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“Science leads us forward in knowledge, but only analysis makes us more aware”

This book is dedicated to all those who are constantly looking for awareness
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Preface

About five years have passed since the last edition of this book. In drafting this third edition, I made some 
necessary changes, both to the text and to the code. First, all the Python code has been ported to 3.8 and 
greater, and all references to Python 2.x versions have been dropped. Some chapters required a total 
rewrite because the content was no longer compatible. I'm referring to TensorFlow 3.x which, compared 
to TensorFlow 2.x (covered in the previous edition), has completely revamped its entire reference system. 
In five years, the deep learning modules and code developed with version 2.x have proven completely 
unusable. Keras and all its modules have been incorporated into the TensorFlow library, replacing all the 
classes, functions, and modules that performed similar functions. The construction of neural network 
models, their learning phases, and the functions they use have all completely changed. In this edition, 
therefore, you have the opportunity to learn the methods of TensorFlow 3.x and to acquire familiarity with 
the concepts and new paradigms in the new version.

Regarding data visualization, I decided to add information about the Seaborn library to the matplotlib 
chapter. Seaborn, although still in version 0.x, is proving to be a very useful matplotlib extension for data 
analysis, thanks to its statistical display of plots and its compatibility with pandas dataframes. I hope that, 
with this completely updated third edition, I can further entice you to study and deepen your data analysis 
with Python. This book will be a valuable learning tool for you now, and serve as a dependable reference in 
the future.

—Fabio Nelli
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CHAPTER 1

An Introduction to Data Analysis

In this chapter, you’ll take your first steps in the world of data analysis, learning in detail the concepts and 
processes that make up this discipline. The concepts discussed in this chapter are helpful background 
for the following chapters, where these concepts and procedures are applied in the form of Python code, 
through the use of several libraries that are discussed in later chapters.

�Data Analysis
In a world increasingly centralized around information technology, huge amounts of data are produced 
and stored each day. Often these data come from automatic detection systems, sensors, and scientific 
instrumentation, or you produce them daily and subconsciously every time you make a withdrawal from the 
bank or purchase something, when you record various blogs, or even when you post on social networks.

But what are the data? The data actually are not information, at least in terms of their form. In the 
formless stream of bytes, at first glance it is difficult to understand their essence, if they are not strictly 
numbers, words, or times. This information is actually the result of processing, which, taking into account a 
certain dataset, extracts conclusions that can be used in various ways. This process of extracting information 
from raw data is called data analysis.

The purpose of data analysis is to extract information that is not easily deducible but, when understood, 
enables you to carry out studies on the mechanisms of the systems that produced the data. This in turn 
allows you to forecast possible responses of these systems and their evolution in time.

Starting from a simple methodical approach to data protection, data analysis has become a real 
discipline, leading to the development of real methodologies that generate models. The model is in fact 
a translation of the system to a mathematical form. Once there is a mathematical or logical form that can 
describe system responses under different levels of precision, you can predict its development or response 
to certain inputs. Thus, the aim of data analysis is not the model, but the quality of its predictive power.

The predictive power of a model depends not only on the quality of the modeling techniques but also 
on the ability to choose a good dataset upon which to build the entire analysis process. So the search for 
data, their extraction, and their subsequent preparation, while representing preliminary activities of an 
analysis, also belong to data analysis itself, because of their importance in the success of the results.

So far I have spoken of data, their handling, and their processing through calculation procedures. In 
parallel to all the stages of data analysis processing, various methods of data visualization have also been 
developed. In fact, to understand the data, both individually and in terms of the role they play in the dataset, 
there is no better system than to develop the techniques of graphical representation. These techniques are 
capable of transforming information, sometimes implicitly hidden, into figures, which help you more easily 
understand the meaning of the data. Over the years, many display modes have been developed for different 
modes of data display, called charts.

© Fabio Nelli 2023 
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At the end of the data analysis process, you have a model and a set of graphical displays and you can 
predict the responses of the system under study; after that, you move to the test phase. The model is tested 
using another set of data for which you know the system response. These data do not define the predictive 
model. Depending on the ability of the model to replicate real, observed responses, you get an error 
calculation and knowledge of the validity of the model and its operating limits.

These results can be compared to any other models to understand if the newly created one is 
more efficient than the existing ones. Once you have assessed that, you can move to the last phase of 
data analysis—deployment. This phase consists of implementing the results produced by the analysis, 
namely, implementing the decisions to be made based on the predictions generated by the model and its 
associated risks.

Data analysis is well suited to many professional activities. So, knowledge of it and how it can be put 
into practice is relevant. It allows you to test hypotheses and understand the systems you’ve analyzed 
more deeply.

�Knowledge Domains of the Data Analyst
Data analysis is basically a discipline suitable to the study of problems that occur in several fields of 
applications. Moreover, data analysis includes many tools and methodologies and requires knowledge of 
computing, mathematical, and statistical concepts.

A good data analyst must be able to move and act in many disciplinary areas. Many of these disciplines 
are the basis of the data analysis methods, and proficiency in them is almost necessary. Knowledge of other 
disciplines is necessary, depending on the area of application and the particular data analysis project. More 
generally, sufficient experience in these areas can help you better understand the issues and the type of data 
you need.

Often, regarding major problems of data analysis, it is necessary to have an interdisciplinary team of 
experts who can contribute in the best possible way to their respective fields of competence. Regarding 
smaller problems, a good analyst must be able to recognize problems that arise during data analysis, 
determine which disciplines and skills are necessary to solve these problems, study these disciplines, and 
maybe even ask the most knowledgeable people in the sector. In short, the analyst must be able to search not 
only for data, but also for information on how to treat that data.

�Computer Science
Knowledge of computer science is a basic requirement for any data analyst. In fact, only when you have 
good knowledge of and experience in computer science can you efficiently manage the necessary tools for 
data analysis. In fact, every step concerning data analysis involves using calculation software (such as IDL, 
MATLAB, etc.) and programming languages (such as C ++, Java, and Python).

The large amount of data available today, thanks to information technology, requires specific skills in 
order to be managed as efficiently as possible. Indeed, data research and extraction require knowledge of 
these various formats. The data are structured and stored in files or database tables with particular formats. 
XML, JSON, or simply XLS or CSV files, are now the common formats for storing and collecting data, and 
many applications allow you to read and manage the data stored in them. When it comes to extracting data 
contained in a database, things are not so immediate, but you need to know the SQL Query language or use 
software specially developed for the extraction of data from a given database.

Moreover, for some specific types of data research, the data are not available in an explicit format, but 
are present in text files (documents and log files) or web pages, or shown as charts, measures, number of 
visitors, or HTML tables. This requires specific technical expertise to parse and eventually extract these data 
(called web scraping).

Chapter 1 ■ An Introduction to Data Analysis
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Knowledge of information technology is necessary for using the various tools made available by 
contemporary computer science, such as applications and programming languages. These tools, in turn, are 
needed to perform data analysis and data visualization.

The purpose of this book is to provide all the necessary knowledge, as far as possible, regarding the 
development of methodologies for data analysis. The book uses the Python programming language and 
specialized libraries that contribute to the performance of the data analysis steps, from data research to data 
mining, to publishing the results of the predictive model.

�Mathematics and Statistics
As you will see throughout the book, data analysis requires a lot of complex math to treat and process the 
data. You need to be competent in all of this, at least enough to understand what you are doing. Some 
familiarity with the main statistical concepts is also necessary because the methods applied to the analysis 
and interpretation of data are based on these concepts. Just as you can say that computer science gives you 
the tools for data analysis, you can also say that statistics provide the concepts that form the basis of data 
analysis.

This discipline provides many tools to the analyst, and a good knowledge of how to best use them 
requires years of experience. Among the most commonly used statistical techniques in data analysis are

•	 Bayesian methods

•	 Regression

•	 Clustering

Having to deal with these cases, you’ll discover how mathematics and statistics are closely related. 
Thanks to the special Python libraries covered in this book, you will be able to manage and handle them.

�Machine Learning and Artificial Intelligence
One of the most advanced tools that falls in the data analysis camp is machine learning. In fact, despite the 
data visualization and techniques such as clustering and regression, which help you find information about 
the dataset, during this phase of research, you may often prefer to use special procedures that are highly 
specialized in searching patterns within the dataset.

Machine learning is a discipline that uses a whole series of procedures and algorithms that analyze the 
data in order to recognize patterns, clusters, or trends and then extracts useful information for analysis in an 
automated way.

This discipline is increasingly becoming a fundamental tool of data analysis, and thus knowledge of it, 
at least in general, is of fundamental importance to the data analyst.

�Professional Fields of Application
Another very important point is the domain of data competence (its source—biology, physics, finance, 
materials testing, statistics on population, etc.). In fact, although analysts have had specialized preparation 
in the field of statistics, they must also be able to document the source of the data, with the aim of perceiving 
and better understanding the mechanisms that generated the data. In fact, the data are not simple strings 
or numbers; they are the expression, or rather the measure, of any parameter observed. Thus, a better 
understanding of where the data came from can improve their interpretation. Often, however, this is too 
costly for data analysts, even ones with the best intentions, and so it is good practice to find consultants or 
key figures to whom you can pose the right questions.

Chapter 1 ■ An Introduction to Data Analysis
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�Understanding the Nature of the Data
The object of data analysis is basically the data. The data then will be the key player in all processes of data 
analysis. The data constitute the raw material to be processed, and thanks to their processing and analysis, 
it is possible to extract a variety of information in order to increase the level of knowledge of the system 
under study.

�When the Data Become Information
Data are the events recorded in the world. Anything that can be measured or categorized can be converted 
into data. Once collected, these data can be studied and analyzed, both to understand the nature of events 
and very often also to make predictions or at least to make informed decisions.

�When the Information Becomes Knowledge
You can speak of knowledge when the information is converted into a set of rules that helps you better 
understand certain mechanisms and therefore make predictions on the evolution of some events.

�Types of Data
Data can be divided into two distinct categories:

•	 Categorical (nominal and ordinal)

•	 Numerical (discrete and continuous)

Categorical data are values or observations that can be divided into groups or categories. There are two 
types of categorical values: nominal and ordinal. A nominal variable has no intrinsic order that is identified 
in its category. An ordinal variable instead has a predetermined order.

Numerical data are values or observations that come from measurements. There are two types of 
numerical values: discrete and continuous numbers. Discrete values can be counted and are distinct and 
separated from each other. Continuous values, on the other hand, are values produced by measurements or 
observations that assume any value within a defined range.

�The Data Analysis Process
Data analysis can be described as a process consisting of several steps in which the raw data are transformed 
and processed in order to produce data visualizations and make predictions, thanks to a mathematical 
model based on the collected data. Then, data analysis is nothing more than a sequence of steps, each of 
which plays a key role in the subsequent ones. So, data analysis is schematized as a process chain consisting 
of the following sequence of stages:

•	 Problem definition

•	 Data extraction

•	 Data preparation - data cleaning

•	 Data preparation - data transformation

•	 Data exploration and visualization
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•	 Predictive modeling

•	 Model validation/testing

•	 Visualization and interpretation of results

•	 Deployment of the solution (implementation of the solution in the real world)

Figure 1-1 shows a schematic representation of all the processes involved in data analysis.

Figure 1-1.  The data analysis process

�Problem Definition
The process of data analysis actually begins long before the collection of raw data. In fact, data analysis 
always starts with a problem to be solved, which needs to be defined.

The problem is defined only after you have focused the system you want to study; this may be a 
mechanism, an application, or a process in general. Generally this study can be in order to better understand 
its operation, but in particular, the study is designed to understand the principles of its behavior in order to 
be able to make predictions or choices (defined as an informed choice).

The definition step and the corresponding documentation (deliverables) of the scientific problem or 
business are both very important in order to focus the entire analysis strictly on getting results. In fact, a 
comprehensive or exhaustive study of the system is sometimes complex and you do not always have enough 
information to start with. So the definition of the problem and especially its planning can determine the 
guidelines for the whole project.
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Once the problem has been defined and documented, you can move to the project planning stage of 
data analysis. Planning is needed to understand which professionals and resources are necessary to meet 
the requirements to carry out the project as efficiently as possible. You consider the issues involving the 
resolution of the problem. You look for specialists in various areas of interest and install the software needed 
to perform data analysis.

Also during the planning phase, you choose an effective team. Generally, these teams should be cross-
disciplinary in order to solve the problem by looking at the data from different perspectives. So, building a 
good team is certainly one of the key factors leading to success in data analysis.

�Data Extraction
Once the problem has been defined, the first step is to obtain the data in order to perform the analysis. 
The data must be chosen with the basic purpose of building the predictive model, and so data selection is 
crucial for the success of the analysis as well. The sample data collected must reflect as much as possible 
the real world, that is, how the system responds to stimuli from the real world. For example, if you’re using 
huge datasets of raw data and they are not collected competently, these may portray false or unbalanced 
situations.

Thus, poor choice of data, or even performing analysis on a dataset that’s not perfectly representative of 
the system, will lead to models that will move away from the system under study.

The search and retrieval of data often require a form of intuition that goes beyond mere technical 
research and data extraction. This process also requires a careful understanding of the nature and form of 
the data, which only good experience and knowledge in the problem’s application field can provide.

Regardless of the quality and quantity of data needed, another issue is using the best data sources.
If the studio environment is a laboratory (technical or scientific) and the data generated are 

experimental, then in this case the data source is easily identifiable. In this case, the problems will be only 
concerning the experimental setup.

But it is not possible for data analysis to reproduce systems in which data are gathered in a strictly 
experimental way in every field of application. Many fields require searching for data from the surrounding 
world, often relying on external experimental data, or even more often collecting them through interviews 
or surveys. So in these cases, finding a good data source that is able to provide all the information you need 
for data analysis can be quite challenging. Often it is necessary to retrieve data from multiple data sources to 
supplement any shortcomings, to identify any discrepancies, and to make the dataset as general as possible.

When you want to get the data, a good place to start is the web. But most of the data on the web can be 
difficult to capture; in fact, not all data are available in a file or database, but might be content that is inside 
HTML pages in many different formats. To this end, a methodology called web scraping allows the collection 
of data through the recognition of specific occurrence of HTML tags within web pages. There is software 
specifically designed for this purpose, and once an occurrence is found, it extracts the desired data. Once the 
search is complete, you will get a list of data ready to be subjected to data analysis.

�Data Preparation
Among all the steps involved in data analysis, data preparation, although seemingly less problematic, in 
fact requires more resources and more time to be completed. Data are often collected from different data 
sources, each of which has data in it with a different representation and format. So, all of these data have to 
be prepared for the process of data analysis.

The preparation of the data is concerned with obtaining, cleaning, normalizing, and transforming 
data into an optimized dataset, that is, in a prepared format that’s normally tabular and is suitable for the 
methods of analysis that have been scheduled during the design phase.

Many potential problems can arise, including invalid, ambiguous, or missing values, replicated fields, 
and out-of-range data.
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�Data Exploration/Visualization
Exploring the data involves essentially searching the data in a graphical or statistical presentation in order 
to find patterns, connections, and relationships. Data visualization is the best tool to highlight possible 
patterns.

In recent years, data visualization has been developed to such an extent that it has become a real 
discipline in itself. In fact, numerous technologies are utilized exclusively to display data, and many display 
types are applied to extract the best possible information from a dataset.

Data exploration consists of a preliminary examination of the data, which is important for 
understanding the type of information that has been collected and what it means. In combination with the 
information acquired during the definition problem, this categorization determines which method of data 
analysis is most suitable for arriving at a model definition.

Generally, this phase, in addition to a detailed study of charts through the visualization data, may 
consist of one or more of the following activities:

•	 Summarizing data

•	 Grouping data

•	 Exploring the relationship between the various attributes

•	 Identifying patterns and trends

Generally, data analysis requires summarizing statements regarding the data to be studied. 
Summarization is a process by which data are reduced to interpretation without sacrificing important 
information.

Clustering is a method of data analysis that is used to find groups united by common attributes (also 
called grouping).

Another important step of the analysis focuses on the identification of relationships, trends, and 
anomalies in the data. In order to find this kind of information, you often have to resort to the tools as well as 
perform another round of data analysis, this time on the data visualization itself.

Other methods of data mining, such as decision trees and association rules, automatically extract 
important facts or rules from the data. These approaches can be used in parallel with data visualization to 
uncover relationships between the data.

�Predictive Modeling
Predictive modeling is a process used in data analysis to create or choose a suitable statistical model to 
predict the probability of a result.

After exploring the data, you have all the information needed to develop the mathematical model that 
encodes the relationship between the data. These models are useful for understanding the system under 
study, and in a specific way they are used for two main purposes. The first is to make predictions about the 
data values produced by the system; in this case, you will be dealing with regression models if the result is 
numeric or with classification models if the result is categorical. The second purpose is to classify new data 
products, and in this case, you will be using classification models if the results are identified by classes or 
clustering models if the results could be identified by segmentation. In fact, it is possible to divide the models 
according to the type of result they produce:

•	 Classification models: If the result obtained by the model type is categorical.

•	 Regression models: If the result obtained by the model type is numeric.

•	 Clustering models: If the result obtained by the model type is a segmentation.
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Simple methods to generate these models include techniques such as linear regression, logistic 
regression, classification and regression trees, and k-nearest neighbors. But the methods of analysis are 
numerous, and each has specific characteristics that make it excellent for some types of data and analysis. 
Each of these methods will produce a specific model, and then their choice is relevant to the nature of the 
product model.

Some of these models will provide values corresponding to the real system and according to their 
structure. They will explain some characteristics of the system under study in a simple and clear way. Other 
models will continue to give good predictions, but their structure will be no more than a “black box” with 
limited ability to explain characteristics of the system.

�Model Validation
Validation of the model, that is, the test phase, is an important phase that allows you to validate the model 
built on the basis of starting data. That is important because it allows you to assess the validity of the data 
produced by the model by comparing these data directly with the actual system. But this time, you are 
coming from the set of starting data on which the entire analysis has been established.

Generally, you refer to the data as the training set when you are using them to build the model, and as 
the validation set when you are using them to validate the model.

Thus, by comparing the data produced by the model with those produced by the system, you can 
evaluate the error, and using different test datasets, you can estimate the limits of validity of the generated 
model. In fact the correctly predicted values could be valid only within a certain range, or they could have 
different levels of matching depending on the range of values taken into account.

This process allows you not only to numerically evaluate the effectiveness of the model but also to 
compare it with any other existing models. There are several techniques in this regard; the most famous is 
the cross-validation. This technique is based on the division of the training set into different parts. Each of 
these parts, in turn, is used as the validation set and any other as the training set. In this iterative manner, 
you will have an increasingly perfected model.

�Deployment
This is the final step of the analysis process, which aims to present the results, that is, the conclusions of the 
analysis. In the deployment process of the business environment, the analysis is translated into a benefit 
for the client who has commissioned it. In technical or scientific environments, it is translated into design 
solutions or scientific publications. That is, the deployment basically consists of putting into practice the 
results obtained from the data analysis.

There are several ways to deploy the results of data analysis or data mining. Normally, a data analyst’s 
deployment consists of writing a report for management or for the customer who requested the analysis. 
This document conceptually describes the results obtained from the analysis of data. The report should 
be directed to the managers, who are then able to make decisions. Then, they will put into practice the 
conclusions of the analysis.

In the documentation supplied by the analyst, each of these four topics is discussed in detail:

•	 Analysis results

•	 Decision deployment

•	 Risk analysis

•	 Measuring the business impact

When the results of the project include the generation of predictive models, these models can be 
deployed as stand-alone applications or can be integrated into other software.
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�Quantitative and Qualitative Data Analysis
Data analysis is completely focused on data. Depending on the nature of the data, it is possible to make 
some distinctions.

When the analyzed data have a strictly numerical or categorical structure, then you are talking about 
quantitative analysis, but when you are dealing with values that are expressed through descriptions in 
natural language, then you are talking about qualitative analysis.

Precisely because of the different nature of the data processed by the two types of analyses, you can 
observe some differences between them.

Quantitative analysis has to do with data with a logical order or that can be categorized in some way. 
This leads to the formation of structures within the data. The order, categorization, and structures in turn 
provide more information and allow further processing of the data in a more mathematical way. This leads 
to the generation of models that provide quantitative predictions, thus allowing the data analyst to draw 
more objective conclusions.

Qualitative analysis instead has to do with data that generally do not have a structure, at least not one 
that is evident, and their nature is neither numeric nor categorical. For example, data under qualitative 
study could include written textual, visual, or audio data. This type of analysis must therefore be based on 
methodologies, often ad hoc, to extract information that will generally lead to models capable of providing 
qualitative predictions. That means the conclusions to which the data analyst can arrive may also include 
subjective interpretations. On the other hand, qualitative analysis can explore more complex systems and 
draw conclusions that are not possible using a strictly mathematical approach. Often this type of analysis 
involves the study of systems that are not easily measurable, such as social phenomena or complex 
structures.

Figure 1-2 shows the differences between the two types of analyses.

Figure 1-2.  Quantitative and qualitative analyses

�Open Data
In support of the growing demand for data, a huge number of data sources are now available on the Internet. 
These data sources freely provide information to anyone in need, and they are called open data.
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Here is a list of some open data available online covering different topics. You can find a more complete 
list and details of the open data available online in Appendix B.

•	 Kaggle (www.kaggle.com/datasets) is a huge community of apprentices and expert 
data scientists who provide a vast amount of datasets and code that they use for 
their analyses. The extensive documentation and the introduction to every aspect 
of machine learning are also excellent. They also hold interesting competitions 
organized around the resolution of various problems.

•	 DataHub (datahub.io/search) is a community that makes a huge amount of 
datasets freely available, along with tools for their command-line management. The 
dataset topics cover various fields, ranging from the financial market, to population 
statistics, to the prices of cryptocurrencies.

•	 Nasa Earth Observations (https://neo.gsfc.nasa.gov/dataset_index.php/) 
provides a wide range of datasets that contain data collected from global climate and 
environmental observations.

•	 World Health Organization (www.who.int/data/collections) manages and 
maintains a wide range of data collections related to global health and well-being.

•	 World Bank Open Data (https://data.worldbank.org/) provides a listing of 
available World Bank datasets covering financial and banking data, development 
indicators, and information on the World Bank’s lending projects from 1947 to the 
present.

•	 Data.gov (https://data.gov) is intended to collect and provide access to the 
U.S. government’s Open Data, a broad range of government information collected at 
different levels (federal, state, local, and tribal).

•	 European Union Open Data Portal (https://data.europa.eu/en) collects and 
makes publicly available a wide range of datasets concerning the public sector of the 
European member states.

•	 Healthdata.gov (www.healthdata.gov/) provides data about health and health care 
for doctors and researchers so they can carry out clinical studies and solve problems 
regarding diseases, virus spread, and health practices, as well as improve the level of 
global health.

•	 Google Trends Datastore (https://googletrends.github.io/data/) collects and 
makes available the collected data divided by topic of the famous and very useful 
Google Trends, which is used to carry out analyses on its own account.

Finally, recently Google has made available a search page dedicated to datasets, 
where you can search for a topic and obtain a series of datasets (or even data 
sources) that correspond as much as possible to what you are looking for. For 
example, in Figure 1-3, you can see how, when researching the price of houses, a 
series of datasets or data sources are suggested in real time.
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Figure 1-3.  Example of a search for a dataset regarding the prices of houses on Google Dataset Search

As an idea of open data sources available online, you can look at the LOD cloud diagram (http://cas.
lod-cloud.net), which displays the connections of the data link among several open data sources currently 
available on the network (see Figure 1-4). The diagram contains a series of circular elements corresponding 
to the available data sources; their color corresponds to a specific topic of the data provided. The legend 
indicates the topic-color correspondence. When you click an element on the diagram, you see a page 
containing all the information about the selected data source and how to access it.
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Figure 1-4.  Linked open data cloud diagram 2023, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch, 
and Richard Cyganiak. http://cas.lod-cloud.net [CC-BY license]

�Python and Data Analysis
The main argument of this book is to develop all the concepts of data analysis by treating them in terms of 
Python. The Python programming language is widely used in scientific circles because of its large number of 
libraries that provide a complete set of tools for analysis and data manipulation.
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Compared to other programming languages generally used for data analysis, such as R and MATLAB, 
Python not only provides a platform for processing data, but it also has features that make it unique 
compared to other languages and specialized applications. The development of an ever-increasing number 
of support libraries, the implementation of algorithms of more innovative methodologies, and the ability to 
interface with other programming languages (C and Fortran) all make Python unique among its kind.

Furthermore, Python is not only specialized for data analysis, but it also has many other applications, 
such as generic programming, scripting, interfacing to databases, and more recently web development, 
thanks to web frameworks like Django. So it is possible to develop data analysis projects that are compatible 
with the web server with the possibility to integrate them on the web.

For those who want to perform data analysis, Python, with all its packages, is considered the best choice 
for the foreseeable future.

�Conclusions
In this chapter, you learned what data analysis is and, more specifically, the various processes that comprise 
it. Also, you have begun to see the role that data play in building a prediction model and how their careful 
selection is at the basis of a careful and accurate data analysis.

In the next chapter, you take this vision of Python and the tools it provides to perform data analysis.
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CHAPTER 2

Introduction to the Python World

The Python language, and the world around it, is made by interpreters, tools, editors, libraries, notebooks, 
and so on. This Python world has expanded greatly in recent years, enriching and taking forms that 
developers who approach it for the first time can sometimes find complicated and somewhat misleading. 
Thus, if you are approaching Python for the first time, you might feel lost among so many choices, especially 
about where to start.

This chapter gives you an overview of the entire Python world. You’ll first gain an introduction to the 
Python language and its unique characteristics. You’ll learn where to start, what an interpreter is, and how to 
begin writing your first lines of code in Python before being presented with some new and more advanced 
forms of interactive writing with respect to shells, such as IPython and the IPython Notebook.

�Python—The Programming Language
The Python programming language was created by Guido Von Rossum in 1991 and started with a previous 
language called ABC. This language can be characterized by a series of adjectives:

•	 Interpreted

•	 Portable

•	 Object-oriented

•	 Interactive

•	 Interfaced

•	 Open source

•	 Easy to understand and use

Python is an interpreted programming language, that is, it’s pseudo-compiled. Once you write the 
code, you need an interpreter to run it. An interpreter is a program that is installed on each machine; it 
interprets and runs the source code. Unlike with languages such as C, C++, and Java, there is no compile 
time with Python.

Python is a highly portable programming language. The decision to use an interpreter as an interface 
for reading and running code has a key advantage: portability. In fact, you can install an interpreter on any 
platform (Linux, Windows, and Mac) and the Python code will not change. Because of this, Python is often 
used with many small-form devices, such as the Raspberry Pi and other microcontrollers.
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Python is an object-oriented programming language. In fact, it allows you to specify classes of objects 
and implement their inheritance. But unlike C++ and Java, there are no constructors or destructors. Python 
also allows you to implement specific constructs in your code to manage exceptions. However, the structure 
of the language is so flexible that it allows you to program with alternative approaches with respect to the 
object-oriented one. For example, you can use functional or vectorial approaches.

Python is an interactive programming language. Thanks to the fact that Python uses an interpreter to 
be executed, this language can take on very different aspects depending on the context in which it is used. 
In fact, you can write long lines of code, similar to what you might do in languages like C++ or Java, and then 
launch the program, or you can enter the command line at once and execute a command, immediately 
getting the results. Then, depending on the results, you can decide what command to run next. This highly 
interactive way to execute code makes the Python computing environment similar to MATLAB. This feature 
of Python is one reason it’s popular with the scientific community.

Python is a programming language that can be interfaced. In fact, this programming language can be 
interfaced with code written in other programming languages such as C/C++ and FORTRAN. Even this 
was a winning choice. In fact, thanks to this aspect, Python can compensate for what is perhaps its only 
weak point, the speed of execution. The nature of Python, as a highly dynamic programming language, can 
sometimes lead to execution of programs up to 100 times slower than the corresponding static programs 
compiled with other languages. The solution to this kind of performance problem is to interface Python to 
the compiled code of other languages by using it as if it were its own.

Python is an open-source programming language. CPython, which is the reference implementation 
of the Python language, is completely free and open source. Additionally every module or library in the 
network is open source and their code is available online. Every month, an extensive developer community 
includes improvements to make this language and all its libraries even richer and more efficient. CPython is 
managed by the nonprofit Python Software Foundation, which was created in 2001 and has given itself the 
task of promoting, protecting, and advancing the Python programming language.

Finally, Python is a simple language to use and learn. This aspect is perhaps the most important, 
because it is the most direct aspect that a developer, even a novice, faces. The high intuitiveness and ease of 
reading of Python code often leads to “sympathy” for this programming language, and consequently most 
newcomers to programming choose to use it. However, its simplicity does not mean narrowness, since 
Python is a language that is spreading in every field of computing. Furthermore, Python is doing all of this 
very simply, in comparison to existing programming languages such as C++, Java, and FORTRAN, which by 
their nature are very complex.

�The Interpreter and the Execution Phases of the Code
Unlike programming languages such as Java or C, whose code must be compiled before being executed, 
Python is a language that allows direct execution of instructions. In fact, it is possible to execute code written 
in Python it two ways. You can execute entire programs (.py files) by running the python command followed 
by the file name, or you can open a session through a special command console, characterized by a >>> 
prompt (running the python command with no arguments). In this console, you can enter one instruction at 
a time, obtaining the result immediately by executing it directly.

In both cases, you have the immediate execution of the inserted code, without having to go through 
explicit compilation or other operations.

This direct execution operation can be schematized in four phases:

•	 Lexing or tokenization

•	 Parsing

•	 Compiling

•	 Interpreting
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Lexing, or tokenization, is the initial phase in which the Python (human-readable) code is converted 
into a sequence of logical entities, the so-called lexical tokens (see Figure 2-1).

Parsing is the next stage in which the syntax and grammar of the lexical tokens are checked by a parser, 
which produces an abstract syntax tree (AST) as a result.

Compiling is the phase in which the compiler reads the AST and, based on this information, generates 
the Python bytecode (.pyc or .pyo files), which contains very basic execution instructions. Although this 
is a compilation phase, the generated bytecode is still platform-independent, which is very similar to what 
happens in the Java language.

The last phase is interpreting, in which the generated bytecode is executed by a Python virtual 
machine (PVM).

Figure 2-1.  The steps performed by the Python interpreter

You can find good documentation on this process at www.ics.uci.edu/~pattis/ICS-31/lectures/
tokens.pdf.

All these phases are performed by the interpreter, which in the case of Python is a fundamental 
component. When referring to the Python interpreter, this usually means the /urs/bin/python binary. In 
reality, there are currently several versions of this Python interpreter, each of which is profoundly different in 
its nature and specifications.

�CPython
The standard Python interpreter is CPython, and it was written in C. This made it possible to use C-based 
libraries over Python. CPython is available on a variety of platforms, including ARM, iOS, and RISC. Despite 
this, CPython has been optimized on portability and other specifications, but not on speed.

�Cython
The strongly intrinsic nature of C in the CPython interpreter has been taken further with the Cython project. 
This project is based on creating a compiler that translates Python code into C. This code is then executed 
within a Cython environment at runtime. This type of compilation system makes it possible to introduce C 
semantics into the Python code to make it even more efficient. This system has led to the merging of two worlds 
of programming language with the birth of Cython, which can be considered a new programming language. 
You can find documentation about it online. I advise you to visit cython.readthedocs.io/en/latest/.

�Pyston
Pyston (www.pyston.org/) is a fork of the CPython interpreter that implements performance optimization. 
This project arises precisely from the need to obtain an interpreter that can replace CPython over time to 
remedy its poor performance in terms of execution speed. Recent results seem to confirm these predictions, 
reporting a 30 percent improvement in performance in the case of large, real-world applications. 
Unfortunately, due to the lack of compatible binary packages, Pyston packages have to be rebuilt during the 
download phase.
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�Jython
In parallel to Cython, there is a version built and compiled in Java, called Jython. It was created by Jim 
Hugunin in 1997 (www.jython.org/). Jython is an implementation of the Python programming language in 
Java; it is further characterized by using Java classes instead of Python modules to implement extensions and 
packages of Python.

�IronPython
Even the .NET framework offers the possibility of being able to execute Python code inside it. For this 
purpose, you can use the IronPython interpreter (https://ironpython.net/). This interpreter allows .NET 
developers to develop Python programs on the Visual Studio platform, integrating perfectly with the other 
development tools of the .NET platform.

Initially built by Jim Hugunin in 2006 with the release of version 1.0, the project was later supported by a 
small team at Microsoft until version 2.7 in 2010. Since then, numerous other versions have been released up 
to the current 3.4, all ported forward by a group of volunteers on Microsoft’s CodePlex repository.

�PyPy
The PyPy interpreter is a JIT (just-in-time) compiler, and it converts the Python code directly to machine 
code at runtime. This choice was made to speed up the execution of Python. However, this choice has led to 
the use of a smaller subset of Python commands, defined as RPython. For more information on this, consult 
the official website at www.pypy.org/.

�RustPython
As the name suggests, RustPython (rustpython.github.io/) is a Python interpreter written in Rust. This 
programming language is quite new but it is gaining popularity. RustPython is an interpreter like CPython 
but can also be used as a JIT compiler. It also allows you to run Python code embedded in Rust programs 
and compile the code into WebAssembly, so you can run Python code directly from web browsers.

�Installing Python
In order to develop programs in Python, you have to install it on your operating system. Linux distributions 
and macOS X machines should have a preinstalled version of Python. If not, or if you want to replace that 
version with another, you can easily install it. The process for installing Python differs from operating system 
to operating system. However, it is a rather simple operation.

On Debian-Ubuntu Linux systems, the first thing to do is to check whether Python is already installed 
on your system and what version is currently in use.

Open a terminal (by pressing ALT+CTRL+T) and enter the following command:

python3 --version

If you get the version number as output, then Python is already present on the Ubuntu system. If you get 
an error message, Python hasn’t been installed yet.

In this last case

sudo apt install python3
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If, on the other hand, the current version is old, you can update it with the latest version of your Linux 
distribution by entering the following command:

sudo apt --only-upgrade install python3

Finally, if instead you want to install a specific version on your system, you have to explicitly indicate it 
in the following way:

sudo apt install python3.10

On Red Hat and CentOS Linux systems working with rpm packages, run this command instead:

yum install python3

If you are running Windows or macOS X, you can go to the official Python site (www.python.org) and 
download the version you prefer. The packages in this case are installed automatically.

However, today there are distributions that provide a number of tools that make the management and 
installation of Python, all libraries, and associated applications easier. I strongly recommend you choose one 
of the distributions available online.

�Python Distributions
Due to the success of the Python programming language, many Python tools have been developed to meet 
various functionalities over the years. There are so many that it’s virtually impossible to manage all of them 
manually.

In this regard, many Python distributions efficiently manage hundreds of Python packages. In fact, 
instead of individually downloading the interpreter, which includes only the standard libraries, and then 
needing to individually install all the additional libraries, it is much easier to install a Python distribution.

At the heart of these distributions are the package managers, which are nothing more than applications 
that automatically manage, install, upgrade, configure, and remove Python packages that are part of the 
distribution.

Their functionality is very useful, since the user simply makes a request regarding a particular package 
(which could be an installation for example). Then the package manager, usually via the Internet, performs 
the operation by analyzing the necessary version, alongside all dependencies with any other packages, and 
downloads them if they are not present.

�Anaconda
Anaconda is a free distribution of Python packages distributed by Continuum Analytics (www.anaconda.com).  
This distribution supports Linux, Windows, and macOS X operating systems. Anaconda, in addition to 
providing the latest packages released in the Python world, comes bundled with most of the tools you need 
to set up a Python development environment.

Indeed, when you install the Anaconda distribution on your system, you can use many tools and 
applications described in this chapter, without worrying about having to install and manage them 
separately. The basic distribution includes Spyder, an IDE used to develop complex Python programs, 
Jupyter Notebook, a wonderful tool for working interactively with Python in a graphical and orderly way, and 
Anaconda Navigator, a graphical panel for managing packages and virtual environments.
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The management of the entire Anaconda distribution is performed by an application called conda. This 
is the package manager and the environment manager of the Anaconda distribution and it handles all of the 
packages and their versions.

conda install <package name>

One of the most interesting aspects of this distribution is the ability to manage multiple development 
environments, each with its own version of Python. With Anaconda, you can work simultaneously and 
independently with different Python versions at the same time, by creating several virtual environments. 
You can create, for instance, an environment based on Python 3.11 even if the current Python version is still 
3.10 in your system. To do this, you write the following command via the console:

conda create -n py311 python=3.11 anaconda

This will generate a new Anaconda virtual environment with all the packages related to the Python 
3.11 version. This installation will not affect the Python version installed on your system and won’t generate 
any conflicts. When you no longer need the new virtual environment, you can simply uninstall it, leaving 
the Python system installed on your operating system completely unchanged. Once it’s installed, you can 
activate the new environment by entering the following command:

source activate py311

On Windows, use this command instead:

activate py311
C:\Users\Fabio>activate py311
 (py311) C:\Users\Fabio>

You can create as many versions of Python as you want; you need only to change the parameter passed 
with the python option in the conda create command. When you want to return to work with the original 
Python version, use the following command:

source deactivate

On Windows, use this command:

(py311) C:\Users\Fabio>deactivate
Deactivating environment "py311"...
C:\Users\Fabio>

�Anaconda Navigator
Although at the base of the Anaconda distribution there is the conda command for the management of 
packages and virtual environments, working through the command console is not always practical and 
efficient. As you will see in the following chapters of the book, Anaconda provides a graphical tool called 
Anaconda Navigator, which allows you to manage the virtual environments and related packages in a 
graphical and very simplified way (see Figure 2-2).
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Figure 2-2.  Home panel of Anaconda Navigator

Anaconda Navigator is mainly composed of four panels:

•	 Home

•	 Environments

•	 Learning

•	 Community

Each of them is selectable through the list of buttons clearly visible on the left.
The Home panel presents all the Python (and also R) development applications installed (or available) 

for a given virtual environment. By default, Anaconda Navigator will show the base operating system 
environment, referred as base(root) in the top-center drop-down menu (see Figure 2-2).

The second panel, called Environments, shows all the virtual environments created in the distribution 
(see Figure 2-3). From there, it is possible to select the virtual environment to activate by clicking it directly. 
It will display all the packages installed (or available) on that virtual environment, with the relative versions.
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Figure 2-3.  Environments panel on Anaconda Navigator

Also from the Environments panel it is possible to create new virtual environments, selecting the basic 
Python version. Similarly, the same virtual environments can be deleted, cloned, backed up, or imported 
using the menu shown in Figure 2-4.

Figure 2-4.  Button menu for managing virtual environments in Anaconda Navigator

But that is not all. Anaconda Navigator is not only a useful application for managing Python 
applications, virtual environments, and packages. In the third panel, called Learning (see Figure 2-5), it 
provides links to the main sites of many useful Python libraries (including those covered in this book). By 
clicking one of these links, you can access a lot of documentation. This is always useful to have on hand if 
you program in Python on a daily basis.
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Figure 2-5.  Learning panel of Anaconda Navigator

An identical panel to this is the next one, called Community. There are links here too, but this time to 
forums from the main Python development and Data Analytics communities.

