIN TRALUIES ...cuveviiieiieiieiteieientestest ettt ettt ettt ettt b b s bt st eae b ennennennennens 106

2.14.3 BASIC OPETALIONSceeutiieutieeutieeiteesiteertteeteeeteesteesateesteeesseeenseesaseesaseessseanseeenseeenseesaseesaseesnnean 107

2.14.4 Sets and data SCIBIICEeveveriiriirieriiriteieetetetetente ettt et et et r et st st see b seennennesnennens 109

2,15 DICHOMNATIES «.cuenveneieeteete ettt ettt sttt ettt ettt bt e b e sttt eae e e b et et e satsueeueeseessesnennennenens 110
QEA et bbbttt ettt b e bt bbbt et et benten 110

2.15.1 DefiNing diCHONATIES. ...c.verveerieteriiertiettete et steste et eite st e st ebe et e tesste bt esbeenteennesseenbeenseenes 111

2.15.2 AccesSING diCHONATY TEEINIS ..ee..vieiuiieiieeiieetie et et e ette et e et e et e e st et e enbeeebeeenteesabeesaseesaeean 111

2.15.3 Dictionary and data SCIBIICEcc.verteertieruirieriieritesteetesitesiteste et etesate bt e bt ebesaesbeenseenseenes 113

2160 FUNCHOMS ...ttt ettt s et ettt s e s sa et e bt bt ebe et eane s ennenenens 114
QEA e bbbttt et b e bbbt bbbttt 114

2.16.1 BUilt-In fUNCHONS ...ttt st 115

2.16.2 MOAUIE FUNCHOMScvviiiiiieiieiieeitesieettete ettt ettt sttt s 115

2.16.3 User-defined fUNCHONSc..ccueriiriiriiriiiieieeeeeieeerese ettt 115

2,17 BUIE-TN FUNCLIONStiieiiieeiieeite ettt ettt st et et e e tteebeeeebeesabeesbeesseeanseeensaeanseessseessaeenseeenseesnsennns 117
QEA ottt ettt h e bbbttt e sttt 117

2.17.1 Calling built-in fUNCHIONSc.eeiiiiiiiiiiiiee et 118

2.17.2 Mathematical fUNCHONS ...c..eoouiriirieriieiieieetee ettt 118

2.17.3 Type conversion fUNCHONScceoiriiiriiiiieieee ettt 119

2.17.4 Other common USed fUNCLIONScouveriieiiriiiieieteee ettt 120

2.18 MOAUIE FUNCHIONS ...ttt ettt ettt ettt sb sttt et est et e bt s bt b sbeebeesaesnensennennens 124
QA et bbbt bt bt a e st et e b et et e bbbt st e nt et entenbenten 124

2.18.1 IMPOTrt MOAUIE NAIMEeiiiiiiiiiiiiieiite ettt ettt et e s saae s 124

2.18.2 import module Name as AlHAScceeviiriiriiiiiieeeete e 126

2.18.3 from module name import fuNCON NAMEecueervieiirierieiiee et 126

2.19 User-defined fUNCHOMNSccceteiiriiriiriininerieeiteeetetet ettt ettt ettt ae bbbt sbe bt be et esaennennennens 127
QA et bbbt e a ettt et e bt bbbt st et et e benten 127

2.19.1 Defining user-defined fUNCHIONS.eertiriiriiiieiiettee et 128

2.19.2 FUNCLION AOCSIIINEZS « ..ottt ettt ettt ettt sttt et e aae b e b e 130

2.19.3 Calling user-defined fUNCLIONSccuertieriiriiiierietee ettt 130

2.19.4 REUINING VAIUES ..c..veriiiiiiiiiiieitieitei ettt ettt st sttt et sbe e 131

2.19.5 Parameters and argUIMEIILSc.eeverteertierieetenierieeteeteentesteenteeseesesseesseenseesesnsesseesseenseenes 132

2.19.6 ScOPE Of VATIADIESc..eeviiiiiiiieiieeitettet ettt 133

2.19.7 Pass-by-value and pass-Dy-TEfeTeNCe.cecuerieriieriieiirierteeee et 135

2.19.8 Arguments iN fUNCHONSc.eeuiriiriieiieteeieetert ettt sttt e b e 136

2.20 Lambda fUNCHIOMNS ...ceueieiiieiieeiie ettt ettt et et e b e et eeateeeabeesbteenseeeabeesabeasabeenseeenbeeenees 138
QEA e ettt ettt ettt et nen 138

2.20.1 Defining a lambda fUnCLIONooieiiiriiiiiiiiciieeeceeeee e 139

2.20.2 Calling a lambda fUNCLION.c.eoiirieiieiieiecte et 139
EIXETCISES ..ttt ettt ettt et et h e h ettt a e a e e h e h e bt ettt nenes 141
3. Advanced Python Programming for Data SCIENCE............coriiiiiiiiiiiiieiieee ettt 145
3.1 TEETALOrS ANA ENMETALOTSeieutieiutieeitieeite ettt et e et e et e s bt ettt ett e e bt e eabeeeabeesubeeabbeeabteeabeesabeesaeeensteebeeenees 146
QEA ettt st ettt nae 146

3.1.1 Iterable ODJECtS VS. TEEIALOTS ...ccuvieiuiieiieetie ettt ettt ettt st e st et e bt e et e et e e eabeesabeenane s 147

3.1.2 GENETALOr VS. TEEIATOTS. c..cueeureurenriiintentieiteteeiteetesesteete e et et eaeeseessesneaessesnesueebeeneeseennennesnensens 148

B2 IMOAUIES ettt ettt e e e e e e e e e e e e e et e e e e e e e e e e ——————————————tttatttattaataaaaaaas 150

X Contents

QUELA et bbb bt et b ettt h e bt h e bt ettt nenaen 150

3.2.1 Importing and using MOAUIEScc.eerieriiriinieriiereet ettt 151

3.2.2 Checking built-in MOAUIES LiSt.......cuerieriiriiiieiieiceteeee et 152

B3 PACKAZES ..ttt ettt ettt ettt b e a bt a b e h e e bt e bt en b e eh b e bt e bt enbeeneennean 153
QLA bbb h et h ke h e bt b e e h e e n et e bbbt bbbt eat et e nbenean 153

3.3.1 Packages VS MOAUIESc.eevuieiieiiriieiieieeie ettt ettt ettt sttt et et e e bt ebeeneeenee 154

3.3.2 InStalling PACKAZESveeiuiieiiieeiii ettt ettt ettt ettt e et e et et esabeesaae s 154

3.3.3 Checking installed PaCKAZES.c.evvertiertieiieierieitet ettt ettt et 154

3.3.4 Updating or removing installed packages..........cceecueeriierieeiieiiie st 155

3.3.5 Importing packages or MOAUIES.cc.eertiriirierieiieeeeeeseee et 156

3.3.6 Checking Package VErsion..........coccuieiiiiiiiiiiiiiiieee ettt ettt ettt 156

3.3.7 Commonly uSed PACKAZESc..eeviriiiiieiieieeiese ettt 157

3.4 Help dOCUMENTATIONeeutieuiieiiietieettete et ettt et ettt e bt e bt et e et e st e e bt eabeesbesate bt enseenbessteseenseensesnsennean 158
QUELA bbb b e bt bbbt bttt e bbbt bt bbbt et etenten 158

3.4.1 The Relp fUNCHONcc.eiiiiieiieciieeie ettt et eeteeebeessbeessbaessbeesseeassaeesseessseessseessens 159

342 DOCSIIING ...ttt ettt ettt ettt b e bt et st s e b e b eaae e 159

3.4.3 ChecKing SOUICE COURc..uiruiriiriiiniieitietteteeite sttt ettt ettt ettt b et ete et esbeebeenteenee 160

3.4.4 The dOC AITTDULEeoiuiiiiiieeiie ettt ettt et et e et e et e et esareesateenaee s 161

3.4.5 The dir() TUNCHION ...ocuvviiiiiiee ettt et e e et e e et e e aa e e etaeeeeaaeeeeareeeeenreas 162

3.5 EXCEPUON ANA EITOTScuvieutiitieiietieteeite ettt et ettt e bt e bt eat e st e sb e e bt et e eabess e e bt enbeesbess b e bt enbeennesatenaean 164
QUELA bbbt h bbbt h bt ettt h e bbbt et ebt et e b eneen 164

3.5.1 Try/EXCEPU/FINALLY ..ottt et st 165

3.5.2 EXCeption rePOIting MOAEccc.eiiriiiiiiieieeeiieeieesit ettt et e st e sttt et e e bt e ebeeeateesareesaeeenaeeas 166

353 ASSEITION .ttt ettt et nens 167

B0 DEDUZZING ...ttt et 168
QUELA bbb h bbbt he bt ettt h e bbbt et ebt et nne s 168

3.6.1 Enabling the Python Debugger.........cccccciviiiiiiiiiiiiiiiiiiiccceeeeeeeeeeeeeens 169

3.6.2 Changing exception reporting MOAEScocueerueeriiinieinie ettt ettt e e e 170

3.6.3 Working with CheCKPOINLSccooiiiiiiiiiiiiiiiiiciciccece e 171

3.7 S@ATCH PALN...cuiiiiiiiit ettt ettt b bbbttt nae s 172
QUELA ettt b bbbt et b ettt bt bbbt et eat et e neneen 172

3.7.1 The variable search Pathcocoiiiiiiiiiiiie et 173

3.7.2 The module Search Path.........cooc.ooiiiiiiiiiiii e 175

3.8 Current WOTKING QITECIOTY ...ccuviruiitieiieieeitest ettt ettt et ettt e st e bt eab e eat e s et e bt e st entesstesseenbeensesnsesaean 178
QLA e bbb h et h ekt bbbt bt et e b e b bt ebe bt bt se e st et e ntenean 178

3.8.1 Getting current WOrking diT€CLOTYeerveeiirieriieniietieiestesieet ettt et 179

3.8.2 Resetting current WOrking dir€CtOTYeeouerieriirieiiiriiniienieeieee ettt 179

3.8.3 Reading/writing current WOrking dir€CtOTYcc.eerueeuerierienieeieeienitenieeieeeeeee e e 179

3.9 Object-0riented PrOZIATNIMINE.cc.vertterreriertieteeteetesteestteseeteeaeesseesseenseessesseenseenseensesssenseenseensesnsesses 181
QLA bbb h et h ekt h bbbt et et e e e bt bbbt et e bt et e benaen 181

30T CLASSLS vttt ettt ettt ettt et ettt ettt et s a e bt e a e e h ettt h e st eh e bt st eae e nennens 183

3.9.2 MELNOMS ..ottt b bbbttt b e bt bbbt e st et ebens 184

393 INNEIITANCE «..vvenvenieiieiceiieitet ettt ettt ettt st s b st enenens 185

3014 ALITIDULES. ..ttt et ettt et e bt e sab e e s ab e e bt e e bt e enbeeenteeeabeeeateeatean 187

3.0.5 Self AN CIS..niiniiniiiieiieiieceeeeee ettt ettt 188

3.9.6 _neW__ () and 0Tt () cerrrieieiieeiiiiiee e e e e e e eeetaaaeaeeens 188
EEXEICISES ..ottt ettt b ettt et h bttt s b e bt et e aa e s bt b e bt e aneeae 191
4. Data wrangling With PYthONcoc.ooiiiiiiiiiiee ettt et 195
4.1 Random NUMDET ZENETALIONc...eiuieriietiriteriiertteteeiteete st ettt e sitesbe e bt esbesstesbee bt e besabesatesbeebeenseenes 196
QUELA bbbt b bbbt e b e bttt e bbbt bbbt e bt et et naen 196

4.1.1 Generating a random NUMDET at @ tIMEcc.eevvirriirieriieriieieeie ettt 197

4.1.2 Generating a random array at @ tIMNEcoeerueeriireerienieeniente et et ereseesteesteeeesaeesreenseeas 198

Contents XI

4.2 MUltidimenSIONAL QITAYS ...c..eeueeiiriieriieiieie ettt et et et et e sa e bt e beesbeestesaeebeenbeensesneesseenseenes 199
QA ettt bbbt h e a ettt e be bt ebe bt bt e st et et entesbenben 199
4.2.1 Createting NAAITAYSecvertieiieieeiierte et eteette st esteeteettesteebeetesaeesseebeensesseesseenseensesneesseenseenes 203
4.2.2 Slicing and iNdeXing NAAITAYSccueerrvieriuierieerieeiieetteeteesteesteesteeesteeebeesnbeesseesaeeenseeenees 206
4.2.3 Shallow cOpY and dEEP COPY -.eeeuveeruiieriieniieeniit ettt ettt ettt ettt st e e e 212
4.2.4 Shape and TESNAPEco.eiruiiriiiiiiiiee ettt e 213
4.2.5 DIMenSion ANd SIZE......ceeeuveverieriiriiniinieniieiteitetetente sttt sttt eee et et nne st st sbesbe bt ebt e enneaesrenaes 216
4.2.6 Evaluation Of NAAITAYSc..eeriieiieeiieeiie ettt ettt te st e st e st estteeteeebeesnbeesnseesneeenseeenees 218
4.2.7 Insertion and delEtioNc..coceriiriiiiiiiiiiiereee et 221
4.2.8 Handling mMiSSING VAIUESccueteiuiieiieiiieeiie et esiieeite et e et e st e st e e steeeteeebeesnbeesnseesneeenseeenees 222
4.2.9 Broadcasting NAAITAYcecuieierieniieie ettt ettt ettt ettt site st etesatesaeenbeeteeneesseenbeenes 223
4.2.10 SOTtiNg AN NAAITAYcveirtiiiiiieitierie ettt ettt sttt st sbe e b e saeesbeebe e 224
4.3 S IIS -t utte ettt et ettt ettt et e et e e a e et e e ht e bt e et e e a et e ht e e bt e e b te e bt e eabeeahte e hee e bt e ebteeteeeabeeenaeeanbeeneeenbeeans 226
QEA ettt et he et n e renae 226
4.3, 1 CIEANZ SETIES...u.eeeutierutieriiieriteeette et teetteete e sttt estteesteebeeaabeeaaseesaseeaseeeseeeabeesabeesnseasnseenseeenses 227
4.3.2 WOTKING WIth SETIES....c..eeitieiieieitieitieie ettt ettt ettt ettt et e st et et st esbeenbeenee 229
4.4 DAtAFTAINICcveiiieiiieieeeet ettt st et et et 233
QEA e bbb bbb h bt bbbt bt s et e b be st 233
4.4.1 Creating DataFTamescoouiiiiiieiieie ettt et sttt st sbe e 236
4.4.2 Index or columns of DataFrames...........coocuiiiiiiiiiiiiiiieeeee e 237
4.4.3 SHCING DataFTames.coiuieriiiiiiieieee ettt et sttt et sbe e 238
4.4.4 FIltering DataFTamesooiiiiiuiiiiieiiieete ettt ettt ettt e et e st esnte e st e e sbeeenes 242
4.4.5 Arithmetic operating on DataFrames.cooeeviiieiienienieie et 246
4.4.6 Descriptive analysis of DataFramescoccooiiiiiiiiiiiiic e 251
4.4.77 Sorting DataFTamESscovuieriiiieiiieiteie ettt ettt ettt ettt st sbe e 253
4.4.8 Importing/EXporting DataFTrames..........ccocueiiiiiiiiirieiieeieeecete et 254
4.4.9 Handling missing values with Pandascoccoeieiiiniiniiiiieececeece e 255
4.4.10 Grouping DataFTames..........c.coiiiiiiiiiieeieeet ettt et et sttt e 260
4.5 DAe AN LIMNIC ...ttt ettt ettt et b et e bt e e e bt e bt et et b e s bt ettt e be e bt e neeaee 262
QEA <ot a e e ettt sae 262
4.5.1 Creating a time OF dat€ ODJECE......ceiiuiiiiieriieeiiieitie ettt ettt et e st esee et e e nbee e 263
4.5.2 Parsing a string to a time Or date ODJECL........cceiviiiieiiiniiie ettt 264
4.5.3 Getting current local data or time ODJECLeeiiiiiiiiiiiiiie e 266
4.5.4 Evaluating the difference between two date or time ObJECtScceeveeeeriereenieriienieneeiene 267
4.5.5 Setting a time or date object as the index of Pandas...........ccocccevviiiiiiiiiiiiiniiieiceeee, 267
4.5.6 The pandas.period_range() MEthodcocceviiiiiiiiiiiniie e 269
4.6 Data VISUATIZATION ..e..veieuiiieiieetieeieesiteeite et e etee bt e sttt estaeeseesaseesaseessseesseanseeenseeenseessseessseesseeseesnsenns 270
QEA ettt b bbbt bbbttt nbe 270
4.6.1 Matplotlib VISUALZAtIONc.ccouiiiiiiiiiiiciiieiece e 272
4.6.2 Adjusting POt @tIIDULES.cooutiiiiiiiieet ettt ettt st et e 274
4.6.3 Changing the type Of @ Plot.......ccooiiiiiiiiiiiiiceeeeeee e 278
4.6.4 Changing the value range of the axes of @ Plot.........cceoiiiiiiiiiiiniiiinii e 278
4.6.5 Adjusting the margins 0f @ PlOt..........cccoiiiiiiiiiiiiiiiieee e 280
4.6.6 Creating multiple plots on the same COOTdINALES.......cccueerieeriiiriiinieeie et 281
4.6.7 Adding an Axes to the current figure or retrieving an existing AXesccceeeeveveuenuennene. 281
4.6.8 Saving plots t0 IMAZE fIlES ...c..ueiiuiiiiiiiiieiee e et 282
4.6.9 Creating more cOmMPliCAte PLOLS......c..couiiiiiiiiiiiiieniieeecee e 283
4.6.10 Data visualization with Pandas...........cccccooieniiiiniiniiniiiccceeccccee e 284
4.6.11 Data visualization With SEabOIMcccuiiiiiiiiiieie e 286
4.6.12 Data visualiZation CASES PIOJECLS ...eeeuvterurieriiieitieeiieeite et e st e sttt esteeebeesbeesibeesibeesaaeesbeeenes 289

| 25 (o) Ty RRRRRRRRRRRRN 291

XII Contents

5. Data analysis With PYthOM.......coiiiiiiiiiiiieeeeee ettt sttt ettt et beenseennas 295
5.1 Statistical modelling with StatSOAEIS...........evuieiiiriiriirieie e 296
QA et bt bbbt a et bbbt bbbt bt et et e be b 296

5.1.1 Business Understandingceceeuerieriieniieienieniesieete et e sttt sttt e enee 297

S5.1.2 DAta JOAAINEcveenteenieeiieeit ettt sttt ettt et et 298

5.1.3 Data UnderStandingccvevueerueeiiirieniiesiieieete ettt ettt et ettt ettt et et b e b enee 298

5.1.4 Data WEANZIINE ...eeiueiiiiiiiiieiie ettt e sttt e st e e bt e et e st e e s st e e saeeebeeebeeenseesaseenaneas 300

5.1.5 Model selection and hyperparameter tUNINGcoceerverrerierieenieerienieneeieenieeee e seeeeeenne 301

5.1.6 Fitting model and summarizing the Regression Resultscocceviiiniiiniiiininiiieieee, 303

5.1.7 MOdEI @VAIUALIONeoveiieiiinieiiiiniisiceieetet ettt ettt ettt r et s bttt sae s ennesnennens 304

5.1.8 ASSUMPLIONS LESTIME ...uvvieutiietieeitieeiteeriteette et e eteeetee sttt estteebeeeabeesabeessbeesneeeseeenseesnseesnseesnneas 304

5.1.9 Model optimization and re-SElECONeeruiriirieriieriieieeee ettt 306

5.1.10 MoOdel apPliCALIONc..eevuiiriiiiieiieiieeitet ettt ettt et st 309

5.2 Machine learning with SCIKIt-TEAITcccueiiiiiiiiiiii e 310
QEA e et et ettt snenae 310

5.2.1 Business UNderStandINgccccueeiueeruieeriieeiie ettt e site et e et e st e s beesaeeebeeebeeebeesabeesaneas 311

5.2.2 DAta LOAAINEZcveeteetieiieeiteei ettt ettt et e b ettt et b e bt et et eeae e b e e b enee 311

5.2.3 Data UNderstandingco.eeeueeetieiiieie ettt ettt ettt e st b e et e et esabeesanean 312

5.2.4 Data WIANZINE ...cveeuiiiiiiiiieitieieeeee ettt ettt et e bttt s e s bt e bt et estesseesbeebeenee 315

5.2.5 Model selection and hyperparameter tUNINGcoeoueereeeriieeiiieniienieeneeenieeeiee e sreeseeeas 317

5.2.60 MOAEI LTAINMINE ...eeuvientieiiiiiteitieieet ettt ettt st sat e bt et e e et e s bt e bt enbeentesseenbeenbeenee 317

5.2.7 Predicting with a trained MOdel............cooiiiiiiiiiiiie e 318

5.2.8 MOdEl EVAUALIONeoveiieiiiniiiiiiitintceieeitet ettt ettt b e sttt en oo snesnens 318

5.2.9 Model optimization and appliCationc..cecuerierieririiirierieneee ettt 319

5.3 Natural language understanding with NLTKccccooiiiiiiiiiiiiiieeeeeeeeeee e 322
QEA et h e h ettt b bbbt bbbt ettt 322

5.3.1 Business Understandingcoeceeuerieriieniieieniesitesit ettt sttt et 323

5.3.2 DAta LOAAINE . ..cc.uteeiieeiieeiie ettt ettt ettt et et e st e a bt e ae e e bt e et e et esabeesatean 323

5.3.3 Data UNAerStANAINGeeeuveriieriieiieieriiesi ettt ettt ettt sttt ettt b e 324

5.3.4 Text NOIMAlIZALIONeouviiuiiriieiieiieiteete ettt sttt et sttt et sbeene e 329

5.3.5 TOKEMIZATION. c..c..eiiiiiieiieiieietete ettt et sa et nenesnesaen 330

5.3.6 Extracting high frequency WOords..........cooiiiiiiiiiiiiiee e 331

5.3.7 Generating WOTd ClOUASc..eoiuiriiriiniieriieieeieet ettt ettt 333

5.4 Tmage processing With OPENCVcooiiiiiiiiiiii ettt ettt 335
QA ettt bbbt h e bt h e n e et et et et e ete bt bt bt ene et et etenbeeten 335

5.4.1 Installing and importing opencv-python packagec.ceeveeriieeriienieeniiinieeeeeee e 336

5.4.2 Loading image from filec.oiiiiiiiiiiiii e 336

5.4.3 Converting a RGB image into Grayscaleccoceeriiiniiiiiiiieiieerieeeeeteeee e 336

5.4.4 DEECHING FACESveouiuiiiiiiiiieieii ittt s e e 337

5.4.5 SNOWING IMAZES ..c...veiiiiiiiieiie ettt ettt ettt e sttt e bt e e bt e et e e sa bt e s st e enbteebteebeeeabeesabeesanean 339

5.4.6 WITHINEZ TMAZES....c..eouieuiiiiiiieieieie ittt ettt ettt sttt et e e a e s s e s b et e s ne s aesresnens 339
EXCICISES .uvteeeuiiiieiiiie e ettt e ettt e ettt e ettt e ettt eeetaeeeestbeeeassaae s ssaeeasssaeeassseeeasssaeeasssaeeansseeeassseesnssaeeasseeeansseeeanns 340
Appendix I Best Python Resources for Data SCIBNTISESeevuiiiiiiiiiiiiieieeiie et 343

Appendix IT Answers t0 Chapter EXEITISESc..eertiiiiiiiieeiie ettt ettt ettt e e ee st e s s 345

Check for
updates

1. Python and Data Science

Python has become the most popular data science programming language in recent years. This chapter will
introduce:

® How to learn Python for data science
® How to setup my Python IDE for data science

® How to write and run my Python code

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 1
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_1

https://doi.org/10.1007/978-981-19-7702-2_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_1&domain=pdf

2 Python Data Science

1.1 How to learn Python for data science

Q&A

| First, what are the advantages of Python?

philosophy:Ele L i nd simplici

Python's design purpose: Meet the needs of data analysis and data science projects

thon has become the most popular language in the field of data analysis and data
science

— However, I have learned C, Java, C + + and other languages. Why do I need to learn Python?

I here are three aspects of reasons, see figure 1-2.

So, what should I learn about Python?

therefore

We on to leam "Python for data anal nd data not "all t

knowledge of Python", as shown in figure 1-3 ~ figure 1-5.

First-tier

ond-tier r

Python and Data Science

It is the reason you can see easily, that is, “surface reason”. Languages like Java and C are designed for software development
and not suitable for data science tasl

For example, the reading, writing, and sorting of dat si J ya requires multilay
statement code, which is cumbersome. However, i y usi 3 /R ,which support vectorized computation and can
directly read and write the dataset (for statement is not needed). Python/ es generic functional pr nd can
directly call the function stored/sort() to achieve the sorting of the dataset (no need to write sorting algorithm and code
yourself).

1g to use Java, C or other programming languages to complete data science tasks, you will consume main
structure de thm design and cannot concentrate on dealing with data

problems.

er of reason is not that important, what’s more important is we can call packages (or modules) through Python/
al service for data science tasks.

9.40 modules or packages available on PyPI (The Python Package Index). There are at least

available on CRAN. That is to say, the m s not Python/R langu , but the pc ful pac

lar . For example, to real /i of or other lang is complex and
ghtly, but it’s much easier with Python's Matplotlib or R's ggplot2.

Therefore, we use Python/R not because itself is better than J. C or other langua but Python/R can call man
(or modules) specialized for data analysis and data science tasks.

the second la f reason is still not the root one, the root reason is there are gorgeous specialists of data science
like statistics and machine science behind Python/R, especially in developing mainstri : (or modules).

For example, Wes McKinne:) developed Pandas and Hadley Wickham who developed gglot2 are two big names in the
field of Python and R respectively.

On this account, if using Py you will have access to your organization and peers — the world's top data scientists. You
can use their ideas to guide yourself and their power to solve your own data science problems and that is the root reason

Figure 1.1 Three reasons to learn Python

Python Data Science

<1, |iPython is an interactive Shell (programming/computing environment) for Python.
- — | The IPython Notebook is now known as the Jupyter Notebook, in which you can
s N\ | write Python codes. Jupyter Notebook is widely used in data science/data analysis
= projects, and it has many features and functions of iPython. See the iPython official
Tips website (https://ipython.org) for more details.

wat gyhonceg ¢ G O

e python N

About Downloads Documentation Community Success Stories

. Intuitive Interpretation

Python is a programming lang

and integr

Figure 1.2 Guido van Rossum (the creator of Python Programming language) and the
official website of Python

https://ipython.org

Python and Data Science

1.2 How to setup my Python IDE for Data Science

Q&A

[——— Where do I write Python code?

Editor

‘What do I use to execute the code?

Python is an interpreted language

Interpreter (implemented in
different languages)

[——— What else does Python development need?

Package
(More than 1000

[What else is needed for package download / update / delete?

Package manager

Can the above functions be displayed in the unified interface?

Portal

Jupyter Notebook

CPython

pandas

T
Scikit_leam

pIp
conda

Anaconda Navi

5

Python Data Science

N\ 7/
- — | Once you have Anaconda installed, you do not need to download or install the editors,
7 N\ | interpreters, packages, or package managers, nor manually edit their configuration
= files.
Tips
— I S

3/ This book uses Jupyter Notebook/Lab, the most commonly used editor in data
science, and the Python3 kernel (interpreter)

Notes
N
- ~ | For more in-depth details about installing Anaconda on macOS or Linux, please
7 = N | refer to the Anaconda official website: https://anaconda.com.
Tips

The Anaconda official website and introduction are shown in Figure 1.3. The menu items and their
usage are shown in Figure 1.4.

www.anaconda.com | # ! O

() ANACONDA, Products - Pricng Solsons - Resources - Paners - Blog Company m

Data science technology for
a better world.

b d o~
qéb CITI

Figure 1.3 The Anaconda official website

https://anaconda.com

Python and Data Science

conda portal
page

Display the components of
Anaconda in a unified manner

- Anaconda3 (64-bit)

Anaconda Navigator Enter/execute the PIP command

and Conda command here

Anaconda Prompt Command line tool

Ju pyte r Notebook Python programming
IDE

. Reset Spyder Settings Enter and execute the

Python source here
': Spyder

This book is not
recommended

Figure 1.4 Windows Start menu items and their usage after Anaconda is installed

Figure 1.5 shows how to use the Jupter Notebook/Lab editor

In[1] means uence number of the
input Ci cuted In the current

Out[1]:

Qut[2] refers to the serial number of the
input Cell corresponding to the output.

:Na.meError Traceback (most recent call last)
» <ipython—input-3-8b474d1c49al> in
eyl a3

NameError: name "a3’ is not defined

Frror and exception
information

Refer to [3.5 Exceptions and Errors]

Figure 1.5 How to use Jupyter Notebook for data science projects

8

Python Data Science

1.3 How to write and run my Python codes

Q&A

How do I check the output?

How do I get help?

How do I write Python code?

er In Cell In the Jupyter Notebook

How do I execute Python code?

In the Jup:

text box 1 s boc alone

Note: The PIP or Conda command needs to be entered in th

The default shortcut keys in the Ju

be executed and selec /Run Cells

Notebook are Ctrl+ Ent

fiom the menu

The output is in the Out Cell of Jupyter

In general, the Out Cell is numbered the same
Notebook as the In Cell

Note: For errors or exceptions, refer to[Appendix I Common Coding Mistakes Made by
Data Scientists]

estion mark? Or the built-in

help () function Lt i [dlfp

Note: This way provides limited help information. You are advised to check the official
documentation for Python and third-party extensions

‘What do beginners need to pay attention to?

Refer to [1.

Python and Data Science

1.3.1 Inputs

Jupyter Notebooks documents consist of “cells”: input cells and output cells. We
only need to type the codes in the input cell since the output cell is automatically
evaluated by Jupyter Notebook. For instance, the Output[1] shows the output of codes
in input[1] as the following cell.

x1=11
x1

11

]
S

When writing Python codes, you need to pay attention to their case sensitivity as well
as code indentation (the spaces at the beginning of a code line). For more information,
please refer to [2.4 Statements].

Notes
**:*)/ The default shortcut for running a “Cell” in Jupyter Notebook is Ctrl+Enter. For more
=) shortcuts, you can refer to the Help/Keyboard Shortcuts menu item in the “Menu Bar”
of Jupyter Notebook.
Tricks
In[2] | #define variable x2
x2=12
x2
Out[2] 12
|
S~ |In an input “Cell” it is not necessary to start a code line with “#” since it denotes a
—, : Python comment statement. A comment in Python starts with the hash character(#),
= and extends to the end of the physical line. Please refer to [2.6 Comments] for more
g details.
Tips
In[3] | X3=13
X3
Out[3] 13
N\ ! 7/
- @ ~ | The number of In[] is the sequential order in which the input cell was executed in the
s N L
= current session in the Jupyter Notebook Kernel.
=
Tips

]
AS

When the same “Cell” is executed multiple times, the number in its In[] will be updated
accordingly. This means that the In[] number will reflect the order of execution,
indicating the current iteration of the cell. For more details, refer to [1.3.5 Tips for
Python programming].

9

10

Python Data Science

To restart or stop the “current session (Session)”, we can restart the kernel of Jupyter

LS
- notebook by clicking Kernel > Restart (or stop) from the Jupyter menu.
Tricks
In[4] | x4=14
In[5] | x4=x4+1
x4
Out[5] 15
|
N~ |Python is an interpreted programming language, and we can run the cell as many
@ times as we want. As a result, the current values of a variable may be updated
s N . . e .
= simultaneously. For instance, x4=x4+1" is a self-assignment statement, and the value
Ti:)s of x4 is incremented each time the cell is executed.

fl
AS

Checking the current value of a variable is one of good habits for successful
programmers of data science projects.

x5=16
x5

16

In Jupyter Notebook, Python code is executed within “Cell” as the unit, the execution
order is different from the C/Java language, and execute items one by one in a non-
predetermined order (such as from top to bottom). Therefore, the code cells are

Notes executed individually and can be run in a non-sequential order.
N\ ! 7/
_/ _ There is no main() function in Python, the execution order of “Cell” is determined by
= the user and is independent of their location.
Tips

Tips

The output cell is displayed to the right of the output variable “Out[]:” in Jupyter
Notebook “Cell” on the side.

In[7]

Out[7]

y1=21
yl

21

Python and Data Science

oy e

Notes

The Output in Jupyter Notebook is shown in a “Cell”, an “Output Cell” is immediately
below the corresponding “Input Cell”. This allows for a clear and organized display of
the code execution and its corresponding output.

In[8]

Out[8]

y2=22
y2

22

The number displayed in the Out[] is the corresponding In[] number of the output
result.

y3=23
print(y3)

23

.la'
N

In Jupyter Notebook, instead of using the print() function, you can directly write the

[_-_é variable name to see the output result. However, in this case, the output result does not
have an Out[] number associated with it.
Notes
AL Both y2 and print(y3) in In[8] and In[9] can produce the same result. Is there any
- — | difference between the two?
7\ | @ The former is not the syntax of Python, but the function provided by Jupyter
T'{ Notebook to facilitate our programming. In Python, the standard output still needs
ips

to use the print() function;

® The former is the syntax of Jupyter Notebook, which output result into the Out
queue variable of Jupyter Notebook, and has an Out number put the latter will not
be put into Jupyter Notebook In the Out queue variable of, and there is no Out
number;

® (3)The former is the display result after “optimization” by Jupyter Notebook, and
the output effect is often different from the function of print().

1.3.3 Errors and warnings

In[10]

Out[10]

z1=31
z
NameError Traceback (most recent call last)
<ipython-input-10-8d66e1al13261> in 0
1z1=31
-2 7

NameError: name 'z' is not defined

11

12

Python Data Science

::_:j The error message indicates that “z is an undefined object” because the name of the
-ﬁ, defined variable is not “z”. but “z1”.
Notes
N\ ! 7/
_/ : For further details about Python errors or exceptions, please refer to [3.5 Exceptions
= and Errors].
Tips

Prior to reading data source files such as Excel, CSV, or JSON, it is necessary to place
them in the current working D directory.

Tricks

os.getcwd():
Returns the current working directory of the session.

In[11]

Out[11]

import os
print(os.getcwd())

C:\Users\soloman\clm

For further details about current working directory, please refer to [3.8 Current
working directory].

from pandas import read_csv
data = read_csv('bc_data.csv')
data.head(2)

id diagnosis radius_mean texture_mean perimeter_mean

0 842302 M 17.99 10.38 122.8

1 842517 M 20.57 17.71 132.9

2 rows x 32 columns

The data file, named “bc_data.csv”’, needs to be placed in your current working
directory in advance. If the file is not found in the current working directory, it will
raise a “FileNotFoundError” error message.

Python and Data Science

N /7
- — | The code in the input cell loads the data file “bc_data.csv” from the local disk
4 N\ | into memory using the read_csv() method from the Pandas library. This method is

= specifically designed to read data from CSV files.

The running steps of this code

Download it from the Anaconda
Step 1 official website and follow the The version of Anaconda should be
Download and install Anaconda : installation wizard to install it

Select one by one in the Windows
menu
Anaconda/Jupyter Notebook (or
Jupyter Lab)

Step 2
Open Jupyter Notebook or
Jupyter Lab

manually set the Path.

There ar rious Cell modes,

Step 3 3 e i - such as Code and Markdown. e
Enter the code section] above that Python code needs to be

entered and executed in [code] mod

= n 5 If the system freezes or runs
Step 5 Ctrl + Enter or X

Execute the code Cell/Run Cells in the menu
ernel/Interrupt or re

Be sure to carefully study the
d on the execution result or g €rror messa; iven by the 3
or further and do not rely 3 i
to "correct errors" for g

po
Viewing the Execution Result or
debugger

Figure 1.6 The running steps of this code

1.3.5 Tips for Python programming

N~
7 N\ | Tips for Python programming are shown in Figure 1.7.
=

14 Python Data Science

[1] Jupyter Notebook runs in B/S mode, the black window

represents the server side and cannot be closed.

[2] The running status of the Jupyter Notebook kernel is Trusted. If
captions here indicates that the kernel is closed or cannot be used,
the probable reason for beginners is closing the Server side in Note

[1].
~
p [3] "Python language (kernel) version".
o o Ity = Currently, P:\thnn language has two
different versions , namely Python2 and
& C 1t | ® localhost:8888/notebooks/P... Yy | &) : Python3. This book is Python3.
" Jupyter how to code in JN
Trusted
File Edit View Inset Cell Kemel Widgets [4] The mode of "Current Cell", such as

Code, MarkDown, etc. Note: The Python
B + =@ B 4 % MHRin B C W cod source code in the current Cell should be
executed in Code mode.

In []:|z=3
In [2]:] x=1
x [5] The state of each Cell is divided into

|Edit] state and [Esc| state and their
shortcut Keys are different. As shown here,
the periphery of the Cell is blue ,
indicating [Esc] state.

out[2]:] 1

In [1]:] v=1

In [11]:|}y=y+l

out[11] :} 10

In [*]:] while True:

[7] The In[] number before each cell is its [execution order], not [writing order]|. The values in In[] have the following
characteristi

(1) Empty: Indicate that this Cell has not been executed yet.

2) Value (for example: i ecution order of the Cell in the current Session, that is, the i-th In v

(3) Asterisk (¥): The Cell is being executed. Need to restart the Kernel through the menu if the execution time is too long.
(4) In and Out are built-in variables of Jupyter Notebook.

(5) Acell’s In number will be increased accordingly when executed many times.

Figure 1.7 Seven considerations in Python programming

s N\ | Figure 1.8 shows the Edit and Esc state of a cell in Jupyter Notebook.

Blue border: operations are performed
in the unit of [Cell]

Indicates the Cell status of the

Jupyter Notebook

Python and Data Science

The green border indicates that operations are
performed in the unit of [line of code] in the Cell

Press ESC or Ctrl+ Enter

<€

Press Enter or mouse click

Common Shortcut keys

® C(copy), X(cut), V(paste), DD(delete)
® Shift-m (merge)

® [(show line number)

® O (Show/hide output)

® A (insert first), B (insert second)

Common Shortcut keys

® Shift+Tab: Displays help information

® Ctri-Enter (execute current Cell)

® Shifi+Enter (select next Cell after execute)
® Alt+Enter (insert a Cell after execute)

® Ctrl-shift - : Splits the cell

® Ctrl-/ : Comment the line
Figure 1.8 Edit or Esc state of a Cell in Jupyter Notebook

Tricks

Many valuable learning and reference resources are available in the “Help” menu of
Jupyter Notebook/Lab. Python beginners are advised to take full advantage of these

essential resources, as illustrated in Figure 1.9.

: Jupyter 1.3 How to write and run my Python codes

File Edit View Insert Cell Kernel Widgets

+ % @@ B A+ ¥ piEiT B C » | Makdo

1.3 How to write and ru

In [1]: #Code diagram of this book

1.3.1 Input section

In [2]: x1=11
x1

Help

User Interface Tour
Keyboard Shortcuts
Edit Keyboard Shortcuts

Figure 1.9 “Help” menu

Notebook Help £y |deg
Markdown (2

Python Reference (24

IPython Reference £y

NumPy Reference =

SciPy Reference 2y
Matplotlib Reference =

SymPy Reference 2y

pandas Reference =z

About

15

16 Python Data Science

Exercises

[1] Python is created by ().
A. Wes McKinney
B. Guido van Rossum
C. James Gray
D. Hadley Wickham

[2] Which of the following is true of Python?
A. Python is a programming language that uses compiling.
B. Python is a language that represents simplicity.
C. Pythonis a scripting language.
D. Pythonis an advanced language.

[31 Which of the following is false of Python?
A. Python’s syntax is concise.
B. Python is a platform dependent language.
C. Chinese is supported in Python.
D. Python has rich resources of classes and libraries.

[4] Which of the following is false of programming languages?
A. A programming language is a concrete implementation of programming.
B. Natural languages are simpler, more rigorous and more precise than programming languages.
C. Programming languages are primarily used for interaction between humans and computers.
D. A programming language is an artificial language for interaction.

[S] What is false about the basic programming strategies?
A. Inputis the beginning of a program.
B. Output is the way in which the program displays the results of operations.
C. Processing is the process in which the program calculates the input data and produces the output
results.
D. Output is the soul of a program.

[6] Python is suitable for ()
A. hardware development
B. mobile development
C. data analysis
D. game development

[7]1 Which of the following is the Python interpreter?
A. CPython
B. JPython
C. ironpython
D. All of the above

[8] Which of the following is false of the indentation in Python?
A. Indentation is a part of syntax.
B. Indentation does not affect the running of programs.
C. Indentation is the only way to represent the containing and hierarchical relationship between codes.
D. Indentation is normally represented by 4 spaces or 1 tab.

[9] Which of the following is false of the Python development environment configuration?
A. The installation of Python may vary depending on the operating system.
B. Python can be integrated into integrated development environment such as Eclipse, PyCharm.
C. Jupyter Notebook editor is widely used in data science and data analysis projects.
D. After installing Anaconda, we need to download the editors and packages required for Python
programming one by one.

Python and Data Science 17

[10] Which of the following is false of Jupyter Notebook?
A. In[1] indicates that the serial number of the input cell executed in the current session is 1.
B. Out[2] indicates that the serial number of the output cell corresponding to the output is 2.
C. The line starting with * represents the Python annotation language, which can be entered without
input.
D. The output result in Jupyter notebook is displayed immediately below the corresponding input cell.

Check for
updates

2. Basic Python Programming for Data
Science

Python is a general-purpose language so that it can be used for a wide range of applications, such as data science,
computer science, software engineering, mathematics, life science, linguistics, and journalism. However, learning
Python programming for data science requires its unique specific knowledge tailored to its use in that field. This
chapter will introduce the basics of python syntax for data science, including:

Data types (Lists, Tuples, Strings, Sequences, Sets, Dictionaries)
Variables
Operators and expressions

Statements (assignments, comments, if statements, for statements, and while statements)

Functions (built-in functions, module functions, user-defined functions, and lambda functions)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 19
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_2

https://doi.org/10.1007/978-981-19-7702-2_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_2&domain=pdf

20 Python Data Science

2.1 Data Types

Q&A

How many data types does Python have? x
mutable data type~: list.

dict (dictionary) . set

immutable data types: int. float.

It can be roughly divided into two types

complex (complex number) .
divided into bool (boolean) . tuple. str (string

Python's built-in data types frozenset (an immutable set)

sequence types: tuple. list. str

Data types in third-party packages i DataFrame in Pandas

In general, they are more efficient and easier to use than python's built-in data types

Are there Boolean types in Python?

ython boolean data type has two values: Tue and

False

—— How do I check data types of object in Python?

Use built-in function type () type(x)

[How do I change the data type to which a python ob ject bdongs?

Use data type finctions such as int, float, complex,

list, ete.

How do I specify / change the data type of Python variables?

ment statement See [2.2 Variables]

———— What should I pay attention to in Python's data typ es?

If an array is required, it can be implemented
thon has no "amay" in its own data through third-party ages (such as
ype, but uses "list" and "tuple” instead

From the perspecti
and strings can be collecti

as "sequence structure"

Have comm on operation, such as multiplication s
*). slice, etc.

None.NotImplemented,

There are some special scalars in Python.

Ellipsis
v

Basic Python Programming for Data Science

2.1.1 Checking data types

‘*’* %
CaD

—

-
Tricks

The built-in function type():
returns the type of an object.

In[1]

Out[1]

int
type(1)

nt

I
N

The term “built-in functions” refers to the functions that are inherently available in the
Python interpreter and can be used without the need for any additional imports. These

--'Té functions are part of the core Python language and are commonly used in various
i programming tasks. The most common used functions, such as type(), ininstance(),
dir(), print(), int(), float(), string(). list(), tuple(), and set(), are built-in functions.
In[2] | # float
type(1.2)
Out[2] float
In[3] | # bool
type(True)
Out[3] bool
N\ ! 7/
Python Boolean data type has two values: True and False
=
Tips
In[4] | # str (string)
type("DataScience")
Out[4] str
N\ ! 7/
- @ ~ | In Python, there is no difference between single and double quoted string. For further
= details, please refer to [2.13 Strings]
Tips
In[5] | # list
type([1,2,3,4,5,6,7,8,9])
Out[5] list
N ! 7/
- @ ~ | In Python, to create a list, the elements are placed inside square brackets ([]), separated
A by commas. For further details, please refer to [2.10 Lists]
=
Tips

22

Python Data Science

L —

In contrast to C and Java, Python does not have a built-in data type called “array”.
Instead, Python uses “list” and “tuple” as its primary data structures for storing
collections of elements.

Notes
In[6] | # tuple
type((1,2,3,4,5,6,7,8,9))
Out[6] tuple
N\ ! 7/
:@: In Python, A tuple is created by placing all the items (elements) inside parentheses (),
= separated by commas. For further details, please refer to [2.12 Tuples].
Tips
In[7] | # set
type({1,2,3,4,5,6,7,8,9})
Out[7] set
N\ ! 7/
- — | In Python, a set or a dictionary can be created by placing all the items (elements) inside
7 N\ | braces {}, including key-value pairs separated by commas (,). A colon (:) separates
= each key from its value. For further details, please refer to [2.14 Sets].
Tips
In[8] | # dict (dictionary)
type({ llall:o’ llbll:l’ IICH:Z})
Out[8] dict
N\ ! 7/
—/@: Dictionary holds key-value pair. The nexus between a dictionary and a set: a dictionary
= is a set containing the keys. For further details, please refer to [2.15 Dictionaries].
Tips

2.1.2 Testing data types

The built-in function isinstance(object, classinfo)

<D ® [f the object argument is an instance of the classinfo argument, or of a (direct,
- indirect, or virtual) subclass thereof, the function always returns True.
Tricks ® [f object is not an object of the given type, the function always returns False.
® If classinfo is a tuple of type objects (or recursively, other such tuples) or a Union
Type of multiple types, return True if object is an instance of any of the types
In[9] | # to test whether X is int

Out[9]

x=10
isinstance(Xx, int)

True

In[10]

Out[10]

In[11]

Out[11]

Basic Python Programming for Data Science

to test whether y is int
y=10.0
isinstance(y, int)

False

to test whether True is int
isinstance(True, int)

True

]
N

Here, the output[11] is True in that the Boolean class is implemented as a subclass of

r - — the integer class in Python.
Notes
A The difference between type() and isinstances() is as follows:
- @ ~ | ® type() returns the type of the object we put in as an argument
= ® isinstance() returns a boolean value(True or False) based on whether the object is
Tips of given type

2.1.3 Converting data types

oy

Notes

In explicit type conversion, also known as type casting, we can convert the data type
of an object to required data type by calling the predefined functions like int(), float(),
str().

In[12] | int(1.6) |

Out[12] 1
N\ ! 7/
- @ ~ | The built-in function int() :
s N . . .
= Convert a number or string to an integer object.
Tips
In[13] | # Convert an int object to a float object
float(1)
Out[13] 1.0

=)

L7 —

Notes

In general, the name of the type casting function matches the name of the target data
type.

In[14]

Out[14]

Convert a int object to a bool object

bool(0)

False

23

Python Data Science

In[15]

Out[15]

In[16]

Convert a [ist object to a fuple object

tuple([1,2,1,1,3])

(1,2,1,1,3)

Convert a fuple object to a list object

list((1,2,3.4))

Out[16] [1,2,3,4]
<\ | The difference between a list and a tuple: the former is “a mutable object”, while the
- @ — | latter is “an immutable object”. In Python, mutable objects are those whose value can
7N be changed after creation, while immutable O objects are those whose value cannot
< be modified once they are created. For further details, please refer to [2.10 Lists] as
Tips well as [2.11Tuples].

2.1.4 Built-in data types

Python provides not only basic data types such as int, float, string, list, tuple and set,
but also some built-in constants including None, Ellipsis, and NotImplemented.

=
Tips
In[17] | # None
x = None
print(x)
Out[17] None
1=)
4 :/ Notice that the output of None always use the print() function, otherwise nothing can
’/ .
[be seen in Jupyter Notebook.
Notes

The None keyword is used to represent a null value or indicate the absence of a value.
Consequently, None is distinct from 0, False, or an empty string.

Tricks
In[18] | # NotImplemented
print(NotImplemented)
Out[18] NotImplemented
NP,
- — | In Python, NotImplemented is a special value which should be returned by the binary
/s N\ | special methods (e.g. __eq__ (), __It_ (), __add__(), __rsub__(), etc.) to indicate that
=

the operation is not implemented with respect to the other type.

In[19]

Out[19]

Basic Python Programming for Data Science

Ellipsis

print(Ellipsis)

Ellipsis

[T

In Python, the Ellipsis keyword, represented by “...” (three dots), is equivalent to the

:_-7£ ellipsis literal. It is a special value commonly used in combination with extended
Not slicing syntax, particularly for user-defined container data types.
otes
In[20] | # the plural(complex) objects
X = 2+3j
print('’x ="', x)
Out[20] x = (2+3))
N\ ! 7/
/@\ The statement 3+4j is equivalent to the statement complex(3,4).
=
Tips
In[21] | y=complex(3.4)
print('y =", y)
Out[21] y = (3+4))
In[22] | #to print the plural(complex) objects
print('x+y ="', X+y)
Out[22] x+y = (5+7))
**,*;/ To access the documentation for the print() function and learn about its arguments and
= usage in Python, you can use either “print?” or “?print” in most interactive Python
environments, such as Jupyter Notebook or [Python.
Tricks
In[28] | # scientific notation
9.8e2
Out[28] 980.0

L —

Notes

In this context, the symbol “e” represents 10 in scientific notation, not the mathematical

constant “‘e” with a value of approximately 2.71828.

25

26

Python Data Science

2.1.5 Sequences

.:I‘
=4

Notes

In Python, a sequence refers to a collection of items that are ordered by their positions.
It is a general term that does not specifically refer to an independent data type but
rather encompasses various ordered containers.

In[29]

mySeql = "Data Science"
mySeq2 = [1,2,3.4,5]
mySeq3 = (11,12,13,14,15)

There are three basic sequence types: strings, lists, and tuples. The set type is not a
sequence, because its elements have no order.

=
Tips
In[30] | # to slice a sequence
mySeq1[1:3], mySeq2[1:3], mySeq3[1:3]
Out[30] (‘at, [2, 3], (12, 13))
N ! 7/
- @ ~ | Sequences have some common properties(variables) and methods(functions),
’ = > including slicing and extending.
Tips
In[31] | # to extend a sequence by multiplication operator
mySeq1*3
Out[31] 'Data ScienceData ScienceData Science'
N ! 7/
/@\ For further details about Sequences, please refer to [2.13 Sequences].
=

Basic Python Programming for Data Science 27

2.2 Variables

Q&A

[~ Do you need to "define variables" in Python?

The use of user defined variables must
el define it before use. Ifit is not defined. it c
be used.

How do I define variables in Python?

Different fom C and Java, python does not

For example, 5

need to explicitly give the variable type when

defining variables. The Python interpreter

autom atically determines the type of variables
ording to the assigned type.

In the form of assignment
statem ent

| Whatis the essence of variable definition in Python?

Python variables are reference

3 2 For example,
variat Variables are not I

o ; x = | means
assigned values", but their

addresses

What problems will you encounter after defining variables?

Except for assignment
Python is a strongly typed R NCEUERIIHETI G

language. conversion is not perfonned

The following code will not report an emor in

C and Java, but it will report an emor in

Python: 1+
in expressions ’

How do I cast data type?

Use data type conversion For example,
ctions, such as int(), 1+ "123" —————>= 1+int("123")
float(), co O, (), etc. can be rewritten as:

[How do I deletea defined variable?

del x

| How do I check defined variables?

When a user defined variable is encountered in
Check the search path with "Search path" is an Python code, the Python interpreter will look
the built-in finction dir() important concept for the variable in the "search path”. Ifit is not

found, an emror will be reported.

28 Python Data Science

2.2.1 Defining variables

In[1]

Out[1]

testBool = True

testlnt = 20

testFloat = 10.6

testStr = "MyStr"

testBool, testlnt, testFloat, testStr

(True, 20, 10.6, MyStr')

L —

Notes

Unlike languages such as C or Java, Python uses assignment statements to define
variables. In Python, you do not need to explicitly declare the data type of a variable.
The type of the variable is determined dynamically based on the value assigned to it
at runtime. This feature is known as “dynamic typing.”

2.2.2 Dynamically typed language

Python is a dynamically typed language. We don’t have to declare the type of variable
while assigning a value to a variable in Python. In other words, the python interpretor
doesn’t know about the type of the variable until the code is run.

Notes
In[2] | x =10
x = "testMe"
=)
I _-?_— The following code would raise an error in C or Java, but not in Python.
Notes
N\ ! 7/
:@: Variables in Python do not need to declare their type in advance, and the same
= variable can be assigned to different object types.
Tips

2.2.3 Strongly typed language

Python is considered a strongly typed language because the interpreter keeps track
of variable types. Strong typing ensures that the type of a value does not change
unexpectedly.

Notes
In[3] | "3" +2
Out[3]
TypeError Traceback (most recent call last)
<ipython-input-3-e8240368dace> in <module>
-—-->1"3"4+2

TypeError: can only concatenate str (not "int") to str

Basic Python Programming for Data Science

L 2" —

Notes

In Python, automatic data type conversion during runtime is not performed by default,
except for conversions between int, float, bool, and complex types.

In[4] | 3+True # Here, no error was raised.

Out[4]

4

In[5] | 3+3.3 # Here, no error was raised.

Out[5]

6.3

In[6] | 3+(1+3j) # Here, no error was raised.

Out[6]

(4+3j)

2.2.4 Variable naming rules

:I‘
=7

In Python, variables are simply names that refer to objects. In other words, a Python
variable is a symbolic name that is a reference or pointer to an object.

Notes
In[7]|1=20
i="myStr"
i=30.1
i
Out[7] 30.1
N ! 7/
_/@: The variable name represents (or is essentially) “a reference to a value”, rather than
= “the value of the variable”.
Tips

2.2.5 Case-sensitivity

In[8]

Out[8]

i=20
I

NameError

<ipython-input-8-447541a63ca9> in <module>
11=20

——>21

Traceback (most recent call last)

NameError: name ‘I’ is not defined

11343}
1

Defined variables are named lowercase
uppercase “I”.