The Anaconda platform, with its multiple applications and Anaconda Navigator, allows developers to 
take advantage of this simple and organized work environment and be well prepared for the development 
of Python code. It is no coincidence that this platform has become almost a standard for those belonging to 
the sector.

�Using Python
Python is rich, but simple and very flexible. It allows you to expand your development activities in many 
areas of work (data analysis, scientific, graphic interfaces, etc.). Precisely for this reason, Python can be used 
in many different contexts, often according to the taste and ability of the developer. This section presents 
the various approaches to using Python in the course of the book. According to the various topics discussed 
in different chapters, these different approaches will be used specifically, as they are more suited to the task 
at hand.

�Python Shell
The easiest way to approach the Python world is to open a session in the Python shell, which is a terminal 
running a command line. In fact, you can enter one command at a time and test its operation immediately. 
This mode makes clear the nature of the interpreter that underlies Python. In fact, the interpreter can read 
one command at a time, keeping the status of the variables specified in the previous lines, a behavior similar 
to that of MATLAB and other calculation software.
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This approach is helpful when approaching Python the first time. You can test commands one at a time 
without having to write, edit, and run an entire program, which could be composed of many lines of code.

This mode is also good for testing and debugging Python code one line at a time, or simply to make 
calculations. To start a session on the terminal, simply type this on the command line:

C:\Users\nelli>python
Python 3.10 | packaged by Anaconda, Inc. | (main, Mar  1 2023, 18:18:21) [MSC v.1916 64 bit 
(AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python shell is now active and the interpreter is ready to receive commands in Python. Start by 
entering the simplest of commands, but a classic for getting started with programming.

>>> print("Hello World!")
Hello World!

If you have the Anaconda platform available on your system, you can open a Python shell related to a 
specific virtual environment you want to work on. In this case, from Anaconda Navigator, in the Home panel, 
activate the virtual environment from the drop-down menu and click the Launch button of the CMD.exe 
Prompt application, as shown in Figure 2-6.

Figure 2-6.  CMD.exe Prompt application in Anaconda Navigator
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A command console will open with the name of the active virtual environment prefixed in brackets in 
the prompt. From there, you can run the python command to activate the Python shell.

(Edition3) C:\Users\nelli>python
Python 3.11.0 | packaged by Anaconda, Inc. | (main, Mar  1 2023, 18:18:21) [MSC v.1916 64 
bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

�Run an Entire Program
The best way to become familiar with Python is to write an entire program and then run it from the terminal. 
First write a program using a simple text editor. For example, you can use the code shown in Listing 2-1 and 
save it as MyFirstProgram.py.

Listing 2-1.  MyFirstProgram.py

myname = input("What is your name?\n")
print("Hi %s, I'm glad to say: Hello world!" %myname)

Now you’ve written your first program in Python, and you can run it directly from the command line by 
calling the python command and then the name of the file containing the program code.

python MyFirstProgram.py

From the output, the program will ask for your name. Once you enter it, it will say hello.

What is your name?
Fabio Nelli
Hi Fabio Nelli, I'm glad to say: Hello world!

�Implement the Code Using an IDE
A more comprehensive approach than the previous ones is to use an IDE (an Integrated Development 
Environment). These editors provide a work environment on which to develop your Python code. They are 
rich in tools that make developers’ lives easier, especially when debugging. In the following sections, you see 
in detail which IDEs are currently available.

�Interact with Python
The last approach to using Python, and in my opinion, perhaps the most innovative, is the interactive one. 
In fact, in addition to the three previous approaches, this approach provides you with the opportunity to 
interact directly with the Python code.

In this regard, the Python world has been greatly enriched with the introduction of IPython. IPython is 
a very powerful tool, designed specifically to meet the needs of interacting between the Python interpreter 
and the developer, which under this approach takes the role of analyst, engineer, or researcher. IPython and 
its features are explained in more detail in a later section.
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�Writing Python Code
In the previous section, you saw how to write a simple program in which the string "Hello World" was 
printed. Now in this section, you get a brief overview of the basics of the Python language.

This section is not intended to teach you to program in Python, or to illustrate syntax rules of the 
programming language, but just to give you a quick overview of some basic principles of Python necessary to 
continue with the topics covered in this book.

If you already know the Python language, you can safely skip this introductory section. Instead, if you 
are not familiar with programming and you find it difficult to understand the topics, I highly recommend 
that you visit online documentation, tutorials, and courses of various kinds.

�Make Calculations
You have already seen that the print() function is useful for printing almost anything. Python, in addition 
to being a printing tool, is a great calculator. Start a session on the Python shell and begin to perform these 
mathematical operations:

>>> 1 + 2
3
>>> (1.045 * 3)/4
0.78375
>>> 4 ** 2
16
>>> ((4 + 5j) * (2 + 3j))
(-7+22j)
>>> 4 < (2*3)
True

Python can calculate many types of data, including complex numbers and conditions with Boolean 
values. As you can see from these calculations, the Python interpreter directly returns the result of the 
calculations without the need to use the print() function. The same thing applies to values contained in 
variables. It’s enough to call the variable to see its contents.

>>> a = 12 * 3.4
>>> a
40.8

�Import New Libraries and Functions
You saw that Python is characterized by the ability to extend its functionality by importing numerous 
packages and modules. To import a module in its entirety, you have to use the import command.

>>> import math

In this way, all the functions contained in the math package are available in your Python session so you 
can call them directly. Thus, you have extended the standard set of functions available when you start a 
Python session. These functions are called with the following expression.

library_name.function_name()
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For example, you can now calculate the sine of the value contained in the variable a.

>>> math.sin(a)

As you can see, the function is called along with the name of the library. Sometimes you might find the 
following expression for declaring an import.

>>> from math import *

Even if this works properly, it is to be avoided for good practice. In fact, writing an import in this way 
involves the importation of all functions without necessarily defining the library to which they belong.

>>> sin(a)
0.040693257349864856

This form of import can lead to very large errors, especially if the imported libraries are numerous. In 
fact, it is not unlikely that different libraries have functions with the same name, and importing all of these 
would result in an override of all functions with the same name that were previously imported. Therefore, 
the behavior of the program could generate numerous errors or worse, abnormal behavior.

Actually, this way to import is generally used for only a limited number of functions, that is, functions 
that are strictly necessary for the functioning of the program, thus avoiding the importation of an entire 
library when it is completely unnecessary.

 >>> from math import sin

�Data Structure
You saw in the previous examples how to use simple variables containing a single value. Python provides a 
number of extremely useful data structures. These data structures can contain lots of data simultaneously 
and sometimes even data of different types. The various data structures provided are defined differently 
depending on how their data are structured internally.

•	 List

•	 Set

•	 Strings

•	 Tuples

•	 Dictionary

•	 Deque

•	 Heap

This is only a small part of all the data structures that can be made with Python. Among all these data 
structures, the most commonly used are dictionaries and lists.

The type dictionary, defined also as dicts, is a data structure in which each particular value is associated 
with a particular label, called a key. The data collected in a dictionary have no internal order but are only 
definitions of key/value pairs.

>>> dict = {'name':'William', 'age':25, 'city':'London'}
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If you want to access a specific value within the dictionary, you have to indicate the name of the 
associated key.

>>> dict["name"]
'William'

If you want to iterate the pairs of values in a dictionary, you have to use the for-in construct. This is 
possible through the use of the items() function.

>>> for key, value in dict.items():
...    print(key,value)
...
name William
age 25
city London

The type list is a data structure that contains a number of objects in a precise order to form a sequence 
to which elements can be added and removed. Each item is marked with a number corresponding to the 
order of the sequence, called the index.

>>> list = [1,2,3,4]
>>> list
[1, 2, 3, 4]

If you want to access the individual elements, it is sufficient to specify the index in square brackets (the 
first item in the list has 0 as its index), while if you take out a portion of the list (or a sequence), it is sufficient 
to specify the range with the indices i and j corresponding to the extremes of the portion.

>>> list[2]
3
>>> list[1:3]
[2, 3]

If you are using negative indices instead, this means you are considering the last item in the list and 
gradually moving to the first.

>>> list[-1]
4

In order to do a scan of the elements of a list, you can use the for-in construct.

>>> items = [1,2,3,4,5]
>>> for item in items:
...        print(item + 1)
...
2
3
4
5
6
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�Functional Programming
The for-in loop shown in the previous example is very similar to loops found in other programming 
languages. However, if you want to be a “Python” developer, you have to avoid using explicit loops. Python 
offers alternative approaches, specifying programming techniques such as functional programming 
(expression-oriented programming).

The tools that Python provides to develop functional programming comprise a series of functions:

•	 map(function, list)

•	 filter(function, list)

•	 reduce(function, list)

•	 lambda

•	 list comprehension

The for loop that you just saw has a specific purpose, which is to apply an operation on each item and 
then somehow gather the result. This can be done by the map() function.

>>> items = [1,2,3,4,5]
>>> def inc(x): return x+1
...
>>> list(map(inc,items))
[2, 3, 4, 5, 6]

In the previous example, it first defines the function that performs the operation on every single 
element, and then it passes it as the first argument to map(). Python allows you to define the function 
directly within the first argument using lambda as a function. This greatly reduces the code and compacts the 
previous construct into a single line of code.

>>> list(map((lambda x: x+1),items))
[2, 3, 4, 5, 6]

Two other functions working in a similar way are filter() and reduce(). The filter() function 
extracts the elements of the list for which the function returns True. The reduce() function instead 
considers all the elements of the list to produce a single result. To use reduce(), you must import the 
functools module.

>>> list(filter((lambda x: x < 4), items))
[1, 2, 3]
>>> from functools import reduce
>>> reduce((lambda x,y: x/y), items)
0.008333333333333333

Both of these functions implement other types by using the for loop. They replace these cycles and 
their functionality, which can be alternatively expressed with simple functions. That is what constitutes 
functional programming.
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The final concept of functional programming is list comprehension. This concept is used to build lists 
in a very natural and simple way, referring to them in a manner similar to how mathematicians describe 
datasets. The values in the sequence are defined through a particular function or operation.

>>> S = [x**2 for x in range(5)]
>>> S
[0, 1, 4, 9, 16]

�Indentation
A peculiarity for those coming from other programming languages is the role that indentation plays. 
Whereas you used to manage the indentation for purely aesthetic reasons, making the code somewhat more 
readable, in Python indentation assumes an integral role in the implementation of the code, by dividing 
it into logical blocks. In fact, while in Java, C, and C++, each line of code is separated from the next by a 
semicolon (;), in Python you should not specify any symbol that separates them, included the braces to 
indicate a logical block.

These roles in Python are handled through indentation; that is, depending on the starting point of the 
code line, the interpreter determines whether it belongs to a logical block or not.

>>> a = 4
>>> if a > 3:
...    if a < 5:
...        print("I'm four")
... else:
...    print("I'm a little number")
...
I'm four
>>> if a > 3:
...    if a < 5:
...       print("I'm four")
...    else:
...       print("I'm a big number")
...
I'm four

In this example you can see that, depending on how the else command is indented, the conditions 
assume two different meanings (specified by me in the strings themselves).

�IPython
IPython is a further development of Python that includes a number of tools:

•	 The IPython shell, which is a powerful interactive shell resulting in a greatly 
enhanced Python terminal.

•	 A QtConsole, which is a hybrid between a shell and a GUI, allowing you to display 
graphics inside the console instead of in separate windows.

•	 An IPython Notebook, called Jupyter Notebook, which is a web interface that allows 
you to mix text, executable code, graphics, and formulas in a single representation.
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�IPython Shell
This shell apparently resembles a Python session run from a command line, but actually, it provides many 
other features that make this shell much more powerful and versatile than the classic one. To launch this 
shell, just type ipython on the command line.

> ipython
Python 3.11.0 | packaged by Anaconda, Inc. | (main, Mar  1 2023, 18:18:21) [MSC v.1916 64 
bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.12.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]:

As you can see, a particular prompt appears with the value In [1]. This means that it is the first line of 
input. Indeed, IPython offers a system of numbered prompts (indexed) with input and output caching.

In [1]: print("Hello World!")
Hello World!
In [2]: 3/2
Out[2]: 1.5
In [3]: 5.0/2
Out[3]: 2.5
In [4]:

The same thing applies to values in output that are indicated with the values Out[1], Out [2], and so 
on. IPython saves all inputs that you enter by storing them as variables. In fact, all the inputs entered were 
included as fields in a list called In.

In [4]: In
Out[4]: [", 'print "Hello World!"', '3/2', '5.0/2', 'In']

The indices of the list elements are the values that appear in each prompt. Thus, to access a single line 
of input, you can simply specify that value.

In [5]: In[3]
Out[5]: '5.0/2'

For output, you can apply the same concept.

In [6]: Out
Out[6]:
{2: 1.5,
 3: 2.5,
 4: ['', 'print("Hello World!")', '3/2', '5.0/2', 'In', 'In[3]', 'Out'], 5: u'5.0/2'}
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�The Jupyter Project
IPython has grown enormously in recent times, and with the release of IPython 3.0, everything is moving 
toward a new project called Jupyter (https://jupyter.org)—see Figure 2-7.

Figure 2-7.  The Jupyter project logo

IPython will continue to exist as a Python shell and as a kernel of Jupyter, but the Notebook and the 
other language-agnostic components belonging to the IPython project will move to form the new Jupyter 
project.

�Jupyter QtConsole
In order to launch this application from the command line, you must enter the following command:

jupyter qtconsole

The application consists of a GUI that has all the functionality present in the IPython shell. See 
Figure 2-8.
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Figure 2-8.  The IPython QtConsole

�Jupyter Notebook
Jupyter Notebook is the latest evolution of this interactive environment (see Figure 2-9). In fact, with 
Jupyter Notebook, you can merge executable code, text, formulas, images, and animations into a single web 
document. This is useful for many purposes, such as presentations, tutorials, debugging, and so forth.

Figure 2-9.  The web page showing the Jupyter Notebook
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To start Jupyter Notebook on your web browser, run the following command from the console:

jupyter notebook

If instead you are working with Anaconda Navigator, in the Home panel, click the Launch button of the 
Jupyter Notebook application to start it (see Figure 2-10).

Figure 2-10.  Jupyter Notebook application in Anaconda Navigator

�Jupyter Lab
Another application that brings together the characteristics of all the applications seen so far is Jupyter Lab. 
It runs on browsers like Jupyter Notebook, but it’s a real development environment, where you can manage 
files, data, and code in the form of files, sessions, notebooks, and so on.

To start Jupyter Lab on your web browser, run the following command from the console:

jupyter lab
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This application is also present on Anaconda Navigator together with the others, and to start it from one 
of the virtual environments, simply click the Launch button of the corresponding icon shown in Figure 2-11.

Figure 2-11.  Jupyter Lab icon in Anaconda Navigator

Starting the application will open the default browser (if it’s not already open) and load the  
https://localhost:8892/lab page, which corresponds to Jupyter Lab, as shown in Figure 2-12.
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Figure 2-12.  Jupyter Lab application

�PyPI—The Python Package Index
The Python Package Index (PyPI) is a software repository that contains all the software needed for 
programming in Python—for example, all Python packages belonging to other Python libraries. The 
content repository is managed directly by the developers of individual packages that deal with updating 
the repository with the latest versions of their released libraries. For a list of the packages contained in the 
repository, go to the official page of PyPI at https://pypi.python.org/pypi.

As far as the administration of these packages, you can use the pip application, which is the package 
manager of PyPI.

By launching it from the command line, you can manage all the packages and individually decide if 
a package should be installed, upgraded, or removed. Pip will check if the package is already installed, or 
if it needs to be updated, to control dependencies, and to assess whether other packages are necessary. 
Furthermore, it manages the downloading and installation processes.

$ pip install <<package_name>>
$ pip search <<package_name>>
$ pip show <<package_name>>
$ pip unistall <<package_name>>
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�The IDEs for Python
Although most Python developers are used to implementing their code directly from the shell (Python or 
IPython), some IDEs (Interactive Development Environments) are also available. In fact, in addition to a text 
editor, these graphics editors also provide a series of tools that are very useful during the drafting of the code. 
For example, the auto-completion of code, viewing the documentation associated with the commands, 
debugging, and breakpoints are only some of the tools that this kind of application can provide.

�Spyder
Spyder (Scientific Python Development Environment) is an IDE that has similar features to the IDE of 
MATLAB (see Figure 2-13). The text editor is enriched with syntax highlighting and code analysis tools. Also, 
you can integrate ready-to-use widgets in your graphic applications.

Figure 2-13.  The Spyder IDE
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�Eclipse (pyDev)
Those of you who have developed in other programming languages certainly know Eclipse, a universal IDE 
developed entirely in Java (therefore requiring Java installation on your PC) that provides a development 
environment for many programming languages (see Figure 2-14). There is also an Eclipse version for 
developing in Python, thanks to the installation of an additional plugin called pyDev.

Figure 2-14.  The Eclipse IDE
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�Sublime
This text editor is one of the preferred environments for Python programmers (see Figure 2-15). In fact, there 
are several plugins available for this application that make Python implementation easy and enjoyable.

Figure 2-15.  The Sublime IDE
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�Liclipse
Liclipse, similarly to Spyder, is a development environment specifically designed for the Python language 
(see Figure 2-16). It is very similar to the Eclipse IDE but it is fully adapted for a specific use in Python, 
without needing to install plugins like PyDev. So its installation and settings are much simpler than Eclipse.

Figure 2-16.  The Liclipse IDE
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�NinjaIDE
NinjaIDE (NinjaIDE is “Not Just Another IDE”), which characterized by a name that is a recursive acronym, 
is a specialized IDE for the Python language (see Figure 2-17). It’s a very recent application on which the 
efforts of many developers are focused. Already very promising, it is likely that in the coming years, this IDE 
will be a source of many surprises.

Figure 2-17.  The Ninja IDE

�Komodo IDE
Komodo is a very powerful IDE full of tools that make it a complete and professional development 
environment (see Figure 2-18). Paid software and written in C++, the Komodo development environment is 
adaptable to many programming languages, including Python.
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Figure 2-18.  The Komodo IDE

�SciPy
SciPy (pronounced “sigh pie”) is a set of open-source Python libraries specialized for scientific computing. 
Many of these libraries are the protagonists of many chapters of the book, given that their knowledge is 
critical to data analysis. Together they constitute a set of tools for calculating and displaying data. It has 
little to envy from other specialized environments for calculation and data analysis (such as R or MATLAB). 
Among the libraries that are part of the SciPy group, there are three in particular that are discussed in the 
following chapters:

•	 NumPy

•	 matplotlib

•	 Pandas

�NumPy
This library, whose name means numerical Python, constitutes the core of many other Python libraries that 
have originated from it. Indeed, NumPy is the foundation library for scientific computing in Python since it 
provides data structures and high-performing functions that the basic package of the Python cannot provide. 
In fact, as you will see later in the book, NumPy defines a specific data structure that is an N-dimensional 
array defined as ndarray.

Knowledge of this library is essential in terms of numerical calculations since its correct use can greatly 
influence the performance of your computations. Throughout the book, this library is almost omnipresent 
because of its unique characteristics, so an entire chapter is devoted to it (Chapter 3).
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This package provides some features added to the standard Python:

•	 Ndarray: A multidimensional array much faster and more efficient than those 
provided by the basic package of Python.

•	 Element-wise computation: A set of functions for performing this type of calculation 
with arrays and mathematical operations between arrays.

•	 Reading-writing datasets: A set of tools for reading and writing data stored in the 
hard disk.

•	 Integration with other languages such as C, C++, and FORTRAN: A set of tools to 
integrate code developed with these programming languages.

�Pandas
This package provides complex data structures and functions specifically designed to make the work on 
them easy, fast, and effective. This package is the core of data analysis in Python. Therefore, the study 
and application of this package is the main goal on which you will work throughout the book (especially 
in Chapters 4, 5, and 6). Knowledge of its every detail, especially when it is applied to data analysis, is a 
fundamental objective of this book.

The fundamental concept of this package is the DataFrame, a two-dimensional tabular data structure 
with row and column labels.

Pandas applies the high-performance properties of the NumPy library to the manipulation of data in 
spreadsheets or in relational databases (SQL databases). In fact, by using sophisticated indexing, it will be 
easy to carry out many operations on this kind of data structure, such as reshaping, slicing, aggregations, and 
the selection of subsets.

�matplotlib
This package is the Python library that is currently the most popular for producing plots and other data 
visualizations in 2D. Because data analysis requires visualization tools, this library best suits this purpose. 
In Chapter 7, you learn about this rich library in detail so you will know how to represent the results of your 
analysis in the best way.

�Conclusions
During the course of this chapter, all the fundamental aspects characterizing the Python world have been 
illustrated. The basic concepts of the Python programming language were introduced, with brief examples 
explaining its innovative aspects and how it stands out compared to other programming languages. In 
addition, different ways of using Python at various levels were presented. First you saw how to use a simple 
command-line interpreter, then a set of simple graphical user interfaces were shown until you got to 
complex development environments, known as IDEs, such as Spyder, Liclipse, and NinjaIDE.

Even the highly innovative project Jupyter (IPython) was presented, showing you how you can develop 
Python code interactively, in particular with the Jupyter Notebook.

Moreover, the modular nature of Python was highlighted with the ability to expand the basic set of 
standard functions provided by Python’s external libraries. In this regard, the PyPI online repository was 
shown along with other Python distributions such as Anaconda and Enthought Canopy.

In the next chapter, you deal with the first library that is the basis of all numerical calculations in 
Python: NumPy. You learn about the ndarray, a data structure that is the basis of the more complex data 
structures used in data analysis in the following chapters.

Chapter 2 ■ Introduction to the Python World

https://doi.org/10.1007/978-1-4842-9532-8_4
https://doi.org/10.1007/978-1-4842-9532-8_5
https://doi.org/10.1007/978-1-4842-9532-8_6
https://doi.org/10.1007/978-1-4842-9532-8_7


45

CHAPTER 3

The NumPy Library

NumPy is a basic package for scientific computing with Python and especially for data analysis. In fact, this 
library is the basis of a large amount of mathematical and scientific Python packages, and among them, 
as you will see later in the book, is the pandas library. This library, specialized for data analysis, is fully 
developed using the concepts introduced by NumPy. In fact, the built-in tools provided by the standard 
Python library could be too simple or inadequate for most of the calculations in data analysis.

Having knowledge of the NumPy library is important to being able to use all scientific Python packages, 
and particularly, to use and understand the pandas library. The pandas library is the main subject of the 
following chapters.

If you are already familiar with this library, you can proceed directly to the next chapter; otherwise you 
can view this chapter as a way to review the basic concepts or to regain familiarity with it by running the 
examples in this chapter.

�NumPy: A Little History
At the dawn of the Python language, the developers needed to perform numerical calculations, especially 
when this language was being used by the scientific community.

The first attempt was Numeric, developed by Jim Hugunin in 1995, which was followed by an alternative 
package called Numarray. Both packages were specialized for the calculation of arrays, and each had 
strengths depending on in which case they were used. Thus, they were used differently depending on the 
circumstances. This ambiguity led then to the idea of unifying the two packages. Travis Oliphant started to 
develop the NumPy library for this purpose. Its first release (v 1.0) occurred in 2006.

From that moment on, NumPy proved to be the extension library of Python for scientific computing, 
and it is currently the most widely used package for the calculation of multidimensional arrays and large 
arrays. In addition, the package comes with a range of functions that allow you to perform operations on 
arrays in a highly efficient way and perform high-level mathematical calculations.

Currently, NumPy is open source and licensed under BSD. There are many contributors who have 
expanded the potential of this library. At present, NumPy has arrived at release 1.24. As you can see in 
Figure 3-1, this library is in continuous development, with approximately one release every six months.

© Fabio Nelli 2023 
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-9532-8_3
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Figure 3-1.  NumPy releases in the last five years, with the new NumPy logo [CC BY-SA 4.0 Isabela 
Presedo-Floyd]

�The NumPy Installation
This library doesn’t have any requirements except that you have a Python platform to run on, so installing 
it shouldn’t cause any problems. Generally, this module is present as a basic package in most Python 
distributions; however, if not, you can install it later.

However, regardless of the platform you are using, as with all the other libraries that you will use 
throughout the book, it is also recommended for NumPy to use the platform of the Anaconda distribution. 
This allows you to cleanly manage the NumPy installation aspect, as well as easily create and manage 
the virtual environments on which to install it. In this way, it is possible to test and develop your code 
with different Python versions and NumPy releases without having to uninstall and reinstall everything 
each time.

If you have Anaconda, just write the following to install NumPy:

conda install numpy

If instead you want to work without the support of this distribution, use the command-line pip 
command to install the NumPy library (see https://pypi.org/project/numpy/):

pip install numpy

Once NumPy is installed on your distribution, to import the NumPy module in your Python session, 
write the following:

>>> import numpy as np

If, on the other hand, you are writing code, in order to access NumPy and its functions, you have to 
insert this instruction at the beginning of the Python code.

Chapter 3 ■ The NumPy Library
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�ndarray: The Heart of the Library
The NumPy library is based on one main object: ndarray (which stands for N-dimensional array). This 
object is a multidimensional, homogeneous array with a predetermined number of items: homogeneous 
because virtually all the items in it are of the same type and the same size. In fact, the data type is specified 
by another NumPy object called dtype (data-type); each ndarray is associated with only one type of dtype.

The number of the dimensions and items in an array is defined by its shape, a tuple of N-positive 
integers that specifies the size for each dimension. The dimensions are defined as axes and the number of 
axes as rank.

Moreover, another peculiarity of NumPy arrays is that their size is fixed, that is, once you define their 
size at the time of creation, it remains unchanged. This behavior is different from Python lists, which can 
grow or shrink in size.

The easiest way to define a new ndarray is to use the array() function, passing a Python list containing 
the elements to be included in it as an argument.

>>> a = np.array([1, 2, 3])
>>> a
array([1, 2, 3])

You can easily check that a newly created object is an ndarray by passing the new variable to the type() 
function.

>>> type(a)
<class 'numpy.ndarray'>

In order to know the associated dtype to the newly created ndarray, you have to use the dtype attribute.

■■ Note T he result of dtype, shape, and other attributes can vary among different operating systems and 
Python distributions.

>>> a.dtype
dtype('int32')

The just-created array has one axis, and then its rank is 1, while its shape should be (3,1). To obtain 
these values from the corresponding array, it is sufficient to use the ndim attribute for getting the axes, the 
size attribute to determine the array length, and the shape attribute to get its shape.

>>> a.ndim
1
>>> a.size
3
>>> a.shape
(3,)
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What you have just seen is the simplest case of a one-dimensional array. But the use of arrays can be 
easily extended to several dimensions. For example, if you define a two-dimensional array 2x2:

>>> b = np.array([[1.3, 2.4],[0.3, 4.1]])
>>> b
array([[1.2, 2.4],
       [0.3, 3. ]])
>>> b.dtype
dtype('float64')
>>> b.ndim
2
>>> b.size
4
>>> b.shape
(2, 2)

This array has rank 2, since it has two axes, each of length 2.
Another important attribute is itemsize, which can be used with ndarray objects. It defines the size 

in bytes of each item in the array, and data is the buffer containing the actual elements of the array. This 
second attribute is still not generally used, because to access the data in the array you use the indexing 
mechanism, which you will see in the next sections.

>>> b.itemsize
8
>>> b.data
<memory at 0x000001A8AD526A80>

�Create an Array
To create a new array, you can follow different paths. The most common path is the one you saw in the 
previous section through a list or sequence of lists as arguments to the array() function.

>>> c = np.array([[1, 2, 3],[4, 5, 6]])
>>> c
array([[1, 2, 3],
       [4, 5, 6]])

The array() function, in addition to lists, can accept tuples and sequences of tuples.

>>> d = np.array(((1, 2, 3),(4, 5, 6)))
>>> d
array([[1, 2, 3],
       [4, 5, 6]])

It can also accept sequences of tuples and interconnected lists.

>>> e = np.array([(1, 2, 3), [4, 5, 6], (7, 8, 9)])
>>> e
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
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�Types of Data
So far you have seen only simple integer and float numeric values, but NumPy arrays are designed to contain 
a wide variety of data types (see Table 3-1). For example, you can use the data type string:

>>> g = np.array([['a', 'b'],['c', 'd']])
>>> g
array([['a', 'b'],
       ['c', 'd']], dtype='<U1')>>> g.dtype
dtype('<U1')
>>> g.dtype.name
'str32'

Table 3-1.  Data Types Supported by NumPy

Data Type Description

bool_ Boolean (true or false) stored as a byte

int_ Signed integer type (same as C long and Python int; normally either int64 or int32 
depending on the platform)

intc Signed integer type, identical to C int (normally int32 or int64)

intp Integer used for indexing (same as C size_t; normally either int32 or int64)

int8 Alias for the signed integer type with 8 bits (–128 to 127)

int16 Alias for the signed integer type with 16 bits (–32768 to 32767)

int32 Alias for the signed integer type with 32 bits (–2147483648 to 2147483647)

int64 Alias for the signed integer type with 64 bits (–9223372036854775808 to 
9223372036854775807)

uint8 Alias for the unsigned integer type with 8 bits (0 to 255)

uint16 Alias for the unsigned integer type with 16 bits (0 to 65535)

uint32 Alias for the unsigned integer type with 32 bits (0 to 4294967295)

uint64 Alias for the unsigned integer type with 64 bits (0 to 18446744073709551615)

float_ Shorthand for float64

float16 Half precision float: sign bit, 5-bit exponent, 10-bit mantissa

float32 Single precision float: sign bit, 8-bit exponent, 23-bit mantissa

float64 Double precision float: sign bit, 11-bit exponent, 52-bit mantissa

complex_ Shorthand for complex128

complex64 Complex number, represented by two 32-bit floats (real and imaginary components)

complex128 Complex number, represented by two 64-bit floats (real and imaginary components)
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�The dtype Option
The array() function does not accept a single argument. You have seen that each ndarray object is 
associated with a dtype object that uniquely defines the type of data that will occupy each item in the array. 
By default, the array() function can associate the most suitable type according to the values contained in 
the sequence of lists or tuples. Actually, you can explicitly define the dtype using the dtype option as an 
argument of the function.

For example, if you want to define an array with complex values, you can use the dtype option as 
follows:

>>> f = np.array([[1, 2, 3],[4, 5, 6]], dtype=complex)
>>> f
array([[ 1.+0.j,  2.+0.j,  3.+0.j],
       [ 4.+0.j,  5.+0.j,  6.+0.j]])

�Intrinsic Creation of an Array
The NumPy library provides a set of functions that generate ndarrays with initial content, created with 
different values depending on the function. Throughout the chapter, and throughout the book, you’ll 
discover that these features will be very useful. In fact, they allow a single line of code to generate large 
amounts of data.

The zeros() function, for example, creates a full array of zeros with dimensions defined by the shape of 
the argument. For example, to create a two-dimensional array 3x3, you can use:

>>> np.zeros((3, 3))
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])

While the ones() function creates an array full of ones in a very similar way.

>>> np.ones((3, 3))
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])

By default, the two functions created arrays with the float64 data type. A feature that is particularly 
useful is arange(). This function generates NumPy arrays with numerical sequences that respond to 
particular rules depending on the passed arguments. For example, if you want to generate a sequence of 
values between 0 and 10, you will be passed only one argument to the function—the value with which you 
want to end the sequence.

>>> np.arange(0, 10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

If instead of starting from 0 you want to start from another value, you simply specify two arguments: the 
first is the starting value and the second is the final value.

>>> np.arange(4, 10)
array([4, 5, 6, 7, 8, 9])
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It is also possible to generate a sequence of values with precise intervals between them. If the third 
argument of the arange() function is specified, this will represent the gap between one value and the next 
one in the sequence of values.

>>> np.arange(0, 12, 3)
array([0, 3, 6, 9])

In addition, this third argument can also be a float.

>>> np.arange(0, 6, 0.6)
array([ 0. ,  0.6,  1.2,  1.8,  2.4,  3. ,  3.6,  4.2,  4.8,  5.4])

So far you have only created one-dimensional arrays. To generate two-dimensional arrays, you can still 
continue to use the arange() function but combined with the reshape() function. This function divides a 
linear array in different parts in the manner specified by the shape argument.

>>> np.arange(0, 12).reshape(3, 4)
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

Another function very similar to arange() is linspace(). This function still takes as its first two 
arguments the initial and end values of the sequence, but the third argument, instead of specifying the 
distance between one element and the next, defines the number of elements into which you want the 
interval to be split.

>>> np.linspace(0,10,5)
array([  0. ,   2.5,   5. ,   7.5,  10. ])

Finally, another method to obtain arrays already containing values is to fill them with random values. 
This is possible using the random() function of the numpy.random module. This function will generate an 
array with as many elements as specified in the argument.

>>> np.random.random(3)
array([ 0.78610272,  0.90630642,  0.80007102])

The numbers obtained will vary with every run. To create a multidimensional array, you simply pass the 
size of the array as an argument.

>>> np.random.random((3,3))
array([[ 0.07878569,  0.7176506 ,  0.05662501],
       [ 0.82919021,  0.80349121,  0.30254079],
       [ 0.93347404,  0.65868278,  0.37379618]])

�Basic Operations
So far you have seen how to create a new NumPy array and how items are defined in it. Now it is the time to 
see how to apply various operations to these arrays.
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�Arithmetic Operators
The first operations that you will perform on arrays are the arithmetic operators. The most obvious are 
adding and multiplying an array by a scalar.

>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> a+4
array([4, 5, 6, 7])
>>> a*2
array([0, 2, 4, 6])

These operators can also be used between two arrays. In NumPy, these operations are element-wise, 
that is, the operators are applied only between corresponding elements. These objects occupy the same 
position, so that the end result is a new array containing the results in the same location of the operands (see 
Figure 3-2).

>>> b = np.arange(4,8)
>>> b
array([4, 5, 6, 7])
>>> a + b
array([ 4,  6,  8, 10])
>>> a – b
array([–4, –4, –4, –4])
>>> a * b
array([ 0,  5, 12, 21])

Figure 3-2.  Element-wise addition

Moreover, these operators are also available for functions, provided that the value returned is a NumPy 
array. For example, you can multiply the array by the sine or the square root of the elements of array b.

>>> a * np.sin(b)
array([–0.        , –0.95892427, –0.558831  ,  1.9709598 ])
>>> a * np.sqrt(b)
array([ 0.        ,  2.23606798,  4.89897949,  7.93725393])
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Moving on to the multidimensional case, even here the arithmetic operators continue to operate 
element-wise.

>>> A = np.arange(0, 9).reshape(3, 3)
>>> A
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> B = np.ones((3, 3))
>>> B
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])
>>> A * B
array([[ 0.,  1.,  2.],
       [ 3.,  4.,  5.],
       [ 6.,  7.,  8.]])

�The Matrix Product
The choice of operating element-wise is a peculiar aspect of the NumPy library. In fact, in many other tools 
for data analysis, the * operator is understood as a matrix product when it is applied to two matrices. Using 
NumPy, this kind of product is instead indicated by the dot() function. This operation is not element-wise.

>>> np.dot(A,B)
array([[  3.,   3.,   3.],
       [ 12.,  12.,  12.],
       [ 21.,  21.,  21.]])

The result at each position is the sum of the products of each element of the corresponding row of the 
first matrix with the corresponding element of the corresponding column of the second matrix. Figure 3-3 
illustrates the process carried out during the matrix product (run for two elements).

Figure 3-3.  Calculating matrix elements as a result of a matrix product
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An alternative way to write the matrix product is to use the dot() function as an object’s function of one 
of the two matrices.

>>> A.dot(B)
array([[  3.,   3.,   3.],
       [ 12.,  12.,  12.],
       [ 21.,  21.,  21.]])

Note that because the matrix product is not a commutative operation, the order of the operands is 
important. Indeed, A * B is not equal to B * A.

>>> np.dot(B,A)
array([[  9.,  12.,  15.],
       [  9.,  12.,  15.],
       [  9.,  12.,  15.]])

�Increment and Decrement Operators
Actually, there are no such operators in Python, because there are no operators called ++ or ––. To increase 
or decrease values, you have to use operators such as += and –=. These operators are not different from ones 
you saw earlier, except that instead of creating a new array with the results, they reassign the results to the 
same array.

>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> a += 1
>>> a
array([1, 2, 3, 4])
>>> a –= 1
>>> a
array([0, 1, 2, 3])

Therefore, using these operators is much more extensive than the simple incremental operators that 
increase the values by one unit, and they can be applied in many cases. For instance, you need them every 
time you want to change the values in an array without generating a new array.

>>> a += 4
>>> a
array([4, 5, 6, 7])
>>> a *= 2
>>> a
array([ 8, 10, 12, 14])

�Universal Functions (ufunc)
A universal function, generally called ufunc, is a function operating on an array in an element-by-element 
fashion. This means that it acts individually on each single element of the input array to generate a 
corresponding result in a new output array. In the end, you obtain an array of the same size as the input.
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There are many mathematical and trigonometric operations that meet this definition; for example, 
calculating the square root with sqrt(), the logarithm with log(), or the sin with sin().

>>> a = np.arange(1, 5)
>>> a
array([1, 2, 3, 4])
>>> np.sqrt(a)
array([ 1.        ,  1.41421356,  1.73205081,  2.        ])
>>> np.log(a)
array([ 0.        ,  0.69314718,  1.09861229,  1.38629436])
>>> np.sin(a)
array([ 0.84147098,  0.90929743,  0.14112001, –0.7568025 ])

Many common math functions are already implemented in the NumPy library.

�Aggregate Functions
Aggregate functions perform an operation on a set of values, an array for example, and produce a single 
result. Therefore, the sum of all the elements in an array is an aggregate function. Many functions of this kind 
are implemented in the ndarray class and so can be invoked directly from the array on which you want to 
perform the calculation.

>>> a = np.array([3.3, 4.5, 1.2, 5.7, 0.3])
>>> a.sum()
15.0
>>> a.min()
0.3
>>> a.max()
5.7
>>> a.mean()
3.0
>>> a.std()
2.0079840636817816

�Indexing, Slicing, and Iterating
In the previous sections, you saw how to create an array and how to perform operations on it. In this section, 
you see how to manipulate these objects. You learn how to select elements through indexes and slices, in 
order to obtain the values contained in them or to make assignments in order to change their values. Finally, 
you also see how you can make iterations within them.

�Indexing
Array indexing always uses square brackets ([ ]) to index the elements of the array so that the elements can 
then be referred individually for various uses, such as extracting a value, selecting items, or even assigning a 
new value.
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When you create a new array, an appropriate scale index is also automatically created (see Figure 3-4).

Figure 3-4.  Indexing a monodimensional ndarray

In order to access a single element of an array, you can refer to its index.

>>> a = np.arange(10, 16)
>>> a
array([10, 11, 12, 13, 14, 15])
>>> a[4]
14

The NumPy arrays also accept negative indexes. These indexes have the same incremental sequence 
from 0 to –1, –2, and so on, but in practice they cause the final element to move gradually toward the initial 
element, which is the one with the more negative index value.

>>> a[–1]
15
>>> a[–6]
10

To select multiple items at once, you can pass an array of indexes in square brackets.

>>> a[[1, 3, 4]]
array([11, 13, 14])

Moving on to the two-dimensional case, namely the matrices, they are represented as rectangular 
arrays consisting of rows and columns, defined by two axes, where axis 0 is represented by the rows and axis 
1 is represented by the columns. Thus, indexing in this case is represented by a pair of values: the first value 
is the index of the row and the second is the index of the column. Therefore, if you want to access the values 
or select elements in the matrix, you still use square brackets, but this time there are two values [row index, 
column index] (see Figure 3-5).
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Figure 3-5.  Indexing a two-dimensional array

>>> A = np.arange(10, 19).reshape((3, 3))
>>> A
array([[10, 11, 12],
       [13, 14, 15],
       [16, 17, 18]])

If you want to remove the element of the third column in the second row, you have to insert the 
pair [1, 2].

>>> A[1, 2]
15

�Slicing
Slicing allows you to extract portions of an array to generate new arrays. When you use the Python lists to 
slice arrays, the resulting arrays are copies, but in NumPy, the arrays are views of the same underlying buffer.

Depending on the portion of the array that you want to extract (or view), you must use the slice syntax; 
that is, you use a sequence of numbers separated by colons (:) within square brackets.

If you want to extract a portion of the array, for example one that goes from the second to the sixth 
element, you have to insert the index of the starting element, that is 1, and the index of the final element, that 
is 5, separated by a colon (:).

>>> a = np.arange(10, 16)
>>> a
array([10, 11, 12, 13, 14, 15])
>>> a[1:5]
array([11, 12, 13, 14])

Now if you want to extract an item from the previous portion and skip a specific number of following 
items, then extract the next and skip again, you can use a third number that defines the gap in the sequence 
of the elements. For example, with a value of 2, the array will take the elements in an alternating fashion.

>>> a[1:5:2]
array([11, 13])
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To better understand the slice syntax, you also should look at cases where you do not use explicit 
numerical values. If you omit the first number, NumPy implicitly interprets this number as 0 (i.e., the initial 
element of the array). If you omit the second number, this will be interpreted as the maximum index of 
the array; and if you omit the last number, this will be interpreted as 1. All the elements will be considered 
without intervals.

>>> a[::2]
array([10, 12, 14])
>>> a[:5:2]
array([10, 12, 14])
>>> a[:5:]
array([10, 11, 12, 13, 14])

In the case of a two-dimensional array, the slicing syntax still applies, but it is separately defined for the 
rows and columns. For example, if you want to extract only the first row:

>>> A = np.arange(10, 19).reshape((3, 3))
>>> A
array([[10, 11, 12],
       [13, 14, 15],
       [16, 17, 18]])
>>> A[0,:]
array([10, 11, 12])

As you can see in the second index, if you leave only the colon without defining a number, you will 
select all the columns. Instead, if you want to extract all the values of the first column, you have to write the 
inverse.

>>> A[:,0]
array([10, 13, 16])

Instead, if you want to extract a smaller matrix, you need to explicitly define all intervals with indexes 
that define them.

>>> A[0:2, 0:2]
array([[10, 11],
       [13, 14]])

If the indexes of the rows or columns to be extracted are not contiguous, you can specify an array of 
indexes.

>>> A[[0,2], 0:2]
array([[10, 11],
       [16, 17]])
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�Iterating an Array
In Python, iterating the items in an array is really very simple; you just need to use the for construct.

>>> for i in a:
...      print(i)
...
10
11
12
13
14
15

Of course, even here, moving to the two-dimensional case, you could think of applying the solution of 
two nested loops with the for construct. The first loop will scan the rows of the array, and the second loop 
will scan the columns. Actually, if you apply the for loop to a matrix, it will always perform a scan according 
to the first axis.

>>> for row in A:
...      print(row)
...
[10 11 12]
[13 14 15]
[16 17 18]

If you want to make an iteration element by element, you can use the following construct, using the for 
loop on A.flat.

>>> for item in A.flat:
...       print(item)
...
10
11
12
13
14
15
16
17
18

However, despite all this, NumPy offers an alternative and more elegant solution than the for loop. 
Generally, you need to apply an iteration to apply a function on the rows, on the columns, or on an 
individual item. If you want to launch an aggregate function that returns a value calculated for every single 
column or for every single row, there is an optimal way that leaves it to NumPy to manage the iteration: the 
apply_along_axis() function.
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This function takes three arguments: the aggregate function, the axis on which to apply the iteration, 
and the array. If the axis option equals 0, then the iteration evaluates the elements column by column, 
whereas if axis equals 1 then the iteration evaluates the elements row by row. For example, you can 
calculate the average values first by column and then by row.

>>> np.apply_along_axis(np.mean, axis=0, arr=A)
array([ 13.,  14.,  15.])
>>> np.apply_along_axis(np.mean, axis=1, arr=A)
array([ 11.,  14.,  17.])

The previous case uses a function already defined in the NumPy library, but nothing prevents you 
from defining your own functions. You also used an aggregate function. However, nothing forbids you from 
using an ufunc. In this case, iterating by column and by row produces the same result. In fact, using a ufunc 
performs one iteration element-by-element.

>>> def foo(x):
...     return x/2
...
>>> np.apply_along_axis(foo, axis=1, arr=A)
array([[5.,  5.5, 6. ],
       [6.5, 7.,  7.5],
       [8.,  8.5, 9. ]])
>>> np.apply_along_axis(foo, axis=0, arr=A)
array([[5.,  5.5, 6.],
       [6.5, 7.,  7.5],
       [8.,  8.5, 9.]])

As you can see, the ufunc function halves the value of each element of the input array, regardless of 
whether the iteration is performed by row or by column.

�Conditions and Boolean Arrays
So far you have used indexing and slicing to select or extract a subset of an array. These methods use 
numerical indexes. An alternative way to selectively extract the elements in an array is to use the conditions 
and Boolean operators.

Suppose you wanted to select all the values that are less than 0.5 in a 4x4 matrix containing random 
numbers between 0 and 1.

>>> A = np.random.random((4, 4))
>>> A
array([[ 0.03536295,  0.0035115 ,  0.54742404,  0.68960999],
       [ 0.21264709,  0.17121982,  0.81090212,  0.43408927],
       [ 0.77116263,  0.04523647,  0.84632378,  0.54450749],
       [ 0.86964585,  0.6470581 ,  0.42582897,  0.22286282]])

Once a matrix of random numbers is defined, if you apply an operator condition, you will receive as a 
return value a Boolean array containing true values in the positions in which the condition is satisfied. In 
this example, that is all the positions in which the values are less than 0.5.
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>>> A < 0.5
array([[ True,  True, False, False],
       [ True,  True, False,  True],
       [False,  True, False, False],
       [False, False,  True,  True]], dtype=bool)

Actually, the Boolean arrays are used implicitly for making selections of parts of arrays. In fact, by 
inserting the previous condition directly inside the square brackets, you can extract all elements smaller 
than 0.5, so as to obtain a new array.

>>> A[A < 0.5]
array([ 0.03536295,  0.0035115 ,  0.21264709,  0.17121982,  0.43408927,
        0.04523647,  0.42582897,  0.22286282])

�Shape Manipulation
You already saw, when creating a two-dimensional array, that it is possible to convert a one-dimensional 
array into a matrix, thanks to the reshape() function.

>>> a = np.random.random(12)
>>> a
array([ 0.77841574,  0.39654203,  0.38188665,  0.26704305,  0.27519705,
        0.78115866,  0.96019214,  0.59328414,  0.52008642,  0.10862692,
        0.41894881,  0.73581471])
>>> A = a.reshape(3, 4)
>>> A
array([[ 0.77841574,  0.39654203,  0.38188665,  0.26704305],
       [ 0.27519705,  0.78115866,  0.96019214,  0.59328414],
       [ 0.52008642,  0.10862692,  0.41894881,  0.73581471]])

The reshape() function returns a new array and can therefore create new objects. However, if you want 
to modify the object by modifying the shape, you have to assign a tuple containing the new dimensions 
directly to its shape attribute.

>>> a.shape = (3, 4)
>>> a
array([[ 0.77841574,  0.39654203,  0.38188665,  0.26704305],
       [ 0.27519705,  0.78115866,  0.96019214,  0.59328414],
       [ 0.52008642,  0.10862692,  0.41894881,  0.73581471]])

As you can see, this time it is the starting array that changes shape and no object is returned. The 
inverse operation is also possible; that is, you can convert a two-dimensional array into a one-dimensional 
array. You do this by using the ravel() function.

>>> a = a.ravel()
>>> a
array([ 0.77841574,  0.39654203,  0.38188665,  0.26704305,  0.27519705,
        0.78115866,  0.96019214,  0.59328414,  0.52008642,  0.10862692,
        0.41894881,  0.73581471])
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Or you can even act directly on the shape attribute of the array itself.

>>>  a.shape = (A.size)
>>> a
array([ 0.77841574,  0.39654203,  0.38188665,  0.26704305,  0.27519705,
        0.78115866,  0.96019214,  0.59328414,  0.52008642,  0.10862692,
        0.41894881,  0.73581471])

Another important operation is transposing a matrix, which is inverting the columns with the rows. 
NumPy provides this feature with the transpose() function.

>>> A.transpose()
array([[ 0.77841574,  0.27519705,  0.52008642],
       [ 0.39654203,  0.78115866,  0.10862692],
       [ 0.38188665,  0.96019214,  0.41894881],
       [ 0.26704305,  0.59328414,  0.73581471]])

�Array Manipulation
Often you need to create an array using already created arrays. In this section, you see how to create new 
arrays by joining or splitting arrays that are already defined.

�Joining Arrays
You can merge multiple arrays to form a new one that contains all of the arrays. NumPy uses the concept of 
stacking, providing a number of functions in this regard. For example, you can perform vertical stacking with 
the vstack() function, which combines the second array as new rows of the first array. In this case, the array 
grows in the vertical direction. By contrast, the hstack() function performs horizontal stacking; that is, the 
second array is added to the columns of the first array.

>>> A = np.ones((3, 3))
>>> B = np.zeros((3, 3))
>>> np.vstack((A, B))
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 0.,  0.,  0.],
       [ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])
>>> np.hstack((A,B))
array([[ 1.,  1.,  1.,  0.,  0.,  0.],
       [ 1.,  1.,  1.,  0.,  0.,  0.],
       [ 1.,  1.,  1.,  0.,  0.,  0.]])

Two other functions performing stacking between multiple arrays are column_stack() and row_
stack(). These functions operate differently than the two previous functions. Generally these functions 
are used with one-dimensional arrays, which are stacked as columns or rows in order to form a new two-
dimensional array.
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>>> a = np.array([0, 1, 2])
>>> b = np.array([3, 4, 5])
>>> c = np.array([6, 7, 8])
>>> np.column_stack((a, b, c))
array([[0, 3, 6],
       [1, 4, 7],
       [2, 5, 8]])
>>> np.row_stack((a, b, c))
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

�Splitting Arrays
In the previous section, you saw how to assemble multiple arrays through stacking. Now you see how to 
divide an array into several parts. In NumPy, you use splitting to do this. Here too, you have a set of functions 
that work both horizontally with the hsplit() function and vertically with the vsplit() function.

>>> A = np.arange(16).reshape((4, 4))
>>> A
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])

Thus, if you want to split the array horizontally, meaning the width of the array is divided into two parts, 
the 4x4 matrix A will be split into two 2x4 matrices.

>>> [B,C] = np.hsplit(A, 2)
>>> B
array([[ 0,  1],
       [ 4,  5],
       [ 8,  9],
       [12, 13]])
>>> C
array([[ 2,  3],
       [ 6,  7],
       [10, 11],
       [14, 15]])

Instead, if you want to split the array vertically, meaning the height of the array is divided into two parts, 
the 4x4 matrix A will be split into two 4x2 matrices.

>>> [B,C] = np.vsplit(A, 2)
>>> B
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])
>>> C
array([[ 8,  9, 10, 11],
       [12, 13, 14, 15]])
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A more complex command is the split() function, which allows you to split the array into 
nonsymmetrical parts. Passing the array as an argument, you also have to specify the indexes of the parts to 
be divided. If you use the axis = 1 option, then the indexes will be columns; if instead the option is axis = 
0, then they will be row indexes.

For example, if you want to divide the matrix into three parts, the first of which will include the first 
column, the second will include the second and the third column, and the third will include the last column, 
you must specify three indexes in the following way.

>>> [A1,A2,A3] = np.split(A,[1,3],axis=1)
>>> A1
array([[ 0],
       [ 4],
       [ 8],
       [12]])
>>> A2
array([[ 1,  2],
       [ 5,  6],
       [ 9, 10],
       [13, 14]])
>>> A3
array([[ 3],
       [ 7],
       [11],
       [15]])

You can do the same thing by row.

>>> [A1,A2,A3] = np.split(A,[1,3],axis=0)
>>> A1
array([[0, 1, 2, 3]])
>>> A2
array([[ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> A3
array([[12, 13, 14, 15]])

This feature also includes the functionalities of the vsplit() and hsplit() functions.

�General Concepts
This section describes the general concepts underlying the NumPy library. The difference between copies 
and views is when they return values. The mechanism of broadcasting, which occurs implicitly in many 
NumPy functions, is also covered in this section.

�Copies or Views of Objects
As you may have noticed with NumPy, especially when you are manipulating an array, you can return a 
copy or a view of the array. None of the NumPy assignments produces copies of arrays, nor any element 
contained in them.
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>>> a = np.array([1, 2, 3, 4])
>>> b = a
>>> b
array([1, 2, 3, 4])
>>> a[2] = 0
>>> b
array([1, 2, 0, 4])

If you assign one array a to another array b, you are not copying it; array b is just another way to call 
array a. In fact, by changing the value of the third element of a, you change the third value of b too. When you 
slice an array, the object returned is a view of the original array.

>>> c = a[0:2]
>>> c
array([1, 2])
>>> a[0] = 0
>>> c
array([0, 2])

As you can see, even when slicing, you are actually pointing to the same object. If you want to generate a 
complete and distinct array, use the copy() function.

>>> a = np.array([1, 2, 3, 4])
>>> c = a.copy()
>>> c
array([1, 2, 3, 4])
>>> a[0] = 0
>>> c
array([1, 2, 3, 4])

In this case, even when you change the items in array a, array c remains unchanged.

�Vectorization
Vectorization, along with broadcasting, is the basis of the internal implementation of NumPy. Vectorization 
is the absence of an explicit loop during the development of the code. These loops actually cannot be 
omitted, but are implemented internally and then are replaced by other constructs in the code. The 
application of vectorization leads to more concise and readable code, and you can say that it will appear 
more “Pythonic” in its appearance. In fact, thanks to the vectorization, many operations take on a more 
mathematical expression. For example, NumPy allows you to express the multiplication of two arrays 
as shown:

a * b

Or even two matrices:

A * B
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In other languages, such operations would be expressed with many nested loops and the for construct. 
For example, the first operation would be expressed in the following way:

for (i = 0; i < rows; i++){
  c[i] = a[i]*b[i];
}

While the product of matrices would be expressed as follows:

for( i=0; i < rows; i++){
   for(j=0; j < columns; j++){
      c[i][j] = a[i][j]*b[i][j];
   }
}

You can see that using NumPy makes the code more readable and more mathematical.

�Broadcasting
Broadcasting allows an operator or a function to act on two or more arrays even if these arrays do not 
have the same shape. That said, not all the dimensions can be subjected to broadcasting; they must meet 
certain rules.

You saw that using NumPy, you can classify multidimensional arrays through a shape that is a tuple 
representing the length of the elements of each dimension.

Two arrays can be subjected to broadcasting when all their dimensions are compatible, i.e., the length 
of each dimension must be equal or one of them must be equal to 1. If neither of these conditions is met, you 
get an exception that states that the two arrays are not compatible.

>>> A = np.arange(16).reshape(4, 4)
>>> b = np.arange(4)
>>> A
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> b
array([0, 1, 2, 3])

In this case, you obtain two arrays:

4 x 4
4

There are two rules of broadcasting. First you must add a 1 to each missing dimension. If the 
compatibility rules are now satisfied, you can apply broadcasting and move to the second rule. For example:

4 x 4
4 x 1
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The rule of compatibility is met. Then you can move to the second rule of broadcasting. This rule 
explains how to extend the size of the smallest array so that it’s the size of the biggest array, so that the 
element-wise function or operator is applicable.

The second rule assumes that the missing elements (size, length 1) are filled with replicas of the values 
contained in extended sizes (see Figure 3-6).

Figure 3-6.  Applying the second broadcasting rule

Now that the two arrays have the same dimensions, the values inside may be added together.

>>> A + b
array([[ 0,  2,  4,  6],
       [ 4,  6,  8, 10],
       [ 8, 10, 12, 14],
       [12, 14, 16, 18]])

This is a simple case in which one of the two arrays is smaller than the other. There may be more 
complex cases in which the two arrays have different shapes and each is smaller than the other only in 
certain dimensions.

>>> m = np.arange(6).reshape(3, 1, 2)
>>> n = np.arange(6).reshape(3, 2, 1)
>>> m
array([[[0, 1]],
       [[2, 3]],
       [[4, 5]]])
>>> n
array([[[0],
        [1]],
       [[2],
        [3]],
       [[4],
        [5]]])

Even in this case, by analyzing the shapes of the two arrays, you can see that they are compatible and 
therefore the rules of broadcasting can be applied.

3 x 1 x 2
3 x 2 x 1
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In this case, both arrays undergo the extension of dimensions (broadcasting).

m* = [[[0,1],             n* = [[[0,0],
       [0,1]],                   [1,1]],
      [[2,3],                   [[2,2],
       [2,3]],                   [3,3]],
      [[4,5],                   [[4,4],
       [4,5]]]                   [5,5]]]

Then you can apply, for example, the addition operator between the two arrays, operating 
element-wise.

>>> m + n
array([[[ 0,  1],
        [ 1,  2]],
       [[ 4,  5],
        [ 5,  6]],
       [[ 8,  9],
        [ 9, 10]]])

�Structured Arrays
So far in the various examples in the previous sections, you saw monodimensional and two-dimensional 
arrays. NumPy allows you to create arrays that are much more complex not only in size, but in the structure, 
called structured arrays. This type of array contains structs or records instead of individual items.

For example, you can create a simple array of structs as items. Thanks to the dtype option, you can 
specify a list of comma-separated specifiers to indicate the elements that will constitute the struct, along 
with data type and order.

bytes                     b1
int                       i1, i2, i4, i8
unsigned ints             u1, u2, u4, u8
floats                    f2, f4, f8
complex                   c8, c16
fixed length strings      a<n>

For example, if you want to specify a struct consisting of an integer, a character string of length 6, 
and a Boolean value, you specify the three types of data in the dtype option with the right order using the 
corresponding specifiers.

■■ Note T he result of dtype and other format attributes can vary among different operating systems and 
Python distributions.

>>> structured = np.array([(1, 'First', 0.5, 1+2j),(2, 'Second', 1.3, 2-2j), (3, 'Third', 
0.8, 1+3j)],dtype=('i2, a6, f4, c8'))
>>> structured
array([(1, b'First', 0.5, 1+2.j),
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       (2, b'Second', 1.3, 2.-2.j),
       (3, b'Third', 0.8, 1.+3.j)],
      dtype=[('f0', '<i2'), ('f1', 'S6'), ('f2', '<f4'), ('f3', '<c8')])

You can also use the data type explicitly by specifying int8, uint8, float16, complex64, and so forth.

>>> structured = np.array([(1, 'First', 0.5, 1+2j),(2, 'Second', 1.3,2-2j), (3, 'Third', 
0.8, 1+3j)],dtype=('
int16, a6, float32, complex64'))
>>> structured
array([(1, b'First', 0.5, 1.+2.j),
       (2, b'Second', 1.3, 2.-2.j),
       (3, b'Third', 0.8, 1.+3.j)],
      dtype=[('f0', '<i2'), ('f1', 'S6'), ('f2', '<f4'), ('f3', '<c8')])

Both cases have the same result. Inside the array, you see a dtype sequence containing the name of 
each item of the struct with the corresponding data type.

Writing the appropriate reference index, you obtain the corresponding row, which contains the struct.

>>> structured[1]
(2, b'Second', 1.3, 2.-2.j)

The names that are assigned automatically to each item of the struct can be considered the names of the 
columns of the array. Using them as a structured index, you can refer to all the elements of the same type, or 
of the same column.

>>> structured['f1']
array([b'First', b'Second', b'Third'], dtype='|S6')

As you have just seen, the names are assigned automatically with an f (which stands for field) and a 
progressive integer that indicates the position in the sequence. In fact, it would be more useful to specify the 
names with something more meaningful. This is possible and you can do it at the time of array declaration:

>>> structured = np.array([(1,'First',0.5,1+2j),(2,'Second',1.3,2-2j),(3,'Third',0.8,1+3j)], 
dtype=[(
'id','i2'),('position','a6'),('value','f4'),('complex','c8')])
>>> structured
array([(1, b'First', 0.5, 1.+2.j),
       (2, b'Second', 1.3, 2.-2.j),
       (3, b'Third', 0.8, 1.+3.j)],
      dtype=[('id', '<i2'), ('position', 'S6'), ('value', '<f4'), ('complex', '<c8')])

Or you can do it at a later time, redefining the tuples of names assigned to the dtype attribute of the 
structured array.

>>> structured.dtype.names = ('id','order','value','complex')

Now you can use meaningful names for the various field types:

>>> structured['order']
array([b'First', b'Second', b'Third'],  dtype='|S6')
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�Reading and Writing Array Data on Files
A very important aspect of NumPy that has not been discussed yet is the process of reading data contained 
in a file. This procedure is very useful, especially when you have to deal with large amounts of data collected 
in arrays. This is a very common data analysis operation, since the size of the dataset to be analyzed is 
almost always huge, and therefore it is not advisable or even possible to manage it manually.

NumPy provides a set of functions that allow data analysts to save the results of their calculations in a 
text or binary file. Similarly, NumPy allows you to read and convert written data in a file into an array.

�Loading and Saving Data in Binary Files
NumPy provides a pair of functions, called save() and load(), that enable you to save and then later retrieve 
data stored in binary format.

Once you have an array to save, for example, one that contains the results of your data analysis 
processing, you simply call the save() function and specify as arguments the name of the file and the array. 
The file will automatically be given the .npy extension.

>>> data = np.random.random((3,3))
>>> data
array([[0.47941017, 0.43759768, 0.76636206],
       [0.51928993, 0.06358527, 0.72109914],
       [0.64501488, 0.94113659, 0.42052306]])
>>> np.save('saved_data',data)

When you need to recover the data stored in a .npy file, you use the load() function by specifying the 
file name as the argument, this time adding the .npy extension.

>>> loaded_data = np.load('saved_data.npy')
>>> loaded_data
array([[0.47941017, 0.43759768, 0.76636206],
       [0.51928993, 0.06358527, 0.72109914],
       [0.64501488, 0.94113659, 0.42052306]])

�Reading Files with Tabular Data
Many times, the data that you want to read or save are in textural format (TXT or CSV, for example). 
You might save the data in this format, instead of binary, because the files can then be accessed outside 
independently if you are working with NumPy or with any other application. Take for example the case of a 
set of data in the CSV (Comma-Separated Values) format, in which data are collected in a tabular format and 
the values are separated by commas (see Listing 3-1).

Listing 3-1.  ch3_data.csv

id,value1,value2,value3
1,123,1.4,23
2,110,0.5,18
3,164,2.1,19
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To be able to read your data in a text file and insert values into an array, NumPy provides a function 
called genfromtxt(). Normally, this function takes three arguments—the name of the file containing the 
data, the character that separates the values from each other (in this case, a comma), and whether the data 
contain column headers.

>>> data = np.genfromtxt('ch3_data.csv', delimiter=',', names=True)
>>> data
array([(1.0, 123.0, 1.4, 23.0), (2.0, 110.0, 0.5, 18.0),
       (3.0, 164.0, 2.1, 19.0)],
      dtype=[('id', '<f8'), ('value1', '<f8'), ('value2', '<f8'), ('value3', '<f8')])

As you can see from the result, you get a structured array in which the column headings have become 
the field names.

This function implicitly performs two loops: the first loop reads a line at a time, and the second loop 
separates and converts the values contained in it, inserting the consecutive elements created specifically. 
One positive aspect of this feature is that if some data are missing, the function can handle them.

Take for example the previous file (see Listing 3-2) with some items removed. Save it as data2.csv.

Listing 3-2.  ch3_data2.csv

id,value1,value2,value3
1,123,1.4,23
2,110,,18
3,,2.1,19

Launching these commands, you can see how the genfromtxt() function replaces the blanks in the file 
with nan values.

>>> data2 = np.genfromtxt('ch3_data2.csv', delimiter=',', names=True)
>>> data2
array([(1.0, 123.0, 1.4, 23.0), (2.0, 110.0, nan, 18.0),
       (3.0, nan, 2.1, 19.0)],
      dtype=[('id', '<f8'), ('value1', '<f8'), ('value2', '<f8'), ('value3', '<f8')])

At the bottom of the array, you can find the column headings contained in the file. These headers can 
be considered labels that act as indexes to extract the values by column.

>>> data2['id']
array([ 1.,  2.,  3.])

Instead, by using the numerical indexes in the classic way, you extract data corresponding to the rows.

>>> data2[0]
(1.0, 123.0, 1.4, 23.0)
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�Conclusions
In this chapter, you learned about all the main aspects of the NumPy library and became familiar with a 
range of features that form the basis of many other aspects you’ll face in the course of the book. In fact, many 
of these concepts are from other scientific and computing libraries that are more specialized, but that have 
been structured and developed on the basis of this library.

You saw how, thanks to ndarray, you can extend the functionalities of Python, making it a suitable 
language for scientific computing and data analysis.

Knowledge of NumPy is therefore crucial for anyone who wants to take on the world of data analysis.
The next chapter introduces a new library, called pandas, which is structured on NumPy and so 

encompasses all the basic concepts illustrated in this chapter. However, pandas extends these concepts so 
they are more suitable to data analysis.
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CHAPTER 4

The pandas Library—An 
Introduction

This chapter gets into the heart of this book: the pandas library. This fantastic Python library is a perfect tool 
for anyone who wants to perform data analysis using Python as a programming language.

First you’ll learn about the fundamental aspects of this library and how to install it on your system, and 
then you’ll become familiar with the two data structures, called series and dataframes. During the course of 
the chapter, you’ll work with a basic set of functions provided by the pandas library, in order to perform the 
most common data processing tasks. Getting familiar with these operations is a key goal of the rest of the 
book. This is why it is very important to repeat this chapter until you feel comfortable with its content.

Furthermore, with a series of examples, you’ll learn some particularly new concepts introduced 
in the pandas library: indexing data structures. You’ll learn how to get the most of this feature for data 
manipulation in this chapter and in the next chapters.

Finally, you’ll see how to extend the concept of indexing to multiple levels at the same time, through the 
process called hierarchical indexing.

�pandas: The Python Data Analysis Library
pandas is an open-source Python library for highly specialized data analysis. It is currently the reference 
point that all professionals using the Python language need to study for the statistical purposes of analysis 
and decision making.

This library was designed and developed primarily by Wes McKinney starting in 2008. In 2012, Sien 
Chang, one of his colleagues, was added to the development. Together they set up one of the most used 
libraries in the Python community.

pandas arises from the need to have a specific library to analyze data that provides, in the simplest 
possible way, all the instruments for data processing, data extraction, and data manipulation.

This Python package is designed on the basis of the NumPy library. This choice was critical to the 
success and the rapid spread of pandas. In fact, this choice not only makes this library compatible with most 
other modules, but also takes advantage of the high quality of the NumPy module.

Another fundamental choice was to design ad hoc data structures for data analysis. In fact, instead of 
using existing data structures built into Python or provided by other libraries, two new data structures were 
developed.

These data structures are designed to work with relational data or labeled data, thus allowing you to 
manage data with features similar to those designed for SQL relational databases and Excel spreadsheets.

© Fabio Nelli 2023 
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Throughout the book in fact, you will see a series of basic operations for data analysis, which are 
normally used on database tables and spreadsheets. pandas in fact provides an extended set of functions 
and methods that allow you to perform these operations efficiently.

So pandas’ main purpose is to provide all the building blocks for anyone approaching the data 
analysis world.

�Installation of pandas
The easiest and most general way to install the pandas library is to use a prepackaged solution, that is, 
installing it through an Anaconda distribution. In fact, over the years this distribution has developed more 
and more around the data analysis environment, becoming the reference platform for those who work 
in this area. In addition to pandas, in fact, there are many other libraries available that specialize in data 
analysis, machine learning, and data visualization. It also provides useful development and analysis tools, as 
well as Jupyter Notebook.

�Installation from Anaconda
For those who choose to use the Anaconda distribution, managing the installation is very simple. The 
simplest way is the graphical one, activating Anaconda Navigator and then selecting from the Environments 
panel the virtual environment on which you want to install the library, as shown in Figure 4-1. This will 
activate the Python virtual environment on which to install pandas and then run the examples in the book.

Figure 4-1.  Selection and activation of the Python virtual environment with Anaconda Navigator
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Once the desired virtual environment is activated, go to the right side of Anaconda Navigator and select 
All from the top drop-down menu. This will display the list of all available packages (installed and not) with 
their version corresponding to the chosen Python version. Search for pandas (see Step 1 in Figure 4-2). 
Almost instantly, all the pandas-related packages should appear. Select the one corresponding to the pandas 
library (as shown in Step 2 of Figure 4-2). At this point, start the installation of the package by clicking the 
Apply button at the bottom right (as shown in Point 3 of Figure 4-2).

Figure 4-2.  Search and select the pandas package and then start the installation with Anaconda Navigator

After a few seconds a window will appear with the list of packages to install and their versions (pandas 
and dependencies), as shown in Figure 4-3. Click the Apply button to confirm the installation. A scroll bar at 
the bottom will show the progress of the installation.
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Figure 4-3.  List of packages to install and their versions shown when installing a package in Anaconda 
Navigator

If you prefer, even within the Anaconda distribution, there is a console from which to check and 
install packages. Still from Anaconda Navigator, in the Home panel, select the CMD.exe Prompt to open 
a command console (as shown in Figure 4-4). Another window will open with the console related to the 
virtual environment you activated, from which you can enter all the commands manually.
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Figure 4-4.  Launching the Python virtual environment command console from Anaconda Navigator

In my case, because I’m currently on a Windows system and I’m working on a Python virtual 
environment that I called Edition3, I get the following prompt.

(Edition3) C:\Users\nelli>

First you have to see if the pandas module is installed and, if so, which version. To do this, type the 
following command from the terminal:

conda list pandas

Because I have the module installed on my PC (Windows), I get the following result:

# packages in environment at C:\Users\nelli\anaconda3\envs\Edition3:
#
# Name                    Version                   Build  Channel
pandas                     1.5.3                        py311heda8569_0

If you do not have pandas installed, you need to install it. Enter the following command to do so:

conda install pandas
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Anaconda will immediately check all dependencies, managing the installation of other modules, 
without you having to worry too much.

## Package Plan ##

  environment location: C:\Users\nelli\anaconda3\envs\Edition3

  added / updated specs:
    - pandas

The following NEW packages will be INSTALLED:

  bottleneck         pkgs/main/win-64::bottleneck-1.3.5-py311h5bb9823_0 None
  numexpr            pkgs/main/win-64::numexpr-2.8.4-py311hffd1eac_0 None
  pandas             pkgs/main/win-64::pandas-1.5.3-py311heda8569_0 None
  pytz               pkgs/main/win-64::pytz-2022.7-py311haa95532_0 NoneProceed ([y]/n)?

Enter y to continue with the installation.
If you want to upgrade your package to a newer version, the command to do so is very simple and 

intuitive:

conda update pandas

The system will check the version of pandas and the version of all the modules on which it depends and 
then suggest any updates. It will then ask if you want to proceed with the update.

�Installation from PyPI
If you are not using the Anaconda platform, the easiest way to install the pandas library on your Python 
environment is via PyPI using the pip command. From the console, enter the following command:

pip install pandas

�Getting Started with pandas
As you saw during installation, there are several approaches on how to work with pandas. You can choose 
to open a Jupyter notebook, work with the QtConsole (IPython GUI), or more simply open a session on a 
simple Python console and enter the instructions one at a time. There is no absolute best way to proceed; 
all of these methods have strengths and weaknesses depending on the case. The most important thing is to 
work with the code interactively, by entering a command one by one. This way, you have the opportunity to 
become familiar with the individual functions and data structures that are explained in this chapter.

Furthermore, the data and functions defined in the various examples remain valid throughout the 
chapter, which means you don’t have to define them each time. You are invited, at the end of each example, 
to repeat the various commands, modify them if appropriate, and control how the values in the data 
structures vary during operation. This approach is great for getting familiar with the different topics covered 
in this chapter, leaving you the opportunity to interact freely with what you are reading.
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■■ Note T his chapter assumes that you have some familiarity with Python and NumPy in general. If you have 
any difficulty, read Chapters 2 and 3 of this book.

First, open a session on the Python shell and then import the pandas library. The general practice for 
importing the pandas module is as follows:

>>> import pandas as pd
>>> import numpy as np

Thus, in this chapter and throughout the book, every time you see pd and np, you’ll make reference to 
an object or method referring to these two libraries, even though you will often be tempted to import the 
pandas module in this way:

>>> from pandas import *

Thus, you no longer have to reference a function, object, or method with pd; this approach is not 
considered good practice by the Python community in general. If you are working on Jupyter, import the two 
libraries into the first cell of the notebook and run it, as shown in Figure 4-5.

Figure 4-5.  Importing the NumPy and pandas libraries into a Jupyter Notebook

From now on, any line of code inserted in the examples in the book will correspond to a cell in the 
notebook. Just as you click ENTER on the Python console to immediately see the result of the entered 
command, in the same way you write the command into a single cell of the Notebook and execute it.

�Introduction to pandas Data Structures
The heart of pandas is the two primary data structures on which all transactions, which are generally made 
during the analysis of data, are centralized:

•	 Series

•	 Dataframes
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The series, as you will see, constitutes the data structure designed to accommodate a sequence of one-
dimensional data, while the dataframe, a more complex data structure, is designed to contain cases with 
several dimensions.

Although these data structures are not the universal solution to all problems, they do provide a valid 
and robust tool for most applications. In fact, they remain very simple to understand and use. In addition, 
many cases of more complex data structures can still be traced to these simple two cases.

However, their peculiarities are based on a particular feature—integration in their structure of index 
objects and labels. You will see that this feature causes these data structures to be easily manipulated.

�The Series
The series is the object of the pandas library designed to represent one-dimensional data structures, 
similar to an array but with some additional features. Its internal structure is simple (see Figure 4-6) and is 
composed of two arrays associated with each other. The main array holds the data (data of any NumPy type) 
to which each element is associated with a label, contained within the other array, called the index.

Figure 4-6.  The structure of the series object

�Declaring a Series
To create the series specified in Figure 4-1, you simply call the Series() constructor and pass as an 
argument an array containing the values to be included in it.

>>> s = pd.Series([12,-4,7,9])
>>> s
0    12
1    -4
2     7
3     9
dtype: int64

As you can see from the output of the series, on the left there are the values in the index, which is a 
series of labels, and on the right are the corresponding values.

If you do not specify any index during the definition of the series, by default, pandas will assign 
numerical values increasing from 0 as labels. In this case, the labels correspond to the indexes (position in 
the array) of the elements in the series object.
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Often, however, it is preferable to create a series using meaningful labels in order to distinguish and 
identify each item regardless of the order in which they were inserted into the series.

In this case it will be necessary, during the constructor call, to include the index option and assign an 
array of strings containing the labels.

>>> s = pd.Series([12,-4,7,9], index=['a','b','c','d'])
>>> s
a    12
b    -4
c     7
d     9
dtype: int64

If you want to individually see the two arrays that make up this data structure, you can call the two 
attributes of the series as follows: index and values.

>>> s.values
array([12, -4,  7,  9], dtype=int64)
>>> s.index
Index(['a', 'b', 'c', 'd'], dtype='object')
)

�Selecting the Internal Elements
You can select individual elements as ordinary NumPy arrays, specifying the key.

>>> s[2]
7

Or you can specify the label corresponding to the position of the index.

>>> s['b']
-4

In the same way you select multiple items in a NumPy array, you can specify the following:

>>> s[0:2]
a    12
b    -4
dtype: int64

In this case, you can use the corresponding labels, but specify the list of labels in an array.

>>> s[['b','c']]
b   -4
c    7
dtype: int64
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�Assigning Values to the Elements
Now that you understand how to select individual elements, you also know how to assign new values to 
them. In fact, you can select the value by index or by label.

>>> s[1] = 0
>>> s
a    12
b     0
c     7
d     9
dtype: int64
>>> s['b'] = 1
>>> s
a    12
b     1
c     7
d     9
dtype: int64

�Defining a Series from NumPy Arrays and Other Series
You can define a new series starting with NumPy arrays or with an existing series.

>>> arr = np.array([1,2,3,4])
>>> s3 = pd.Series(arr)
>>> s3
0    1
1    2
2    3
3    4
dtype: int64
>>> s4 = pd.Series(s)
>>> s4
a    12
b     4
c     7
d     9
dtype: int64

Always keep in mind that the values contained in the NumPy array or in the original series are not 
copied, but are passed by reference. That is, the object is inserted dynamically within the new series object. 
If it changes, for example its internal element varies in value, those changes will also be present in the new 
series object.

>>> s3
0    1
1    2
2    3
3    4
dtype: int64
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>>> arr[2] = -2
>>> s3
0    1
1    2
2   -2
3    4
dtype: int64

As you can see in this example, by changing the third element of the arr array, the code also modified 
the corresponding element in the s3 series.

�Filtering Values
Thanks to the choice of the NumPy library as the base of the pandas library and, as a result, for its data 
structures, many operations that are applicable to NumPy arrays are extended to the series. One of these is 
filtering values contained in the data structure through conditions.

For example, if you need to know which elements in the series are greater than 8, you write the 
following:

>>> s[s > 8]
a    12
d     9
dtype: int64

�Operations and Mathematical Functions
Other operations such as operators (+, -, *, and /) and mathematical functions that are applicable to NumPy 
array can be extended to series.

You can simply write the arithmetic expression for the operators.

>>> s / 2
a    6.0
b   -2.0
c    3.5
d    4.5
dtype: float64

However, with the NumPy mathematical functions, you must specify the function referenced with np 
and the instance of the series passed as an argument.

>>> np.log(s)
a    2.484907
b    0.000000
c    1.945910
d    2.197225
dtype: float64
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�Evaluating Vales
There are often duplicate values in a series. Then you may need to have more information about the 
samples, including existence of any duplicates and whether a certain value is present in the series.

In this regard, you can declare a series in which there are many duplicate values.

>>> serd = pd.Series([1,0,2,1,2,3], index=['white','white','blue','green','green','yellow'])
>>> serd
white     1
white     0
blue      2
green     1
green     2
yellow    3
dtype: int64

To know all the values contained in the series, excluding duplicates, you can use the unique() function. 
The return value is an array containing the unique values in the series, although not necessarily in order.