, while output variables are named

29

30

Python Data Science

Tricks

In Python, a NameError is raised when the identifier being accessed is neither defined
in advance nor imported from other modules/packages. Hence, we can correct
NameErrors by:

® declaring it in advance or quoting it to be a string constant

® importing the modules/packages that declared it

2.2.6 Variable naming rules

.:|‘

L7 —

Notes

In Python, variable naming rules are:
@ A variable name must start with a letter or the underscore character.
@ A variable name cannot start with a number.

® A variable name can only contain alpha-numeric characters and underscores
(A-z,0-9,and _)

® Variable names are case-sensitive (age, Age and AGE are three different variables)

In[10] | myvariable_2 =0

In[11] | 2_ myvariable = 0

Out[11]

File "<ipython-input-10-6006d03e9e23>", line 1
2_myvariable=0
A

SyntaxError: invalid decimal literal

N 7/
/@\

The reason for the error is that the variable name starts with a number.

=
Tips
In[12] | print = 0 # no error
x=0
print(x) #error
Out[12]
TypeError Traceback (most recent call last)
<ipython-input-11-c2a031c18500> in <module>
1 print=0
2 x=0

----> 3 print(x)

TypeError: 'int' object is not callable

Basic Python Programming for Data Science

=4

I

b

Notes

If a keyword is used as a variable name, it will cause the meaning of the keyword to
change, and the original function of the keyword will be invalidated.

Workaround: Restart the session. To do this: Select Kernel->Restart in the menu bar
of Jupyter Notebook.

N /7
/@\

=
=

Tips

Here, the meaning of print is redefined as a reference to the value 0. Hence, within the
scope of the current session of Jupyter Notebook Kernel, the variable “print” refers to
0, not to the original print(output) function.

2.2.7 Checking IPython variables

=)

Notes

[Python is an enhanced interactive Python shell. The IPython Notebook is now known
as the Jupyter Notebook. It is an interactive computational environment, in which you
can combine code execution, rich text, mathematics, plots and rich media. For more
details on the Jupyter Notebook.

IPython offers numbered prompts (In/Out) with input and output caching, also referred
to as ‘input history’. All input is saved and can be retrieved as variables.

In[13] | x = 12413

Out[13]

In[14]

Out[14]

X

to retrieve the In[] variables

In[13]

X = 12+13\nx’

L —

Notes

Here, the In[] and Out[] are not Python variables, but a special variable offered by
IPython for editing code conveniently and tracing execution process.

In[15]

Out[15]

In[16]

Out[16]

to retrieve the Out[] variables

Out[13]

25

to retrieve the temporary variables:_

The symbol "_" represents "the most recent Out variable".

25

31

32 Python Data Science

2.2.8 Checking Python keywords

L —

Notes

The Python built-in module keyword enables us to test for Python keywords.

® keyword.kwlist: Return a sequence containing all the keywords defined for the
interpreter.

® keyword.iskeyword(s): Return True if s is a Python keyword.

In[17]

Out[17]

import keyword
print(keyword.kwlist)

['False', 'None', True', 'and', 'as', 'assert', 'async', 'await', 'break’, 'class’, 'continue’, 'def’,
'del', 'elif’, 'else’, 'except’, 'finally’, 'for', 'from', 'global’, 'if', 'import’, 'in', 'is', 'lambda’,
‘nonlocal', not', 'or', 'pass’, raise', 'return’, 'try', 'while', 'with', 'yield']

2.2.9 Checking all defined variables

—la

[—p

L —

Notes

The built-in function dir([object]):
® Without arguments, return the list of names in the current local scope.

® With an argument, return a list of valid attributes for that object.

In[18] | print(dir())

Out[18]

[In', 'Out', "', ' "' "' builtin__ ", '__builtins_ ', '__doc__', ' loader_', ' _

name __package_ ','__spec_ ', '_dh','_i','_il','_i2', '_i3', "_ih', "_ii", '_iii', '_oh',
‘exit', 'get_ipython', 'keyword', 'quit’, 'x']

) —_— —_— E— — —

2.2.10 Deleting variables

In[19] |i=20
print(i)
del i
-:| . | Here you need to restart Jupyter Notebook Kernel, otherwise an error will be raised,
T 3’ because “print=0" in In[12], that is, print is redefined as a variable name.
1 %= I
In earlier versions of Python, del was a statement, not a function.
Notes Hence, an error will be raised when written as del(i).
vl
%9 To restart Kernel: Select Kernel—>Restart in the menu of Jupyter Notebook/Lab.
Tricks
In[20] | i
Out[20]
NameError Traceback (most recent call last)
<ipython-input-2-397d543883¢5> in <module>
—>11

NameError: name '1' is not defined

Basic Python Programming for Data Science

The naming convention recommended by Guido, the father of Python, includes the
following points.
1. Moduleorpackagenamesuselowercaselettersand underscore-separated words, e.g.
regex_syntax, py_compile, winreg
2.Class or exception names should capitalize the first letter of each word, e.g.
BaseServer, ForkingMixIn, KeyboardInterrupt
3. Global constants or class constants use uppercase letters and underscore-
separated words, e.g.
MAX_LOAD
4. The names of other objects, including method names, function names, and common
variable names, use lowercase letters with underscore-separated words, e.g.
my_thread
5.1If the above objects are private types, name them start with an underscore, e.g.
init__, _new__

%
I,

I
N

Considering the specificity of data analysis/data science projects, the naming
convention of this book has fine-tuned for the naming convention recommended by
Guido.

Ii,—:\|

HIRE
&

1l
AS

Notes

To write better code in Python, you can follow the guidelines provided by PEP (Python
Enhancement Proposal). PEP8 is specifically focused on the Python Code Writing
Specification, which serves as a style guide for Python code. PEP20, known as “The
Zen of Python,” also provides valuable principles to guide Python programmers.

To access the official PEP documents and read more about them, you can visit the
official website at https://www.python.org/dev/peps/. It is a valuable resource for
understanding the recommended practices and conventions in Python programming.

In addition to PEP, the Google Style Guide is another commonly used coding
specification, particularly in data science practices. It provides guidelines and best
practices for writing code in a consistent and readable manner.

By following these coding specifications, you can enhance the quality, readability, and

maintainability of your Python code.

33

https://www.python.org/dev/peps/

34

Python Data Science

2.3 Operators and Expressions

Q&A

‘What are the commonly used operators in Python?

Relational operator

Logical operators and. or. not

in. not in. ==,

Set operators

[What are the special operators in Python?

Membership operators-in Determine whether a value is in the container

Determine whether two objects are the same

object

Functions related to operators Built-in finctions and math packages

What should be paid attention to in the use of operators?

Priority The order of calculation of difierent operators

Calculation direction for the same priority
operators

Com bination direction

Basic Python Programming for Data Science

Table 3-1 Arithmetic operators (x=2, y=5)

Operators | Meanings Instances Results
+ Addition X+Yy 7

- Subtraction X-y -3

& Multiplication X *y 10

/ Division y/x 2.5

% Remainder y % x 1

/! Floor division y//2 2

O Exponentiation x**y 32

Table 3-2 Relational operators (x=2, y=5)

Operators | Meanings Instances | Results

== equal to X==Yy False

I= not equal to Xl=y True

> greater than X >y False

< less than X<y True

>= greater than or equal to X>=y False

<= less than or equal to X <=y True
Table 3-3 Assignment operators

Operators Instances Equivalence

= y=X y=X

+= y+=x y=y+X

= y-=X y=y-X

E y#=x y=y*x

/= y/=x y=y/x

Yo= y%=x y=y%x

Kk yHE=x y=y**x

/= y/I=x y=y//x

Table 3-4 Logical operators (x=2, y=5)

Operators | Meanings Instances RENIS
and Logical AND x and y 5

or Logical OR Xory 2

not Logical NOT not (x and y) False

35

36

Python Data Science

Table 3-5 Bitwise operators(x=2, y=5; Note: You can use the built-in
function bin() to get the corresponding binary.)

Operators Meanings Instances RREYIIN
& Bitwise AND X &y 0

I Bitwise OR xly 7

2 Bitwise XOR xNy 7

~ Bitwise NOT ~X -3

<< Bitwise left shift X <<y 64

>> Bitwise right shift | x >>y 0

Table 3-6 Set operations

Mathematical Python operators | Description

symbols

ez in be a member of ...

& not in not be a member of ...

= == equal to

% 1= not equal to

c < be a (strict) subset of ...

c <= be a subset of ...

D > be a (strict) superset of ...

-) >= be a superset of ...

n & intersection

U | union

—or\ - difference or relative
complement

A A symmetric difference

Basic Python Programming for Data Science 37

The operator precedence in Python is shown in Figure 3.1.

High
**

is is not

in not in

not or and v
Low

Figure 3.1 Precedence of Python operators

2.3.1 Common used operators

In[1] | # division(Arithmetic Operators)
x=2

y=5

y/x

Out[1] 2.5

|
N\ 7/
= — | According to PEPS8, the Python style guide, it is recommended to use a single
s N\ | whitespace on each side of assignment operators, comparisons, and boolean operators.
= This improves readability and helps make the code more consistent.
Tips

In[2] | # modules (Arithmetic Operators)

X=2
y=5
y % x

Out[2] 1

38 Python Data Science

In[3]

Out[3]

In[4]

Out[4]

In[5]

Out[5]

In[6]

floor division (Arithmetic Operators)

x=2
y=5
y /I x

2

Exponentiation
w22

y=>

Xy

32

Equal (Comparison Operators)

x=2
y=35
X==y

False

Not equal (Comparison Operators)

x=2
y=>
x!l=y

True

\

Types

Operators

Descriptions

identity operators

18
1s not

Check if the variables on either side of
the operator point to the same object

membership operator

in
not in

Check if a value exists in a sequence
or not.

In[7]

Out[7]

In[8]

Out[8&]

In[9]

Out[9]

#is (identity operators)

R=2
y=5
Xisy

False

s not (identity operators)

x=2
y=5
X is not y

True

#in (membership operators)

xin [1,2,3,4]

True

In[10]

Out[10]

Basic Python Programming for Data Science

not in (membership operators)

yin [1,2,3,4]

False

In[11] | x not in [1,2,3,4]

Out[11] False
In[12] | #//=(augmented assignment operators)
x=2
y=5
y/I=x
print(x,y)
Out[12] 2.2
N\ ! 7/
- — | An augmented assignment is generally used to replace a statement where an operator
s \ | takes a variable as one of its arguments and then assigns the result back to the same
= variable. Hence, y//=x is equivalent to y =y // x.
Tips
In[13] | x=2
y=5
y//=x+8
print(y)
Out[13] O

L.

Notes

The Ouput[13] y is 0, not 10. For more details, please refer to [2.5 Assignment
statement].

In[14]

Out[14]

In[15]

Out[15]

In[16]

Out[16]

Logical Operators
x=True
y=False
x and y

False

x=True
y=False
X Ory

True

x=True
not x

False

39

40 Python Data Science

In[17] | # Bitwise operators
x=2
y=3
print(x,y)
print(bin(x),bin(y))
Out[17] 23
0b10 Ob11
=)
T _-?é Bitwise operators and logical operators are two different concepts.
Notes
N\ J 7/
@ Decimal data can be converted to binary data with built-in function bin().
=
Tips
In[18] | x=2
y=3
x&y
Out[18] 2
N ! 7/
/@\ & is a bitwise operator which means “bitwise and”.
=
Tips
In[19] | x=2
y=3
bin(x&y)
Out[19] '0bl0’
In[20] | x=2
y=3
bin(x | y)
Out[20] 'Obll

In[21] | bin(x"y)

Out[21]

‘0b1"'

In[22] | bin(~x)

Out[22]

In[23]

Out[23]

'-Ob11'

x=2
y=3
bin(x<<y)

'‘0b10000'

In[24]

Out[24]

Basic Python Programming for Data Science

x=2

y=3
bin(x>>y)
'0b0’

2.3.2 Built-in functions

In[25] | pow(2,10)
Out[25] 1024
N\ ! 7/
@ Built-in functions (BIFs) are functions that are built into the Python interpreter and
s S . . .
= can be called directly by their function name.
Tips

\

L. —

Notes

pow() is a built-in function, but sin() is not.

Tricks

To get built-in functions: dir(__builtins__)

In[26] | round(2.991)

Out[26] 3
NG
= — | Rounding function: round(number, ndigits). Its function is to round its first argument
/@\ number, and retain ndigits significant figures after the decimal point. The ndigits
= argument defaults to 0.
Tips

In[27] | round(2.991,2)

Out[27] 2.99
N
/@\ The meaning of argument “2” is “retain 2 significant figures after the decimal point”.
=
Tips

]
AS

We can get the help information of round() function through “?round” or “round?”.
The help information given by the system is as follows:
round(number[,ndigits])

The arguments placed in [] are optional such as ndigits.

41

42 Python Data Science

2.3.3 Math modules

In[28]

Out[28]

import math
math.sin(5/2)

0.5984721441039564

Tips

In Python, many commonly used mathematical functions (such as sin(), cos()), and
others, are not built-in functions, but are placed in the math module. The math module
provides a wide range of mathematical operations and functions.

In[29]

Out[29]

import math
math.pi

3.141592653589793

The way to get the value of pi.

import math
math.sqrt(2.0)

1.4142135623730951

import math
math.sqrt(-1)

ValueError Traceback (most recent call last)
<ipython-input-31-101bb87dcaf5> in <module>

1 import math
----> 2 math.sqrt(-1)

ValueError: math domain error

\@,
=

Tips

An error will be raised when attempting to take the square root of a negative number
using the math module.

In[32]

Out[32]

import cmath
cmath.sqrt(-2)

1.4142135623730951j

Basic Python Programming for Data Science

NG
/@\

-
=

Tips

The functions for complex numbers are in another module called cmath.

2.3.4 Precedence and associativity

In[33] | 24243

Out[33] 256
<L, |Operator precedence determines the order in which operators are evaluated in an
- — | expression that contains multiple operators with different precedences. Operators with
/@\ higher precedence are evaluated first.
=
T;s Operator associativity is relevant when two or more operators have the same precedence

in an expression. It determines the order in which operators are evaluated when they
have the same precedence. Associativity can be either left to right (left-associative) or
right to left (right-associative).

LY —

Notes

In Python, “2**2%*3” is different from “(2**2)**3”

In[34] | (2%2)*3

Out[34]

In[35]

Out[35]

64

x=2+3
X

5

:I‘

L

Notes

The precedence and associativity assignment operators.

In[36] | 142 and 3+4

Out[36] 7
N\ ! 7/
/@\ Please analyze the reason why the result of the expression “1+2 and 3+4” is “7”.
=

43

44 Python Data Science

2.4 Statements

Q&A

Do Python statements have sp ecial termin ators, such as ";" in C/ Java?

The Python interpreter does not mark the
existence and end ofa statement according to
"whether there is a statem ent terminat but
according to its grammatical integrity.

What are the rules for writing Python statemen ts?

Of course, it can also be in the form of "one line
with multiple sentences" or "one sentence with
multiple lines
The former s a statement separator*
The latter uses a continuation character

Usually one sentence in a line

Can I write Python code in the form of "oneline with multiple senten ces"?

Separate different
statem ents——=> i=20; print("Hello World")
with semicolons

Can I write Python codein the form of ""one sentence with multiple lines"?

"Continuation
character (\)" —=> Lt
is required

("Hello
World™)

I heard that 'indentation' is very importantin Python, isn't it?

In Python, "indentation" is

used to represent the fanction
of curly brackets ({}) in

non

Note that indents must begin with a colon

other languages

If there is no statement termin ator in Python, how to represent "emp ty statement"?

Basic Python Programming for Data Science

2.4.1 Writing a statement in a line

—

Python statements are usually written in a single line. The newline character marks

- ;él the end of the statement.
Notes
In[1] | i=20
j=30
k=40

r—l,
7

L

Notes

6.9

Unlike C and Java, Python does not have statement terminators such as “;

Tips

Please refer to PEPS-Style Guide for Python Code and Google Python Style Guide for
the writing specifications of Python code.

2.4.2 Writing multiple statements in a single line

In[2] | i=20; j=30; k=40

Tips

Though not typically recommended, you can separate different statements on the

same line with a semicolon ““;” in Python.

In[3] | isjsk

Out[3]

40

\®/
=
=2

Tips

In Python, “i, j, k” differs from “i; j; k”. The former creates a tuple, while the latter
represents multiple statements.

In[4] | i,jk

Out[4]

(20, 30, 40)

45

46

Python Data Science

L=

Notes

I73% 1)

In Python, there is a distinct difference between *;” and “,”. The former is used for
representing multiple statements in a single line, while the latter is used for creating
tuples. Detailed information about tuples is described in Section [2.11 Tuples].

In[5] | print(i;j;k)

Out[5]

File "<ipython-input-5-efd9c261ba8d>", line 1

print(i;j;k) #Exception, SyntaxError: invalid syntax
AN

SyntaxError: invalid syntax

:|:-
N

It is easy for beginners to confuse the use of semicolons and commas. For example,
the above code will raise an error.

Notes
\ l /
= — | Attempting to print a statement like “print(i; j; k)”” will result in a SyntaxError (“invalid
s N\ |syntax”) exception. This is because semicolons represent statement separators in
= Python and cannot be used in this context.
Tips

2.4.3 Splitting a statement into multiple lines

In[6]

Out[6]

print("nin \
hao")

nin hao

:I‘
=7

Notes

Here, “\” refers to the line continuation character. PEP8 recommends that a line of
Python code should be limited to a maximum of 79 characters. If a line needs to
extend beyond this limit, it should generally be split into multiple lines. You can use
the line continuation character “\” to indicate that a line should be continued, although
in many cases, Python allows line continuation inside parentheses, brackets, and
braces without the need for this character.

2.4.4 Compound statements

Compound statements contain (groups of) other statements. there are three main kinds
of compound statements:

® control flow constructs: for(or while)statements and if statements

=
T;;s ® exception handlers: try statements and with statements
® function and class definitions: def statements and class statements
In[7] | sum=0
for 1 in range(1,10):
sum=sum-+i
print(i)

print(sum)

Oout[7]

Basic Python Programming for Data Science

In Python, indentation is used to represent the block structure of code, similar to the
way braces “{}” are used in Java and C. Howeyver, there are some unique aspects of

:;é | Python’s indentation rules:
Notes | @ A colon (“:”) is required at the end of the line before the start of an indented block.
This is usually at the end of control flow statements like if, for, while, def, and class.
® The consistency of indentation is very important. All lines within the same block
of code must be indented at the same level. This alignment is required to correctly
represent the structure of the code.
N\ ! 7/
s N\ | PEP8 recommends to use 4 spaces per indentation level.
=
Tips
In[8] [a=10
ifa>>5:
print("a+1=",a+1)
print("a=",a)
Out[8] a+l=11
a= 10

Please note that incorrect indentation can cause SyntaxError exceptions or lead to
unexpected behavior due to the code’s logic being interpreted differently than intended.

Python doesn’t require a specific number of spaces for indentation, but by convention
and according to PEP 8 (the official Python style guide), four spaces are typically used
to denote one level of indentation.

[|

Notes

In Python, a colon (:) must be added at the end of the line before starting an indented
block.

47

48

Python Data Science

2.4.5 Empty statements

An empty statement is a statement that does nothing. In Python, the pass statement
serves this purpose, essentially acting as a placeholder for future code and having no
effect when executed.

=1l

y=2

if x>y:
pass

else:

print(y)

Python is often described as being like “executable pseudocode” due to its readability.
In Python, if you need to create an empty block (for instance, a function or a loop that
you have not yet implemented), you would use the pass statement as a placeholder. If
you don’t include a pass statement or some other statement in such a block, Python
will raise a syntax error.

Unlike C and Java, an empty statement in Python is represented by a pass statement,
not by a semicolon(;).

Two important versions of Python:

Currently, there are two important versions of Python: Python 2 and Python 3. There
are many differences in syntax between the two. This book observes Python 3 syntax.
The main difference between the two and the ways of porting Python 2 code to Python
3 can be found at https://docs.python.org/3/howto/pyporting.html or https://www.
python.org/.

https://docs.python.org/3/howto/pyporting.html
https://www.python.org/
https://www.python.org/

Basic Python Programming for Data Science

2.5 Assignment statements

Q&A

The significance of assignmen t statemen ts in Python

In addition to the "assignm ent
fanction," variable definitions in

The use of user defined variables must:
Define it before use.
Ifit is not defined, it cannot be used.

Python are also implemented
through assignm ent statements

How do I write a Python assignmen t statement?

The variable i contains the memory address
E.g. with the value "100", not itself Note: In
i=100 contrast with C and Java, variables in
Python are "reference variables".

Can "chained assignment statements" be written in Python?

Il oo

Is equivalent to:

(Note the order of the above statements)

Can "compound assignment statements' be written in Python?

Its meaning is:
k=k+20

Is there anything special about assignment statements in Python?

Such as:
abiesl1i2 g
Unpacking assignment Then seated by number, the values ofa, b,
SEEVEEE ORI EN and c are 1, 2, and 3 respectively
See this book for the reason [2.14
Sequences]

C and Java need to introduce the third
variable, such as:

The exchange of two variable values,
—such as a=0, b=1,
v reverse the values of a and b

c=aa=bb=c;

However, in Python it can be written as:
ab=b,a
See this book for the reason [2.12 Tuples]

49

50

Python Data Science

2.5.1 Assigning objects

In[1] | i=1
i
Out[1] 1
N\ ! 7/
/@\ In Python, assignment statements are also used to define new variables.
=
Tips

2.5.2 Chained assignment statements

In[2]

Out[2]

i=j=2

1
]
2

The associativity of assignment operators in most programming languages, including

-;£ Python, follows a ‘right-to-left’ rule.
Notes
In[3] | j=2
i=j
i
J
Out[3] 2
N\ J 7/
_/@: The chained assignment ‘i = j = 2’ is functionally equivalent to the sequence of
= statements j =2;1=7j;’.
Tips

2.5.3 Augmented assignment statements

Augmented assignment, also known as compound assignment, refers to specific
assignment operators in certain programming languages, particularly those derived
from C.

i=1
i+=20
i

21

Basic Python Programming for Data Science

T=—l,s ||Operator Description
1 E,/ += Addition
g -= Subtraction
Notes k= Multiplication
/= Division
%= Modulus
<<= Left bit shift
>>= Right bit shift
In[6] | a=2
a*=1+3
a
Out[5] 8

N 7/
/@\

=
=

Tips

Here, the Out[5] is 8 (not 5) because the right hand side is always evaluated completely
before the assignment when running an augmented assignment.

2.5.4 Sequence unpacking

In[6]

Out[6]

a,b,c=1,2,3
a,b,c

(1,2, 3)

The assignment rule for sequence unpacking follows a ‘position-based’ approach. In
other words, the values on the right side of the assignment operator are assigned to the
variables on the left, according to their respective positions.

For further details about sequences and their unpacked assignments, please refer to
[2.13 Sequences].

The output here is a tuple, in other words, numbers with parentheses. Please refer to
[2.11 Tuples].

51

52 Python Data Science

2.5.5 Swapping two variables

In[7] | a=1
b=2
a,b=b,a
a,b

Out[7] (2,1)

N\ 7/

= — | Here, a,b is equivalent to the tuple (a,b). Therefore, a,b=b,a is equivalent to (a,b)=(b,a)

s N\ | which is an example of is a sequence unpacking described in [2.5.4 Sequence
= unpacking].

Tips

F—],. | In C and Java, swapping two variables (a, b) requires the introduction of a third
_:/ variable (c), as shown in the sequence ‘c = a; a=b; b =c;’. Python, on the other hand,
ﬂ allows the same operation to be performed more succinctly with the line ‘a, b=Db, a’.
Notes | However, this does not necessarily mean that Python consumes less memory than C
or Java. It’s worth noting that in Python, the ‘a, b = b, a’ operation creates temporary
tuples under the hood for the swap, which can consume additional memory beyond
just the variables a and b.

Basic Python Programming for Data Science

2.6 Comments

Q&A

How do I write a a comment statement in Python?

to use the hash mark (#) at the

beginning of the statement

How do I comment on the multiple lines of codein Python programs ?

to use a hash mark(#) at the beginning
of each line

to use triple quotes(""" or"") at the
beginning and the end of the com ment

The shorteut in Jupyter Notebook is

Whatis the differencebetween DocStrings and comment statemen ts?

See [3.4 Help and DocStrin

#i=20
print(i)

i=20
print(i)

1w

What is a quick way to switch b etween ""codeline" and "comment line" when writing Python code?

53

54

Python Data Science

2.6.1 Line comments

L~ —

Unlike Java and C, comments in Python start with a hash mark(#) and extend to the
end of the physical line.

Notes
In[1] | x=1
#y=2
print(x)
Out[1] 1
. }/ The Python interpreter always ignores comments. Therefore, we can prevent a
‘!’ section of code from executing by commenting it out during the debugging of Python
= programs. Additionally, it’s important to prioritize keeping comments up-to-date
Tricks | When the code changes.
In[2] | x=1
#y=2
print(y)
Out[2]
NameError Traceback (most recent call last)
<ipython-input-4-f9b039d12571> in <module>
1 x=1
2#y=2

----> 3 print(y) # why that exception: the defined part of the variable is the comment
line.

NameError: name 'y' is not defined

\®/
=

Tips

A NameError exception was raised when the Python Interpreter executed In[2] in that
y=2 was commented out.

2.6.2 Block comments

\

Python does not have a specific syntax for multiline comments. However, we can
implement multi-line comments in Python either by using single-line comments
consecutively or by using triple-quoted Python strings.

Basic Python Programming for Data Science 55

In[3] | x=1
y=2
print(y)
This is
a
multiline comment
in python

nn

2

In Jupyter Notebook, we can switch between “code line” and “comment line” by
keyboard shortcut [Ctrl +/].

Tips
**,*)/ In Jupyter Notebook, we can conveniently switch between Comment Lines and
%9 Code Lines using the shortcut Ctrl+/. Please note that these shortcut keys in Jupyter
Notebook cannot be used when a non-English input method is active.

By convention, the triple quotes that appear right after the function, method or class
definition are docstrings (documentation strings). For more details, please refer to
“3.4 Help documetation”.

56

Python Data Science

2.7 If statements

Q&A

| How do I writean if statement?

Two ways "Statement-style" writing, s

- . . * .2

of writing that is, multi-line writing =
ion-style" writing, =

E.g.

gle-line writing

How do T understand "single line expression" if statement?

The essence is

Functionally, similar to conditional

operators in C and Java .
P the if part

What problems should be paid attention to when writing if statements in Python?

Not curly brackets, but indentation and
colon
Don't forget the colon

Can contain elif statem ent

The if part, the else part, and the elif

herefore
part cannot be empty

v

2.7.1 Basic syntax

he advancement of

print(b)

Result="Y" ifx>0 else "N"

"Y"if x>0] else "N"

if (a<=b):
print(a)

elif (
prnt(a)
else:

print(b)

Empty statements need to be represented by pass

statements

In[1] | a=2
b=3
if(a<b):
print("a is less than b")
else:

print("a is not less than b”)

Out[1] aislessthanb

Basic Python Programming for Data Science

In Python, indentation serves the same function as braces ({ }) in C and Java; that is, it
signifies the scope of compound statements.

]
A

In Python, a colon (:) is required at the end of the line that introduces a new indentation
level, such as the start of a control structure or a function definition. Thus, a colon
often precedes an indentation.

Notes
In[2] | if(a<=b):
if(a<b):
print(a)
else:
print(a)
else:
print(b)
Out[2] 2

Similar to C and Java, Python supports the nesting of ‘if” statements.

2.7.2 Elif statement

:l‘

L~ —

Notes

In Python, the keyword ‘elif” is shorthand for ‘else if". It’s useful in avoiding excessive
indentation and keeping the code concise.

In[3]

if(a<=b):
print(a)

elif(a==b):
print(a)

else:
print(b)

Unlike C and Java, the ‘if” statement in Python caninclude an ‘elif” clause. Additionally,
Python’s ‘try-catch’, ‘while’, ‘for’, and other control statements can all include an
‘else’ clause. In Python, the ‘else’ statement signifies that the preceding code block
was exited normally, meaning without a ‘break’, ‘continue’, or an exception being
thrown.

57

58

Python Data Science

2.7.3 Ternary operators

L. —

Notes

Ternary operators allow us to quickly test a condition, providing a more compact
alternative to a multiline ‘if” statement.

In[4]

x=0
Result="Y" if x>0 else "N"
Result

4N7

The ‘if” statement in Python can be written as a single-line expression, similar to the
ternary conditional operator (?:) in C and Java.

In Python’s ternary operators, the ‘frue’ expression (Y) precedes the ‘if” statement.

In Python, the if statements, the for statements, and functions can all be written on

__-Té a single line, using ternary operators, list comprehensions, and lambda functions,
respectively.
Notes o J
In[5] | x=1
Result="Y" if x>0 else "N"
Result
Out[5] Y'

2.7.4 Advanced syntax

In[6]

if(a<=b):
else:
print(b)

File "<ipython-input-6-12262625dfcc>", line 2

else:
N

IndentationError: expected an indented block

In Python, each part of an if statement must have some code or statement. If any
part is empty, the Python interpreter will raise an error because Python is executable
pseudocode. You can refer to [2.10 The pass statements (In[1])] for more information.

Basic Python Programming for Data Science

N\ 7/
_/ : Can I write an empty statement? No.
= IndentationError: expected an indented block
=
Tips
N\ ! 7/
s N\ | The pass statement is equivalent to the empty statement in other languages.
-
=
Tips
In[7] | if(a<=b):
pass # no error
else:
print(b)
N\ ! 7/
= — | In this case, the pass statement serves as a placeholder to indicate that no action is
s N\ | taken when a is less than or equal to b. If a is greater than b, the code will execute
= the print(b) statement in the else block.
Tips
N\ ! 7/
_/ : To check whether a year is a leap year in Python, you can use the following
= suggestion:
Tips
In[8] | import calendar
calendar.isleap(2019)
Out[8] False

Tricks

Software development projects and data analysis projects are fundamentally
different from each other. Therefore, Python should not be approached in the same
way as C or Java when it comes to data science projects. Let’s take the example of
checking whether a year is a leap year. Instead of attempting to translate Java or
C code directly into Python, it is better to embrace Python’s unique features and
idiomatic style for a more effective solution.

59

60 Python Data Science

2.8 For statements

Q&A

How do I write a for statemen t?

foriin (1, 2, 3
sum = sum-+i
print (i. sum)

for loop variable in container:

loop body

Another main application scenario ofthe for statement is
"list com prehensions", refer to [2.11 Lists]

Whatdoes foriin [] mean?

i is in the iterable object []. starting from
the Oth element, traversing one by one

Refer to [3.1 Iterators and Decorators]

[~ In general, what is themeaning of the range() function that often app ears in for statements? ; “ "

is equivalent to

The relationship is _

finction tha es an iterator
as follows:

is equivalent to '

range(stait, stop,step)

is equivalent to in mathematics

‘What problems should be paid attention to when writing for statements in Python?

Not curly brackets, but "indentation +

sum = 0
for iin (1
sum = sum-+i

colon" Don't forget
the colon

print (i, sum)
else

print ("here is esle")

Basic Python Programming for Data Science

2.8.1 Basic syntax

In[1]

Out[1]

sum=0

foriin (1,2,3):
sum=sum-+i
print(i,sum)

11
23
36

]
A S

Unlike C and Java, there is only one way to write the for statement in Python:

XA [for ... in ...]. Make sure to include the colon at the end of the line and pay attention to
Notes the indentation. You can refer to [2.4 Statements] for more information.
NP
= — | The in keyword in Python is used to iterate over iterables or iterators. In the given
s N\ | context, the parentheses () represent a tuple, which is an iterable. For more information
= on iterators and decorators, you can refer to [3.1 Iterators and Decorators].
Tips

Tl
A S

LT

Notes

Before the for statement, it is necessary to assign a value to the sum variable; otherwise,
an error will be raised due to the variable being undefined.

2.8.2 The range() function

In[2] | range(1,10)

Out[2] range(1, 10)
+ =", | The range() function is commonly used after the in keyword in the for statement,
::3/ such as range(1, 10). The range() function returns a “range iterator” that generates a
oS -_'—_l sequence of numbers from the start value (1 in this case) to the end value (10 in this
Notes | case).
N\ ! 7/
/@\ Please refer to [3.1 Iterators and Decorators] for more information on iterators.
-
=
Tips
In[3] | myList=list(range(1,10))

Out[3]

myList

(1,2,3,4,5,6,7,8,9]

61

62

Python Data Science

To examine the contents of an iterator, you can use the /ist() function to convert the
“range iterator” into a list type. This allows you to view all the elements generated by
the iterator.

.:'\

L —

Notes

In the return value of the range(1, 10) function, the generated sequence includes the
number 1 but excludes the number 10. This is a characteristic of the range() function
in Python, where the end value is exclusive. For more details on working with lists,
you can refer to [2.10 Lists].

2.8.3 Advanced syntax

In[4]

Out[4]

sum=0

foriin (1,2,3):
sum=sum-+i
print(i,sum)

else:
print("here is esle")

11
23
36
here is esle

Unlike C and Java, the for statement in Python can be used together with the else
statement.

=2
Tips
In[5] | myList=list(range(1,10))
for jin [1,3,4,5]:
print(myList[j])

Out[5] 2
4
5
6

N\ ! 7/
-, : Similar to C, Java, etc., the for statement in Python supports the break and continue
= statements.
Tips

In[6]

Out[6]

Basic Python Programming for Data Science

for k in range(0,16,2):

if(k==8):
break

print(k)

0

2

4

6

:l‘

The difference between the break and continue statements is as follows: The break
statement “‘exits the loop entirely,” while the continue statement “skips the remaining
code inside the loop for the current iteration and moves to the next iteration.”

Notes
In[7] | for k in range(0,16,2):
if(k==8):
continue
print(k)
Out[7] 0O
2
4
6
10
12
14
<}, |In contrast to the break statement, the continue statement in Python means *“jump
- — | inside the loop body.” It allows you to skip the remaining statements in the current
iteration of the loop and move on to the next iteration. This means that any code
= following the continue statement within the loop for the current iteration will be
Tips bypassed.

63

64 Python Data Science

2.9 While statements

Q&A

How do I write a while statement?

i=1
sum=0
while (loop condition): while(i<=100):

loop body sum=sum-+i
if=
print(sum)

Is there a do-while statement in Python?

You can use while and break
statem ents to achieve similar
finctions

Can break and continue be written in Python loop statements?

i=1

sum=0

while(i<=10):
sum=sum+i

1
——— What problems should be paid attention to when writing a ifi==6:

while statement in Python?

continue
if i==9:
break
print(i,sum)
else:

Not curly brackets, but "indentation + print("here is esle")

colon"

Else pait can be added

Basic Python Programming for Data Science

2.9.1 Basic syntax

In[1]

i=1

sum=0

while(i<=100):
sum=sum-+i
i+=1

print(sum)

5050

In Python, the while statement is written in a single way, and there is no equivalent
do-while statement as found in some other programming languages. The while loop
in Python allows you to repeatedly execute a block of code as long as a specified
condition is true. The condition is checked before each iteration, and if it evaluates to
False initially, the loop will not be executed.

2.9.2 Advanced syntax

In[2]

Out[2]

i=1
sum=0
while(i<=10):
sum=sum-+i
i+=1
if i==6:
continue
if i==9:
break
print(i,sum)
else:
print("here is esle")

21
33
46
510
721
828

L -7 —

Notes

To summarize, break exits the loop entirely, while continue skips the remaining
statements within the loop for the current iteration and proceeds to the next iteration.

In[3]

i=1
sum=0
while(i<=10):
sum=sum-+i
i+=1
print(i,sum)
else:
print("here is esle")

65

66

Python Data Science

Out[3] 21

33

46

510

615

721

828

936

10 45
1155

here is esle

Unlike C and Java, the while statement in Python can indeed include an else clause.
The else clause in a while loop will be executed only when the condition of the loop
becomes False and the loop completes its iterations normally, without encountering
a break or return statement.

How to distinguish the types of Python code:

(1) Code that starts with “#” is a comment statement. You can refer to [2.6 Comments]
for more information.

(2) Code that starts with “%” is a magic command, which is not part of Python syntax
but belongs to iPython/Jupyter Notebook syntax.

(3) Code that starts with “@” is a decorator. You can refer to [3.1 Iterators and
Decorators] for more details.

(4) Code that starts with “!”” is a Python pip/conda command.

Basic Python Programming for Data Science 67

2.10 Lists

Q&A

What are lists?

In Python, the iconi for lists is square

Refer to a variable ordered container, where g
Presence mark e
ack

each element has its own index

The difference between lists and tuples
Lists are mutable and tuples are inmutable
The list uses square brackets []. and the tuple uses parentheses ()

How do I define a list?
|
Three common
w

ys Use square brackets [] to put multiple
cts in an ordered container

E.g. myListl = [1,5.6.

ignment statement to assi;
ist variable to a new list variable

Does theindex of the list start from 0, or from 1?7

|
There are two ways to represent
the index ofthe list

The first el enent The second element The (N-1)th element The Nth elenent

Use positive
numbers to
represent the
nethod

Usenegative
numbers to
represent the

nethod

The index in Python can be negative

How do I slice the list?

start, stop and step are optional arguments

68 Python Data Science

— What are the common operations for lists?

[Whatis a list derivation?

E— What problems should be paid attention to in Python list programming?

2.10.1 Defining lists

In[1] | myListl = [21,22,23,24,25,26,27,28,29]
myListl
Out[1] [21, 22,23, 24, 25,26, 27, 28, 29]

Basic Python Programming for Data Science

To define a list in Python, you can use the following methods:

Method 1: Using brackets []

In the basic Python syntax, parentheses (), brackets [], and braces { } represent tuples,
lists, and sets/dictionaries, respectively.

Notes
In[2] | myList2=myListl
myList2
Out[2] [21, 22, 23, 24, 25, 26, 27, 28, 29]
N\ ! 7/
—/ ~ | Method 2: Using an assignment statement, where you assign a defined list variable to
= > a new list variable.
Tips
In[3] | myList3=list("Data")
myList3
Out[3] [lDl’ lal’ ltl’ lal]

Method 3: Using type casting to convert other types of objects to the list type.

Negative subscripts or negative indexes can be used in Python to access elements from
the end of a sequence, such as a string or a list.

The positive indexes start from 0, where O represents the first element.

The negative indexes start from —1, where —1 represents the last element.

In[4] | myList1[-1] |

Out[4]

29

In[5] | myList1[-9] |

Out[5]

21

In[6] [myList1[9] |

Out[6]

IndexError Traceback (most recent call last)
<ipython-input-6-8724c27fc4be> in <module>
----> 1 myList1[9]

IndexError: list index out of range

69

70

Python Data Science

Here, the reason for the error is that the index is out of range.

Notes
\ ' ,
= — | The difference between positive indexes and negative indexes in Python is as follows:
\ | Positive indexes start with 0 and are numbered from left to right, while negative
= indexes start with —1 and are numbered from right to left.
Tips

2.10.2 Slicing

In[7]
Out[7]

| myListl

[21, 22, 23, 24, 25, 26, 27, 28, 29]

(\\

Tips

By printing the variable, you can view its current value in your data science project.
It’s indeed important to pay attention to the current values of variables throughout
your project to ensure accurate results and proper data analysis.

In[8] | myList1[1:8]

Out[8]

[22, 23, 24, 25, 26, 27, 28]

InPython, we canslice alist using indexes, and the notation for slicing is Start:Stop:Step.

i

|
'\,

Notes

When a colon (:) appears in the index of a Python sequence, it typically indicates
slicing the sequence. This slicing notation allows you to specify the start, stop, and
step values to extract a portion of the sequence.

In[9] | myList1[1:8:2]

Out[9]

[22, 24, 26, 28]

\®/
=
=

Tips

It’s important to note that the start, stop, and step values can be omitted when writing
a slice. When any of these values are omitted, they take on default values:

In[10] | myList1[:5]

Out[10]

[21, 22, 23, 24, 25]

Basic Python Programming for Data Science

If the start value is omitted, it defaults to the beginning of the sequence. If the stop
value is omitted, it defaults to the end of the sequence.If the step value is omitted,
it defaults to 1, indicating consecutive elements.For more details on working with
sequences and slicing, you can refer to [2.13 Sequences].

The element with the index of “stop” is not included in the slicing. For example, in
the case of an element with an index of 5, which corresponds to a value of 26 in this
example, it is not included in the slice.

In[11] | myList1[:]
Ouf[11] [21,22,23, 24,25, 26,27, 28, 29]

Tips

The start, stop and step arguments are omitted.

In[12] | myList1[2:]
Out[12] [23,24, 25,26, 27,28, 29]

Tips

The stop and step arguments are omitted.

In[13] | myList1[:-1]
Out[13] [21, 22, 23,24, 25, 26, 27, 28]

Tips

The slicing operation supports negative indexes.

2.10.3 Reversing

In[14] | myListl |
Out[14] [21, 22,23, 24, 25, 26, 27, 28, 29]

In[15] | myListl[::-1] |
Out[15] [29, 28, 27, 26, 25, 24, 23,22, 21]

71

72

Python Data Science

Reversing lists can be achieved using the index [::-1], which means setting step to -1.

Notes

Note that there are two colons in myList1[::-1].

In[16] | myListl

Out[16]

[21, 22, 23, 24, 25, 26, 27, 28, 29]

=)

L O

Notes

In Python, slicing a list does not change the list itself; instead, it creates a new list with
the selected elements.

In[17] | myListl[:-1]

Out[17] [21, 22,23, 24, 25, 26, 27, 28]
NP
- @ ~ | Here, [:-1] has the same meaning as [:n-1]. In data science projects, there is always a
s N . . Lo . .
= case where the index is -1, which indicates the maximum value of the index.
Tips

In[18] | reversed(myList])

Out[18] <list_reverseiterator at 0x18ef35863d0>

7/ In Python, to reverse lists, we can also use the built-in function reversed() or the list
- method reverse().
Tricks

]
A S

The return value of the reversed() function is an iterator, and its values can be displayed

C A by passing it to the list() function.
Notes
N ! 7/
- — | For information about iterators, you can refer to the section titled “Iterators and
N\ | Decorators” in the Python documentation or resource you mentioned, specifically
= section 3.1.
Tips

In[19] | list(reversed(myList1))

Out[19]

[29, 28, 27, 26, 25, 24, 23, 22, 21]

Basic Python Programming for Data Science

In[20] | myListl

Out[20] [21, 22, 23,24, 25, 26, 27, 28, 29]
N ! 7/
:@: To check the current value of the myList/ list, you can use the reverse() method as
= follows: myListl.reverse().
Tips
In[21] | myListl.reverse()
myListl
Out[21] [29, 28, 27, 26, 25, 24, 23, 22, 21]
I ;’I‘ When you use reversed(), it returns an iterator that allows you to iterate over the list
T4~ in reverse order without modifying the original list. However, if you use the reverse()
Not method directly on a list, it will reverse the elements of the list itself.
otes

2.10.4 Type conversion

In[22] | list("chaolemen")

Out[22] [!CY’ |h|’ laV’ 'O" Yll’ lel’ lmV’ lel’ |nl]
N ! 7/
/@\ We can use the /ist() function to convert an object of a different type into a list.
-
=
Tips

2.10.5 the extend and append operator

In[23]

Out[23]

In[24]

Out[24]

The addition (+) operator of the list
myList]l = [21,22,23,24,25,26,27,28,29]
myList2=myList]

myList]l + myList2

[21, 22, 23, 24, 25, 26, 27, 28, 29, 21, 22, 23, 24, 25, 26, 27, 28, 29]

myList]l = [21,22,23,24,25,26,27,28,29]
myList2=myList1
myListl.extend(myList2)

myListl

[21, 22, 23, 24, 25, 26, 27, 28, 29, 21, 22, 23, 24, 25, 26, 27, 28, 29]

.:|‘

L 2" —

Notes

In Python, the “+” operation for lists and the extend() method of a list have similar
functionality. Both operations are used to concatenate or combine lists.

74

Python Data Science

In[25]

Out[25]

The append() method of the list
myList]l = [21,22,23,24,25,26,27,28,29]
myList2 = myListl
myListl.append(myList2)

myListl

[21, 22, 23, 24, 25, 26, 27, 28, 29, [21, 22, 23, 24, 25, 26, 27, 28, 29]]

{

The difference between the append() and extend() methods of a list is that append()
is used to add a single element to the list, while extend() is used to add multiple
individual elements.

Notes
In[26] | myListl =[1,2,3,4,5,6,7,8,9]
myList3 =[11,12,13,14,15,16,17,18,19]
[i +j for i, j in zip(myListl, myList3)]
Out[26] [12, 14, 16, 18, 20, 22, 24, 26, 28]
I ; s The zip() function in Python is used to iterate in parallel over two or more iterables. It
T ;é | takes multiple iterables as input and returns an iterator that generates tuples containing
Notes elements from each iterable, paired together based on their respective positions.
<}, |InPython, list comprehension (or list derivation) is a concise way to create lists based
- — | on existing lists or other iterables. List comprehension is typically written within
7 N\ | square brackets ([]).
= You can refer to section 2.10.6 titled “Lists Derivation” for more detailed information
Tips on this topic.

2.10.6 List derivation

n[27]

Out[27]

[2 for i in range(20)]
Excute the range() function firstly, then the value of i, and finally the value of 2.

(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2]

List comprehension (or list derivation) must be enclosed within square brackets ([]).
You can refer to section 2.10 titled “Lists” for more information on this topic.

]
A S

Since Python provides mechanisms such as list comprehensions, ufunc functions,
vectorized calculations, and more, complex for statements are generally not commonly
found in Python-based data science projects. These mechanisms offer more efficient
and concise ways to perform computations on data structures, allowing for faster and
more readable code. Consequently, Python developers often leverage these techniques
instead of writing complex for loops when working on data science projects.

Basic Python Programming for Data Science

N ! 7/
/@\
=

Tips

List comprehension is typically written within square brackets ([]), and it allows you
to generate new lists by applying an expression to each item in an iterable, optionally
including conditions for filtering the elements.

In[28] | [i for i in range(1, 21)] |

Out[28]

[1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

In[29] | [i for i in range(1, 21, 2)] |

Out[29]

[1,3,5,7,9,11, 13,15, 17, 19]

In[30] | range(10) |
Out[30] range(0, 10)

Tips

range(10) is equivalent to range(0,10).

In[31] | list(range(0,10,2))

Out[31] [0, 2,4, 6, 8]
N\ ! 7/
_/@: In the code snippet (range(0,10,2)), the numbers 0, 10, and 2 represent the start, stop,
= and step arguments of the iterator, respectively.
Tips

In[32] | [type(item) for item in [True,"1",1,1.0]] |

Out[32]

[bool, str, int, float]

In[33] | print([ord(i) for i in ['&#', K", 1)) |

Out[33]

[26397, 20048, 38376]

In[34] | ["input/%d.txt" % i + "dd%d" % i for i in range(5)] |

Out[34]

[input/0.txtdd0',
‘input/1.txtdd1’,
'input/2.txtdd2',
'input/3.txtdd3’,
'input/4.txtdd4']

Tricks

String placeholders, such as %d, can be used in Python list comprehensions, which are
similar to the placeholders used in the printf{) and scanf{) functions in C.

75

76

Python Data Science

In[35] | ["input/%d.txt"%i + "_%d" %i for i in range(5)]

Out[35] ['input/0.txt_0',
‘input/1.txt_1",
‘input/2.txt_2',
‘input/3.txt_3',
‘input/4.txt_4']
I 5’ Here, %d is a placeholder that represents an integer value, and %i is another placeholder
= that is used to display the corresponding value in the resulting string.
Notes

2.10.7 Insertion and deletion

In[36] | Ist_1 =[10,10,11,12,13,14,15]
Ist_1.insert(1, 8)
Ist_1
Out[36] [10, 8, 10, 11, 12, 13, 14, 15]
N\ ! 7/
/@\ We can add or insert elements to a list using the insert() method of the list.
=
Tips
=
__:_I Here, the number “8” represents the element to be inserted, and the number “1”
- represents the position at which the element will be inserted into the Ist_1 list.
Notes
In[37] | Ist_1 =[10,10,11,12,13,14,15]
Ist_1.pop(2)
Ist_1
Out[37] [10, 10, 12, 13, 14, 15]
N ! 7/
:@: We can use the pop() method of a list to delete a specific element based on its index.
= To remove the element at index 2, you can use the above code.
Tips
In[38] | Ist_1 =[10,10,11,12,13,14,15]
del Ist_1[2]
Ist_1
Out[38] [10, 10, 12, 13, 14, 15]
N ! 7/
/@\ Python supports deleting an element from a list based on its index.
=
Tips

Basic Python Programming for Data Science

Ist_1=1[10,10,11,12,13,14,15]
Ist_1.remove(10)

Ist_1

[10, 11,12, 13, 14, 15]

In addition to deleting an element based on its index, Python also supports removing
an element from a list based on its value. You can use the remove() method for this
purpose.

-_I N
=

Here, only the first occurrence of 10 is removed, not the second occurrence.

Notes
N\ ! 7/
—,@: If you want to remove all occurrences of a particular value from the list, you can use
= other techniques such as a list comprehension or a loop.
Tips

2.10.8 Basic functions

In[40] | len(lst_1)

Out[40] 8
N\ ! 7/
/@\ To calculate the length of a list in Python, you can use the built-in function len().
=
Tips

:I‘

L —

This function is named len(), not length().

Notes
In[41] | Ist_1=1[10,10,11,12,11,13,14,15]
sorted(Ist_1)
Out[41] [10, 10,11, 11,12, 13, 14, 15]
N ! 4
/@\ To sort lists in Python, you can use the built-in function sorted().
=
Tips

In[42] | Ist_1

Out[42]

[10, 10, 11, 12, 11, 13, 14, 15]

77

Python Data Science

L —

Notes

In Python, the built-in function sorted() does not change the order of the elements in
a list.

In[43]

Out[43]

Ist_1=[10,10,11,12,11,13,14,15]
Ist_1.sort()
Ist_1

[10, 10, 11, 11, 12, 13, 14, 15]

In addition to the built-in function sorted(), the list method sort() can also be used to
sort lists.

=
Tips
I ;II‘ The difference between the built-in function sorted() and the list method sorf() is that
T the sort() method directly modifies the order of elements within the list itself, while
Notes the sorted() function returns a new sorted list without modifying the original list.
In[44] | Ist_1 =[10,10,11,12,11,13,14,15]
Ist_2=[11,12,13,14]
Ist_1.append(Ist_2)
print(lst_1)
Out[44] [10, 10, 11, 12, 11, 13, 14, 15, [11, 12, 13, 14]]
=)
T _-?_- I Note the difference between the list methods extend() and append().
Notes
N ! 7/
s N\ | Ist_2 is appended as an element of Ist_1.
=
Tips
In[45] | Ist_1 =[10,10,11,12,11,13,14,15]
Ist_2=[11,12,13,14]
Ist_1.extend(Ist_2)
print(lst_1)
Out[45] [10, 10, 11, 12, 11, 13, 14, 15, 11, 12, 13, 14]
N ! 7/
—/ : Appending Ist_1 directly after Ist_2, that is, directly merging the elements in the two
lists.
=

In[46]

Basic Python Programming for Data Science

Ist_1 =[1,2,3,'Python',True,4.3,None]
Ist_2=11,2,[2,3]]
print(Ist_1, Ist_2)

Out[46] [1, 2,3, Python', True, 4.3, None] [1, 2, [2, 3]]
N\ ! 7/
/@\ To print lists in Python, you can use the built-in function print().
=
Tips
In[47] | Ist_1 = [1,2,3,'Python’,True,4.3,None]
list(reversed(Ist_1))
Out[47] [None, 4.3, True, 'Python’, 3, 2, 1]
N\ ! 7/
= — | The difference between the built-in function reversed() and the list method reverse()
s N\ | is that the former does not modify the list itself, while the latter directly modifies the
= list itself.
Tips
=)
11— ‘reversed(lst_1)’ returns an iterator that needs to be converted using the /is#() function
+->—1| | before printing.
Notes

In[48] | reversed(Ist_1)

Out[48]

<list_reverseiterator at 0x18ef367bf10>

=17
=7

Notes

In data science projects, it is important to pay attention to whether a “function” or
“method” modifies the value of the object being operated upon.

In[49] | Ist_1

Out[49]

[1, 2, 3, 'Python', True, 4.3, None]

Tips

The reversed() function is a built-in function in Python that does not change the list
itself. Instead, it temporarily returns the list in reverse order as an iterator.

In[50]

Out[50]

Ist_1 =[1,2,3,'Python',True,4.3,None]
Ist_1.reverse()
Ist_1

[None, 4.3, True, Python', 3, 2, 1]

79

Python Data Science

In[51] | str1=[1,2,3,4,5]

str2=[20,21,23,24,25]
print(zip(strl,str2))

Out[51] <zip object at 0x0000018EF368C280>

N ! 7/

:@: To aggregate elements from two lists simultaneously in Python, you can use the zip()
= function.
Tips

In[52] | print(list(zip(str1,str2)))

Out[52] [(1, 20), (2, 21), (3, 23), (4, 24), (5, 25)]
N\ ! /7
:@: The return value of the zip() function is an iterator, which needs to be cast by list() to
= get its value. Please refer to [3.1 Iterators and Decorators] for details.
Tips
In[53] | strl=["a","about","c","china","b","beijing"]
[x.upper() for x in strl if len(x)>1]
Out[53] ['ABOUT', 'CHINA', 'BEIJING']
N ! /7
/@ Unlike C and Java, Python introduces the concept of list comprehension, which can be
= used to simplify complex for statements.
Tips

L —

Notes

For a list comprehension, there are three main components:

1. Before the “for” keyword is the expression or formula that will be executed
repeatedly to generate elements for the new list.

2. Between the “for” and “in” keywords is the loop variable that is extracted from
the iterator and represents each element from the iterable.

3. After the “in” keyword is the iterable or iterator from which the loop variable is
extracted, which can also include conditional statements if needed.