>>> serd.unique()
array([1, 0, 2, 3], dtype=int64)

A function that’s similar to unique() is value_counts(), which not only returns unique values but also 
calculates the occurrences within a series.

>>> serd.value_counts()
2    2
1    2
3    1
0    1
dtype: int64

Finally, isin() evaluates the membership, that is, the given list of values. This function tells you if the 
values are contained in the data structure. Boolean values that are returned can be very useful when filtering 
data in a series or in a column of a dataframe.

>>> serd.isin([0,3])
white     False
white      True
blue      False
green     False
green     False
yellow     True
dtype: bool
>>> serd[serd.isin([0,3])]
white     0
yellow    3
dtype: int64

Chapter 4 ■ The pandas Library—An Introduction



85

�NaN Values
The previous case tried to run the logarithm of a negative number and received NaN as a result. This specific 
value NaN (Not a Number) is used in pandas data structures to indicate the presence of an empty field or 
something that’s not definable numerically.

Generally, these NaN values are a problem and must be managed in some way, especially during 
data analysis. These data are often generated when extracting data from a questionable source or when 
the source is missing data. Furthermore, as you have just seen, the NaN values can also be generated in 
special cases, such as calculations of logarithms of negative values, or exceptions during execution of some 
calculation or function. In later chapters, you see how to apply different strategies to address the problem of 
NaN values.

Despite their problematic nature, however, pandas allows you to explicitly define NaNs and add them 
to a data structure, such as a series. Within the array containing the values, you enter np.NaN wherever you 
want to define a missing value.

>>> s2 = pd.Series([5,-3,np.NaN,14])
>>> s2
0     5.0
1    -3.0
2   NaN
3    14.0
dtype: float64

The isnull() and notnull() functions are very useful for identifying the indexes without a value.

>>> s2.isnull()
0    False
1    False
2     True
3    False
dtype: bool
>>> s2.notnull()
0     True
1     True
2    False
3     True
dtype: bool

In fact, these functions return two series with Boolean values that contain the True and False values, 
depending on whether the item is a NaN value or less. The isnull() function returns True for NaN values 
in the series; inversely, the notnull() function returns True if they are not NaN. These functions are often 
placed inside filters to make a condition.

>>> s2[s2.notnull()]
0     5.0
1    -3.0
3    14.0
dtype: float64
>>> s2[s2.isnull()]
2   NaN
dtype: float64
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�Series as Dictionaries
An alternative way to think of a series is to think of it as an object dict (dictionary). This similarity is 
also exploited during the definition of an object series. In fact, you can create a series from a previously 
defined dict.

>>> mydict = {'red': 2000, 'blue': 1000, 'yellow': 500,
 'orange': 1000}
>>> myseries = pd.Series(mydict)
>>> myseries
red       2000
blue      1000
yellow     500
orange    1000
dtype: int64

As you can see from this example, the array of the index is filled with the keys, while the data are filled 
with the corresponding values. You can also define the array indexes separately. In this case, controlling 
correspondence between the keys of the dict and labels array of indexes will run. If there is a mismatch, 
pandas will add the NaN value.

>>> colors = ['red','yellow','orange','blue','green']
>>> myseries = pd.Series(mydict, index=colors)
>>> myseries
red       2000.0
yellow     500.0
orange    1000.0
blue      1000.0
green      NaN
dtype: float64

�Operations Between Series
You have seen how to perform arithmetic operations between series and scalar values. The same thing is 
possible by performing operations between two series, but in this case even the labels come into play.

In fact, one of the great potentials of this type of data structures is that series can align data addressed 
differently between them by identifying their corresponding labels.

In the following example, you add two series having only some elements in common with the label.

>>> mydict2 = {'red':400,'yellow':1000,'black':700}
>>> myseries2 = pd.Series(mydict2)
>>> myseries + myseries2
black      NaN
blue       NaN
green      NaN
orange     NaN
red       2400.0
yellow    1500.0
dtype: float64
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You get a new object series in which only the items with the same label are added. All other labels 
present in one of the two series are still added to the result but have a NaN value.

�The Dataframe
The dataframe is a tabular data structure very similar to a spreadsheet. This data structure is designed to 
extend series to multiple dimensions. In fact, the dataframe consists of an ordered collection of columns (see 
Figure 4-7), each of which can contain a value of a different type (numeric, string, Boolean, etc.).

Figure 4-7.  The dataframe structure

Unlike series, which have an index array containing labels associated with each element, the dataframe 
has two index arrays. The first index array, associated with the lines, has very similar functions to the index 
array in series. In fact, each label is associated with all the values in the row. The second array contains a 
series of labels, each associated with a particular column.

A dataframe may also be understood as a dict of series, where the keys are the column names and the 
values are the series that form the columns of the dataframe. Furthermore, all elements in each series are 
mapped according to an array of labels, called the index.

�Defining a Dataframe
The most common way to create a new dataframe is to pass a dict object to the DataFrame() constructor. 
This dict object contains a key for each column that you want to define, with an array of values for each 
of them.

>>> data = {'color' : ['blue','green','yellow','red','white'],
                     'object' : ['ball','pen','pencil','paper','mug'],
                     'price' : [1.2,1.0,0.6,0.9,1.7]}
>>> frame = pd.DataFrame(data)
>>> frame
    color  object price
0    blue    ball   1.2
1   green     pen   1.0
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2  yellow  pencil   0.6
3     red   paper   0.9
4   white     mug   1.7

If you are working with Jupyter and run this command, you will not get the classic output identical 
to the one you get with a Python console. Instead, you get a graphical representation of the dataframe, as 
shown in Figure 4-8.

Figure 4-8.  Graphical representation of the dataframe as a result on a Jupyter Notebook

If the dict object from which you want to create a dataframe contains more data than you are interested 
in, you can make a selection. In the constructor of the dataframe, you can specify a sequence of columns 
using the columns option. The columns will be created in the order of the sequence regardless of how they 
are contained in the dict object.

>>> frame2 = pd.DataFrame(data, columns=['object','price'])
>>> frame2
   object price
0    ball   1.2
1     pen   1.0
2  pencil   0.6
3   paper   0.9
4     mug   1.7

Even for dataframe objects, if the labels are not explicitly specified in the index array, pandas 
automatically assigns a numeric sequence starting from 0. Instead, if you want to assign labels to the indexes 
of a dataframe, you have to use the index option and assign it an array containing the labels.

>>> frame2 = pd.DataFrame(data, index=['one','two','three','four','five'])
>>> frame2
        color  object  price
one      blue    ball    1.2
two     green     pen    1.0
three  yellow  pencil    0.6
four      red   paper    0.9
five    white     mug    1.7
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Now that I have introduced the two new options called index and columns, it is easy to imagine an 
alternative way to define a dataframe. Instead of using a dict object, you can define three arguments in 
the constructor, in the following order—a data matrix, an array containing the labels assigned to the index 
option, and an array containing the names of the columns assigned to the columns option.

In many examples, as you will see from now on in this book, to create a matrix of values quickly and 
easily, you can use np.arange(16).reshape((4,4)), which generates a 4x4 matrix of numbers increasing 
from 0 to 15.

>>> frame3 = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame3
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15

�Selecting Elements
If you want to know the name of all the columns of a dataframe, you can specify the columns attribute on the 
instance of the dataframe object.

>>> frame.columns
Index(['colors', 'object', 'price'], dtype='object')

Similarly, to get the list of indexes, you should specify the index attribute.

>>> frame.index
RangeIndex(start=0, stop=5, step=1)

You can also get the entire set of data contained within the data structure using the values attribute.

>>> frame.values
array([['blue', 'ball', 1.2],
       ['green', 'pen', 1.0],
       ['yellow', 'pencil', 0.6],
       ['red', 'paper', 0.9],
       ['white', 'mug', 1.7]], dtype=object)

Or, if you are interested in selecting only the contents of a column, you can write the name of 
the column.

>>> frame['price']
0    1.2
1    1.0
2    0.6
3    0.9
4    1.7
Name: price, dtype: float64
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As you can see, the return value is a series object. Another way to do this is to use the column name as 
an attribute of the instance of the dataframe.

>>> frame.price
0    1.2
1    1.0
2    0.6
3    0.9
4    1.7
Name: price, dtype: float64

For rows within a dataframe, it is possible to use the loc attribute with the index value of the row that 
you want to extract.

>>> frame.loc[2]
color     yellow
object    pencil
price        0.6
Name: 2, dtype: object

The object returned is again a series in which the names of the columns have become the label of the 
array index, and the values have become the data of series.

To select multiple rows, you specify an array with the sequence of rows to insert:

>>> frame.loc[[2,4]]
    color  object  price
2  yellow  pencil    0.6
4   white     mug    1.7

If you need to extract a portion of a dataframe, selecting the lines that you want to extract, you can use 
the reference numbers of the indexes. In fact, you can consider a row as a portion of a dataframe that has the 
index of the row as the source (in the next 0) value and the line above the one you want as a second value (in 
the next one).

>>> frame[0:1]
  color object  price
0  blue   ball    1.2

As you can see, the return value is an object dataframe containing a single row. If you want more than 
one line, you must extend the selection range.

>>> frame[1:3]
    color  object  price
1   green     pen    1.0
2  yellow  pencil    0.6

Finally, if what you want to achieve is a single value within a dataframe, you first use the name of the 
column and then the index or the label of the row.

>>> frame['object'][3]
'paper'
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�Assigning Values
Once you understand how to access the various elements that make up a dataframe, you follow the same 
logic to add or change the values in it.

For example, you have already seen that within the dataframe structure, an array of indexes is 
specified by the index attribute, and the row containing the name of the columns is specified with the 
columns attribute. Well, you can also assign a label, using the name attribute, to these two substructures to 
identify them.

>>> frame.index.name = 'id'
>>> frame.columns.name = 'item'
>>> frame
item   color  object  price
id
0       blue    ball    1.2
1      green     pen    1.0
2     yellow  pencil    0.6
3        red   paper    0.9
4      white     mug    1.7

One of the best features of the data structures of pandas is their high flexibility. In fact, you can always 
intervene at any level to change the internal data structure. For example, a very common operation is to add 
a new column.

You can do this by simply assigning a value to the instance of the dataframe and specifying a new 
column name.

>>> frame['new'] = 12
>>> frame
   colors  object price  new
0    blue    ball   1.2   12
1   green     pen   1.0   12
2  yellow  pencil   0.6   12
3     red   paper   0.9   12
4   white     mug   1.7   12

As you can see from this result, there is a new column called new with the value within 12 replicated for 
each of its elements.

If, however, you want to update the contents of a column, you have to use an array.

>>> frame['new'] = [3.0,1.3,2.2,0.8,1.1]
>>> frame
    color  object  price  new
0    blue    ball    1.2  3.0
1   green     pen    1.0  1.3
2  yellow  pencil    0.6  2.2
3     red   paper    0.9  0.8
4   white     mug    1.7  1.1

You can follow a similar approach if you want to update an entire column, for example, by using the np.
arange() function to update the values of a column with a predetermined sequence.
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The columns of a dataframe can also be created by assigning a series to one of them, for example by 
specifying a series containing an increasing series of values through the use of np.arange().

>>> ser = pd.Series(np.arange(5))
>>> ser
0    0
1    1
2    2
3    3
4    4
dtype: int32
>>> frame['new'] = ser
>>> frame
    color  object  price  new
0    blue    ball    1.2    0
1   green     pen    1.0    1
2  yellow  pencil    0.6    2
3     red   paper    0.9    3
4   white     mug    1.7    4

Finally, to change a single value, you simply select the item and give it the new value. The operation 
seems very simple and intuitive. To access the element, I could think of inserting the column and then the 
row indexes and thus obtaining the current value.

And in fact if I write the following command:

>>> frame['price'][2]
0.6

I actually get the value of the corresponding element of the dataframe. But if I go to make an assignment 
on this element, in order to modify its value, I get a warning message.

>>> frame['price'][2] = 3.3
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

If check inside the dataframe, however, I see that the element has changed its value.

>>> frame
    color  object  price  new
0    blue    ball    1.2    0
1   green     pen    1.0    1
2  yellow  pencil    3.3    2
3     red   paper    0.9    3
4   white     mug    1.7    4

In reality, the message warns you that this nomenclature could lead to assignment errors in the passage 
between internal slices that generate copies or views. In this simple case it doesn’t happen, but in more 
complex cases where you do more complex index assignments (with index lists and conditions), it could 
happen. So the most correct and cleanest way to write the previous command is to define the indexes of the 
dataframe section to select/assign through the loc() function

>>> frame.loc[ 2, 'price'] = 3.3

Chapter 4 ■ The pandas Library—An Introduction



93

�Membership of a Value
You have already seen the isin() function applied to the series to determine the membership of a set of 
values. Well, this feature is also applicable to dataframe objects.

>>> frame.isin([1.0,'pen'])
   color object  price  new
0  False  False  False  False
1  False   True   True  True
2  False  False  False  False
3  False  False  False  False
4  False  False  False  False

You get a dataframe containing Boolean values, where True indicates values that meet the membership. 
If you pass the value returned as a condition, you’ll get a new dataframe containing only the values that 
satisfy the condition.

>>> frame[frame.isin([1.0,'pen'])]
  color object  price  new
0   NaN    NaN    NaN  NaN
1   NaN    pen    1.0  1.0
2   NaN    NaN    NaN  NaN
3   NaN    NaN    NaN  NaN
4   NaN    NaN    NaN  NaN

�Deleting a Column
If you want to delete an entire column and all its contents, use the del command.

>>> del frame['new']
>>> frame
   colors  object price
0    blue    ball   1.2
1   green     pen   1.0
2  yellow  pencil   3.3
3     red   paper   0.9
4   white     mug   1.7

�Filtering
Even with a dataframe, you can apply filtering through the application of certain conditions. For example, 
say you want to get all elements that have a column value below a certain limit, for example, where the 
prices are less than 1.2. You simply need to insert this condition into the index of the dataframe.

>>> frame[frame['price'] < 1.2]
>>> frame
   colors  object price
1   green     pen   1.0
3     red   paper   0.9
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You will get a dataframe containing only elements with prices less than 1.2, keeping their original 
position. You have thus carried out a filtering operation on the elements of the dataframe.

�Dataframe from a Nested dict
A very common data structure used in Python is a nested dict, as follows:

nestdict = { 'red': { 2012: 22, 2013: 33 },
                     'white': { 2011: 13, 2012: 22, 2013: 16},
                     'blue': {2011: 17, 2012: 27, 2013: 18}}

This data structure, when it is passed directly as an argument to the DataFrame() constructor, will be 
interpreted by pandas to treat external keys as column names and internal keys as labels for the indexes.

During the interpretation of the nested structure, it is possible that not all fields will find a successful 
match. pandas compensates for this inconsistency by adding the NaN value to the missing values.

>>> nestdict = {'red':{2012: 22, 2013: 33},
...             'white':{2011: 13, 2012: 22, 2013: 16},
...             'blue': {2011: 17, 2012: 27, 2013: 18}}
>>> frame2 = pd.DataFrame(nestdict)
>>> frame2
       red  white  blue
2012  22.0     22    27
2013  33.0     16    18
2011   NaN     13    17

�Transposition of a Dataframe
An operation that you might need when you’re dealing with tabular data structures is transposition (that is, 
columns become rows and rows become columns). pandas allows you to do this in a very simple way. You 
can get the transposition of the dataframe by adding the T attribute to its application.

>>> frame2.T
       2012  2013  2011
red    22.0  33.0   NaN
white  22.0  16.0  13.0
blue   27.0  18.0  17.0

�The Index Objects
Now that you know what the series and the dataframe are and how they are structured, you can likely 
perceive the peculiarities of these data structures. Indeed, the majority of their excellent characteristics are 
due to the presence of an Index object that’s integrated in these data structures.

The Index objects are responsible for the labels on the axes and other metadata as the name of the axes. 
You have already seen how an array containing labels is converted into an Index object and that you need to 
specify the index option in the constructor.

>>> ser = pd.Series([5,0,3,8,4], index=['red','blue','yellow','white','green'])
>>> ser.index
Index(['red', 'blue', 'yellow', 'white', 'green'], dtype='object')
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Unlike all the other elements in the pandas data structures (series and dataframes), the Index objects 
are immutable. Once declared, they cannot be changed. This ensures their secure sharing between the 
various data structures.

Each Index object has a number of methods and properties that are useful when you need to know the 
values they contain.

�Methods on Index
There are specific methods that enable you to get information about indexes from a data structure. For 
example, idmin() and idmax() are two functions that return, respectively, the index with the lowest value 
and the index with the highest value.

>>> ser.idxmin()
'blue'
>>> ser.idxmax()
'white'

�Index with Duplicate Labels
So far, you have seen all cases in which indexes within a single data structure have a unique label. Although 
many functions require this condition to run, this condition is not mandatory on the data structures 
of pandas.

This example defines, by way of an example, a series with some duplicate labels.

>>> serd = pd.Series(range(6), index=['white','white','blue','green','green','yellow'])
>>> serd
white     0
white     1
blue      2
green     3
green     4
yellow    5
dtype: int64

Regarding the selection of elements in a data structure, if there are more values with the same label, you 
get a series in place of a single element.

>>> serd['white']
white    0
white    1
dtype: int64
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The same logic applies to the dataframe, with duplicate indexes that will return the dataframe.
With small data structures, it is easy to identify duplicate indexes, but if the structure becomes gradually 

larger, this starts to become difficult. In this respect, pandas provides you with the is_unique attribute 
belonging to the Index objects. This attribute will tell you if there are indexes with duplicate labels inside the 
structure data (both series and dataframe).

>>> serd.index.is_unique
False
>>> frame.index.is_unique
True

�Other Functionalities on Indexes
Compared to data structures commonly used with Python, you saw that pandas, as well as taking advantage 
of the high-performance quality offered by NumPy arrays, has chosen to integrate indexes in them.

This choice has proven somewhat successful. In fact, despite the enormous flexibility given by the 
dynamic structures that already exist, using the internal reference to the structure, such as that offered by the 
labels, allows developers who must perform operations to carry them out in a simpler and more direct way.

This section analyzes in detail a number of basic features that take advantage of this mechanism.

•	 Reindexing

•	 Dropping

•	 Alignment

�Reindexing
It was previously stated that once it’s declared in a data structure, the Index object cannot be changed. This 
is true, but by executing a reindexing, you can also overcome this problem.

In fact it is possible to obtain a new data structure from an existing one where indexing rules can be 
defined again.

>>> ser = pd.Series([2,5,7,4], index=['one','two','three','four'])
>>> ser
one      2
two      5
three    7
four     4
dtype: int64

In order to reindex this series, pandas provides you with the reindex() function. This function creates a 
new series object with the values of the previous series rearranged according to the new sequence of labels.

During reindexing, it is possible to change the order of the sequence of indexes, delete some of them, 
and add new ones. In the case of a new label, pandas adds NaN as the corresponding value.

>>> ser.reindex(['three','four','five','one'])
three     7.0
four      4.0
five      NaN
one       2.0
dtype: float64
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As you can see from the value returned, the order of the labels has been completely rearranged. The 
value corresponding to the label two has been dropped and a new label called five is present in the series.

However, to measure the reindexing process, defining the list of the labels can be awkward, especially 
with a large dataframe. You can use a method that allows you to fill in or interpolate values automatically.

To better understand this mode of automatic reindexing, define the following series.

>>> ser3 = pd.Series([1,5,6,3],index=[0,3,5,6])
>>> ser3
0    1
3    5
5    6
6    3
dtype: int64

As you can see in this example, the index column is not a perfect sequence of numbers; in fact there 
are some missing values (1, 2, and 4). A common need would be to perform interpolation in order to obtain 
the complete sequence of numbers. To achieve this, you use reindexing with the method option set to ffill. 
Moreover, you need to set a range of values for indexes. In this case, to specify a set of values between 0 and 
5, you can use range(6) as an argument.

>>> ser3.reindex(range(6),method='ffill')
0    1
1    1
2    1
3    5
4    5
5    6
dtype: int64

As you can see from the result, the indexes that were not present in the original series were added. By 
interpolation, those with the lowest index in the original series have been assigned as values. In fact, the 
indexes 1 and 2 have the value 1, which belongs to index 0.

If you want this index value to be assigned during the interpolation, you have to use the bfill method.

>>> ser3.reindex(range(6),method='bfill')
0    1
1    5
2    5
3    5
4    6
5    6
dtype: int64

In this case, the value assigned to the indexes 1 and 2 is the value 5, which belongs to index 3.
Extending the concepts of reindexing with series to the dataframe, you can have a rearrangement not 

only for indexes (rows), but also with regard to the columns, or even both. As previously mentioned, adding 
a new column or index is possible, but since there are missing values in the original data structure, pandas 
adds NaN values to them.

>>> frame.reindex(range(5), method='ffill',columns=['colors','price','new','object'])
   colors price  new     object
0    blue   1.2  blue    ball
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1   green   1.0  green   pen
2  yellow   3.3  yellow  pencil
3     red   0.9  red     paper
4   white   1.7  white   mug

�Dropping
Another operation that is connected to Index objects is dropping. Deleting a row or a column becomes 
simple, due to the labels used to indicate the indexes and column names.

Also in this case, pandas provides a specific function for this operation, called drop(). This method will 
return a new object without the items that you want to delete.

For example, take the case where you want to remove a single item from a series. To do this, define a 
generic series of four elements with four distinct labels.

>>> ser = pd.Series(np.arange(4.), index=['red','blue','yellow','white'])
>>> ser
red       0.0
blue      1.0
yellow    2.0
white     3.0
dtype: float64

Now say, for example, that you want to delete the item corresponding to the label yellow. Simply 
specify the label as an argument of the function drop() to delete it.

>>> ser.drop('yellow')
red      0.0
blue     1.0
white    3.0
dtype: float64

To remove more items, just pass an array with the corresponding labels.

>>> ser.drop(['blue','white'])
red       0.0
yellow    2.0
dtype: float64

Regarding the dataframe instead, the values can be deleted by referring to the labels of both axes. 
Declare the following frame by way of example.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
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To delete rows, you just pass the indexes of the rows.

>>> frame.drop(['blue','yellow'])
       ball  pen  pencil  paper
red       0    1       2      3
white    12   13      14     15

To delete columns, you always need to specify the indexes of the columns, but you must specify the axis 
from which to delete the elements, and this can be done using the axis option. So to refer to the column 
names, you should specify axis = 1.

>>> frame.drop(['pen','pencil'],axis=1)
        ball  paper
red        0      3
blue       4      7
yellow     8     11
white     12     15

�Arithmetic and Data Alignment
Perhaps the most powerful feature involving the indexes in a data structure is that pandas can align indexes 
coming from two different data structures. This is especially true when you are performing an arithmetic 
operation on them. In fact, during these operations, not only can the indexes between the two structures be 
in a different order, but they also can be present in only one of the two structures.

As you can see from the examples that follow, pandas proves to be very powerful in aligning indexes 
during these operations. For example, you can start considering two series in which they are defined, 
respectively, two arrays of labels not perfectly matching each other.

>>> s1 = pd.Series([3,2,5,1],['white','yellow','green','blue'])
>>> s2 = pd.Series([1,4,7,2,1],['white','yellow','black','blue','brown'])

Now among the various arithmetic operations, consider the simple sum. As you can see from the two 
series just declared, some labels are present in both, while other labels are present only in one of the two. 
When the labels are present in both operators, their values will be added, while in the opposite case, they 
will also be shown in the result (new series), but with the value NaN.

>>> s1 + s2
black    NaN
blue     3.0
brown    NaN
green    NaN
white    4.0
yellow   6.0
dtype: float64

In the case of the dataframe, although it may appear more complex, the alignment follows the same 
principle, but is carried out both for the rows and for the columns.

>>> frame1 = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
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>>> frame2 = pd.DataFrame(np.arange(12).reshape((4,3)),
...                   index=['blue','green','white','yellow'],
...                   columns=['mug','pen','ball'])
>>> frame1
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
>>> frame2
        mug  pen  ball
blue      0    1     2
green     3    4     5
white     6    7     8
yellow    9   10    11
>>> frame1 + frame2
        ball  mug  paper  pen  pencil
blue     6.0  NaN    NaN  6.0     NaN
green    NaN  NaN    NaN  NaN     NaN
red      NaN  NaN    NaN  NaN     NaN
white    20.0 NaN    NaN  20.0    NaN
yellow   19.0 NaN    NaN  19.0    NaN

�Operations Between Data Structures
Now that you are familiar with the data structures such as series and dataframe and you have seen how 
various elementary operations can be performed on them, it’s time to go to operations involving two or more 
of these structures.

For example, in the previous section, you saw how the arithmetic operators apply between two of these 
objects. This section deepens the topic of operations that can be performed between two data structures.

�Flexible Arithmetic Methods
You’ve just seen how to use mathematical operators directly on the pandas data structures. The same 
operations can also be performed using appropriate methods, called flexible arithmetic methods.

•	 add()

•	 sub()

•	 div()

•	 mul()

In order to call these functions, you need to use a different specification than what you’re used to 
dealing with when using mathematical operators. For example, instead of writing a sum between two 
dataframes, such as frame1 + frame2, you have to use the following format:

>>> frame1.add(frame2)
         ball  mug  paper   pen  pencil
blue      6.0  NaN    NaN   6.0     NaN
green     NaN  NaN    NaN   NaN     NaN
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red       NaN  NaN    NaN   NaN    NaN
white    20.0  NaN    NaN  20.0    NaN
yellow   19.0  NaN    NaN  19.0    NaN

As you can see, the results are the same as what you’d get using the addition operator +. You can also 
note that if the indexes and column names differ greatly from one series to another, you’ll find yourself with 
a new dataframe full of NaN values. You’ll see later in this chapter how to handle this kind of data.

�Operations Between Dataframes and Series
Coming back to the arithmetic operators, pandas allows you to make transactions between different 
structures, such as between a dataframe and a series. For example, you can define these two structures in the 
following way.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
>>> ser = pd.Series(np.arange(4), index=['ball','pen','pencil','paper'])
>>> ser
ball      0
pen       1
pencil    2
paper     3
dtype: int64

The two newly defined data structures have been created specifically so that the indexes of series match 
the names of the columns of the dataframe. This way, you can apply a direct operation.

>>> frame - ser
        ball  pen  pencil  paper
red        0    0       0      0
blue       4    4       4      4
yellow     8    8       8      8
white     12   12      12     12

As you can see, the elements of the series are subtracted from the values of the dataframe 
corresponding to the same index on the column. The value is subtracted for all values of the column, 
regardless of their index.

If an index is not present in one of the two data structures, the result will be a new column with that 
index and all its elements will be NaN.

>>> ser['mug'] = 9
>>> ser
ball      0
pen       1
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pencil    2
paper     3
mug       9
dtype: int64
>>> frame - ser
        ball  mug  paper  pen  pencil
red        0  NaN      0    0       0
blue       4  NaN      4    4       4
yellow     8  NaN      8    8       8
white     12  NaN     12   12      12

�Function Application and Mapping
This section covers the pandas library functions.

�Functions by Element
The pandas library is built on the foundations of NumPy and then extends many of its features by adapting 
them to new data structures as series and dataframes. Among these are the universal functions, called ufunc. 
This class of functions operates by element in the data structure.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15

For example, you can calculate the square root of each value in the dataframe using the NumPy 
np.sqrt().

>>> np.sqrt(frame)
            ball       pen    pencil     paper
red     0.000000  1.000000  1.414214  1.732051
blue    2.000000  2.236068  2.449490  2.645751
yellow  2.828427  3.000000  3.162278  3.316625
white   3.464102  3.605551  3.741657  3.872983

�Functions by Row or Column
The application of the functions is not limited to the ufunc functions, but also includes those defined by the 
user. The important point is that they operate on a one-dimensional array, giving a single number as a result. 
For example, you can define a lambda function that calculates the range covered by the elements in an array.

>>> f = lambda x: x.max() - x.min()
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It is possible to define the function this way as well:

>>> def f(x):
...    return x.max() - x.min()
...

Using the apply() function, you can apply the function just defined on the dataframe.

>>> frame.apply(f)
ball      12
pen       12
pencil    12
paper     12
dtype: int64

The result this time is one value for the column, but if you prefer to apply the function by row instead of 
by column, you have to set the axis option to 1.

>>> frame.apply(f, axis=1)
red       3
blue      3
yellow    3
white     3
dtype: int64

It is not mandatory that the apply() method return a scalar value. It can also return a series. A useful 
case is to extend the application to many functions simultaneously. In this case, you have two or more values 
for each feature applied. This can be done by defining a function in the following manner:

>>> def f(x):
...     return pd.Series([x.min(), x.max()], index=['min','max'])
...

Then, you apply the function as before. But in this case, as an object returned, you get a dataframe 
instead of a series, in which there will be as many rows as the values returned by the function.

>>> frame.apply(f)
     ball  pen  pencil  paper
min     0    1       2      3
max    12   13      14     15

�Statistics Functions
Most of the statistical functions for arrays are still valid for dataframe, so using the apply() function is no 
longer necessary. For example, functions such as sum() and mean() can calculate the sum and the average, 
respectively, of the elements contained within a dataframe.

>>> frame.sum()
ball      24
pen       28
pencil    32
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paper     36
dtype: int64
>>> frame.mean()
ball      6.0
pen       7.0
pencil    8.0
paper     9.0
dtype: float64

There is also a function called describe() that allows you to obtain summary statistics at once.

>>> frame.describe()
            ball        pen     pencil      paper
count   4.000000   4.000000   4.000000   4.000000
mean    6.000000   7.000000   8.000000   9.000000
std     5.163978   5.163978   5.163978   5.163978
min     0.000000   1.000000   2.000000   3.000000
25%     3.000000   4.000000   5.000000   6.000000
50%     6.000000   7.000000   8.000000   9.000000
75%     9.000000  10.000000  11.000000  12.000000
max    12.000000  13.000000  14.000000  15.000000

�Sorting and Ranking
Another fundamental operation that uses indexing is sorting. Sorting the data is often a necessity and it is 
very important to be able to do it easily. pandas provides the sort_index() function, which returns a new 
object that’s identical to the start, but in which the elements are ordered.

Let’s start by seeing how you can sort items in a series. The operation is quite trivial since the list of 
indexes to be ordered is only one.

>>> ser = pd.Series([5,0,3,8,4],
...     index=['red','blue','yellow','white','green'])
>>> ser
red       5
blue      0
yellow    3
white     8
green     4
dtype: int64
>>> ser.sort_index()
blue      0
green     4
red       5
white     8
yellow    3
dtype: int64
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As you can see, the items were sorted in ascending alphabetical order based on their labels (from 
A to Z). This is the default behavior, but you can set the opposite order by setting the ascending option 
to False.

>>> ser.sort_index(ascending=False)
yellow    3
white     8
red       5
green     4
blue      0
dtype: int64

With the dataframe, the sorting can be performed independently on each of its two axes. So if you 
want to order by row following the indexes, you just continue to use the sort_index() function without 
arguments as you’ve seen before. Or if you prefer to order by columns, you need to set the axis options to 1.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
...                   index=['red','blue','yellow','white'],
...                   columns=['ball','pen','pencil','paper'])
>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
>>> frame.sort_index()
        ball  pen  pencil  paper
blue       4    5       6      7
red        0    1       2      3
white     12   13      14     15
yellow     8    9      10     11
>>> frame.sort_index(axis=1)
        ball  paper  pen  pencil
red        0      3    1       2
blue       4      7    5       6
yellow     8     11    9      10
white     12     15   13      14

So far, you have learned how to sort the values according to the indexes. But very often you may need to 
sort the values contained in the data structure. In this case, you have to differentiate depending on whether 
you have to sort the values of a series or a dataframe.

If you want to order the series, you need to use the sort_values() function.

>>> ser.sort_values()
blue      0
yellow    3
green     4
red       5
white     8
dtype: int64
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If you need to order the values in a dataframe, use the sort_values() function seen previously but with 
the by option. Then you have to specify the name of the column on which to sort.

>>> frame.sort_values(by='pen')
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15

If the sorting criteria will be based on two or more columns, you can assign an array containing the 
names of the columns to the by option.

>>> frame.sort_values(by=['pen','pencil'])
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15

The ranking is an operation closely related to sorting. It mainly consists of assigning a rank (that is, a 
value that starts at 0 and then increases gradually) to each element of the series. The rank will be assigned 
starting from the lowest value to the highest.

>>> ser.rank()
red       4.0
blue      1.0
yellow    2.0
white     5.0
green     3.0
dtype: float64

The rank can also be assigned in the order in which the data are already in the data structure (without a 
sorting operation). In this case, you just add the method option with the first value assigned.

>>> ser.rank(method='first')
red       4.0
blue      1.0
yellow    2.0
white     5.0
green     3.0
dtype: float64

By default, even the ranking follows an ascending sort. To reverse this criteria, set the ascending option 
to False.

>>> ser.rank(ascending=False)
red       2.0
blue      5.0
yellow    4.0
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white     1.0
green     3.0
dtype: float64

�Correlation and Covariance
Two important statistical calculations are correlation and covariance, expressed in pandas by the corr() 
and cov() functions. These kinds of calculations normally involve two series.

>>> seq2 = pd.Series([3,4,3,4,5,4,3,2],['2006','2007','2008',
'2009','2010','2011','2012','2013'])
>>> seq = pd.Series([1,2,3,4,4,3,2,1],['2006','2007','2008',
'2009','2010','2011','2012','2013'])
>>> seq.corr(seq2)
0.7745966692414835
>>> seq.cov(seq2)
0.8571428571428571

Covariance and correlation can also be applied to a single dataframe. In this case, they return their 
corresponding matrices in the form of two new dataframe objects.

>>> frame2 = pd.DataFrame([[1,4,3,6],[4,5,6,1],[3,3,1,5],[4,1,6,4]],
...                     index=['red','blue','yellow','white'],
...                     columns=['ball','pen','pencil','paper'])
>>> frame2
        ball  pen  pencil  paper
red        1    4       3      6
blue       4    5       6      1
yellow     3    3       1      5
white      4    1       6      4
>>> frame2.corr()
            ball       pen    pencil     paper
ball    1.000000 -0.276026  0.577350 -0.763763
pen    -0.276026  1.000000 -0.079682 -0.361403
pencil  0.577350 -0.079682  1.000000 -0.692935
paper  -0.763763 -0.361403 -0.692935  1.000000
>>> frame2.cov()
            ball       pen    pencil     paper
ball    2.000000 -0.666667  2.000000 -2.333333
pen    -0.666667  2.916667 -0.333333 -1.333333
pencil  2.000000 -0.333333  6.000000 -3.666667
paper  -2.333333 -1.333333 -3.666667  4.666667

Using the corrwith() method, you can calculate the pairwise correlations between the columns or 
rows of a dataframe with a series or another DataFrame().

>>> ser = pd.Series([0,1,2,3,9],
...                   index=['red','blue','yellow','white','green'])
>>> ser
red       0
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blue      1
yellow    2
white     3
green     9
dtype: int64
>>> frame2.corrwith(ser)
ball      0.730297
pen      -0.831522
pencil    0.210819
paper    -0.119523
dtype: float64
>>> frame2.corrwith(frame)
ball      0.730297
pen      -0.831522
pencil    0.210819
paper    -0.119523
dtype: float64

�“Not a Number” Data
In the previous sections, you saw how easily missing data can be formed. They are recognizable in the data 
structures by the NaN (Not a Number) value. So, having values that are not defined in a data structure is quite 
common in data analysis.

However, pandas is designed to better manage this eventuality. In fact, in this section, you learn how 
to treat these values so that many issues can be obviated. For example, in the pandas library, calculating 
descriptive statistics excludes NaN values implicitly.

�Assigning a NaN Value
If you need to specifically assign a NaN value to an element in a data structure, you can use the np.NaN (or np.
nan) value of the NumPy library.

>>> ser = pd.Series([0,1,2,np.NaN,9],
...                   index=['red','blue','yellow','white','green'])
>>> ser
red      0.0
blue     1.0
yellow   2.0
white    NaN
green    9.0
dtype: float64
>>> ser['white'] = None
>>> ser
red      0.0
blue     1.0
yellow   2.0
white    NaN
green    9.0
dtype: float64
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�Filtering Out NaN Values
There are various ways to eliminate the NaN values during data analysis. Eliminating them by hand, element 
by element, can be very tedious and risky, and you’re never sure that you eliminated all the NaN values. This 
is where the dropna() function comes to your aid.

>>> ser.dropna()
red     0.0
blue    1.0
yellow  2.0
green   9.0
dtype: float64

You can also directly perform the filtering function by placing notnull() in the selection condition.

>>> ser[ser.notnull()]
red     0.0
blue    1.0
yellow  2.0
green   9.0
dtype: float64

If you’re dealing with a dataframe, it gets a little more complex. If you use the dropna() function on this 
type of object, and there is only one NaN value on a column or row, it will eliminate it.

>>> frame3 = pd.DataFrame([[6,np.nan,6],[np.nan,np.nan,np.nan],[2,np.nan,5]],
...                        index = ['blue','green','red'],
...                        columns = ['ball','mug','pen'])
>>> frame3
       ball  mug  pen
blue    6.0  NaN  6.0
green   NaN  NaN  NaN
red     2.0  NaN  5.0
>>> frame3.dropna()
Empty DataFrame
Columns: [ball, mug, pen]
Index: []

Therefore, to avoid having entire rows and columns disappear completely, you should specify the how 
option, assigning a value of all to it. This tells the dropna() function to delete only the rows or columns in 
which all elements are NaN.

>>> frame3.dropna(how='all')
      ball  mug  pen
blue   6.0  NaN  6.0
red    2.0  NaN  5.0
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�Filling in NaN Occurrences
Rather than filter NaN values within data structures, with the risk of discarding them along with values 
that could be relevant in the context of data analysis, you can replace them with other numbers. For most 
purposes, the fillna() function is a great choice. This method takes one argument, the value with which to 
replace any NaN. It can be the same for all cases.

>>> frame3.fillna(0)
       ball  mug  pen
blue    6.0  0.0  6.0
green   0.0  0.0  0.0
red     2.0  0.0  5.0

Or you can replace NaN with different values depending on the column, specifying one by one the 
indexes and the associated values.

>>> frame3.fillna({'ball':1,'mug':0,'pen':99})
       ball  mug   pen
blue    6.0  0.0   6.0
green   1.0  0.0  99.0
red     2.0  0.0   5.0

�Hierarchical Indexing and Leveling
Hierarchical indexing is a very important feature of pandas, as it allows you to have multiple levels of indexes 
on a single axis. It gives you a way to work with data in multiple dimensions while continuing to work in a 
two-dimensional structure.

Let’s start with a simple example, creating a series containing two arrays of indexes, that is, creating a 
structure with two levels.

>>> mser = pd.Series(np.random.rand(8),
...        index=[['white','white','white','blue','blue','red','red',
           'red'],
...               ['up','down','right','up','down','up','down','left']])
>>> mser
white  up       0.461689
       down     0.643121
       right    0.956163
blue   up       0.728021
       down     0.813079
red    up       0.536433
       down     0.606161
       left     0.996686
dtype: float64
>>> mser.index
Pd.MultiIndex(levels=[['blue', 'red', 'white'], ['down',
'left', 'right', 'up']],
...        labels=[[2, 2, 2, 0, 0, 1, 1, 1],
           [3, 0, 2, 3, 0, 3, 0, 1]])
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Through the specification of hierarchical indexing, selecting subsets of values, is in a certain way, 
simplified.