In[54] | [x**2 for x in range(10)]

Out[54]

[0, 1,4,9, 16, 25, 36, 49, 64, 81]

Basic Python Programming for Data Science

The list derivation above is executed in the following order:
#First execute range(10)
#Then execute x

=
o . **
Tips #Finally execute x**2
In[55] | str1=["a","about","c","china","b","beijing"]
[str2.upper() for str2 in strl if len(str2)>1]
Out[55] ['ABOUT', 'CHINA', 'BEIJING']
N\ ! 7/
/@: The code above contains the ternary operators of the if statement, please refer to [2.7
= The if statement] for details.
Tips
In[56] | myList=[2,3,5,6,7,3,2]
list(enumerate(myList))
Out[56] [(0,2), (1, 3), (2, 5), (3, 6), (4,7), (5, 3), (6, 2)]
N\ ! 7/
/@\ In Python, to track the index of a list, you can use the built-in function enumerate().
=
Tips

In data science projects, it is important to pay attention to the difference between
writing code for software development and code for data analysis/data science. For
instance, in data science, we often prefer using list comprehension instead of complex
for statements.

List comprehension provides a concise and efficient way to create lists based on
existing lists or other iterables. It simplifies code by condensing multiple lines of
code into a single line, making it more readable and expressive. This approach is
particularly valuable in data analysis and data science tasks that involve working with
large datasets.

By utilizing list comprehension, data scientists can express complex operations more
succinctly and intuitively, resulting in more manageable and error-resistant code.

Therefore, in data science projects, it is important to recognize the advantages of using
list comprehension as a preferable alternative to complex for statements, enhancing
code clarity and efficiency.

81

82

Python Data Science

2.11 Tuples

Q&A

[What are tuples?

How do I define tuples?

|
Four comm on
ways

Refer to an immutable ordered container

Presence In Python, the iconic sign for tuples is

in which the elements have a sequence i
mark parentheses ()

of positions

Use parentheses () .. myTuplel=(1.3.5,7

defined tuple variable to a new tuple myTuple2
variable

Use the way of casting to convert other

data types to tuples By RgpiE =D’}

he parentheses in
the first way can be

Basic Python Programming for Data Science 83

What are the features of tuples?

Everything separated by

Very common in Python

commas is a tuple

Support basic operations of sequence structure,

Is a kind of sequence structure —therefore’ 2 p \
such as slicing, len(), sorted(), in operations, etc

myT uple5=1,3,5,7,2
my Tuple5[2}=3 #Report an emor

Tuple is [immutable object] therefore

Assign the value in the way
of "seated by number”,—3

for exam ple

x1,x2,x3.x4,x5=myTuples
x2

‘What are the main application scenarios of mples in Python?

Assign the value in the way
of "seated by number”, —3
such as

Comresponding to the
formal argument

ERSe = ot Farnat
The actual arguments of the finction def func(args1, *args2):

with a *, such as
The retum value of the finction Appears affer retum——>3 retum 1,2,3,4.5
v Swap the values of two variables Eg

2.11.1 Define tuples

In[1] | myTuple1=(1,3,5,7,2)
print(myTuplel)
Out[1] (1,3,5,7,2)

To define a tuple in Python, you can use the following methods:

1. Using parentheses and commas:

n[2] | 1,3,5,7,2
ou2] (1,3,5,7,2)

84

Python Data Science

=)
1 :,l In Python, parentheses can be omitted when defining tuples; however, commas cannot
<+ = I be omitted
Notes
N\ ! 7/
- — | In Python, when a tuple is output or printed, parentheses are automatically added to
’ N\ | encapsulate the comma-separated values. This helps in differentiating a tuple from
= other data types.
Tips
In[3] | myTuple2=myTuplel
print(myTuple2)
Out[3] (1,3,5,7,2)

L. —

Notes

The second method to create a tuple in Python is through tuple unpacking. This
involves using an ‘assignment statement’ to assign the values of an existing tuple to
the variables of a new tuple.

In[4]

Out[4]

myTuple3=tuple("Data")
myTuple3

(IDI’ |a|’ ltl’ |a|)

The third method involves using type casting to convert other data types into tuples.

myTuple4=1,3,5,7,2
print(myTuple4)

(1,3,5,7,2)

:l‘

L. —

Notes

The fourth method involves using the ‘comma operator’. This means that the
parentheses which are typically used in the first method can be omitted. In Python, a
comma operator signifies a tuple, even without parentheses.

2.11.2 Main features

In[6] | 1,3,5,7,2

Out[6] (1,3,5,7,2)

N\ ! 7/

/@\ Tuples are widely used in Python.
=

Basic Python Programming for Data Science

=

L

In Python, when alistis output in the Jupyter Notebook, it is automatically encapsulated
in square brackets.

Notes
In[7] | myTuple=1,3,5,7,2
myTuple[2]=100

Out[7]

TypeError Traceback (most recent call last)
<ipython-input-7-bab615dd7a09> in <module>

I myTuple=1,3,5,7,2
---->2 myTuple[2]=100 # Why that exception: Tuples are immutable objects.

TypeError: 'tuple' object does not support item assignment

One of the key differences between tuples and lists in Python is that tuples are
‘immutable objects’, which means they cannot be changed after they are created.
Lists, on the other hand, are ‘mutable objects’ and can be modified even after their
creation.

myList=[1,3,5,7,2]
myList[2]=100
myList

[1, 3,100, 7, 2]

In this case, no exception is raised when performing certain operations because a ‘list’
is a mutable object in Python, allowing modifications without causing errors.

myTuple=1,3,5,7,2
myTuple[2:5]

5,7,2)

Similar to lists, tuples support slicing operations because both are sequence types in
Python.

In[10]

Out[10]

myTuple=1,3,5,7,2
len(myTuple)

5

To calculate the length of a tuple in Python, you can use the built-in function, len().

85

86 Python Data Science

In[11]

Out[11]

myTuple=1,3,5,7,2
print(sorted(myTuple))

[1,2,3,5,7]

\

To sort tuples in Python, you can use the built-in function sorted().

The sorted() function in Python returns a new result that is of type ‘list’, not ‘tuple’.

In[12]

Out[12]

myTuple=1,3,5,7,2
myTuple.sort()

AttributeError Traceback (most recent call last)
<ipython-input-12-d7b571f24488> in <module>
1 myTuple=1,3,5,7,2
----> 2 myTuple.sort()
3 # Why that exception: Tuples do not have the method.
AttributeError: 'tuple' object has no attribute 'sort'

I ;,I‘ Unlike lists, tuples in Python do not have a sorf() method. This is because tuples are
T4 immutable objects and the sort() method would require changing the original object
1=) q ging g)
itself, which is not possible with tuples.
Notes
N ! /7
_/ _ The code myTuple.sort() causes an error because tuples in Python do not have a sort()
= method, given their immutability.
Tips
In[13] | myTuple=1,3,5,7,2
5 in myTuple
Out[13] True
N ! /7
= — | The in operator can be used with tuples in Python to check if a specific value exists
7’ N\ | within the tuple. For example, 5 in myTuple checks if the number 5 is an element of
= the myTuple tuple.
Tips
In[14] | myTuple=1,3,5,7,2
myTuple.count(11)
Out[14] 0

Basic Python Programming for Data Science

N\ 7/
- — | To count the frequency of an element in a tuple, you can use the count() method. For
s N\ | instance, myTuple.count(11) counts the occurrences of the value 11 in the myTuple
= tuple.
Tips
In[15] | myTuple=1,3,5,7,2
x1,x2,x3,x4,x5=myTuple
x2
Out[15] 3
N ! 7/
_/@: In Python, the rule for unpacking tuples is ‘assignment by position’. This means that
= variables are assigned to the corresponding values in the tuple based on their positions.
Tips

2.11.3 Basic usage

In[16] | x,y,z =1,2,3
print(x,y,z)
Out[16] 123
N ! 7/
-®- Unpacking assignment is a special method in Python where variables are assigned
s N
= values from a collection (like a list or tuple) directly in a single line of code.
Tips
In[17] | myTuple=(1,5,6,3,4)
print(myTuple)
print(len(myTuple))
print(max(myTuple))
Out[17] (1,5,6,3,4)
5
6

In Python, a tuple is typically represented by ‘parentheses and commas’. However, the
parentheses can be omitted, and the presence of the comma is what primarily defines

= a tuple.
Tips
In[18] | myTuple=(11,12,13,12,11,11)

Out[18]

al,a2,a3,a4,a5,a6=myTuple
a3

13

87

88

Python Data Science

\:/

/

=
=

In Python, tuples support the feature of unpacking assignment, which allows for the
assignment of tuple values to a corresponding set of variables in a single line of code.

Tips
In[19] | myTuple=(11,12,13,12,11,11)
myTuple.count(11)
Out[19] 3
N\ ! 7/
/@\ Counting the frequency of value 11 in the myTuple tuple.
=
Tips

2.11.4 Tuples in data science

In[20] | def func(args]1,*args2):
print(args1)
print(args2)
funC("a”"’b","C","d”,”e",”f”)
Out[20] a
(lbl’ YCI’ l(il7 lel7 lf!)
N\ ! 7/
- — | In Python, a tuple used as a formal parameter with a ‘*’ prefix in function definition
s N\ | means that the function can receive a variable number of actual arguments. These
= arguments are collected into a tuple.
Tips
In[21] | def func(args1,**args2):
print(args1)
print(args2)
funC("a”’X1="b"’X2=”C" ,X3="d" ,X4="e",x5=”f")
Out[21] a
{'x1":'b', 'x2" 'c', 'x3": 'd', 'x4" 'e', 'x5": 'f'}
N\ ! 7/
- — | In Python, the ¢’ operator is used to represent a tuple, while the “** operator is used
s \ | to represent a dictionary. The *’ operator unpacks elements into a tuple, and the “**’
= operator unpacks key-value pairs into a dictionary.
Tips

L7 —

Notes

In a dictionary, the keys must be explicitly present in the actual parameters, such as
x1, x2.

Basic Python Programming for Data Science

In[22] | def func():
return 1,2,3,4,5
func()
Out[22] (1,2,3,4,5)
N\ ! 7/
- — | In Python, the return value of many functions is often a tuple because the syntax
/ N\ | ‘return 1, 2, 3’ is equivalent to ‘return (1, 2, 3)’. This shorthand allows multiple values
= to be returned as a tuple without explicitly using parentheses.
Tips
In[23] | 1,2
Out[23] (1,2)

For example, (1, 2, 3) represents a tuple of three elements, while 1, 2, 3 without
parentheses would be treated as separate values rather than a fuple.

Notes
N\ ! 7/
- @ ~ | It’s important to note that the parentheses are not part of the tuple itself; they are added
for clarity and readability.
=
Tips
In[24] | x=1
y=2
X,y=y.X
print(x,y)
Out[24] 21
;/ In Python, swapping the values of two variables can be achieved using tuples. This is
- commonly known as “tuple unpacking”.
Tricks
N\ ! 7/
/@\ For more details, please refer to [2.5.5 Swap Two Variables].
=

89

920 Python Data Science

2.12 Strings

Q&A

Do strings in Python use single quotes or double quotes?

haolemen"
i ‘chaolemen’
.. ", Oy

b ‘chao's

Either, but ifthe stung itself has single
quotes (double quotes), the string needs

to be enclosed in double quotes (single

'chao"s'

uotes), and vice versa.

In fact, triple of single quotes are also
fine. In general, when the string itself

occupies more than one line, it is ich as the stnng strl

represented by triple of single quotes

Are there escape characters in Python?

The first way to represent and
start with such as "\t" So, what should I do 5 escape A .
L The second w add a letter r before the

if the string itself has y
string, which represents the original string

hat is special attribute abou t Python strings?

1 Strings in Python are "immutable”

objects

Python believes that "everything is an object
but there are two types of objects: mutable
objects and immutable objects

The value of str4 is 'ha'. Note: the initial value

It has the common characteristics of the E.g ;
2 "sequence” type, br exam ple, we can stra=rechinolanien® of I!le index is 0, m?I he :\Juc operation 1s
vglice” : R al1-2 -inclusive b -not-ing! "
slice” a string with [index] strd=str3 [1:3] left ||ELI||-.1 e but ngllll not-inclusive
Therefore, strd is not 'hao’.

/hat are the commonly used string processing functions in Python?

Way join()

or operator “* +"

Remove the lef and right blanks in the -
strip()

string

Function len()

Calculate the length ofthe strn

. Convert to uppercas vay upper()
conversion of strings t
= Convert to lowercase: way lower()

Way sort()

of strings

Determ ine whether a character is in the .
Mem bership operator in

' stnng

Basic Python Programming for Data Science

2.12.1 Defining strings

In[1] | print(‘abc’)
print("abc")
Out[1] abc
abc
|
S~ |Unlike in C and Java, the concepts of ‘character’ and ‘string’ are more closely
- ~ | unified in Python, resulting in fewer practical distinctions between them. In Python, a
’ ™ | character is typically represented as a string of length 1, which allows it to be treated
= character is typically rep ing gth 1, w WS i
. as a special case of a string.
Tips
N ! 7/
@ Strings can be enclosed either with single quotes or double quotes in Python.
-
=
Tips

In[2] | print("abc'de'f")

Out[2] abc'de'f
N ! 7/
:@: When the string itself contains single quotes, it should be enclosed with double quotes,
= and vice versa.
Tips

L

Notes

In this case, the argument of the print() function is enclosed within single quotes.

In[3] | print(‘abc"de"f")

Out[3]

abc"de"f

In this case, when using the print() function, the output is enclosed within double

r-— quotes.
Notes
In[4] | str1=""
Hello
world
!
strl

Out[4]

‘\n Hello \n world \n \n'

91

92

Python Data Science

\®/
=

Tips

Triple quotes can also be used in Python to indicate strings with newlines. For more
details, please refer to the official Python documentation on string literals.

2.12.2 Main features

In[5] | strl1[1:4]="2222"

Why that exception: TypeError: 'str' object does not support item assignment

Out[5]
TypeError Traceback (most recent call last)
<ipython-input-5-d80a51ea9762> in <module>()

1
-—--> 2 strl[1:4]="2222"
3 # Why that exception: TypeError: 'str' object does not support item assignment
TypeError: 'str' object does not support item assignment
N\ ! 7/

The first feature: Strings in Python are “immutable objects”.

=

Tips

In[6] | str1="abc"

str1="defghijk"
strl[1:4]

Out[6] 'efg’

N ! 7/
:@: The execution of the above code will not raise an error, because Python is a dynamically
= typed language. Please refer to [2.2.2 Dynamically Typed Language].
Tips

“Immutable object” means that the value of the object cannot be altered locally, and

o -_'é “dynamically typed language” is a different concept from “Immutable object”.
Notes
A The second feature of strings in Python is that they are considered ‘sequences’. This
- : means that all operators and functions that support sequences can be used with strings.
= For instance, strings in Python support operations like slicing, which allows you to
T;};S extract portions of a string by specifying a range of indices.

In[7] | 'clm'[0:2]

Out[7]

cl'

Basic Python Programming for Data Science

N\ ! 7/
/@\

-
=

Tips

Strings in Python support the operation of slicing. The rule for slicing is that it
includes the beginning index but excludes the ending index. For example, when
slicing a string, the resulting substring will include the element at index O but not
the element at index 2.

In[8]

Out[8]

str3="chaolemen"
strd=str3[1:3]
str4

vhal

In[9] | "chaolemen"[:6]

Out[9]

'chaole’

2.12.3 String operations

In[10] | - join(['c', 1)

Out[10] 'c-I'
N\ ! 7/
- — | String concatenation in Python refers to the process of combining multiple strings
/@\ into a single string. It is commonly achieved using the ‘+’ operator or the ‘str.join()’
= method.
Tips

In[11]|'¢’ + 'Im'

Out[11] 'clm'
In[12] | "chaolemen ".strip() |
Out[12] 'chaolemen'
N\ ! 7/
/@\ Removing whitespaces at the beginning and end of a string, such as spaces, newlines.
=
Tips

In[13] | ¢ in 'clm'

Out[13] True
N\ ! 7/
—/@: To check if a character or string appears within another string in Python, you can use
= the in keyword.
Tips

In[14] | len(clm’)

Out[14]

3

93

94

Python Data Science

N\ 7/
/@\

To calculate the length of a string in Python, you can use the built-in function len().

=
Tips
In[15] | print(ord('A"))
print(chr(97))
Out[15] 65
a
N\ ! 7/
;@: In Python, you can use the built-in function ord() to obtain the Unicode value of a
= character.
Tips

=

L.

The built-in function chr() in Python is indeed the counterpart of the ord() function. It
takes a Unicode value as an argument and returns the corresponding character string.

Notes
In[16] | print(ord()
print(chr(26397))
Out[16] 26397
i
N\ ! 7/
@ By importing the sys module and calling the sys.getdefaultencoding() function from
s N . . .
= it, you can obtain the default character encoding used in Python.
=
Tips
In[17] | s="a\tbbc'
S
Out[17] ‘'a\tbbc'
N\ ! 7/
/@\ Escape character.
=
Tips

In[18] | print(s)

Out[18]

a bbc

L —

Notes

When a string contains ‘escape characters’, there is a difference between the output
of s and print(s). The difference is that the former does not interpret or process the
escape characters, while the latter does perform the necessary escaping and displays
the string accordingly.

Basic Python Programming for Data Science

In[19] | str(1234567)

Out[19] '1234567'
N\ ! 7/
/@\ The integer can be converted into a string using the s#r() function.
=
Tips

In[20] | "abc".upper()

Out[20] 'ABC'
N\ ! 7/
= — | To convert uppercase characters to lowercase, you can use the lower() method.
s N\ | Conversely, to convert lowercase characters to uppercase, you can use the upper()
= method.
Tips
|
N~ | When working with special characters and path strings in Python, it is important to
_/ : be mindful of certain issues. For example, assigning a path string to a variable, such
= as s1 = “E:\SparkR\My\T”, can lead to unexpected behavior due to the interpretation
g of backslashes as escape characters.
Tips
In[21] | s1="E:\SparkR\My\T"
sl
Out[21] 'E:\SparkR\My\T"
N\ ! 7/
—/@: In the Jupyter notebook, printing the string s1 directly is different from the output of
= the built-in function print().
Tips
In[22] | s1=r"http://www.chaolemen.org"
sl
Out[22] 'http://www.chaolemen.org'

{

99 9

In Python, strings prefixed with r or R, such as r’..." or r”’..
strings.

, are referred to as raw

Raw strings treat backslashes (\) as literal characters instead of escape characters.
This means that they preserve the original backslashes and do not interpret them as
escape sequences.

Tricks

Raw strings are commonly used when dealing with regular expressions, file paths, or
any situation where backslashes need to be handled as literal characters.

95

http://www.chaolemen.org
http://www.chaolemen.org

96 Python Data Science

|
N\ 7/
= — | In Python 3, the use of Unicode string literals (string literals prefixed by u) is no longer
s N\ | necessary. While they are still valid, they are primarily maintained for compatibility
- .
= purposes with Python 2.

Tips

In[23] | sepStr = "-"
iterobj = ('lall’ ||bl|’ IICH)
sepStr.join(iterObj)

Out[23] 'a-b-c'

iterable object (iterObj), separated by a specified string separator (sepStr). For more
= detailed information about iterable objects, please refer to the relevant sections on
iterators and generators in the appropriate Python documentation.

\@’ The join() method in Python returns a string by concatenating all the elements of an

F—1],. | The argument of the join() method in Python is a sequence, and the variable before
— the dot (referred to as seq_str here) represents the separator. The join() metho
=/ he dot (referred here) h Th 0 hod

r - — concatenates all the elements of the sequence, using seq_str as the separator between
Notes | them.

In[24] | strl=["abc","aaba","adefg","bb","c"]
strl.sort()
strl

Out[24] ['aaba', 'abc', 'adefg’, 'bb', 'c']

N\ 7/
/@\ In Python, you can use the set() function to convert a string into a set data structure.

Tips

In[28] | print("set(str1)=",set(strl))

Out[28] set(strl)= {'c', 'adefg', 'bb’, 'abc', 'aaba'}

F—1] | The re module in Python provides support for regular expressions, including regular

— expression syntax, pattern matching, and various operations for working with

i patterns. It offers powerful tools for pattern matching, searching, substitution, and
Notes | other advanced operations involving text processing based on regular expressions.

In[29] | import re

pl = re.compile('[a-dA-D]")

rl = pl.findall('chaolemen @ruc.edu.cn')
rl

Out[zg] [vcv’ |av’ ‘C', vdv, ICI]

mailto:chaolemen@ruc.edu.cn

Basic Python Programming for Data Science

Useful functions of the re module:

® re.compile(): Compile a regular expression pattern into a regular expression
object,,which can be used for matching using its findall(), search() and other
methods.

® re.findall(): Return all non-overlapping matches of pattern in string, as a list of
strings or tuples

® re.search(): Scan through string looking for the first location where the regular
expression pattern produces a match, and return a corresponding match object.

L —

Notes

The syntax of regular expressions in Python can be found in the official documentation.
For Python 3, the documentation can be accessed at: https://docs.python.org/3/library/
re.html.

97

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

98 Python Data Science

2.13 Sequences

Q&A

What are sequences?

Sequences are not an independent data type,

but a general term for data

pes that have

“omm on ones are————>|
een elem ents

sequential relationships be
such as lists, tuples, and strings.

What are the features of a sequence in Python?

We can access an elem ent, >

by its ordinal number

|

We can slice a sequence by
[start :stop:step]

—

Sequence 15 an
iterable data type

Sequence supports

Support unpacking assi
FP L unpacking assignment

The repetition operator

String, such as:

myString="123456789"
List, such as
myList=[11,12.13,14,15,16,17,18.19]
Tuple, such as:

myT uple=(21,2: 25,26,27,28,29)

String[1]

myString[1:9

for i in myString
print(i,end=

al ,a2.a3.a4.a5, a
al a6,a8

a8.a9=myList

3

myList *

With general finctions

What are the functions commonly used for sequences in Python?

Refer to [2.14.6 sequence general function]

sorted()

Reverse

reversed()

k indices

enum erate()

nchronous calculation

Basic Python Programming for Data Science 929

2.13.1 Indexing

In Python, a sequence is a positionally ordered collection of items
There are three basic sequence types: lists, tuples, and range objects

In[1] | myString="123456789"
myString[1]
Out[1] "2'

N\ 7/
/@\ An element of sequence can be accessed by index/subscript.

=
=

Tips

In[2] | myList=[11,12,13,14,15,16,17,18,19]
myList[1]
Out[2] 12

In[3] | myTuple=(21,22,23,24,25,26,27,28,29)
myTuple[1]
Out[3] 22

2.13.2 Slicing

In[4] | myString="123456789"
myString[1:9:2]
Out[4] 2468

N\ 7/
:@: Slicing can be used through [start: stop: step]. For further details, please refer to [2.10
Lists]

-
=3

Tips

In[5] | myList=[11,12,13,14,15,16,17,18,19]
myList[1:9:2]
Out[5] [12, 14, 16, 18]

In[6] | myTuple=(21,22,23,24,25,26,27,28,29)
myTuple[1:9:2]
Out[6] (22, 24, 26, 28)

100

Python Data Science

2.13.3 Iteration

In[7]

Out[7]

myString="123456789"
for i in myString:
print(i,end="")

123456789

N
/@\
=

Tips

A sequence is an example of an iterable data type that can be iterated over using the
for statement in Python.

In[8]

Out[8]

In[9]

Out[9]

myList=[11,12,13,14,15,16,17,18,19]
for i in myList:
print(i,end="")

111213141516 17 18 19

myTuple=(21,22,23,24,25,26,27,28,29)
for i in myTuple:
print(i,end="")

212223242526272829

2.13.4 Unpacking

In[10]

Out[10]

myString="123456789"
al,a2,a3,a4,a5,a6,a7,a8,a9=myString
al,a2,a3,a4,a5,a6,a7,a8,a9

(lll’ yzv, |3|’ y4v, |5|’ '6', |7|’ '8', |9|)

Tips

Sequences support “unpacking assignment”, sometimes called “parallel assignment”.
The rule of assignment is “assigned by positions”.

In[11]

Out[11]

In[12]

Out[12]

myList=[11,12,13,14,15,16,17,18,19]
al,a2,a3,a4,a5,a6,a7,a8,a9=myL.ist
al,a2,a3,a4,a5,a6,a7,a8,a9

(11,12, 13, 14, 15, 16, 17, 18, 19)

myTuple=(21,22,23,24,25,26,27,28,29)
al,a2,a3,a4,a5,a6,a7,a8,a9=myTuple
al,a2,a3,a4,a5,a6,a7,a8,a9

(21, 22,23, 24, 25, 26, 27, 28, 29)

Basic Python Programming for Data Science 101

2.13.5 Repeat operator

In[13] | myString="123456789"
myString * 3
Out[13] '123456789123456789123456789'

N\ 7/
/@\ The multiplication operator of sequences is *.

=
Tips
:EII‘ In Python, the * operator, when used with a sequence, performs a “repeat operation”
T4~ rather than a “multiplication” operation. This means that the sequence is repeated a
certain number of times to create a new sequence.
Notes

In[14] | myList=[11,12,13,14,15,16,17,18,19]

myList * 3

Out[14] [11,
12,
13,
14,
15,
16,
17,
18,
19,
11,
12,
13,
14,
15,
16,
17,
18,
19,
11,
12,
13,
14,
15,
16,
17,
18,
19]

102

Python Data Science

In[15]

Out[15]

myTuple=(21,22,23,24,25,26,27,28,29)
myTuple * 3

21,
22,
23,
24,
25,
26,
217,
28,
29,
21,
22,
23,
24,
25,
26,
27,
28,
29,
21,
22,
23,
24,
25,
26,
217,
28,
29)

2.13.6 Basic Functions

In[16] | myString="123456789"
myList=[11,12,13,14,15,16,17,18,19]
myTuple=(21,22,23,24,25,26,27,28,29)
len(myString),len(myList),len(myTuple)
Out[16] (9,9,9)
-:' .
T _:, In Python, all objects of “sequence”, regardless of their data type (such as lists, tuples,
+-*=] | strings), support common functions.
Notes
N\ ! 7/
- — | In Python, the built-in function len() is used to calculate the length of sequences. This
s N\ | function can be applied to various sequence types, such as lists, tuples, and strings, to
= determine the number of elements they contain.
Tips

Basic Python Programming for Data Science

In[17] | sorted(myString),sorted(myList),sorted(myTuple)
Out[17] ([lll’ |2|’ l3|’ |4|’ l5|’ |6|’ l7|’ |8|’ l9|]’

[11, 12,13, 14, 15, 16, 17, 18, 19],
[21, 22, 23, 24, 25, 26, 27, 28, 29])

Tips

In Python, the sorted() function is used to sort sequences. It takes an iterable as input
and returns a new sorted list containing the elements of the original sequence.

In[18] | reversed(myString),reversed(myList),reversed(myTuple)
Out[18] (<reversed at Ox15bad2819a0>,

<list_reverseiterator at 0x15bad281070>,
<reversed at Ox15bad2d6af0>)

Tips

In Python, the reversed() function is used to reverse sequences. It takes an iterable
as input and returns a reverse iterator object that can be converted into a reversed
sequence or used in a loop.

In[19] | list(reversed(myString))
Out[19] [|9v’ ‘8', |7v’ ‘6', |5v’ v4|’ |3v’ v2|’ |1v]

=

e

Notes

What the reversed() function returns is an iterator, which supports lazy evaluation, and
can be converted into a list using the built-in function Zist().

In[20] | enumerate(myString),enumerate(myList),enumerate(myTuple)
Out[20] (<enumerate at Ox15bad2d1280>,

<enumerate at 0x15bad2cb500>,
<enumerate at Ox 15bad2cb300>)

Tips

In Python, the enumerate() function is used to track and enumerate indexes while
iterating over a sequence. It returns an iterator that generates pairs of index and value
for each element in the sequence.

In[21] | list(enumerate(myString))
Out[21] [(0, '),

1,2,
(2,39,
(3,'4),
“4,'5),
(5,6,
6,'7),
(7,8,
(8,991

103

104

Python Data Science

L —

Notes

The enumerate() function returns an iterator that can be converted to a list using list().

In[22] | zip(myList,myTuple)

Out[22] <zip at Ox15bad2d7600>
N\ ! 7/
- — | In Python, the zip() function is used to aggregate elements from two or more iterables
s N\ | into tuples. It takes multiple iterables as input and returns an iterator that generates
= tuples containing elements from each iterable, paired together.
Tips

In[23] | list(zip(myList,myTuple))

Out[23]

[(11,21),
(12, 22),
(13, 23),
(14, 24),
(15, 25),
(16, 26),
(17, 27),
(18, 28),
(19, 29)]

W

%
I

Notes

The built-in function zip() returns an iterator, which can be converted into a list
using another built-in function list(). For details, please refer to [3.1 Iterators and
Decorators].

\
A\

Tips

In contrast with list, tuple, set, and dictionary, “sequence” is not an independent data
type in Python, but a general term for multiple data types including list, tuple, and
string.

Basic Python Programming for Data Science 105

2.14 Sets

Q&A

What are sets?

A set refers to a variable disordered

container, which cormresponds to the Presence mark

"set" in mathem

How do I define a set?

Three common
ways

{ assignment statement: Assign a

defined aniable fo a new sef variable

What are the features of a set?

Judgm ent m ethod——>%
i 2 n mySet3

therefore
E.g e
- difierence, etc.
E Add: .add()
therefore

T Oreover

Main application scenarios

set([1,

!

ete: .remove

In Python, the iconic n of a set 1s

({}) in Python can also be used in dictionaries

mySet2=mySet]l

set(myListl)

Use the operator in. for example

Cannot access a certain element in the set
——therefore
through the inds

considered equ

Union, intersection, difference, symmetric

There is another immutable set type (fozenset)

in Python

For example. the retum result of

1

106

Python Data Science

2.14.1 Defining sets

In[1] | mySet1={1,2,3,4,1,2,23}
mySet]
Out[1] {I1,2,3,4,23}
<, |InPython, there are several methods to define sets. The first method involves directly
- — | defining a set using braces { }.
’ N
= From this definition, it’s clear that a set is essentially an unordered data structure
Tips consisting only of values with no keys.
In[2] | mySet2=mySet1
mySet2
Out[2] {I1,2,3,4,23}
N\ ! 7/
-/@ ~ | The second method: use the assignment statement to assign values to new set variables
= N | from pre-existing defined set variables.
Tips
In[3] | myList1=[1,2,3,3,2,2,1,1]
mySet3=set(myList])
mySet3
Out[3] {1,2,3}
N\ ! 7/
—/@— The third method: use the sef() function to convert objects of other types into a set
= > object.
Tips
In[4] | mySet4=set("chaolemen")
mySet4
Out[4] {!al’ Ycl’ Yel’ lhl’ 1117 lml’ VnV’ IOI

2.14.2 Main features

In[5] | 2 in mySet3

Out[5] True
N\ ! 7/
:@: A key feature of a set is certainty: for any given set and any specific element, that
= element either belongs to the set or it does not. There is no ambiguity permitted.

Basic Python Programming for Data Science

In[6] | mySet4[2]

Out[6]

TypeError Traceback (most recent call last)
<ipython-input-6-78241c857f8a> in <module>
1 # Unordered
2 # The elements in the sets are unordered, so the elements in the
set cannot be accessed with indexes
----> 3 mySet4[2] # Why that exception: TypeError: 'set' object does not support
indexing

TypeError: 'set' object is not subscriptable

Unordered: The elements in sets are unordered, meaning they don’t have a specific
arrangement. Therefore, in Python, it’s not possible to use indices to access elements
within a set.

]
S

TypeError: ‘set’ object does not support indexing.

C A The reason of error: The set is disordered and can’t be indexed.
Notes
In[7] | mySet5={1,2,3}
mySet6={1,2,1,1,3}
mySet5==mySet6
Out[7] True
N\ ! 7/
- — | Uniqueness: The elements in a set are distinct from each other, meaning each element
s N\ | appears only once. Therefore, in Python, two sets with the same elements, regardless
= of their order, are considered equal.
Tips

2.14.3 Basic operations

In[8]

In[9]

Out[9]

In[10]

Out[10]

In[11]

Out[11]

mySet7={1,3,5,10}
mySet8={2,4,6,10}

Include
3 in mySet7

True

Not include
3 not in mySet7

False

Equal to
mySet7 == mySet8

False

108

In[12]

Out[12]

In[13]

Out[13]

In[14]

Out[14]

In[15]

Out[15]

In[16]

Out[16]

In[17]

Out[17]

In[18]

Out[18]

In[19]

Out[19]

In[20]

Out[20]

Python Data Science

Not equal to
mySet7 != mySet8

True

Subset
{1,5} < mySet7

True

Union
mySet7lmySet8

{1,2,3,4,5,6, 10}

Intersection
mySet7&mySet8

{10}

Difference
mySet7-mySet8

{L,3,5}

Symmetric difference
mySet7 mySet8

{1,2,3,4,5,6}

#To check whether one set is a subset of another set in Python
print({1,3}.issubset(mySet7))

True

#To check whether one set is a superset of another set in Python
print({1,3,2,4}.issuperset(mySet7))

False

mySet9={1,2,3,4}
mySet9.add(4)
mySet9.remove(1)
mySet9

{2,3,4)

Tips

In Python, there are two types of sets: set and frozenset.

The set type is mutable, meaning that after its creation, you can modify it by adding,

removing, or changing elements.

In[21]

Out[21]

mySetlO=frozenset({1,2,3,4})
mySet10

frozenset({ 1, 2, 3, 4})

Basic Python Programming for Data Science

N,
\
7

The frozenset is an immutable type of set in Python. This means that once a frozenset
is created, it cannot be modified — you can’t add or remove elements from it.

In data science projects, to safeguard data from unintentional modifications during the
analysis process, we typically employ immutable objects.

In[22] | mySet10.add(5)

Out[22]

AttributeError Traceback (most recent call last)
<ipython-input-22-d051a89f1878> in <module>

----> 1 mySet10.add(5) # Why that exception: AttributeError: 'frozenset' object has no
attribute 'add’

AttributeError: 'frozenset' object has no attribute 'add’

:I‘

L~ —

Notes

In Python, trying to modify a frozenset object, such as adding or removing elements,
will raise an error since frozenset is an immutable object.

2.14.4 Sets and data science

In[23]

Out[23]

myLiSt:[”d" , Hall , "t" , Hall]
mySetl 1=set(myList)
mySetl 1

{'a', vd|, vtv}

Due to the uniqueness of elements in sets, they are commonly used to perform
deduplication operations in data analysis and data science projects.

Python supports single-line expressions for certain constructs, commonly used as
follows:

1. Single-line if statements, using ternary operators. Refer to section [2.7 If
statements].

2. Single-line for statements, using list comprehensions. Refer to section [2.10
Lists].

3. Single-line function definitions, using lambda functions. Refer to section [2.20
Lambda functions].

These methods offer concise alternatives to their respective standard, multi-line
constructs.

109

110 Python Data Science

2.15 Dictionaries

Q&A

What are dictionaries?

Dictionary (Dict) refers to a variable
unordered container, each value has its ISR ey [n Python, the iconic sign ofa dictiona
own key.

The dictionary is a mapping structure, that is, a mapping relationship is established
between key and value. Essentially, a dictionary is a set with key as its element

How do I define a dictionary?

Note three points

1. use{ }

2. separate each key and value with
colons (:) B

ag

myDictl = {'name’: 'Jer

3. separate different key

commas (,)

What are the features of a dictionary?

We can access the comresponding value

by key myDict['name’]

Dictionaries are mutable objects ——therefore myDict 1['name'}="chao"

What are the main application scenarios of the dictionary?

Comesponding
to the formal
>
arguments
with*#

def finc(args1,**args2):

The actual arguments of the finction

Basic Python Programming for Data Science

2.15.1 Defining dictionaries

L

A dictionary (dict) is a mapping structure, which is an unordered container where each
key maps to its own value.

Notes
In[1] | myDictl = {'name": Jerry', 'age': 23,9:20}
myDictl
Out[1] {'name" 'Jerry', 'age": 23, 9: 20}
N\ ! 7/
/@\ A dictionary in Python is more equivalent to a named list in R.
=
Tips

1l
RS

When defining a dictionary in Python, you should:
1. Use braces {}.
2. Separate keys and values with a colon (:).

Notes 3. Separate different key-value pairs with a comma (,).
In[2] | myDict3={"grade":2,"gender":"M","grade":15,"grade":5}
myDict3
Out[2] {'grade': 5, 'gender: 'M'}
N\ ! 7/
- — | In Python dictionaries, duplicate keys are not allowed. If you provide duplicate keys,
s N | the value of the last key will be preserved, effectively overwriting previous assignments
= to that key.
Tips

We can access the items of a dictionary by referring to its key name.

In[3] | myDictl['name’]

Out[3]

Jerry'

=)
=0

Notes

In Python, if the key of a dictionary is a string, it must be enclosed in single or double
quotes. If the quotes are omitted, Python will interpret the key as a variable name. If
there’s no variable with such a name, Python will raise a NameError.

111

112 Python Data Science

In[4] | myDictl [name]

Out[4]
NameError Traceback (most recent call last)
<ipython-input-1-9f850ce95d5e> in
I myDict2={2:2,2:3.4:5}
----> 2 myDict2[name]
NameError: name 'name' is not defined
«), | There are two distinct approaches to correct this:
- ~ | 1. Enclose it in quotes, e.g., my_dictl[‘name’].
= 2. Declare it first, e.g.,
Tips a = ‘name’
my_dictl[a]

— In Python, you can change the value of a specific item in a dictionary by referring to
its key name and assigning a new value to it.

In[5] | myDictl = {'name": Jerry', 'age': 23,9:20}
myDictl['name']="chao"
myDictl

Out[5] {'name": 'chao, 'age': 23, 9: 20}

N~ | In Python, dictionary keys must be hashable. An object is considered hashable if it
- @ ~ | maintains a constant hash value throughout its lifetime. Immutable data types, such
s N .
= as tuple, frozenset, str, bytes, and numeric types, are all hashable. Note, however,
T;I;s that a tuple is considered hashable only if all its elements are hashable.

In[6] | det3=([2,3]:[4.4], 5:5)

Out[6]
TypeError Traceback (most recent call last)
<ipython-input-7-36fc453a24ae> in <module>
-—--> 1 det3={[2,3]:[4,4], 5:5}

TypeError: unhashable type: 'list'

N\ /7
—®_ Here, the key [2,3] is a list (unhashable objects) so that the unhashable type error
= was raised.

Tips

Basic Python Programming for Data Science

Tricks

In Python, a TypeError will be raised when an unhashable data type is used in code
that requires hashable data.

2.15.3 Dictionary and data science

In[7] | def func(args1,**args2):
print(args1)
print(args2)
func("a",x1="b",x2="c",x3="d",x4="e" x5="t")
Out[7] a
{'x1":'b', 'x2" 'c', 'x3": 'd', 'x4": 'e', 'x5": 'f'}
<}, |Dictionaries are widely utilized in data science projects for various purposes, including
- — | but not limited to storing temporary data, such as function arguments using **args.
7 N\ | However, dictionaries have broader applications in tasks like data preprocessing,
= feature engineering, configuration parameter storage, categorical variable mapping,
Tips and efficient data retrieval.

.l:'
>

In the formal parameters of a function, the parameters prefixed with * and **
respectively represent the formal parameters for receiving variable-length tuples
(values without keys) and dictionaries (values with keys) as actual parameters.

Notes
\ ' /
- — | In Python, when passing a dictionary as an actual parameter to a function, you must
’ N\ | explicitly specify the corresponding key in the function call. This ensures that the
-
-

function receives the correct value associated with the desired key from the dictionary.

113

114 Python Data Science

2.16 Functions

Q&A

— We often encounters the terms for " function™ and "method" in Python, are they a concept?

The finction refers to the "finction”

defined outside the class, which can be E.g. sorted(myList1)
called directly by the function name
The method refers to the "finction"
defined inside the class, which must be E.g. myList1.s0
called by the object name

How many types of functions are therein Python?

|
There are
three main types. Functions built — with the finction name.
into the interpreter such as len(), type(), sorted().

Can be called by module name, for example
import math
math.sin(1.5)

Funetions defined in
(third-party) modules

User-defined Can be called by the defined position and visible

fanction range of the finction

Python supports procedure-oriented programming, so user-defined finctions can be
ips
‘ placed inside or outside of the class

I heard that "everything is an objectin Python". Then, is a function an object in Python?

Arbitrarily finetion used for an object

type(abs)
E.g. s
can be used in a finction ¢ id(abs)

abs, type and id are all finction names

‘What is the confusion when writing functions for Data Science beginners in Python ?

The comesponding argument is [tuple]

The comresponding argument is [dictionary]

The retum value of the finction can be Ifthere is no retum statement in the finction,
iterator, tuple, None, etc Python antomatically refums None

It is recomm ended to provide Docstring The docstring is enclosed by triple of single
in the fanction quotes(™)

Basic Python Programming for Data Science

2.16.1 Built-in functions

In[1]

i=20
type(i)

int

\

There are three types of functions in Python: built-in functions, functions inside
modules, and user-defined functions.

User-defined functions can be written as single-line functions, known as “lambda
functions”.

User-defined functions can be defined both inside and outside a class. This is because
Python supports both object-oriented programming and procedural programming
paradigms.

Tips

A built-in function (BIF) refers to a function that is included as part of the Python
programming language. These functions are built into the Python interpreter and can
be called directly by their function name.

L=

Notes

For more details, please refer to [2.17 Built-in Functions].

2.16.2 Module Functions

In[2] | import math as mt
mt.sin(1.5)
Out[2] 0.9974949866040544
N\ ! 7/
- — | A function inside a module, also known as a module function, refers to a function that
/@\ is defined within a Python module. To call a module function, you first need to import
= the module to which it belongs, and then you can use its name to invoke the function.
Tips

=)
=0

Notes

For more details, please refer to [2.18 Module functions].

2.16.3 User-defined functions

In[3]

Out[3]

def myFunc():

j=0

print(‘hello world')
myFunc()

hello world

115

116

Python Data Science

—
5 A\
7

/
\

User-defined function” refers to a function defined by the user, allowing us to define
custom functions in Python. These functions can be called directly by their function
name, once they have been defined.

{

zN
g [I™

To define a user-defined function in Python, you use the def keyword. This keyword is
followed by the name of the function, parentheses for any parameters, and a colon to
indicate the start of the function block.

1
AS

|
N

Z
o
=
a
w

For more details, please refer to [2.19 User-defined functions].

o)
7N

In Python, user-defined functions can be written as single-line functions called
“lambda functions.” For more information, please refer to [2.20 Lambda functions].

e

Llill
N

Z
o
=
@
w2

Python supports both object-oriented and procedural programming paradigms. As a
result, user-defined functions can be defined both inside or outside of a class. When
defined inside a class, they are referred to as “methods,” while functions defined outside
of a class are simply called “functions.” It is important for beginners to understand and
distinguish between the concepts of “function” and “method.” For more information,
please refer to [3.9 Object-oriented programming].

Basic Python Programming for Data Science

2.17 Built-in functions

Q&A

[What are Built-in Functions?

Refer to Python finctions pre-defined by Python
interpreter

How do I display the documentation of a Built-in Function?

the help() fanction or question mark .2 help(len) or len?

‘What are common used Python Built-in Functions for Data Science?

Mathematical finction
including—>» Type finction
Other functions. etc.

print(): to print the specified message to the screen or another standard output device.

help(): to display the documentation of an python object, including modules, functions,
classes, and keywords

type(): to check the type ofa specified object
1d(): to access a unique id for a specified object
len(): to count the items present in a specified ob

isinstance(): to check if the object is an instance of another class

117

118

Python Data Science

2.17.1 Calling built-in functions

In[1] | i=20
type(20)
Out[1] int
N\ ! 7/

- — | An example of a built-in function is the fype() function, which is used to determine
/@\ the type of an object. You can call it directly by using the function name followed by

= parentheses and passing the object as an argument.

Tips

]
N

The difference between a method and a function is as follows: A method is a function
in object-oriented programming that is associated with an object. It includes code that
is called by the object’s name. On the other hand, a function can be directly called by
its name without being associated with an object.

In summary, a method is called by its name but is associated with an object, while a
function can be called directly by its name.

To enhance performance and efficiency, many built-in functions in Python are
implemented in languages like C or C++. This allows them to be executed at a lower
level, closer to the system hardware, compared to pure Python code. By implementing

= critical parts of Python’s functionality in lower-level languages, the built-in functions
Tips can often achieve faster execution times.
To check the built-in function: the built-in function dir().
- dir(__builtins__)
Tricks

2.17.2 Mathematical functions

In[2] | abs(-1)

Out[2]

1

Tips

Evaluating the absolute value.

In[3] | min([1,2,3])

Out[3] 1

N\ ! 7/
/@\ Evaluating the minimum value.
=

Tips

In[4] | max([1,2,3])

Out[4]

3

Basic Python Programming for Data Science

N~
/@\

Evaluating the maximum value.

=
Tips
In[5] | pow(2,10)
Out[5] 1024
N ! 7/
/@\ Evaluating 2 to the 10th power.
=
Tips
In[6] | round(2.991,2)
Out[6] 2.99
N\ ! 7/
= — | The round() function in Python is used for rounding numbers. The second argument
s N\ | of the round() function specifies the number of decimal places to retain after rounding,
= rather than the number of digits after the decimal point.
Tips

2.17.3 Type conversion functions

In[7] | int(1.134)

Out[7] 1

N\ ! 7
/@\ To cast to int (integer): int()
=

Tips

In general, the function names used for casting in Python are often similar to the
names of the target data types.

In[8] | bool(1)

Out[8]

True

N\ ! 7/
=
=3

Tips

To cast to bool (boolean): bool()

In[9] | float(1)

Out[9]

1.0

119

120

Python Data Science

N\ 7/
/@\ To cast to float (floating-point number): float()

-
=

Tips

In[10] | str(123)

Out[10] '123'

N\ 7/
/@\ To cast to str (string): str()

Tips

In[11] | list("chao")

Out[11] ['¢','h','a’, 0]

N\ 7/
/@\ To cast to list: list()

Tips

In[12] | set(""chao")

Out[12] {'a’,'c,'h’,'0'}

N\ 7/
/@\ To cast to set: set()

Tips

In[13] | tuple("chao")

Out[13] ('C', 'h', vav’ YOI)

N\ 7/
/@\ To cast to tuple: tuple()

Tips

2.17.4 Other common used functions

In[14] | i=0
type(i)

Out[14] int

N\ 7/
/@\ To check data types: type()

Basic Python Programming for Data Science 121

In[15] | isinstance(i, int)
Out[15] True

The isinstance() function takes two arguments: the object you want to check and the
= data type you want to compare it against. It returns True if the object is an instance of
the specified data type, and False otherwise.

‘@’ In Python, you can use the isinstance() function to check the data type of an object.

Tips

In[16] | dir()
Out[16] [In',
'Out’,

[}
—

1_11,
v_]ov’
1_111’

‘exit’,
'get_ipython',

1,
'quit’]

|

N~

- — | To check the search path for a variable in Python, you can use the dir() function or

’ the magic commands %whos and %who in interactive environments like IPython or
= Jupyter Notebook.

Tips

In[17] | help(dir)
Out[17] Help on built-in function dir in module builtins:

dir(...)
dir([object]) -> list of strings

If called without an argument, return the names in the current scope.
Else, return an alphabetized list of names comprising (some of) the attributes
of the given object, and of attributes reachable from it.
If the object supplies a method named __dir__, it will be used; otherwise
the default dir() logic is used and returns:
for a module object: the module’s attributes.
for a class object: its attributes, and recursively the attributes
of its bases.
for any other object: its attributes, its class’s attributes, and
recursively the attributes of its class’s base classes.

122 Python Data Science

N\ /7
@ To ask for help: help()
=

Tips

In[18] | myList=[1,2,3,4,5]
len(myList)

Out[18] 5

N 7/
/@\ To evaluate length: len()

Tips

In[19] | range(1,10,2)

Out[19] range(1, 10, 2)

N\ 7/
/@\ To quickly generate sequences: range()
=

Tips

N~
= — | The range(1, 10, 2) function is used to generate an iterator that begins at 1 (inclusive),
ends at 10 (exclusive), and increments by a step size of 2. Please refer to [2.10 Lists]
= for more details.

Tips

In[20] | list(range(1,10,2))
out[20] [1,3,5,7,9]

N 7/
-@- The range() function in Python returns an iterator object, which is a form of lazy

s \ | evaluation. To evaluate and print the values of the iterator, you can use the list()
= function to convert the iterator into a list.
Tips

In[21] | callable(dir)
Out[21] True

N\ /7
/@\ To check whether the function can be called: callable()

Basic Python Programming for Data Science

In[22] | bin(8)
'0b1000"

Out[22]

Tips

To convert decimal number to binary number: bin()

In[23] | hex(8)

Out[23]

'0x8'

To convert decimal number to hexadecimal number: hex()

Python and its third-party packages offer various features and programming concepts
that better support the specific needs of data science projects compared to traditional
software development. These features are outlined below, along with the corresponding
references for further reading:

1.

2.

9.

10

Interactive programming and interpreted language. For more information,

please refer to [1.3 How to read and execute the code in this book].

Strongly typed language. For more information, please refer to [2.2.3 Strongly

typed language (In[3])].

. Dynamically typed language. For more information, please refer to [2.2.2

Dynamically Typed Language (In[2])].

Explicit indexing. For more information, please refer to [4.4 DataFrame

(In[5D].

. Duck typing. For more information, please refer to [3.4.5 dir() function

(In[13])].

Ufunc and vectorized calculation. For more information, please refer to [4.2.6

Evaluation of ndarrays (In[69])].

. Broadcasting mechanism. For more information, please refer to [4.2.9
Broadcasting ndarray (In[81])].

. Lazy evaluation. For more information, please refer to [3.1 Iterators and

Decorators (In[5])].

Data protection and in-place modification mechanism. For more information,

please refer to [4.4 DataFrame (In[34])].

. Slicing and list derivation methods. For more information, please refer to [2.10

Lists (In[27])].

These features and concepts, combined with the extensive capabilities of Python’s
third-party packages, make it a versatile language for data science projects.

123

124 Python Data Science

2.18 Module functions

Q&A

What are module functions?

unport math

Refer to the finctions defined in Python modules 5 3
2 math.sin(1.5)

How do I call a module function?

1. import the module 3 ort math
2. invoke a finction via the module’s name . nath.sin(1.5)

How do I import a module?

import [module] as [Module Aliases]

e

mmport m ath as mt
mt.sin(1.5)

from [module] import [function or value] -g- from math import cos

cos(1.5)

When a Python module 1s imported duning an execution for the first time, the appropriate .pyc file is automatically created i the directory
named pycache

——What is the confusion for Python Data Scienceb eginn ers?

The differences between si

arguments and double astensk(**) ones

The differences between positional arguments and

See this book [2.20 User-defined finctions]
keyword arguments

The differences between required arguments and
optional arguments

v

2.18.1 import module name

In[1] | import math
math.sin(1.5)

Out[1] 0.9974949866040544

Basic Python Programming for Data Science

L)
/7N

To call a module function, you can use the following method: import the module by
its name.

.l@

W
™

Notes

To call the function in the module: module_name. function_name()

i

.li
N

Notes

“Unlike built-in functions, functions inside a module are defined within packages or
modules provided by third parties. To call these functions, you need to first import the
module where the function is defined. The function is usually called using the module
name followed by the function name.

W
™

N

Notes

In Python, there are multiple ways to import modules, and each method corresponds
to a different way of calling functions from the imported modules.

*
*

4

-
~

= (1
aQ
a

Before importing a third-party package or module, it is necessary to download it from
PyPi or Conda server using tools like PIP or Conda. For more details, please refer to
[3.3 Packages (In[2])] and [3.2 Modules (In[1])]. However, to facilitate programming,
common packages in data science are often pre-installed in Jupyter Notebook. As a
result, the packages mentioned in this book generally do not need to be downloaded

and installed before importing.

In[2] | cos(1.5)

Out[2]

NameError Traceback (most recent call last)
<ipython-input-3-edeaf624fe76> in <module>
----> 1 cos(1.5) # Why that exception: NameError: name 'cos' is not defined

NameError: name 'cos' is not defined

N\ ! 7/
=
=

Tips

NameError: name ‘cos’ is not defined.
The reason of error: When the cos() function is called, the module name “math” has
not been imported.

In[3] | math.cos(1.5)

Out[3] 0.0707372016677029

<, | Workaround: <module_name>.<function_name>

,®\ The statement appears to suggest using a workaround to resolve a particular issue or
= problem. The recommended approach is to specify the module name followed by the

function name, indicating that the function belongs to the specified module.

125

126

Python Data Science

2.18.2 import module name as alias

In[4] | import math as mt
mt.sin(1.5)
Out[4] 0.9974949866040544
N ! 7/
/@\ The second method: import module name as alias
=
Tips
\ l , . . . g . .
- — | In principle, we have the flexibility to create our own “alias” when using the syntax
N\ | “import module_name as alias”. However, in the practice of data science, it is common
= to follow conventional “alias” names to ensure the readability of the source code.
Tips

To call the function in this module: alias.function_name()

2.18.3 from module name import function name

In[5]

Out[5]

from math import cos
cos(1.5)

0.0707372016677029

The third method: from module name import function name

]
A S

:_—Té To call the functions imported in modules with this method: function_name()
Notes
N\ ! 7/
- — | It is recommended to carry out a comparative analysis with In[2]. The reason why the
s \ | interpreter does not raise an error here is that the method of importing module has
= changed.
Tips
In[6] | from math import sin
sin(1.5)
Out[6] 0.9974949866040544
N\ ! 7/
- — | By using the method of importing specific functions from a module, you can
s N\ | directly import the desired function and use it without needing to reference the
= module name.

Basic Python Programming for Data Science

2.19 User-defined functions

Q&A

| How do I create user-defined functions in Python?

‘ISL"_;E&—)-

Is parameter passing by value or address?

There are
two situations

|~ What is the method to return the value?

Us I m statement, the system automatically retums

127

128 Python Data Science

|~ How is the scope of variables in the function defined or changed?

nonlocal

In Python, which problems should be paid attention to functional programming?

n to the formal param eters of the functios

Optional param sters refer to

formal param eters with defalt
= juired parameters. and x
pgrameters values, otherwise they are
parameters.
required parameters.
Judgm ent basis
actual positional =

W hether wath

parameeters
pamm eter name

the comesponding actual parameter
formal

Special param eres——————> [
param eters B P

he corresponding actual param eter

When the finction is called,

the nam e of "roed naming
formal paramel
formal _

param eters

of param eters"must be used
explicitly in the actual
parameter, otherwise an

forced nam ing of pa ined a

ced naming of

emor occurs

v

2.19.1 Defining user-defined functions

I

7 4 Unlike C and Java, a user-defined function is defined using the “def” keyword in
Python.

.
N

1
)
'»
|

Notes

Python supports the definition of “inner functions,” which means that a function can
be defined within another function. If the inner function, func2(), references a local
variable (not a global variable) from the outer function, it is referred to as a “closure.”

In[1]

Basic Python Programming for Data Science

def func1():
=0
print(‘hello world')

def func2(i):
print(‘pass'+str(i)+str(j))

return func2

The inner function, func2(), is a local function that can only be accessed within
the outer function, funci(). This means that func2() can only be called from within
funcl(). The return func2 statement in the outer function is used to return the inner
function itself. Without this statement, func2() would not be executed since there are
no other statements to call it.

Ul
N

The method of calling outer functions is as follows.

In[2] | funcl()

Out[2]

hello world
<function __main__.funcl.<locals>.func2(i)>

L

Notes

The method of calling inner functions is as follows.

In[3] | func1((2)

.:l‘

L

According to the definition in [1], func2 is the return value of funcl(). Therefore, in
terms of the running process, calling funcl() with the argument 2 is similar to calling
func2(2).

Notes
Out[3] | hello world
pass20
|
NS~ | When funcl() is executed, the return func2 statement will also be executed. As a result,
:@: func2() will be returned and can be subsequently executed. If the return statement is
= not present, the system will automatically return None, and an error will be raised

with the message “TypeError: ‘NoneType’ object is not callable.”

129

130 Python Data Science

2.19.2 Function docStrings

When defining a function, it is recommended to include docstrings. Docstrings are
used to provide a description of the function’s purpose, behavior, and usage.

Ul
N

DocStrings need to be enclosed in three single quotes or three double quotes.

def get_name(msg):
"'Get the user name according to the user prompt msg. If the input is blank, the
default is Anonymous User"
name = input(msg) or 'Anonymous User'
return name

.:|‘

L —

Notes

Docstrings serve as documentation for functions and can be accessed using either
the built-in help() function or the ? symbol in certain Python environments, such as
Jupyter Notebook or IPython.

In[5] | help(get_name)

Out[5]

Help on function get_name in module __main__:

get_name(msg)
Get the user name according to the user prompt msg. If the input is blank, the default
is Anonymous User

In[6] | get_name?

Signature: get_name (msg)

Docstring: Get the user name according to the user prompt msg. If the input is blank, the default is Anonymous User
File: c:\users\szz\appdata\local \temp\ipykernel_22476\2916814581. py

Type: function

2.19.3 Calling user-defined functions

:55{

Notes

To call a user-defined function, you can simply use the function name directly followed
by parentheses.

In[7] | get_name('plz enter your name : ')

Out[7]

plz enter your name : chaolemen
‘chaolemen’

Basic Python Programming for Data Science

Tricks

We can use the built-in function callable() to check whether the function is “callable”.

In[8] | print(callable(get_name)) |

Out[8] | True |

2.19.4 Returning values

1=
1 :, In Python, when defining a function, you have the option to use the return statement
+ = to specify the value or values that the function should return.
Notes
In[9] | def myfunc(i,j=2):
j=i+l
return j
print(myfunc(3))
Out[9] | 4

L O —

Notes

In Python, if a function does not have a return statement, the return value of the
function is None. In Python, None is a special object that represents the absence of a
value or a missing value.

In[10]

def myfunc(i,j=2):
j=i+l
print(myfunc(3))

Out[10] | None

\

When multiple values are returned, they are usually bundled together in a tuple data
structure.

def myfunc(i,j=2):
j=i+l
return i,
a,b =myfunc(3)
a,b

out[11] | 3, 4)

131

Python Data Science

2.19.5 Parameters and arguments

In[12] | def my_func(x1,*x2,x3,x5=5,x4=4):
print(x1)
print(x2)
print(x3)
print(x4)
print(x5)
my_func(1,2,4,x3=3,x5=95)
A From the perspective of function definition, formal parameters are divided into
- ~ | optional parameters and required parameters. The way to distinguish them is that the
7 = > parameters with default values are called “optional parameters,” which can be called
g without giving arguments, such as x4 and x5.
Tips
<}, |In Python, from the perspective of function calling methods, “arguments” are
- — | divided into “positional arguments” and “keyword arguments” (also known as named
s N\ | arguments). The way to distinguish them is by the presence of parameter names. For
= example, x3=3 and x5=5 are considered ‘“keyword arguments,” while 1, 2, and 4 are
Tips considered “positional arguments.”
I ;jl‘ All “keyword arguments” must appear after “positional arguments” in Python;
T < I otherwise, an error will be raised with the message: “SyntaxError: positional argument
follows keyword.”
Notes
Out[12] | 1
2,4)
3
4
5

i

.li
N

Z
Qo
=
a
7]

In Python, a “parameter” refers to a variable listed in the function definition, while an
“argument” refers to the actual value or expression that is passed to the function when
it is called.

I‘lill
N

1
S

After the “formal parameters” corresponds to the “arguments”, the remaining (2 and

= 4) become an element and pass in the arguments x2.
Notes
| . .
N~ | The **parameter syntax allows a function to accept a variable number of keyword
—/ : arguments (key-value pairs) as a dictionary. Inside the function, the **parameter is
= treated as a dictionary that contains the keyword arguments passed during the function
g 11.
Tips ca

In[13] | my_func(1,2,x4=4,x3=3 x5=5)

Basic Python Programming for Data Science

N\ V4
_/ _ The header of the corresponding “function definition” is def my_func(x1,*x2,x3,x5
= =5,x4=4):
Tips
Out[13] | 1
2,
3
4
5

W
™,

Ul
N

Z
Q
=
a
w

From the perspective of function definition, any “formal parameters” defined after
the *parameter in Python are called “forced named parameters.” In the example def
my_func(x1, *x2, x3, x5=5, x4=4):, the parameters x3, x5, and x4 are considered
forced named parameters.

'Iﬂ

%
I,

Notes

When calling a function with parameters defined after the *parameter (also known as
a “starred parameter” or “splat parameter’’), you must use explicit parameter names
in the arguments. If you omit the parameter names, the Python interpreter will raise
an error.

In[14] | my_func(1,2,4,x3=3,x5=5)

Out[14]

1
2.4

W &~

2.19.6 Scope of variables

Ry

Local variables in Python are variables that are defined or declared inside a function’s
body. These variables have a local scope, meaning they can only be accessed and used
within that specific function.

Notes
In[15] | x=0
def myFunc(i):
X=1
print(x)
myFunc(1)
print(x)
N\ ! /7
- ~ | The second x is not the same one as the x in the first line. The second x is a local
= variable.
Tips

133

134 Python Data Science

Out[15]

O =

:l‘

L

To convert a local variable to a global variable in Python, you can use the global
keyword followed by the variable name. Simply declaring global x will make the
variable x accessible and modifiable in the global scope.

Notes
In[16] | x=0
def myFunc(i):
global x
#Then x is the global variable, not a local variable.
#
x=1
print(x)
myFunc(1)
print(x)
N\ ! 7/
—/ \— Here, the statement “global x” must be written on a single line and cannot be written
= as just “global” without specifying the variable name “x”.
Tips
Out[16] | 1
1

\

L —

Similar to global variables, Python also has “nonlocal” variables, which are used in
inner functions. The usage of nonlocal variables is similar to that of global variables,
but they are specific to inner functions rather than being accessible globally.

Notes
In[17] | x=0
def myFunc(i):
x=1
def myF():
nonlocal x #this statement must be written on a single line.
x=2
print(x)
print(x)
myFunc(1)
print(x)
N ! 7/
Both the statements “global x” and “nonlocal x” must be written on a single line.
=
Tips
Out[17]

O =

Basic Python Programming for Data Science

2.19.7 Pass-by-value and pass-by-reference

:l‘

L —

Notes

Argument passing rules in Python can be described as follows:
1. Immutable objects (int, float, str, bool, tuple): Pass-by-value. Changes to formal
parameters do not affect the original arguments.

2. Mutable objects (list, set, dict): Pass-by-reference. Changes to formal parameters
affect the original arguments.

:I‘

.

Notes

(1) Pass-by-value: When the “argument” is an immutable object (int, float, str, bool,
tuple), the “argument” and the “formal parameter” occupy different memory spaces,
that is, when the “formal parameter” is modified by the “calling function”, the value
of the argument will not be changed.

In[18]

i=100

def myfunc(j,k=2):
j+=2

myfunc(i)

print(i)

\®/
=
=3

Tips

In Python, parameters with default values are often referred to as “optional parameters”.
These parameters allow the function to be called without explicitly providing a value
for them.

Out[18] | 100

(2) Pass-by-reference: when the “argument” is a mutable object (list, set, dict), the
argument and the “formal parameter” share the same memory space, that is, when the
“formal parameter” is changed, the “argument” will also be changed.

Notes
In[19] | i=[100]
def myfunc(j,k=2):
jl01+=2
myfunc(i)
print(i)

Out[19] | [102]

L=

Notes

The principle of passing data between “arguments” and “formal parameters” is that
“arguments” should correspond to “formal parameters” one by one. Except for the
special parameters like “self” and “cls”, they do not need to pass to the “arguments”,
such as:

def class_func(cls):

def __init__(self, name, age):

135

136

Python Data Science

2.19.8 Arguments in functions

i

When using user-defined functions, we have to pay attention to the following three
problems.

.|:'
N

Firstly, “arguments” are divided into “positional arguments” and “keyword arguments”.
The distinction between them is not based on the presence of a default value. Instead,
it lies in how the arguments are provided during function calls.

]
N

All “keyword arguments” must appear after “positional arguments” in Python;
otherwise, an error is raised with the message: “SyntaxError: positional argument
follows keyword”.

In[20] | def myfunc(j,k=2):
j+=k
]
d=myfunc(2,3)
d
N\ ! 7/
= — | If there is no return statement in a Python function, the return value of the function is
s N\ [None. In Python, the value None is commonly used to represent a missing or empty
= value.
Tips
In[21] | def myfunc(k=2,j):
j+=k
]
d=myfunc(2,3)
d
Out[21] | File "C:\Users\szz\AppData\Local\Temp\ipykernel_17668\2076857993.py", line 1
def myfunc(k=2,j):
A
SyntaxError: non-default argument follows default argument
<, | Syntax error: non-default argument follows default argument.
_, : The reason for this error is that in Python, when defining function parameters,
= non-default arguments (positional arguments) must come before default arguments
Tips (keyword arguments). The order should be: non-default arguments first, followed by

default arguments.

Basic Python Programming for Data Science 137

=

- — Secondly, if a return statement is not explicitly written in a function, the default return
[=¥~ value will be None. The value None can be displayed using the print() function or by
accessing it directly.

Notes

In[22] | def myfunc(j,k=2):
j+=k
J
#If there is no return statement, None will be returned automatically.
d=myfunc(3)
print(d)
#Output of None: If the built-in function print() is not used, None will not be displayed.

Out[22] | None |

In[23] | d is None |

Out[23] | True |

F—1]. | Thirdly, functions are treated as objects in Python. This means that in Python, the
':/ language follows the philosophy of “everything is an object.” Functions can be

- — assigned to variables, passed as arguments to other functions, stored in data structures,
Notes and have attributes just like any other object in Python.

In[24] | myfunc=abs

print(type(myfunc))

#Like other objects, Python function names can be used as arguments of zype (), and
the return value is the function type.

print(myfunc(-100))

Out[24] | <class 'builtin_function_or_method">
100

138 Python Data Science

2.20 Lambda functions

Q&A

— Whatis a lambda function?

a type of user-defined function,
an anonymous short finction g lambda x:x+3

defined with the keyword "lam bda"

Definition m ethod

lambda -

Formal Function retum
parameters value

How do I understand lambda function?

The lam da fanction has a colon (:),
Fomal param eters before the colon
After the colon is the fanction
retum value

In lambda x:x+3.
x is the formal parameter
x+3 is the retum value ofthe finction

‘What is the use of lambda functions?

x=2
y= lambda x:x+3
¥(2)

When writing an expression, it can be
used as a component of the expr

When calling the fanction, it can be
used as the actual parameter{also known iR filier{(lambda x: x % 3 == 0. MyList)

v as argument)

Basic Python Programming for Data Science

2.20.1 Defining a lambda function

.:l‘

Notes

The essence of a lambda function in Python is that it is a single-line anonymous
function. Lambda functions are defined using the lambda keyword and are typically
used for creating small, one-time functions without explicitly naming them.

lambda

ormsl Function

ters return value

\®,
=

The lambda function has a colon (:). Before the colon are the formal parameters, and
after the colon is the function’s return value.

Tips
In[1] | x=2
y=lambda x:x+3
y(2)
Out[1] |5
=)
T _-?_— The lambda function in “in[1]” is equivalent to the following common function.
Notes
In[2] | x=2
def myfunc(x):
return x+3
myfunc(2)
Out[2] | 5

2.20.2 Calling a lambda function

LY —

Notes

In data science projects, lambda functions are commonly used as arguments for other
functions, with the filter() function being a common example.

In[3]

MylList =[1,2,3,4,5,6,7,8,9,10]
filter(lambda x: x % 3 == 0, MyList)

139

140 Python Data Science

|
N\ 7/
@ The filter() function uses an iterative reading mode, which reads the value of each

s N\ | element in the order of subscript from the second argument (e.g., MyList), and assigns
= it to the variable x in the first argument (a lambda function).
Tips

Out[3] | <filter at 0xb656ac27f0>

| — In Python, the return value of the filter() function is an iterator. This iterator’s values
o can be displayed after converting it into a list. For more information, refer to section
‘3.1 Iterators and Generators’.

In[4] | list(filter(lambda x: x % 3 == 0, MyList))

Out[4] | [3, 6, 9]

.:'\

[= Take the map() function as an example.

Notes

In[5] | list(map(lambda x: x * 2, MyList))

Out[5] | [2,4,6,8,10, 12, 14, 16, 18, 20]

\

' & Take the reduce() function as an example.

In[6] | from functools import reduce
reduce(lambda x, y: x +y, MyList)

N\ 7/
-® ~ | The reduce() function is no longer a built-in function in Python since version 3. It
= has been moved to the functools module.

Tips

Out[6] | 55

Basic Python Programming for Data Science

Exercises

[1] Which of the following is not a sequence type?
A. list

B. tuple

C. set

D. str

[2] Which of the following variables complies with the naming rules?
A. 3q
B. _
C. while
D. ds@

[3] Which of the following statements is illegal in Python?
A x=y=z=1
B. x=(y=z+1)
C. X,y =yX
D. x+=vy

[4] What is the output of the following program?
x =20
y =True
print(x+y)

A1

B. True

C. 21

D. raise an exception

[S] Which of the following evaluates to False?
A. 'abc' <'ABC'
B. 5>3>1
C. 2<l1and12<3o0r2>1
D. (1is3) ==

[6] Which of the following is false of Python

A. Compound statements after if are indented instead of braces(curly brackets).

B. Use elif instead of else if in Python.
C. If can be written as a one line expression.
D. There can be empty statements in the if statement.

[71 How many times will the following while loop be executed?
k=100
while k> 1:
print(k)
k=k//2

OO w>
[e) RO I NN UV]

141

142 Python Data Science

[8] What is the output of the following program?
Ist1=[3,4,5,6,7,8]
Istl.insert(2,3)
print(Ist1)

(3,4,5,3,6,7,8]
(3,4,3,5,6,7,8]
(3,4,5,6,7,8,[2,3]]
(3,4,5,6,7,8,2,3]

[9] Which of the following is false of Python?
A. Tuples are immutable, and usually contain a heterogeneous sequence of elements.
B. Lists are mutable, and their elements are usually homogeneous.
C. Elements inside tuples can be sorted with the sort method.
D. The frequency of elements inside tuples can be executed with the count method.

[10] Which of the following is not used in Python 3 to solve the problem of special characters in the path?
A. s="“D:\test”
B. s=r"D:\test”
C. s=u"D:\test”

[11] What is the output of the following program?
Ist =[1,2,3]
tpl=1,2,3
print(list(zip(Ist,tpl)))

A [(1,1),(2,2), (3, 3)]
B. ([1,11,[2,2],[3,3])
C. [2 ,4 6]
D. (2,4,6)
[12] Which of the following data structures is unordered?
A. list
B. tuple
C. set
D. string

[13] Which of the following data structures is normally used to duplicate removal in Python?
list

B. tuple
C. set

D. string

>

[14] Which of the following cannot be used as keys in the dictionary?
A. number
B. string
C. tuple
D. list

[15] Which of the following is true of calling method of the built-in functions?
A. First import the module to which it belongs, and then call through the module name.
B. Call directly with the function name.
C. Call with the def keyword.

Basic Python Programming for Data Science 143

[16] What will the following program print out?
set(*happy”)

A. ['h','a','pl,lpl,ly']
B. (Ih|,|a|,|pl,lp','y|)
C. {Ih|,|a|,|pl,lp','y|}

[17] Which of the following code will run with errors?
A. import time
time.localtime()
B. import time as ti
ti.localtime()
C. importtime as ti
localtime()
D. from time import localtime
localtime()

[18] What is the output of the following program?
def Inputint(a):
a=15
b=2
Inputint(b)
print(b)
A. 15
B. 2
C. raise an exception

[19] Which of the following statements about the user-defined function is wrong?
A. The mutable variable of the user-defined function is passed by position.
B. Immutable variables of the user-defined function are passed by value.
C. The user-defined functions cannot be placed in a class.
D. The user-defined functions can be written as single line functions.

[20] Which of the following statements about the lambda function is wrong?
A. Small anonymous functions can be created with the the lambda keyword.
B. Like nested function definitions,the lambda functions can reference variables from the containing
scope.
C. The lambda functions are syntactically restricted to a single expression.
D. All of the above

Check for
updates

3. Advanced Python Programming for Data
Science

This chapter will introduce the advanced Python programming concepts and skills necessary to excel as a data
scientist. The topics we will cover include:

® [terators and generators
Modules

Packages

Help documentations
Exception and errors
Debugging

Search path

Current working directory

Object-oriented programming

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 145
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_3

https://doi.org/10.1007/978-981-19-7702-2_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_3&domain=pdf

146 Python Data Science

3.1 Iterators and generators

Q&A

—— Why doesn't Python display the return value of some functions, E.g. range()?

The retum value ofthis finction is an . 2 ,
i Iterators are the most widely used in Python
iterator

L. Peter Dentsch said

*To iterate is human,to recurse divine

What is an iterator?

An object that is used to iterate over Use the Python built-in fanction ifer() to convert an
iterable objects "iterable object” into an "iterator”.

L

How do I traverse the iterator?

Can also be used in fr statem ents

What is a gen erator?

Use the yield statement,instead ofthe retum
ction that generates a ne Statement
Lazy evaluation ,not immediately evaluation

How do 1 define a generator?

defmyGen():

ange(l1.11)
forin x:
yield i

Similar to other function definitions,

just need to switch the reftrn kyeword

to the yzeld kyeword

Advanced Python Programming for Data Science

3.1.1 Iterable objects vs. iterators

Notes

In Python, an iterator is an object that is obtained by passing an iterable object to the
built-in ifer() function. Not only can functions that accept iterable objects receive
iterators, but they can also use the iter() function to convert iterable objects into
iterators directly.

1. Iterable object: An object that can be used directly in a loop statement, such as a
‘for’ loop.

2. Iterator: An object that can be called by the built-in next() function and will
continuously return the next value in sequence.

1l
A S

(1) While all iterators are iterable, the converse is not necessarily true. That is, iterable

o A objects are not always iterators.
Notes
In[1] | myList=[1,2,3,4,5]
next(myList)
Out[1] | TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_3880\2514634475.py in <module>
1 myList=[1,2,3,4,5]
----> 2 next(myList)
TypeError: 'list' object is not an iterator
NG
_/ ~ | Report errors: TypeError: ‘list’ object is not an iterator.
VY™ | Cause analysis: Although myList is an iterable object, it is not an iterator.
=
Tips

To test whether an object is an iterable, use the built-in isinstance() function in
conjunction with the collections module.

myList=[1,2,3,4,5]
from collections.abc import Iterable
result = isinstance(myList, [terable)

L

Notes

(2) The built-in iter() function in Python is used to convert iterable objects into
iterators.

147

148 Python Data Science

In[3]

my]lterator=iter(myList)
print(next(my]lterator))
print(next(my]lterator))
print(next(my]lterator))

NP
/@\
=

Tips

The built-in next() function in Python is a method used to traverse items in an iterator,
retrieving them one at a time.

Out[3]

N =

3.1.2 Generator vs. iterators

A generator in Python is a special kind of function that returns a generator iterator.
The key differences between a generator and a regular function are:

1. Generators use the yield keyword instead of the return keyword.

2. Instead of immediate execution, generators use a ‘lazy execution’ strategy. This
means that when a generator function is called, it isn’t executed immediately.
Instead, execution is deferred until each element needs to be processed.”

-:j

(1) In Python, a generator is a special type of function that does not return a single

:_-Té value. Instead, it returns an iterator object that generates a sequence of values.
Notes This is accomplished by using yield statements instead of refurn statements.
In[4] | def myGen():
x=range(1,11)
foriin x:
yield i+2

L

Notes

(2) Generators in Python exhibit a characteristic known as ‘lazy execution.” This
means they do not compute the results immediately when they’re defined. Instead,
they generate each value on-the-fly as you iterate over them. This feature allows
them to represent potentially infinite data structures and also saves memory usage
for large sequences.

In[5] | myGen()

\®/
=
=

Tips

In this case, the output is <generator object myGen at 0x00000213EA679E58>. This
is the representation of a generator object in Python, rather than a specific return value.

Out[5] | <generator object myGen at 0x00000213EA679ES58>

Advanced Python Programming for Data Science 149

:;II (3) One of the key features of a generator is that its elements are executed only when
=z they are accessed or called. This behavior is part of the ‘lazy execution’ model

. d—
followed by generators in Python.

Notes

In[6] | for X in myGen():
print(x,end=",")

7/ “To directly display the items produced by a generator, use the print() function with
- the unpacking operator (*), as in the following example: print(*mygen()).

Tricks

Out[6] | 3,4,5,6,7,8,9,10,11,12,

150

Python Data Science

3.2 Modules

Q&A

[Whatis "module" in Python? What is the relationship between modules and packages

The module is a python file in
which classes, statements and
functions can be written

What is the existen ce form of module?Where to store it?

The form of
xigten ce
is uuu}huiil-i

The form of

o T . It is stored in Lib\site-packages under

Stored in the blder ofthe > : c
EEmmmmmme g Anaconda installation directory .with the same

co!

name as the package.

ponding pac

-

In order to im prove performance, python makes frequently used packages into built-in modules, which are wntten in C langua

existence P TR 3
(rather than Python) and built into the interpreter.

is built-in

To call the finction must use the
! 2 : r alias name, for
exam ple: cmath.sqrt(-1)

What are the steps to use the python mod ule? np.arange(1,10)

|
Import first the module,

[then call finctions in the modulg Call its method

by usi

1g module im port cmath
name or module import numpy as np

1 import entire module

alias

The first method: import module name.
The second method: im port module name as alias of the module.

You can only import specific

Call its method by module S from numpy import arange
finctions in the module.

name or module alias from amath import sqrt

The third method: fom module name import fanction name.

The function can be called not
ing the package nam ¢/alias, for
xam ple:

arange(1,10)

squt(-1)

_,— ‘What are the built-in modules in Python? How to check?

The sys module can be used to
check the list of built-in
modules.

import sys
sys.builtin_module

The code is

Advanced Python Programming for Data Science

3.2.1 Importing and using modules

In Python, we can import a module into our code using the import statement. The
import statement performs two operations: searching for the named module and
binding the search results to a name in the local scope.

There are three types of the import statements:

® import module_name

® import module_name as alias_name

® from module_name import function_name

Notes

Step 1: Importing a module:
import module_name

Step 2: Calling functions in the module:
module_name.function_name()

In[1]

import math
math.sin(1.5)

Out[1] | 0.9974949866040544 |

In[2] | cos(1.5) |

out[2]

NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel 25560\176693822.py in <module>
----> 1 cos(1.5)

NameError: name 'cos' is not defined

NameError: name ‘cos’ is not defined.
To use the cos() function, which calculates the cosine of a value, you need to specify
the module name math.

Step 1: Importing a module with an alias:
import module_name as alias

Step 2: Calling functions in the module using the alias:
alias.function_name()

In[3]

import math as mt
mt.sin(1.5)

Out[3] | 0.9974949866040544

151

152 Python Data Science

Step 1: Importing a function from a module:
from module_name import function_name

r Step 2: Calling the imported function:
Notes | function_name()
In[4] | from math import cos

cos(1.5)

Out[4] | 0.0707372016677029

3.2.2 Checking built-in modules list

.:|‘

sys.builtin_module_names() is a function in Python’s sys module that returns a tuple
of strings. This tuple contains the names of all modules that are compiled into the

| 9=
Python interpreter.
Notes J .
In[5] | import sys
print(sys.builtin_module_names)
Out[5] | ("_abc', '"_ast', '_bisect', '_blake2', ' codecs', '_codecs_cn', '_codecs_hk', '_codecs_

1502022','_codecs_jp','_codecs_kr','_codecs_tw','_collections','_contextvars','_csv',
'_datetime', '_functools', '_heapq', '_imp', '_io', '_json', '_locale', '_Isprof’, '_md5', '_
multibytecodec','_opcode','_operator’,'_pickle','_random',"_shal’,'_sha256','_sha3',

'"_sha512','_signal', '_sre', "_stat', '_statistics', '_string', '_struct', '_symtable', '_thread',

"_tracemalloc', '_warnings', '_weakref', '_winapi', '_xxsubinterpreters', 'array', 'atexit',
'audioop', 'binascii', 'builtins', 'cmath’, 'errno’, 'faulthandler’, 'gc', 'itertools', 'marshal’,

'math’, 'mmap', 'msvert’, 'nt', 'parser’, 'sys', 'time', 'winreg', 'xxsubtype', 'zlib")

"

Advanced Python Programming for Data Science

3.3 Packages

Q&A

What is "package”? What is the differen ce between
package and module?

e consists of mu Itiple m odules

associated with the sanie finction in t

plder containing __init__.py. . composed of modules composed of .py files

The module is a python file in which

es, statem ents and finctions can be
nsually

= How do I download, install, update and ddete packages in Python?

pip: python package ma

conda: universal package ni

supporting multiple

ng packages in Python?

Use pip or conda to d Import the specified module in Call the function/class in

install the required p the pack specified m odule

How do I call the package man ager pip or conda in Python?

The Hllowing code
is written in the
comm and]Illf

Check the list of installed

pack

pip list

conda list

command

pip install --up;
conda update pe

I Updatc an installed package command

pip uninstall pack
conda uninstall pas

Remove an installed package commad

D Dovwnload/install the specified pip install package name

conda install package

command

How many packages arein python? What packages are commonly used in data science?

Pandas: data wrangling

Tay processin

ent, the

ning

(5 e > s
)0 projects. Seet Commonly used in vinaeliration

website: pypi data science is

bom : Sta cal visualization

ong

StatsModels: Statistics fanction

pandsql: sql statement programm ing

153

154

Python Data Science

3.3.1 Packages vs modules

._|‘

L " —

Notes

In Python:

1. A module is a file with a .py extension that contains a collection of functions and
global variables. It serves as a reusable component that can be imported into other
Python programs.

2. A package is a directory that contains a collection of related modules. It provides
a way to organize and structure code by grouping related functionality together.

]
A S

The two most commonly used tools for managing Python packages or modules are:

1. Pip: Pip is the recommended tool by the Python Packaging Authority for installing
packages from the Python Package Index (PyPI).

2. Conda: Conda is a cross-platform package and environment manager that not
only installs and manages conda packages from the Anaconda repository but also
supports packages from the Anaconda Cloud.

3.3.2 Installing packages

To install packages, you can use either pip or conda depending on your package
management setup. Here’s the syntax for installing packages with each tool:

By . o
1. Using pip:pip install package_name
Notes' {5 Using conda:conda install package_name
B | Anaconda Prompt (Anacoda) = O

L O —

Notes

In Python, when you run the command pip install scipy, it prompts “Requirement
already satisfied: scipy in c:\anaconda\lib\site-packages”. This indicates that the scipy
package is already installed and there is no need to reinstall it. However, when you run
the command pip install orderPy, there is no such prompt.

3.3.3 Checking installed packages

L7 —

Notes

pip list
or
conda list

Advanced Python Programming for Data Science 155

B | Anaconda Prompt (Anacoda)

s | To update installed packages:

[:, pip install --upgrade a package’s name
F-— or

Notes conda update a package’s name

7 N\ | Run pip uninstall and conda uninstall to remove the package installed.

To remove installed packages, you can use either pip or conda, depending on your
package management setup. Here’s the syntax for uninstalling packages with each
tool:

1. Using pip: pip uninstall package _name

2. Using conda:conda uninstall package name

156 Python Data Science

3.3.5 Importing packages or modules

.:l‘

L 27—

Notes

(1) Import a module: Use a conventional aliase followed by as.

In[1] | import pandas as pd

L.

Notes

(2) Import multiple modules: Separate them with commas.

In[2] | import pandas as pd, numpy as np, math as math

To import multiple modules and provide aliases, you should use separate import
statements for each module and alias.

Ml
AS

(3) Only import specific functions in a module.

In “from pandas import DataFrame”, the first argument

pandas is the module name, the second argument DataFrame is a function name in
this module.

In[3] | from pandas import DataFrame

:l‘

L

Notes

(4) Import packages with the hierarchical filesystem structure:Use dots to
represent the hierarchical relationship.

In[4] | import Graphics.Primitive.fill

:I‘
=7

Notes

If you are unable to download or install a package using pip or conda commands,
you can visit the official website of the package. From there, you can download the
package and follow the installation steps outlined in the official documentation.

3.3.6 Checking Package Version

=)
=7

Notes

To check the version of a package using its built-in attributes and methods, you can
typically access the __version___ attribute of the package.

In[5] | pd.__version__

Advanced Python Programming for Data Science 157

3.3.7 Commonly used Packages

F —1],. | In data science projects, commonly used basic packages include the following:

Pandas: For handling data frames (relational tables) and series
NumPy: For multidimensional array (matrix) processing
Scikit-learn, TensorFlow, and PyTorch: For machine learning
Matplotlib: For statistical visualization

Seaborn: For enhanced data visualization

StatsModels: For statistical analysis

. Pandasql: For SQL programming with pandas

. Scrapy: For web scraping

. PySpark: For programming with Apache Spark

. NLTK, spaCy: For natural language processing in English

. pynlpir, Jieba: For natural language processing in Chinese

. Wordcloud: For generating word clouds

. Random: For generating random numbers

PN YR W~

—_ = =
N == O

—_
(98]

158 Python Data Science

3.4 Help documentation

Q&A

Option 1
the built-in finction help(), br e
help (len
Option 2
|
In Jupyter
Notebook

or (question mark), such as len?

(or ?len)

Docstring is the closed in™ ™ (three
single quote: nd modules

Option 3

|
In Jupyter
{ 0ok

the operator "??" (two question marks), such as

Ched N)
len?? (0127 len)

he premise is that the cor nding finctions, classes.
and modules are written in python. If written in other

languages, the finction of "22" is equivalent to ™

—— Option 4

Check brief description, r example the built-in attrib

len. doc

docsining

Option §

Check a list of attributes supported by 2 - 5
T £= . the built-in finction dir(), such as dir(lea)
an object

It is reccom mended to use the ".+Tab" to let the system
autom atically prompt the available attributes and finction
na

Option 6

the help docum entation for recomm ended to check the official website ofthe
package package

Advanced Python Programming for Data Science

3.4.1 The help function

.:l‘

LY

Notes

The most basic and generic way to check help information is the built-in help()
function.

In[1] | help(len) |

Out[1]

Help on built-in function len in module builtins:

len(obj, /)
Return the number of items in a container.

3.4.2 DocString

L Y —

Notes

In IPython, a convenient way to access help information for objects, functions, or
modules is to use the question mark (?) character.

In[2] | len?

\@/
=
=

Tips

The IPython (or IPython-based Jupyter Notebook/Lab) system displays help
information as follows:

Signature: len(obj, /)
Doestring: Return the number of items in a container.
Type:

builtin_funection_or method

L

The syntax to check help information using the question mark character (?) is a
functionality provided by IPython, an enhanced interactive Python shell, and is not a
syntax inherent to the Python language.

Notes
In[3] | myListl1=[1,2,3,4]
myListl.append?
N\ ! 7/
The help information printed is as follows.
=

Tips

159

160

Python Data Science

Signature: myListl. append (object, /)
Docstring: Append object to the end of the list.
Type:

builtin_function_or method

L. —

The help document consulted by docstring is a multiple-lines explanatory text bounded
by three instances of a quotation mark ()

Notes
In[4] | def testDocString():
"""This is docString,
You can use "?" to view the help information"""
return(1)
testDocString?
=)
1 =4 The iPython (or iPython-based Jupyter Notebook/Lab, etc.) system display help
= information as following:
Notes

Signature: testDocString()
Doestring:

-4k AdocString,

BIE “1 " EFRINFENER
File:
Type:

c:\users\szz\appdata\local\temp\ipykernel 5248\4037377024. py
function

In[5] | estDocString

N 7/
/@\

-
=

Tips

The iPython (or iPython-based Jupyter Notebook/Lab, etc.) system display the same
help information as In[4].

3.4.3 Checking source code

=)

Notes

The ?? syntax, when used in Python environments such as IPython or Jupyter
Notebook/Lab, allows you to access the source code of a function or object.

In[6] | testDocString??

Advanced Python Programming for Data Science

The help information printed by the system is consistent with In[4].

I

”
N

Z 1\
g [I™

Prerequisite: The target object must be written in Python, as the source code cannot
be checked if it is not. In such cases, the functionality of ?? becomes the same as ?.

—la

L —

Notes

To check the help information for the built-in /en() function, we can use len?

In[7] | len?

L. —

Notes

The iPython (or iPython-based Jupyter Notebook/Lab, etc.) system display help
information as following:

Signature: len(obj, /)
Doestring: Return the number of items in a container.
Type:

builtin_function_or method

In[8] | len??

Tips

“len??”” has the same output as “len?”.
Reason analysis: The built-in len() function is not written in Python.

3.4.4 The doc attribute

:l‘

L —

Notes

The __doc__ attribute, enclosed by double underscores (__), is a default attribute
automatically added to each class in Python’s object-oriented programming method.
It contains the documentation string (docstring) for the class. For more details, refer
to section ‘3.9 Object-oriented programming.

In[9] | testDocString.__doc__

Out[9] | "This is docString,\nYou can use "?" to view the help information'

In[10] | len._ _doc__

Out[10] | 'Return the number of items in a container.'

161

162 Python Data Science

3.4.5 The dir() function

.:I‘
=4

Notes

The dir() function is used to retrieve a list of all attributes and methods available in
the specified object.

In[11]
Out[11]

| dir(print)

['__call_',

1 1

__class__,
' _delattr__,

' dir__,
Al '

__doc__,
eq

__format__,
ge,
'__getattribute__,
gt

' _hash_ ',
' init_ ',

le
A lt L}

——9

1 '

__module__',

' name__ ',

1 '

ne

1 1

new__ ',

'__qualname__,

E—

__reduce__,

" reduce_ex__ ',
'_repr__',

' self ',

' setattr_ ',

"

' sizeof ',
' ostr
__subclasshook__ ',

'__text_signature__ ']

Advanced Python Programming for Data Science

In[12] | dir(len)

Out[12]

[[__call_',

1 '

__class__ ',
' delattr__',

' dir_ ',
1 1

__doc__,
eq,
__format__ ',

1 1

__ge__,
' getattribute__',

gt

' hash_ ',
' init_ ',
__init_subclass__',

le |,
L

1

1

1

1

1

__module__ ',
' _name_ ',
]]

ne

— —
1 1

new

— E—

"

'__qualname_ ',
' _reduce_ ',
_reduce_ex__,
'_repr_|,

' self |,

' _setattr__,
' _sizeof ',
 str '

___subclasshook ',

1

1

1

1

__text_signature_ ']

In[13] | dir?

Python follows a principle called ‘duck typing’ in its programming style. The term
‘duck typing’ refers to a concept that focuses on an object’s behavior rather than its
specific type or class. In other words, if an object walks like a duck (supports certain
attributes and methods) and quacks like a duck (exhibits expected behavior), then it is
considered a ‘duck’, regardless of its actual class or type.

163

164

Python Data Science

3.5 Exception and errors

Q&A

How do I change the display of exception information in in iPython?

use—>1 magic command %xmode

What is the template for Python exception handling?

try:
Statements that may occur exceptions

except Ex1:
Statement to be executed when exception Ex1 occurs

except ():
Statement to be executed when

except:
Statement to be executed when other exceptions occur

else:

Statement to be executed when there is no exception

The statement to be executed regardless of whether an exception occurs

Such as the release of file, databa

Exception
AttributeEmror
EOFEmor
IOEmor

Im portError
IndexErmor
KeyEmor
MemoryErmor
Nam eEmror
NotlmplementedEmor
SyntaxError
IndentationEmor
TypeEmor
ValueEmor
Waming
SyntaxWaming

- What are the common exceptions/errors in Python?

raphics handle resources

Base class for general errors

Object does not have this attribute

No built-in input, reach the EOF mark

Input/output operation failed

Failed to import module/object

There is no such index in the sequence

There is no such key in the map

Memory overflow error

Object not declared/initialized (no attributes)
ethod not yet im plemented

Gramm atical errors

Indentation ermror

Wrong type

Invalid param eter passed

Base class for wamings
Suspicious syntax waming

Advanced Python Programming for Data Science

3.5.1 Try/Except/Finally

:l‘

L —

Notes

In Python, Errors that occur at runtime (after passing the syntax test) are called
exceptions.

In Python’s try/except/finally statements, a colon (:) is placed after try, except, and

u -_’é | finally to signify the start of a code block associated with each statement.
Notes
In[1] | try:
f=open('myfile.txt','w")
while True:
s=input("please enter Q")
if s.upper()=='Q":break
f.write(s+'\n")
except KeyboardInterrupt:
print("program interruption")
finally:
f.close()
N\ ! 7/
- — | The finally section refers to the code that will be executed regardless of whether
N\ | an exception occurs or not. The finally block is useful for releasing resources and
= performing cleanup operations.
Tips
:::_// Unlike the C and Java languages, in Python, the else statement can be added to
+ = exception handling constructs even when no exceptions occur.
Notes
Out[1] | please enter Qa

please enter QQ

:I‘

.

Notes

The syntax template for try/except/finally statements in Python is as follows:

try:
Statements that may raise exceptions
except Ex1:
Statement to be executed when exception Ex1 occurs
except (Ex2, Ex3):
Statement to be executed when exception Ex2 or Ex3 occurs
except:
Statement to be executed when other exceptions occur
else:
Statement to be executed when there is no exception
finally:
Statement to be executed regardless of whether an exception occurs, such as
releasing file, database, or graphics handle resources

165

166 Python Data Science

3.5.2 Exception reporting mode

.:|‘

L —

Notes

IPython or Jupyter Notebook provides us with a magic command %xmode to switch
modes for the exception handlers.

J%xmode takes a single argument, the mode, and there are four modes: Plain,
Context, Verbose, and Minimal. The default mode is Context.

Notes

To switch the exception reporting mode to “Plain’:
9%0xmode Plain

In[2]

Out[2]

%xmode Plain
=l
x1

Exception reporting mode: Plain
Traceback (most recent call last):

File "C:\Users\szz\AppData\Local\Temp\ipykernel 4976\3044902845.py", line 3, in
<module>

x1

NameError: name 'x1' is not defined

> 4

L O

To switch the exception reporting mode to “Verbose™:
9Joxmode Verbose

Notes
In[3] | %xmode Verbose
x=1
x1
Out[3] | Exception reporting mode: Verbose
NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel 4976\719643460.py in <module>
1 get_ipython().run_line_magic('xmode', "Verbose")
2 x=1
>3 x1
global x1 = undefined
NameError: name 'x1' is not defined
|
S 7 | Python defines a wide range of exception classes (Exceptions) and error classes
_/ ~ | (Errors). More detailed information about these classes can be obtained from the
= Python official website’s tutorial on errors and exceptions: https://docs.python.org/3/
Ti:)s tutorial/errors.html.

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html

Advanced Python Programming for Data Science

i

Notes

To switch the exception reporting mode to “Context”:
J%xmode Context

In[4]

Out[4]

%xmode Context
x=1
x1

Exception reporting mode: Context

NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_4976\320895153.py in <module>
1 get_ipython().run_line_magic('xmode', 'Context')
2 x=1
---->3 x1

NameError: name 'x1' is not defined

3.5.3 Assertion

{

In data science projects, Assertion is mainly used to set Check Points and to test if
certain assumptions remain true.

LY

Notes

When encountering an assert statement, Python evaluates the accompanying
expression, which is expected to be true. If the expression evaluates to false, Python
raises an AssertionError exception.

In[5]

a=1
b=2
assert b!=0, “The denominator can't equal 0”

L —

{

Notes

When encountering an assert statement, Python evaluates the accompanying
expression, which is expected to be true. If the expression evaluates to false, Python
raises an AssertionError exception, optionally displaying an error message.

In[6]

Out[6]

a=1
b=0
assert b!=0, "The denominator can't equal 0"

AssertionError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_4976\796219993.py in <module>
1 a=1
2 b=0
----> 3 assert b!=0, "The denominator can't equal 0"

AssertionError: The denominator can't equal 0

167

168 Python Data Science

3.6 Debugging

Q&A

How do I debug the program?

the magic command %debug to open Python
Debuger

through

Prerequisite: %debug can be used only affer generating a Traceback. Traceback will be autom atically
generated as long as there is an error

How do I set the display method of "error message” in Python?

%sxm ode Context
set by magic command %xmode hrough———>> JEEERTE ERVELILER

%xm ode P lain

By default, the display method of the emror m e is Context

——What are the common errors in Python?

It is recomm ended to summarize and analyze the
er that you often encounter

from person to person

NameEmor: Undefined/not imported or misspelled
TypeEmor: The data type or the number of param eters does not meet the requirements of the
operator or finction

yntaxErmor: invalid character in identifier: Input Chinese characters or punctuation by m
AttributeEmor:No such attribute or wrong attribute name

..not support class: Does not support such operations

How set Assert in Python?

1
us Q. ¢!=0,"x cannot be used as the
denom inator"

Advanced Python Programming for Data Science

3.6.1 Enabling the Python Debugger

When Python raises an exception or error message, it is recommended to use the
Python Debugger (PDB) to debug the program.

Notes
In[1] | x=1
x1
N ! 7
Here, a NameError is raised that name ‘x1’ is not defined
=
Tips
Out[1]
NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_19180\372800001.py in <module>
il z=ll
-—-->2x1
NameError: name 'x1' is not defined

To open the Python Debugger (PDB), you can type the magic command %debug in
[Python or Jupyter Notebook.

J%debug

\

To exit the Python Debugger (PDB), you can press ‘q’ or type ‘quit’ while in the

= debugger mode.
Notes
NG
, @ . In addition to PDB, Pylint and Pychecker is commonly used Python debuggers.
=
T;)s
Out[2] | > c:\users\szz\appdata\local\temp\ipykernel _19180\372800001.py(2)<module>()

ipdb> x

1

ipdb> x1

**% NameError: name 'x1' is not defined
ipdb> x

1

ipdb> q

169

170 Python Data Science

3.6.2 Changing exception reporting modes

-:I R
I 3/ %xmode toggles between different modes of exception handling in IPython, including
T 7= plain, context, and verbose.
Notes
In[3] | %xmode Plain
y=1
Y
Out[3] | Exception reporting mode: Plain
Traceback (most recent call last):
File "C:\Users\szz\AppData\Local\Temp\ipykernel 19180\265797083.py", line 3, in
<module>
Y
NameError: name "Y' is not defined
In[4] | %oxmode Verbose
y=1
Y
Out[4] | Exception reporting mode: Verbose

NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel _19180\3286916471.py in <module>
1 get_ipython().run_line_magic('xmode', 'Verbose')
2 y=1
-—->3Y

global Y = undefined

NameError: name 'Y' is not defined

In[5] | %debug

Out[5]

> c:\users\szz\appdata\local\temp\ipykernel 19180\3286916471.py(3)<module>()

ipdb>y

1

ipdb>Y

#% NameError: name "Y' is not defined
ipdb>y

1

ipdb> quit

Advanced Python Programming for Data Science

3.6.3 Working with checkpoints

:I‘

L

Notes

In data science, assertions (or assert statements) can be used as checkpoints to validate
assumptions and ensure data integrity.

In[6]

a=1
b=0
assert b!=0,"The denominator can't equal 0"

If the condition is false, an AssertionError is raised.

L

Notes

When coding an assert statement in Python, don’t forget to include a comma (,) to
separate the expression being evaluated from an optional error message.

Out[6]

AssertionError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel _19180\3245325190.py in <module>
1 a=1
2b=0
----> 3 assert b!=0,"The denominator can't equal 0"
global b=0

AssertionError: The denominator can't equal 0

In[7] | %debug |

Out[7]

> c:\users\szz\appdata\local\temp\ipykernel 19180\3245325190.py(3)<module>()

ipdb> a
ipdb>b
ipdb> a
ipdb> quit

171

172 Python Data Science

3.7 Search path

Q&A

What is "variable search path"?

When the user calls a variable name (such as 1),
o - - the interpreter searches for the variable on the
The "path" search” for user-defined - :

search path, ifit can be found, it means that the
variable (such as 1) has been defined, otherwise it

variables in the Python interpreter

will report an emmor Nam e Eromr

When the user defines a new variable, the Python interpreter puts it on
the "search path”

— How do I check the variable search path?

use
When no parameters are written in the dir()

dir () function fanetion, the system retums all the variable names

defined on the search path

How do I remove a variable from the variable search path?

use

After deleting the variable, and then calling the
del statement E.g. deli e Variable name, an emor NameEromr will be
reported

Whatis the "module search path"?

When the user imports a module, the interpreter
searches for the source code of the comesponding

The "path" to "search” user's required
module in Python interpreter

which is 5 :
module on the search path. If it is not found, it

will report an error ModuleNotFoundEmor

How do I check the module search path and how to modify it?

use module

Add a new path to the
module search path

sys.path.append(new path)
sys

import sys
sys.path

___Remove a path from the

v module search path

sys.path. remove(path)

Advanced Python Programming for Data Science

3.7.1 The variable search path

.:I‘
=4

Notes

To see all variables that exist in the search path of the Python interpreter, you can use
the built-in dir() function or the magic commands %whos and %who.

In[1]

Out[1]

myList=[1,2,3,4,5]
next(myList)

['In’,
'Out’,

' builtin__,

__builtins__',
__doc__,
__loader__',
' name_ ',
' __package ',
'_spec_ ',

' dh',

i

"l

" ih',

"l

i,

' oh',

'exit’,
'get_ipython',
'quit']

N ! /7
/@\
=

Tips

To add a variable to the search path, you can define a new variable using an assignment
statement. For example:

In[2] | vi=1

Tips

To display the search path in Python and check whether the newly defined variable “vi”
is present, you can use the dir() function or the %whos magic command in IPython.

In[3] | dir()

173

174 Python Data Science

Out[3] | ['In’,
'Out’,

l:lv’
|_2|’
|_3|’

'__builtin__,

__builtins__',
__doc__,

_ loader__,
' _name__',
'__package_ ',
'_spec_ ',

' _dh',

X0

"l

' 12",

' i3,

"4,

' i5',

" ih',

",

_iid',

' oh',

'exit’,
'get_ipython',
'quit’,

'vi']

-:/ To remove a variable from the search path, use the del statement followed by the

L7 —

A variable name.
Notes

In[4] | del vi

Y U4
/@\ Delete the vi variable.

In Python data science projects, the common cause of a ‘“NameError” is when a
variable is not found in the search path or the current scope.

In[5] | vi

Advanced Python Programming for Data Science

S 7 | NameError: name ‘vi’ is not defined.
d = N The reason for this error is that the variable ‘vi’ has been deleted or is not defined in
> In[4].
Tips
Out[5]

NameError Traceback (most recent call last)
<ipython-input-5-c5Sbfalc921c4> in <module>()
—>1vi

NameError: name 'vi' is not defined

3.7.2 The module search path

:l‘

L -7

Notes

To check the module search path in Python, you can use the path attribute provided by
the sys module and the python -m site command in the Anaconda prompt.

In[6]

import sys
sys.path

L -

“sys.path” is an attribute in Python and should not be treated as a method. It cannot
be parenthesized.

Notes
Out[6] | [",
'C:\\Anaconda\\python36.zip',
'C:\\Anaconda\\DLLs',
'C:\\Anaconda\\lib',
'‘C:\\Anaconda’,

'C:\\Anaconda\\lib\\site-packages',
'C:\\Anaconda\\lib\\site-packages\\win32',
'C:\\Anaconda\\lib\\site-packages\\win32\\lib',
'C:\\Anaconda\\lib\\site-packages\\Pythonwin',
'C:\\Anaconda\\lib\\site-packages\\IPython\\extensions',
'C:\\Users\\soloman\\.ipython']

=

[—¢ To add a new path to the module search path in Python, you can use the sys.path.
|
- — append() method.
Notes
In[7] | import sys

sys.path.append('H:\\Python\\Anaconda')

In[8] | sys.path

175

176

Python Data Science

N ! 7/
/@\

-
=

Tips

To display the module search path in Python and check whether the newly added path

from In[7] has appeared, you can use the sys.path attribute. Here’s an example of how
you can do it:

Out[8]

['C:\\Users\\szz',

'D:\\Anacoda\\python37.zip',

'D:\\Anacoda\\DLLs',

'D:\\Anacoda\\lib',

'D:\\Anacoda',
'C:\\Users\\szz\\AppData\\Roaming\\Python\\Python37\\site-packages',
'D:\\Anacoda\\lib\\site-packages',
'D:\\Anacoda\\lib\\site-packages\\pyquery-1.4.3-py3.7.egg’,
'D:\\Anacoda\\lib\\site-packages\\cssselect-1.1.0-py3.7.egg’,
'D:\\Anacoda\\lib\\site-packages\\pip-21.1.1-py3.7.egg',
'D:\\Anacoda\\lib\\site-packages\\win32',
'D:\\Anacoda\\lib\\site-packages\\win32\\lib',
'D:\\Anacoda\\lib\\site-packages\\Pythonwin',
'D:\\Anacoda\\lib\\site-packages\\IPython\\extensions',
'C:\\Users\\szz\\.ipython',

'H:\\Python\\Anaconda']

L.

Notes

To remove a path from the module search path, you can use the sys.path.remove()
method.

In[9] | sys.path.remove('H:\\Python\\Anaconda')

In[10] | sys.path

We can display the module search path again and check whether the path that was
removed in In[9] is no longer displayed on the module search path.

Out[10]

Advanced Python Programming for Data Science

['C:\\Users\\szz',

'D:\\Anacoda\\python37.zip',

'D:\\Anacoda\\DLLs',

'D:\\Anacoda\\lib',

'D:\\Anacoda',
'C:\\Users\\szz\\AppData\\Roaming\\Python\\Python37\\site-packages',
'D:\\Anacoda\\lib\\site-packages',
'D:\\Anacoda\\lib\\site-packages\\pyquery-1.4.3-py3.7.egg’,
'D:\\Anacoda\\lib\\site-packages\\cssselect-1.1.0-py3.7.egg’,
'D:\\Anacoda\\lib\\site-packages\\pip-21.1.1-py3.7.egg’,
'D:\\Anacoda\\lib\\site-packages\\win32',
'D:\\Anacoda\\lib\\site-packages\\win32\\lib',
‘D:\\Anacoda\\lib\\site-packages\\Pythonwin',
'D:\\Anacoda\\lib\\site-packages\\IPython\\extensions',
'C:\\Users\\szz\\.ipython']

177

178 Python Data Science

3.8 Current working directory

Whatis "variable search path"?

The "path" to "search" for user-defined

variables in the Python interpreter

When the user defines a new variable, the Python interpreter puts it on
the "search path”

— How do I check the variable search path?

use

When the user calls a variable name (such as 1),
the interpreter searches for the variable on the
search path, ifit can be found, it means that the
variable (such as 1) has been defined, otherwise it
will report an emror Nam e Eromr

When no parameters are written in the dir()

dir () function

How do I remove a variable from the variable search path?

use

finction, the system retums all the variable names
defined on the search path

er deleting the variable, and then calling the

del statement

Whatis the "module search path"?

The "path" to "search" user's required

e variable name, an emor NameErorr will be
reported

When the user imports a module, the interpreter
searches for the source code of the comesponding

which is

module in Python interpreter

How do I check the module search path and how to modify it?

|
use module Add anew path to the

module search path

sys
import sys
sys.path

module search path

__Remove a path from the

module on the search path. If it is not found, it
will report an emor ModuleNotFoundEmor

sys.path.append(new path)

sys.path. remove(path)

Advanced Python Programming for Data Science

3.8.1 Getting current working directory

:l‘

L —

Notes

The “current working directory” in Python refers to the default path where files
and folders are read from or written to. For instance, in the book [4.44 DataFrame
and Pandas], when referring to an external file such as “bc_data.csv,” it needs to
be placed in the “current working directory” beforehand to be accessed without
specifying the full file path.

:l‘

L —

Notes

To obtain the current working directory in Python, you can use the gefcwd() method
provided by the os module.

In[1]

import os

print(os.getcwd())

Out[1] | C:\Users\szz

3.8.2 Resetting current working directory

-:I .
I _:I To change the current working directory in Python, you can use the chdir() function
+*=] | from the os module.
Notes
NS
- — | Before changing the current working directory, you need to create a new working
s directory to replace the original current working directory. For example, you can
= create a new directory named ‘Python projects’ on the E: drive.
Tips
In[3] | os.chdir('E:\PythonProjects')

print(os.getcwd())

Out[3] | E:\PythonProjects

3.8.3 Reading/writing current working directory

{

The data analyst needs to choose the appropriate file import method based on the type
of the target data file and the requirements of the analysis work. There are various
methods available, including using the built-in open() function or utilizing the read_
csv() and read_excel() functions from the third-party extension package Pandas.