In fact, you can select the values for a given value of the first index, and you do it in the classic way:

>>> mser['white']
up       0.461689
down     0.643121
right    0.956163
dtype: float64

Or you can select values for a given value of the second index, in the following manner:

>>> mser[:,'up']
white    0.461689
blue     0.728021
red      0.536433
dtype: float64

Intuitively, if you want to select a specific value, you specify both indexes.

>>> mser['white','up']
0.46168915430531676

Hierarchical indexing plays a critical role in reshaping data and group-based operations such as a pivot-
table. For example, the data could be rearranged and used in a dataframe with a special function called 
unstack(). This function converts the series with a hierarchical index to a simple dataframe, where the 
second set of indexes is converted into a new set of columns.

>>> mser.unstack()
           down      left     right        up
blue   0.813079       NaN       NaN  0.728021
red    0.606161  0.996686       NaN  0.536433
white  0.643121       NaN  0.956163  0.461689

If you want to perform the reverse operation, which is to convert a dataframe to a series, use the 
stack() function.

>>> frame
        ball  pen  pencil  paper
red        0    1       2      3
blue       4    5       6      7
yellow     8    9      10     11
white     12   13      14     15
>>> frame.stack()
red     ball       0
        pen        1
        pencil     2
        paper      3
blue    ball       4
        pen        5
        pencil     6
        paper      7
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yellow  ball       8
        pen        9
        pencil    10
        paper     11
white   ball      12
        pen       13
        pencil    14
        paper     15
dtype: int32

With dataframes, it is possible to define a hierarchical index both for the rows and for the columns. At 
the time the dataframe is declared, you have to define an array of arrays for the index and columns options.

>>> mframe = pd.DataFrame(np.random.randn(16).reshape(4,4),
...      index=[['white','white','red','red'], ['up','down','up','down']],
...      columns=[['pen','pen','paper','paper'],[1,2,1,2]])
>>> mframe
                 pen               paper
                   1         2         1         2
white up   -1.964055  1.312100 -0.914750 -0.941930
      down -1.886825  1.700858 -1.060846 -0.197669
red   up   -1.561761  1.225509 -0.244772  0.345843
      down  2.668155  0.528971 -1.633708  0.921735

�Reordering and Sorting Levels
Occasionally, you might need to rearrange the order of the levels on an axis or sort for values at a 
specific level.

The swaplevel() function accepts as arguments the names assigned to the two levels that you want to 
interchange and returns a new object with the two levels interchanged between them, while leaving the data 
unmodified.

>>> mframe.columns.names = ['objects','id']
>>> mframe.index.names = ['colors','status']
>>> mframe
objects             pen               paper
id                    1         2         1         2
colors status
white  up     -1.964055  1.312100 -0.914750 -0.941930
       down   -1.886825  1.700858 -1.060846 -0.197669
red    up     -1.561761  1.225509 -0.244772  0.345843
       down    2.668155  0.528971 -1.633708  0.921735
>>> mframe.swaplevel('colors','status')
objects             pen               paper
id                    1         2         1         2
status colors
up     white  -1.964055  1.312100 -0.914750 -0.941930
down   white  -1.886825  1.700858 -1.060846 -0.197669
up     red    -1.561761  1.225509 -0.244772  0.345843
down   red     2.668155  0.528971 -1.633708  0.921735
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Instead, the sort_index() function orders the data considering only those of a certain level 
by specifying it as parameter
>>> mframe.sort_index(level='colors')
objects             pen               paper
id                    1         2         1         2
colors status
red    down    2.668155  0.528971 -1.633708  0.921735
       up     -1.561761  1.225509 -0.244772  0.345843
white  down   -1.886825  1.700858 -1.060846 -0.197669
       up     -1.964055  1.312100 -0.914750 -0.941930

�Summary Statistics with groupby Instead of with Level
Many descriptive statistics and summary statistics performed on a dataframe or on a series have still a 
level option, with which you can determine at what level the descriptive and summary statistics should be 
determined.

Until now, if you wanted to create a row-level statistic, you simply had to specify the level option by 
passing it the name of the level.

>>> mframe.sum(level='colors')
objects       pen               paper
id              1         2         1         2
colors
red      1.106394  1.754480 -1.878480  1.267578
white   -3.850881  3.012959 -1.975596 -1.139599

Unfortunately, if you run this command, you get a correct result, but the operation is deprecated and 
signals a warning message.

Future Warning: Using the level keyword in dataframe and series aggregations is deprecated and will 
be removed in a future version.

If, on the other hand, you want to work in line with new and future pandas versions, you need to change 
your approach. Instead of applying the selection level, you group the part on which you have to apply the sum 
operation in the following way:

>>>mframe.groupby('colors').sum()
objects       pen               paper
id              1         2         1         2
colors
red      1.106394  1.754480 -1.878480  1.267578
white   -3.850881  3.012959 -1.975596 -1.139599

The result is the same but no warning messages are obtained.
You must do the same thing when you want to make a statistic at a certain level of the columns, for 

example id. Instead of specifying the following command, which uses the level option:

>>> mframe.sum(level='id', axis=1)
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You define a group on the second axis (axis=1) and on the index id. Again, you do this instead of 
specifying it in the level option, which has been the practice up to now. If you run the command, you get 
the same result, but without warning messages.

>>> mframe.groupby('id', axis=1).sum()
id                    1         2
colors status
white  up     -2.878806  0.370170
       down   -2.947672  1.503189
red    up     -1.806532  1.571352
       down    1.034447  1.450706

�Conclusions
This chapter introduced the pandas library. You learned how to install it and saw a general overview of its 
characteristics.

You learned about the two basic data structures, called the series and dataframes, along with their 
operation and their main characteristics. Especially, you discovered the importance of indexing within these 
structures and how best to perform operations on them. Finally, you looked at the possibility of extending 
the complexity of these structures by creating hierarchies of indexes, thus distributing the data contained in 
them into different sublevels.

In the next chapter, you learn how to capture data from external sources such as files, and inversely, 
how to write the analysis results on them.
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CHAPTER 5

pandas: Reading and Writing Data

In the previous chapter, you became familiar with the pandas library and with the basic functionalities that 
it provides for data analysis. You saw that dataframes and series are the heart of this library. These are the 
material on which to perform all data manipulations, calculations, and analyses.

In this chapter, you’ll see all of the tools provided by pandas for reading data stored in many types of 
media (such as files and databases). In parallel, you’ll also see how to write data structures directly on these 
formats, without worrying too much about the technologies used.

This chapter focuses on a series of I/O API functions that pandas provides to read and write data 
directly as dataframe objects. It starts by looking at text files, then moves gradually to more complex binary 
formats.

At the end of the chapter, you’ll also learn how to interface with all common databases, both SQL and 
NoSQL, including examples that show you how to store data in a dataframe. At the same time, you’ll learn 
how to read data contained in a database and retrieve them as a dataframe.

�I/O API Tools
pandas is a library specialized for data analysis, so you expect that it is mainly focused on calculation and 
data processing. The processes of writing and reading data from/to external files can be considered part of 
data processing. In fact, you will see how, even at this stage, you can perform some operations in order to 
prepare the incoming data for manipulation.

Thus, this step is very important for data analysis and therefore a specific tool for this purpose must be 
present in the library pandas—a set of functions called I/O API. These functions are divided into two main 
categories: readers and writers.

Readers Writers

read_csv to_csv

read_excel to_excel

read_hdf to_hdf

read_sql to_sql

read_json to_json

read_html to_html

read_stata to_stata
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Readers Writers

read_clipboard to_clipboard

read_pickle to_pickle

read_msgpack to_msgpack (experimental)

read_gbq to_gbq (experimental)

�CSV and Textual Files
Everyone has become accustomed over the years to writing and reading files in text form. In particular, data 
are generally reported in tabular form. If the values in a row are separated by commas, you have the CSV 
(comma-separated values) format, which is perhaps the best-known and most popular format.

Other forms of tabular data can be separated by spaces or tabs and are typically contained in text files of 
various types (generally with the .txt extension).

This type of file is the most common source of data and is easier to transcribe and interpret. In this 
regard, pandas provides a set of functions specific for this type of file.

•	 read_csv

•	 read_table

•	 to_csv

�Reading Data in CSV or Text Files
From experience, the most common operation of a person approaching data analysis is to read the data 
contained in a CSV file, or at least in a text file.

But before you start dealing with files, you need to import the following libraries.

>>> import numpy as np
>>> import pandas as pd

In order to see how pandas handles this kind of data, start by creating a small CSV file in the working 
directory, as shown in Listing 5-1, and save it as ch05_01.csv.

Listing 5-1.  ch05_01.csv

white,red,blue,green,animal
1,5,2,3,cat
2,7,8,5,dog
3,3,6,7,horse
2,2,8,3,duck
4,4,2,1,mouse

Chapter 5 ■ pandas: Reading and Writing Data



117

Because this file is comma-delimited, you can use the read_csv() function to read its content and 
convert it to a dataframe object.

>>> csvframe = pd.read_csv('ch05_01.csv')
>>> csvframe
   white  red  blue  green animal
0      1    5     2      3    cat
1      2    7     8      5    dog
2      3    3     6      7  horse
3      2    2     8      3   duck
4      4    4     2      1  mouse

This chapter continues to use the Python shell, but in the same way you can choose to use a Jupyter 
Notebook, inserting the code in the cells and executing them one after the other in an interactive way. In 
the latter case, you get a graphical display of the dataframes obtained as a result, like the one shown in 
Figure 5-1.

Figure 5-1.  Book code executed on a Jupyter Notebook

As you can see, reading the data in a CSV file is rather trivial. CSV files are tabulated data in which the 
values on the same column are separated by commas. Because CSV files are considered text files, you can 
also use the read_table() function, but specify the delimiter.

>>> pd.read_table('ch05_01.csv',sep=',')
   white  red  blue  green animal
0      1    5     2      3    cat
1      2    7     8      5    dog
2      3    3     6      7  horse
3      2    2     8      3   duck
4      4    4     2      1  mouse

In this example, you can see that in the CSV file, headers that identify all the columns are in the first 
row. But this is not a general case; it often happens that the tabulated data begin directly in the first line (see 
Listing 5-2).
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Listing 5-2.  ch05_02.csv

1,5,2,3,cat
2,7,8,5,dog
3,3,6,7,horse
2,2,8,3,duck
4,4,2,1,mouse
>>> pd.read_csv('ch05_02.csv')
   1  5  2  3    cat
0  2  7  8  5    dog
1  3  3  6  7  horse
2  2  2  8  3   duck
3  4  4  2  1  mouse

In this case, you can make sure that it is pandas that assigns the default names to the columns by setting 
the header option to None.

>>> pd.read_csv('ch05_02.csv', header=None)
   0  1  2  3      4
0  1  5  2  3    cat
1  2  7  8  5    dog
2  3  3  6  7  horse
3  2  2  8  3   duck
4  4  4  2  1  mouse

In addition, you can specify the names directly by assigning a list of labels to the names option.

>>> pd.read_csv('ch05_02.csv', names=['white','red','blue','green','animal'])
   white  red  blue  green animal
0      1    5     2      3    cat
1      2    7     8      5    dog
2      3    3     6      7  horse
3      2    2     8      3   duck
4      4    4     2      1  mouse

In more complex cases, in which you want to create a dataframe with a hierarchical structure by reading 
a CSV file, you can extend the functionality of the read_csv() function by adding the index_col option, 
assigning all the columns to be converted into indexes.

To better understand this possibility, create a new CSV file with two columns to be used as indexes of 
the hierarchy. Then, save the file in the working directory as ch05_03.csv (see Listing 5-3).

Listing 5-3.  ch05_03.csv

color,status,item1,item2,item3
black,up,3,4,6
black,down,2,6,7
white,up,5,5,5
white,down,3,3,2
white,left,1,2,1
red,up,2,2,2
red,down,1,1,4
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Now you can read the CSV file as a dataframe by writing the following code.

>>> pd.read_csv('ch05_03.csv', index_col=['color','status'])
              item1  item2  item3
color status
black up          3      4      6
      down        2      6      7
white up          5      5      5
      down        3      3      2
      left        1      2      1
red   up          2      2      2
      down        1      1      4

�Using Regexp to Parse TXT Files
In some cases, the files on which to parse the data will not show separators well defined as commas or 
semicolons. In these cases, the regular expressions come to your aid. In fact, you can specify a regexp within 
the read_table() function using the sep option.

To better understand regexp and see how you can apply it as criteria for value separation, let’s start with 
a simple case. For example, suppose that your TXT file has values that are separated by spaces or tabs in an 
unpredictable order. In this case, you have to use the regexp, because that’s the only way to take into account 
both separator types. You can do that using the wildcard /s*. /s stands for the space or tab character (if you 
want to indicate a tab, you use /t), while the asterisk indicates that there may be multiple characters (see 
Table 5-1 for other common wildcards). That is, the values may be separated by more spaces or more tabs.

Table 5-1.  Metacharacters

. Single character, except newline

\d Digit

\D Non-digit character

\s Whitespace character

\S Non-whitespace character

\n New line character

\t Tab character

\uxxxx Unicode character specified by the hexadecimal number xxxx

Take for example an extreme case in which you have the values separated by tabs or spaces in random 
order (see Listing 5-4).

Listing 5-4.  ch05_04.txt

white red blue green
    1   5    2     3
    2   7    8     5
    3   3    6     7
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Now you can read the TXT file as a dataframe by writing the following code:

>>> pd.read_table('ch05_04.txt',sep='\s+', engine='python')
   white  red  blue  green
0      1    5     2      3
1      2    7     8      5
2      3    3     6      7

As you can see, the result is a perfect dataframe in which the values are perfectly ordered.
Now you will see an example that may seem strange or unusual, but it is not as rare as it may seem. This 

example can be very helpful in understanding the high potential of a regexp. In fact, you might typically 
think of separators as special characters like commas, spaces, tabs, and so on, but in reality you can consider 
separator characters like alphanumeric characters, or for example, integers such as 0.

In this example, you need to extract the numeric part from a TXT file, in which there is a sequence of 
characters with numerical values and the literal characters are completely fused.

Remember to set the header option to None whenever the column headings are not present in the TXT 
file (see Listing 5-5).

Listing 5-5.  ch05_05.txt

000END123AAA122
001END124BBB321
002END125CCC333

Now you can read the TXT file as a dataframe by writing the following code:

>>> pd.read_table('ch05_05.txt', sep='\D+', header=None, engine='python')
   0    1    2
0  0  123  122
1  1  124  321
2  2  125  333

Another fairly common event is to exclude lines from parsing. In fact, you do not always want to include 
headers or unnecessary comments contained in a file (see Listing 5-6). With the skiprows option, you can 
exclude all the lines you want, just assigning an array containing the line numbers to not consider in parsing.

Pay attention when you are using this option. If you want to exclude the first five lines, you have to write 
skiprows = 5, but if you want to rule out the fifth line, you have to write skiprows = [5].

Listing 5-6.  ch05_06.txt

########### LOG FILE ############
This file has been generated by automatic system
white,red,blue,green,animal
12-Feb-2015: Counting of animals inside the house
1,5,2,3,cat
2,7,8,5,dog
13-Feb-2015: Counting of animals outside the house
3,3,6,7,horse
2,2,8,3,duck
4,4,2,1,mouse
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Now you can read this TXT file as a dataframe by writing the following code:

>>> pd.read_table('ch05_06.txt',sep=',',skiprows=[0,1,3,6])
   white  red  blue  green animal
0      1    5     2      3    cat
1      2    7     8      5    dog
2      3    3     6      7  horse
3      2    2     8      3   duck
4      4    4     2      1  mouse

�Reading TXT Files Into Parts
When large files are processed, or when you are only interested in portions of these files, you often need to 
read the file into portions (chunks). This is both to apply any iterations and because you are not interested in 
parsing the entire file.

If, for example, you wanted to read only a portion of the file, you can explicitly specify the number of 
lines on which to parse. Thanks to the nrows and skiprows options, you can select the starting line n (n = 
SkipRows) and the lines to be read after it (nrows = i).

>>> pd.read_csv('ch05_02.csv',skiprows=[2],nrows=3,header=None)
   0  1  2  3     4
0  1  5  2  3   cat
1  2  7  8  5   dog
2  2  2  8  3  duck

Another interesting and fairly common operation is to split into portions that part of the text on which 
you want to parse. Then, for each portion a specific operation may be carried out, in order to obtain an 
iteration, portion by portion.

For example, you want to add the values in a column every three rows and then insert these sums in a 
series. This example is trivial and impractical but is very simple to understand. Once you have learned the 
underlying mechanism, you will be able to apply it in more complex cases.

>>> out = pd.Series(dtype='float64')
>>> i = 0
>>> pieces = pd.read_csv('ch05_01.csv',chunksize=3)
>>> for piece in pieces:
...    out.at[i] = piece['white'].sum()...    i = i + 1
...
>>> out
0    6
1    6
dtype: int64

�Writing Data in CSV
In addition to reading the data contained in a file, it’s also common to write a data file produced by a 
calculation, or in general the data contained in a data structure.
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For example, you might want to write the data contained in a dataframe to a CSV file. To do this writing 
process, you use the to_csv() function, which accepts as an argument the name of the file you generate (see 
Listing 5-7).

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),
               index = ['red', 'blue', 'yellow', 'white'],
               columns = ['ball', 'pen', 'pencil', 'paper'])
>>> frame.to_csv('ch05_07.csv')

If you open the new file called ch05_07.csv generated by the pandas library, you will see data, as in 
Listing 5-7.

Listing 5-7.  ch05_07.csv

,ball,pen,pencil,paper
0,1,2,3
4,5,6,7
8,9,10,11
12,13,14,15

As you can see from the previous example, when you write a dataframe to a file, indexes and columns 
are marked on the file by default. This default behavior can be changed by setting the two options index and 
header to False (see Listing 5-8).

>>> frame.to_csv('ch05_07b.csv', index=False, header=False)

Listing 5-8.  ch05_07b.csv

1,2,3
5,6,7
9,10,11
13,14,15

One point to remember when writing files is that NaN values present in a data structure are shown as 
empty fields in the file (see Listing 5-9).

>>> frame2 = pd.DataFrame([[6,np.nan,np.nan,6,np.nan],
...           [np.nan,np.nan,np.nan,np.nan,np.nan],
...           [np.nan,np.nan,np.nan,np.nan,np.nan],
...           [20,np.nan,np.nan,20.0,np.nan],
...           [19,np.nan,np.nan,19.0,np.nan]
...           ],
...                  index=['blue','green','red','white','yellow'],
                     columns=['ball','mug','paper','pen','pencil'])
>>> frame2
        ball  mug  paper  pen  pencil
blue     6.0  NaN    NaN  6.0     NaN
green    NaN  NaN    NaN  NaN     NaN
red      NaN  NaN    NaN  NaN     NaN
white   20.0  NaN    NaN 20.0     NaN
yellow  19.0  NaN    NaN 19.0     NaN
>>> frame2.to_csv('ch05_08.csv')
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Listing 5-9.  ch05_08.csv

,ball,mug,paper,pen,pencil
blue,6.0,,,6.0,
green,,,,,
red,,,,,
white,20.0,,,20.0,
yellow,19.0,,,19.0,

However, you can replace this empty field with a value to your liking using the na_rep option in the 
to_csv() function. Common values include NULL, 0, or the same NaN (see Listing 5-10).

>>> frame3.to_csv('ch05_09.csv', na_rep ='NaN')

Listing 5-10.  ch05_09.csv

,ball,mug,paper,pen,pencil
blue,6.0,NaN,NaN,6.0,NaN
green,NaN,NaN,NaN,NaN,NaN
red,NaN,NaN,NaN,NaN,NaN
white,20.0,NaN,NaN,20.0,NaN
yellow,19.0,NaN,NaN,19.0,NaN

■■ Note I n the cases specified, dataframe has always been the subject of discussion, because these are the data 
structures that are written to the file. But all these functions and options are also valid with regard to the series.

�Reading and Writing HTML Files
pandas provides the corresponding pair of I/O API functions for the HTML format.

•	 read_html()

•	 to_html()

These two functions can be very useful. You will appreciate the ability to convert complex data 
structures such as dataframes directly into HTML tables without having to hack a long listing in HTML, 
especially if you’re dealing with the web.

The inverse operation can be very useful too, because now the major source of data is just the web 
world. In fact, a lot of data on the Internet does not always have a “ready to use” form that is packaged in 
a TXT or CSV file. Very often, however, the data are reported as part of the text of web pages. So having a 
function for reading can prove to be really useful.

This activity is so widespread that it is currently identified as web scraping. This process is becoming a 
fundamental part of the set of processes and will be integrated in the first part of data analysis: data mining 
and data preparation.
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■■ Note  Many websites have now adopted the HTML5 format, to avoid any issues of missing modules and 
error messages. I strongly recommend you install the html5lib module. Anaconda specified:

conda install html5lib

�Writing Data in HTML
Now you learn how to convert a dataframe into an HTML table. The internal structure of the dataframe is 
automatically converted into nested tags <TH>, <TR>, and <TD>, retaining any internal hierarchies. You do not 
need to know HTML to use this kind of function.

Because the data structures of the dataframe can be quite complex and large, it’s great to have a 
function like this when you need to develop web pages.

To better understand this potential, here’s an example. You can start by defining a simple dataframe.
Thanks to the to_html() function, you can directly convert the dataframe into an HTML table.

>>> frame = pd.DataFrame(np.arange(4).reshape(2,2))

Because the I/O API functions are defined in the pandas data structures, you can call the to_html() 
function directly on the instance of the dataframe.

>>> print(frame.to_html())
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>0</th>
      <th>1</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td> 0</td>
      <td> 1</td>
    </tr>
    <tr>
      <th>1</th>
      <td> 2</td>
      <td> 3</td>
    </tr>
  </tbody>
</table>

As you can see, the whole structure formed by the HTML tags needed to create an HTML table was 
generated correctly in order to respect the internal structure of the dataframe.
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In the next example, you see how the table appears automatically generated within an HTML file. In this 
regard, the dataframe is a bit more complex than the previous one, where there are labels of the indexes and 
column names.

>>> frame = pd.DataFrame( np.random.random((4,4)),
...                    index = ['white','black','red','blue'],
...                    columns = ['up','down','right','left'])
>>> frame
             up      down     right      left
white  0.292434  0.457176  0.905139  0.737622
black  0.794233  0.949371  0.540191  0.367835
red    0.204529  0.981573  0.118329  0.761552
blue   0.628790  0.585922  0.039153  0.461598

Now you focus on writing an HTML page through the generation of a string. This is a simple and trivial 
example, but it is very useful to understand and to test the functionality of pandas directly on the web 
browser.

First of all, you create a string that contains the code of the HTML page.

>>> s = ['<HTML>']
>>> s.append('<HEAD><TITLE>My DataFrame</TITLE></HEAD>')
>>> s.append('<BODY>')
>>> s.append(frame.to_html())
>>> s.append('</BODY></HTML>')
>>> html = ".join(s)

Now that all the listing of the HTML page is contained within the html variable, you can write directly 
on the file that will be called myFrame.html:

>>> html_file = open('myFrame.html','w')
>>> html_file.write(html)
>>> html_file.close()

A new HTML file will be in your working directory, called myFrame.html. Double-click it to open it 
directly from the browser. An HTML table will appear in the upper left, as shown in Figure 5-2.

Figure 5-2.  The dataframe is shown as an HTML table in the web page
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�Reading Data from an HTML File
As you just saw, pandas can easily generate HTML tables starting from the dataframe. The opposite process 
is also possible; the function read_html() will parse an HTML page, looking for an HTML table. If found, it 
will convert that table into an object dataframe ready to be used in your data analysis.

More precisely, the read_html() function returns a list of dataframes even if there is only one table. The 
source that will be parsed can be different types. For example, you may have to read an HTML file in any 
directory. You can parse the HTML file you created in the previous example:

>>> web_frames = pd.read_html('myFrame.html')
>>> web_frames[0]
  Unnamed: 0        up      down     right      left
0      white  0.292434  0.457176  0.905139  0.737622
1      black  0.794233  0.949371  0.540191  0.367835
2        red  0.204529  0.981573  0.118329  0.761552
3       blue  0.628790  0.585922  0.039153  0.461598

As you can see, all of the tags that have nothing to do with HTML table are not considered. Furthermore, 
web_frames is a list of dataframes, although in your case, the dataframe that you are extracting is only one. 
However, you can select the item in the list that you want to use, calling it in the classic way. In this case, the 
item is unique and therefore the index will be 0.

However, the mode most commonly used regarding the read_html() function is that of a direct parsing 
of an URL on the web. In this way, the web pages in the network are directly parsed with the extraction of the 
tables in them.

For example, you can call a web page where there is an HTML table that shows a ranking list with some 
names and scores.

>>> ranking = pd.read_html('https://www.meccanismocomplesso.org/en/meccanismo-complesso-
sito-2/classifica-punteggio/')
>>> ranking[0]
     Unnamed: 0        Member  Points  Levels
0             1   BrunoOrsini    2075     NaN
1             2     Berserker     700     NaN
2             3  albertosallu     275     NaN
3             4           Jon     180     NaN
4             5          Mr.Y     180     NaN
..          ...           ...     ...     ...
110         111  Gigi Bertana       5     NaN
111         112       p.barut       5     NaN
112         113  Indri4Africa       5     NaN
113         114     ghirograf       5     NaN
114         115  Marco Corbet       5     NaN

[115 rows x 4 columns]

The same operation can be run on any web page that has one or more tables.
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�Reading Data from XML
In the list of I/O API functions, there is no specific tool regarding the XML (Extensible Markup Language) 
format. In fact, although it is not listed, this format is very important, because many structured data are 
available in XML format. This presents no problem, since Python has many other libraries (besides pandas) 
that manage the reading and writing of data in XML format.

One of these libraries is the lxml library, which stands out for its excellent performance during the 
parsing of very large files. In this section, you learn how to use this module to parse XML files and how to 
integrate it with pandas to get the dataframe containing the requested data. For more information about this 
library, I highly recommend visiting the official website of lxml at http://lxml.de/index.html.

Take for example the XML file shown in Listing 5-11. Write it down and save it with the name books.xml 
directly in your working directory.

Listing 5-11.  books.xml

<?xml version="1.0"?>
<Catalog>
   <Book id="ISBN9872122367564">
      <Author>Ross, Mark</Author>
      <Title>XML Cookbook</Title>
      <Genre>Computer</Genre>
      <Price>23.56</Price>
      <PublishDate>2014-22-01</PublishDate>
   </Book>
   <Book id="ISBN9872122367564">
      <Author>Bracket, Barbara</Author>
      <Title>XML for Dummies</Title>
      <Genre>Computer</Genre>
      <Price>35.95</Price>
      <PublishDate>2014-12-16</PublishDate>
   </Book>
</Catalog>

In this example, you take the data structure described in the XML file and convert it directly into a 
dataframe. The first thing to do is use the submodule objectify of the lxml library, importing it in the 
following way.

>>> from lxml import objectify

Now you can parse the XML file with just the parse() function.

>>> xml = objectify.parse('books.xml')
>>> xml
<lxml.etree._ElementTree object at 0x0000000009734E08>

You get an object tree, which is an internal data structure of the lxml module.
Look in more detail at this type of object. To navigate in this tree structure, so as to select element by 

element, you must first define the root. You can do this with the getroot() function.

>>> root = xml.getroot()
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Now that the root of the structure has been defined, you can access the various nodes of the tree, each 
corresponding to the tag contained in the original XML file. The items will have the same name as the 
corresponding tags. To select them, simply write the various separate tags with points, reflecting in a certain 
way the hierarchy of nodes in the tree.

>>> root.Book.Author
'Ross, Mark'
>>> root.Book.PublishDate
'2014-22-01'

In this way, you access nodes individually, but you can access various elements at the same time using 
getchildren(). With this function, you’ll get all the child nodes of the reference element.

>>> root.getchildren()
[<Element Book at 0x9c66688>, <Element Book at 0x9c66e08>]

With the tag attribute, you get the name of the tag corresponding to the child node.

>>> [child.tag for child in root.Book.getchildren()]
['Author', 'Title', 'Genre', 'Price', 'PublishDate']

While with the text attribute, you get the value contained between the corresponding tags.

>>> [child.text for child in root.Book.getchildren()]
['Ross, Mark', 'XML Cookbook', 'Computer', '23.56', '2014-22-01']

However, regardless of the ability to move through the lxml.etree tree structure, what you need is to 
convert it into a dataframe. Define the following function, which has the task of analyzing the contents of an 
etree to fill a dataframe line by line.

>>> def etree2df(root):
...    column_names = []
...    for i in range(0,len(root.getchildren()[0].getchildren())):
...       column_names.append(root.getchildren()[0].getchildren()[i].tag)
...    xml:frame = pd.DataFrame(columns=column_names)
...    for j in range(0, len(root.getchildren())):
...       obj = root.getchildren()[j].getchildren()
...       texts = []
...       for k in range(0, len(column_names)):
...          texts.append(obj[k].text)
...       row = dict(zip(column_names, texts))
...       row_s = pd.Series(row)
...       row_s.name = j
...       xml_frame = pd.concat([xml_frame, row_s.to_frame().T], ignore_index=True)
...    return xml:frame
...
>>> etree2df(root)
             Author            Title     Genre  Price PublishDate
0        Ross, Mark     XML Cookbook  Computer  23.56  2014-22-01
1  Bracket, Barbara  XML for Dummies  Computer  35.95  2014-12-16
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�Reading and Writing Data on Microsoft Excel Files
In the previous section, you saw how data can be easily read from CSV files. It is not uncommon, however, 
that data are collected in tabular form in an Excel spreadsheet.

pandas provides specific functions for this type of format:

•	 to_excel()

•	 read_excel()

The read_excel() function can read Excel 2003 (.xls) files and Excel 2007 (.xlsx) files. This is possible 
thanks to the integration of the internal module, xlrd.

However, to carry out these readings and format conversions from Excel files, Python uses a 
special library called openpyxl. To continue with the examples, you first have to install it in your virtual 
environment. If you are using the Anaconda platform, you can open the CMD.exe Prompt console and use 
this command:

conda install openpyxl

If you prefer, you can install it graphically by selecting this package in Anaconda Navigator and 
requesting its installation. See Figure 5-3.

Figure 5-3.  Anaconda Navigator offers a graphical way to install packages like openpyxl

If you’re not using the Anaconda platform, the easiest way to install openpyxl is via PyPI.

pip install openpyxl

Once the package is installed in the proper virtual environment, open an Excel file and enter the data as 
shown in Figure 5-4. Copy the data in sheet1 and sheet2. Then save the file as ch05_data.xlsx.

Chapter 5 ■ pandas: Reading and Writing Data



130

Figure 5-4.  The two datasets in sheet1 and sheet2 of an Excel file

To read the data contained in the XLS file and convert it into a dataframe, you only have to use the 
read_excel() function.

>>> pd.read_excel('ch05_data.xlsx')
   white  red  green  black
a     12   23     17     18
b     22   16     19     18
c     14   23     22     21

As you can see, by default, the returned dataframe is composed of the data tabulated in the first 
spreadsheets. If, however, you need to load the data in the second spreadsheet, you must then specify the 
name of the sheet or the number of the sheet (index) as the second argument.

>>> pd.read_excel('ch05_data.xlsx','Sheet2')
   yellow  purple  blue  orange
A      11      16    44      22
B      20      22    23      44
C      30      31    37      32
>>> pd.read_excel('ch05_data.xlsx',1)
   yellow  purple  blue  orange
A      11      16    44      22
B      20      22    23      44
C      30      31    37      32
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The same applies to writing. To convert a dataframe into an Excel spreadsheet, you have to write the 
following:

>>> frame = pd.DataFrame(np.random.random((4,4)),
...                      index = ['exp1','exp2','exp3','exp4'],
...                      columns = ['Jan2015','Fab2015','Mar2015','Apr2005'])
>>> frame
       Jan2015   Fab2015   Mar2015   Apr2005
exp1  0.030083  0.065339  0.960494  0.510847
exp2  0.531885  0.706945  0.964943  0.085642
exp3  0.981325  0.868894  0.947871  0.387600
exp4  0.832527  0.357885  0.538138  0.357990
>>> frame.to_excel('ch05_data2.xlsx')

In the working directory, you will find a new Excel file containing the data, as shown in Figure 5-5.

Figure 5-5.  The dataframe in the Excel file

�JSON Data
JSON (JavaScript Object Notation) has become one of the most common standard formats, especially for 
the transmission of data on the web. So it is normal to work with this data format if you want to use data on 
the web.

The special feature of this format is its great flexibility, although its structure is far from being the one to 
which you are well accustomed, that is, tabular structure.

In the first part of this section, you learn how to use the read_json() and to_json() functions to stay 
within the I/O API functions discussed in this chapter. In the second part of this section, you see another 
example in which you have to deal with structured data in JSON format, which is much more related to 
real cases.

In my opinion, a useful online application for checking the JSON format is JSON Viewer, available at 
http://jsonviewer.stack.hu/. This web application, once you enter or copy data in JSON format, allows 
you to see if the format you entered is valid. Moreover, it displays the tree structure so that you can better 
understand its structure (see Figure 5-6).
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Figure 5-6.  JSON Viewer

Let’s begin with the more useful case, that is, when you have a dataframe and you need to convert it into 
a JSON file. So, define a dataframe and then call the to_json() function on it, passing as an argument the 
name of the file that you want to create.

>>> frame = pd.DataFrame(np.arange(16).reshape(4,4),
...                      index=['white','black','red','blue'],
...                      columns=['up','down','right','left'])
>>> frame.to_json('frame.json')

In the working directory, you will find a new JSON file (see Listing 5-12) containing the dataframe data 
translated into JSON format.

Listing 5-12.  frame.json

{"up":{"white":0,"black":4,"red":8,"blue":12},"down":{"white":1,"black":5,"red":9,"blue": 
13},"right":{"white":2,"black":6,"red":10,"blue":14},"left":{"white":3,"black":7,"red":11,
"blue":15}}
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The converse is possible, using the read_json() with the name of the file passed as an argument.

>>> pd.read_json('frame.json')
       up  down  right  left
white   0     1      2     3
black   4     5      6     7
red     8     9     10    11
blue   12    13     14    15

The example you have seen is a fairly simple case in which the JSON data were in tabular form (since 
the frame.json file comes from a dataframe). Generally, however, the JSON files do not have a tabular 
structure. Thus, you need to somehow convert the structure dict file into tabular form. This process is called 
normalization.

The library pandas provides a function, called json_normalize(), that converts a dict or a list in a 
table. First you have to import the function:

>>> from pandas.io.json import json_normalize

Then you write a JSON file as described in Listing 5-13 with any text editor. Save it in the working 
directory as books.json.

Listing 5-13.  books.json

[{"writer": "Mark Ross",
 "nationality": "USA",
 "books": [
         {"title": "XML Cookbook", "price": 23.56},
         {"title": "Python Fundamentals", "price": 50.70},
         {"title": "The NumPy library", "price": 12.30}
             ]
},
{"writer": "Barbara Bracket",
 "nationality": "UK",
 "books": [
         {"title": "Java Enterprise", "price": 28.60},
         {"title": "HTML5", "price": 31.35},
         {"title": "Python for Dummies", "price": 28.00}
             ]
}]

As you can see, the file structure is no longer tabular, but more complex. Then the approach with the 
read_json() function is no longer valid. As you learn from this example, you can still get the data in tabular 
form from this structure. First you have to load the contents of the JSON file and convert it into a string.

>>> import pandas.io.json as json
>>> file = open('books.json','r')
>>> text = file.read()
>>> text = json.loads(text)
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Now you are ready to apply the json_normalize() function. From a quick look at the contents of the 
data within the JSON file, for example, you might want to extract a table that contains all the books. Then 
write the books key as the second argument.

>>> pd.json_normalize(text,'books')
                 title  price
0         XML Cookbook  23.56
1  Python Fundamentals  50.70
2    The NumPy library  12.30
3      Java Enterprise  28.60
4                HTML5  31.35
5   Python for Dummies  28.00

The function reads the contents of all the elements that have books as the key. All properties will be 
converted into nested column names while the corresponding values will fill the dataframe. For the indexes, 
the function assigns a sequence of increasing numbers.

However, you get a dataframe containing only some internal information. It would be useful to add the 
values of other keys on the same level. In this case, you can add other columns by inserting a key list as the 
third argument of the function.

>>> pd.json_normalize(text,'books',['writer','nationality'])
                 title  price           writer nationality
0         XML Cookbook  23.56        Mark Ross         USA
1  Python Fundamentals  50.70        Mark Ross         USA
2    The NumPy library  12.30        Mark Ross         USA
3      Java Enterprise  28.60  Barbara Bracket          UK
4                HTML5  31.35  Barbara Bracket          UK
5   Python for Dummies  28.00  Barbara Bracket          UK

Now as a result you get a dataframe from a starting tree structure. In Figure 5-7, you can see the 
dataframe as it is displayed on Jupyter Notebook.

Figure 5-7.  The dataframe obtained from a starting tree structure in Jupyter Notebook
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�The HDF5 Format
So far you have seen how to write and read data in text format. When your data analysis involves large 
amounts of data, it is preferable to use them in binary format. There are several tools in Python to handle 
binary data. A library that is having some success in this area is the HDF5 library.

The HDF term stands for hierarchical data format, and in fact this library is concerned with reading and 
writing HDF5 files containing a structure with nodes and the possibility to store multiple datasets.

This library, fully developed in C, however, has also interfaces with other types of languages like 
Python, MATLAB, and Java. It is very efficient, especially when using this format to save huge amounts of 
data. Compared to other formats that work more simply in binary, HDF5 supports compression in real time, 
thereby taking advantage of repetitive patterns in the data structure to compress the file size.

At present, the possible choices in Python are PyTables and h5py. These two forms differ in several 
respects and therefore their choice depends very much on the needs of those who use them.

h5py provides a direct interface with the high-level APIs HDF5, while PyTables makes abstract many of 
the details of HDF5 to provide more flexible data containers, indexed tables, querying capabilities, and other 
media on the calculations.

In this case, you see the PyTables library in action, which must be installed in your virtual environment. 
If you work on Anaconda, you can easily install it with Anaconda Navigator or from the console with this 
command:

conda install pytables

Otherwise you can install it via PyPI.

pip install pytables

pandas has a class-like dict called HDFStore, using PyTables to store pandas objects. So before working 
with the format HDF5, you must import the HDFStore class:

>>> from pandas.io.pytables import HDFStore

Now you’re ready to store the data of a dataframe within an .h5 file. First, create a dataframe.

>>> frame = pd.DataFrame(np.arange(16).reshape(4,4),
...                      index=['white','black','red','blue'],
...                      columns=['up','down','right','left'])

Now create a HDF5 file and call it mydata.h5, then enter the data inside of the dataframe.