]
AS

For example, read the file “bc_data.csv” from the current working directory into the
data dataframe.

179

180

Python Data Science

In[4] | from pandas import read_csv
data = read_csv('bc_data.csv')
data.head(5)

Here, executing the statement read_csv(‘bc_data.csv’) assumes that the target file
‘be_data.csv’ has been placed in the current working directory, such as “E:\Python
projects”.

Notes
N\ ! 7/
—/ : Readers can find the data file ‘bc_data.csv’ in the supporting resources provided with
= this book.
=
Tips

id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean conc:

0 842302 M 17.99 10.38 122 .80 1001.0 0.11840 0.27760
1 842517 M 20.57 1. 132.90 1326.0 0.08474 0.07864
2 84300903 M 19.69 2125 130.00 1203.0 0.10960 0.15990
3 84348301 M 11.42 20.38 77.58 386.1 0.14250 0.28390
4 84358402 M 20.29 14.34 135.10 1297.0 0.10030 0.13280

5 rows x 32 columns

Advanced Python Programming for Data Science 181

3.9 Object-oriented programming

Q&A

How to define a Class in Python?

_init__(self, name, age

f say hello(self):

How Lo deline special methods in the class?

@stalicmethod

How to define the visibility of attributes or methods in the class?

Usc which is naming st with two unde

naming starts with an underscore

protect

182 Python Data Science

How to define the inheritance relationship between classes?

class Teacher (Person) :

en in
SS Al

parcnt cl:
parenthe,

Note: The gf g inherits the
m cla

llow to define an object ?

ct name - class name :
Use 5 E

How to access attributes and methods in the class?

Use

instance name

static methods and class methods y the class name or instance name

Use

L——————*’ > e s S : by the interpreter calls automatically

uted only ter the return statement

Advanced Python Programming for Data Science

3.9.1 Classes

Python is a versatile programming language that supports multiple programming
paradigms, including object-oriented programming (OOP) and functional
programming (FP). This chapter does not aim to provide an introduction to the object-
oriented programming paradigm itself.

I
'»
|

In Python, class definitions begin with the keyword “class,” followed by the name of
the class and a colon.

In[1]

class Person:
nationality = 'China" #Define nationality/nationality as a public attribute here
_deposit=10e10 #Python protected attribute names start with an underscore.
Here, the
deposit quantity / deposit is defined as the protected attribute.
__gender="M" #Python private attribute names start with two underscores.
Here, gender is defined as the private attribute.

def __init__(self, name, age):
self.name = name #Instance attribute
age = age # local variable

def say_hi(self):
print(self.name)

pl = Person(‘Tom', 30)

pl.say_hi()
4+ —1,. | The method of defining attribute and method visibility in Python differs from that of
T 5’ languages like C++, C#, and Java. In Python, the convention is to use one underscore
+ = or two underscores at the beginning of the name to indicate different levels of visibility,
Notes | distinguishing between protected and private attributes and methods.
N\ ! 7/
-, \- Person (“Tom’, 30) does two things: create a new object and initialize it to return the
= instance P1.
Tips
< | The three essential methods in Python are as follows:
- « | 1. __init_ (): Initialization function or constructor
= 2. __new__(): Constructor function (rarely used)
Tips 3. __del__(): Destructor function

Out[1] | Tom

183

184

Python Data Science

3.9.2 Methods

:l‘

4

=

Notes

The difference between a method and a function lies in their relationship to object-
oriented programming. In object-oriented programming, a method is a function that is
associated with a class or object.

=]

=7

L T

Notes

In Python, there are three types of the user-defined methods: instance methods, class
methods and static methods.

In[2]

class Person:

nmn

Here is the docString of class Person

nmn

nationality = 'China’
_deposit=10e10
__gender="M"

def __init__ (self, name, age):
age = age #age is a local variable in the function __ init__ ()
self.name = name #Unlike the age variable, self.name is the instance attribute

The definition syntax of an instance is similar to that of a general function, except
for formal parameters.

The first parameter of the instance method must be the positional parameter self.
Otherwise, TypeError is raised "TypeError: * * * () function has a positive arguments
error'.

#self :A reference of the current instance, indicating that the method is an "instance
method".
#The instance method can be accessed in the form of "instance name. function name".

def say_hi(self):
print(self.name)

Class method: add a line @ classmethod in front of a method.
In the definition of class method, the first parameter must be "class reference cls",
that is, #the function can be called through the class name.

@classmethod
def class_func(cls):
cls.nationality = 'CHINA'
print('I live in {0}". Format(cls.nationality))
Static method: add a line @ staticmethod in front of a method.
Characteristics of static method: no cls or self in the formal parameters, or even no
parameters

Functions without any parameters are generally defined as "static methods".
@staticmethod
def static_func(x, y):
print(x+y)

pl = Person('Tom', 20)
pl.say_hi()

Advanced Python Programming for Data Science

Out[2] | Tom

L

Notes

A static method can be called from either a class or object reference.

In[3] | Person.static_func(200,300) # use class name to call "static method".

Out[3] | 500

In[4] | pl.static_func(200,300) # use instance name to call "static method".

Out[4] | 500

N~
/@\

-
=3

Tips

A class method can be called from either a class or object reference

In[5] | Person.class_func() # use class name to call "class method". |

Out[5] | I live in CHINA |

In[6] | pl.class_func() # use instance name to call "class method". |

Out[6] | 1 live in CHINA |

3.9.3 Inheritance

.:l‘

L

Notes

In Python, the syntax for specifying inheritance between classes is unique. When
defining a class, you can indicate its parent class or classes by putting the parent class
name(s) in parentheses after the class name.

In[7]

class Teacher(Person):
pass

t1=Teacher("zhang",20)

In[8] | Person.class_func() |

Out[8] | 1 live in CHINA |

In[9] | tl.class_func() |

A
/@\

-
=

Tips

As you can see from the above output, the class Teacher has inherited its parent class
Person’s class_func () method.

185

186

Python Data Science

Out[9] | I live in CHINA

In[10] | t1.static_func(1,10)

Out(10] | 11

In[11] | Person.static_func(2,10)
Ou11] | 12

In[12] | t1._deposit

Tips

A subclass can inherit the protected attribute from its parent class, such as the _deposit
attribute in In[12].

Out[12] | 100000000000.0

In[13] | tl. _ _gender #AttributeError: "Teacher' object has no attribute '__gender'

A subclass can not inherit the private attribute from its parent class, such as the
__gender attribute in In[2].

=
Tips
Out[13]
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel _18396\514368724.py in <module>
----> 1 tl.__gender
AttributeError: "Teacher' object has no attribute '__gender'
=)
4 :// Use the following operations to check the docString of the Teacher class and its parent
) class Person.
Notes
In[14] | Person?
Teacher?

= 4

L 27—

Notes

To check the name of a class in Python, you can use the __name__ attribute.

In[15] | Person.__name__

Out[15] | 'Person’

Advanced Python Programming for Data Science

|
\

]
S

Notes

In Python, theSystem-defined names are also known as “dunder” names. These names
are defined by the interpreter and its implementation (including the standard library.
Commonly used dunder attributes are as follows:

® name_ : Return the class name

® _ doc__: Return the docString of the class

® _ bases_ : Return the tuple of all parent classes of the class

® dict_ : Return a list of all attributes and methods of a class

® _ module__: Return the name of the module where the class definition is located

® _ class__: Return the class corresponding to the instance

3.9.4 Attributes

:L

L —

Notes

Unlike Java and C++, Python does not use the private keyword to define private
variables. Instead, the convention in Python is to use “double underscores” at the
beginning of variable names to indicate privacy, although it does not enforce true
encapsulation.

In[16]

class Student:
__name="Zhang"

#__name is a private variable, but age is not.

age=18

@property

def get_name(self):
#If self is not written here, the arguments mismatch error will be thrown: "TypeError:
#get_name() take s O positional arguments but 1 was given".

print(self.__name)

#If self is not written here, error will be thrown: "NameError: name '_Student__
#name' is not defined".

#Private variables can be called neither by class name nor by instance.
stdnt1=Student()

#@property decorator calls a method or function as an attribute.
stdntl.get_name

:I‘

L —

Notes

A function decorated with the @property decorator in Python cannot be called using
(), and it must be accessed as an attribute. If you attempt to call a property-decorated
function with parentheses, you will encounter a TypeError stating that the function
takes no positional arguments.

Out[16] | Zhang

187

188

Python Data Science

3.9.5 Self and Cls

F—|

=/

In Python, self and cls are passed to the methods in the first argument. The self and cls
means a references to an instance and a class, respectively.

® Always use self for the first argument to instance methods.

Notes | @ Always use cls for the first argument to class methods.
For instance, when defining a class, self stands for “instance reference”, as is often
usedin__ init__(); cls stands for “a reference to a class”, as often used in __new__ ().
In[17] | class Student:

age=0
name="z"
def __init__ (self):
#The self can only appear in formal parameters.
self.name="zhang"
#The self. name is an instance variable, which is different from another class variable
#name.
age=10
#The age here is a local variable in "__init__ ()
s1=Student()
s2=Student()
sl.name="song"
sl.age=30
Student.age=20
#The age is a class attribute.
Student.name="1i"
The name is a class attribute.
sl.name, sl.age,s2.name, s2.age

"

N\ 7/
=
=

Tips

In Python object-oriented programming, class attributes (such as name) and instance
attributes (such as age) occupy their own independent storage space in memory
without mutual influence, and the search rule of instance attributes is “first search the
memory of instance attributes to find the corresponding attributes, it can’t be found
such as s2.age. The class attribute value will replace the instance attribute value with
the same name”. Readers are advised to use Python general attribute “.__dic__” to
track the attributes and attribute values of each class and instance, such as sl1.__dict
or Student. _ dict__.

Out[17] | (song', 30, 'zhang', 20)

3.9.6_new__ () and __init_ ()

L~ —

Notes

It is important to note that if the _ new__() method of your class does not return an
instance of the class (cls), the __init__ () method will not be called. This means that
the initialization step will be skipped, and the object will not be properly initialized.

Advanced Python Programming for Data Science

In[18]

class Student:
name="wang"
__age=16

def __new__(cls,name,age):
print('__new__() is called’)

def __init__(self,name,age):
print('__init__ () is called’)
self.name = name
self.age = age

def sayHi(self):
print(self.name,self.age)

s1= Student("zhang", 18)

Out[18] | _new_ () is called

In[19] | print(s1)

]
N

There is no return statement in __new__ (), Hence, the value of sl is NoneType.

Notes
AN InPython,the __new__() methodis called when an object s created, and it is responsible
:@ ~ | for creating and returning a new instance of the class. The __init__ () method, on the
= other hand, is called after the __new__() method and is used to initialize the newly
g created object.
Tips

Tips

The__new__() function is used to produce an “object”;
The __init__ () function is used to produce an “instance”.

Out[19] | None

The output result is <generator object myGen at 0x00000213EA679ES58>, not a
specific return value.

189

190

Python Data Science

In[20] | s1.sayHi()

Here, the Python interpreter will raise an AttributeError that ‘NoneType’ object has
no attribute ‘sayHi’

AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel _18396\2394443593.py in <module>
----> 1 sl.sayHi()

AttributeError: 'NoneType' object has no attribute 'sayHi'

The AttributeError is raised in that there is no return statement in the __new__() function.
To modify: Add return object. __new__() (cls) to the __new__() function.

In[21]

class Student:
name="wang"
__age=16

def __new__(cls,*args, **kwargs):
print('__new__ () is called")
return object.__new__(cls)

def __init__(self,name,age):
print('__init__() is called')
self.name = name
self.age = age

def sayHi(self):
print(self.name,self.age)

s1= Student("zhang", 18)
sl.sayHi()

Adding a return statement (return object.__new__(cls)) in the __new__ () method will
ensure that the __init__ () method is invoked. By calling object.__new__(cls), you are
explicitly creating a new instance of the class.

Out[21]

_ new__() is called
__init__() is called
zhang 18

Advanced Python Programming for Data Science 191

Exercises

1]

2]

3]

[4]

[5]

[6]

(7]

8]

Which of the following statements about the iterable object and the iterator object in Python is wrong?

A. Functions that can receive the jterator objects can receive the iterable objects.

B. The iterator object can be called by the next function, constantly returning the object of the next
value.

C. The jter function can convert the iterable object into the iterator object.

D. The iterable objects are not necessarily the iterator objects.

Which of the following is true of Python?

A. Calling the range function returns to the generator object.

B. The return statements are generally used in the generator objects to return results.

C. The result will not be returned immediately when the generator is called, because the generator
follows lazy calculation.

D. The generator objects contain the jterator objects.

Which of the following is a benefit of using modules in python?

A. It greatly improves the maintainability of the code.

B. Writing code does not have to start from scratch to improve efficiency.
C. Avoid conflicts between function names and variable names.

D. All of the above

Which of the following statements about modules is wrong?

A. Modules are normally .py file.

B. The search order of modules is: modules already loaded in memory- > built-in modules
- >The module contained in the sys.path.

C. The user cannot customize the module.

D. No matter how many times import is executed, the single module in the whole program will be
imported only once.

Which of the following statements about the relationship between modules and packages is false?
A. Packages can be used to group a set of modules under a common package name.

B. A package can only correspond to one module.

C. Each package directory will have an init.py, and init.py itself is a module.

Which of the following is not a built-in module?
A. sys

B. random

C. os

D. image

Which of the following will run with errors?
A. from filel.file2 import test

B. import file1l.file2.test as test

C. import seaborn,jieba as sns,jieba

D. import seaborn as sns,jieba as jieba

Which of the following is false of package?

A. Itis a folder that always contain__init__. py module.

B. Packages are a way of organizing and managing code.

C. Other modules and subpackages are generally contained.
D. The package cannot be customized.

192 Python Data Science

[9] Which of the following has a syntax error?
A. dir([])
B. dir(?)
C. dir(”)
D. dir()

[10] Which of the following statements about help documents is false?
A. __ doc__is preceded and followed by a short underline.
B. When using help (module_name), we need to import the module first.
C. The object in help (object) is the content that needs help.
D. If we use help (object) or help (‘object’), press q directly when exiting.

[11] Which of the following is true?
A. The try, except and finally statements always be used at the same time.
B. The finally statement has the same capacity as the else clauses.
C. Theassertstatementis mainly used to set checkpoint. When the check conditionis true, AssertionError
will be raised.
D. The assertion contents of the assert statement can be empty.

[12] SyntaxError indicates()
A. suspicious syntax warning
B. invalid arguments passed in
C. syntax error
D. indentation error

[13] Which of the following will appear when an error occerred while encoding Unicode?
A. UnicodeError
B. UnicodeDecodeError
C. UnicodeEncodeError
D. UnicodeTranslateError

[14] If Chinese characters or punctuation are mistakenly typed in the code, the system will prompt ()
A. Not ImplementedError
B. IndentationError
C. EOFError
D. SyntaxError

[15] What will the following program print out?
import math
def f(n):
assert n>0,n must be positive’
return math.sqgrt(n)
f(4)

A. 2.0

B. AssertionError: n must be positive

C. AssertionError: n must be positive
2.0

[16] Which of the following is false of Python Pdb?
A. The prompt of debugger is Pdb.
B. The debugger is not extensible.
C. The pdb module defines an interactive source code debugger for Python programs.
D. pdb supports post debugging, which can be imported under program control.

Advanced Python Programming for Data Science 193

[17] Which of the following statements about object-oriented technology is false?
A. Class is used to specify a set of objects with the same attributes and methods.
B. Class variables are common throughout the instantiated objects.
C. The functions defined in the class are called variables.
D. Instances of data structures defined by classes are called objects.

[18] Which of the following statements about variables in a class is true?
A. self represents an instance of a class which is required when defining methods of a class.
B. The value of a class variable cannot be shared among all instances of this class.
C. Class variables can be accessed directly in internal or external classes.
D. selfis a keyword in Python and cannot be modified.

[19] What is the output of the following program?
x=1
y=2
dely
z=x*y

A. Namekrror
B. SyntaxError
C. ValueError
D. AssertionError

[20] Which of the following statements about the current working directory is false?
A. The getcwd function in the os module is used to check the current working directory.
B. Current working path can be modified with os.chdir(path).
C. The current working directory is the search path, which refers to the default read-write path of files
and folders in Python.
D. The open function is a common file import function.

®

Check for
updates

4. Data wrangling with Python

Data wrangling is the process of transforming and mapping data from one raw data form into another format with
the intent of making it more appropriate and valuable for data science purposes. This chapter will introduce the
essential data wrangling skills for data scientists, including:

Random number generation
Multidimensional arrays
Series

DataFrames

Date and time manipulation

AN S e

Data visualization

These skills are crucial for data scientists to effectively manipulate, analyze, and visualize data in their projects.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 195
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_4

https://doi.org/10.1007/978-981-19-7702-2_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_4&domain=pdf

196 Python Data Science

4.1 Random number generation

Q&A

How do T generate a pseudo-random numner at a Lime?

Use the randon module

.randint ()

.uniform ()

wnd (random. uni form(1 v 2) means tha

llow do I generate a pseudo-random array at a time?

use

NumPy

import numg
rand=np. rand
X rand. ran

Lrandint. ()

np
RandomS

aCNere I
point numk 1 .rand () ,

.randn ()

ntroduces rand eneration me
Atin | in Pythor

y their needs and ha

Data wrangling with Python

4.1.1 Generating a random number at a time

There are two common methods for generating random numbers from a computer:
Pseudo-Random Number Generators (PRNGs) and True Random Number Generators
(TRNGsS).

PRNGs rely on a seed number and an algorithm to generate numbers that appear to
be random but are actually predictable. They are widely used in computer programs
and simulations.

In contrast, TRNGs generate randomness from physical phenomena using hardware
and integrate it into a computer. These generators provide a higher level of true
randomness compared to PRNGs.

1
A S

-

Notes

The Python standard library provides a module called random that offers a suite of
functions for generating pseudo random numbers.

In[1]

import random
random.seed(3)

(-
N

random.seed(): Initialize the random number generator. The random number
generator needs a number to start with (a seed value), to be able to generate a random
number. By default the random number generator uses the current system time.

Tricks
N\ ! 7/
- — | The random package is not the only package in Python that generates random numbers.
s N\ | Other packages such as NumPy, SciPy, and scikit-learn also provide functions for
= generating random numbers.
Tips

]
A S

The random module contains several functions that allows you to generate random

:_-_,é numbers. For instance, the randint(a,b) function generates random integers from a
(inclusive) to b (exclusive).
Notes
In[2] | import random
random.seed(3)
random.randint(1, 100)
Out[2] 31

=

L

\

Notes

Random.uniform(a,b): Generates a random floating point number from a uniform
distribution.

197

198 Python Data Science

In[3]

Out[3]

import random
random.seed(3)
random.uniform(-10, 10)

-5.240707458162173

L

Notes

The “2” in “round(random.uniform(-10, 10),2)” means that the round function will
return random.uniform(-10, 10) rounded to 2 precision after the decimal point.

In[4]

Out[4]

random.seed(3)
round(random.uniform(-10, 10),2)

-5.24

4.1.2 Generating a random array at a time

The basic steps of generating a random array with Numpy package:
The first step is to define random variable generator (e.g rand) with Numpy.
The second step is to select the specific method of the rand generator according to
the features of the target array (such as uniform distribution or normal distribution),
including randint(), rand(), or randn().

to create a container for pseudo-random number generator

import numpy as np
rand=np.random.RandomState(32)

=

L

\

Notes

numpy.random.RandomState(seed):Container for the Mersenne Twister pseudo-
random number generator. Here, the seed is used to initialize the pseudo-random
number generator.

In[7]

to generate a random array

x=rand.randint(0,10,(3,6))
X

array([[7, 5, 6, 8, 3, 71,
[9.3,5,9,4,1],
(3,1,2,3,8,2])

fl
&S

RandomState.randint(a, b, shape): Return random integers from a (inclusive) to b
(exclusive) with the output shape.

4.2 Multidimensional arrays

Q&A

What is an ndarry? Why do I use it?

is the soul of python's

commonly used e:

which represents a

dimensional aray.

Although there 1s no array type provided in the basic
and tuples

How do I create an ndarray?

Prerequisite: Import the numpy pack age
import numpy as np

T here are
multiple ways

Use the np.array() m ethod

Other fanctions that geners

Data wrangling with Python

lvantages of lists and tuples in Python:
Waste mem ory. each element is Object
Long calculation time and need to be

optim ized

ython functions, an amay-like function can be achieved through lists

yAmayl = np.arange(1.20)

amay(range{

np.zeros((5.5))
np.ones((5,5))
np.full((3,5).2

rand=np.random .R andom State(30)
rand.randint(0, 10

199

200 Python Data Science

What are the special features of ndarray?

T he character of the amray, that is, several rows

Represents
i and several columns

The reconstruction of the amray, that is, to change the shape ofthe amray, use the reshape() method, such as
reshape(4,5). Note the difference between reshape() and resize()

Represents Data type of array elements

The data type of the array element is calculated in
the unit of column. The purpose is to support
vector calculation without writing loop
statements.

R epresent

The ufinc() fanction is the common feature of most methods in the ndarray amay, that is, support vector calculation.

How do I access the elements in the ndarray?

The slicing and accessing of ndamay is similar to the list, please refer to this book [2.11 List]

Ifthere are rules for the indexes that need to

S E.g myAmay[l
be accessed, use a similar list method ” : vl
Ifthere are no rules for the index ofthe

element that needs to be accessed, the E.g.

FancyIndexing method is used

Fancylndexing: Provide the index ofthe elem ents that need to be accessed in the form of a list

Data wrangling with Python

How do I perform data processing operations on ndarray?

reshape()
resize()

Convert shape

interchange of apaxes()

Convert to a one-dimensional array

Convert to list tolist()

Convert data t astypel)

How do I evaluate attrib utes on nd array?

Evaluate the rank of an amay rank

View the shape of the array shape()

Count the number of elements

size

type

How do I deal with missing values in nd array?

y

Determ ine whether there is a nan value np.isnan

The finction name starts with np.nan, such

Provide the NaN-¢
as np-nansum()

>ay attention to the difierence between None and np.nan in numpy

None: The data type provided by the Python basic grammar cannot participate in anthmetic operations

np.nan: the data type provided by numpy. which belongs to the float type and can participate in anithmetic operations

201

202 Python Data Science

What is the difference b etween resize and reshape?

Instead of convating the shape ofthe array

reshape

itself but rdum anew object

Convat the shape ofthe itselfand modity

it in place.

What are the commonly used ndarray evaluation methods in data sdence?

np.split()
Split

np-vsplit()

np.concatenate()
np.vstack ()
np. hstack ()

np.nunsum

Null value handling np.isnan()

X myArray p.new axis
Extract feature vec —" newaxis——> myAsmay[:.np.n

myAur

- operation between amays of difierent Broadcast first and then calaulate

Pay atention to the broadcasting rules

Shallow copy:

T he copy is a reference, use an assignment

statement
Deep copy:

T he copy is the value, use the .copy() method

Retum the sort result:

np.sort()

Retum the sorted indexes:

np.argsort()

Note the meaning of the axis argument

axis=1: the number of rows is unchanged: each row is evaluated independently

v axis=0: the number of columns is unchanged: each cc is evaluated ependently : evaluated column by column

Data wrangling with Python

4.2.1 Createting ndarrays

NumPy offers powerful N-dimensional arrays(ndarray) that support linear algebra
routines, comprehensive mathematical functions, random number generators, and
more.

To import the NumPy module

import numpy as np

An ndarray object represents a multidimensional, homogeneous array of fixed-size
items.

Ndarray can be created in several ways, one of which is using the np.arange () function.
For instance, numpy.arange(a,b) returns evenly spaced values within the half-open
interval [a, b). In other words, the interval including a but excluding b.

Notes
In[2] | MyArrayl = np.arange(1,20)
MyArrayl
Out[2] array([1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19])]

The difference between range() and numpy.arange():
® range() is a built-in function in Python that returns a range object, as described in
[2.8 The For Statement].

® numpy.arange() is a function in the third-party model NumPy, which returns the

Tricks
ndarray of NumPy.
For integer arguments, the numpy.arange() function is equivalent to the Python
built-in range() function, but returns an ndarray rather than a list.
NP
- ~ | numpy.arange() :return evenly spaced values within the half-open interval [start, stop). In
7 = N | other words, the interval including start but excluding stop.
Tips
In[3] | # to call the python built-in function range()
range(1,10,2)
Out[3] range(l, 10, 2)

In Python 2, the python built-in function range() creates a list, and it is effectively
eagerly evaluated. In Python 3, it creates a range object, whose individual values are
lazily evaluated. In other words, In Python2, range() returns a list, which is equivalent
to list(range()) in Python3.

203

204 Python Data Science

In[4]

Out[4]

to convert a Range object to a List object

list(range(1,10,2))

[1’ 37 5’ 7’ 9]

=)

L7 —

Notes

numpy.arange() returns an ndarray object.
In contrast to Python’s built-in data types such as lists or tuples, ndarray objects
consume less memory and are convenient to use.

In[5] | np.arange(1,10,2)

Out[5]

array([1, 3, 5,7, 9])

L7 —

Notes

The second way to create an ndarray is by calling the np.array() function from the
NumPy module.

In[6]

Out[6]

MyArray2=np.array([1,2,3.4,3,5])
MyArray?2

array([1, 2, 3,4, 3, 5])

\:l 7/

/

=
=

Tips

The expression np.array(range(1,10,2)) is equivalent to np.arange(1,10,2) in NumPy.
Both expressions generate an ndarray containing the values [1, 3, 5, 7, 9].

In[7] | np.array(range(1,10,2))

Out[7]

array([1, 3, 5,7, 91)

\

The third way to create an ndarray is by calling functions like np.zeros(), np.ones(),
and others provided by NumPy. These functions allow you to create arrays filled with
zeros, ones, or specific values.

MyArray3=np.zeros((5,5))
MyArray3

array([[O0., 0., 0., 0., 0.],
[0.,0.,0.,0.,0.],
[0.,0.0.,0.,0.],
[0.,0.,0.,0.,0.],
[0, 0.,0.,0.,0.]D

.l:'
N

In np.zeros((5,5)), the argument (5,5) represents the shape of the target array, which is
an array of 5 rows and 5 columns.

In[9]

Out[9]

Data wrangling with Python

MyArray4=np.ones((5,5))
MyArray4

array([[1., 1., 1., 1., 1.],
[1.,1.,1.,1.,1.],
[1.,1.,1.,1.,1.],
1.,1.,1.,1.]
1.,1.,1.,1.]

[1.,
[1.,

D

3]

=
=1

Notes

numpy.full (shape, fill_value, dtype=None):
Return a new array of given shape and data type(dtype), filled with fill_value.

In[10]

Out[10]

To create a new array with 3 rows and 5 columns, filled with 2

np.full((3,5),2)

array([[2, 2, 2, 2, 2],
(2,2,2,2,2],
(2,2,2,2,2]])

F—l
=1

Notes

To generate random arrays using np.random(), please refer to section [4.1.2 Generating
a random array at a time] for detailed instructions and examples.

In[11]

Out[11]

rand=np.random.RandomState(30)
MyArrayS=rand.randint(0,100,[3,5])
MyArrayS5

array([[37, 37, 45, 45, 12],
[23, 2,53, 17, 46],
[3,41, 7,65, 49]])

[|

Notes

\

Here, 0 and 100 represent the range of the random value, and [3,5] represents the
shape of the target array with 3 rows and 5 columns.

F—1,
=

Notes

Two important features of the ndarray in NumPy:
(1) shape: the shape of a multidimensional array
Its value is a tuple or a list.
For instance, shape = (2,15) represents an array with 2 rows and 15 columns.
(2) dtype: The data type of the element in the multidimensional array
Its value is the data type provided by the NumPy module such as np.int.
For instance, dtype = np.int represents that the data type of the array elements
is int in NumPy.
NumPy supports a much greater variety of numerical types than Python does,
including numpy.int, numpy.short, numpy.int_ and numpy.longlong.

In[12]

import numpy as np
MyArray4=np.zeros(shape=(2,15) ,dtype=np.int)
MyArray4

205

206

Python Data Science

Out[12]

array([[0, 0, 0,0, 0, 0,0, 0,0,0,0,0,0,0, 0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])

MyArray4 = np.zeros((2, 15), dtype=np.int)

In this statement, the phrase “shape =" can be omitted, and the np.int data type does not
require double quotes.

Tricks
I :,L
41 = The shape argument represents the shape of the array, and its value can be a tuple,
<+ = such as (3,5).

Notes

In[13] | np.ones((3,5),dtype=float)

Out[13]

array([[1., 1., 1., 1., 1.],
[1.,1.,1.,1.,1.],
[1.,1.,1.,1.,1.]D

1l
AS

The value of the shape argument can also be specified as a list, such as [3, 5].

In[14] | np.ones([3,5],dtype=float)
Out[14] array([[1., 1., 1., 1, 1.],

[1.,1.,1,1.,1.],
[1.,1.,1,1., 11D

4.2.2 Slicing and indexing ndarrays

Notes

=)
1 — oth Lists in Python and ndarrays in NumPy allow slicing and indexing, and they
lBhL"Pyh d ndarrays in NumPy all licing and indexing, and thi
+*=] | share a similar syntax.
Notes
In[15] | # to create the test dataset
import numpy as np
myArray=np.array(range(1,10))
myArray
Out[15] array([1,2,3,4,5,6,7,8,9])
1=
T5#]| | (1) The index of the first item/element is 0.

Data wrangling with Python 207

In[17] | myArray[0]
Out[17] 1

& (2) Python supports negative indexes, please refer to [2.10 Lists] for details.

=

Notes

In[18] | myArray[-1]
Out[18] 9

[=~ (3) Several ways of indexing items/elements

Notes

In[19] | # to create and show the current value of the variable myArray
import numpy as np
myArray=np.array(range(0,10))

print("myArray=",myArray)
Out[19] myArray=[0123456789]

N~
/@\ Slicing means taking elements from one given index to another given index.

=
:__?__‘ 1, 9 and 2 are the start, end and step index of the slicing respectively.

Notes

In[20] | print("myArray[1:9:2]=",myArray[1:9:2])
Out[20] myArray[1:9:2]=[135 7]

[¥~ The start index can be omitted.

Notes

In[21] | print("myArray[:9:2]=",myArray[:9:2])
Out[21] myArray[:9:2]=[024 6 8]

[S~ The start and stop index can be omitted.

Notes

In[22] | print("myArray[::2]=",myArray[::2])
Out[22] myArray[::2]=[024 6 8]

208

Python Data Science

L2 —

Notes

The start, stop and step index can all be omitted.

In[23] | print("myArray|[::]=",myArray|[::])

Out[23]

myArray[::]=[0123456789]

L " —

Notes

The start and stop index can be omitted.

In[24] | print("myArray[:8:]=",myArray[:8:])

Out[24]

myArray[:8:]=[01234567]

:l‘

L —

Notes

The step index can be omitted.

In[25] | print("myArray[:8]=",myArray[0:8])

Out[25]

myArray[:8]=[01234567]

=)
=7

Notes

The stop and step index can be omitted.

In[26] | print("myArray[4::]=",myArray[4::])

Out[26]

myArray[4::]=[4567 8 9]

L

Notes

The value of the step index can be negative.

n[27]

Out[27]

print("myArray[9:1:-2]=",myArray[9:1:-2])
print("myArray[::-2]=",myArray[::-2])

myArray[9:1:-2]=[9 7 5 3]
myArray[::-2]=[97 53 1]

Fancy indexing refers to the practice of using an array of indices to access multiple
elements of an array simultaneously.

Data wrangling with Python

L2 —

Notes

Fancy Indexing is a very flexible way of slicing, which means to support a non-iterative
way to slice the elements irregularly. The notation of fancy indexing is the nesting of
[1, that is, another [] appears in the []. For example, myArray[[2,5,6]] means to locate
the three elements with indexes 2, 5 and 6.

In[28] | print("myArray[[2,5,6]]=",myArray[[2,5,6]])

Out[28]

myArray[[2,5,6]]=[2 5 6]

L. —

Notes

In NumPy, it is possible to use an expression containing the array name itself as an
index, which acts as a filtering condition. For more details, please refer to In[29].

In[29] | print("myArray[myArray>5]=",myArray[myArray>5]) |

Out[29]

myArray[myArray>5]=[6 7 8 9]

:l‘

L2 —

Notes

In slicing, the start index is inclusive (e.g., “0” in this code), but the stop index is
exclusive (e.g., “2” in this code). This is because the slicing rule in Python is “including
the start but excluding the stop”.

In[30] | myArray[0:2]

Out[30]

array([0, 1])

=)
=0

Notes

When slicing an ndarray, it will return a view of the elements in the original array, not
a shallow copy. This means that any modifications made to the sliced array will affect
the original array as well.

In[31] | myArray

Out[31]

array([0, 1,2, 3,4,5,6,7,8,9])

L

Notes

(4) To access non-consecutive elements of an array, you can use slicing. Please refer
to [2.10 Lists] for more details.

In[32]

Out[32]

myArray=np.array(range(1,11))
myArray

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

L O —

Notes

When the index is irregular, an error will be raised if fancy indexing is not used.
Fancy indexing refers to passing an array of indices to access multiple array elements
at once. For more details, please refer to the section on Fancy Indexing in [4.2
Multidimensional arrays].

209

210 Python Data Science

In[33] | myArray[1,3,6]

IndexError Traceback (most recent call last)
<ipython-input-30-13b1cd8a6af6> in <module>()

1
----> 2 myArray|[1,3,6]

3

IndexError: too many indices for array

* L x %
Raise an exception: too many indices for array.
- To correct this exception, please use Fancy Indexing as follows:

Tricks

In[34] | myArray[[1,3,6]]

Out[34] array([2,4,7])

A bracket Slicing operation - regular slicing
E.g. myList[1:9:3]

The difference between [] and [[]]

after a variable name in Python

Two nested brackets Fancy Indexing-Irregular section
E.g. myList[[1,2,4,7]]

F—1] . | In data science projects, it is often necessary to generate a special matrix called a
:_:., “feature matrix”. From the output above, the current value of myArray is a row of
- records, which does not meet the requirements of a feature matrix and needs to be
Notes | normalized.

In[35] | myArray

Out[35] array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

In NumPy, the np.newaxis is an alias for the Python constant None, hence, wherever
— we use np.newaxis we could also use None:

Data wrangling with Python

In[36] | myArray[:,np.newaxis]

Out[36]

array([[11,
[2],
[31,
[4],
[5],
[6],
[7],
[8],
[91,
[101D)

*
(<3
;&

Here, the np.newaxis is generally used with slicing. It indicates that you want to add an

@LD

— additional dimension to the array. In addition, the colon (:) cannot be omitted here.
Tricks

LY
/s N\ | Here, the codes of In[39] are equivalent to those of In[40].

HIREE

1l
AS

Z
g |1

To get the shape of a given ndarray, you can use the .shape attribute. For example, if
arr is an ndarray, you can access its shape using arr.shape.

In[37] | myArray|[:,np.newaxis].shape |

Out[37]

(10, 1)

.

Notes

To convert the shape of an ndarray in NumPy, you can use the numpy.reshape()
function. It allows you to reshape an array into a specified shape while keeping the
same elements.

In[38]

Out[38]

myArray2=np.arange(1,21).reshape([5,4])
myArray?2

array([[1, 2, 3, 4],
[5, 6,7, 8],
[9, 10,11, 12],
[13, 14, 15, 16],
[17, 18, 19, 201D

=
[|

Notes

\

An example of slicing an ndarray is myArray2[[2,4],3].

211

212

Python Data Science

In[39] | myArray2[[2,4],3]

Out[39]

array([12, 20])

Tips

Here, the codes of In[39] are equivalent to those of In[40].

In[40]

Out[40]

x=[2,4]
myArray2[x,3]

array([12, 20])

4.2.3 Shallow copy and deep copy

Assignment statements in Python do not copy objects, they create bindings between a
target and an object. Hence, the numpy provides two distinct methods: generic shallow
and deep copy operations

® A shallow copy means the copied array contains only a reference to the original array.

Tips ® A deep copy means copying each element of the original array into the copied array
In[41] | import numpy as np
myArray l=np.array(range(0,10))
myArray2=myArrayl
myArray2[1]=100
myArrayl
Out[41] array([0, 100, 2, 3, 4, 5, 6, 7, 8, 9])
7/ Here, the value of myArray has changed in that myArrayl and myArray2 share the same
- memory adrrress
Tricks

L

Deep copy: A deep copy creates a new array object with its own separate copy of the
original array’s data. Any modifications made to the data in one array will not affect
the other. You can create a deep copy using the numpy.copy() function.

Notes
In[42] | import numpy as np
myArray l=np.array(range(0,10))
myArray2=myArray1.copy()
myArray2[1]=200
myArrayl
Out[42] array([0,1,2,3,4,5,6,7,8,9])
7/ The myArrayl here has not changed. The reason is that ‘myArray2 = myArrayl.copy()’
- creates a deepcopy, resulting in myArrayl and myArray2 being mutually independent.
Tricks

Data wrangling with Python

4.2.4 Shape and reshape

-:I .
I =4 Reshape means returning a transformed array with the new shape specifies in the
+>=] | numpy method reshpe().
Notes
In[43] | import numpy as np
MyArrayS=np.arange(1,21)
MyArray5
Out[43] array([1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])
=)
T _-?_- In numpy, to check the shape of an array, you can use the attribute ndarray.shape.
Notes

In[44] | MyArray5.shape

Out[44]

(20,)

LY —

Notes

(1) to change the shape of ndarray:
ndarray.reshape() or ndarray.resize()

In[45]

Out[45]

MyArray6=MyArray5.reshape(4,5)
MyArray6

array([[1, 2, 3, 4, 5],
[6, 7, 8, 9,10],
[11,12, 13, 14, 15],
[16, 17,18, 19, 20]])

_I‘
=

=4

Notes

In numpy, the numpy.reshape() function does not modify an array in place. Instead, it
returns a new reshaped array while leaving the original array unchanged.

In[46]

Out[46]

MyArray5.shape
MyArray5

(20,)
array([1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12,13, 14, 15, 16, 17, 18, 19, 20])

The numpy.reshape() function returns a new array with a modified shape but preserves the
original data of the array. It does not modify the array in place.

213

214 Python Data Science

In[47] | MyArray5.reshape(5,4)

Out[47] array([[I, 2, 3, 4],
[5, 6, 7, 8],
[9, 10,11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20]])

& ValueError: cannot reshape array of size 20 into shape (5,5).

L

Notes

In[48] | MyArray5.reshape(5,4)

ValueError Traceback (most recent call last)
<ipython-input-46-8920a583f59a> in 0
----> 1 MyAurray5.reshape(5,5)

2

ValueError: cannot reshape array of size 20 into shape (5,5)

N\ 7/
_/@: Here, a value error is raised in that the python interpreter cannot reshape array of size
20 into shape (5,5).

-
=

Tips

In[49] | MyArray5

Out[49] array([1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

.:l .
[—¢ The resize() method in NumPy can be used to change the shape of an array in-place.
Unlike reshape(), resize() modifies the array itself rather than returning a new array.

L7 —

Notes

In[50] | MyArray5.resize(4,5)
MyArray5

Out[50] array([[1, 2, 3, 4, 5],
[6, 7,8, 9,10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20]])

|
N~
- — | The main difference between resize() and reshape() in NumPy is that resize() performs
s \ | in-place modification, meaning it modifies the array itself, while reshape() returns a new
= array with the specified shape without modifying the original array.
Tips

Data wrangling with Python 215

[=¥~ (3) The swapaxes() method in NumPy allows you to interchange two axes of an array.

Notes

In[51] | MyArrayS.swapaxes(0,1)
Out[51] array([[1, 6, 11, 16],

[2, 7,12, 17],
[3, 8, 13,18],
[4,9,14,19],
[5,10, 15, 20]])
ZI:,'*
I _-?_— Swapaxes(0,1) does not change the array itself.
Notes

In[52] | MyArray5
Out[52] array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 201])

S In data science, it is important to pay attention to whether the evaluation of a data object
- changes the data itself or returns a copy of the new value.

Tricks

[_:/ (4) Use the flatten() method to convert a multidimensional array into a one-dimensional
array.

L. —

Notes

In[53] | MyArray5.flatten()
Out[53] array([1, 6, 11,16, 2, 7,12,17, 3, 8,13, 18, 4, 9, 14,19, 5, 10, 15, 20])

N 7/
:@: ndarray.flatten():
Return a copy of the array collapsed into one dimension.

\

[¥~ (5) Use the tolist() method to convert the multidimensional array to a nested list.

Notes

216 Python Data Science

In[54] | MyArray5.tolist()

Out[54] [[1,6, 11, 16],
[2,7,12, 17],
[3, 8,13, 18],
[4,9, 14, 19],
[5, 10, 15, 20]]

N 7/
:@: ndarray.tolist():
= Return the array as an a.ndim-levels deep nested list of Python scalars.
Tips

1l
A S

[- I (6) The data type of array elements can be reset.

Notes

In[55] | MyArray5.astype(np.float)

Out[55] array([[1., 6., 11.,16.],
[2., 7,12,17],
[3., 8.,13.,18.],
[4., 9,14,19],
[5.,10.,15.,20.]])

numpy.ndarray.astype():
Returns a copy of the array, cast to a specified type.

N,
-
5O

/l\

1]

When executing MyArray5.astype(np.float), the array MyArray5 itself does not
change, but a new array of the specified data type (in this case, np.float) is returned.

Notes

In[56] | MyArray5

Out[56] array([[1, 6, 11, 16],
[2, 7,12, 17],
[3, 8,13, 18],
[4, 9, 14, 19],
[5,10, 15, 20]])

4.2.5 Dimension and size

.:|‘

[=¥~ (1) To evaluate the number of array dimensions: rank() or ndim().

Notes

Data wrangling with Python 217

In[57] | np.rank(MyArray5)

C:\Anaconda\lib\site-packages\ipykernel_launcher.py:3: VisibleDeprecationWarning:
‘rank’ is deprecated; use the ‘ndim’ attribute or function instead. To find the rank of a
matrix see ‘numpy.linalg.matrix_rank’.

This is separate from the ipykernel package so we can avoid doing imports until

Out[57] 2

,}/ The system prompts “‘rank’ is deprecated”, indicating that this method has been deprecated.
=) The system prompts “use the ‘ndim’ attribute or function instead”.
Variations of this naming convention are common among Python third-party packages.

Tricks

In[58] | np.ndim(MyArray5)
Out[58] 2

There are two usages of ndim in numpy: as an attribute (MyArray5.ndim) and as a
method (np.ndim(MyArray5)).

In[59] | MyArrayS.ndim |
Out[59] 2

[¥~ (2) To get the shape of the array: the shape() method or the shape attribute.

Notes

In[60] | np.shape(MyArray5)
Out[60] (5,4)

:l‘

':/ In NumPy, the shape attribute supports functional calls. For example,

[np.shape(MyArray4) is equivalent to MyArray4.shape.
Notes

In[61] | MyArray5.shape |
Out[61] (5,4)

N\ 7/
- — | numpy.shape() is the equivalent function to ndarray.shape, and numpy.ndim() is the
\ | equivalent function to ndarray.ndim(). They both provide the same functionality to
= retrieve the shape and number of dimensions of a NumPy array.

218

Python Data Science

(3) In NumPy, the numpy.size function can be used to evaluate the number of elements
in an array. It returns the total number of elements present in the array, regardless

Ry
of its shape or dimensions.
Notes
In[62] | MyArrayS5 size
Out[62] 20
NP NumPy, the ndarray.shape attribute returns a tuple of array dimensions, indicating
- @ = | the size of each dimension of the array.
s S
= The ndarray.size attribute returns the total number of elements in the array, providing
Tips the overall size or length of the array.

:I‘

.

Notes

(4) To check the type of the array:
the built-in function type().

In[63] | type(MyArray5)

Out[63] numpy.ndarray
NP
- — | Here,the type() function is a built-in function in Python and not specific to NumPy.
/@\ Therefore, you do not need to prefix it with np when using it to determine the type of a
= NumPy array.
Tips

4.2.6 Evaluation of ndarrays

LY —

Notes

(1) Multiplication with arrays.

In[64] | MyArray5*10

Out[64]

array([[10, 60, 110, 160],
[20, 70, 120, 170],
[30, 80, 130, 180],
[40, 90, 140, 190],
[50, 100, 150, 2001])

N\ 7/
/@\
=
=

Tips

There are three common used ways to multiply NumPy ndarrays in data science:

® numpy.dot(array a, array b) : returns the dot product of two arrays.

® numpy.multiply(array a, array b) : returns the element-wise matrix multiplication
of two arrays.

® numpy.matmul(array a, array b) : returns the matrix product of two arrays.

Data wrangling with Python

=

1= orizontal split: the splif() method.
I=7 |ou ISplit thelsp tir(ethod
+*=] |[3.,5] s the index of the split position.
Notes
In[65] | x=np.array([11,12,13,14,15,16,17,18])
x1,x2,x3=np.split(x,[3,5])
print(x1,x2,x3)
Out[65] [111213][14 15][16 17 18]
I=p e np.vsplit() method is used to perform a vertical split of an array. Here, MyArray5.
3 Th lit() method d fi 1 split of Here, MyArray5
154 reshape(4, 5) is split into two parts at index 2 along the vertical axis. The resulting
Not splits are assigned to the variables upper and lower using unpacking assignment.
otes
In[66] | upper,lower=np.vsplit(MyArray5.reshape(4,5),[2])
print("The upper part is\n",upper)
print("\n\nThe lower part is\n",lower)
Out[66] The upper part is
[[161116 2]
[71217 3 8]]
The lower part is
[[13 18 4 9 14]
[19 510 1520]]
IZ:,'*
T _-?_— (3) To merge the arrays: np.concatenate().
Notes

In[67] | np.concatenate((lower,upper),axis=0)

out[67]

array([[13, 18, 4, 9, 14],
[19, 5, 10, 15, 20],
[1, 6,11,16, 2],
[7,12,17, 3, 8]])

2+
)&

Here, axis = 0 means that the axis along which the arrays will be joined. If axis is None,

QLD t

- arrays are flattened before use. Default is 0.

Tricks
I ;j (4) np.vstack() and np.hstack() support horizontal or vertical merging(stacking)
14 respectively.

The premise of calling np.vstack(): the number of columns of the arrays is the same.

219

220 Python Data Science

In[68] | np.vstack([upper,lower])

out[68] array([[1, 6, 11, 16, 2],
[7,12,17, 3, 8],
[13,18, 4, 9, 14],
[19, 5, 10, 15, 20]])

[=¥~ The premise of calling np.hstack(): the number of rows of the arrays is the same.

Notes

In[69] | np.hstack([upper,lower])

Out[69] array([[1, 6, 11, 16, 2, 13,18, 4, 9, 14],
[7,12,17, 3, 8,19, 5,10, 15, 20]])

numpy.vstack() : Stack arrays in sequence vertically (row wise).

numpy.vsplit() : Split an array into multiple sub-arrays vertically (row-wise).
numpy.hstack() : Stack arrays in sequence horizontally (column wise).
numpy.hsplit() : Split an array into multiple sub-arrays horizontally (column-
Tips wise).

N,
:\
7
o000

- — In NumPy, function evaluations on arrays are commonly implemented as “ufunc

[=¥~ functions,” which operate element-wise on entire arrays. These ufunc functions allow
for efficient vectorized computations without the need for explicit loop statements.

Notes

In[70] | np.add(MyArray5,1)

Out[70] array([[2, 7,12, 17],
[3, 8,13, 18],
[4, 9,14, 19],
[5,10, 15, 20],
[6,11,16,21]])

The same function, which is summing the elements of an array, can be achieved using both
— the built-in Python function sum() and the NumPy function numpy.sum().

Tricks

|
N\ 7/
= — | A ufunc (universal function) is a function that operates on ndarrays in an element-by-
s N\ | element fashion. That is, a ufunc is a “vectorized” wrapper for a function that takes a
= fixed number of specific inputs and produces a fixed number of specific outputs
Tips

Data wrangling with Python

4.2.7 Insertion and deletion

L. —

Notes

To delete a specific element in a NumPy array, you can use the np.delete() function.

In[71]

out[71]

import numpy as np
myArrayl=np.array([11,12,13,14,15,16,17,18])
np.delete(myArray1,2)

array([11, 12, 14, 15, 16, 17, 18])

np.delete(myArrayl , 2)
object deleted location
|
4
|
- - - - -] L l

|

Delete the element with subscript 2 in myArrayl

numpy.delete(arr, obj, axis=None) is a function that returns a new array with sub-
arrays along a specified axis deleted. The arr parameter represents the input array, obj
specifies the indices or slice objects of the elements to be deleted, and axis (optional)
indicates the axis along which the deletion should occur.

fl
AS

To insert a specific element: np.insert().

In[72] | np.insert(myArray1,1,88)

Out[72] array([11, 88, 12, 13, 14, 15, 16, 17, 18])
N ! 7/
:@: numpy.insert(arr, obj, values, axis=None) is a function that inserts values into an array
= along a specified axis before the given indices.

221

222

Python Data Science

4.2.8 Handling missing values

.:|‘

L " —

Notes

To check if each element of an array is a missing value: np.isnan().

In[73] | np.isnan(myArray)
Out[73] array([False, False, False, False, False, False, False, False, False, False])

L —

Notes

To check if there is at least one missing value in the array: np.any().

In[74] | np.any(np.isnan(myArray))

Out[74]

False

L —

Notes

To check if all elements in an array are missing values: np.all().

In[75] | np.all(np.isnan(myArray))

Out[75]

False

numpy.isnan: to test element-wise for NaN and return result as a boolean array.
Numpy.all(): to test whether all array elements along a given axis evaluate to True.
Numpy.any(): to test whether any array element along a given axis evaluates to True.

ey

Notes

In many function evaluations, if missing values are encountered, an error may be raised
or a NaN (Not a Number) value may be obtained as the result. To handle missing
values in such cases, you can use NaN-safe functions provided by NumPy, such as
np.nansum().

In[76]

Out[76]

MyArray=np.array([1,2,3,np.nan])
np.nansum(MyArray)

6.0

=)
=0

Notes

The difference between np.nan and None.:

® None is a data type provided by Python syntax and cannot participate in arithmetic
operations.

® The np.nan data type is provided by NumPy, which belongs to the float type and can
participate in arithmetic operations.

In[77] | np.sum(MyArray)

Out[77]

nan

Data wrangling with Python

4.2.9 Broadcasting ndarray

In NumPy, broadcasting refers to the mechanism by which arrays with different shapes
are treated during arithmetic operations. When performing operations between arrays
of different shapes, NumPy automatically adjusts the shapes of the arrays to make
them compatible, following a set of rules or constraints.

Rule 1: If the number of dimensions is the same, but the size of at least one dimension is

:;£ different, broadcasting is performed by replicating the array along the dimension with a
Not smaller size. The operation is completed by iterating over the arrays in a loop.
otes
In[78] | import numpy as np
Al=np.array(range(1,10)).reshape([3,3])
Al
Out[78] array([[1, 2, 3],
(4,5, 6],
[7,8,91D)

LY —

Notes

Al and A2 have the same number of columns and different number of rows.

In[79]

Out[79]

A2=np.array([10,10,10])
A2

array([10, 10, 10])

L7 —

Notes

Before A1+A2 is executed, the operation of broadcasting is performed row by row. After
A1 and A2 are converted to the same structure, the evaluation will be executed.

In[80] | A1+A2

Out[80]

array([[11, 12, 13],
[14, 15, 16],
[17, 18, 19]1)

L7 —

Notes

Rule 2: If the shapes of the arrays being operated on are not compatible, meaning they have
different numbers of dimensions and the size of at least one dimension is different (except
when one of the dimensions is 1).

In[81]

Out[81]

A3=np.arange(10).reshape(2,5)
A3

array([[0,
[5

223

224 Python Data Science

oy e

Notes

A3 is 2 rows x 5 columns, and A4 is 4 rows x 4 columns.

In[82]

Out[82]

Ad=np.arange(16).reshape(4,4)
A4

array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9,10, 11],
[12, 13, 14, 15]))

L. —

Notes

An error is raised: ValueError: operands could not be broadcast together with shapes
(2,5) 4.4

In[83] | A3+A4

ValueError Traceback (most recent call last)
<ipython-input-86-0fe8480883de> in 0
---->1 A3+A4
2 ValueError: operands could not be broadcast together with shapes (2,5)
(4,4)

ValueError: operands could not be broadcast together with shapes (2,5) (4,4)

4.2.10 Sorting an ndarray

:l‘

L

Notes

(1) To return a sorted copy of an array
np.sort().

In[84]

Out[84]

import numpy as np
myArray=np.array([11,18,13,12,19,15,14,17,16])
myArray

array([11, 18, 13, 12, 19, 15, 14, 17, 16])

In[85] | np.sort(myArray)

Out[85]

array([11, 12, 13, 14, 15, 16, 17, 18, 19])

L7 —

Notes

(2) To return the indices that would sort an array:
np.argsort().

In[86] | np.argsort(myArray)

Out[86]

array([0, 3, 2,6, 5, 8, 7, 1, 4], dtype=int64)

Data wrangling with Python

In NumPy, multidimensional arrays can be sorted along a specified axis by using the axis

is
- parameter in the np.sort() function.
Tricks
In[87] | MyArray=np.array([[21, 22, 23, 24,25],
[35, 34,33, 32, 31],
[1,2, 3,100, 4]])
np.sort(MyArray,axis=1)
Out[87] array([[21, 22, 23, 24, 25],

[31, 32, 33, 34, 35],
[1, 2, 3, 4,100]D)

Tips

Here, axis = 1 means the axis along which to sort. If None, the array is flattened before
sorting. The default is —1, which sorts along the last axis.

In[88] | np.sort(MyArray,axis=0)

Out[88]

array([[1, 2, 3, 24, 4],
[21, 22, 23, 32, 25],
[35, 34, 33,100, 31]])

225

226

Python Data Science

4.3 Series

Q&A

[What is a "Series"?

T'he Pandas pach pIc

data structure for the purpose of optimizing

the diction:

Series can be ac 1 either throt xplicit

How do I create a Series?

() method

) exp!

o-one comespondence

I How dol useSeries?

By using the index

Check the £ >
attribute, such as

By using the values
attribute, such as

Support slicing=—>

"implicit ir Support slicing—>1

By using——>

in operation

index or in

juisite: Import the Pandas package: i

mySer

n myS

Data wrangling with Python

4.3.1 Creating Series

Pandas Series is a one-dimensional array of indexed data. It can be thought of as a
special type of Python dictionary. It is a data structure that maps typed keys to a set
of typed values. The keys of a Series are explicitly defined indexes that can be of any
data type. The values of the Series correspond to these indexes and can also be of any

Notes
data type.
7/ Series in Pandas can be thought of as enhanced versions of Dict in Python. Both of
- them stored data in Key-Value data model.
Tricks

There are two main arguments in pandas.Series():
® data: Contains data stored in a Series. the argument data should be array-like,

:-'_£ Iterable, dict, or scalar value.
Notes |® index: Contains the explicit index of data stored in the Series. Values must be
hashable and have the same length as data. Non-unique index values are allowed.
<}, | Series has two types of index.
- — | ® The explicit index is defined with typed label names when creating a series.
. ~ | ® The implicit index is defined automatically with an ordered sequence of numbers
= like “0,1,2,3...”.

Tips Unlike software development projects, explicit index is usually used instead of implicit
index in data science projects, because the implicit index is difficult to locate if the
dataset is large.

In[1] | import pandas as pd
mySeries1=pd.Series(data = [11,12,13,14,15,16,17], index=["a","b","c","d","e","f","g"])
mySeries|

Out[1] a 11
b 12
c 13
d 14
e 15
f 16
g 17
dtype: int64

Tricks

When defining a Series in Pandas, the length of the index and the length of the data
should be the same. If the lengths do not match, an exception will be raised indicating
the mismatch between the index and data lengths.

227

228 Python Data Science

The explicit index of element
value 13 is "c”

Index represents
an explicit index.

The difference between "explicit Explicit index is a common index
index" and "implicit index" -~ technology in data science and data
Taking mySeries1 as an example analysis projects.

Subscripts
represent implicit
indexes.

The implicit index of
element value 13 is 2.

Unlike Java / C-based software
development, data science and data
analysis projects generally do not
use implicit indexes - subscripts.

In[2] | import pandas as pd
mySeries1=pd.Series([11,12,13,14,15,16,17], index=[a,b,c,d,e,f,g])
mySeries|
NameError Traceback (most recent call last)
<ipython-input-3-88cdcb222886> in <module>()
I import pandas as pd
----> 2 mySeries1=pd.Series([11,12,13,14,15,16,17],
index=[a.,b,c.d.e.f.g])
3
4 mySeries]
NameError: name 'a' is not defined
N\ ! 7/
- — | Here, a NameError is raised because we missing the quotation marks of the string ‘a’.
s N\ | Strings in python should be surrounded by either single quotation mark, or double
= quotation marks.
Tips

If the “data” parameter is only one value, the pd.series() method will assign the same

- £ value to each index.
Notes
In[3] | mySeries2=pd.Series(10, index=["a","b","c","d","e","t","g"])
mySeries2
Out[3] a 10

b 10
c 10
d 10
e 10
f 10
g 10
dtype: int64

Data wrangling with Python

=

L

Notes

When defining a Series in Pandas, if the “data” parameter contains more than one
value, the length of both the data values and the index should be the same. This ensures
that each data value is paired with a corresponding index value. If the lengths do not
match, an exception will be raised.

In[4]

mySeries3=pd.Series([1,2,3,4,5], index=["a","b","c"])
mySeries3

ValueError Traceback (most recent call last)
<ipython-input-5-e8a37d3e2b30> in 0
----> | mySeries3=pd.Series([1,2.3,4,5], index=["a","b","c"])
2 mySeries3
91
92 @property

ValueError: Wrong number of items passed 5, placement implies 3

Tricks

There is another kind of exception: ValueError: Wrong number of items passed 5,
placement implies 3.

The reason that this exception raised is the length of the indexes is not same as data
values.

4.3.2 Working with Series

:l\

(1) Getting the index labels of the given Series object.

L -
Notes
In[5] | import pandas as pd
mySeries4=pd.Series([21,22,23,24,25,26,27], index=["a","b","c","d","e","{","g"])
mySeries4.index
Out[5] Index(['a','d','c','d", e, ', 'g'], dtype="object’)
o
“%9 The returned data type is index, which is a special type defined in Pandas.
Tricks

:l‘

R d

Notes

(2) Getting all the values in the given Series object.

In[6] | mySeries4.values
Out[6] array([21, 22, 23, 24, 25, 26, 27], dtype=int64)

229

230

Python Data Science

1l
A S

| | (3) Slicing a Series with its explicit index

In[7] | mySeries4['b']

Out[7] 22

:/, The Series also supports Fancy Indexing to pass an array of indices to access multiple
5 elements at once.

In[9] | mySeries4[["a","b","c"]]

Out[9] a 21
b 22
c 23

dtype: int64

F—1,. | InNumPy, explicit indexes can be used as start and stop positions for slicing operations.
:_:/ Unlike in Python, both the start and stop indices will be included in the returned result.

— This means that the sliced array will contain elements starting from the start index up
Notes | to and including the stop index.

In[10] | mySeries4["a":"d"]

Out[10] a 21

b 22
c 23
d 24

dtype: int64

[o~ (4) Slicing a Series with its implicit index.

Notes

In[11] | mySeries4[1:4:2]

Out[11] b 22
d 24
dtype: int64

In[12] | mySeries4

Out[12] a 21
b 22

c 23

d 24

e 25

f 26

g 27

dtype: int64

Data wrangling with Python

Notice that when slicing with an explicit index (i.e. mySeries4[“a”:’d”), the
final index is included in the slice, while when slicing with an implicit index (i.e.
mySeries4[1:4:2]), the final index is excluded from the slice.

111
£
g |1

(5) Checking whether a value is an element of the explicit index(labels) of a series
or not.

In[13] | "c" in mySeries4
Out[13] True

In[14] | "h" in mySeries4
Out[14] False

(6) The series.reindex() method is used to reset the explicit index.

| 9=
Notes
In[15] | import pandas as pd

mySeries4=pd.Series([21,22,23,24,25,26,27], index=["a","b","c","d","e","{","g"])
mySeriesS=mySeries4.reindex(index=["b","c","a","d","e","g","f"])
mySeries5

Out[15] b 22
C 23
a 21
d 24
e 25
g 27
f 26

dtype: int64

The series.reindex() method changes the the index labels of a series, but the
correspondence between key and value is not be destroyed.

Regardless of the results order, the index and values of mySeries4 itself has not
changed.

231

232

Python Data Science

In[16]

Out[16]

mySeriesS=mySeries4.reindex(index=["b","c","a","d","e","g","{""])
mySeries4

a 21
b 22
c 23
d 24
e 25
f 26
g 27
dtype: int64

The series.reindex() method is used to create a new index and reindex the DataFrame.

:_-7£ By default, holes in the new index that do not have corresponding records in the
DataFrame are assigned NaN.

Notes

In[17] | mySeries5=mySeries4.reindex(index=["new1","c","a","new2","e","g","new3"])

mySeriesS

Out[17] newl NaN
c 23.0
a 21.0
new?2 NaN
e 25.0
g 27.0
new3 NaN

dtype: float64

L~ —

Notes

The Series.reindex() method does not modify the explicit index of the original Series
object.

In[18] | mySeries4

Out[18]

a 21
b 22
c 23
d 24
e 25
f 26
g 27
dtype: int64

4.4 DataFrame

Q&A

What is a DataFrame?

A data structur

Proy

e similar to a relational table

by the Pandas package.

f the most wid

Data wrangling with Python

DataFrame represents a data structure
relational table. a one ofthe commor

data structu X and Python programi

How do I create a DataFrame?

Direct definition method

Import

Prerequisite

al file method

What is the data structure of DataFram e?

package. the im

it method is:im port pandas as pd

T he pd. DataF rame method

W hen im port 1 extemal file with the Pandas

package. it automatically converted into a

DataFrame obje

name num ber index
; .index.size .
oW .index .index
.shape[0]
.columns.size
column .columns .columns
.shape[1]

233

234 Python Data Science

Wh at are the special features of ndarray?

T he character of the that is, sev

R epresent

al columns

hape() met

Represents’ Data type of ama

I'he data type of the ar element is calculated in

of column. The purpose is to suppc

R epresents 7
ector calculation without writing loop

finc() finction is the common feat fmost methods t 15 ector calculation

How do I access the elements in the ndarra

T'he slicing | accessing of nd the list, please refer to this book [2.11 List]

Ifthere are rules for the indexes that need to

e accessed, use a similar list method

Ifthere are no rules for

element that needs to be

Fancy Indexir

Provide the x ofthe elemen at need to be accessed in the form of a list

Data wrangling with Python 235

How do I perform evaluations on the rows of a DataFrame?

Evaluations are not evaluated on the basis of

the subscript (implicit index), but are Refer to three basic mles.

nated according to the explicit index.

How do I perform statistical analysis on the rows of the DataFrame?

l—)m -

How do I sort DataFrame?

[m— _

Check the explicit index after sorting sort_index ()

How do I import or export DataFrame?

s Use the read *** class
Import extemal files into DataFrame e dfpd.read_csv('df2.csv')
fanction for pandas =

Use the to_*** class
Export DataF rame to extemal file function of —— dfto_csv()
the dataframe

How do I deal with missing values in DataFrame?

m—A -
Use method (such as add) and its fill_value
argum ent.

How do I perform grouping statistics on DataFrame?

use groupby

After groupby::
Parentheses are grouping conditions
Square brackets are the calculation df2.groupby ("diagnosis")["area_mean"].mean()

objects
Finally. the grouping statistical finction

236 Python Data Science

4.4.1 Creating DataFrames

:I‘
=7

Notes

There are two common ways to create a DataFrame in data science projects.

The first way is to type values in Python pandas directly, and this way is rarely used.
The second commonly used way is to load the datasets from existing files.

(1) The pd.DataFrame() method is used to type values.

In[1]

Out[1]

import numpy as np

import pandas as pd
df1=pd.DataFrame(np.arange(10).reshape(2,5))
df1

UGS
N

Tricks

The “data” parameter of pd.DataFrame() can be assigned ndarray, list, dictionary,
tuple, Series, etc.

I
N

(2) When importing values from existing files into Python using the pandas package,

XA the data stored on computer will be automatically converted into a DataFrame
object
Notes
In[2] | df2 = pd.read_csv('bc_data.csv')
df2.shape
Out[2] (569, 32)
<}, | The difference between numpy.ndarrays and pandas.DataFrame are:
- — | ® numpy.ndarrays represents a matrix-like data whereas pandas.DataFrame
. N represents a SQL-table-like data.
= ® numpy.ndarrays can be multi-dimensional whereas pandas.DataFrame can only
Tips be two-dimensional.

'Iﬂ

I

EEINT

We use the Fancy Indexing method here to select the “id”, “diagnosis”, “area_mean”
columns of the df2 object. Refers to this book [4.2 Multidimensional arrays].

Notes
In[3] | df2=df2[["id","diagnosis","area_mean"]]
df2.head()
Out[3] id| diagnosis | area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2| 84300903 M 1203.0
3| 84348301 M 386.1
4| 84358402 M 1297.0

Data wrangling with Python

\:l ’
/
=

Tips

The . head() function and the .zail() function are two functions commonly used in
data science projects, which are used to return the first and last n (the default value is
5) rows. If we have a large amount of data, it is not possible or necessary to display
all of the rows.

4.4.2 Index or columns of DataFrames

:l‘

L7 —

Notes

The .index attribute is used to retrieve the axis labels of a pandas object, such as a
DataFrame or a Series.

In[4] | df2.index

Out[4]

Rangelndex(start=0, stop=569, step=1)

L O

Notes

The .index.size attribute is used to get the number of elements in the underlying data.

In[5] | df2.index.size

Out[5]

569

.:I‘
=7

Notes

The .columns attribute is used to get the column labels of the DataFrame.

In[6] | df2.columns
Out[6] Index([‘id’, ‘diagnosis’, ‘area_mean’], dtype="object’)

=)

L7 —

Notes

The .columns.size attribute is used to get the number of columns.

In[7] | df2.columns.size

Out[7]

3

b ———
N

[—p

L7 —

Notes

The .shape attribute is used to get the shape of the DataFrame at the same time, i.e. the
number of rows and columns.

In[8] | df2.shape
Out[8] (569, 3)

237

238

Python Data Science

1l
AS

In this case. The tuple represents the dimensions of the DataFrame ‘df2’, with the
first element indicating the number of rows and the second indicating the number of
columns. Therefore, ‘df2.shape[0]” accesses the Oth element of the tuple (the number
of rows), and ‘df2.shape[1]” accesses the 1st element (the number of columns).

Out[9]

print(""the number of rows:", df2.shape[0])
print("the number of columns:", df2.shape[1])

the number of rows: 569
the number of columns: 3

4.4.3 Slicing DataFrames

Notes

The way of accessing elements in a Python DataFrame is unique and differs from
other programming languages. For instance, you cannot use the same syntax as C
and Java, i.e., ‘df2[1][2]’. Similarly, you cannot use the syntax from R language, i.e.,
‘df2[1,2]’. Instead, in pandas, we access data through methods like .iloc, .loc, or by
column labels.

X BEECE X ESeciw)

L.

Notes

(1) Reading values by column name:
One common method for accessing data in a DataFrame is using the column name
within square brackets.

In[10] | df2["id"].head()

Out[10]

0 842302
1 842517
2 84300903
3 84348301
4 84358402

Name: id, dtype: int64

L. —

Notes

Method 2: Using the column name as an attribute of the DataFrame.

In[11] | df2.id.head()

Out[11]

0 842302
1 842517
2 84300903
3 84348301
4 84358402

Name: id, dtype: int64

Data wrangling with Python 239

[= Method 3: Using column name and row number together.

Notes

In[12] | df2["id"][2]
Out[12] 84300903

% }/ In pandas, the Oth axis refers to the DataFrame’s rows and the 1st axis refers to its
oS columns. Hence, we first specify the column (‘id’) and then the row (2). This is why
- ‘df2[2][*“id”]’ is not valid and will raise an exception - it incorrectly assumes row-first

Tricks |1indexing.

[= Method 4: Using attribute name and row number together.

Notes

In[13] | df2.id[2]
Out[13] 84300903

[= Method 5——Using slices.

Notes

In[14] | df2["id"][[2,4]]
Out[14] 2 84300903
4 84358402

Name: id, dtype: int64

::I % | (1) Reading values by label(s) or a boolean array (explicit index).

[¥~ The .loc indexer in pandas allows us to access a data point in the DataFrame using
explicit labels for both rows and columns.

Notes

In[15] | df2.loc[1,"id"]
Out[15] 842517

::II‘ (2) Reading values by integer-location (implicit index).

[¥~ The .iloc indexer in pandas allows us to access a data point in the DataFrame using
implicit integer-based indexing, which is similar to standard list indexing in Python.

Notes

In[16] | df2.iloc[1,0]
Out[16] 842517

240

Python Data Science

The main difference between .loc and .iloc lies in how they handle indexing:

(1). loc]] is label-based.
(2). iloc[] is integer position-based.

explicit index

——mixed use

implicit index

The .loc, .iloc, and .ix indexers in pandas are accessed using square brackets (e.g., ‘df.
loc[]’, ‘df.iloc[]’), not parentheses. It’s worth noting that the .ix indexer was available
in earlier versions of pandas, but it has been deprecated since version 0.20.0. Thus,
for current versions of pandas, only .loc and .iloc should be used for label-based and
integer-based indexing, respectively.

.‘lill
N

Notes

(3) Accessing non-consecutive elements by Fancy Indexing.

In[17] | df2[["area_mean","id"]].head()

Out[17]

area_mean id

1001.0

842302

1326.0

842517

1203.0

84300903

386.1

84348301

AW =S

1297.0

84358402

L.

Notes

(4) Rows and columns of a DataFrame each have their unique explicit indices (or

labels).

The ‘index’ attribute of the DataFrame is used to get the labels of the rows.
The ‘columns’ attribute is used to get the labels of the columns.

In[18] | df2.index

Out[18] Rangelndex(start=0, stop=569, step=1)

Data wrangling with Python

**;}/ The return value of ‘df2.index’ is a Rangelndex object, which is a kind of iterator used
=2 for lazy evaluation in pandas. To print all values of the index directly, we can use the
“*’ operator within a print function, like so: ‘print(*df2.index)’.

Tricks

In[19] | df2.columns

Out[19] Index(['id', 'diagnosis', 'area_mean'], dtype='object’)

:l‘

L2 —

Notes

[£ (5) Using explicit index and the .head() function together.

In[20] | df2["id"].head()

Out[20] O 842302
1 842517
2 84300903
3 84348301
4 84358402

Name: id, dtype: int64

I :,'*
T _—?ﬁ | (6) The reset_index() method is used to reset the index.
Notes
In[21] | df2.reindex(index=["1","2","3"], columns=["1","2","3"])
df2.head()
Out[21] id | diagnosis| area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2| 84300903 M 1203.0
3| 84348301 M 386.1
4| 84358402 M 1297.0

,}/ Just like with Series, the reindex() method in a DataFrame can be used to create a
new object with the data conformed to a new index. This function does not modify the

Tricks

explicit index of the original DataFrame.

In[22] | df2.reindex(index=[2,3,1], columns=["diagnosis","id","area_mean"])

Out[22] diagnosis id | area_mean
2 M| 84300903 1203.0

M| 84348301 386.1

1 M 842517 1326.0

241

242

Python Data Science

+—], |In pandas, we can add a new column during the reindexing process, effectively
::_:., creating an explicit index for that column. For instance, if we want to add a new
T+ 7= column named ‘MyNewColumn’, we can include it in the list of columns when
Notes calling the reindex method:
In[23] | df3=df2.reindex(index=[2,3,1], columns=["diagnosis","id","area_mean",
"MyNewColumn"[,fill_value=100)
df3
Out[23] diagnosis id | area_mean | MyNewColumn
M| 84300903 1203.0 100
M | 84348301 386.1 100
M 842517 1326.0 100

4.4.4 Filtering DataFrames

=)
1 = The pandas.read_csv() function is used to read a CSV (Comma Separated Values)
S file and convert it into a pandas DataFrame.
Notes
In[24] | import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2.head()
Out[24] id| diagnosis| area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2 84300903 M 1203.0
3 84348301 M 386.1
4 84358402 M 1297.0
-:l .
::ij When used with an argument like ‘df2.drop([2])’, the ‘2’ is interpreted as a label-
e based (or explicit) index, rather than a positional (or implicit) index.
Notes

In[25] | df2.drop([2]).head()

Out[25]

id diagnosis | area_mean
0 842302 M 1001.0
1 842517 M 1326.0
3| 84348301 M 386.1
4| 84358402 M 1297.0
5 843786 M 477.1

Data wrangling with Python

1l
RS

The .drop() method in pandas does not modify the original DataFrame unless the
‘inplace’ parameter is set to True.

In[26] | df2.head()
Out[26] i

diagnosis | area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2| 84300903 M 1203.0
3| 84348301 M 386.1
4| 84358402 M 1297.0
In[27] | import pandas as pd

df2 = pd.read_csv('bc_data.csv')

df2=df2[["id","diagnosis","area_mean"]]
df2.drop([3.,4], axis=0, inplace=True)
df2.head()
Out[27] id| diagnosis| area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2| 84300903 M 1203.0
5 843786 M 477.1
6 844359 M 1040.0

Running these lines of code may raise exceptions if the initial state of ‘df2’ isn’t

(low)

- preserved. This could be due to previous operations that have modified ‘df2’.

Tricks

Y Y/ The first parameter of the ‘df2.drop()’ function in pandas is ‘labels’, which refers to
g the labels of the rows or columns you want to drop. The ‘labels’ parameter can accept
Tricks |2 single label or a list-like object containing multiple labels.

. }/ If ‘inplace=True’ is specified, the operation is performed inplace, modifying the
\/, original DataFrame. No new DataFrame is returned, and the original DataFrame is
g changed.

Tricks | If ‘inplace=False’ is specified (which is the default setting), a new DataFrame is

returned with the changes, while the original DataFrame remains unchanged.

Whether to modify the

whether to return a new

data itself (in-place | value (return a new value)
modification)

inplace=True | Yes No

inplace=False | No Yes

243

244 Python Data Science

In[28] | import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2.drop([3.4], axis=0, inplace=False)
df2.head()
Out[28] id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2| 84300903 M 1203.0
3| 84348301 M 386.1
4| 84358402 M 1297.0
-:I . '
— There are several ways to remove a column from a pandas DataFrame:
= One method is to use the del statement.
Notes
In[29] | import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
del df2["area_mean"]
df2.head()
Out[29] id diagnosis
0 842302 M
1 842517 M
2| 84300903 M
3| 84348301 M
4| 84358402 M
=l
T _-?_- Another method is to use the .drop() function with the ‘columns’ parameter.
Notes
In[30] | import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2.drop(["id","diagnosis"], axis=1, inplace=True)
df2.head()
Out[30] area_mean
0 1001.0
1 1326.0
2 1203.0
3 386.1
4 1297.0

Data wrangling with Python

Statements in Python's basic
syntax

The function provided by
Pandas

A common way to filter a DataFrame by certain column values is by using Boolean
indexing, or creating a condition that returns a series of True and False value. For
instance, to select all rows from the DataFrame ‘df2’ where the value in the ‘area

Notes | mean’ column is greater than 1000, you would write:
In[31] | import pandas as pd
df2 =pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2[df2.area_mean> 1000].head()
Out[31] id diagnosis | area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2| 84300903 M 1203.0
4| 84358402 M 1297.0
6 844359 M 1040.0

To select and display only the ‘id’ and ‘diagnosis’ columns for the first five rows where
‘area_mean’ is greater than 1000 in the DataFrame ‘df2’, you can use the following
command.

In[32] | df2[df2.area_mean> 1000][["id","diagnosis"]].head()

Out[32]

id diagnosis
842302
842517

84300903
84358402
844359

EN RIS
RS

245

246 Python Data Science

4.4.5 Arithmetic operating on DataFrames

Ny

Notes

When performing arithmetic operations between two DataFrames, it’s important that
they have the same structure or the operation might not behave as expected. One way
to ensure this is to align the DataFrames on their explicit index before the operation.

In[33]

Out[33]

df4=pd.DataFrame(np.arange(6).reshape(2,3))

df4

Tricks

In languages like C and Java, calculations involving arrays or lists are commonly
performed based on position indices (implicitindices). However, in Python, particularly
when using the pandas library, operations can be performed based on explicit indices

as well as position indices.

pd.DataFrame(np.arange(10).resh

In[34]

Out[34]

np.arange(10)

ape(2,5))

np.arange(10).reshape(2,5)

Return an array of [0,9],refer to [4.2 The N-dimensional
array and NumPy].

To convert a bunch of arrays into a two-dimensional
array of two rows and five columns,refer to [4.2 The N-
dimensional array and

Convert the two-dimensional array from the previous
step to the DataFrame for Pandas.

In[35] | df4+df5

Out[35]

df5=pd.DataFrame(np.arange(10).reshape(2,5))
dfs
0| 1| 2
0 1
5 6 9
0 2 3 4
0 2 NaN | NaN
8| 10| 12| NaN | NaN

Data wrangling with Python

=

{

When performing arithmetic operations using operators like +, -, *, etc., the resulting
DataFrame may include NaN values if the operation involves NaN. To handle these

— cases, pandas provides specific methods such as add(), sub(), mul(), and div(), which
Notes | can be more effective.
In[36] | df6=df4.add(df5,fill_value=10)
df6
0| 0 2 13.0 | 14.0
8| 10| 12| 18.0| 19.0
|
S 7 | Though basic arithmetic operators like ‘+’, ‘->, “*’, and ‘/° can be used in data science
—, : tasks with pandas, it’s generally recommended to use corresponding pandas DataFrame
= methods such as add(), sub(), mul(), and div() instead. This is because these methods
T;I;s are more flexible and allow for additional parameters to be set.

1l
A S

When performing arithmetic operations with broadcasting rules, we need to ensure the
DataFrames involved have compatible shapes. This is so that the smaller DataFrame
can be ‘broadcast’ across the larger DataFrame, meaning its values are reused to

Notes | match the shape of the larger DataFrame.
In[37] | sI=pd.Series(np.arange(3))
sl
Out[37] 0 O
1 1
2 2

dtype: int32

In[38] | df6-s1

Out[38]

0 1 2 3 4

0.0

1.0

2.0

NaN

NaN

i

8.0

9.0

10.0

NaN

NaN

L 27—

Notes

We can perform arithmetic operations between a pandas Series and a DataFrame.

These operations are executed based on the explicit index (labels) of the Series and
DataFrame.

In[39]

Out[39]

df5=pd.DataFrame(np.arange(10).reshape(2,5))
sl=pd.Series(np.arange(3))
df5-s1

0 1 2 3 4

0| 00f 00| 00| NaN| NaN

50| 50| 50| NaN| NaN

247

248 Python Data Science

\

We can also apply the sub() function in pandas, setting the axis parameter to 1 to perform
subtraction between DataFrames across columns. The add(), sub(), mul(), and div()
functions in pandas correspond to the arithmetic operators +, -, *, and /, respectively.

Notes

In[40] | dfS=pd.DataFrame(np.arange(10).reshape(2,5))
sl=pd.Series(np.arange(3))
df5.sub(s1,axis=1)

Out[40] of 1] 2] 3] a4

0| 00| 00| 0.0| NaN| NaN

50| 5.0| 50| NaN| NaN

1
S

)
N
I

llill
N

In pandas, setting the parameter axis=1 during an operation signifies the following:

1. The number of rows remains the same before and after the operation.
2. The operation is performed across all columns in each row.
3. Each column is considered as a whole during the operation.

T
Z
Q
(=gl
¢
17

1

]
N

ZIN
g |1

When performing arithmetic operations along the vertical axis (axis=0) in pandas, we
are applying these operations across all rows for each column. Before we can do this,
we must first ensure that the DataFrames involved have the same number of columns.

In[41]

Out[41]

In[42]

Out[42]

df5=pd.DataFrame(np.arange(10).reshape(2,5))
s1=pd.Series(np.arange(3))
df5.sub(s1,axis=0)

0 1 2 3 4

0 0.0 1.0 2.0 3.0 4.0

1 4.0 5.0 6.0 7.0 8.0

2| NaN | NaN | NaN | NaN | NaN

df7=pd.DataFrame(np.arange(20).reshape(4,5))
df7
1 2 3 4
0 1 3
1 6
2 10 11 12 13 14
3 15 16 17 18 19

In[43] | df7+2

Out[43]

12 13 14 15 16

W=D

17 18 19 20 21

Data wrangling with Python

+—], | Additionally, pandas provides many more functions to support a wide variety of
::_:/ data processing needs. For operations that need to be performed on a column-by-
4= column basis without crossing between columns, pandas allows you to set axis=0.
Notes | This ensures that the operation is applied individually to each column, treating each
one as a separate entity.
In[44] | print(df7)
print("df7.cumsum=",df7.cumsum())
Out[44] 0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 1516 17 18 19
df7.cumsum= 0 1 2 3
0 01 2 3 4
1 5 7 91113
2 15 18 21 24 27
3 30 34 38 42 46
In[45] | df7
Out[45] 0 1 3 4
0 0 1 3 4
1 5 6 8 9
20 10| 11| 12| 13| 14
3 15 16 17 18 19
:E‘/‘ In the line df7.rolling(2).sum(), we are performing a rolling sum operation on the
::_-_,é DataFrame df7. This calculates the sum of every two adjacent elements in the
Notes DataFrame, indicating that the size of the rolling window for calculations is 2.

In[46] | df7.rolling(2).sum()

Out[46]

Out[47]

0 1 2 3 4
0| NaN | NaN | NaN | NaN | NaN
1 5.0 7.0 9.0| 11.0| 13.0
2| 150 17.0| 19.0| 21.0| 23.0
3| 250 27.0| 29.0| 31.0| 33.0

In[47] | df7.rolling(2,axis=1).sum()

0 1 2 3 4
0| NaN 1.0 3.0 5.0 7.0
1| NaN| 11.0| 13.0| 15.0| 17.0
2| NaN| 21.0| 23.0| 25.0]| 27.0
3| NaN| 31.0| 33.0| 35.0]| 37.0

249

250 Python Data Science

The DataFrame.cov() function is used to compute pairwise covariance of columns,
excluding NA/null values.

In[48] | df7.cov()

Out[48]

0 1 2 3 4

41.666667 | 41.666667 | 41.666667 | 41.666667 | 41.666667

41.666667 | 41.666667 | 41.666667 | 41.666667 | 41.666667

41.666667 | 41.666667 | 41.666667 | 41.666667 | 41.666667

41.666667 | 41.666667 | 41.666667 | 41.666667 | 41.666667

BlW N =S

41.666667 | 41.666667 | 41.666667 | 41.666667 | 41.666667

-:j

L~ —

Notes

The DataFrame.corr() function is used to compute pairwise correlation of columns,
excluding NA/null values.

1n49] | df7.corr()

Out[49] o] 1| 2| 3| 4
0| 1.0|] 1.0] 1.0] 1.0] 1.0
1| 1.0] 1.0] 1.0| 1.0{ 1.0
21 1.0 1.0 1.0] 1.0| 1.0
3| 1.0 1.0 1.0| 1.0| 1.0
4(1.0 1.0 1.0| 1.0| 1.0
T _-?_— The .T attribute is used to transpose index and columns.
Notes
In[50] | import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]][2:5]
df2.T
Out[SO] 2 3 4
id | 84300903 | 84348301 | 84358402
diagnosis M M M
area_mean 1203 386.1 1297

In[51] | print(df6)

Out[51]

01 2 3 4
00 2 4 13.0 14.0
1810 12 18.0 19.0

Data wrangling with Python

In[52] | df6>5

0 False False False True True
1 True True True True True
In[53] | print(s1)
Out[53] O 0
1 1
2 2
dtype: int32
In[54] | df6>s1
0 False True True False False
1 True True True False False

4.4.6 Descriptive analysis of DataFrames

::;II‘ pandas.DataFrame.describe() generates descriptive statistics include those that
T4 summarize the central tendency, dispersion and shape of a dataset’s distribution,
excluding NaN values.
Notes
In[55] | import numpy as np
import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]
df2.describe()
Out[55] id | area_mean
count | 5.690000e+02 | 569.000000
mean | 3.037183e+07 | 654.889104
std | 1.250206e+08 351.914129
min | 8.670000e+03 143.500000
25% | 8.692180e+05 420.300000
50% | 9.060240e+05 551.100000
75% | 8.813129e+06 | 782.700000
max | 9.113205e+08 | 2501.000000

Tricks

The pandas.DataFrame.info() method prints comprehensive information about a
DataFrame. This includes details about the index data type, columns, the count of
non-null values in each column, and memory usage.

251

252

Python Data Science

L " —

Notes

A commonly used method to filter a DataFrame by column value is to apply the
filtering condition directly to the DataFrame object. When using the syntax df2[df2.
diagnosis == ‘M’], the expression df2.diagnosis == ‘M’ evaluates to a Boolean Series
where each element is either True or False, indicating whether the corresponding row
satisfies the condition.

In[56] | dt = df2[df2.diagnosis=="M']

In data science projects, the amount of data can be large, and it’s often unnecessary to
access all rows of the data at once. Instead, it’s common to only need the first or last
few rows for analysis or inspection purposes. This is particularly applicable when the
data has a consistent structure, with each row having the same set of columns.

In[57] | dthead()

Out[57]

id diagnosis area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2| 84300903 M 1203.0
3| 84348301 M 386.1
4| 84358402 M 1297.0

LT

Notes

By using functions like .head() or .tail(), you can easily access a specified number
of rows from the beginning or end of the DataFrame, respectively. These functions

are efficient ways to quickly examine a subset of the data without loading the entire
dataset, which can be time-consuming and resource-intensive.

In[58] | dt.tail()

Out[58] id| diagnosis area_mean
563 | 926125 M 1347.0
564 | 926424 M 1479.0
565| 926682 M 1261.0
566 | 926954 M 858.1
567 | 927241 M 1265.0

Tricks

The function DataFrame.tail(n=5) in pandas returns the last ‘n’ rows from the
DataFrame based on their position. This function is particularly useful for quickly
verifying data, such as after performing sorting or appending rows to the DataFrame.

=
Z

Notes

The count() method counts the number of non-null (non-empty) values for each

column by default.

In[59] | df2[df2.diagnosis=="M'].count()

Out[59]

id 212
diagnosis 212
area_mean 212

dtype: int64

Data wrangling with Python

In pandas DataFrame, fancy indexing refers to accessing non-consecutive rows or
columns using specific indices or boolean conditions.

In[60] | df2[["area_mean","id"]].head()

Out[60]

area_mean id
0 1001.0 842302
1 1326.0 842517
2 1203.0 84300903
3 386.1 84348301
4 1297.0 84358402

4.4.7 Sorting DataFrames

.

Notes

Firstly we check the first 8 rows of the df2 object.

In[61] | df2.head(8)

Out[61] id diagnosis| area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2| 84300903 M 1203.0
3| 84348301 M 386.1
4| 84358402 M 1297.0
5 843786 M 477.1
6 844359 M 1040.0
7| 84458202 M 577.9
-:I .
I _:, The sort_values() method in pandas can be used to sort the DataFrame by the values
S along either axis, which can be the rows (axis=0) or the columns (axis=1).”
Notes

In[62] | df2.sort_values(by="area_mean",axis=0,ascending=True).head()

Out[62] id| diagnosis| area_mean
101 862722 B 143.5
539 921362 B 170.4
538 921092 B 178.8
568 92751 B 181.0
46| 85713702 B 201.9
s The sort_index() method in pandas is used to sort an object (e.g., DataFrame or Series)

1l
A S

by its labels along a specified axis. By default, it sorts the object based on the index
labels, but you can also specify axis=1 to sort along the columns.

253

254

Python Data Science

In[63] | df2.sort_index(axis=1).head(3)

Out[63] area_mean diagnosis id
1001.0 M| 842302
1326.0 M 842517
1203.0 M| 84300903
:‘ R

LY —

Notes

Setting axis=0 in pandas implies that the operation is applied vertically to all rows in
each column, while maintaining the same number of columns. Each row is treated as

a collective entity during the operation.

In[64] | df2.sort_index(axis=0,ascending=False).head(3)

Out[64]

id diagnosis | area_mean
568 | 92751 B 181.0
567 | 927241 M 1265.0
566 | 926954 M 858.1

4.4.8 Importing/Exporting DataFrames

=

e

Notes

The prerequisite for importing and exporting a DataFrame is to know the current
working directory, as described in [3.8 Current working directory]. To retrieve the
current working directory of a process, you can use the gefcwd() method from the os
package.

In[65]

Out[65]

import 0s
print(os.getcwd())

C:\Users\soloman\clm

.:l‘

L2 —

Notes

The to_***() method :writes a DataFrame object to a file, including:

® pandas.DataFrame.to_csv(): Write object to a comma-separated values (csv)
file.
pandas.DataFrame.to_excel(): Write object to an Excel sheet.
pandas.DataFrame.to_json(): Convert the object to a JSON string.
pandas.DataFrame.to_html(): Render a DataFrame as an HTML table.
pandas.DataFrame.to_xml(): Render a DataFrame to an XML document.
pandas.DataFrame.to_sql(): Write records stored in a DataFrame to a SQL
database.

In[66] | df2.head(3).to_csv("df2.csv")

:L

L

Notes

The read_***() method reads a file into DataFrame, including:

pandas.read_csv(): Read acomma-separated values (csv) file into DataFrame.
pandas.read_excel(): Read an Excel file into a pandas DataFrame.
pandas.read_json() : Convert a JSON string to pandas object.
pandas.read_html(): Read HTML tables into a list of DataFrame objects.
pandas.read_xml(): Read XML document into a DataFrame object.
pandas.read_sql(): Read SQL query or database table into a DataFrame.

Data wrangling with Python

In[67] | import pandas as pd
df3 = pd.read_csv('df2.csv')
df3
Out[67] Unnamed: 0 id | diagnosis | area_mean
0 0 842302 M 1001.0
1 1 842517 M 1326.0
2 2| 84300903 M 1203.0

L

Notes

One more example is calling the fo_excel() method to write the first 3 rows of
DataFrame df2 to an Excel sheet named “df3.x1s”.

In[68] | df2.head(3).to_excel("df3.xIs")

=

L O —

Next, we can use the read_excel() method to read the Excel file ‘df3.xls’ into a pandas
DataFrame and save it as ‘df3’.

Notes
In[69] | df3 = pd.read_excel("df3.xIs")
df3
Out[69] id | diagnosis | area_mean
0 842302 M 1001
1 842517 M 1326
2| 84300903 M 1203

4.4.9 Handling missing values with Pandas

Notes

When accessing the .empty attribute of a DataFrame, if the DataFrame is empty (i.e., it
[S~ has no rows or columns), it will return True. On the other hand, if the DataFrame has
any data (at least one row or column), it will return False.

In[70] | df3.empty

Out[70] False

=

ey

Notes

np.nan is a numeric value and None is an object in Python. As a result, np.nan can be
used in mathematical operations, while None cannot.

In[71] | np.nan-np.nan +1

Out[71] nan

In[72] | np.nan-np.nan

Out[72] nan

255

256 Python Data Science

L

Notes

The exception TypeError: unsupported operand type(s) for +: ‘NoneType’ and
‘int’ is raised because None cannot be used as a numerical value in mathematical
operations.

In[73] | None+1

In[74]

Out[74]

TypeError Traceback (most recent call last)
<ipython-input-83-6e170940e108> in 0
----> | None+I

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

import pandas as pd

import numpy as np
A=pd.DataFrame(np.array([10,10,20,20]).reshape(2,2),columns=list("ab"),
index=list("SW"))

A
al b
S| 10| 10
W| 20| 20

L

Notes

Here, the list(“ab”) method is used to convert a string, such as “ab”, into a list of
individual strings, [‘a’, ‘b’], in Python. For more details, please refer to [2.17 Built-in
Functions].

In[75] | list("ab")

Out[75]

In[76]

Out[76]

[!av, !bl]

B=pd.DataFrame(np.array([1,1,1,2,2,2,3,3,3]).reshape(3,3),
columns=list("abc"),index=list("SWT"))
B

W= &

S
W
T

Here are the revised tips for Python beginners:

1. Arithmetic operations in pandas DataFrames are performed based on the explicit
index of rows and columns.

2. Missing values in pandas DataFrames can be filled with NaN (Not a Number) to
ensure that arithmetic operations do not raise exceptions.

3. The basic process for performing arithmetic operations on DataFrames is as
follows: First, ensure that the DataFrames have compatible shapes by aligning their
indices. Then, fill any missing values with NaN in the resulting DataFrame. Finally,
perform the desired arithmetic operations.

In[77]

Out[77]

Data wrangling with Python

C=A+B

S| 11.0| 11.0| NaN

NaN | NaN | NaN

W | 220| 22.0| NaN

Ry

Notes

In the expression A.add(B, fill_value=0), the fill_value=0 parameter specifies that any
missing values in A should be filled with O before adding B to A.

In[78] | A.add(B,fill_value=0)

Out[78]

a b c

S| 11.0| 11.0| 1.0
3.0 3.0 3.0

W | 220| 220| 2.0

L —

Notes

The parameter “‘fill_value = A.stack().mean()” in the expression A.add(B, fill_value=A.
stack().mean()) means that existing missing values in A should be filled with the mean
of all the values in A.

In[79] | A.add(B.fill_value=A.stack().mean())

Out[79]

a b c

S| 11.0| 11.0| 16.0

T| 180 | 18.0| 18.0

W | 220]| 22.0| 17.0

A.mean(axis=1) calculates the mean of all rows in each column of DataFrame A. By
specifying axis=1, the mean() function calculates the mean value for each row in every
column of A.

In[80] | A.mean()

Out[80]

a 15.0
b 15.0
dtype: float64

In pandas, the stack() method is used to pivot a DataFrame from a wide format to a
long format by creating a multi-level index. It essentially “stacks” or compresses the
columns of the DataFrame into a single column, resulting in a reshaped DataFrame or
Series with a multi-level index.

257

258 Python Data Science

In[81] | A stack()

Out[81]

S a 10
b 10
W a 20
b 20

dtype: int32

In[82] | A.stack().mean()

Out[82]

In[83] | C

Out[83]

15.0

S| 11.0| 11.0| NaN

NaN | NaN | NaN

W | 220| 22.0| NaN

L —

Notes

There are four important functions in pandas to handle missing values in a DataFrame:
isnull(), notnull(), dropna(), and fillna().

Ny

Notes

(1) isnull(): This function returns a Boolean mask that identifies missing values in the
DataFrame.

In[84] | C.isnull()

Out[84]

a b c
S | False | False | True
True | True | True
W | False | False | True
T _-?_— (2) notnull(): This function is the opposite of isnull().
Notes

In[85] | C.notnull()

Out[85]

a b c

S| True| True| False

T | False | False | False

W | True| True | False

Data wrangling with Python 259

:_:,, (3) dropna(): This function is used to remove or drop rows or columns that contain
+7=1 | missing values.
Notes

In[86] | C.dropna(axis='index")
Out[86]| | a| b| c|

=

[:/ (4) fillna(): This function is used to fill missing values in the DataFrame with a specified

N

- -— value or a calculated value.
Notes

In[87] | C.fillna(0)
Out[87]

a b c
S| 11.0| 11.0| 0.0
T 0.0 00| 0.0
W | 220| 22.0| 0.0
:' .

:_:I By specifying method="ffill”, missing values in the DataFrame are filled with the last

[l known non-null value.
Notes

In[88] | C fillna(method="ffill")
Out[88]

a b c
S| 11.0| 11.0| NaN
T| 11.0| 11.0| NaN
W | 22.0| 22.0| NaN
:' .

5 :/ By specifying method="bfill””, missing values in the DataFrame are filled with the next
=] | non-null value.

L 27—

Notes

In[89] | C.fillna(method="bfill",axis=1)
Out[89]

a b c
S| 11.0| 11.0| NaN
NaN | NaN | NaN
W | 220| 22.0| NaN

260 Python Data Science

4.4.10 Grouping DataFrames

In[90] | import pandas as pd
df2 = pd.read_csv('bc_data.csv')
df2=df2[["id","diagnosis","area_mean"]]

df2.head()
Out[50] id | diagnosis | area_mean
0 842302 M 1001.0
1 842517 M 1326.0
2| 84300903 M 1203.0
3| 84348301 M 386.1
4| 84358402 M 1297.0
N l 7/
_ _ df2.groupby("diagnosis”) ["area_mean"] .mean()
Ve N
= I
TipS (1) Grouping basis or
condition

(2) After grouping, [variables]
to be involved in statistics

v

(3) After grouping, [function]
used for statistics

In[91] | df2.groupby("diagnosis")["area_mean"].mean()

Out[91] diagnosis
B 462.790196
M 978.376415
Name: area_mean, dtype: float64

:l‘

L —f To aggregate using one or more operations over the specified axis, we can call the
method the aggregate().

LY —

Notes

In[92] | df2.groupby("diagnosis")["area_mean"].aggregate(["'mean","sum", " max",
np.median])

Out[92] mean sum max | median

diagnosis
B | 462.790196 | 165216.1 | 992.1 458.4
M | 978.376415 | 207415.8 | 2501.0 932.0

,)/ The DataFrame.aggregate() method provides us with the flexibility to apply multiple
=P functions at once or pass a list of functions to each group. In this example, we aggregate
a list of operation names such as ‘mean’, ‘sum’, ‘max’, and ‘np.median’.

Tricks

Data wrangling with Python

i

The pandas.DataFrame.unstack() method performs the following actions:

£ It returns a DataFrame with a new level of column labels, where the innermost level
— consists of the pivoted index labels.
Notes
If the index of the DataFrame is not a Multilndex (hierarchical index), the output will
be a Series. This is analogous to the stack() operation when the columns are not a
Multilndex.
In[93] | df2.groupby("diagnosis")["area_mean"].aggregate(["'mean","sum"]).
unstack()
Out[93] diagnosis
mean B 462.790196
M 978.376415
sum B 165216.100000
M 207415.800000

dtype: float64

** *
£/,
=)
-

Tricks

The stack(), unstack(), pivot(), and melt() methods are commonly used in data science
to convert data formats:

1. pandas.DataFrame.stack(): This method returns a reshaped DataFrame or Series
with a multi-level index. It adds one or more new inner-most levels compared to
the current DataFrame, creating a hierarchical structure.

2. pandas.DataFrame.unstack(): The unstack() method returns a DataFrame with
a new level of column labels. The inner-most level of the resulting DataFrame
consists of the pivoted index labels. This operation is useful for reshaping data
from long to wide format.

3. pandas.DataFrame.pivot(): The pivot() method reshapes data, essentially
producing a “pivot” table. It uses unique values from specified index/columns
to form axes of the resulting DataFrame, allowing for easy restructuring of data
based on column values.

4. pandas.DataFrame.melt(): The melt() method is used to transform a DataFrame

into a specific format.

L. O

By utilizing the apply() method in pandas, you can apply a user-defined function to
groups within a DataFrame.

Notes
In[94] | def myfunc(x):
x["area_mean"]/=x["areca_mean"].sum()
return x
df2.groupby("diagnosis").apply(myfunc).head()
Out[94] id | diagnosis | area_mean
0 842302 M 0.004826
1 842517 M 0.006393
2| 84300903 M 0.005800
3| 84348301 M 0.001861
4 | 84358402 M 0.006253

261

262

Python Data Science

4.5 Date and time

Q&A

How do | deal with a date or time in Python?

eg.
datetime

eg.
dateutil

or pandas

How do I get current local data or time?

“T—_

llow do I parse a string to a time or date?

use
r ateutil import par

How do | get a string representing the date, controlled by an explicit Format string?

use o
di. datetime. ne
dt. datetime. today ()
s C dt.datetime. now()
ow.strlLime ("%

How do I evaluate the difference between two dates or times?

]
=

dl dt.datetime
,month

llow do 1 set a time or date as the index of Pandas’ object ?

-x (["2023-
3-1-37,.°20

4,5], ind

Data wrangling with Python

\®/
=

Tips

By utilizing the combination of the built-in datetime module and third-party
packages such as dateutil or pandas, Python developers can effectively manage and
manipulate dates and times in a wide range of scenarios, from basic operations to

sophisticated time series analysis.

4.5.1 Creating a time or date object

{

(1) to create a time object: datetime.time()

Notes
In[1] | import datetime as dt
myTime = dt.time(12,34,59)
print("myTime:",myTime)
print("myTime.hour:",myTime.hour)
print("myTime.minute:",myTime.minute)
print("myTime.second:",myTime.second)
Out[1] myTime: 12:34:59

myTime.hour: 12
myTime.minute: 34
myTime.second: 59

Tricks

The python built-in module datetime provides three different classes for creating dates

or times:

® datetime.time() returns an idealized time, independent of any particular day,
including attributes: hour, minute, second, microsecond.
® datetime.date() returns an idealized naive date with attributes: year, month, and

day.

® datetime.datetime() returns a combination of a date and a time, including attributes:
year, month, day, hour, minute, second, microsecond, and tzinfo.

=)

L7 —

Notes

(2) to create a combination of a date and a time

In[2] | dt.datetime(year = 2018,month = 3,day = 3)

Out[2]

datetime.datetime(2018, 3, 3, 0, 0)

Tricks

Here, you can access the documentation of datetime.datetime by typing ‘dt.datetime?’.

263

264 Python Data Science

In[3] | dt.datetime?

Out[3] Init signature: dt.datetime(self, /, *args, **kwargs)
Docstring:
datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])

The year, month and day arguments are required. tzinfo may be None,
or an instance of a tzinfo subclass. The remaining arguments may be ints.

File:
c:\users\administrator\appdata\local\programs\python\python36\lib\datetime.py
Type: type

[3 . . .
::_// In the dt.datetime() function, the year, month, and day arguments are required. The
e

L tzinfo argument may be set to None or an instance of a tzinfo subclass. The remaining
Notes | arguments are optional but must be integers.

In[4] | dt.datetime(month=3,day=3,second=59)

TypeError Traceback (most recent call last)
<ipython-input-5-6fbb4e101d77> in 0
----> 1 dt.datetime(month=3,day=3,second=59)

TypeError: Required argument ‘year’ (pos 1) not found

:l‘

-—/ However, the second, minute, and hour arguments are optional for the datetime.

F->— datetime() function.
Notes

In[5] | dt.datetime(year = 2018, month = 3,day = 3)

Out[5] datetime.datetime(2018, 3, 3, 0, 0)

4.5.2 Parsing a string to a time or date object

2022-1-3’, and 2022-07-03 00:00:00’. However, most of these formats are not
= represented in the standard format of the Python built-in module datetime. Attempting
to parse these formats using the standard datetime module can raise an exception.

‘@’ There are many formats used to represent time or date, such as ‘3rd of July, 2022’,

Tips

In[6] | dt.datetime("3th of July,2022")

TypeError Traceback (most recent call last)
<ipython-input-8-c7659db11b43> in 0
----> | dt.datetime("3th of July,2022")

TypeError: an integer is required (got type str)

Data wrangling with Python

In[7] | d.datetime("2022-1-3")

TypeError Traceback (most recent call last)
<ipython-input-9-c1b53c571977> in 0

—---> 1 dt.datetime("2022-1-3")

TypeError: an integer is required (got type str)

In data science, there are common methods used for parsing a string into a standard
date or time format:

CLD
- 1. The parser.parse() method in the dateutil package
Tricks 2. The to_datetime() method in the pandas package
£—.
1=/
T _-,_—l (1) parserparse()
Notes
In[8] | # to parse the string "3th of July,2022" to a datetime
from dateutil import parser
date= parser.parse("3th of July,2022")
print(date)
Out[8] 2022-07-03 00:00:00
In[9] | # to parse the string "2022-1-3" to a datetime
date= parser.parse("2022-1-3")
print(date)
Out[9] 2022-01-03 00:00:00
=)
T _—_£| (2) panadas. to_datetime()
Notes
In[10] | # to parse the string "3th of July,2022" to a datetime
import pandas as pd
pd.to_datetime("3th of July,2018")
Out[10] Timestamp('2022-07-03 00:00:00")
In[11] | # to parse the string "2022-1-3" to a datetime
import pandas as pd
pd.to_datetime("2022-1-3")
Out[11] Timestamp('2022-01-03 00:00:00")

265

266 Python Data Science

4.5.3 Getting current local data or time object

.:|‘

L —

Notes

(1) To obtain the current local date and time, you can use the datetime.datetime.now()
function.

In[12] | dt.datetime.now()

Out[12] datetime.datetime(2022, 5, 24, 21, 39, 50, 155634)

L7 —

Notes

(2) To obtain the current local date, you can use the datetime.datetime.today()
function.

In[13] | dt.datetime.today()

Out[13]

datetime.datetime(2022, 5, 24, 21, 39, 50, 913872)

:l‘

L2 —

(3) To obtain a string representation of a date, controlled by an explicit format string,
you can use the datetime.datetime.strftime() method.

Notes
In[14] | now=dt.datetime.now()
now.strftime("%W"),now.strftime("%a"),now.strftime("%A"),
now.strftime("%B"),now.strftime("%C"),now.strftime("%D")
Out[14] ('51', 'Sun', 'Sunday’, 'December’, 20", '12/23/18")
o x ’/ The format codes in datetime.strftime():
\Y ® 9%l Hour (12-hour clock) as a zero-padded decimal number.
Q%B ® 9%p Locale’s equivalent of either AM or PM.
Tricks ® 9%M Minute as a zero-padded decimal number.
® %S Second as a zero-padded decimal number.
® 9%f Microsecond as a decimal number, zero-padded to 6 digits.
® 9%z UTC offset in the form +tHHMMI[SSI.ffftff]] (empty string if the object is
naive).
® Y%7 Time zone name (empty string if the object is naive).
® 9%)j Day of the year as a zero-padded decimal number.
® 9%U Week number of the year (Sunday as the first day of the week) as a zero-

padded decimal number. All days in a new year preceding the first Sunday
are considered to be in week 0.
® %W Week number of the year (Monday as the first day of the week) as a
zero-padded decimal number. All days in a new year preceding the first
Monday are considered to be in week 0.
9%c Locale’s appropriate date and time representation.
%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%% A literal ‘%’ character.

Data wrangling with Python

4.5.4 Evaluating the difference between two date or time objects

=)

1 :, You can evaluate the duration, or the difference between two date or time objects,

+ = by subtracting one object from another.

Notes
In[15] | d1=dt.datetime.now()
d2=dt.datetime(year=2017,month=3,day=3)
(d1-d2).days
Out[15] 447

Tricks

Here, the .days attribute means the unit of evaluation.

4.5.5 Setting a time or date object as the index of Pandas

=

I :j
T4~ (1) Create a datetime index: pandas. Datetimelndex()
Notes
In[16] | myindex=pd.DatetimeIlndex(["2023-1-1","2024-1-2","2023-1-3","2023-1-4",
"2023-1-5"])
I :,l*
T _-?_- (2) Set the datetime index: pandas.DataFrame() or pandas.Series()
Notes
In[16] | data=pd.Series([1,2,3,4,5],index=myindex)
data
Out[16] 2023-01-01 1
2024-01-02 2
2023-01-03 3
2023-01-04 4
2023-01-05 5
dtype: int64
1=
T _-?_— (3) Access a data item by slicing a DataFrame or Series
Notes

In[17] | data["2023-1-2"]

Oout[17]

Series([], dtype: int64)

267

268

Python Data Science

In[18] | data["2023"]

Out[18]

2023-01-01
2023-01-03
2023-01-04
2023-01-05
dtype: int64

[, TN S S I

In[19] | data- data["2023-1-4"]

Out[19]

In[20]

Out[20]

2023-01-01 NaN
2023-01-03 NaN
2023-01-04 0.0
2023-01-05 NaN
2024-01-02 NaN
dtype: float64

to show the current value of the data object

data

2023-01-01
2024-01-02
2023-01-03
2023-01-04
2023-01-05
dtype: int64

DN B W =

L 7 —

Notes

(4) To castdata to a PeriodArray or PeriodIndex at a specific frequency: .to_period()

In[21] | data.to_period(freq="D")

Out[21]

2023-01-01 1
2024-01-02
2023-01-03
2023-01-04
2023-01-05
Freq: D, dtype: int64

W B W

Here, “freq = “M””” means the time unit is Month.