>>> store = HDFStore('mydata.h5')
>>> store['obj1'] = frame

From here, you can guess how to store multiple data structures in the same HDF5 file, specifying for 
each of them a label.

>>> frame
       up  down  right  left
white   0     1      2     3
black   4     5      6     7
red     8     9     10    11
blue   12    13     14    15
>>> store['obj2'] = frame
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So with this type of format, you can store multiple data structures in a single file, represented by the 
store variable.

>>> store
<class 'pandas.io.pytables.HDFStore'>
File path: mydata.h5

Even the reverse process is very simple. Taking into account having an HDF5 file containing various 
data structures, objects inside can be called in the following way:

>>> store['obj2']
       up  down  right  left
white   0     1      2     3
black   4     5      6     7
red     8     9     10    11
blue   12    13     14    15

�Pickle—Python Object Serialization
The pickle module implements a powerful algorithm for serialization and deserialization of a data structure 
implemented in Python. Pickling is the process in which the hierarchy of an object is converted into a stream 
of bytes.

This allows an object to be transmitted and stored, and then to be rebuilt by the receiver itself retaining 
all the original features.

In Python, the picking operation is carried out by the pickle module, but currently there is a module 
called _pickle, which is the result of an enormous amount of work optimizing the pickle module (written 
in C). This module can be in fact 1,000 times faster than the pickle module. However, regardless of which 
module you use, the interfaces of the two modules are almost the same.

Before moving to explicitly mention the I/O functions of pandas that operate on this format, let’s look in 
more detail at the _pickle module and see how to use it.

�Serialize a Python Object with cPickle
The data format used by the pickle (or cPickle) module is specific to Python. By default, an ASCII 
representation is used to represent it, in order to be readable from the human point of view. Then, by 
opening a file with a text editor, you may be able to understand its contents. To use this module, you must 
first import it:

>>> import _pickle as pickle

Then create an object sufficiently complex to have an internal data structure, for example a dict object.

>>> data = { 'color': ['white','red'], 'value': [5, 7]}

Now perform a serialization of the data object through the dumps() function of the cPickle module.

>>> pickled_data = pickle.dumps(data)
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Now, to see how it serialized the dict object, you need to look at the contents of the pickled_data 
variable.

>>> print(pickled_data)
b'\x80\x04\x95/\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x05color\x94]\x94(\x8c\x05white\x94\
x8c\x03red\x94e\x8c\x05value\x94]\x94(K\x05K\x07eu.'

Once you have serialized data, they can easily be written on a file or sent over a socket, pipe, and so on.
After the data are transmitted, it is possible to reconstruct the serialized object (deserialization) with the 

loads() function of the _pickle module.

>>> nframe = pickle.loads(pickled_data)
>>> nframe
{'color': ['white', 'red'], 'value': [5, 7]}

�Pickling with pandas
When it comes to pickling (and unpickling) with the pandas library, everything is much easier. There is no 
need to import the cPickle module in the Python session; the whole operation is performed implicitly.

Also, the serialization format used by pandas is not completely in ASCII.

>>> frame = pd.DataFrame(np.arange(16).reshape(4,4), index = ['up','down','left','right'])
>>> frame.to_pickle('frame.pkl')

There is a new file called frame.pkl in your working directory that contains all the information about 
the frame dataframe.

To open a PKL file and read the contents, simply use this command:

>>> pd.read_pickle('frame.pkl')
        0   1   2   3
up      0   1   2   3
down    4   5   6   7
left    8   9  10  11
right  12  13  14  15

As you can see, all the implications on the operation of pickling and unpickling are completely hidden 
from the pandas user, making the job as easy and understandable as possible, for those who must deal 
specifically with data analysis.

■■ Note  When you use this format, make sure that the file you open is safe. Indeed, the pickle format was not 
designed to be protected against erroneous and maliciously constructed data.

�Interacting with Databases
In many applications, the data rarely come from text files, given that this is certainly not the most efficient 
way to store data.
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The data are often stored in an SQL-based relational database, and also in many alternative NoSQL 
databases that have become very popular in recent times.

Loading data from SQL in a dataframe is sufficiently simple and pandas has some functions to simplify 
the process.

The pandas.io.sql module provides a unified interface independent of the DB, called sqlalchemy. 
This interface simplifies the connection mode, since regardless of the DB, the commands will always be the 
same. To make a connection, you use the create_engine() function. With this feature you can configure all 
the properties necessary to use the driver, as a user, password, port, and database instance.

In order to install sqlalchemy on Anaconda, you can easily install it with Anaconda Navigator or from 
the console with the command:

conda install sqlalchemy

Otherwise you can install it via PyPI.

pip install sqlalchemy

Here is a list of examples for the various types of databases:

>>> from sqlalchemy import create_engine

For PostgreSQL:

>>> engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')
For MySQL
>>> engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')
For Oracle
>>> engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')
For MSSQL
>>> engine = create_engine('mssql+pyodbc://mydsn')
For SQLite
>>> engine = create_engine('sqlite:///foo.db')

�Loading and Writing Data with SQLite3
As a first example, you use an SQLite database using the driver’s built-in Python sqlite3. SQLite3 is a tool 
that implements a DBMS SQL in a very simple and lightweight way, so it can be incorporated into any 
application implemented with the Python language. In fact, this practical software allows you to create an 
embedded database in a single file.

This makes it the perfect tool for anyone who wants to have the functions of a database without having 
to install a real database. SQLite3 can be the right choice for anyone who wants to practice before going on 
to a real database, or for anyone who needs to use the functions of a database to collect data, but remaining 
within a single program, without having to interface with a database.

Create a dataframe that you will use to create a new table on the SQLite3 database.

>>> frame = pd.DataFrame( np.arange(20).reshape(4,5),
...                       columns=['white','red','blue','black','green'])
>>> frame
   white  red  blue  black  green
0      0    1     2      3      4
1      5    6     7      8      9
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2     10   11    12     13     14
3     15   16    17     18     19

Now it’s time to implement the connection to the SQLite3 database.

>>> engine = create_engine('sqlite:///foo.db')

Convert the dataframe in a table within the database.

>>> frame.to_sql('colors',engine)

Instead, to read the database, you have to use the read_sql() function with the name of the table and 
the engine.

>>> pd.read_sql('colors',engine)
   index  white  red  blue  black  green
0      0      0    1     2      3      4
1      1      5    6     7      8      9
2      2     10   11    12     13     14
3      3     15   16    17     18     19

As you can see, even in this case, the writing operation on the database has become very simple, thanks 
to the I/O APIs available in the pandas library.

Now you’ll see instead the same operations, but not using the I/O API. This can be useful to get an idea 
of how pandas proves to be an effective tool for reading and writing data to a database.

First, you must establish a connection to the DB and create a table by defining the corrected data types, 
so as to accommodate the data to be loaded.

>>> import sqlite3
>>> query = """
... CREATE TABLE test
... (a VARCHAR(20), b VARCHAR(20),
...  c REAL,        d INTEGER
... );"""
>>> con = sqlite3.connect(':memory:')
>>> con.execute(query)
<sqlite3.Cursor object at 0x0000000009E7D730>
>>> con.commit()

Now you can enter data using the SQL INSERT statement.

>>> data = [('white','up',1,3),
...         ('black','down',2,8),
...         ('green','up',4,4),
...         ('red','down',5,5)]
>>> stmt = "INSERT INTO test VALUES(?,?,?,?)"
>>> con.executemany(stmt, data)
<sqlite3.Cursor object at 0x0000000009E7D8F0>
>>> con.commit()
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Now that you’ve seen how to load the data on a table, it is time to see how to query the database to get 
the data you just recorded. This is possible using an SQL SELECT statement.

>>> cursor = con.execute('select * from test')
>>> cursor
<sqlite3.Cursor object at 0x0000000009E7D730>
>>> rows = cursor.fetchall()
>>> rows
[('white', 'up', 1.0, 3),
 ('black', 'down', 2.0, 8),
 ('green', 'up', 4.0, 4),
 ('red', 'down', 5.0, 5)]

You can pass the list of tuples to the constructor of the dataframe, and if you need the name of the 
columns, you can find them within the description attribute of the cursor.

>>> cursor.description
(('a', None, None, None, None, None, None),
 ('b', None, None, None, None, None, None),
 ('c', None, None, None, None, None, None),
 ('d', None, None, None, None, None, None))
>>> pd.DataFrame(rows, columns=zip(*cursor.description)[0])
       a     b  c  d
0  white    up  1  3
1  black  down  2  8
2  green    up  4  4
3    red  down  5  5

As you can see, this approach is quite laborious.

�Loading and Writing Data with PostgreSQL in a Docker Container
To run this example, you must have installed on your system a PostgreSQL database. In my case, I created a 
database instance using the Docker system with its containers.

Docker is an application developed by Solomon Hykes in 2013 that allows you to have, generate, and 
uninstall server applications quickly and cleanly through the container mechanism. An application such as 
a PostgreSQL database is generally installed on physical servers, and in any case, even if it’s installed locally, 
it requires a lot of time and abundant resources. Installing such applications to perform simple tests or for 
small uses is very impractical. Furthermore, their complete removal is equally complicated, and being able 
to install and uninstall this kind of application continuously can become infuriating. Docker allows you to 
cage complex applications such as PostgreSQL (but also all other databases, web servers, or whatever) in 
containers. These packages can be installed, activated on specific ports, deactivated, and removed, all with a 
simple click, as shown in Figure 5-8.
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Figure 5-8.  The Docker application with some databases in containers

Docker installation is very simple. Go to the official site (www.docker.com/), where the button with the 
specific release for your system will appear, as shown in Figure 5-9.

Figure 5-9.  The main page of Docker where you download the application

Follow the installation instructions. Once Docker is installed, you can proceed with the installation 
of the container with the latest release of PostgreSQL database. Open the command console and enter the 
following command:

docker pull postgres
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With this command, you downloaded the container containing a PostgreSQL database into your system 
(you can find all the information about it at https://hub.docker.com/_/postgres). However, the container 
has not been activated yet. To activate it, run the following command:

docker run --name postgresql -e POSTGRES_USER=myusername -e POSTGRES_PASSWORD=mypassword -p 
5432:5432 -v /data:/var/lib/postgresql/data -d postgres

In this way, you have activated a PostgreSQL database in your system listening on port 5432 and with 
the login credentials defined as myusername/mypassword. Now you can install another container containing 
the web application for database management, called pgAdmin. To do this, first download the container 
corresponding to its latest version by using the following command.

docker pull dpage/pgadmin4:latest

As you did for the database, you also activate psAdmin in the Docker application by using the following 
command:

docker run --name "pgadmin4" -p 8082:80 -e "PGADMIN_DEFAULT_EMAIL=user@domain.com"  
-e "PGADMIN_DEFAULT_PASSWORD=SuperSecret" -d dpage/pgadmin4

The application has been activated on port 8080 and the access credentials have been defined. If you 
look on Docker, you will therefore find a situation like the one shown in Figure 5-10.

Figure 5-10.  Docker with the two active containers related to the PostgreSQL database and its management 
application

Even though the services are up and running, you’re not done yet. Open the browser and load the 
pgAdmin log page by entering the https://localhost:8082 address. A screen like the one shown in 
Figure 5-11 will appear.
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Figure 5-11.  The login web page of pgAdmin

Enter the credentials you used to activate the pgAdmin container and access the PostgreSQL database 
management page, as shown in Figure 5-12.

Figure 5-12.  The pgAdmin administrator page

Click the Add New Server button and a dialog box with server settings will open. On the General panel, 
enter the database name as postgres. On the Connection panel, enter 172.17.0.2 as the IP address of the 
server, myusername as the user, and mypassword as the password (see Figure 5-13). Click the Save button to 
activate the server.
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Figure 5-13.  The settings of the PostgreSQL database as a server

If the IP address does not match, check it directly from the database container by writing this command 
on the console:

docker inspect postgresql

A list of all container settings will appear in the output. You can find the IP address by choosing Network 
Settings ➤ IP Address.

Now that you have a database as a service listening on port 5432, the first thing to do is install the 
psycopg2 library, which is designed to manage and handle the connection with the databases.

With Anaconda:

conda install psycopg2

Or if you are using PyPI:

pip install psycopg2

Now you can establish a connection with the database:

>>> import psycopg2
>>> from sqlalchemy import create_engine
>>> engine = create_engine('postgresql://myusername:mypassword@localhost:5432/postgres')
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Create a dataframe object:

>>> import pandas as pd
>>> import numpy as np
>>> frame = pd.DataFrame(np.random.random((4,4)),
              index=['exp1','exp2','exp3','exp4'],
              columns=['feb','mar','apr','may']);

Now you see how easily you can transfer this data to a table. With to_sql(), you will record the data in a 
table called dataframe.

>>> frame.to_sql('dataframe',engine)
4

If you know the SQL language well, a more classic way to see the new created table and its contents is by 
using a psql session.

psql -U postgres

In this case, since you are working on a database in a Docker container, you have to run the following 
command:

>docker exec -it postgresql bash
root@ecaad3f3da6f:/#

A command console will open directly inside the container, where you can execute manual commands, 
such as activate the PostgreSQL shell using psql.

root@ecaad3f3da6f:/# psql -h localhost -U myusername
psql (15.3 (Debian 15.3-1.pgdg110+1))
Type "help" for help.

myusername=#

Switch to the database that interests you:

myusername=# \c postgres

Once you’re connected to the database, perform an SQL query on the newly created table.

postgres=# SELECT * FROM DATAFRAME;
index|       feb       |       mar       |       apr       |       may
-----+-----------------+-----------------+-----------------+-----------------
exp1 |0.757871296789076|0.422582915331819|0.979085739226726|0.332288515791064
exp2 |0.124353978978927|0.273461421503087|0.049433776453223|0.0271413946693556
exp3 |0.538089036334938|0.097041417119426|0.905979807772598|0.123448718583967
exp4 |0.736585422687497|0.982331931474687|0.958014824504186|0.448063967996436
(4 righe)
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Returning to the Python shell, even the conversion of a table in a dataframe is a trivial operation. Even 
here, there is a read_sql_table() function that reads directly on the database and returns a dataframe.

>>> pd.read_sql_table('dataframe',engine)
  index       feb       mar       apr       may
0  exp1  0.757871  0.422583  0.979086  0.332289
1  exp2  0.124354  0.273461  0.049434  0.027141
2  exp3  0.538089  0.097041  0.905980  0.123449
3  exp4  0.736585  0.982332  0.958015  0.448064

When you want to read data in a database, the conversion of a whole and single table into a dataframe 
is not the most useful operation. In fact, those who work with relational databases prefer to use the SQL 
language to choose which data and in what form to export the data by inserting an SQL query.

The text of an SQL query can be integrated in the read_sql_query() function.

>>> pd.read_sql_query('SELECT index,apr,may FROM DATAFRAME WHERE apr > 0.5',engine)
  index       apr       may
0  exp1  0.979086  0.332289
1  exp3  0.905980  0.123449
2  exp4  0.958015  0.448064

�Reading and Writing Data with a NoSQL 
Database: MongoDB
Among all the NoSQL databases (BerkeleyDB, Tokyo Cabinet, and MongoDB), MongoDB is becoming the 
most widespread. Given its diffusion in many systems, it seems appropriate to consider the possibility of 
reading and writing data produced with the pandas library during data analysis.

As you have seen with PostgreSQL database, it is possible to take advantage of a Docker container also 
for a MongoDB database. It’s to use this solution instead of installing the database on your system. At the 
end of the examples in this chapter, you will be free to delete the database, removing the container from 
Docker by clicking a simple Trash button and leaving your computer clean and unaltered.

Download the Docker container from the web and then activate it by entering the following commands:

docker pull mongo
docker run --name mymongo -p 27017:27017 -d mongo

Now that the service is listening on port 27017, you can connect to this database using the official driver 
for MongoDB: pymongo. This package also needs to be installed in your virtual environment. If you work with 
Anaconda, you can use Anaconda Navigator or enter the console command:

conda install pymongo

Otherwise, the easiest method is to install it from PyPI.

pip install pymongo
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Once the package is installed, you can proceed directly with the code, importing the MongoClient 
method at the beginning. This method is important to create a connection with the database.

>>> from pymongo import MongoClient
>>> client = MongoClient('localhost',27017)

A single instance of MongoDB can support multiple databases at the same time. You need to point to a 
specific database.

>>> db = client.mydatabase
>>> db
Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, 
connect=True), 'mydatabase')

In order to refer to this object, you can also use the following:

>>> client['mydatabase']
Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, 
connect=True), 'mydatabase')

Now that you have defined the database, you have to define the collection. The collection is a group of 
documents stored in MongoDB and can be considered the equivalent of the tables in an SQL database.

>>> collection = db.mycollection
>>> db['mycollection']
Collection(Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_
aware=False, connect=True), 'mydatabase'), 'mycollection')
>>> collection
Collection(Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_
aware=False, connect=True), 'mydatabase'), 'mycollection')

Now it is the time to load the data in the collection. Create a dataframe.

>>> import pandas as pd
>>> import numpy as np
>>> frame = pd.DataFrame( np.arange(20).reshape(4,5),
...                       columns=['white','red','blue','black','green'])
>>> frame
   white  red  blue  black  green
0      0    1     2      3      4
1      5    6     7      8      9
2     10   11    12     13     14
3     15   16    17     18     19
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Before being added to a collection, this dataframe must be converted into a JSON format. The 
conversion process is not as direct as you might imagine; this is because you need to set the data to be 
recorded on the DB in order to be re-extracted as a dataframe as fairly and as simply as possible.

>>> import json
>>> record = json.loads(frame.T.to_json()).values()
>>> record
dict_values([{'white': 0, 'red': 1, 'blue': 2, 'black': 3, 'green': 4}, {'white': 5,  
'red': 6, 'blue': 7, 'black': 8, 'green': 9}, {'white': 10, 'red': 11, 'blue': 12,  
'black': 13, 'green': 14}, {'white': 15, 'red': 16, 'blue': 17, 'black': 18, 'green': 19}])

Now you are finally ready to insert a document in the collection, and you can do this using the insert() 
function.

>>> collection.mydocument.insert_many(record)
<pymongo.results.InsertManyResult at 0x2f54ac43540>

As you can see, you have an object for each line recorded. Now that the data has been loaded into the 
document within the MongoDB database, you can execute the reverse process—reading data in a document 
and then converting them to a dataframe.

>>> result = collection['mydocument'].find()
>>> df = pd.DataFrame(list(result))>>> del df['_id']
>>> df
   white  red  blue  black  green
0      0    1     2      3      4
1      5    6     7      8      9
2     10   11    12     13     14
3     15   16    17     18     19

You have removed the column containing the ID numbers for the internal reference of MongoDB.

�Conclusions
In this chapter, you saw how to use the features of the I/O API of the pandas library in order to read and write 
data to files and databases while preserving the structure of the dataframes. In particular, several modes of 
writing and reading data according to the type of format were illustrated.

In the last part of the chapter, you saw how to interface to the most popular models of databases to 
record and/or read data into it directly as a dataframe ready to be processed with the pandas tools.

In the next chapter, you see the most advanced features of the library pandas. Complex instruments like 
groupby and other forms of data processing are discussed in detail.
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CHAPTER 6

pandas in Depth: Data 
Manipulation

In the previous chapter, you saw how to acquire data from data sources such as databases and files. Once 
you have the data in the dataframe format, they are ready to be manipulated. It’s important to prepare the 
data so that they can be more easily subjected to analysis and manipulation. Especially in preparation for the 
next phase, the data must be ready for visualization.

This chapter goes in depth into the functionality that the pandas library offers for this stage of data 
analysis. The three phases of data manipulation are treated individually, illustrating the various operations 
with a series of examples and explaining how best to use the functions of this library to carry out such 
operations. The three phases of data manipulation are:

•	 Data preparation

•	 Data transformation

•	 Data aggregation

�Data Preparation
Before you start manipulating data, it is necessary to prepare the data and assemble them in the form of data 
structures so that they can be manipulated later with the tools made available by the pandas library. The 
different procedures for data preparation are listed here.

•	 Loading

•	 Assembling

•	 Merging

•	 Concatenating

•	 Combining

•	 Reshaping (pivoting)

•	 Removing
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The previous chapter covered loading. In the loading phase, there is also that part of the preparation 
that concerns the conversion from many different formats into a data structure such as a dataframe. But 
even after you have the data, probably from different sources and formats, and unified it into a dataframe, 
you need to perform further operations of preparation. In this chapter, and in particular in this section, you 
see how to perform all the operations necessary to get the data into a unified data structure.

The data contained in the pandas objects can be assembled in different ways:

•	 Merging—The pandas.merge() function connects the rows in a dataframe based on 
one or more keys. This mode is very familiar to those who are confident with the SQL 
language, since it also implements join operations.

•	 Concatenating—The pandas.concat() function concatenates the objects along 
an axis.

•	 Combining—The pandas.DataFrame.combine_first() function allows you to 
connect overlapped data in order to fill in missing values in a data structure by taking 
data from another structure.

Furthermore, part of the preparation process is also pivoting, which consists of the exchange between 
rows and columns.

�Merging
The merging operation, which corresponds to the JOIN operation for those who are familiar with SQL, 
consists of a combination of data through the connection of rows using one or more keys.

In fact, anyone working with relational databases usually uses the JOIN query with SQL to get data from 
different tables using some reference values (keys) shared between them. On the basis of these keys, it is 
possible to obtain new data in a tabular form as the result of the combination of other tables. This operation 
with the library pandas is called merging, and the merge() function performs this kind of operation.

First, you have to import the pandas library and define two dataframes that will serve as examples for 
this section.

>>> import numpy as np
>>> import pandas as pd
>>> frame1 = pd.DataFrame( {'id':['ball','pencil','pen','mug','ashtray'],
...                      'price': [12.33,11.44,33.21,13.23,33.62]})
>>> frame1
        id  price
0     ball  12.33
1   pencil  11.44
2      pen  33.21
3      mug  13.23
4  ashtray  33.62
>>> frame2 = pd.DataFrame( {'id':['pencil','pencil','ball','pen'],
...                      'color': ['white','red','red','black']})
>>> frame2
   color      id
0  white  pencil
1    red  pencil
2    red    ball
3  black     pen
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Carry out the merging by applying the merge() function to the two dataframe objects.

>>> pd.merge(frame1,frame2)
       id  price  color
0    ball  12.33    red
1  pencil  11.44  white
2  pencil  11.44    red
3     pen  33.21  black

As you can see from the result, the returned dataframe consists of all rows that have an ID in common. 
In addition to the common column, the columns from the first and the second dataframe are added.

In this case, you used the merge() function without specifying any column explicitly. In fact, in most 
cases you need to decide which column on which to base the merging.

To do this, add the on option with the column name as the key for the merging.

>>> frame1 = pd.DataFrame( {'id':['ball','pencil','pen','mug','ashtray'],
...                      'color': ['white','red','red','black','green'],
...                      'brand': ['OMG','ABC','ABC','POD','POD']})
>>> frame1
        id  color brand
0     ball  white   OMG
1   pencil    red   ABC
2      pen    red   ABC
3      mug  black   POD
4  ashtray  green   POD
>>> frame2 = pd.DataFrame( {'id':['pencil','pencil','ball','pen'],
...                      'brand': ['OMG','POD','ABC','POD']})
>>> frame2
       id brand
0  pencil   OMG
1  pencil   POD
2    ball   ABC
3     pen   POD

Now, in this case, you have two dataframes with columns of the same name. So if you launch a merge, 
you do not get any results.

>>> pd.merge(frame1,frame2)
Empty DataFrame
Columns: [id, color, brand]
Index: []

It is necessary to explicitly define the criteria for merging that pandas must follow, specifying the name 
of the key column in the on option.

>>> pd.merge(frame1,frame2,on='id')
       id  color brand_x brand_y
0    ball  white     OMG     ABC
1  pencil    red     ABC     OMG
2  pencil    red     ABC     POD
3     pen    red     ABC     POD
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>>> pd.merge(frame1,frame2,on='brand')
      id_x  color brand    id_y
0     ball  white   OMG  pencil
1   pencil    red   ABC    ball
2      pen    red   ABC    ball
3      mug  black   POD  pencil
4      mug  black   POD     pen
5  ashtray  green   POD  pencil
6  ashtray  green   POD     pen

As expected, the results vary considerably depending on the criteria of merging.
Often, however, the opposite problem arises, that is, you have two dataframes in which the key columns 

do not have the same name. To remedy this situation, you have to use the left_on and right_on options, 
which specify the key column for the first and for the second dataframe. Here is an example.

>>> frame2.columns = ['sid','brand']
>>> frame2
      sid brand
0  pencil   OMG
1  pencil   POD
2    ball   ABC
3     pen   POD
>>> pd.merge(frame1, frame2, left_on='id', right_on='sid')
       id  color brand_x     sid brand_y
0    ball  white     OMG    ball     ABC
1  pencil    red     ABC  pencil     OMG
2  pencil    red     ABC  pencil     POD
3     pen    red     ABC     pen     POD

By default, the merge() function performs an inner join; the keys in the result are the result of an 
intersection.

Other possible options are the left join, the right join, and the outer join. The outer join produces the 
union of all keys, combining the effect of a left join with a right join. To select the type of join you have to use 
the how option.

>>> frame2.columns = ['id','brand']
>>> pd.merge(frame1,frame2,on='id')
       id  color brand_x brand_y
0    ball  white     OMG     ABC
1  pencil    red     ABC     OMG
2  pencil    red     ABC     POD
3     pen    red     ABC     POD
>>> pd.merge(frame1,frame2,on='id',how='outer')
        id  color brand_x brand_y
0     ball  white     OMG     ABC
1   pencil    red     ABC     OMG
2   pencil    red     ABC     POD
3      pen    red     ABC     POD
4      mug  black     POD     NaN
5  ashtray  green     POD     NaN
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>>> pd.merge(frame1,frame2,on='id',how='left')
        id  color brand_x brand_y
0     ball  white     OMG     ABC
1   pencil    red     ABC     OMG
2   pencil    red     ABC     POD
3      pen    red     ABC     POD
4      mug  black     POD     NaN
5  ashtray  green     POD     NaN
>>> pd.merge(frame1,frame2,on='id',how='right')
       id  color brand_x brand_y
0  pencil    red     ABC     OMG
1  pencil    red     ABC     POD
2    ball  white     OMG     ABC
3     pen    red     ABC     POD

To merge multiple keys, you simply add a list to the on option.

>>> pd.merge(frame1,frame2,on=['id','brand'],how='outer')
        id  color brand
0     ball  white   OMG
1   pencil    red   ABC
2      pen    red   ABC
3      mug  black   POD
4  ashtray  green   POD
5   pencil    NaN   OMG
6   pencil    NaN   POD
7     ball    NaN   ABC
8      pen    NaN   POD

�Merging on an Index
In some cases, instead of considering the columns of a dataframe as keys, indexes could be used as keys for 
merging. Then in order to decide which indexes to consider, you set the left_index or right_index options 
to True to activate them, with the ability to activate them both.

>>> pd.merge(frame1,frame2,right_index=True, left_index=True)
     id_x  color brand_x    id_y brand_y
0    ball  white     OMG  pencil     OMG
1  pencil    red     ABC  pencil     POD
2     pen    red     ABC    ball     ABC
3     mug  black     POD     pen     POD

But the dataframe objects have a join() function, which is much more convenient when you want to do 
the merging by indexes. It can also be used to combine many dataframe objects having the same indexes but 
with no columns overlapping.

In fact, if you launch the following:

>>> frame1.join(frame2)
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You will get an error code because some columns in frame1 have the same name as frame2. You need to 
rename the columns in frame2 before launching the join() function.

>>> frame2.columns = ['id2','brand2']
>>> frame1.join(frame2)
        id  color brand     id2 brand2
0     ball  white   OMG  pencil    OMG
1   pencil    red   ABC  pencil    POD
2      pen    red   ABC    ball    ABC
3      mug  black   POD     pen    POD
4  ashtray  green   POD     NaN    NaN

Here you've performed a merge, but based on the values of the indexes instead of the columns. This 
time there is also the index 4 that was present only in frame1, but the values corresponding to the columns of 
frame2 report NaN as a value.

�Concatenating
Another type of data combination is referred to as concatenation. NumPy provides a concatenate() function 
to do this kind of operation with arrays.

>>> array1 = np.arange(9).reshape((3,3))
>>> array1
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> array2 = np.arange(9).reshape((3,3))+6
>>> array2
array([[ 6,  7,  8],
       [ 9, 10, 11],
       [12, 13, 14]])
>>> np.concatenate([array1,array2],axis=1)
array([[ 0,  1,  2,  6,  7,  8],
       [ 3,  4,  5,  9, 10, 11],
       [ 6,  7,  8, 12, 13, 14]])
>>> np.concatenate([array1,array2],axis=0)
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 6,  7,  8],
       [ 9, 10, 11],
       [12, 13, 14]])

With the pandas library and its data structures like series and dataframes, having labeled axes allows 
you to further generalize the concatenation of arrays. The concat() function is provided by pandas for this 
kind of operation.

>>> ser1 = pd.Series(np.random.rand(4), index=[1,2,3,4])
>>> ser1
1    0.636584
2    0.345030
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3    0.157537
4    0.070351
dtype: float64
>>> ser2 = pd.Series(np.random.rand(4), index=[5,6,7,8])
>>> ser2
5    0.411319
6    0.359946
7    0.987651
8    0.329173
dtype: float64
>>> pd.concat([ser1,ser2])
1    0.636584
2    0.345030
3    0.157537
4    0.070351
5    0.411319
6    0.359946
7    0.987651
8    0.329173
dtype: float64

By default, the concat() function works on axis = 0, having as a returned object a series. If you set 
axis = 1, the result will be a dataframe.

>>> pd.concat([ser1,ser2],axis=1)
          0         1
1  0.636584       NaN
2  0.345030       NaN
3  0.157537       NaN
4  0.070351       NaN
5       NaN  0.411319
6       NaN  0.359946
7       NaN  0.987651
8       NaN  0.329173

The problem with this kind of operation is that the concatenated parts are not identifiable in the result. 
For example, you want to create a hierarchical index on the axis of concatenation. To do this, you have to use 
the keys option.

>>> pd.concat([ser1,ser2], keys=[1,2])
1  1    0.636584
   2    0.345030
   3    0.157537
   4    0.070351
2  5    0.411319
   6    0.359946
   7    0.987651
   8    0.329173
dtype: float64
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In the case of combinations between series along axis = 1, the keys become the column headers of the 
dataframe.

>>> pd.concat([ser1,ser2], axis=1, keys=[1,2])
          1         2
1  0.636584       NaN
2  0.345030       NaN
3  0.157537       NaN
4  0.070351       NaN
5       NaN  0.411319
6       NaN  0.359946
7       NaN  0.987651
8       NaN  0.329173

So far you have seen the concatenation applied to the series, but the same logic can be applied to the 
dataframe.

>>> frame1 = pd.DataFrame(np.random.rand(9).reshape(3,3),
...                      index=[1,2,3],
...                      columns=['A','B','C'])

>>> frame2 = pd.DataFrame(np.random.rand(9).reshape(3,3),
...                      index=[4,5,6],
...                      columns=['A','B','C'])
>>> pd.concat([frame1, frame2])
          A         B         C
1  0.400663  0.937932  0.938035
2  0.202442  0.001500  0.231215
3  0.940898  0.045196  0.723390
4  0.568636  0.477043  0.913326
5  0.598378  0.315435  0.311443
6  0.619859  0.198060  0.647902
>>> pd.concat([frame1, frame2], axis=1)
          A         B         C         A         B         C
1  0.400663  0.937932  0.938035       NaN       NaN       NaN
2  0.202442  0.001500  0.231215       NaN       NaN       NaN
3  0.940898  0.045196  0.723390       NaN       NaN       NaN
4       NaN       NaN       NaN  0.568636  0.477043  0.913326
5       NaN       NaN       NaN  0.598378  0.315435  0.311443
6       NaN       NaN       NaN  0.619859  0.198060  0.647902

�Combining
There is another situation in which there is combination of data that cannot be obtained either with merging 
or with concatenation. Take the case in which you want the two datasets to have indexes that overlap in their 
entirety or at least partially.

One applicable function to series is combine_first(), which performs this kind of operation along with 
data alignment.
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>>> ser1 = pd.Series(np.random.rand(5),index=[1,2,3,4,5])
>>> ser1
1    0.942631
2    0.033523
3    0.886323
4    0.809757
5    0.800295
dtype: float64
>>> ser2 = pd.Series(np.random.rand(4),index=[2,4,5,6])
>>> ser2
2    0.739982
4    0.225647
5    0.709576
6    0.214882
dtype: float64
>>> ser1.combine_first(ser2)
1    0.942631
2    0.033523
3    0.886323
4    0.809757
5    0.800295
6    0.214882
dtype: float64
>>> ser2.combine_first(ser1)
1    0.942631
2    0.739982
3    0.886323
4    0.225647
5    0.709576
6    0.214882
dtype: float64

Instead, if you want a partial overlap, you can specify only the portion of the series you want to overlap.

>>> ser1[:3].combine_first(ser2[:3])
1    0.942631
2    0.033523
3    0.886323
4    0.225647
5    0.709576
dtype: float64

�Pivoting
In addition to assembling the data to unify the values collected from different sources, another fairly 
common operation is pivoting. In fact, arrangement of the values by row or by column is not always suited to 
your goals. Sometimes you might want to rearrange the data by column values on rows or vice versa.
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�Pivoting with Hierarchical Indexing
You have already seen that a dataframe can support hierarchical indexing. This feature can be exploited to 
rearrange the data in a dataframe. In the context of pivoting, you have two basic operations:

•	 Stacking—Rotates or pivots the data structure, converting columns to rows

•	 Unstacking—Converts rows into columns

>>> frame1 = pd.DataFrame(np.arange(9).reshape(3,3),
...                    index=['white','black','red'],
...                    columns=['ball','pen','pencil'])
>>> frame1
       ball  pen  pencil
white     0    1       2
black     3    4       5
red       6    7       8

Using the stack() function on the dataframe, you will pivot the columns in rows, thus producing 
a series:

>>> ser5 = frame1.stack()
>>> ser5
white  ball      0
       pen       1
       pencil    2
black  ball      3
       pen       4
       pencil    5
red    ball      6
       pen       7
       pencil    8
dtype: int32

From this hierarchically indexed series, you can reassemble the dataframe into a pivoted table by use of 
the unstack() function.

>>> ser5.unstack()
       ball  pen  pencil
white     0    1       2
black     3    4       5
red       6    7       8
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You can also do the unstack on a different level, specifying the number of levels or its name as the 
argument of the function.

>>> ser5.unstack(0)
        white  black  red
ball        0      3    6
pen         1      4    7
pencil      2      5    8

�Pivoting from “Long” to “Wide” Format
The most common way to store datasets is produced by the punctual registration of data that will fill a line of 
the text file, for example, CSV, or a table of a database. This happens especially when you have instrumental 
readings, calculation results iterated over time, or the simple manual input of a series of values. A similar 
case of these files is for example the logs file, which is filled line by line by accumulating data in it.

The peculiar characteristic of this type of dataset is to have entries on various columns, often duplicated 
in subsequent lines. Always remaining in tabular format, this data is referred to as long or stacked format.

To get a clearer idea about that, consider the following dataframe.

>>> longframe = pd.DataFrame({ 'color':['white','white','white',
...                                  'red','red','red',
...                                  'black','black','black'],
...                         'item':['ball','pen','mug',
...                                 'ball','pen','mug',
...                                 'ball','pen','mug'],
...                         'value': np.random.rand(9)})
>>> longframe
   color  item     value
0  white  ball  0.091438
1  white   pen  0.495049
2  white   mug  0.956225
3    red  ball  0.394441
4    red   pen  0.501164
5    red   mug  0.561832
6  black  ball  0.879022
7  black   pen  0.610975
8  black   mug  0.093324

This mode of data recording has some disadvantages. One, for example, is the multiplicity and 
repetition of some fields. Considering the columns as keys, the data in this format will be difficult to read, 
especially in fully understanding the relationships between the key values and the rest of the columns.

Instead of the long format, there is another way to arrange the data in a table that is called wide. This 
mode is easier to read, allowing easy connection with other tables, and it occupies much less space. So in 
general it is a more efficient way of storing the data, although less practical, especially if during the filling of 
the data.

As a criterion, select a column, or a set of them, as the primary key; then, the values contained in it must 
be unique.
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In this regard, pandas gives you a function that allows you to transform a dataframe from the long type 
to the wide type. This function is pivot() and it accepts as arguments the column, or columns, which will 
assume the role of key.

Starting from the previous example, you choose to create a dataframe in wide format by choosing the 
color column as the key, and item as a second key, the values of which will form the new columns of the 
dataframe.

>>> wideframe = longframe.pivot(index='color',columns='item')
>>> wideframe
          value
item       ball       mug       pen
color
black  0.879022  0.093324  0.610975
red    0.394441  0.561832  0.501164
white  0.091438  0.956225  0.495049

As you can now see, in this format, the dataframe is much more compact and the data contained in it 
are much more readable.

�Removing
The last stage of data preparation is the removal of columns and rows. You have already seen this part in 
Chapter 4. However, for completeness, the description is reiterated here. Define a dataframe by way of 
example.

>>> frame1 = pd.DataFrame(np.arange(9).reshape(3,3),
...                    index=['white','black','red'],
...                    columns=['ball','pen','pencil'])
>>> frame1
       ball  pen  pencil
white     0    1       2
black     3    4       5
red       6    7       8

In order to remove a column, you simply apply the del command to the dataframe with the column 
name specified.

>>> del frame1['ball']
>>> frame1
       pen  pencil
white    1       2
black    4       5
red      7       8

Instead, to remove an unwanted row, you have to use the drop() function with the label of the 
corresponding index as an argument.

>>> frame1.drop('white')
       pen  pencil
black    4       5
red      7       8
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�Data Transformation
So far you have seen how to prepare data for analysis. This process in effect represents a reassembly of the 
data contained in a dataframe, with possible additions by other dataframe and removal of unwanted parts.

Now you begin the second stage of data manipulation: the data transformation. After you arrange the 
form of data and their disposal within the data structure, it is important to transform their values. In fact, in 
this section, you see some common issues and the steps required to overcome them using functions of the 
pandas library.

Some of these operations involve the presence of duplicate or invalid values, with possible removal or 
replacement. Other operations relate instead by modifying the indexes. Other steps include handling and 
processing the numerical values of the data and strings.

�Removing Duplicates
Duplicate rows might be present in a dataframe for various reasons. In dataframes of enormous size, the 
detection of these rows can be very problematic. In this case, pandas provides a series of tools to analyze the 
duplicate data present in large data structures.

First, create a simple dataframe with some duplicate rows.

>>> dframe = pd.DataFrame({ 'color': ['white','white','red','red','white'],
...                      'value': [2,1,3,3,2]})
>>> dframe
   color  value
0  white      2
1  white      1
2    red      3
3    red      3
4  white      2

The duplicated() function applied to a dataframe can detect the rows that appear to be duplicated. It 
returns a series of Booleans where each element corresponds to a row, with True if the row is duplicated (i.e., 
only the other occurrences, not the first), and with False if there are no duplicates in the previous elements.