A, Y: year end frequency

: month end frequency

: weekly frequency
calendar day frequency
business day frequency
custom business day frequency
quarter end frequency
hourly frequency

T, min: minutely frequency

S: secondly frequency

eec0cc0cccooe
TOAWU =X

Data wrangling with Python 269

In[22] | data.to_period(freq="M")
Out[22] 2023-01 1

2024-01 2
2023-01 3
2023-01 4
2023-01 5

Freq: M, dtype: int64

I

74

(5) evaluate the result of an expression by datetime index

Notes

In[23] | data- data[3]
Out[23] 2023-01-01 -3
2024-01-02 -2
2023-01-03 -1
2023-01-04 0
2023-01-05 1

dtype: int64

In[24] | data- data["20230104"]

Out[24] 2023-01-01 NaN
2023-01-03 ~ NaN
2023-01-04 0.0
2023-01-05 NaN
2024-01-02 NaN
dtype: float64

4.5.6 The pandas.period_range() method

[To get a fixed freqeuency PeriodIndex: pandas. period_range()

Notes

In[25] | pd.period_range("2024-1",periods=10, freq="D")
Out[25] PeriodIndex(['2024-01-01", '2024-01-02', '2024-01-03', '2024-01-04",
2024-01-05', '2024-01-06', 2024-01-07', '2024-01-08",
'2024-01-09', '2024-01-1017,
dtype="period[D]', freq="D")

In[26] | pd.period_range("2024-1",periods=10, freq="M")
Out[26] PeriodIndex([2024-01', '2024-02', '2024-03', '2024-04', '2024-05', 2024-06/,
'2024-07', '2024-08', "2024-09', "2024-10"],
dtype="period[M]', freq="M")

- ’/ pandas.period_range(start=None, end=None, periods=None, freq=None, name=
None)

%9 start: Left bound for generating periods.
Tricks end: Right bound for generating periods.

periods: Number of periods to generate.
freq: frequency, e.g. “D” for daily frequency.
name: Name of the resulting PeriodIndex

270 Python Data Science

4.6 Data visualization

Q&A

How do I perform data visualization in Python?

|- How do I visualize data with Matplotlib ?

import the matplol kage L E import matplotlib. pyplo

method

plt. title(”
plt

plt

nd (loc="upper left”

Data wrangling with Python 271

How do I use Matplotlib for data visualization?

How do I visualize data with Pandas?

How do I visualize data with Seaborn?

272

Python Data Science

4.6.1 Matplotlib visualization

Matplotlib, Seaborn, and Pandas are widely used and important packages for data
visualization in Python.

\

oy e

Notes

Matplotlib is a comprehensive library for creating static, animated, and interactive
visualizations in Python. It excels at making simple tasks easy and enabling complex
tasks to be achieved. Some key features of Matplotlib include:

Create publication-quality plots

Make interactive figures3.

Customize visual style and layout

Export to various file formats

Embed in JupyterLab and Graphical User Interfaces
Extensive ecosystem of third-party packages

O Eh e 9 =

e

The matplotlib is organized in a hierarchy. At the top of the hierarchy is the matplotlib
“state-machine environment” which is provided by the matplotlib.pyplot module. At
this level, simple functions are used to add plot elements (lines, images, text, etc.) to

_
Tricks

a(Es

Notes | the current axes in the current figure.
In[1] | import matplotlib.pyplot as plt
1}/ Matplotlib is the whole package;

matplotlib.pyplot is a module in matplotlib;
matplotlib.pylab is a module that gets installed alongside matplotlib.

In[2]

import matplotlib.pyplot as plt

J%matplotlib inline

Tricks

When %matplotlib inline is used in a Jupyter notebook or compatible environment,
it enables the inline backend for Matplotlib. This means that the output of plotting
commands will be displayed directly below the code cell that produced it, within the
notebook interface.

L7 —

You can also use the magic command “Z%matplotlib notebook™ to create interactive
figures if your environment allows it.

Notes
In[3] | women = pd.read_csv('women.csv',index_col =0)
women.head()
Out[3] height | weight
1 58 115
2 59 117
3 60 120
4 61 123
5 62 126

Data wrangling with Python

e

Notes

To plot y versus x as lines and/or markers : matplotlib.pyplot.plot().

In[4]

Out[4]

plt.plot(women["height"], women|["weight"])
plt.show()

170 T T T T T T

160

150

140

130
120
110 L Il L s ' L
58 60 62 64 66 68 70 72

If you don’t write plt.show(), it will display [<matplotlib.lines.Line2D at

CLD
- 0x2064770b550>]
Tricks
=)
4 :, To generate a dataset t for visualization purposes, you can use the np.arange function
+= with the specified parameters:
Notes
In[5] | import numpy as np
t=np.arange(0.,4.,0.1)
t
Out[5] array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.,
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2., 2.1,
22,23, 24,25, 26, 2.7, 2.8, 29, 3., 3.1, 3.2,
3.3, 34, 35, 3.6, 3.7, 3.8, 3.9))
[—
The method to display multiple lines in a figure using Matplotlib is to pass multiple

fl
A S

arguments to the plt.plot() function. The argument format is as follows: “x1, y1, x2,
y2, X3, y3, x4, y4, ...”.

273

274 Python Data Science

In[6] | plt.plot(t,t,t,t+2,t,t¥*2,t,t+8)
plt.show()

Out[6] 16

14

2

10

04 T T T T T T T
0.0 05 1.0 15 20 25 30 35 40

4.6.2 Adjusting plot attributes

+—1],. | (1) To set the Mrkers
I _:I ‘. point marker
4 ¢, pixel marker

Notes ‘0’ circle marker

‘v’ triangle_down marker
‘A’ triangle_up marker
‘<’ triangle_left marker
>’ triangle_right marker
‘1’ tri_down marker

‘2’ tri_up marker

3’ tri_left marker

‘4’ tri_right marker

‘s’ square marker

‘p’ pentagon marker

“*° star marker

‘h’ hexagonl marker
‘H’hexagon2 marker

‘+’ plus marker

X’ x marker

‘D’ diamond marker

‘d’ thin_diamond marker
‘I’ vline marker

‘_’ hline marker

In[7]

out[7]

Data wrangling with Python

plt.plot(women["height"], women["weight"],"o")

plt.show()

170

160 [

150

140

130

120
b

110

58

72

1]

(2) to set line styles and colors , e.g. © g--” for green dashed line style(‘--").

T :,j Line Styles:
+ 7= *-> solid line style
Nl ‘--> dashed line style
‘- dash-dot line style
> dotted line style
Colors:
‘D’ blue
‘g’ green
T red
‘¢’ cyan
‘m’ magenta
‘y’ yellow
k> black
‘w’ white
In[8] | plt.plot(women["height"], women["weight"],"g--")
plt.show()
Out[8] 170
160 |]
150 | = |
140} W .
130 e } 1
2o} _-- -]
110 L L I L I 1
58 60 62 64 66 68 70 72

275

276

Python Data Science

=

Notes

One more example of setting line styles and colors is “rD”, which means “red+ diamond”.
More arguments, please refer to Matplotlib’s official website documentation.

You can learn more about the meaning of the third argument of plt.plot() through the
help documentation. The specific command is: plt.plot?

In[9]

Out[9]

plt.plot(women["height"], women["weight"],"rD")
plt.show()

170 T T T T T T

160 | > -
150 | * 1
140 | . -
130 | . d

120 | * d

110 L) " . I L
58 60 62 64 66 68 70 72

(3) To set the title of a plot and change axis labels:plt.title(), plt.xlabel() and plt.

P -— ylabel().
Notes
In[10] | plt.plot(women["height"], women["weight"],"g--")
plt.title("plotting the dataset women")
plt.xlabel("height")
plt.ylabel("weight")
plt.show()
Out[lO] plotting the dataset women
160 //'
150 ,,"’
S 140 ,,"'
g
130 — F
120 — i
58 80 &2 64 6 68 70 72

Data wrangling with Python

I**
;&

= (1
o
)

plt.title(), plt.xlabel() and plt.ylabel() correspond to the title, X-axis label and X-axis
label.

*
-
<+
)&

= (1
o
2

The correct placement of plt.title(), plt.xlabel(), and plt.ylabel() within plt.plot() and
between plt.show() ensures that the plot is configured with the desired title and axis
labels before it is shown.

(4) to set the location of the legend: plt.legend(loc = “location”).

Notes
In[11] | plt.plot(women["height"], women["weight"],"g--")
plt.title(“plotting the dataset women”)
plt.xlabel("height")
plt.ylabel("weight")
plt.legend(loc="upper left",labels=["Legend"])
plt.show()
Out[11] plotting the dataset women
-== Legend ?
160 ’/
150 -
S 140 o
£
130 —
120 =

58 60 62 64 3 68 70 72
height

it
=
_

Tricks

The argument loc="upper left” in the context of plt.legend() specifies that the legend
should be positioned in the upper left corner of the plot.

To gain more information about the available options for the loc argument, you can
refer to the docstring of plt.legend().

277

278 Python Data Science

4.6.3 Changing the type of a plot

L7 —

Notes

To switch the plotting functions in Matplotlib, such as changing from plt.plot() to plt.
scatter() to create a scatter plot, you can use the appropriate function based on the type
of plot you want to generate.

In[12]

Out[12]

plt.scatter(women|["height"], women["weight"])
plt.show()

170 T T T T T T T T

160 | g

150 | o -

140 | . -

130 |- . 1

120 |+ ° .

110 Il Il 1 Il L 1 1 Il

Tricks

I highly recommend accessing the example plots provided on the official Matplotlib
website (https://matplotlib.org/stable/gallery/index.html). Each example not only
showcases the visualization effects but also provides the corresponding source code.

4.6.4 Changing the value range of the axes of a plot

I=)
41 :, pltxlim(11, —2) means “the value range of the x-axis is from 11 to -2”.
<= plt.ylim(2.2, —1.3) means “the value range of the y-axis is from 2.2 to -1.3”.
Notes
In[13] | import matplotlib.pyplot as plt

import numpy as np
9Yomatplotlib inline
x=np.linspace(0,10,100)

plt.plot(x,np.sin(x))
plt.xlim(11,-2)
plt.ylim(2.2,-1.3)

https://matplotlib.org/stable/gallery/index.html

Out[13]

Data wrangling with Python

(2.2,-1.3)

-1.0 1

=05 1

0.0 1

0.5 1

10 4

15 1

20 1

=)
=7

Notes

To get or set various axis properties in Matplotlib, you can use the matplotlib.pyplot.
axis() function.

In[14]

Out[14]

plt.plot(x,np.sin(x))

plt.axis([-1,21,-1.6,1.6])

(-1.0, 21.0, -1.6, 1.6)

15 -

10 -

05

0.0 1

T T T T T T

00 25 50 75 100 125 150 175 200

To set equal scaling for both the x-axis and y-axis by changing the axis limits: plt.
axis(“‘equal”)

279

280 Python Data Science

In[15] | plt.plot(x,np.sin(x))
plt.axis([-1,21,-1.6,1.6])
plt.axis("equal")

Out[15] (0.5, 10.5, -1.0993384025373631, 1.0996461858110391)

-
-

.
-
-

4.6.5 Adjusting the margins of a plot

1=l
4 :I To set limits just large enough to show all data and disable further autoscaling: plt.
+= axis(“tight”)

Notes

In[16] | plt.plot(x,np.sin(x))
plt.axis([-1,21,-1.6,1.6])
plt.axis("tight")

Out[16] (-0.5, 10.5, -1.0993384025373631, 1.0996461858110391)

1.00 1
0.75 -
0.50 1
0.25 1
0.00 1
-0.25 -
-0.50 -

-0.75 -

-1.00 -

Data wrangling with Python 281

4.6.6 Creating multiple plots on the same coordinates

=)
4 :/, To create multiple plots on the same coordinates, you can write multiple functions
+ = in the same cell and call plt.legend() to display multiple labels for the plots.

Notes

In[17] | plt.plot(x,np.sin(x),label="sin(x)")
plt.plot(x,np.cos(x),label="cos(x)")
plt.axis("equal")

plt.legend()

Out[17] <matplotlib.legend.Legend at 0x124156820>

4.6.7 Adding an Axes to the current figure or retrieving an existing
Axes

=),
B :/ To add an Axes to the current figure or retrieve an existing Axes, you can call the plt.
subplot(X, y, z) function before each code line of creating a plot.

L7 —

Notes

In[18] | plt.subplot(2,3,5)
plt.scatter(women|["height"], women|["weight"])

plt.subplot(2,3,1)
plt.scatter(women["height"], women["weight"])
plt.show()

282 Python Data Science

Out[18]
160 - ..
.
<
140 1 *&
..o'
120 1 @
lf'f T
60 70
E
160 1 @
o
o
140 - ..0
@
..o’
120 " '
60 70
4.6.8 Saving plots to image files
I=)p
T _-?_- To save the current plot : plt.savefig().
Notes

In[19] | women = pd.read_csv('women.csv')
plt.plot(women.height, women.weight)
plt.savefig("sagefig.png")

Out[19] 1m0
160 |
150 |
140 |
130 |

120 |

10
58

e }/ The code plt.savefig(“savefig.png”) will save the current plot to the current working
oS directory with the filename “savefig.png”. However, you can customize the file
- name and path by providing the desired directory and filename in the plt.savefig()
Tricks function.

Data wrangling with Python

4.6.9 Creating more complicate plots

=

First, generate the experimental datasets X and y that will be used for visualization.
The make_blobs function is used to generate a random dataset that conforms to a
normal distribution.

Notes
In[20] | from sklearn.datasets import make_blobs
X,y=make_blobs(n_samples=300,centers=4,random_state=0, cluster_std=1.0)
plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow")
Out[20] <matplotlib.collections.PathCollection at 0x127316910>
10 1 ®
z £l
o @ ®
LY
6 - ®
4
2 -
0 .
_2 -

T T

-2

Tricks

The arguments of make_blobs(n_samples=300,centers=4,random_state=0, cluster_
std=1.0) mean:

® 1n_samples: The number of samples, that is, the number of rows.

® n_features: The number of features of each sample, that is, the number of
columns. #centers: The number of categories.

random_state: how random numbers are generated.

cluster_std: variance of each category.

return value, there are two:

X : Test set, type is array, shape is [n_samples, n_features].

([
([
([
([
® v : Label of each member, also an array, shape is [n_samples].

The arguments of the plt.scatter() function are as follows.

® [:.0] and X[:,1] are the x-coordinate and y-coordinate respectively.
® cis the color.

® s is the size of the point.

® cmap is the color map which is a supplement to c.

The meaning of X[:,0] is to read the Oth column of the dataframe X, refer to [4.4
DataFrame].

284 Python Data Science

4.6.10 Data visualization with Pandas

Pandas provides several different options for visualizing data with .plot() and their
usage is similar to matplotlib.

In[21] | import pandas as pd

women = pd.read_csv('women.csv',index_col =0)
women.plot(kind="bar")

plt.show()

Out[21] 14an

= height

160 | mmm weight

140
120
100

- &N M W I © M~ @©® O g =
- -

12
13
14
15

o }/ The kind of plot to produce:

\/ :Line,’ .: ling plot (default)
! ar’ : vertical bar plot

. ‘barh’ : horizontal bar plot
Tricks

‘hist’ : histogram

‘box’ : boxplot

‘kde’ : Kernel Density Estimation plot
‘density’ : same as ‘kde’

‘area’ : area plot

‘pie’ : pie plot

‘scatter’ : scatter plot (DataFrame only)
‘hexbin’ : hexbin plot (DataFrame only)

In[22] | women.plot(kind="barh")
plt.show()

Out[22]

In[23]

Out[23]

In[24]

Out[24]

Data wrangling with Python

15
14
13
12
11
10

w

HNWRE UM @

EEE height
. weight

120

40 160

women.plot(kind="bar",x="height",y="weight",color="g")

plt.show()

160 { HEE weight
140 1
120 1
100
80 1
&0 4
40 -

20 4

R RARBE GBI BB
height

G

28 8RR R

women.plot(kind="kde")
plt.show()

0.06 1

0.05 1

0.04 1

Density

0.03 1

0.02 1

0.01 1

0.00 1

- height
— weight

60 80

100

120

140

160 180

285

286

Python Data Science

In[25]

Out[25]

women.plot(kind="bar",x="height",y="weight",color="g")
plt.legend(loc="best")
plt.show()

160 { MR weight
140 1
120 |

100 -

8 & 8 8

o
71
2

R A 88838 8B B8R
height

4.6.11 Data visualization with Seaborn

_.:I .
1= Seaborn is a Python data visualization library based on matplotlib. It provides a
) e high-level interface for drawing attractive and informative statistical graphics.
Notes
**,*)/ Note that the function name for drawing plots in Seaborn is Implot, which is different
=) from the function name in Matplotlib. Additionally, the arguments for Implot also
differ from those in Matplotlib.
Tricks
In[26] | import pandas as pd

import seaborn as sns

sns.set(style="ticks")

df_women = pd.read_csv('women.csv', index_col=0,header=0)
sns.Implot(x="height", y="weight", data=df_women)

Data wrangling with Python 287

Out[26] <seaborn.axisgrid.FacetGrid at Ox13aa055b0>
170 -

160 —

150 -

]
2 -
3
®
8
]
3
N

.:l R
:_:/ To create a Kernel Density Estimation (KDE) plot for visualizing the distribution of
observations in a dataset : sns.kdeplot().

L —

Notes

In[27] | sns.kdeplot(women.height, shade=True)
Out[27] <matplotlib.axes._subplots.AxesSubplot at Ox135acc9a0>
007

0.06

0.05

0.04

0.03

0.02

0.01

0.00

288 Python Data Science

-—# To visualize the univariate or bivariate distribution of data : sns.distplot().

L

Notes

In[28] | sns.distplot(women.height)

Out[28] <matplotlib.axes._subplots.AxesSubplot at 0x135b8c6a0>
0.08

0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.00

Z:;b
:__?__‘ To plot pairwise relationships in a dataset : sns.pairplot().

Notes

In[29] | sns.pairplot(women)

Out[29] <seaborn.axisgrid.PairGrid at 0x135c44eb0>

[
.

58 60 62 64 66 68 70O 7210 120 130 140 150 160 170
height weight

o height
g 33g2p2883R

weight
88%¢8

-+
=
o

:Iill
b

|
A S

To create a plot of two variables with bivariate and univariate graphs : sns.jointplot()

Notes

Data wrangling with Python

In[30] | sns.jointplot(women.height,women.weight,kind="reg")
Out[30] <seaborn.axisgrid.JointGrid.at.0x22d35¢20280>

120 4

10

(1) Read data
Check the current working directory and ensure that the data file “salaries.csv” is
located in the current working directory.

to show the current working directory
import 0s
os.getcwd()

'C:\\Users\\Administrator\\Desktop'

Tricks

The data file salaries.csv is available in the electronic resources of this book.

=y

:__:/_. Calling the pandas.read_csv() method to read the file “salaries.csv’” and store the
== | data in a DataFrame object called df_salaries.
Notes

In[32] | import pandas as pd

df_salaries = pd.read_csv(‘salaries.csv’, index_col=0)

oy e

Notes

Calling the df_salaries.head() method to display the first 6 rows of the DataFrame
object df_salaries. For detailed descriptions, please refer to [4.4 DataFrame].

289

290

Python Data Science

In[33] | df_salaries.head(6)

Out[33]

rank | discipline | yrs.since.phd | yrs.service sex | salary
1 Prof B 19 18| Male| 139750
2 Prof B 20 16| Male | 173200
3 AsstProf B 4 3| Male| 79750
4 Prof B 45 39| Male| 115000
5 Prof B 40 41| Male| 141500
6 | AssocProf B 6 6| Male 97000

il
AS

(2) Import the seaborn package

In[34] | import seaborn as sns

(3) Visualize the data with the seaborn package

::_:/ ® To set the parameters that control the general style of the plots with sns.set_
-+ 7= | style()
Notes ® To create a scatter plot' with sns.stripplot().
® To create a box plot with sns.boxplot()
In[35] | sns.set_style('darkgrid')
sns.stripplot(data=df_salaries, x="rank', y="salary', jitter=True, alpha=0.5)
sns.boxplot(data=df_salaries, x="rank’, y="salary")
Out[35] <matplotlib.axes._subplots.AxesSubplot at 0xd770b38>

salary

250000

200000

150000

100000

50000

Prof

AsstProf AssocProf

rank

(a6

]
Tricks

Here, the argument “jitter=True” is used to add a small random noise to the data
points in order to prevent them from overlapping and make the distribution more
visible. The argument “alpha=0.5" is used to adjust the transparency of the data
points, where 0.5 represents a medium level of opacity.

Data wrangling with Python 291

Exercises

[1] What will the following program print out?
import random
random.random()

Al

B. 4.063647000164759
C. 0.09656393185717627
D. -0.885155622826353

[2] What will the following program print out?
import random
random.randrange(0, 100, 2)

A. 69
B. 70
C. 100
D. 200

[3] What will the following program print out?
import random
round(random.uniform(-101,101),3)

A0

B. 101
C. -6.007
D. 11.070

[4] What will the following program print out?
import random
print(random.randint(0,9))

Al

B. 4.063647000164759
C. 0.09656393185717627
D. -0.885155622826353

[5] What will the following program print out?
import numpy as np
np.arange(1,20,4)

A. array([2, 6, 10, 14, 18])
B. array([1, 5,9, 13, 17])
C. array([1, 4, 8,12, 16])

[6] Which of the following is true of Python arrays?
A. When execute arrayl + array2, if the number of rows or columns of this two arrays is
different, the interpreter will raise ValueError.
B. Array is a special variable that can contain multiple values at a time.
C. When viewing the shape of an array or refactoring an array, the reshape method will modify
the its elements.
D. Elementsin an array cannot be modified.

292 Python Data Science

[71 Which of the following is true of Python arrays?
A. The length of an array is fixed, and the data structures of the elements can be different.
B. The length of an array is fixed, and the data structures of the elements always be the same.
C. The length of an array is variable, and the data structures of the elements can be different.
D. The length of an array is variable, and the data structures of the elements always be the same.

[8] Which of these data structures in Python is mutable?
A. list only
B. tuple
C. string
D. list and array

[9] What will the following program print out?
import pandas as pd
mySeries2=pd.Series([10,10], index=["a","b","c","d"])
mySeries2

NameError
ValueError

o® >

10

10

10

10
dtype: int64
D.

a 10

b 10
dtype: int64

o 0O O o

10. What will the following program print out?
import pandas as pd
mySeries=pd.Series([10,9,8,7,6,5,4,3,2,1], index=["a","b","c","d","e" "f","g","h" "i" ""])
mySeries[3:9:3]

A. ValueError
B.

d 7

g 4

dtype: int64
C.

c 8

f 5

dtype: int64

[11] What will the following program print out?
import pandas as pd
mySeries=pd.Series([1,2,3,4,5], index=["a","b","c","a","b"])
mySeries[["a","b"]]

A. NamekError

[SaRE S SR

B
a
b
c
d
d

type: int64

Data wrangling with Python 293

T oo o O
N D

5
dtype: int64

[12] What will the following program print out?
import numpy as np
import pandas as pd
mySeries1=pd.Series([1,2,3,4,5], index=["a","b","c","d","e"])
mySeries2=mySeriesl.reindex(index=["b","c","a","d","e"])
np.all(mySeries2.values==mySeries1.values)

A. False
B. True
C. ValueError

[13] What will the following program print out?
import pandas as pd
mySeries4=pd.Series([21,22,23,24,25,26,27], index=["a","b","c","d","e","f","g"])

c" in mySeriesd

A. False
B. True
C. ValueError

[14] What will the following program print out?
import numpy as np
import pandas as pd
df=pd.DataFrame(np.arange(1,21).reshape(5,4))
df.iloc[3,2]

A. 18
B. 10
C. 15

[15] Which of the following is wrong of dataframe?
A. The dataframe with only one-dimensional data is series, both of which are under the Pandas package.
B. The row name of the dataframe can be accessed with the rows attributes.
C. The column name of the dataframe can be accessed with the columns attributes.

[16] For the following code:
{import datetime as dt}
Which of the following time and date definitions is wrong?

A. dt.datetime(2019,12,12,23,23,23)
B. dt.datetime(2019,0,0,23,23,23)
C. dt.datetime(2019,12,12,0)

D. dt.time(23,23,23)

[17] When calculating the time difference, the calculating unit can be()
days

seconds

microseconds

All of the above

OO w>

294 Python Data Science

[18] Which of the following is false of the period_range method?
A. start: the lefthand side is the generation period
B. end: the righthand side limits generation period
C. periods: frequency of generation
D. freq: frequency alias

[19] Which of the following is not a visual drawing tool?
A. matplotlib
B. seaborn
C. plotnine
D. Pandas

[20] Which of the following statements is false about matplotlib and seaborn?
Both are drawing libraries.

matplotlib is more encapsulated than seaborn.

matplotlib has high flexibility in parameter setting details.

seaborn can color by itself, which is beautiful and generous.

0O wr

®

Check for
updates

S. Data analysis with Python

Data analysis is one of the most critical stages in data science life cycle. This chapter will introduce various data
analysis skills including:

® Statistical modelling with statsmodels
® Machine learning with sci-kit learn
® Natural language understanding with NLTK
® Image processing with OpenCV
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 295

C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2_5

https://doi.org/10.1007/978-981-19-7702-2_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7702-2_5&domain=pdf

296

Python Data Science

5.1 Statistical modelling with statsmodels

Q&A

What are the popular Python statistical an alysis packages?

What are "feature matrix™ and "target vector"?

equivale
to

equivalent
to

What are the common steps of Statistical Analysis with Python?

Data loading

Data preparatio

Building model and descnbing st

) I arizes

Making predictions with models

aluation and Assum ptiox

ion and appli

it o,

independent vanable

dependent var

The first step for conducting data analysis and data
science projects

df women = pd.read_csv(women.csv', index_col

women. shape
df women. describe()
plt.scaiter()

of feature matnx and taget vector
omen["height"]
1en["weight"']

= myM

sum mary()

predict=results. predict()
redict

uating model results with valid critenia, such as

the coefficient of determination (R?) in simple lincar

—refer to—> EEaSSE

Testing statistical assum ptions of linear regression
as testing the assum ptions of linear rels

ween X and y, nomality of the er

1ship
distributions.

Predicting new data with the ned model.

algorithms.

Advanced Python Programming for Data Science

There are two main concepts in statistical analysis: the feature matrix and the target
vector.

Taking y = F(X) as an example, X represents the feature matrix. The feature matrix
is assumed to be two-dimensional, with a shape of [n_samples, n_features]. It is
typically stored in a NumPy array or a Pandas DataFrame, although some Scikit-
Learn models also accept SciPy sparse matrices. Each sample in the feature matrix is
stored in a separate row.

y is the dependent variable and also termed “target vector” or “target array”’.

The target vector is usually one dimensional, with length n_samples. It is commonly
stored in a NumPy array or Pandas Series.

X (Feature Matrix)

safdwes w

=5 n features

y (Target Vector)

T m labels/m features

5.1.1 Business understanding

=

L7 —

Notes

Business understanding serves as the initial step in a data science project.

In this chapter, the business objective is to analyze the relationship between women’s
height and women’s weight, in other words, predict a woman’s weight by her height.
The original data are obtained from The World Almanac and Book of Facts (1975).
This data set gives the average heights and weights for American women aged 30-39.
It is a data frame with 15 observations on 2 variables. It is structured as a data frame
with 15 observations on 2 variables.

® women[,1]:height(in):numeric

® women[,2]:weight (Ibs):numeric

297

298 Python Data Science

5.1.2 Data loading

In[1] | # To obtain the current working directory in Python, you can use the os.getcwd()
method.
import os
print(os.getcwd())
Out[1] C:\Users\soloman\clm
N\ ! 7/
- — |To get the current working directory in Python, you can use the os.getcwd()
s N\ | method. And if you want to change the current working directory, you can use the
= os.chdir(path) method.
Tips
In[2] | # to load data from the current working directory into Panda’s DataFrame
import pandas as pd
df women = pd.read_csv('women.csv', index col=0)
print(df women.head())
Out[2]))
height weight
1 58 115
2 59 117
3 60 120
4 61 123
5 62 126
N\ ! 7/
/s N\ | pd.read_csv() : Read a comma-separated values (csv) file into DataFrame.
=
Tips
N\ ! 7/
s N\ | The women.csv file is available in the learning resources for this textbook.
=
Tips

5.1.3 Data understanding

In[3]

Out[3]

to get shape or dimensions of the df women DataFrame

df women.shape

(15,2)

Advanced Python Programming for Data Science

import matplotlib.pyplot as plt
Yomatplotlib inline
plt.scatter(df_women["height"], df_women["weight"])
plt.show()

7/
: (1) pandas.DataFrame.shape: Returns a tuple representing the dimensionality of the
= DataFrame. For further details, please refer to [4.4 DataFrame].
=
Tips
In[4] | # to show column names (properties) of the df women DataFrame
print(df women.columns)
Out[4] Index(['height', 'weight'], dtype='object’)
N\ ! 7/
: (2) pandas.DataFrame.columns: Shows the column labels of the DataFrame. For
= further details, please refer to [4.4 DataFrame].
Tips
In[5] | # to generate descriptive statistics for the df women DataFrame
df women.describe()
Out[5] height weight
count 15.000000 15.000000
mean | 65.000000 136.733333
std 4.472136 15.498694
min | 58.000000 115.000000
25% 61.500000 124.500000
50% 65.000000 135.000000
75 % 68.500000 148.000000
max | 72.000000 164.000000
N\ ! 7/
: (3) pandas.DataFrame.describe:Generates descriptive statistics. For further details,
= please refer to [4.4 DataFrame].
Tips
In[6] | # to plot the df women DataFrame

299

300 Python Data Science

Out[6] .
160 o
L]
150 1 L]
L]
@
140 1 L]
L
L]
130 4 *
-
o
120 4 .
L
-
8 & & o & @ N n

\®,
=
=

Tips

(4) For further details, please refer to [4.6 Data visualization].

5.1.4 Data wrangling

(4) The data visualization chart indicates that the relationship between dependent
variable and independent variable is linear. So we can conduct a linear regression

= analysis. Firstly, we need to arrange data into a feature matrix and target vector.
Tips
In[7] | X = df_women["height"]

y = df_women|["weight"]

Out[7] (15,2)

In[8] | X
oufs] 1 58
259
360
4 6l
5 62
6 63
7 64
8 65
9 66
10 67
11 68
12 69
1370
14 71
15 72

Name: height, dtype: int64

(9] |y

Out[9]

Advanced Python Programming for Data Science

1

o

O 00NN bW

10
11
12
13
14
15

Name: weight, dtype: int64

115
117
120
123
126
129
132
135
139
142
146
150
154
159
164

\:l ,
/
=

Tips

“In fact, the data type of ‘y’ here is not the correct one for the target vector we
require. We can check its data type using the ‘type(y)’ function. Subsequent lines
of code won’t raise exceptions, as the ‘statsmodels’ package automatically handles
data type conversions. However, if other packages, such as ‘Scikit-Learn’, are used,
exceptions may occur. To prevent this, we can use the ‘np.ravel()’ function to adjust
the data type as needed.”

5.1.5 Model selection and hyperparameter tuning

In[10]

to import the statsmodels package

import statsmodels.api as sm

Tips

Statsmodels, statistics, and scikit-learn are three popular packages used for statistical
analysis and machine learning in Python.

In[11] | X

Out[11]

1
2

O 00O\ bW

10
11
12
13
14
15

Name: height, dtype: int64

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

301

302

Python Data Science

i
b

i

Z
o
=
a
w

By default, an intercept is included when we execute an OLS model using the sm.add
constant() method.

I
N

Please do not write “X_add_const=sm.add_constant(X)” as “X=sm.add_constant(X)”,

B otherwise the value of X will change when “X=sm.add_constant(X)” is run multiple
times.
Notes
In[12] | X_add_const=sm.add_constant(X)
X_add_const
Out[12] const | height
1 1.0 58
2 1.0 59
3 1.0 60
4 1.0 61
5 1.0 62
6 1.0 63
7 1.0 64
8 1.0 65
9 1.0 66
10 1.0 67
11 1.0 68
12 1.0 69
13 1.0 70
14 1.0 71
15 1.0 72
N
s N\ | statsmodels.tools.tools.add_constant(): Add a column of ones to an array
-
==
Tips
In[13] | # to describe a model

myModel = sm.OLS(y, X _add _const)

statsmodels is using endog and exog as names for the data, the observed variables that
are used in an estimation problem. For further details, please refer to https://www.
statsmodels.org/stable/endog_exog.html.

The first two arguments of the sm.OLS() function are endog(y) and exog(X_add_
const).

https://www.statsmodels.org/stable/endog_exog.html
https://www.statsmodels.org/stable/endog_exog.html

5.1.6 Fitting model and summarizing the Regression Results

Advanced Python Programming for Data Science

In[14] | # to fit the model
results = myModel.fit()
to summarize the model
print(results.summary())
Out[14] OLS Regression Results
Dep. Variable: weight R-squared: 0.991
Model: OLS Adj. R-squared: 0.990
Method: Least Squares F-statistic: 1433.
Date: Sat, 09 Apr 2022 Prob (F-statistic): 1.09e-14
Time: 09:32:10 Log-Likelihood: -26.541
No. Observations: 15 AlIC: 57.08
Df Residuals: 13 BIC: 58.50
Df Model: 1
Covariance Type: nonrobust
coef std err t P>ltl [0.025 0.975]
const -87.5167 5.937 -14.741 0.000 -100.343 -74.691
height 3.4500 0.091 37.855 0.000 3.253 3.647
Omnibus: 2.396 Durbin-Watson: 0.315
Prob(Omnibus): 0.302 Jarque-Bera (JB): 1.660
Skew: 0.789 Prob(JB): 0.436
Kurtosis: 2.596 Cond. No. 982.
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

C:\Users\zc\Anaconda3\lib\site-packages\scipy\stats\stats.py:1604: UserWarning: kurtosistest

only valid for n>=20 ... continuing anyway, n=15

“anyway, n=%i" % int(n))

In[15] | # to show the coefficients of the linear regression model

results.params

Out[15] const -87.516667
height 3.450000
dtype: float64

303

Python Data Science

\®/
=

Tips

Here, the results object has many useful attributes. For further details, please refer to
the official website of the statsmodels package.

5.1.7 Model evaluation

\

R-squared (the coefficient of determination) is a goodness-of-fit measure in linear
regression models to show how well the data fit the regression model.

Notes
In[16] | # to show R-squared
results.rsquared
Out[16] 0.9910098326857506
N
- @ ~ | R-squared values range from 0 to 1. The closer its value is to 1, the better the regression
/s SN)
= line fits the data.
Tips

5.1.8 Assumptions testing

When conducting data science projects with statistical methods, it is not only necessary
to evaluate the model results, but also to test the underlying statistical assumptions.

1l
S

In statistical analysis, all parametric tests make certain assumptions about the data. It’s
important to test these assumptions to ensure valid results. Taking linear regression as
an example, these assumptions include:

The first assumption is that a linear relationship exists between the dependent and
independent variables. This can be tested by calculating the F-statistic.

The second assumption is that there’s no autocorrelation in the residuals. This can be
tested using the Durbin-Watson statistic.

The third assumption is that the underlying residuals are normally distributed, or
approximately so. The Jarque—Bera test is a goodness-of-fit test of normality.

In[17]

Out[17]

to show(extract) the p-value in F test

results.f pvalue

1.0909729585997406e-14

The F-test of overall significance indicates whether the regression model provides a
better fit to the data than a model that contains no independent variables.

Advanced Python Programming for Data Science

Tricks

A p-value less than some significance level (e.g. a = .05) is statistically significant.
It indicates strong evidence against the null hypothesis, as there is less than a 5%
probability the null is correct. Hence, we reject the null hypothesis and accept the
alternative hypothesis.

In[18]

Out[18]

to show the Durbin Watson statistic

sm.stats.stattools.durbin_watson(results.resid)

0.31538037486218456

L —

Notes

The Durbin Watson statistic is a test for autocorrelation in the residuals from regression
models. The Durbin-Watson statistic will always have a value ranging between 0 and
4. A value of 2 indicates there is no autocorrelation detected in the samples.

In[19]

Out[19]

to show the Jarque—Bera statistic and its p-value

sm.stats.stattools.jarque bera(results.resid)

(1.6595730644310005,
0.43614237873238126,
0.7893583826332368,
2.5963042257390314)

The sm.stats.stattools.jarque_bera() function returns four values -- JB, JBpv, skew,
kurtosis, respectively.

In statistics, the Jarque—Bera test serves as a goodness-of-fit test of whether sample

B data have the skewness and kurtosis matching a normal distribution. The normal
Not distribution of residuals is one of the assumptions of linear regression analysis.
otes
In[20] | # to make a prediction with the model
y_predict=results.predict()
y_predict
Out[20] array([112.58333333, 116.03333333, 119.48333333, 122.93333333,
126.38333333, 129.83333333, 133.28333333, 136.73333333,
140.18333333, 143.63333333, 147.08333333, 150.53333333,
153.98333333, 157.43333333, 160.88333333])
N\ ! 7/
s N\ | In the statasmodels package, after a model has been fit predict returns the fitted values
=

305

306 Python Data Science

5.1.9 Model optimization and re-selection

In[21] | # to visualize the predictions and compare against observations

plt.rcParams['font.family']="simHei"

plt.plot(df_women["height"], df_women["weight"],"0") # the observations
plt.plot(df_women["height"], y_predict) # the predictions

plt.title('Linear regression analysis of women's weight and height')
plt.xlabel('height’)

plt.ylabel('weight')

Out[21] Text(0, 0.5, 'weight')

Linear regression analysis of women weight and height

L]
160 o
A
150 /"
/’,‘
-
.‘E‘ 140 4 //“
g e
e
130 1 1
r g o
120 _)/
L] /’
s & & o & @] n
haight

In addition to the statistics (e.g. R-squared), we can also display the goodness-of-fit
= by data visualization.

As can be seen from the above figure, the effect of simple linear regression in this case
K e | may be further optimized. Hence, we replace simple linear regression with polynomial
regression.

.|:'
N,

In[22] | # to conduct data wrangling

import pandas as pd

import numpy as np

df_women = pd.read_csv('women.csv', index_col=0)
X =df_women["height"]

y = df_women["weight"]

X=np.column_stack((X, np.power(X,2), np.power(X,3)))

Advanced Python Programming for Data Science

A\

Tips

In the polynomial regression analysis, the feature matrix X consists of 3 parts ---X, the
square of X, and the cube of X.

In[23]

Out[23]

X add const=sm.add constant(X)

X add const

array([[1.00000e+00, 5.80000e+01, 3.36400e+03, 1.95112e+05],
[1.00000e+00, 5.90000e+01, 3.48100e+03, 2.05379e+05],
[1.00000e+00, 6.00000e+01, 3.60000e+03, 2.16000e+05],
[1.00000e+00, 6.10000e+01, 3.72100e+03, 2.26981e+05],
[1.00000e+00, 6.20000e+01, 3.84400e+03, 2.38328e+05],
[1.00000e+00, 6.30000e+01, 3.96900e+03, 2.50047e+05],
[1.00000e+00, 6.40000e+01, 4.09600e+03, 2.62144e+05],
[1.00000e+00, 6.50000e+01, 4.22500e+03, 2.74625e+05],
[1.00000e+00, 6.60000e+01, 4.35600e+03, 2.87496e+05],
[1.00000e+00, 6.70000e+01, 4.48900e+03, 3.00763e+05],
[1.00000e+00, 6.80000e+01, 4.62400e+03, 3.14432e+05],
[1.00000e+00, 6.90000e+01, 4.76100e+03, 3.28509e+05],
[1.00000e+00, 7.00000e+01, 4.90000e+03, 3.43000e+05],
[1.00000e+00, 7.10000e+01, 5.04100e+03, 3.57911e+05],
[1.00000e+00, 7.20000e+01, 5.18400e+03, 3.73248e+05]])

Here, the purpose of calling the sm.add_constant() function is to add a column of ones
to the feature matrix, which represents the intercept term in the regression model.

In[24]

In[25]

to describe a new model
myModel_updated = sm.OLS(y, X_add_const)

to fit the model
results_updated = myModel_updated.fit()

to summarize the model
print(results_updated.summary())

307

308 Python Data Science

Out[25] OLS Regression Results

Dep. Variable: weight R-squared: 1.000
Model: OLS Adj. R-squared: 1.000
Method: Least Squares F-statistic: 1.679e+04
Date: Sat, 09 Apr 2022 Prob (F-statistic): 2.07e-20
Time: 09:32:21 Log-Likelihood: 1.3441
No. Observations: 15 AIC: 5.312
Df Residuals: 11 BIC: 8.144

Df Model: 3

Covariance Type: nonrobust
coef std err t P>ltl [0.025 0.975]
const -896.7476 294.575 -3.044 0.011 -1545.102 -248.393
x1 46.4108 13.655 3.399 0.006 16.356 76.466
x2 -0.7462 0.211 -3.544 0.005 -1.210 -0.283
x3 0.0043 0.001 3.940 0.002 0.002 0.007
Omnibus: 0.028 Durbin-Watson: 2.388
Prob(Omnibus): 0.986 Jarque-Bera (JB): 0.127
Skew: 0.049 Prob(JB): 0.939
Kurtosis: 2.561 Cond. No. 1.25e+09

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.25e+09. This might indicate that there are strong
multicollinearity or other numerical problems.
C:\Users\zc\Anaconda3\lib\site-packages\scipy\stats\stats.py:1604: UserWarning: kurtosistest
only valid for n>=20 ... continuing anyway, n=15
“anyway, n=%i"" % int(n))

In[26] | # to show(extract) the p-value in F test

print('Display const and intercept: ',;results updated.params)

Out[26] Display const and intercept: const -896.747633
x1 46.410789
x2 -0.746184
x3 0.004253
dtype: float64

In[27] | # to make a prediction with the new model

y_predict_updated=results_updated.predict()
y_predict_updated

Out[27]

In[28]

Out[28]

Advanced Python Programming for Data Science

array([114.63856209, 117.40676937, 120.18801264, 123.00780722,
125.89166846, 128.86511168, 131.95365223, 135.18280543,
138.57808662, 142.16501113, 145.9690943, 150.01585147,
154.33079796, 158.93944911, 163.86732026])

to visualize the predictions and compare against observations

plt.rcParams['font.family']="simHei"
plt.scatter(df_women["height"], df women["weight"])
plt.plot(df_women["height"], y_predict_updated)
plt.title('Linear regression analysis of women weight and height')
plt.xlabel('height'’)

plt.ylabel('weight')

Text(0, 0.5, 'weight')

Linear regression analysis of women weight and height

160
150
£ w
g
130
120
58 1] a@ ﬁ:l b @ 0 n
height
5.1.10 Model application
In[29] | h=63.5
results_updated.predict([1,h,np.power(h,2),np.power(h,3)])
Out[29] array([130.39340008])

We can apply the fitted model to predict new data. For instance, it can be used to
predict the weight of a woman who stands 63.5 inches tall.

The argument structure for the ‘predict()’ method should match the form of the model
‘s independent variables. We can access the DocStrings by typing ‘results.predict?’

309

310 Python Data Science

5.2 Machine learning with scikit-learn

Q&A

What are the most popular Python packages for Machine Learning?

SciKit-Leam

Mlpy
TensorF low
Keras/ TensorFlow/ Theano (deep leaming)

Which method can we use to split a dataset into the training set and test set?

from skleam.model selection import train_test_split
E X_trainingSet, X _testSet, y_trainingSet, y_testSet =
train_test split(X y_data, random _state=1)

What are the common steps for Machine Learning with Python?

Business understanding T he first step for conducting data analysis and data science projects

Data loadir be_data = pd.read_csv('be_data.csv', header=0)

a wrangling;
Splitting a dataset into the training set and test set

myModel = KNeighborsC lassifier(algorithm ='kd _tree')

myModel.fit(X_trainingSet, y_trz

Make predictions with trained m odel ; y_predictSet = myModel predict(X_testSet)

from skleam.m etrics import accuracy _score

accuracy _score(y_testSet, y predictSet)

2 icting new data v e tra del:
v Model optim ization and application s Px\..\ln.uu new data with the trained model
Optimizing the model or selecting other algorithms

Advanced Python Programming for Data Science

In Machine Learning, the original dataset is usually split into three independent

subsets:

® The training set is a subset to train a model.

® The test set is a subset to test the trained model after training.

® The validation set is a subset to validate model performance during training,
especially to tune the hyperparameters and make model selection.

5.2.1 Business understanding

Business understanding is the first phase of a data science project process.

Notes
« ., | In this chapter, we provide a case project with the Scikit-learn.
- - The dataset used in this case is obtained from Wisconsin Breast Cancer Database
, N | (https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)).
= The dataset involves the columns(attributes) such as ID number, Diagnosis
Tips (M = malignant, B = benign) and 10 real-valued features are calculated for each cell

nucleus. They are:

1) radius (mean of distances from the center to points on the perimeter)
2) texture (standard deviation of gray-scale values)

3) perimeter

4) area

5) smoothness (local variation in radius lengths)

6) compactness (perimeter2 / area - 1.0)

7) concavity (severity of concave portions of the contour)

8) concave points (number of concave portions of the contour)

9) symmetry

10) fractal dimension (“coastline approximation” - 1)

The main objective of this case project is to understand the application of machine
learning in data science.

Firstly, we split the training set and test set from the dataset — “bc_data.csv”.

Secondly, a k-Nearest-Neighbors (KNN) model is trained on the training set.

Then, we use the trained model to predict the diagnosis on the test set.

Finally, the prediction results of KNN are compared against the diagnostic results
of bc_data.csv to measure the accuracy of the KNN classifier.

5.2.2 Data loading

In[1]

Out[1]

Using os.getcwd() method to get current working directory

import pandas as pd

import numpy as np

import os
0s.chdir(r'C:\Users\soloman")

print(os.getcwd())

C:\Users\soloman\clm

311

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)

312

Python Data Science

N 7/
/@\

Here, ‘C:\Users\soloman\clm’ is the working directory on the author’s computer.

=
Tips
In[2] | # to load data from the current working directory into Panda's DataFrame
bc_data = pd.read_csv('bc_data.csv', header=0)
bc_data.head()
Out[2] id | diagnosis | radius_ concave_ | symmetry_ fractal_
mean points_worst worst | dimension_
worst
0 842302 M 17.99 0.2654 0.4601 0.11890
1 842517 M 20.57 0.1860 0.2750 0.08902
2| 84300903 M 19.69 0.2430 0.3613 0.08758
3| 84348301 M 11.42 0.2575 0.6638 0.17300
4| 84358402 M| 2029 0.1625 0.2364 0.07678
5 rows x 32 columns
N\ ! 7/
- ~ | The original data file, ‘bc_data.csv’, can be found in the learning resources associated
s N . :
= with this textbook.
=
Tips
N\ ! 7/
_/ = | The be_data.head() method returns the first 5 rows. For further details, please refer to
= > [4.4 DataFrame].
Tips

5.2.3 Data understanding

In[3]

to get the shape of the bc_data DataFrame

print(bc_data.shape)

(569, 32)

For further details, please refer to [4.4 DataFrame].

In[4]

Out[4] Index(['id', 'diagnosis', Tadius_mean', 'texture_mean', 'perimeter_mean’,
'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean’,
'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se',
‘area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se',
'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_
worst', 'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst,
'concave_points_worst', 'symmetry_worst', 'fractal_dimension_worst'], dtype='object')

Advanced Python Programming for Data Science

to get the column names(properties) of the bc_data DataFrame

print(bc_data.columns)

'area_mean’,

/7
N\ | For further details, please refer to [4.4 DataFrame].
=
Tips
In[5] | ## to generate descriptive statistics for the bc_data DataFrame
print(bc_data.describe())
Out[5] id radius_ texture_ perimeter_ area_mean\
mean mean mean

count 5.690000e+02 569.000000 569.000000 569.000000 569.000000

mean 3.037183e+07 14.127292 19.289649 91.969033 654.889104

std 1.250206e+08 3.524049 4301036 24.298981 351.914129

min 8.670000e+03 6.981000 9.710000 43.790000 143.500000

25% 8.692180e+05 11.700000 16.170000 75.170000 420.300000

50% 9.060240e+05 13.370000 18.840000 86.240000 551.100000

75% 8.813129¢+06 15.780000 21.800000 104.100000 782.700000

max 9.113205e+08 28.110000 39.280000 188.500000 2501.000000
smoothness_ compactness_ concavity_ concave points_

mean mean mean mean\

count 569.000000 569.000000 569.000000 569.000000

mean 0.096360 0.104341 0.088799 0.048919

std 0.014064 0.052813 0.079720 0.038803

min 0.052630 0.019380 0.000000 0.000000

25% 0.086370 0.064920 0.029560 0.020310

50% 0.095870 0.092630 0.061540 0.033500

75% 0.105300 0.130400 0.130700 0.074000

max 0.163400 0.345400 0.426800 0.201200

313

314 Python Data Science

symmetry_mean radius_worst texture_worst \

count 569.000000 569.000000 569.000000
mean 0.181162 16.269190 25.677223
std 0.027414 4.833242 6.146258
min 0.106000 7.930000 12.020000
25% 0.161900 13.010000 21.080000
50% 0.179200 14.970000 25.410000
75% 0.195700 18.790000 29.720000
max 0.304000 36.040000 49.540000

perimeter_worst area_worst smoothness_worst compactness_worst\
count 569.000000 569.000000 569.000000 569.000000
mean 107.261213 880.583128 0.132369 0.254265
std 33.602542 569.356993 0.022832 0.157336
min 50.410000 185.200000 0.071170 0.027290
25% 84.110000 515.300000 0.116600 0.147200
50% 97.660000 686.500000 0.131300 0.211900
75% 125.400000 1084.000000 0.146000 0.339100
max 251.200000 4254.000000 0.222600 1.058000

concavity_worst concave_points_worst symmetry_worst\
count 569.000000 569.000000 569.000000
mean 0.272188 0.114606 0.290076
std 0.208624 0.065732 0.061867
min 0.000000 0.000000 0.156500
25% 0.114500 0.064930 0.250400
50% 0.226700 0.099930 0.282200
75% 0.382900 0.161400 0.317900
max 1.252000 0.291000 0.663800

fractal_dimension_worst

count 569.000000
mean 0.083946
std 0.018061
min 0.055040
25% 0.071460
50% 0.080040
75% 0.092080
max 0.207500

[8 rows x 31 columns]

/s N\ | For further details, please refer to [4.4 DataFrame].

5.2.4 Data wrangling

Advanced Python Programming for Data Science

symmetry_mean

0 0.2419
1 0.1812
2 0.2069
3 0.2597
4 0.1809
perimeter_worst
0 184.60
1 158.80
2 152.50
3 98.87
4 152.20
concavity_worst
0 0.7119
1 0.2416
2 0.4504
3 0.6869
4 0.4000
fractal_dimension_worst
0 0.11890
1 0.08902
2 0.08758
3 0.17300
4 0.07678
[5 rows x 31 columns]

radius_worst

25.38
24.99
23.57
14.91
22.54

area_worst smoothness_worst

2019.0
1956.0
1709.0

567.7
1575.0

concave_points_worst

0.1622
0.1238
0.1444
0.2098
0.1374

0.2654
0.1860
0.2430
0.2575
0.1625

:;I » | Data wrangling is one of the crucial phases in data science projects. In this case,
T4~ it refers to the process of defining the feature matrix and target vector, as well as
splitting the dataset into the training set and test set.
Notes
In[6] | # to remove the id column from the bc_data DataFrame
data = bc_data.drop(['id'], axis=1)
print(data.head())
Out[6] diagnosis radius_mean texture_mean perimeter_mean area_mean\
0 M 17.99 10.38 122.80 1001.0
1 M 20.57 17.77 132.90 1326.0
2 M 19.69 21.25 130.00 1203.0
3 M 11.42 20.38 77.58 386.1
4 M 20.29 14.34 135.10 1297.0
smoothness compactness_mean concavity_mean concave points_mean\
_mean
0 0.11840 0.27760 0.3001 0.14710
1 0.08474 0.07864 0.0869 0.07017
2 0.10960 0.15990 0.1974 0.12790
3 0.14250 0.28390 0.2414 0.10520
4 0.10030 0.13280 0.1980 0.10430

texture_worst\

17.33
23.41
25.53
26.50
16.67

compactness_
worst\

0.6656
0.1866
0.4245
0.8663
0.2050

symmetry_worst\
0.4601
0.2750
0.3613
0.6638
0.2364

315

316 Python Data Science

\:/
/
=

Here, the ID column is not an independent variable, so we will remove it from the
data DataFrame and create a new feature matrix named X_data.

Tips
In[7] | X_data = data.drop(['diagnosis'], axis=1)
X_data.head()
Out[7] radius_ | texture_ | ... | concave_points_| symmetry_ fractal_
mean mean worst worst dimension_
worst
0 17.99 10.38 | ... 0.2654 0.4601 0.11890
1 20.57 17.77 | ... 0.1860 0.2750 0.08902
2 19.69 21.251 .. 0.2430 0.3613 0.08758
3 11.42 20.38 | .. 0.2575 0.6638 0.17300
4 20.29 14.34 | .. 0.1625 0.2364 0.07678

5 rows x 30 columns

I ;ll‘ Here,
£ Axis=0 will act on all the ROWS in each COLUMN;
Axis=1 will act on all the COLUMNS in each ROW;
Notes
In[8] | # to create the target vetor
y_data = np.ravel(data[['diagnosis']])
y_data[0:6]
Out[8] array(['M', 'M', 'M', ' M', ' M', 'M'], dtype=object)
N ! 7/
_,@: np.ravel() function converts a two-dimensional array into a one-dimensional array
= and returns a contiguous flattened array.
Tips

1l
AS

In data science projects, the np.ravel() function can be used to define target

[vectors(arrays).
Notes
In[9] | # to split the original data into training subsets and test subsets
from sklearn.model selection import train_test_split
X trainingSet, X testSet, y trainingSet, y testSet = train test split(X data,
y_data, random_state=1)
N\ ! 7/
-/ \— The sklearn.model_selection .train_test_split() function is used to split arrays or
= matrices into random train and test subsets.
Tips

Advanced Python Programming for Data Science

NG
/@\

-
=

Tips

Here, X_trainingSet is the feature matrix and y_trainingSet is the target vector of
training set. Besides, X_testSet is the feature matrix and y_testSet is the target vector
of test set.

In[10]

Out[10]

In[11]

Out[11]

to show(extract) the shape of the feature matrix in training set

print(X_trainingSet.shape)

(426, 30)

to show(extract) the shape of the feature matrix in testing set

print(X_testSet.shape)

(143, 30)

5.2.5 Model selection and hyperparameter tuning

In[12]

to import KNeighborsClassifier for training the k-nearest neighbors model

from sklearn.neighbors import KNeighborsClassifier

The first step is to select an appropriate algorithm. In this case we select KNN, so
KNeighborsClassifier is imported.

to describe the algorithm and set its hyperparemters

myModel = KNeighborsClassifier(algorithm='kd _tree')

Tips

The second step is to describe the machine learning algorithm and set the
hyperparameter: algorithm="kd_tree’.
The KNN classifier implement different algorithms (BallTree, KDTree or Brute
Force) to calculate the nearest neighbors.

5.2.6 Model training

In[14]

Out[14]

to train a model on the training set

myModel.fit(X_trainingSet, y_trainingSet)

KNeighborsClassifier(algorithm="'kd_tree")

Here,
X_trainingSet is the feature matrix in the training set.
y_trainingSet is the target vector of the training set.

317

Python Data Science

5.2.7 Predicting with a trained model

.:I‘
=4

Notes

The trained model can be utilized to predict the labels for the test set.

In[15]

to predict the target vector for the test set

y_predictSet = myModel.predict(X_testSet)

Here, X_testSet is the feature matrix(independent variables) of test set.

=
Tips
In[16] | # to print the predicted labels
print(y_predictSet)
Out[16] [VMV lMl VBV VMI |Ml VM! lMl IMI |BV lBl |BV lMl |M| VBV lB' IBI IBI VBV
IBI |M| IBI VBV |M| YBI |Ml lBV lBl lMY UMV |M| YM' VBV |M| YBY |BY IBI
IMI |BV IBV VBV lB' IBI IBI VBV VBI |M| IBI IBI VBI IMI |Ml IMV IBV VBV
IBI IBI YBI |M! IB! IBI IBI lMl VBI VM' IBI YBY IB| lMl IBI IBI YBI |BY
IMI |MV IBI IMV |BV IB| VBI lMl VBV VMI |B| IMI IBI |BV lMl IBI IMV IB|
IBI |M| IBI VBV |M| YM' VBI lBV lBl IBI IBI YBY IB| lBl VBV lBl IBI IBI
IMI |MV IBI IBI IBI IBV VMI lMl VBV VBI |B| lBl |BV lMl IMI |BV IBI IMV
lMY lMV |M| YM' VBI lBV lBl lMY IBI lM' lMY IM! IBI IBI |M| IMI IBI]
In[17] | # to print the labels in the test set and compare against the predicted labels
print(y_testSet)
Out[]7] [|B| lMl IBI IMI lMl lMl IMI lMl IBI IBI |B| lMl IMI |B| IBI lBl lBl IBI

'B'M'B''B''M'B'"M'B'B''M'M'M''M''B'"'M''M''B''B'
'™M'B'"'M'B''B'"'B''B'"'B'"'B'"'M''B'"'B'"B'"'M'M'M''B''B'
'B''B''B''M''B''B''B'"'M''B'"'B'"'B'"'B'"'B'"'M' 'B''B''B''B'
MM'BMMMB'M'B'MB 'M'B 'B'"'M'B''M'B'
'B''M''B''B''M''M''B''B''B''B''B''B''B''B''B''B''B''B'
™M'MM''B'"B'"'B'MM 'B'"B'"'B''B'"B'"'M'M''B'"'B'"M
'™M'B'"'M'M'B'B'B'"'M''B'"M'M''B''B''B'"'M'M' 'B']

5.2.8 Model evaluation

L O —

Notes

The accuracy_score() function is called to calculate the performance of classification
based upon Confusion Matrix.

In[18]

Out[18]

Advanced Python Programming for Data Science

to calculate the accuracy score of the trained model

from sklearn.metrics import accuracy_score

print(accuracy_score(y_testSet, y_predictSet))

0.9370629370629371

Tips

Here,
y_testSet refers to the test set;
y_ predictSet refers to the predicted values.

5.2.9 Model optimization and application

L

Notes

We use elbow method to select the optimal number of clusters for KNN clustering.

In[19]

Out[19]

to create a for loop that trains various KNN models with different k values

from sklearn.neighbors import KNeighborsClassifier

NumberOfNeighbors = range(1,23)

KNNs = [KNeighborsClassifier(n_neighbors=i) for i in NumberOfNeighbors]

scores = [KNNs[i].fit(X_trainingSet, y_trainingSet).score(X_testSet,y_testSet) for i
in range(len(KNNs))]

SCOres

[0.9230769230769231,
0.9020979020979021,
0.9230769230769231,
0.9440559440559441,
0.9370629370629371,
0.9230769230769231,
0.9300699300699301,
0.9230769230769231,
0.9230769230769231,
0.9230769230769231,
0.9230769230769231,
0.9230769230769231,
0.9230769230769231,
0.9230769230769231,
0.9230769230769231,
0.916083916083916,

0.916083916083916,

0.916083916083916,

0.916083916083916,

0.916083916083916,

0.916083916083916,

0.9090909090909091]

319

320

Python Data Science

N 7/
/@\

Measuring the accuracy scores of the KNN model for values of k ranging from 1 to
23, and storing them in a list named “scores”.

Out[21]

=
Tips
In[20] | # to visualize the accuracy scores of the KNN models with k=1 to 23
import matplotlib.pyplot as plt
Yomatplotlib inline
plt.plot(NumberOfNeighbors,scores)
plt.rcParams['font.family'] = 'simHei'
plt.xlabel('k value')
plt.ylabel('score")
plt.title('Elbow Curve')
plt.xticks(NumberOfNeighbors)
plt.show()
Out[20] Elbow Curve
094 1
093
" 0s2
091 1
0 90 T T T T T T L T T T T T T T T T T T T T T T
12345678910111213141516171819202122
k value
N ! 7/
s N | We can see that the optimal number of clusters(k) is 4.
=
Tips
In[21] | # to retrain KNN model with the best K value(k=4) and calculate its accuracy score

from sklearn.neighbors import KNeighborsClassifier

myModel = KNeighborsClassifier(algorithm='kd_tree',n_neighbors=4)
myModel.fit(X_trainingSet, y_trainingSet)

y_predictSet = myModel.predict(X_testSet)

from sklearn.metrics import accuracy_score
print(accuracy_score(y_testSet, y_predictSet))

0.9440559440559441

Advanced Python Programming for Data Science

The accuracy score is increased to 0.9440559440559441.

- = The metrics.plot_roc_curve() function is used to plot receiver operating characteristic

- — (ROC) curve.

Notes

In[22] | # to plot the ROC curve

import matplotlib.pyplot as plt
from sklearn import metrics
metrics.plot_roc_curve(myModel, X _testSet, y_testSet)
plt.show()

Out[22] _ ,,
=08
2 e
o
2 02
4
E 0o == KNeighborsClassifier (AUC = 0.94)

00 02 04 0é 08 1.0
False Positive Rate (Positive label: M)
N\ ! 7/
- ~ | For further details, please refer to the official website https://scikit-learn.org/
s N .
= stable/modules/generated/sklearn.metrics.plot_roc_curve.html.

321

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_roc_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_roc_curve.html

322 Python Data Science

5.3 Natural language understanding with NLTK

Q&A

‘What are the most popular Python packages for Natural Language Processing

pynlpir (aPython wrapper around the NLPIR/
ICTCLAS Chinese segmentation soffwa
Jieba(Chinese text segmentation tool)

‘What are the common steps in a natural language processing task?

The prerequisite step is downloading the corpora in NLTK
nltk.download('inaugural")

Removing non-alphanumeric characters or diacritical
E.g—RESS
Converting all characters to lowercase

E 5 from nltk.corpus import stopwords
& stop_words = stopwords. words('english')

Extract high frequency words 5 .Series.value_counts()

How do I creat a word cloud?

to import a popular Python package Eg,—)' wordcloud

word_cloud.generate()
plt.imshow()
plt.axis()

v plt.show()

to use fanctions

Advanced Python Programming for Data Science

5.3.1 Business understanding

=
1= Natural Language Tool Kit (NLTK) and spaCy are two of the most popular English
+ = Natural Language Processing (NLP) tools available in Python.
Notes
4+ —1],, |In this chapter, we will use NLTK (Natural Language Toolkit) to analyze the inaugural
I _:/ speeches of the US presidents from 1789 to 2017 and compare the first speeches
+ = of four presidents: Clinton, Bush, Obama, and Trump. The data consists of multiple
Notes | inaugural speeches collected from the inaugural corpus of NLTK.

5.3.2 Data loading

L7 —

Notes

The official website of the NLTK package is https://www.nltk.org/, we recommend
readers to access the official website for further details.

In[1]

In[2]

to import the packages needed for this project

import numpy as np

import pandas as pd

import re

import matplotlib.pyplot as plt
Yomatplotlib inline

import nltk

to download the NLTK corpus "inaugural"
nltk.download('inaugural’)

If the output is “True”, it means that the download has been completed. If the download
speed is slow or the download fails, an alternative option is to directly download that
package on GitHub (https://github.com/nltk/nltk_data), and put it in the path of file
“nltk_data”.

In[3]

Out[3]

to check the file IDs in the "inaugural" dataset

from nltk.corpus import inaugural
print(inaugural.fileids())

['1789-Washington.txt', '1793-Washington.txt', '1797-Adams.txt', '1801-Jefferson.
txt', '1805-Jefferson.txt', '1809-Madison.txt', '1813-Madison.txt', '1817-Monroe.
txt', '1821-Monroe.txt', '1825-Adams.txt’, '1829-Jackson.txt', '1833-Jackson.
txt', '1837-VanBuren.txt', 'l841-Harrison.txt', '1845-Polk.txt', '1849-Taylor.
txt', '1853-Pierce.txt', '1857-Buchanan.txt', '1861-Lincoln.txt', '1865-Lincoln.
txt', '1869-Grant.txt', '1873-Grant.txt', '1877-Hayes.txt', '1881-Garfield.txt',
'1885-Cleveland.txt', '1889-Harrison.txt', '1893-Cleveland.txt', '1897-McKinley.
txt', '1901-McKinley.txt', '1905-Roosevelt.txt', '1909-Taft.txt', '1913-Wilson.
txt', '1917-Wilson.txt', '1921-Harding.txt', '1925-Coolidge.txt', '1929-Hoover.txt',
'1933-Roosevelt.txt', '1937-Roosevelt.txt', '1941-Roosevelt.txt', '1945-Roosevelt.txt',
'1949-Truman.txt', '1953-Eisenhower.txt', '1957-Eisenhower.txt', '1961-Kennedy.txt',
'1965-Johnson.txt', '1969-Nixon.txt', '1973-Nixon.txt','1977-Carter.txt', '1981-Reagan.
txt', '1985-Reagan.txt', '1989-Bush.txt', '1993-Clinton.txt', '1997-Clinton.txt', "2001-
Bush.txt', "2005-Bush.txt', 2009-Obama.txt', '2013-Obama.txt', 2017-Trump.txt']

323

https://www.nltk.org/
https://github.com/nltk/nltk_data

324 Python Data Science

N\ ! 7/
—/@: After the corpus is downloaded successfully, we import the package directly without
executing nltk.download().

-
=

Tips

In[4] | #to count the file IDs in the "inaugural" dataset

len(inaugural.fileids())

Out[4] 58
N\ ! 7/
- — | Itis evident that there are 58 documents in the inaugural corpus. We first analyze all
s N\ | the documents, and then select a few presidential inaugural speeches for in-depth
= comparative analysis.
Tips

5.3.3 Data understanding

=

:_:/ First, We create an empty DataFrame (df_inaugural) with four columns of “year”,
| 90— |

LRI

“president name”, “president”, and “speech text”.

Notes

In[5] | # to create a list and define 4 column names
cols = ['year','president name','president’, 'speech text']

#to create an empty DataFrame with the column names
df_inaugural = pd.DataFrame(columns=cols)
df_inaugural

Out[5
utls] year | president name | president | speech text

= 4 We fill in the DataFrame with the speech year, president name, combination of time
— and name, speech text.

In[6] | for i in inaugural.fileids():
year =1i[0:4]
name = re.findall(r'\-(.*)\.",1)[0]
president = year+name
text = inaugural.raw(i)
df_inaugural = df_inaugural.append({'year":year, president
name':name,'president’:president,'speech text':text}, ignore_index=True)

df_inaugural.head()

Out[6]

Advanced Python Programming for Data Science

year | president name president speech text
0| 1789 Washington | 1789Washington | Fellow-Citizens of the Senate and of the House...
1| 1793 Washington | 1793Washington Fellow citizens, I am again called upon by the...
2| 1797 Adams 1797Adams | When it was first perceived, in early times, t...
3 | 1801 Jefferson 1801Jefferson | Friends and Fellow Citizens:\n\nCalled upon to...
4 | 1805 Jefferson 1805Jefferson | Proceeding, fellow citizens, to that qualifica...

The first column is used to render the first four digits of the file name, i.e. speech year.
The second column indicates the president’s name which are extracted from the
characters between the symbol “-* and the symbol “.” with the regular expression
method.

The third column is used to render the combination of time and name.

The forth column refers to president’s speech text.

To fill in a DataFrame with speech year, president name, combination of time and
name, and speech text, you can use the DataFrame.apply() method. This method

Iy d
N allows you to apply a function to each row or column of the DataFrame.
otes
In[7] | df_inaugural[""America" count'] = df_inaugural['speech text'].apply(lambda x:
x.count('America'))
df_inaugural["'we" count'] = df_inaugural['speech text'].apply(lambda x: x.count('we'
or 'We'))
df_inaugural["'you" count'] =df_inaugural['speech text'].apply(lambda x: x.count('you'
or 'You'))
df_inaugural.head()
Out[7]
3 [13 3 b3 [13 ‘il [13 bh
year president president speech text America we you
name count | count | count
Fellow-Citizens of
0| 1789 | Washington | 1789 Washington the Senate and of 2 10 13
the House...
Fellow citizens,
1| 1793 | Washington | 1793 Washington I am again called 1 0 1
upon by the...
When it was first
2| 1797 Adams 1797 Adams | perceived, in early 8 23 1
times, t...
Friends and Fellow
3| 1801 Jefferson 1801 Jefferson | Citizens:\n\nCalled 0 18 14
upon to...
Proceeding, fellow
4| 1805 Jefferson 1805 Jefferson citizens, to that 1 22 8
qualifica...

325

326 Python Data Science

\:/
/
=

”

“America”, “we”, and “you” were selected as keywords, and the value of frequencies
these three words appeared in the speech text are returned.

Tips
In[8] | # to plot the frequency of those words
fig = plt.figure(figsize=(16,5))
plt.xticks(size = 8, rotation = 60)
plt.plot(df_inaugural['president'],df_inaugural["'America" count'],c="r',label=""America"
count')
plt.plot(df_inaugural['president'],df inaugural['"'we" count'],c='g',label=""we" count')
plt.plot(df_inaugural['president'],df _inaugural["'you" count'],c="y',label=""you" count'’)
plt.legend()
plt.title("The number of times the three words 'America’, 'we', and 'you' appear in the
presidents' inaugural speeches")
plt.show()
Out[8] The number of times the three words ‘America’, 'we' and 'you' appear in the presidents’ inaugural speeches

ca” count
count
count

“hmar
-
“vou"

Iy rrryy
F L0 77 -}:"
[3779 Wi

£

S FFFFT S IFESLEF T, J;{e;,v’jjf
I i
FFeed Ff

The word “we” appeared most frequently, and “we” is the most common word in
Van Buren’s speech in 1837. The word “America” was used frequently by Trump
in 2017.

:_-Té We count the number of words in each speech by splitting words with spaces.
Notes
In[9] | df_inaugural['word count'] = df_inaugural['speech text'].apply(lambda x: len(str(x).

split(" ")))
df_inaugural.head()

Out[9]

Advanced Python Programming for Data Science

year president president speech text | “America” | “we” | “you” | word

name count | count | count | count

0| 1789 | Washington | 1789Washington | Fellow-Citizens of 2 10 13| 1426
the Senate and of
the House...

1| 1793 | Washington | 1793Washington Fellow citizens, 1 0 1 135
T am again called
upon by the...

2| 1797 Adams 1797Adams When it was first 8 23 1| 2306
perceived, in early
times, t...

3| 1801 Jefferson 1801Jefferson Friends and 0 18 14 1725
Fellow Citizens:\n\
nCalled upon to...

4| 1805 Jefferson 1805Jefferson | Proceeding, fellow 1 22 8 2153
citizens, to that

qualifica...

We also plot a bar chart of the total number of words in each speech text.

fig = plt.figure(figsize=(16,5))

plt.xticks(np.arange(len(df_inaugural['president'])), df_inaugural['president'],size = 8,
rotation = 60)

plt.bar(np.arange(len(df_inaugural['word count'])),df _inaugural['word count'], color="blue’,
alpha=0.5)

plt.title("The number of words in the presidents' inaugural speeches")

Out[10]

Text(0.5, 1.0, "The number of words in the presidents’ inaugural speeches")

The number of words in the presidents’ inaugural speeches

EEEEERE!

o

FIf SIFTRIF IS FIT RIS FF IFIIELEESE FFFE ;;_,fr
fﬁ‘r\f\u r'rrd ;{‘;fa; fﬁgy\{,;‘;j_fgg:; : f;f}f[@é};’;’ ? J-”’t

Notes

The sent_tokenize() function in the NLTK.tokenize package can be used to split a text
to sentences.

327

328 Python Data Science

In[11]

Out[11]

In[12]

Out[12]

from nltk.tokenize import sent_tokenize

df_inaugural['sentence count'] = df inaugural['speech text'].apply(lambda x: len(sent_

tokenize(x)))
df_inaugural.head()

year | president president speech text | “America” | “we” | “you” | word | sentence
name count | count | count | count count
0| 1789 | Washington 1789 | Fellow-Citizens 2 10 13 1426 23
‘Washington of the Senate
and of the
House...
1| 1793 | Washington 1793 | Fellow citizens, 1 0 1 135 4
Washington I am again
called upon by
the...
21 1797 Adams 1797 When it was 8 23 1 2306 37
Adams | first perceived,
in early times,
t...
3| 1801 Jefferson 1801 Friends 0 18 14 1725 41
Jefferson and Fellow
Citizens:\n\
nCalled upon
to...
4| 1805 Jefferson 1805 Proceeding, 1 22 8 2153 45
Jefferson fellow
citizens, to that
qualifica...

fig = plt.figure(figsize=(16,5))

plt.xticks(np.arange(len(df_inaugural['president'])), df_inaugural['president'],size = 8§,

rotation = 60)

plt.bar(np.arange(len(df_inaugural['sentence count'])),df inaugural['sentence count'],

color="purple', alpha=0.5)
plt.title("The number of sentences in the presidents' inaugural speeches")

Text(0.5, 1.0, "The number of sentences in the presidents’ inaugural speeches")

The number of sentences in the presidents’ inaugural speeshes

e FEEILS uw:,:,,,; oYy
tjﬂ‘ ,‘“p" ;{, *"a-f,f,‘!,ff é‘...a;f !..y.fv ig{;ﬁg !f!;f:f ifef;’

Advanced Python Programming for Data Science 329
LY
_/ : It can be seen that Van Buren’s speech text had a relatively high number of words and
= sentences in 1837, while Washington’s speech had a relatively low number in 1793.
=
Tips
T —I, | Next, we choose the speeches of Trump, Obama, Bush and Clinton for analysis.
::3/ Since there are some presidents who are re-elected, we choose the speeches of their
T~ 7= first inauguration ——2017-Trump.txt”, “2009-Obama.txt”, “2001-Bush.txt”,
Notes | “1993-Clinton.txt”.
In[13] | president_speech = df inaugural[df_inaugural['year'].isin(['2017',22009','2001",'1993'
DI
president_speech = president_speech.reset_index(drop=True)
president_speech
Out[13] year | president president speech text | “America”| “we”| ‘“you”| word| sentence
name count| count| count| count count
0| 1993 Clinton | 1993Clinton My tellow 33 57 12 1583 81
citizens, today
we celebrate
the mys...
1| 2001 Bush 2001Bush President 20 43 9 1580 97
Clinton,
distinguished
guests and
my...
2| 2009 Obama | 20090bama My fellow 15 75 18 2383 110
citizens:\n\
nl stand here
today humb...
3| 2017 Trump | 2017Trump | Chief Justice 35 37 23 1425 90
Roberts,
President
Carter, Presi...

5.3.4 Text normalization

In[14]

Out[14]

nn

president_speech['speech text'] = president_speech['speech text'].apply(lambda x: " ".
join(x.lower() for x in x.split()))
president_speech['speech text']

0 my fellow citizens, today we celebrate the mys...
1 president clinton, distinguished guests and my...
2 my fellow citizens: i stand here today humbled...
3 chief justice roberts, president carter, presi...
Name: speech text, dtype: object

N ! 7/
/@\
=

Tips

Converting all characters to lowercase.

330

Python Data Science

In[15]

Out[15]

president_speech['speech text] =
W\S]‘,”)
president_speech['speech text']

president_speech['speech text'].str.replace('[\

0 my fellow citizens today we celebrate the myst...
1 president clinton distinguished guests and my ...
2 my fellow citizens i stand here today humbled ...
3 chief justice roberts president carter preside...
Name: speech text, dtype: object

Removing all special characters except space from a string.

=3
Tips
Ny . .
Regular Expression is used. It is a sequence of characters that forms a search pattern.
L In the above code, “\w” returns a match where the string contains any word characters
= (characters from a to Z, digits from 0-9, and the underscore _ character); “\s” returns
T.' a match where the string contains a white space character.
ips

5.3.5 Tokenization

B I g
=7
-__»__l

Notes

One of the major forms of tokenization is to filter out stopwords.

L " —

Notes

Stopwords are words that are extremely common in human language but carry
minimal meaning since they represent highly frequent words such as “the”, “to”,”
‘60f”’ and 66t0.”

In[16]

Out[16]

from nltk.corpus import stopwords

stop_words = stopwords.words(‘english’)

president_speech['speech text'] = president_speech['speech text'].apply(lambda x:
" " join(x for x in x.split() if x not in stop_words))

president_speech['speech text']

0 fellow citizens today celebrate mystery americ...
1 president clinton distinguished guests fellow ...
2 fellow citizens stand today humbled task us gr...
3 chief justice roberts president carter preside...
Name: speech text, dtype: object

A\

Tips

NLTK includes a list of 40 stop words, including: “a”, “an”, “the”, “of”’, “in”, etc.

Advanced Python Programming for Data Science

In[17] | add_stopwords = ['us','1','in','shall']
stop_words.extend(add_stopwords)
stop_words=set(stop_words)
president_speech['speech text'] = president_speech['speech text'].apply(lambda x: " ".
join(x for x in x.split() if x not in stop_words))
president_speech|['speech text']
Out[17] 0 fellow citizens today celebrate mystery americ...
1 president clinton distinguished guests fellow ...
2 fellow citizens stand today humbled task grate...
3 chief justice roberts president carter preside...
Name: speech text, dtype: object
N ! 7/
- " | There are still some useless words (such as “us”) after filtering out stopwords. So we
s N
= add custom stopwords and then remove them from speech texts.
Tips
N ! 7/
@ The custom stopwords are “us”, “i”, “in”, “shall”.
=
Tips

\

We recorded the frequency of word occurrences in each of the four presidents’
speeches. The 5 words with the highest frequency are extracted as high frequency
words.

Notes
In[18] | speech_1993Clinton = president_speech['speech text'][0]
freq_words_1993Clinton = pd.Series(speech_1993Clinton.split()).value_counts()[:5]
speech_2001Bush = president_speech['speech text'][1]
freq_words_2001Bush = pd.Series(speech_2001Bush.split()).value_counts()[:5]
speech_20090bama = president_speech['speech text'][2]
freq_words_20090bama = pd.Series(speech_20090bama.split()).value_counts()[:5]
speech_2017Trump = president_speech['speech text'][3]
freq_words_2017Trump = pd.Series(speech_2017Trump.split()).value_counts()[:5]
N\ ! 4
- = | The pd.Series().value_counts() function returns a series containing counts of unique
= values.

Tips

331

332

Python Data Science

In[19] | freq_words_2017Trump

Out[19]

america 19
american 11
people 10
country 9
one 8

dtype: int64

N\ 7/
/@\

The high frequency words in Trump’s speech are “america”, “american”, “people”,

= “country”, “one”. The word “america” appears 19 times in his speech.

Tips

In[20] | plt.figure(figsize=(16,16))
fig,ax = plt.subplots(2, 2, figsize=(10,6))
plt.subplots_adjust(wspace=1.0, hspace=0.3)
ax[0][0].barh(freq_words_1993Clinton.index, freq_words_1993Clinton, color="red',
alpha=0.3)
ax[0][0].set_title("High-frequency words in Clinton's inaugural speech in 1993")
ax[0][1].barh(freq_words_2001Bush.index, freq_words_2001Bush, color='green’,
alpha=0.3)
ax[0][1].set_title("High-frequency words in Bush's inaugural speech in 2001")
ax[1][0].barh(freq_words_20090bama.index, freq_words_20090bama, color="yellow',
alpha=0.3)
ax[1][0].set_title("High-frequency words in Obama's inaugural speech in 2009")
ax[1][1].barh(freq_words_2017Trump.index, freq_words_2017Trump, color='teal’,
alpha=0.3)
ax[1][1].set_title("High-frequency words in Trump's inaugural speech in 2017")
plt.show()

Out[20] <Figure size 1152x1152 with 0 Axes>
High—frequency words in Clinton"s inaugural speech in 1993 High-frequency words in Bush’'s inaugural speech in 2001
H:gh-frequen:y vords’m ﬂba-:s mau:rnl speech in 2009 m'h-frequel:y Itor:s in 1:uu's e:nuugursn\ speech in 2017
NP
s N\ | The horizontal bar charts of high frequency words are drawn with matplotlib.
=

Advanced Python Programming for Data Science 333

\I/

/@ The plt.subplots(2, 2) method stacks subplots in two directions.
=

Tips

5.3.7 Generating word clouds

| —¢ Finally, we import the wordcloud package to generate word clouds for the speeches of
F-— the four presidents, respectively.

Notes

In[21] | # to generate the word cloud of Clinton's inaugural speech in 1993

from wordcloud import WordCloud

word_cloud = WordCloud(font_path='calibri.ttf",
background_color='white',
stopwords=stop_words)

word_cloud.generate(speech_1993Clinton)

plt.subplots(figsize=(8,5))

plt.imshow(word_cloud)

plt.axis('off")

plt.title("Word cloud of Clinton's inaugural speech in 1993")

Out[21] Text(0.5, 1.0, "Word cloud of Clinton’s inaugural speech in 1993")

Word cloud of Clinton's inaugural speech in 1993

"tlmechangec mglen?g Tl doney

=2 e d_emocza.fv -

= (ngens O3

g :
Gemena O service better By
ay £ mialtifgn'_s : qu

- g s §
% § E - Qﬁ
o Bl 50 §m
VB v e - E 2
- P - form I G = T
nemee 58 a 50N > i less -ou tahhljta):‘ thsﬁgl'n&?”i
frenewal— work _nation idea -5

In[22] | # to generate the word cloud of Bush's inaugural speech in 2001

word_cloud.generate(speech_2001Bush)
plt.subplots(figsize=(8,5))

plt.imshow(word_cloud)

plt.axis('off")

plt.title("Word cloud of Bush's inaugural speech in 2001")

334 Python Data Science

Out[22] Text(0.5, 1.0, "Word cloud of Bush's inaugural speech in 2001")

Word cloud of Bush's irsaugural speech in 2001

R] il - @] m.l'rn!

amerlca.neoun ry

s=MUSE.: .r_\ew,_co“mmo

) "' ‘m‘ t.-b haw onleye B mple NTECesT Eny
Corps — - t‘l -
z ¥ a \ H—J
g 3 14 ©
= sl _E 7
nevpr eig .pubnc freedom,”:'ff ""t -
S 6, a
wort - ; g . l“'l"“" "'i
-)._ gE
Service commltmentchﬂ ren KNOw C aracterponcs *some |mes tory "E

In[23] | # to generate the word cloud of Obama's inaugural speech in 2009

word_cloud.generate(speech_20090bama)
plt.subplots(figsize=(8,5))

plt.imshow(word_cloud)

plt.axis('off")

plt.title("Word cloud of Obama's inaugural speech in 2009")

Out[23] Text(0.5, 1.0, "Word cloud of Obama’s inaugural speech in 2009")

Word cloud of Bush's inaugural speech in 2001
small s

amerlcaneountry

O MUSTt. . enew commo

8
- — e uty

- = & v}
§qf'| I a= I . LH E r‘y
o o NSRS @ g Tr @putic freed omm-« u r
gmr work i § ‘i e mE
Service commftmentchll ren know Characterponce -some |mes

In[24] | # to generate the word cloud of Trump's inaugural speech in 2017

word_cloud.generate(speech_2017Trump)
plt.subplots(figsize=(8,5))

plt.imshow(word_cloud)

plt.axis('off")

plt.title("Word cloud of Trump's inaugural speech in 2017")

Out[24] Text(0.5, 1.0, “Word cloud of Trump’s inaugural speech in 2017”)

Word cloud of Trump's inaugural speech in 2017

one whether oo unitedmilligne 1y factones r—_

Jewin ,astl OAi '“P.),ps,g ple

-

f_ah

rary countrx (:,j |

make america

COUNTres
{‘ H ™ N
= Eg o
l*.::li !%l lic a =
citizensefams _ aCross| """‘thank _ day sst=s first

Y

@

hung ba

a“
Qa
l
E.'fb
i<
M
'?2
o))
“
<D
]
'i’

Advanced Python Programming for Data Science 335

5.4 Image processing with OpenCV

Q&A

What are the most popular Python packages for image p rocessing

Mahot
SimplelTK

Pillow

T his chapter will adopt the OpenCV package

How do I install and import the OpenCV package?

—)“ E | S

o 5

to 1m port r.g im port cvl

How do I read, display and write an image using OpenCV ?

IE » =

cv2.imshow
to display E.g

=8

cv2.waitKey()

—)“ y) S

How do I implemen t face detection using Open CV?

faceCascade=
cv2.CascadeClassifier

First, load a classifier from a file

faceC ascade.detectMultiScale ()

v Third, draw a rectangle on the image cv2.rectangle ()

336

Python Data Science

5.4.1 Installing and importing opencv-python package

=

Notes

The command to download opencv-python package is “pip install opencv-python”.

:l‘
=7

Notes

Here, the module import name name(cv2) differs from the package name(opencv-
python). cv2 (old interface in old OpenCV versions was named as cv) is the name that
OpenCV developers chose when they created the binding generators.

In[1]

to import the opencv package

import cv2

Tips

OpenCV (Open Source Computer Vision Library) is an open-source library that
includes several hundreds of computer vision algorithms. In this chapter, we use the
haarcascades algorithm, which is a machine learning-based object detection algorithm,
for face detection.

5.4.2 Loading image from file

L " —

Notes

To load the image file “test.jpg” into the image object named “image,” you can use the
imread() method from the “opencv-python” package.

In[2]

to load(read) the mage file from the current working directory

image = cv2.imread("test.jpg")

Tips

The image file “test.jpg” is available in the learning resources for this textbook.

5.4.3 Converting a RGB image into Grayscale

=)
=7

Notes

In OpenCV-Python, it is necessary to convert an RGB image into grayscale before
using the faceCascade.detectMultiScale() function, as it expects grayscale inputs.

Advanced Python Programming for Data Science 337

!

To display the converted grayscale image object “gray” in OpenCV-Python, we can
use the imshow() function and the waitKey() function from the cv2 module.

ol
N,

Notes

In[3] | # to convert an image from colour to grayscale
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

to show the grayscale
cv2.imshow("Showing gray image", gray)
cv2.waitKey(0)

Out[3] -1

|
N\ 7/
- — | The cv2.imshow() method is used to display an image in a window. Its argument
“Showing gray image” returns a string representing the name of the window in which
= image to be displayed. Its argument gray refers to the image that is to be displayed.
Tips

|
‘@’ The waitkey() function allows users to display a window for given milliseconds or
=

until any key is pressed.
Here, the waitkey(0) means that it will display the window infinitely until users
actually press any key.

Tips

5.4.4 Detecting faces

In[4] | # to load the haarcascade frontalface classifier

faceCascade=cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface
default.xml")

to show the value of cv2.data.haarcascades
cv2.data.haarcascades

Out[4] 'C:\\ProgramData\\Anaconda3\\lib\\site-packages\\cv2\\data\\'

338

Python Data Science

N 7/
/@\

A Haar-Cascade Classifier is a machine learning classifier that works with Haar-
like features. Haar-like features are digital image features widely used in object
recognition. For further detail, please refer to the paper “Viola, P., & Jones, M. (2001,

= December). Rapid object detection using a boosted cascade of simple features. In
Tips Proceedings of the 2001 IEEE computer society conference on computer vision and
pattern recognition. CVPR 2001 (Vol. 1, pp. I-]). leee.”
<., | A range of Haar cascade XML files are provided in OpenCV, each of which holds
- — | the Haar features for different objects. In this data science project, we employ a pre-
/®\ defined Haar cascade XML file (haarcascade_frontalface_default.xml) in order to
= detect frontal faces in an image. You can access the list of Haar cascade XML files
Tips from this link: https://github.com/opencv/opencv/tree/master/data/haarcascades.
I —4 | In OpenCV-Python, we can use the CascadeClassifier.detectMultiScale() function to
T4~ detect faces in an image. This function takes an image as input and returns a list of
rectangles representing the detected faces.
Notes
In[5] | faces=faceCascade.detectMultiScale(gray
,scaleFactor=1.1
;minNeighbors=5
,minSize=(30,30))
Out[5] 'C:\\ProgramData\\Anaconda3\\lib\\site-packages\\cv2\\data\\'
<L, |Inthe CascadeClassifier.detectMultiScale() function:
- = 1. The scaleFactor is an argument that specifies how much the image size is reduced
/®\ at each image scale.
= 2. The minNeighbors is an argument that specifies how many neighbors each
Tips candidate rectangle should have to retain it.

3. The minSize is an argument that determines the minimum size of the object you
want to detect.

\

In OpenCV-Python, we can use the cv2.rectangle() function to draw a rectangle on the

[— image for each detected face.
Notes
In[6] | # to draw a rectangle on the image for each detected face
for (x,y,w,h) in faces:
cv2.rectangle(image,(X,y),(x+w,y+h),(0,255,0),2)
<\, |Inthe cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2) function:
_/ : (x,y) is the argument that determines the starting coordinates of the rectangle.
= (x+w,y+h) is the argument that determines the ending coordinates of the rectangle.
Tips (0,255,0) refers to the color of the border line of the rectangle to be drawn. For

example, (0,0,255) corresponds to the color red.
2 determines the thickness of the rectangle’s border line in pixels

https://github.com/opencv/opencv/tree/master/data/haarcascades

Advanced Python Programming for Data Science 339

5.4.5 Showing images

— I N
[—¢ We call the cv2.imshow() function to display the image with the detected face and the
o |

F-— added rectangle border.

Notes

In[5] | # to show the image

cv2.imshow("Window Name", image)
cv2.waitKey(0)

Out[5] -1

5.4.6 Writing images
.:l .

— To write an image with rectangles according to the specified format in the current

Eh— working directory using OpenCV-Python, you can use the cv2.imwrite() function.
Notes

In[6] | # to write the image

cv2.imwrite("test.png",image)
Out[6] True

340

Python Data Science

Exercises

(1]

[2]

[3]

[4]

[5]

[6]

Select the appropriate option to complete the following code.
import statsmodels.api as sm

#Set the super parameter of intercept

()

X_add_const

Model = sm.OLS(y, X_add_const)

A. X_add_const=sm.add_constant(X)
B. X=sm.add_constant(X)
C. X_add_const=sm.add(X)

Which of the following founction will be used to execute the variance of array data when using
Python for statistical analysis?

A. data.mean()

B. data.median()

C. data.var()

D. data.std()

Which of the following is false of data consolidation?

A. Two tables can be stacked horizontally or vertically with the concat method.

B. Two tables can be stacked horizontally or vertically with the append method.

C. When the argument axis in the concat function is O, it indicates vertical operation, and when axis is 1,
it indicates horizontal operation.

D. The argument join in the concat function indicates whether other indexes in the axial direction are
merged by intersection or union.

Which of the following statements about the characteristics of Min-max normalization is false?

A. The overall distribution of data will not change with Min-max normalization.

B. When the data is equal to the minimum value, the data will become 1 with Min-max normalization.

C. If the range of data is too large, the difference between the normalized data will be very small.

D. If a value in the dataset is too large, the normalized value will be close to zero with Min-max
normalization.

Select the appropriate code to reduce the dimension of the column quantity.
import pandas as pd

import numpy as np

import os

data = pd.read_csv(‘data.csv’, header=0

sort_data=___ (data[[‘quantity’]])

A. pd.ravel
B. np.ravel
C. os.ravel

Which of the following is false of the regression algorithm?

A. Linear regression is applicable to the case where there is a linear relationship between the dependent
variable and the independent variable.

B. Logistic regression is generally applicable to the case where the dependent variable has two values: 1
and O (yes or no).

C. Ridge regression is applicable to the case of multicollinearity between independent variables.

D. Principal component regression is applicable to the case where there is no collinearity between
independent variables.

Advanced Python Programming for Data Science = 341

[7]1 According to the generation mode of individual learners, ensemble learning can be roughly divided
into two categories. One is a parallelization method that can be generated simultaneously without
strong dependency between individual learners. The representative of this method is ()

A. boosting

B. bagging

C. decision tree
D. reboot

[8] Which of the following algorithms has no corresponding API in sklearn?
A. Support vector machine
B. K nearest neighbor classification
C. Gauss naive Bayes
D. Bayes

[9] Which of the following is not an evaluation indicator of the classification model?
A. Accuracy rate
B. Recall rate
C. Mean square error
D. ROC curve

10. Which of the following is flase of the arguments in the train_ test Is function?
A. Test size represents the size of the test set.
B. Train size represents the size of the training set.
C. Random state represents random seed number, which by default is 1.
D. shuffle represents whether to sample with or without replacement.

[11] Which of the following is not a method of the sklearn converter?
A. fit
B. transform
C. fit transform
D. transform fit

[12] Which of the following is a package for Chinese natural language processing in Python?
A. NTLK
B. spaCy
C. Jieba

[13] Which of the following function can be used to customize vocabulary?
pynlpirAddUserWord()

. nlpirAddUserWord()

. pynlpir.get_key words()

. pynlpir.nlpirAddUserWord()

>

. Word count in text

. Vector annotation of words
. Part of speech tag

. Basic dependency grammar

B
C
D
[14] What are the features of text corpus?
A
B
C
D
E. All of the above

[15] Which of the following indicator can be used to calculate the distance between two word vectors?
A. Lemmatization
B. Euclidean distance
C. N-grams

342

Python Data Science

[16] Which of the following is false of the lifting algorithm?

A.

O

Each step of boosting algorithm will create a weak prediction model. Finally, all weak prediction
models will be accumulated and summarized to obtain a total model.

. The generation of each weak prediction model will depend on the gradient decline of the loss

function.

GDBT and AdaBoost are both methods in boosting learning.

AdaBoost can only use the decision tree (CART) as the weak classifier, and the loss function used by
GDBT is still the least squares loss function.

[17] Which of the following is false of face recognition?

A.

O

Face recognition is a technology that can recognize or verify the identity of the subject in the image
or video.

. Face recognition has become one of the most studied topics in the field of computer vision and

biometrics.

Faces in-the-wild have a high degree of variability.

Face recognition is inherently invasive, which means that it is the most natural and intuitive biometric
method.

[18] Which of the following is not a face recognition application?

A.
B.
C.
D.

Face unlock

Safety protection
Retinal recognition
Signature identification

[19] Which of the following is not an application of face recognition technology?

A.

Automatically capture and scan records when people or vehicles enter and leave the community,
eliminating manual records and saving time and effort.

. Quickly extract the focus of attention in user comments, directly reflect the subjective feelings of

brands or products, facilitate market, operation, products and other relevant personnel to collect
market information, and adjust or optimize products and strategies.

. Al scanning and capturing instruments are used for face recognition and license plate recognition,

and the images captured through the network of recognition instruments are clustered and analyzed
by peers.

The identification technology is used to classify and identify the resident population and floating
population in the community, and early warning the action track of suspicious persons in advance.

[20] Which of the following statements about face recognition is true?

A.

The four features of face recognition include geometric features, model-based features, statistics-
based features and neural network-based features.

. The three main technologies of face recognition include face detection technology based on features,

face detection technology based on template matching and face detection technology based on
statistics.

. Face recognition is mainly based on human facial image features. How to recognize the facial changes

caused by posture has become one of the difficulties of this technology.
All of the above

Appendix I Best Python Resources for Data
Scientists

1 Websites

[1].
[2].
[3].
[4].
[5].
[6].
[71.
[8].
[9].

python official website: https://www.python.org

Python packages index: https://pypi.org/project/pip/

Free Interactive Python Tutorial: LearnPython.org

Learn R, Python & Data Science Online: https://www.datacamp.com/

The pydata community for developers and users of open source data tools https://pydata.org/
pystatsmodels: https://groups.google.com/forum/#!forum/pystatsmodels

Python cheat sheet: https://ehmatthes.github.io/pcc/cheatsheets/README.html

PEP 8: The Style Guide for Python Code: https://www.python.org/dev/peps/pep-0008/
Kaggle Machine Learning and Data Science Community: https://www.kaggle.com

[10]. Python Weekly: https://www.pythonweekly.com/

[11]. The GitHub open source community: https://github.com/open-source
[12]. Stack Overflow: https://stackoverflow.com/

2. Books

[1].

[2].

[3].
[4].
[5].

[6].
[7].
8].

VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. O’Reilly
Media, Inc.

McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and
[Python.O’Reilly Media, Inc.

Kirk, M. (2017). Thoughtful machine learning with Python: a test-driven approach.O’Reilly Media, Inc.
Ramalho, L. (2015). Fluent Python: Clear, concise, and effective programming.O’Reilly Media, Inc.
Chambers, B., & Zaharia, M. (2018). Spark: The definitive guide: Big data processing made
simple.O’Reilly Media, Inc.

Grus J. Data science from scratch: first principles with python[M]. O’Reilly Media, 2019.

Lutz, M. (2013). Learning python: Powerful object-oriented programming.O’Reilly Media, Inc.

Matthes, E. (2019). Python crash course: A hands-on, project-based introduction to programming. No
Starch Press.

3. Python Packages

[1].
[2].
[3].
[4].
[5].

[6].
[7].

Data Wrangling: Pandas,Numpy,Scipy

Data Visualization: Matplotlib,Seaborn,Bokeh,Basemap,Plotly,NetworkX
Machin Learning: SciKit-Learn, PyTorch, TensorFlow, Theano,Keras
Statistical analysis: Statsmodels

Natural Language Processing: Natural Language Toolkit (NLTK), Gensim CoreNLP,spaCy,TextBlob,
PyNLPI1

Web Scraping :Scrapy,Beautiful Soup, Requests,Urllib
Image Processing:OpenCV,Scikit-Image, Mahotas,Simplel TK,Pillow

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 343
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2

https://www.python.org
https://pypi.org/project/pip/
https://www.datacamp.com/
https://pydata.org/
https://groups.google.com/forum/#!forum/pystatsmodels
https://ehmatthes.github.io/pcc/cheatsheets/README.html
https://www.python.org/dev/peps/pep-0008/
https://www.kaggle.com
https://www.pythonweekly.com/
https://github.com/open-source
https://stackoverflow.com/
https://doi.org/10.1007/978-981-19-7702-2

Appendix II Answers to Chapter Exercises

Chapter I Python and Data Science
1.B 2.A 3.B 4.B 5.D
6.C 7.D 8.B 9.D 10.C

Chapter II Basic Python Programming for Data Science

1.C 2.B 3.B 4.D 5.A

6.D 7.D 8.B 9.C 10.C
11.A 12.C 13.C 14.D 15.B
16.C 17.C 18.B 19.C 20.D

Chapter III Advanced Python Programming for Data Science

L.A 2.C 3.D 4.C 5.B

6.D 7.C 8.D 9.B 10.A
11.D 12.C 13.C 14.D 15.A
16.B 17.C 18.A 19.A 20.C

Chapter IV Data wrangling with Python

1.C 2.B 3.C 4.A 5.B

6.B 7.B 8.D 9.B 10.B
11.C 12.A 13.B 14.C 15.B
16.B 17.D 18.C 19.D 20.D

Chapter V Data analysis with Python

L.A 2.C 3B 4.B 5B

6.D 7.B 8.D 9.C 10.C
11.D 12.C 13.D 14.E 15.B
16.D 17.D 18.D 19.B 20.D

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C. Borjigin, Python Data Science, https://doi.org/10.1007/978-981-19-7702-2

345

https://doi.org/10.1007/978-981-19-7702-2

	Preface
	Contents
	1. Python and Data Science
	1.1 How to learn Python for data science
	1.2 How to setup my Python IDE for Data Science
	1.3 How to write and run my Python codes
	1.3.1 Inputs
	1.3.2 Outputs
	1.3.3 Errors and warnings
	1.3.4 External data files
	1.3.5 Tips for Python programming

	Exercises

	2. Basic Python Programming for Data Science
	2.1 Data Types
	2.1.1 Checking data types
	2.1.2 Testing data types
	2.1.3 Converting data types
	2.1.4 Built-in data types
	2.1.5 Sequences

	2.2 Variables
	2.2.1 Defining variables
	2.2.2 Dynamically typed language
	2.2.3 Strongly typed language
	2.2.4 Variable naming rules
	2.2.5 Case-sensitivity
	2.2.6 Variable naming rules
	2.2.7 Checking IPython variables
	2.2.8 Checking Python keywords
	2.2.9 Checking all defined variables
	2.2.10 Deleting variables

	2.3 Operators and Expressions
	2.3.1 Common used operators
	2.3.2 Built-in functions
	2.3.3 Math modules
	2.3.4 Precedence and associativity

	2.4 Statements
	2.4.1 Writing a statement in a line
	2.4.2 Writing multiple statements in a single line
	2.4.3 Splitting a statement into multiple lines
	2.4.4 Compound statements
	2.4.5 Empty statements

	2.5 Assignment statements
	2.5.1 Assigning objects
	2.5.2 Chained assignment statements
	2.5.3 Augmented assignment statements
	2.5.4 Sequence unpacking
	2.5.5 Swapping two variables

	2.6 Comments
	2.6.1 Line comments
	2.6.2 Block comments

	2.7 If statements
	2.7.1 Basic syntax
	2.7.2 Elif statement
	2.7.3 Ternary operators
	2.7.4 Advanced syntax

	2.8 For statements
	2.8.1 Basic syntax
	2.8.2 The range() function
	2.8.3 Advanced syntax

	2.9 While statements
	2.9.1 Basic syntax
	2.9.2 Advanced syntax

	2.10 Lists
	2.10.1 Defining lists
	2.10.2 Slicing
	2.10.3 Reversing
	2.10.4 Type conversion
	2.10.5 the extend and append operator
	2.10.6 List derivation
	2.10.7 Insertion and deletion
	2.10.8 Basic functions

	2.11 Tuples
	2.11.1 Define tuples
	2.11.2 Main features
	2.11.3 Basic usage
	2.11.4 Tuples in data science

	2.12 Strings
	2.12.1 Defining strings
	2.12.2 Main features
	2.12.3 String operations

	2.13 Sequences
	2.13.1 Indexing
	2.13.2 Slicing
	2.13.3 Iteration
	2.13.4 Unpacking
	2.13.5 Repeat operator
	2.13.6 Basic Functions

	2.14 Sets
	2.14.1 Defining sets
	2.14.2 Main features
	2.14.3 Basic operations
	2.14.4 Sets and data science

	2.15 Dictionaries
	2.15.1 Defining dictionaries
	2.15.2 Accessing dictionary items
	2.15.3 Dictionary and data science

	2.16 Functions
	2.16.1 Built-in functions
	2.16.2 Module Functions
	2.16.3 User-defined functions

	2.17 Built-in functions
	2.17.1 Calling built-in functions
	2.17.2 Mathematical functions
	2.17.3 Type conversion functions
	2.17.4 Other common used functions

	2.18 Module functions
	2.18.1 import module name
	2.18.2 import module name as alias
	2.18.3 From module name import function name

	2.19 User-defined functions
	2.19.1 Defining user-defined functions
	2.19.2 Function docStrings
	2.19.3 Calling user-defined functions
	2.19.4 Returning values
	2.19.5 Parameters and arguments
	2.19.6 Scope of variables
	2.19.7 Pass-by-value and pass-by-reference
	2.19.8 Arguments in functions

	2.20 Lambda functions
	2.20.1 Defining a lambda function
	2.20.2 Calling a lambda function

	Exercises

	3. Advanced Python Programming for Data Science
	3.1 Iterators and
	3.1.1 Iterable objects vs. iterators
	3.1.2 Generator vs. iterators

	3.2 Modules
	3.2.1 Importing and using modules
	3.2.2 Checking built-in modules list

	3.3 Packages
	3.3.1 Packages vs modules
	3.3.2 Installing packages
	3.3.3 Checking installed packages
	3.3.4 Updating or removing installed packages
	3.3.5 Importing packages or modules
	3.3.6 Checking Package Version
	3.3.7 Commonly used Packages

	3.4 Help documentation
	3.4.1 The help function
	3.4.2 DocString
	3.4.3 Checking source code
	3.4.4 The doc attribute
	3.4.5 The dir() function

	3.5 Exception and errors
	3.5.1 Try/Except/Finally
	3.5.2 Exception reporting mode
	3.5.3 Assertion

	3.6 Debugging
	3.6.1 Enabling the Python Debugger
	3.6.2 Changing exception reporting modes
	3.6.3 Working with checkpoints

	3.7 Search path
	3.7.1 The variable search path
	3.7.2 The module search path

	3.8 Current working directory
	3.8.1 Getting current working directory
	3.8.2 Resetting current working directory
	3.8.3 Reading / writing current working directory

	3.9 Object-oriented programming
	3.9.1 Classes
	3.9.2 Methods
	3.9.3 Inheritance
	3.9.4 Attributes
	3.9.5 Self and Cls
	3.9.6 __new__ () and __init__()

	Exercises

	4. Data wrangling with Python
	4.1 Random number generation
	4.1.1 Generating a random number at a time
	4.1.2 Generating a random array at a time

	4.2 Multidimensional arrays
	4.2.1 Createting ndarrays
	4.2.2 Slicing and indexing ndarrays
	4.2.3 Shallow copy and deep copy
	4.2.4 Shape and reshape
	4.2.5 Dimension and size
	4.2.6 Evaluation of ndarrays
	4.2.7 Insertion and deletion
	4.2.8 Handling missing values
	4.2.9 Broadcasting ndarray
	4.2.10 Sorting an ndarray

	4.3 Series
	4.3.1 Creating Series
	4.3.2 Working with Series

	4.4 DataFrame
	4.4.1 Creating DataFrames
	4.4.2 Index or columns of DataFrames
	4.4.3 Slicing DataFrames
	4.4.4 Filtering DataFrames
	4.4.5 Arithmetic operating on DataFrames
	4.4.6 Descriptive analysis of DataFrames
	4.4.7 Sorting DataFrames
	4.4.8 Importing/Exporting DataFrames
	4.4.9 Handling missing values with Pandas
	4.4.10 Grouping DataFrames

	4.5 Date and time
	4.5.1 Creating a time or date object
	4.5.2 Parsing a string to a time or date object
	4.5.3 Getting current local data or time object
	4.5.4 Evaluating the difference between two date or time objects
	4.5.5 Setting a time or date object as the index of Pandas
	4.5.6 The pandas.period_range() method

	4.6 Data visualization
	4.6.1 Matplotlib visualization
	4.6.2 Adjusting plot attributes
	4.6.3 Changing the type of a plot
	4.6.4 Changing the value range of the axes of a plot
	4.6.5 Adjusting the margins of a plot
	4.6.6 Creating multiple plots on the same coordinates
	4.6.7 Adding an Axes to the current figure or retrieving an existing Axes
	4.6.8 Saving plots to image files
	4.6.9 Creating more complicate plots
	4.6.10 Data visualization with Pandas
	4.6.11 Data visualization with Seaborn
	4.6.12 Data visualization cases projects
	Exercises

	5. Data analysis with Python
	5.1 Statistical modelling with statsmodels
	5.1.1 Business understanding
	5.1.2 Data loading
	5.1.3 Data understanding
	5.1.4 Data wrangling
	5.1.5 Model selection and hyperparameter tuning
	5.1.6 Fitting model and summarizing the Regression Results
	5.1.7 Model evaluation
	5.1.8 Assumptions testing
	5.1.9 Model optimization and re-selection
	5.1.10 Model application

	5.2 Machine learning with scikit-learn
	5.2.1 Business understanding
	5.2.2 Data loading
	5.2.3 Data understanding
	5.2.4 Data wrangling
	5.2.5 Model selection and hyperparameter tuning
	5.2.6 Model training
	5.2.7 Predicting with a trained model
	5.2.8 Model evaluation
	5.2.9 Model optimization and application

	5.3 Natural language understanding with NLTK
	5.3.1 Business understanding
	5.3.2 Data loading
	5.3.3 Data understanding
	5.3.4 Text normalization
	5.3.5 Tokenization
	5.3.6 Extracting high frequency words
	5.3.7 Generating word clouds

	5.4 Image processing with OpenCV
	5.4.1 Installing and importing opencv-python package
	5.4.2 Loading image from file
	5.4.3 Converting a RGB image into Grayscale
	5.4.4 Detecting faces
	5.4.5 Showing images
	5.4.6 Writing images
	Exercises

	Appendix I Best Python Resources for Data Scientists
	Appendix II Answers to Chapter Exercises