>>> dframe.duplicated()
0    False
1    False
2    False
3     True
4     True
dtype: bool

Having a Boolean series as a return value can be useful in many cases, especially for filtering. In fact, if 
you want to know which rows are duplicated, just type the following:

>>> dframe[dframe.duplicated()]
   color  value
3    red      3
4  white      2
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Generally, all duplicated rows are to be deleted from the dataframe; to do that, pandas provides the 
drop_duplicates() function, which returns the dataframes without the duplicate rows.

>>> dframe[dframe.duplicated()]
   color  value
3    red      3
4  white      2

�Mapping
The pandas library provides a set of functions which, as you see in this section, exploit mapping to perform 
some operations. Mapping is nothing more than the creation of a list of matches between two different 
values, with the ability to bind a value to a particular label or string.

To define mapping, there is no better object than dict objects.

map = {
   'label1' : 'value1,
   'label2' : 'value2,
   ...
}

The functions that you see in this section perform specific operations, but they all accept a dict object.

•	 replace()—Replaces values

•	 map()—Creates a new column

•	 rename()—Replaces the index values

�Replacing Values via Mapping
Often in the data structure that you have assembled there are values that do not meet your needs. For 
example, the text may be in a foreign language, or may be a synonym of another value, or may not be 
expressed in the desired shape. In such cases, a replace operation of various values is often a necessary 
process.

Define, as an example, a dataframe containing various objects and colors, including two colors that are 
not in English. Assembly operations are likely to keep maintaining data with values in an undesirable form.

>>> frame = pd.DataFrame({ 'item':['ball','mug','pen','pencil','ashtray'],
...                     'color':['white','rosso','verde','black','yellow'],
                        'price':[5.56,4.20,1.30,0.56,2.75]})
>>> frame
      item   color  price
0     ball   white   5.56
1      mug   rosso   4.20
2      pen   verde   1.30
3   pencil   black   0.56
4  ashtray  yellow   2.75
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To replace the incorrect values with new values, it is necessary to define a mapping of correspondences, 
containing as a key the new values.

>>> newcolors = {
...    'rosso': 'red',
...    'verde': 'green'
... }

Now the only thing you can do is use the replace() function with the mapping as an argument.

>>> frame.replace(newcolors)
      item   color  price
0     ball   white   5.56
1      mug     red   4.20
2      pen   green   1.30
3   pencil   black   0.56
4  ashtray  yellow   2.75

As you can see from the result, the two colors have been replaced with the correct values within the 
dataframe. A common case, for example, is the replacement of NaN values with another value, for example 0. 
You can use replace(), which performs its job very well.

>>> ser = pd.Series([1,3,np.nan,4,6,np.nan,3])
>>> ser
0   1.0
1   3.0
2   NaN
3   4.0
4   6.0
5   NaN
6   3.0
dtype: float64
>>> ser.replace(np.nan,0)
0    1.0
1    3.0
2    0.0
3    4.0
4    6.0
5    0.0
6    3.0
dtype: float64
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�Adding Values via Mapping
In the previous example, you saw how to substitute values by mapping correspondences. In this case you 
continue to exploit the mapping of values with another example. In this case you are exploiting mapping to 
add values in a column depending on the values contained in another column. The mapping will always be 
defined separately.

>>> frame = pd.DataFrame({ 'item':['ball','mug','pen','pencil','ashtray'],
...                     'color':['white','red','green','black','yellow']})
>>> frame
      item   color
0     ball   white
1      mug     red
2      pen   green
3   pencil   black
4  ashtray  yellow

Suppose you want to add a column to indicate the price of the item shown in the dataframe. Before you 
do this, it is assumed that you have a price list available somewhere, in which the price for each type of item 
is described. Define then a dict object that contains a list of prices for each type of item.

>>> prices = {
...    'ball' : 5.56,
...    'mug' : 4.20,
...    'bottle' : 1.30,
...    'scissors' : 3.41,
...    'pen' : 1.30,
...    'pencil' : 0.56,
...    'ashtray' : 2.75
... }

The map() function, when applied to a series or to a column of a dataframe, accepts a function or an 
object containing a dict with mapping. So in this case, you can apply the mapping of the prices on the 
column item, making sure to add a column to the price dataframe.

>>> frame['price'] = frame['item'].map(prices)
>>> frame
      item   color  price
0     ball   white   5.56
1      mug     red   4.20
2      pen   green   1.30
3   pencil   black   0.56
4  ashtray  yellow   2.75

�Rename the Indexes of the Axes
In a manner very similar to what you saw for the values contained within the series and the dataframe, 
even the axis label can be transformed in a very similar way using mapping. So to replace the label indexes, 
pandas provides the rename() function, which takes the mapping as an argument, that is, a dict object.
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>>> frame
      item   color  price
0     ball   white   5.56
1      mug     red   4.20
2      pen   green   1.30
3   pencil   black   0.56
4  ashtray  yellow   2.75
>>> reindex = {
...   0: 'first',
...   1: 'second',
...   2: 'third',
...   3: 'fourth',
...   4: 'fifth'}
>>> frame.rename(reindex)
           item   color  price
first      ball   white   5.56
second      mug     red   4.20
third       pen   green   1.30
fourth   pencil   black   0.56
fifth   ashtray  yellow   2.75

As you can see, by default, the indexes are renamed. If you want to rename columns, you must use the 
columns option. This time you assign various mapping explicitly to the two index and columns options.

>>> recolumn = {
...    'item':'object',
...    'price': 'value'}
>>> frame.rename(index=reindex, columns=recolumn)
         object   color  value
first      ball   white   5.56
second      mug     red   4.20
third       pen   green   1.30
fourth   pencil   black   0.56
fifth   ashtray  yellow   2.75

Also here, for the simplest cases in which you have a single value to be replaced, you can avoid having to 
write and assign many variables.

>>> frame.rename(index={1:'first'}, columns={'item':'object'})
        object   color  price
0         ball   white   5.56
first      mug     red   4.20
2          pen   green   1.30
3       pencil   black   0.56
4      ashtray  yellow   2.75
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So far you have seen that the rename() function returns a dataframe with the changes, leaving 
unchanged the original dataframe. If you want the changes to take effect on the object on which you call the 
function, set the inplace option to True.

>>> frame.rename(columns={'item':'object'}, inplace=True)
>>> frame
    object   color  price
0     ball   white   5.56
1      mug     red   4.20
2      pen   green   1.30
3   pencil   black   0.56
4  ashtray  yellow   2.75

�Discretization and Binning
A more complex process of transformation that you see in this section is discretization. Sometimes it can be 
used, especially in some experimental cases, to handle large quantities of data generated in sequence. To 
carry out an analysis of the data, however, it is necessary to transform this data into discrete categories, for 
example, by dividing the range of values of such readings into smaller intervals and counting the occurrence 
or statistics in them. Another case might be when you have a huge number of samples due to precise 
readings on a population. Even here, to facilitate analysis of the data, it is necessary to divide the range of 
values into categories and then analyze the occurrences and statistics related to each.

In this case, for example, you may have a reading of an experimental value between 0 and 100. These 
data are collected in a list.

>>> results = [12,34,67,55,28,90,99,12,3,56,74,44,87,23,49,89,87]

You know that the experimental values have a range from 0 to 100; therefore you can uniformly divide 
this interval, for example, into four equal parts, that is, bins. The first contains the values between 0 and 25, 
the second between 26 and 50, the third between 51 and 75, and the last between 76 and 100.

To do this binning with pandas, first you have to define an array containing the values of 
separation of bin:

>>> bins = [0,25,50,75,100]

Then you use a special function called cut() and apply it to the array of results, also passing the bins.

>>> cat = pd.cut(results, bins)
>>> cat
[(0, 25], (25, 50], (50, 75], (50, 75], (25, 50], ..., (75, 100], (0, 25], (25, 50], (75, 
100], (75, 100]]
Length: 17
Categories (4, interval[int64, right]): [(0, 25] < (25, 50] < (50, 75] < (75, 100]]

The object returned by the cut() function is a special object of Categorical type. You can consider it 
as an array of strings indicating the name of the bin. Internally it contains a categories array indicating 
the names of the different internal categories and a codes array that contains a list of numbers equal to the 
elements of results (i.e., the array subjected to binning). The number corresponds to the bin to which the 
corresponding element of results is assigned.
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>>> cat.categories
IntervalIndex([(0, 25], (25, 50], (50, 75], (75, 100]], dtype='interval[int64, right]')
>>> cat.codes
array([0, 1, 2, 2, 1, 3, 3, 0, 0, 2, 2, 1, 3, 0, 1, 3, 3], dtype=int8)

Finally, to know the occurrences for each bin, that is, how many results fall into each category, you have 
to use the value_counts() function.

>>> pd.value_counts(cat)
(75, 100]    5
(0, 25]      4
(25, 50]     4
(50, 75]     4
dtype: int64

As you can see, each class has the lower limit indicated with a bracket and the upper limit indicated 
with a parenthesis. This notation is consistent with mathematical notation that is used to indicate the 
intervals. If the bracket is square, the number belongs to the range (limit closed), and if it is round, the 
number does not belong to the interval (limit open).

You can give names to various bins by calling them first in an array of strings and then assigning to the 
labels options inside the cut() function that you have used to create the Categorical object.

>>> bin_names = ['unlikely','less likely','likely','highly likely']
>>> pd.cut(results, bins, labels=bin_names)
['unlikely', 'less likely', 'likely', 'likely', 'less likely', ..., 'highly likely', 
'unlikely', 'less likely', 'highly likely', 'highly likely']
Length: 17
Categories (4, object): ['unlikely' < 'less likely' < 'likely' < 'highly likely']

If the cut() function is passed as an argument to an integer instead of explicating the bin edges, this will 
divide the range of values of the array into the number of intervals you specify.

The limits of the interval will be taken by the minimum and maximum of the sample data, namely, the 
array subjected to binning.

>>> pd.cut(results, 5)

[(2.904, 22.2], (22.2, 41.4], (60.6, 79.8], (41.4, 60.6], (22.2, 41.4], ..., (79.8, 99.0], 
(22.2, 41.4], (41.4, 60.6], (79.8, 99.0], (79.8, 99.0]]
Length: 17
Categories (5, interval[float64, right]): [(2.904, 22.2] < (22.2, 41.4] < (41.4, 60.6] < 
(60.6, 79.8] < (79.8, 99.0]]
)

In addition to cut(), pandas provides another method for binning: qcut(). This function divides the 
sample directly into quintiles. In fact, depending on the distribution of the data sample, by using cut(), 
you will have a different number of occurrences for each bin. Instead, qcut() ensures that the number of 
occurrences for each bin is equal, but the edges of each bin vary.

>>> quintiles = pd.qcut(results, 5)
>>> quintiles
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[(2.999, 24.0], (24.0, 46.0], (62.6, 87.0], (46.0, 62.6], (24.0, 46.0], ..., (62.6, 87.0], 
(2.999, 24.0], (46.0, 62.6], (87.0, 99.0], (62.6, 87.0]]
Length: 17
Categories (5, interval[float64, right]): [(2.999, 24.0] < (24.0, 46.0] < (46.0, 62.6]  
< (62.6, 87.0] < (87.0, 99.0]]
>>> pd.value_counts(quintiles)
(2.999, 24.0]    4
(62.6, 87.0]     4
(24.0, 46.0]     3
(46.0, 62.6]     3
(87.0, 99.0]     3
dtype: int64

As you can see, in the case of quintiles, the intervals bounding the bin differ from those generated by 
the cut() function. Moreover, if you look at the occurrences for each bin, you will find that qcut() tried to 
standardize the occurrences for each bin, but in the case of quintiles, the first two bins have an occurrence in 
more because the number of results is not divisible by five.

�Detecting and Filtering Outliers
During data analysis, the need to detect the presence of abnormal values in a data structure often arises. By 
way of example, create a dataframe with three columns of 1,000 completely random values:

>>> randframe = pd.DataFrame(np.random.randn(1000,3))

With the describe() function, you can see the statistics for each column.

>>> randframe.describe()
                 0            1            2
count  1000.000000  1000.000000  1000.000000
mean      0.021609    -0.022926    -0.019577
std       1.045777     0.998493     1.056961
min      -2.981600    -2.828229    -3.735046
25%      -0.675005    -0.729834    -0.737677
50%       0.003857    -0.016940    -0.031886
75%       0.738968     0.619175     0.718702
max       3.104202     2.942778     3.458472

For example, you might consider outliers those that have a value greater than three times the standard 
deviation. To have only the standard deviation of each column of the dataframe, use the std() function.

>>> randframe.std()
0    1.045777
1    0.998493
2    1.056961
dtype: float64
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Now you apply the filtering of all the values of the dataframe, applying the corresponding standard 
deviation for each column. Thanks to the any() function, you can apply the filter to each column.

>>> randframe[(np.abs(randframe) > (3*randframe.std())).any(axis=1)]
            0         1         2
69  -0.442411 -1.099404  3.206832
576 -0.154413 -1.108671  3.458472
907  2.296649  1.129156 -3.735046

�Permutation
The operations of permutation (random reordering) on a series or on the rows of a dataframe are easy to do 
using the numpy.random.permutation() function.

For this example, create a dataframe containing integers in ascending order.

>>> nframe = pd.DataFrame(np.arange(25).reshape(5,5))
>>> nframe
    0   1   2   3   4
0   0   1   2   3   4
1   5   6   7   8   9
2  10  11  12  13  14
3  15  16  17  18  19
4  20  21  22  23  24

Now create an array of five integers from 0 to 4, arranged in random order with the permutation() 
function. This will be the new order in which to set the values of a row of the dataframe.

>>> new_order = np.random.permutation(5)
>>> new_order
array([2, 3, 0, 1, 4])

Now apply it to the dataframe on all lines, using the take() function.

>>> nframe.take(new_order)
    0   1   2   3   4
2  10  11  12  13  14
3  15  16  17  18  19
0   0   1   2   3   4
1   5   6   7   8   9
4  20  21  22  23  24

As you can see, the order of the rows has changed; now the indices follow the same order as indicated in 
the new_order array.

You can submit even a portion of the entire dataframe to a permutation. It generates an array that has a 
sequence limited to a certain range, for example, in this case from 2 to 4.

>>> new_order = [3,4,2]
>>> nframe.take(new_order)
    0   1   2   3   4
3  15  16  17  18  19
4  20  21  22  23  24
2  10  11  12  13  14
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�Random Sampling
You have just seen how to extract a portion of the dataframe determined by subjecting it to permutation. 
Sometimes, when you have a huge dataframe, you may need to sample it randomly, and the quickest way to 
do that is by using the np.random.randint() function.

>>> sample = np.random.randint(0, len(nframe), size=3)
>>> sample
array([1, 4, 4])
>>> nframe.take(sample)
    0   1   2   3   4
1   5   6   7   8   9
4  20  21  22  23  24
4  20  21  22  23  24

As you can see from this random sampling, you can get the same sample even more often.

�String Manipulation
Python is a popular language thanks to its ease of use in the processing of strings and text. Most operations 
can easily be made by using built-in functions provided by Python. For more complex cases of matching and 
manipulation, it is necessary to use regular expressions.

�Built-in Methods for String Manipulation
In many cases, you have composite strings in which you want to separate the various parts and then assign 
them to the correct variables. The split() function allows you to separate parts of the text, taking as a 
reference point a separator, for example, a comma.

>>> text = '16 Bolton Avenue , Boston'
>>> text.split(',')
['16 Bolton Avenue ', 'Boston']

As you can see in the first element, you have a string with a space character at the end. To overcome this 
common problem, you have to use the split() function along with the strip() function, which trims the 
whitespace (including newlines).

>>> tokens = [s.strip() for s in text.split(',')]
>>> tokens
['16 Bolton Avenue', 'Boston']

The result is an array of strings. If the number of elements is small and always the same, a very 
interesting way to make assignments may be this:

>>> address, city = [s.strip() for s in text.split(',')]
>>> address
'16 Bolton Avenue'
>>> city
'Boston'

Chapter 6 ■ pandas in Depth: Data Manipulation



171

So far you have seen how to split text into parts, but often you also need the opposite, namely 
concatenate various strings to form longer text.

The most intuitive and simplest way is to concatenate the various parts of the text with the + operator.

>>> address + ',' + city
'16 Bolton Avenue, Boston'

This can be useful when you have only two or three strings to be concatenated. If you have many parts 
to be concatenated, a more practical approach is to use the join() function assigned to the separator 
character, with which you want to join the various strings.

>>> strings = ['A+','A','A-','B','BB','BBB','C+']
>>> ';'.join(strings)
'A+;A;A-;B;BB;BBB;C+'

Another category of operations that can be performed on the string is searching for pieces of text in 
them, that is, substrings. Python provides the keyword that represents the best way of detecting substrings.

>>> 'Boston' in text
True

However, there are two functions that can serve this purpose: index() and find().

>>> text.index('Boston')
19
>>> text.find('Boston')
19

In both cases, the function returns the number of the corresponding characters in the text where you 
have the substring. The difference in the behavior of these two functions can be seen, however, when the 
substring is not found:

>>> text.index('New York')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: substring not found
>>> text.find('New York')
-1

In fact, the index() function returns an error message, and find() returns -1 if the substring is not 
found. In the same area, you can know how many times a character or combination of characters (substring) 
occurs within the text. The count() function provides you with this number.

>>> text.count('e')
2
>>> text.count('Avenue')
1
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Another operation that can be performed on strings is replacing or eliminating a substring (or a single 
character). In both cases, you use the replace() function, where if you are prompted to replace a substring 
with a blank character, the operation is equivalent to the elimination of the substring from the text.

>>> text.replace('Avenue','Street')
'16 Bolton Street , Boston'
>>> text.replace('1', '')'16 Bolton Avenue, Boston'

�Regular Expressions
Regular expressions provide a very flexible way to search and match string patterns within text. A single 
expression, generically called regex, is a string formed according to the regular expression language. There is 
a built-in Python module called re, which is responsible for the operation of the regex.

First of all, when you want to use regular expressions, you need to import the module:

>>> import re

The re module provides a set of functions that can be divided into three categories:

•	 Pattern matching

•	 Substitution

•	 Splitting

Let's start with a few examples. For example, the regex for expressing a sequence of one or more 
whitespace characters is \s+. In the previous section, to split text into parts through a separator character, 
you used split(). There is a split() function even for the re module that performs the same operations, 
but it can accept a regex pattern as the criteria of separation, which makes it considerably more flexible.

>>> text = "This is      an\t odd  \n text!"
>>> re.split('\s+', text)
['This', 'is', 'an', 'odd', 'text!']

Let’s analyze more deeply the mechanism of re module. When you call the re.split() function, the 
regular expression is first compiled, then it subsequently calls the split() function on the text argument. 
You can compile the regex function with the re.compile() function, thus obtaining a reusable object regex 
and so gaining CPU cycles.

This is especially true in the operations of iterative search of a substring in a set or an array of strings.

>>> regex = re.compile('\s+')

If you create a regex object with the compile() function, you can apply split() directly to it in the 
following way.

>>> regex.split(text)
['This', 'is', 'an', 'odd', 'text!']

To match a regex pattern to any other business substrings in the text, you can use the findall() 
function. It returns a list of all the substrings in the text that meet the requirements of the regex.
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For example, if you want to find in a string all the words starting with “A” uppercase, or for example, 
with “a” regardless of whether it's upper- or lowercase, you need to enter the following:

>>> text = 'This is my address: 16 Bolton Avenue, Boston'
>>> re.findall('A\w+',text)
['Avenue']
>>> re.findall('[A,a]\w+',text)
['address', 'Avenue']

There are two other functions related to the findall() function—match() and search(). While 
findall() returns all matches within a list, the search() function returns only the first match. Furthermore, 
the object returned by this function is a particular object:

>>> re.search('[A,a]\w+',text)
<_sre.SRE_Match object; span=(11, 18), match='address'>

This object does not contain the value of the substring that responds to the regex pattern, but it returns 
its start and end positions within the string.

>>> search = re.search('[A,a]\w+',text)
>>> search.start()
11
>>> search.end()
18
>>> text[search.start():search.end()]
'address'

The match() function performs matching only at the beginning of the string; if there is no match to 
the first character, it goes no farther in research within the string. If you do not find a match, then it will not 
return any objects.

>>> re.match('[A,a]\w+',text)

If match() has a response, it returns an object identical to what you saw for the search() function.

>>> re.match('T\w+',text)
<_sre.SRE_Match object; span=(0, 4), match='This'>
>>> match = re.match('T\w+',text)
>>> text[match.start():match.end()]
'This'

�Data Aggregation
The last stage of data manipulation is data aggregation. Data aggregation involves a transformation that 
produces a single integer from an array. In fact, you have already made many operations of data aggregation, 
for example, when you calculated the sum(), mean(), and count(). In fact, these functions operate on a set of 
data and perform a calculation with a consistent result consisting of a single value. However, a more formal 
manner and the one with more control in data aggregation is that which includes the categorization of a set.
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The categorization of a set of data carried out for grouping is often a critical stage in the process of 
data analysis. It is a process of transformation since, after dividing the data into different groups, you apply 
a function that converts or transforms the data in some way, depending on the group they belong to. Very 
often the two phases of grouping and applying a function are performed in a single step.

Also for this part of the data analysis, pandas provides a tool that’s very flexible and high performance: 
GroupBy.

Again, as in the case of join, those familiar with relational databases and the SQL language can find 
similarities. Nevertheless, languages such as SQL are quite limited when applied to operations on groups. 
In fact, given the flexibility of a programming language like Python, with all the libraries available, especially 
pandas, you can perform very complex operations on groups.

�GroupBy
This section analyzes in detail the process of GroupBy and how it works. Generally, it refers to its internal 
mechanism as a process called split-apply-combine. In its pattern of operation you may conceive this process 
as divided into three phases expressed by three operations:

•	 Splitting—Division into groups of datasets

•	 Applying—Application of a function on each group

•	 Combining—Combination of all the results obtained by different groups

Analyze the three different phases (see Figure 6-1). In the first phase, that of splitting, the data contained 
within a data structure, such as a series or a dataframe, are divided into several groups, according to given 
criteria, which is often linked to indexes or to certain values in a column. In the jargon of SQL, values 
contained in this column are reported as keys. Furthermore, if you are working with two-dimensional 
objects such as a dataframe, the grouping criterion may be applied both to the line (axis = 0) for that 
column (axis = 1).

Figure 6-1.  The split-apply-combine mechanism

The second phase, that of applying, consists of applying a function, or better a calculation expressed 
precisely by a function, which produces a new and single value that’s specific to that group.

The last phase, that of combining, collects all the results obtained from each group and combines them 
to form a new object.
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�A Practical Example
You have just seen that the process of data aggregation in pandas is divided into various phases called split-
apply-combine. With these phases, pandas are not expressed explicitly with the functions as you would 
expect, but by a groupby() function that generates a GroupBy object, which is the core of the whole process.

To better understand this mechanism, let’s switch to a practical example. First define a dataframe 
containing numeric and string values.

>>> frame = pd.DataFrame({ 'color': ['white','red','green','red','green'],
...                     'object': ['pen','pencil','pencil','ashtray','pen'],
...                     'price1' : [5.56,4.20,1.30,0.56,2.75],
...                     'price2' : [4.75,4.12,1.60,0.75,3.15]})
>>> frame
   color   object  price1  price2
0  white      pen    5.56    4.75
1    red   pencil    4.20    4.12
2  green   pencil    1.30    1.60
3    red  ashtray    0.56    0.75
4  green      pen    2.75    3.15

Suppose you want to calculate the average of the price1 column using group labels listed in the color 
column. There are several ways to do this. You can for example access the price1 column and call the 
groupby() function with the color column.

>>> group = frame['price1'].groupby(frame['color'])
>>> group
<pandas.core.groupby.generic.SeriesGroupBy object at 0x000001942131D110>

The object that you get is a GroupBy object. In the operation that you just did, there was not really any 
calculation; there was just a collection of all the information needed to calculate the average. What you have 
done is group all the rows with the same value of color into a single item.

To analyze in detail how the dataframe was divided into groups of rows, you call the attribute groups’ 
GroupBy object.

>>> group.groups
{'green': [2, 4], 'red': [1, 3], 'white': [0]}

As you can see, each group is listed and explicitly specifies the rows of the dataframe assigned to each of 
them. Now it is sufficient to apply the operation on the group to obtain the results for each individual group.

>>> group.mean()
color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64
>>> group.sum()
color
green    4.05
red      4.76
white    5.56
Name: price1, dtype: float64
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�Hierarchical Grouping
You have seen how to group the data according to the values of a column as a key choice. The same thing 
can be extended to multiple columns, that is, make a grouping of multiple keys hierarchical.

>>> ggroup = frame['price1'].groupby([frame['color'],frame['object']])
>>> ggroup.groups
{('green', 'pen'): [4], ('green', 'pencil'): [2], ('red', 'ashtray'): [3], ('red', 
'pencil'): [1], ('white', 'pen'): [0]}
>>> ggroup.sum()
color  object
green  pen        2.75
       pencil     1.30
red    ashtray    0.56
       pencil     4.20
white  pen        5.56
Name: price1, dtype: float64

So far you have applied the grouping to a single column of data, but in reality it can be extended to 
multiple columns or to the entire dataframe. If you do not need to reuse the object GroupBy several times, it 
is convenient to combine in a single passing all of the grouping and calculation to be done, without defining 
any intermediate variable.

>>> frame[['price1','price2']].groupby(frame['color']).mean()
       price1  price2
color
green   2.025   2.375
red     2.380   2.435
white   5.560   4.750
>>> frame.groupby(frame['color']).mean(numeric_only=True)       price1  price2
color
green   2.025   2.375
red     2.380   2.435
white   5.560   4.750

�Group Iteration
The GroupBy object supports an iteration to generate a sequence of two tuples containing the name of the 
group together with the data portion.

>>> for name, group in frame.groupby('color'):
...     print(name)
...     print(group)
...
green
   color  object  price1  price2
2  green  pencil    1.30    1.60
4  green     pen    2.75    3.15
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red
  color   object  price1  price2
1   red   pencil    4.20    4.12
3   red  ashtray    0.56    0.75
white
   color object  price1  price2
0  white    pen    5.56    4.75

This example only applied the print variable for illustration. In fact, you replace the printing operation 
of a variable with the function to be applied to it.

�Chain of Transformations
From these examples, you have seen that for each grouping, when subjected to some function calculation 
or other operations in general, regardless of how it was obtained and the selection criteria, the result will be 
a data structure series (if you selected a single column data) or a dataframe, which then retains the index 
system and the name of the columns.

>>> result1 = frame['price1'].groupby(frame['color']).mean()
>>> type(result1)
pandas.core.series.Series
>>> result2 = frame.groupby(frame['color']).mean(numeric_only=True)
>>> type(result2)
pandas.core.frame.DataFrame

It is therefore possible to select a single column at any point in the various phases of this process. Here 
are three cases in which the selection of a single column in three different stages of the process applies. This 
example illustrates the great flexibility of this system of grouping provided by pandas.

>>> frame['price1'].groupby(frame['color']).mean()
color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64
>>> frame.groupby(frame['color'])['price1'].mean()
color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64
>>> (frame.groupby(frame['color']).mean(numeric_only=True))['price1']
color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64
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In addition, after an operation of aggregation, the names of some columns may not be very meaningful. 
In fact it is often useful to add a prefix to the column name that describes the type of business combination. 
Adding a prefix, instead of completely replacing the name, is very useful for keeping track of the source data 
from which they derive aggregate values. This is important if you apply a process of transformation chain 
(a series or dataframe is generated from another), because it is important to keep some reference with the 
source data.

>>> means = frame.groupby('color').mean(numeric_only=True).add_prefix('mean_')>>> means
       mean_price1  mean_price2
color
green        2.025        2.375
red          2.380        2.435
white        5.560        4.750

�Functions on Groups
Although many methods have not been implemented specifically for use with GroupBy, they actually work 
correctly with data structures as the series. You saw in the previous section how easy it is to get the series 
by a GroupBy object, by specifying the name of the column and then by applying the method to make the 
calculation. For example, you can use the calculation of quantiles with the quantiles() function.

>>> group = frame.groupby('color')
>>> group['price1'].quantile(0.6)
color
green    2.170
red      2.744
white    5.560
Name: price1, dtype: float64

You can also define your own aggregation functions. Define the function separately and then pass it as 
an argument to the mark() function. For example, you can calculate the range of the values of each group.

>>> def range(series):
...      return series.max() - series.min()
...
>>> group['price1'].agg(range)
color
green    1.45
red      3.64
white    0.00
Name: price1, dtype: float64

You can also use more aggregate functions at the same time, with the mark() function passing an array 
containing the list of operations to be done, which will become the new columns.

>>> group['price1'].agg(['mean','std',range])
        mean       std  range
color
green  2.025  1.025305   1.45
red    2.380  2.573869   3.64
white  5.560       NaN   0.00
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�Advanced Data Aggregation
This section introduces the transform() and apply() functions, which allow you to perform many kinds of 
group operations, some of which are very complex.

Now suppose you want to bring together in the same dataframe the following: the dataframe of origin 
(the one containing the data) and that obtained by the calculation of group aggregation, for example, 
the sum.

>>> frame = pd.DataFrame({ 'color':['white','red','green','red','green'],
...                     'price1':[5.56,4.20,1.30,0.56,2.75],
...                     'price2':[4.75,4.12,1.60,0.75,3.15]})
>>> frame
   color  price1  price2
0  white    5.56    4.75
1    red    4.20    4.12
2  green    1.30    1.60
3    red    0.56    0.75
4  green    2.75    3.15
>>> sums = frame.groupby('color').sum().add_prefix('tot_')
>>> sums
       tot_price1  tot_price2
color
green        4.05        4.75
red          4.76        4.87
white        5.56        4.75
>>> pd.merge(frame,sums,left_on='color',right_index=True)
   color  price1  price2  tot_price1  tot_price2
0  white    5.56    4.75        5.56        4.75
1    red    4.20    4.12        4.76        4.87
3    red    0.56    0.75        4.76        4.87
2  green    1.30    1.60        4.05        4.75
4  green    2.75    3.15        4.05        4.75

Thanks to merge(), you can add the results of the aggregation in each line of the dataframe to start. 
But there is another way to do this type of operation. That is by using transform(). This function performs 
aggregation as you have seen before, but at the same time, it shows the values calculated based on the key 
value on each line of the dataframe to start.

>>> frame.groupby('color').transform(np.sum).add_prefix('tot_')
   tot_price1  tot_price2
0        5.56        4.75
1        4.76        4.87
2        4.05        4.75
3        4.76        4.87
4        4.05        4.75

As you can see, the transform() method is a more specialized function that has very specific 
requirements: the function passed as an argument must produce a single scalar value (aggregation) to be 
broadcasted.
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The method to cover more general GroupBy is applicable to apply(). This method applies in its 
entirety the split-apply-combine scheme. In fact, this function divides the object into parts in order to 
be manipulated, invokes the passage of functions on each piece, and then tries to chain together the 
various parts.

>>> frame = pd.DataFrame( { 'color':['white','black','white','white','black','black'],
...                      'status':['up','up','down','down','down','up'],
...                      'value1':[12.33,14.55,22.34,27.84,23.40,18.33],
...                      'value2':[11.23,31.80,29.99,31.18,18.25,22.44]})
>>> frame
   color status  value1  value2
0  white     up   12.33   11.23
1  black     up   14.55   31.80
2  white   down   22.34   29.99
3  white   down   27.84   31.18
4  black   down   23.40   18.25
>>> frame.groupby(['color','status']).apply( lambda x: x.max())
              color status  value1  value2
color status
black down    black   down   23.40   18.25
      up      black     up   18.33   31.80
white down    white   down   27.84   31.18
      up      white     up   12.33   11.23
5  black     up   18.33   22.44
>>> frame.rename(index=reindex, columns=recolumn)
         color   object  value
first    white     ball   5.56
second     red      mug   4.20
third    green      pen   1.30
fourth   black   pencil   0.56
fifth   yellow  ashtray   2.75
>>> temp = pd.date_range('1/1/2015', periods=10, freq= 'H')
>>> temp
DatetimeIndex(['2015-01-01 00:00:00', '2015-01-01 01:00:00',
               '2015-01-01 02:00:00', '2015-01-01 03:00:00',
               '2015-01-01 04:00:00', '2015-01-01 05:00:00',
               '2015-01-01 06:00:00', '2015-01-01 07:00:00',
               '2015-01-01 08:00:00', '2015-01-01 09:00:00'],
              dtype='datetime64[ns]', freq='H')
Length: 10, Freq: H, Timezone: None
>>> timeseries = pd.Series(np.random.rand(10), index=temp)
>>> timeseries
2015-01-01 00:00:00    0.368960
2015-01-01 01:00:00    0.486875
2015-01-01 02:00:00    0.074269
2015-01-01 03:00:00    0.694613
2015-01-01 04:00:00    0.936190
2015-01-01 05:00:00    0.903345
2015-01-01 06:00:00    0.790933
2015-01-01 07:00:00    0.128697
2015-01-01 08:00:00    0.515943
2015-01-01 09:00:00    0.227647
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Freq: H, dtype: float64
>>> timetable = pd.DataFrame( {'date': temp, 'value1' : np.random.rand(10),
...                                       'value2' : np.random.rand(10)})
>>> timetable
                 date    value1    value2
0 2015-01-01 00:00:00  0.545737  0.772712
1 2015-01-01 01:00:00  0.236035  0.082847
2 2015-01-01 02:00:00  0.248293  0.938431
3 2015-01-01 03:00:00  0.888109  0.605302
4 2015-01-01 04:00:00  0.632222  0.080418
5 2015-01-01 05:00:00  0.249867  0.235366
6 2015-01-01 06:00:00  0.993940  0.125965
7 2015-01-01 07:00:00  0.154491  0.641867
8 2015-01-01 08:00:00  0.856238  0.521911
9 2015-01-01 09:00:00  0.307773  0.332822

You then add to the dataframe a column that represents a set of text values that you will use as 
key values.

>>> timetable['cat'] = ['up','down','left','left','up','up','down','right','right','up']
>>> timetable
                 date    value1    value2    cat
0 2015-01-01 00:00:00  0.545737  0.772712     up
1 2015-01-01 01:00:00  0.236035  0.082847   down
2 2015-01-01 02:00:00  0.248293  0.938431   left
3 2015-01-01 03:00:00  0.888109  0.605302   left
4 2015-01-01 04:00:00  0.632222  0.080418     up
5 2015-01-01 05:00:00  0.249867  0.235366     up
6 2015-01-01 06:00:00  0.993940  0.125965   down
7 2015-01-01 07:00:00  0.154491  0.641867  right
8 2015-01-01 08:00:00  0.856238  0.521911  right
9 2015-01-01 09:00:00  0.307773  0.332822     up

The example shown here, however, has duplicate key values.

�Conclusions
In this chapter, you saw the three basic parts that divide the data manipulation phase: preparation, 
processing, and data aggregation. Thanks to a series of examples, you learned about a set of library functions 
that allow pandas to perform these operations.

You saw how to apply these functions on simple data structures so that you can become familiar with 
how they work and understand their applicability to more complex cases. You now have the knowledge you 
need to prepare a dataset for the next phase of data analysis: data visualization.

The next chapter presents the Python library matplotlib, which can convert data structures in 
any chart.
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CHAPTER 7

Data Visualization with matplotlib 
and Seaborn

The previous chapters covered the Python libraries that are responsible for data processing, and this chapter 
covers the libraries that take care of visualization. You’ll first get a broad overview of the matplotlib library, 
and then the chapter concludes with the seaborn library, which extends matplotlib with the representation 
of statistical graphic elements.

Data visualization is often underestimated in data analysis, but it is a very important factor because 
incorrect or inefficient data representation can ruin an otherwise excellent analysis.

�The matplotlib Library
matplotlib is a Python library specializing in the development of two-dimensional charts (including 
3D charts). In recent years, it has been widespread in scientific and engineering circles (https://
matplotlib.org/).

Among all its features that make it the most used tool to represent data graphically, there are a few that 
stand out:

•	 Extreme simplicity in its use

•	 Gradual development and interactive data visualization

•	 Expressions and text in LaTeX

•	 Greater control over graphic elements

•	 Ability to export it to many formats, such as PNG, PDF, SVG, and EPS

matplotlib is designed to reproduce as much as possible an environment similar to MATLAB in 
terms of both graphical view and syntactic form. This approach has proved successful, as it can exploit the 
experience of software (MATLAB) that has been on the market for several years and is now widespread in 
all professional technical and scientific circles. Not only is matplotlib based on a scheme known and quite 
familiar to most experts in the field, but it also exploits those optimizations that over the years have led to a 
deducibility and simplicity in its use. That makes this library an excellent choice for those approaching data 
visualization for the first time, especially those without any experience with applications such as MATLAB.

In addition to its simplicity and deducibility, the matplotlib library inherited interactivity from 
MATLAB as well. That is, the analyst can insert command after command to control the gradual 
development of a graphical representation of data. This mode is well suited to the more interactive 
approaches of Python as the IPython QtConsole and Jupyter Notebook (see Chapter 2), thus providing an 
environment for data analysis that has little to envy from other tools such as Mathematica, IDL, or MATLAB.
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The genius of those who developed this beautiful library was to use and incorporate the good 
things currently available and in use in science. This is not only limited, as you have seen, to the 
operating mode of MATLAB and similar, but also to models of textual formatting of scientific 
expressions and symbols represented by LaTeX. Because of its great capacity for display and 
presentation of scientific expressions, LaTeX has been an irreplaceable element in scientific 
publications and documentations, where the need to visually represent expressions like integrals, 
summations, and derivatives is mandatory. Therefore, matplotlib integrates this remarkable 
instrument in order to improve the representative capacity of charts.

In addition, you must not forget that matplotlib is not a separate application but a library of a 
programming language like Python. It therefore takes full advantage of the potential that programming 
languages offer. matplotlib looks like a graphics library that allows you to programmatically manage 
the graphic elements that make up a chart so that the graphical display can be controlled in its entirety. 
The ability to program the graphical representation allows you to manage the reproducibility of the data 
representation across multiple environments, especially when you make changes or when the data is 
updated.

Moreover, because matplotlib is a Python library, it allows you to exploit the full potential of other 
libraries available to any developer who implements this language. In fact, with regard to data analysis, 
matplotlib normally cooperates with a set of other libraries such as NumPy and pandas, but many other 
libraries can be integrated without any problem.

Finally, graphical representations obtained through encoding with this library can be exported 
in the most common graphic formats (such as PNG and SVG) and then be used in other applications, 
documentation, web pages, and so on.

�Installation
There are many options for installing the matplotlib library. If you choose to use the Anaconda distribution, 
installing the matplotlib package is very simple. You can do this graphically, using Anaconda Navigator. 
Activate the virtual environment you need to work on and then look for matplotlib among the distribution’s 
packages to install, as shown in the Figure 7-1 with points 1, 2, 3, and 4. Then select the two packages—
matplotlib and matplotlib-base—in the list of available ones. Finally, click the Apply button at the bottom 
right to start the installation.
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Figure 7-1.  Installing matplotlib with Anaconda Navigator

Soon after, a dialog will appear in which the dependencies will be shown to you and will ask you to 
confirm the installation. Click Apply again and complete the installation.

If instead you prefer to use the command console, on Anaconda you can open a session via the CMD.
exe Prompt and then enter the following command:

conda install matplotlib

If instead you have decided not to use the Anaconda platform on your system, you can install 
matplotlib directly from the command console of your system using the pip command.

pip install matplotlib

In the output, you will see all the dependencies needed for the installation. You will then be asked in 
YES-NO form for confirmation to continue the installation. Press y to complete the installation.

�The matplotlib Architecture
One of the key tasks that matplotlib must take on is provide a set of functions and tools that allow 
representation and manipulation of a Figure (the main object), along with all internal objects of which 
it is composed. However, matplotlib not only deals with graphics but also provides all the tools for the 
event handling and the ability to animate graphics. So, thanks to these additional features, matplotlib can 
produce interactive charts based on the events triggered by pressing a key on the keyboard or upon mouse 
movement.

The architecture of matplotlib is logically structured into three layers, which are placed at three 
different levels (see Figure 7-2). The communication is unidirectional, that is, each layer can communicate 
with the underlying layer, while the lower layers cannot communicate with the top ones.

Chapter 7 ■ Data Visualization with matplotlib and Seaborn



186

Figure 7-2.  The three layers of the matplotlib architecture

The three layers are as follows:

•	 Scripting

•	 Artist

•	 Backend

�Backend Layer
In the diagram of the matplotlib architecture in Figure 7-2, the layer that works at the lowest level is the 
Backend layer. This layer contains the matplotlib APIs, a set of classes that implement the graphic elements 
at a low level.

•	 FigureCanvas is the object that embodies the concept of a drawing area.

•	 Renderer is the object that draws on FigureCanvas.

•	 Event is the object that handles user inputs (keyboard and mouse events).

�Artist Layer
As an intermediate layer, there is a layer called Artist. All the elements that make up a chart, such as the title, 
axis labels, markers, and so on, are instances of the Artist object. Each of these instances plays its role within 
a hierarchical structure (as shown in Figure 7-3).
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Figure 7-3.  Each element of a chart corresponds to an instance of an Artist structured in a hierarchy

There are two Artist classes: primitive and composite.

•	 The primitive artists are individual objects that constitute the basic elements that 
form a graphical representation in a plot, for example a Line2D, or as a geometric 
figure such as a Rectangle or Circle, or even pieces of text.

•	 The composite artists are graphic elements that are composed of several base 
elements, namely, the primitive artists. Composite artists are for example the Axis, 
Ticks, Axes, and Figures (see Figure 7-4).

Generally, working at this level, you will have to deal often with objects in the higher hierarchy as 
Figure, Axes, and Axis. So it is important to fully understand what these objects are and what role they play 
within the graphical representation. Figure 7-4 shows the three main Artist objects (composite artists) that 
are generally used in all implementations performed at this level.
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Figure 7-4.  The three main artist objects in the hierarchy of the Artist layer

•	 Figure is the object with the highest level in the hierarchy. It corresponds to the 
entire graphical representation and generally can contain many Axes.

•	 Axes is generally what you mean as a plot or chart. Each Axis object belongs to only 
one Figure and is characterized by two Artist Axis (three in the three-dimensional 
case). Other objects, such as the title, the x label, and the y label, belong to this 
composite artist.

•	 Axis objects that take into account the numerical values to be represented on Axes 
define the limits and manage the ticks (the mark on the axes) and tick labels (the 
label text represented on each tick). The position of the tick is adjusted by an object 
called a Locator, while the formatting tick label is regulated by an object called a 
Formatter.

�Scripting Layer (pyplot)
Artist classes and their related functions (the matplotlib API) are particularly suitable to all developers, 
especially for those who work on web application servers or develop the GUI. But for purposes of 
calculation, and in particular for the analysis and visualization of data, the scripting layer is best. This layer 
consists of an interface called pyplot.

�pylab and pyplot
In general there is talk of pylab and pyplot. But what is the difference between these two packages? pylab is a 
module that is installed along with matplotlib, while pyplot is an internal module of matplotlib. Often you 
will find references to one or the other approach.

from pylab import *
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and

import matplotlib.pyplot as plt
import numpy as np

pylab combines the functionality of pyplot with the capabilities of NumPy in a single namespace, and 
therefore you do not need to import NumPy separately. Furthermore, if you import pylab, pyplot and NumPy 
functions can be called directly without any reference to a module (namespace), making the environment 
more similar to MATLAB.

plot(x,y)
array([1,2,3,4])

Instead of

plt.plot()
np.array([1,2,3,4]

The pyplot package provides the classic Python interface for programming the matplotlib library, 
has its own namespace, and requires the import of the NumPy package separately. This approach is the one 
chosen for this book; it is the main topic of this chapter; and it is used for the rest of the book. This approach 
is shared and approved by most Python developers.

�pyplot
The pyplot module is a collection of command-style functions that allow you to use matplotlib much like 
MATLAB. Each pyplot function will operate or make some changes to the Figure object, for example, the 
creation of the Figure itself, the creation of a plotting area, representation of a line, decoration of the plot 
with a label, and so on.

pyplot also is stateful, in that it tracks the status of the current figure and its plotting area. The called 
functions act on the current figure.

�The Plotting Window
To get familiar with the matplotlib library and in a particular way with pyplot, you will start creating a 
simple interactive chart. Using matplotlib, this operation is very simple; in fact, you can achieve it using 
only three lines of code.

First, you can start using matplotlib from a simple command console, where you enter one command 
at a time.

The first thing to do is import the pyplot package and rename it as plt.

>>> import matplotlib.pyplot as plt

In Python, the constructors generally are not necessary; everything is already implicitly defined. In fact 
when you import the package, the plt object with all its graphics capabilities has already been instantiated 
and is ready to use. In fact, you can simply use the plot() function to pass the values to be plotted.

Thus, you can simply pass the values that you want to represent as a sequence of integers.

>>> plt.plot([1,2,3,4])
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As you can see from the output, a Line2D object has been generated. The object is a line that represents 
the linear trend of the points included in the chart.

[<matplotlib.lines.Line2D object at 0x000001FE04AE4510>]

Now it is all set. You just have to give the command to show the plot using the show() function.

>>> plt.show()

The result will be the one shown in Figure 7-5. A window, called the plotting window, with a toolbar 
and the plot represented within it, will appear next to the command console (in a very similar way to what 
happens when working with MATLAB).

Figure 7-5.  The plotting window

The plotting window is characterized by a toolbar at the top in which there is a series of buttons.

•	   Resets the original view

•	   Goes to the previous/next view

•	   Pans axes with left mouse, zoom with right

•	   Zooms to rectangle

•	   Configures subplots
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•	   Edits the Axis, Curve, and Image parameters

•	   Saves/exports the figure

As you can soon see, this window allows you to manage the produced image autonomously and 
independently, as a separate application.

�Data Visualization with Jupyter Notebook
A more convenient way to work interactively and professionally with matplot-generated charts is to use 
Jupyter Notebook.

In fact, by opening a Notebook on Jupyter and entering the previous code, you will find that the chart 
will be displayed directly integrated into the Notebook, without directly invoking the show() command (see 
Figure 7-6).

Figure 7-6.  Viewing a chart in Jupyter Notebook

If you pass only a list of numbers or an array to the plt.plot() function, matplotlib assumes it is the 
sequence of y values of the chart, and it associates them to the natural sequence of values x: 0,1,2,3, ... .
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Generally, a plot represents value pairs (x, y), so if you want to define a chart correctly, you must define 
two arrays, the first containing the values on the x-axis and the second containing the values on the y-axis. 
You then add a second array with the values of the points on the y-axis. Now the points of the first array will 
correspond to the values of the points on the x-axis.

You write the following code in a new cell or edit the previous cell. In the first case, you will have a new 
chart completely separate from the first; in the second case, the existing chart will be updated based on the 
new values.

plt.plot([1,2,3,4],[1,4,9,16])

In both cases, the result is similar to the one shown in Figure 7-7.

Figure 7-7.  Viewing a chart in Jupyter Notebook

�Set the Properties of the Plot
The plot() function can accept a third argument, which describes the specifics of how you want the point to 
be represented on the chart. As you can see in Figure 7-7, the points are represented by a blue line. In fact, if 
you do not specify otherwise, the plot is represented taking into account a default configuration of the plt.
plot() function:
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•	 The size of the axes matches perfectly with the range of the input data

•	 There is neither a title nor axis labels

•	 There is no legend

•	 A blue line connecting the points is drawn

Therefore, you may want to change this representation to have a real plot in which each pair of values 
(x, y) is represented by a red dot. Then you must add a third argument that defines some characteristics to 
the graph to override the default ones. In this case, you can pass 'ro' as the third argument to the plot() 
function.

plt.plot([1,2,3,4],[1,4,9,16],'ro')

Running the cell of the Notebook, you will get the chart shown in Figure 7-8.

Figure 7-8.  The pairs of (x,y) values are represented in the plot by red circles

Another possible change to the default behavior would be to define a range both on the x-axis and on 
the y-axis within a list [xmin, xmax, ymin, ymax] and then pass it as an argument to the axis() function.
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In addition to the axis ranges, it is possible to define many other features of the graph. For example, you 
can also add a title using the title() function. Then, write the following code in a cell of the Notebook:

plt.axis([0,5,0,20])
plt.title('My first plot')
plt.plot([1,2,3,4],[1,4,9,16],'ro')

In Figure 7-9, you can see how the new settings make the plot more readable. In fact, the end points 
of the dataset are now represented within the plot rather than at the edges. Also the title of the plot is now 
visible at the top.

Figure 7-9.  The plot after the properties have been set

�matplotlib and NumPy
Even the matplot library, despite being a fully graphical library, has as its foundation the NumPy library. In 
fact, you have seen so far how to pass lists as arguments, both to represent the data and to set the extremes of 
the axes. These lists have been converted internally to NumPy arrays.

Therefore, you can directly enter NumPy arrays as input data. This array of data, which has been 
processed by pandas, can be directly used with matplotlib without further processing.

As an example, you see how it is possible to plot three different trends in the same plot (see Figure 7-10). 
You can choose for this example the sin() function belonging to the math module. You will need to import 
it. To generate points following a sinusoidal trend, you use the NumPy library. Generate a series of points on 
the x-axis using the arange() function, while for the values on the y-axis you will use the map() function to 
apply the sin() function on all the items of the array (without using a for loop).

import math
import numpy as np
t = np.arange(0,2.5,0.1)
y1 = np.sin(math.pi*t)
y2 = np.sin(math.pi*t+math.pi/2)
y3 = np.sin(math.pi*t-math.pi/2)
plt.plot(t,y1,'b*',t,y2,'g^',t,y3,'ys')

Chapter 7 ■ Data Visualization with matplotlib and Seaborn



195

Figure 7-10.  Three sinusoidal trends phase-shifted by π / 4 represented by markers

As you can see in Figure 7-10, the plot represents the three different temporal trends with three different 
colors and markers. In these cases, when the trend of a function is so obvious, the plot is perhaps not the 
most appropriate representation, but it is better to use the lines (see Figure 7-10). To differentiate the three 
trends with something other than color, you can use the pattern composed of different combinations of dots 
and dashes ( - and . ).

plt.plot(t,y1,'b--',t,y2,'g',t,y3,'r-.')

Figure 7-11.  This chart represents the three sinusoidal patterns with colored lines
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�Using kwargs
The objects that make up a chart have many attributes that characterize them. These attributes are all 
default values, but can be set through the use of keyword args, often referred as kwargs.

These keywords are passed as arguments to functions. In reference documentation of the various 
functions of the matplotlib library, you will always find them referred to as kwargs in the last position. For 
example, the plot() function that you are using in these examples is referred to in the following way.

matplotlib.pyplot.plot(*args, **kwargs)

For a practical example, the thickness of a line can be changed if you set the linewidth keyword (see 
Figure 7-12).

plt.plot([1,2,4,2,1,0,1,2,1,4],linewidth=2.0)

Figure 7-12.  The thickness of a line can be set directly from the plot() function

�Working with Multiple Figures and Axes
So far you have seen how all pyplot commands are routed to the display of a single figure. Actually, 
matplotlib allows you to manage multiple figures simultaneously, and within each figure, it offers the 
ability to view different plots defined as subplots.

So when you are working with pyplot, you must always keep in mind the concept of the current Figure 
and current Axes (that is, the plot shown within the figure).

Now you will see an example where two subplots are represented in a single figure. The subplot() 
function, in addition to subdividing the figure in different drawing areas, is used to focus the commands on a 
specific subplot.
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The argument passed to the subplot() function sets the mode of subdivision and determines which 
is the current subplot. The current subplot will be the only figure that will be affected by the commands. 
The argument of the subplot() function is composed of three integers. The first number defines how many 
parts the figure is split into vertically. The second number defines how many parts the figure is divided into 
horizontally. The third number selects which is the current subplot on which you can direct commands.

Now you will display two sinusoidal trends (sine and cosine) and the best way to do that is to divide the 
canvas vertically in two horizontal subplots (as shown in Figure 7-13). So the numbers to pass as arguments 
are 211 and 212.

t = np.arange(0,5,0.1)
y1 = np.sin(2*np.pi*t)
y2 = np.sin(2*np.pi*t)
plt.subplot(211)
plt.plot(t,y1,'b-.')
plt.subplot(212)
plt.plot(t,y2,'r--')

Figure 7-13.  The figure has been divided into two horizontal subplots

You do the same thing by dividing the figure into two vertical subplots. The numbers to be passed as 
arguments to the subplot() function are 121 and 122 (as shown in Figure 7-14).

t = np.arange(0.,1.,0.05)
y1 = np.sin(2*np.pi*t)
y2 = np.cos(2*np.pi*t)
plt.subplot(121)
plt.plot(t,y1,'b-.')
plt.subplot(122)
plt.plot(t,y2,'r--')
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Figure 7-14.  The figure has been divided into two vertical subplots

�Adding Elements to the Chart
In order to make a chart more informative, many times it is not enough to represent the data using lines or 
markers and assign the range of values using two axes. In fact, there are many other elements that can be 
added to a chart in order to enrich it with additional information.

In this section, you see how to add elements, such as text labels, a legend, and so on, to a chart.

�Adding Text
You’ve already seen how you can add a title to a chart with the title() function. Two other textual 
indications you can add are the axis labels. This is possible through the use of two other specific functions, 
called xlabel() and ylabel(). These functions take as an argument a string, which will be the shown text. 
Now add two axis labels to the chart. They describe which kind of value is assigned to each axis (as shown in 
Figure 7-15).

plt.axis([0,5,0,20])
plt.title('My first plot')
plt.xlabel('Counting')
plt.ylabel('Square values')
plt.plot([1,2,3,4],[1,4,9,16],'ro')
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Figure 7-15.  A plot is more informative when it has axis labels

Thanks to the keywords, you can change the characteristics of the text. For example, you can modify the 
title by changing the font and increasing the size of the characters. You can also modify the color of the axis 
labels to accentuate the title of the plot (as shown in Figure 7-16).

plt.axis([0,5,0,20])
plt.title('My first plot',fontsize=20,fontname='Times New Roman')
plt.xlabel('Counting',color='gray')
plt.ylabel('Square values',color='gray')
plt.plot([1,2,3,4],[1,4,9,16],'ro')
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Figure 7-16.  The text can be modified by setting the keywords

But matplotlib is not limited to this: pyplot allows you to add text to any position within a chart. This 
feature is performed by a specific function called text().

text(x,y,s, fontdict=None, **kwargs)

The first two arguments are the coordinates of the location where you want to place the text. s is the 
string of text to be added, and fontdict (optional) is the font that you want to use. Finally, you can add the 
keywords.

Add the label to each point of the plot. Because the first two arguments to the text() function are the 
coordinates of the graph, you have to use the coordinates of the four points of the plot shifted slightly on 
the y-axis.

plt.axis([0,5,0,20])
plt.title('My first plot',fontsize=20,fontname='Times New Roman')
plt.xlabel('Counting',color='gray')
plt.ylabel('Square values',color='gray')
plt.text(1,1.5,'First')
plt.text(2,4.5,'Second')
plt.text(3,9.5,'Third')
plt.text(4,16.5,'Fourth')
plt.plot([1,2,3,4],[1,4,9,16],'ro')
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As you can see in Figure 7-17, each point of the plot now has a label.

Figure 7-17.  Every point of the plot has an informative label

Because matplotlib is a graphics library designed to be used in scientific circles, it must be able to 
exploit the full potential of scientific language, including mathematical expressions. matplotlib offers the 
possibility to integrate LaTeX expressions, thereby allowing you to insert mathematical expressions within 
the chart.

To do this, you can add a LaTeX expression to the text, enclosing it between two $ characters. The 
interpreter will recognize them as LaTeX expressions and convert them into the corresponding graphic, 
which can be a mathematical expression, a formula, mathematical characters, or just Greek letters. 
Generally you have to precede the string containing LaTeX expressions with an r, which indicates raw text, 
in order to avoid unintended escape sequences.

Here, you can also use the keywords to further enrich the text to be shown in the plot. Therefore, as an 
example, you can add the formula describing the trend followed by the point of the plot and enclose it in a 
colored bounding box (see Figure 7-18).

plt.axis([0,5,0,20])
plt.title('My first plot',fontsize=20,fontname='Times New Roman')
plt.xlabel('Counting',color='gray')
plt.ylabel('Square values',color='gray')
plt.text(1,1.5,'First')
plt.text(2,4.5,'Second')
plt.text(3,9.5,'Third')
plt.text(4,16.5,'Fourth')
plt.text(1.1,12,r'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow','alpha':0.2})
plt.plot([1,2,3,4],[1,4,9,16],'ro')
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Figure 7-18.  Any mathematical expression can be seen in the context of a chart

To get a complete view of the potential offered by LaTeX, consult Appendix A of this book.

�Adding a Grid
Another element you can add to a plot is a grid. Often its addition is necessary in order to better understand 
the position occupied by each point on the chart.

Adding a grid to a chart is a very simple operation: just add the grid() function, passing True as an 
argument (see Figure 7-19).

plt.axis([0,5,0,20])
plt.title('My first plot',fontsize=20,fontname='Times New Roman')
plt.xlabel('Counting',color='gray')
plt.ylabel('Square values',color='gray')
plt.text(1,1.5,'First')
plt.text(2,4.5,'Second')
plt.text(3,9.5,'Third')
plt.text(4,16.5,'Fourth')
plt.text(1.1,12,r'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow','alpha':0.2})
plt.grid(True)
plt.plot([1,2,3,4],[1,4,9,16],'ro')
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Figure 7-19.  A grid makes it easier to read the values of the data points represented on a chart

�Adding a Legend
Another very important component that should be present in any chart is the legend. pyplot also provides a 
specific function for this type of object: legend().

Add a legend to your chart with the legend() function and a string indicating the words for the legend. 
In this example, you assign the First series name to the input data array (see Figure 7-20).

plt.axis([0,5,0,20])
plt.title('My first plot',fontsize=20,fontname='Times New Roman')
plt.xlabel('Counting',color='gray')
plt.ylabel('Square values',color='gray')
plt.text(2,4.5,'Second')
plt.text(3,9.5,'Third')
plt.text(4,16.5,'Fourth')
plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow','alpha':0.2})
plt.grid(True)
plt.plot([1,2,3,4],[1,4,9,16],'ro')
plt.legend(['First series'])
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Figure 7-20.  The legend is added to the upper-right corner by default

As you can see in Figure 7-19, the legend is added to the upper-right corner by default. If you want to 
change this behavior, you will need to add a few kwargs. For example, the position occupied by the legend 
is set by assigning numbers from 0 to 10 to the loc kwarg. Each of these numbers characterizes one of the 
corners of the chart (see Table 7-1). A value of 1 is the default, that is, the upper-right corner. In the next 
example, you will move the legend to the upper-left corner so it will not overlap with the points represented 
in the plot.

Table 7-1.  The Possible Values for the loc Keyword

Location Code Location String

0 best

1 upper-right

2 upper-left

3 lower-right

4 lower-left

5 right

6 center-left

7 center-right

8 lower-center

9 upper-center

10 center
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Before you begin to modify the code to move the legend, I want to add a small notice. Generally, the 
legends are used to indicate the definition of a series to the reader via a label associated with a color and/
or a marker that distinguishes it in the plot. So far in the examples, you have used a single series that was 
expressed by a single plot() function. Now, you have to focus on a more general case in which the same 
plot shows multiple series simultaneously. Each series in the chart will be characterized by a specific color 
and a specific marker (see Figure 7-21). In terms of code, instead, each series will be characterized by a call 
to the plot() function and the order in which they are defined will correspond to the order of the text labels 
passed as an argument to the legend() function.

import matplotlib.pyplot as plt
plt.axis([0,5,0,20])
plt.title('My first plot',fontsize=20,fontname='Times New Roman')
plt.xlabel('Counting',color='gray')
plt.ylabel('Square values',color='gray')
plt.text(1,1.5,'First')
plt.text(2,4.5,'Second')
plt.text(3,9.5,'Third')
plt.text(4,16.5,'Fourth')
plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow','alpha':0.2})
plt.grid(True)
plt.plot([1,2,3,4],[1,4,9,16],'ro')
plt.plot([1,2,3,4],[0.8,3.5,8,15],'g^')
plt.plot([1,2,3,4],[0.5,2.5,4,12],'b*')
plt.legend(['First series','Second series','Third series'],loc=2)

Figure 7-21.  A legend is necessary in every multiseries chart
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�Saving Your Charts
In this section you learn how to save your chart in different ways depending on your needs. If you need to 
reproduce your chart in different notebooks or Python sessions, or reuse them in future projects, it is a good 
practice to save the Python code. On the other hand, if you need to make reports or presentations, it can be 
very useful to save your chart as an image. Moreover, it is possible to save your chart as a HTML page, and 
this can be very useful when you need to share your work on the web.

�Saving the Code
As you can see from the examples in the previous sections, the code concerning the representation of a 
single chart is growing into a fair number of rows. Once you think you’ve reached a good point in your 
development process, you can choose to save all the rows of code in a .py file that you can recall at any time.

You can use the magic command save% followed by the name of the file you want to save, followed by 
the number of input prompts containing the row of code that you want to save. If all the code is written in 
only one prompt, as in this case, you have to add only its number; otherwise if you want to save the code 
written in many prompts, for example from 10 to 20, you have to indicate this range with the two numbers 
separated by a -, that is, 10-20.

In your case, you would save the Python code underlying the representation of your first chart 
contained in the input prompt with the number 21.

In [21]: import matplotlib.pyplot as plt
...

You need to insert the following command in a new cell and then execute it to save the code into a new 
.py file.

%save my_first_chart 171

After you launch the command, you will get as output the message that a new file called my_first_
chart.py has been created in the working directory and the code contained in it, as shown in Figure 7-22.

Figure 7-22.  The code written inside the cells can be saved to a file
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In the same way as with saving, it is possible to load the code present in a file into a cell of the Notebook; 
you do this using the magic command %load.

%load my_first_chart.py

If you are not interested in the code of a file, but only in its output, you can write inside a cell the magic 
command %run.

%run my_first_chart.py

In this example, the result is the chart visualization in the output of the cell.

�Saving Your Notebook as an HTML File or as Other File Formats
An interesting aspect of being able to work with Jupyter Notebook is the possibility of converting this 
Notebook into an HTML page. On the Notebook menu, click File and then Download As to see how many 
file formats the Notebook can be converted into (see Figure 7-23).

Figure 7-23.  You can save your current session as a web page
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�Saving Your Chart Directly as an Image
If you are interested in saving only the figure of a chart as an image file, ignoring all the code you’ve written 
during the session, this is also possible. In fact, thanks to the savefig() function, you can directly save the 
chart in PNG format, although you should take care to add this function to the end of the same series of 
commands (otherwise you’ll get a blank PNG file).

plt.axis([0,5,0,20])
plt.title('My first plot',fontsize=20,fontname='Times New Roman')
plt.xlabel('Counting',color='gray')
plt.ylabel('Square values',color='gray')
plt.text(1,1.5,'First')
plt.text(2,4.5,'Second')
plt.text(3,9.5,'Third')
plt.text(4,16.5,'Fourth')
plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow','alpha':0.2})
plt.grid(True)
 plt.plot([1,2,3,4],[1,4,9,16],'ro')
plt.plot([1,2,3,4],[0.8,3.5,8,15],'g^')
plt.plot([1,2,3,4],[0.5,2.5,4,12],'b*')
plt.legend(['First series','Second series','Third series'],loc=2)
plt.savefig('my_chart.png')

When you execute the previous code, a new file will be created in your working directory. This file will 
be named my_chart.png and will contain the image of your chart.

�Handling Date Values
One of the most common problems encountered when doing data analysis is handling data of the date-time 
type. Displaying that data along an axis (normally the x-axis) can be problematic, especially when managing 
ticks (see Figure 7-24).

It is very common to use a dataframe with columns similar to the following one as a data source to 
display:

import pandas as pd
import datetime
df = pd.DataFrame({'year': 2015,
                   'month': [1,1,2,2,3,3,4,4],
                   'day': [23,28,3,21,15,24,8,24],
                   'readings': [12,22,25,20,18,15,17,14]})
df['events'] = pd.to_datetime(df[['year','month','day']])
df

Running the code, you will get a dataframe like the one in Figure 7-24, in which there is an Events 
column of date-time type values.
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Figure 7-24.  A dataframe containing a date-time data column

In this case, you might want to use a linear chart to visualize the trend of Readings values over time. It’s 
very simple to do this; you use the plot() function to obtain a chart line like the one shown in Figure 7-25.

import matplotlib.pyplot as plt
plt.plot(df['events'],df['readings'])

Figure 7-25.  If they aren't handled, displaying date-time values can be problematic

As you can see in Figure 7-25, automatic management of ticks, and especially the tick labels, can be 
a disaster. The dates expressed in this way are difficult to read, there are no clear time intervals elapsed 
between one point and another, and there is also overlap.
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To manage dates it is therefore advisable to define a time scale with appropriate objects. First you need 
to import matplotlib.dates, a module specialized for this type of data. Then you define the scales of the 
times, as in this case, a scale of days and one of months, through the MonthLocator() and DayLocator() 
functions. In these cases, the formatting is also very important, and to avoid overlap or unnecessary 
references, you have to limit the tick labels to the essential, which in this case is year-month. This format can 
be passed as an argument to the DateFormatter() function.

After you define the two scales, one for the days and one for the months, you can set two different 
kinds of ticks on the x-axis, using the set_major_locator() and set_minor_locator() functions on the 
xaxis object. Instead, to set the text format of the tick labels that refer to the months, you have to use the 
set_major_formatter() function.

Changing all these settings, you finally obtain the plot shown in Figure 7-26.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
months = mdates.MonthLocator()
days = mdates.DayLocator()
timeFmt = mdates.DateFormatter('%Y-%m')
fig, ax = plt.subplots()
plt.plot(df['events'],df['readings'])
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(timeFmt)
ax.xaxis.set_minor_locator(days)

Figure 7-26.  Now the tick labels of the x-axis refer only to the months, making the plot more readable
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�Chart Typology
In the previous sections, you saw a number of examples relating to the architecture of the matplotlib 
library. Now that you are familiar with using the main graphic elements in a chart, it is time to see a series 
of examples treating different types of charts, starting from the most common ones such as linear charts, 
bar charts, and pie charts, up to a discussion about some that are more sophisticated but commonly used, 
nonetheless.

This part of the chapter is very important since the purpose of this library is the visualization of the 
results produced by data analysis. Thus, knowing how to choose the proper type of chart is a fundamental 
choice. Remember that excellent data analysis represented incorrectly can lead to a wrong interpretation of 
the experimental results.

�Line Charts
Among all the chart types, the linear chart is the simplest. A line chart is a sequence of data points connected 
by a line. Each data point consists of a pair of values (x,y), which will be reported in the chart according to 
the scale of values of the two axes (x and y).

By way of example, you can begin to plot the points generated by a mathematical function. Then, you 
can consider a generic mathematical function such as this:

	
y x x= ( )∗sin 3 /

	

Therefore, if you want to create a sequence of data points, you need to create two NumPy arrays. First 
you create an array containing the x values to be referred to the x-axis. In order to define a sequence of 
increasing values, you will use the np.arange() function. Because the function is sinusoidal, you should refer 
to values that are multiples and submultiples of the Greek pi (np.pi). Then, using these sequence of values, 
you can obtain the y values by applying the np.sin() function directly to these values (thanks to NumPy!).

After all this, you have to plot them by calling the plot() function. You will obtain a line chart, as shown 
in Figure 7-27.

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-2*np.pi,2*np.pi,0.01)
y = np.sin(3*x)/x
plt.plot(x,y)
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Figure 7-27.  A mathematical function represented in a line chart

Now you can extend the case in which you want to display a family of functions, such as this:

	
y n x x= ( )∗sin /

	

varying the parameter n.

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-2*np.pi,2*np.pi,0.01)
y = np.sin(x)/x
y2 = np.sin(2*x)/x
y3 = np.sin(3*x)/x
plt.plot(x,y)
plt.plot(x,y2)
plt.plot(x,y3)

As you can see in Figure 7-28, a different color is automatically assigned to each line. All the plots are 
represented on the same scale; that is, the data points of each series refer to the same x-axis and y-axis. This 
is because each call of the plot() function takes into account the previous calls to same function, so the 
Figure applies the changes, keeping memory of the previous commands until the Figure is not displayed 
(using show() with Python and Enter with the IPython QtConsole).
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Figure 7-28.  Three different series are drawn with different colors in the same chart

As you saw in the previous sections, regardless of the default settings, you can select the type of stroke, 
color, and so on. As the third argument of the plot() function, you can specify some codes that correspond 
to the color (see Table 7-2) and other codes that correspond to line styles, all included in the same string. 
Another possibility is to use two kwargs separately—color to define the color and linestyle to define the 
stroke (see Figure 7-29).

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-2*np.pi,2*np.pi,0.01)
y = np.sin(x)/x
y2 = np.sin(2*x)/x
y3 = np.sin(3*x)/x
plt.plot(x,y,'k--',linewidth=3)
plt.plot(x,y2,'m-.')
plt.plot(x,y3,color='#87a3cc',linestyle='--')

Figure 7-29.  You can define colors and line styles using character codes
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Table 7-2.  Color Codes

Code Color

b blue

g green

r red

c cyan

m magenta

y yellow

k black

w white

You have just defined a range from -2π to 2π on the x-axis, but by default, values on ticks are shown in 
numerical form. Therefore, you need to replace the numerical values with multiple of π. You can also replace 
the ticks on the y-axis. To do all this, you have to use the xticks() and yticks() functions, passing to each 
of them two lists of values. The first list contains values corresponding to the positions where the ticks are to 
be placed, and the second contains the tick labels. In this particular case, you have to use strings containing 
LaTeX format in order to correctly display the π symbol. Remember to define them within two $ characters 
and to add an r as the prefix.

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-2*np.pi,2*np.pi,0.01)
y = np.sin(3*x)/x
y2 = np.sin(2*x)/x
y3 = np.sin(x)/x
plt.plot(x,y,color='b')
plt.plot(x,y2,color='r')
plt.plot(x,y3,color='g')
plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi],
           [r'$-2\pi$',r'$-\pi$',r'$0$',r'$+\pi$',r'$+2\pi$'])
plt.yticks([-1,0,1,2,3],
           [r'$-1$',r'$0$',r'$+1$',r'$+2$',r'$+3$'])

In the end, you will get a clean and pleasant line chart showing Greek characters, as shown in 
Figure 7-30.
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Figure 7-30.  The tick label can be improved by adding text with LaTeX format

In all the linear charts you have seen so far, you always have the x-axis and y-axis placed at the edge of 
the figure (corresponding to the sides of the bounding border box). Another way of displaying axes is to have 
the two axes pass through the origin (0, 0), that is, the two Cartesian axes.

To do this, you must first capture the Axes object through the gca() function. Then through this object, 
you can select each of the four sides making up the bounding box, specifying for each one its position: right, 
left, bottom, and top. Crop the sides that do not match any axis (right and bottom) using the set_color() 
function and indicating none for color. Then, the sides corresponding to the x- and y-axes are moved to pass 
through the origin (0,0) with the set_position() function.

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-2*np.pi,2*np.pi,0.01)
y = np.sin(3*x)/x
y2 = np.sin(2*x)/x
y3 = np.sin(x)/x
plt.plot(x,y,color='b')
plt.plot(x,y2,color='r')
plt.plot(x,y3,color='g')
plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi],
           [r'$-2\pi$',r'$-\pi$',r'$0$',r'$+\pi$',r'$+2\pi$'])
plt.yticks([-1,0,+1,+2,+3],
           [r'$-1$',r'$0$',r'$+1$',r'$+2$',r'$+3$'])
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
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Now the chart will show the two axes crossing in the middle of the figure, that is, the origin of the 
Cartesian axes, as shown in Figure 7-31.

Figure 7-31.  The chart shows two Cartesian axes

Often, it is very useful to be able to specify a particular point of the line using a notation and optionally 
add an arrow to better indicate the position of the point. For example, this notation may be a LaTeX 
expression, such as the formula for the limit of the function sinx/x where x tends to 0.

In this regard, matplotlib provides a function called annotate(), which is especially useful in these 
cases, even if the numerous kwargs needed to obtain a good result can make its settings quite complex. 
The first argument is the string to be represented containing the expression in LaTeX; then you can add the 
various kwargs. The point of the chart to note is indicated by a list containing the coordinates of the point 
[x, y] passed to the xy kwarg. The distance of the textual notation from the point to be highlighted is defined 
by the xytext kwarg and represented by means of a curved arrow whose characteristics are defined in the 
arrowprops kwarg.

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-2*np.pi,2*np.pi,0.01)
y = np.sin(3*x)/x
y2 = np.sin(2*x)/x
y3 = np.sin(x)/x
plt.plot(x,y,color='b')
plt.plot(x,y2,color='r')
plt.plot(x,y3,color='g')
plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi],
           [r'$-2\pi$',r'$-\pi$',r'$0$',r'$+\pi$',r'$+2\pi$'])
plt.yticks([-1,0,+1,+2,+3],
           [r'$-1$',r'$0$',r'$+1$',r'$+2$',r'$+3$'])
plt.annotate(r'$\lim_{x\to 0}\frac{\sin(x)}{x}= 1$',
             xy=[0,1],xycoords='data',
             xytext=[30,30],
             fontsize=16,
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             textcoords='offset points',
             arrowprops=dict(arrowstyle="->",connectionstyle="arc3,rad=.2"))ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

Running this code, you will get the chart with the mathematical notation of the limit, which is the point 
shown by the arrow in Figure 7-32.

Figure 7-32.  Mathematical expressions can be added to a chart with the annotate() function

�Line Charts with pandas
Moving to more practical cases, or at least more closely related to data analysis, now is the time to see how 
easy it is to apply the matplotlib library to the dataframes of the pandas library. It is very easy to visualize 
the data in a dataframe as a linear chart. It is sufficient to pass the dataframe as an argument to the plot() 
function to obtain a multiseries linear chart (see Figure 7-33).

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = {'series1':[1,3,4,3,5],
                'series2':[2,4,5,2,4],
                'series3':[3,2,3,1,3]}
df = pd.DataFrame(data)
x = np.arange(5)
plt.axis([0,5,0,7])
plt.plot(x,df)
plt.legend(data, loc=2)
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Figure 7-33.  The multiseries line chart displays the data in a pandas dataframe

�Histograms
A histogram consists of adjacent rectangles erected on the x-axis, split into discrete intervals called bins, 
and with an area proportional to the frequency of the occurrences for that bin. This kind of visualization is 
commonly used in statistical studies about distribution of samples.

In order to represent a histogram, pyplot provides a special function called hist(). This graphic 
function also has a feature that other functions producing charts do not have. The hist() function, in 
addition to drawing the histogram, returns a tuple of values that are the results of the calculation of the 
histogram. In fact, the hist() function can also implement the calculation of the histogram, that is, it is 
sufficient to provide a series of samples of values as an argument and the number of bins in which to be 
divided, and it will take care of dividing the range of samples in many intervals (bins), and then calculate 
the occurrences for each bin. The result of this operation, in addition to being shown in graphical form (see 
Figure 7-34), will be returned in the form of a tuple.

(n, bins, patches)
To understand this operation, a practical example is best. Then you can generate a population of 100 

random values from 0 to 100 using the random.randint() function.

import matplotlib.pyplot as plt
import numpy as np
pop = np.random.randint(0,100,100)
pop
Out[ ]:
array([53, 11, 34, 75, 40, 89, 97, 78, 19, 50, 65, 30, 11, 38, 27, 11, 33,
       23, 22, 54, 78, 83, 66, 19, 15, 70, 32, 78, 50, 56, 42, 60, 48, 13,
       70, 83, 23, 69,  7, 76, 69,  8, 62,  5, 92, 71, 42, 98, 51, 20, 46,
       32, 53, 64,  7, 22, 84, 14, 82, 39, 17, 27, 73,  5, 78, 41, 90, 73,
       33, 57, 43, 57, 76, 98, 84, 62, 11, 98, 37, 95, 31, 86, 24, 83, 58,
       83, 95, 48, 67, 96, 82,  8, 54, 41, 72, 32, 92, 64,  3,  4])
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Now, create the histogram of these samples by passing as an argument the hist() function. Say for 
example, you want to divide the occurrences into 20 bins (if not specified, the default value is ten bins). To 
do that, you have to use the bin kwarg, as shown in Figure 7-33.

n,bins,patches = plt.hist(pop,bins=20)

Figure 7-34.  The histogram shows the occurrences in each bin

�Bar Charts
Another very common type of chart is the bar chart. It is very similar to a histogram but in this case the x-axis 
is not used to reference numerical values but categories. The realization of the bar chart is very simple with 
matplotlib, using the bar() function.

import matplotlib.pyplot as plt
index = [0,1,2,3,4]
values = [5,7,3,4,6]
plt.bar(index,values)
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With these few lines of code, you obtain the bar chart shown in Figure 7-35.

Figure 7-35.  The simplest bar chart with matplotlib

If you look at Figure 7-34, you can see that the indices are drawn on the x-axis at the beginning of each 
bar. Actually, because each bar corresponds to a category, it would be better if you specified the categories 
through the tick label, defined by a list of strings passed to the xticks() function. As for the location of these 
tick labels, you have to pass a list containing the values corresponding to their positions on the x-axis as the 
first argument of the xticks() function. At the end you will get a bar chart, as shown in Figure 7-36.

import numpy as np
index = np.arange(5)
values1 = [5,7,3,4,6]
plt.bar(index,values1)
plt.xticks(index,['A','B','C','D','E'])
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Figure 7-36.  A simple bar chart with categories on the x-axis

Actually there are many other steps you can take to further refine the bar chart. Each of these finishes is 
set by adding a specific kwarg as an argument in the bar() function. For example, you can add the standard 
deviation values of the bar through the yerr kwarg along with a list containing the standard deviations. 
This kwarg is usually combined with another kwarg called error_kw, which, in turn, accepts other kwargs 
specialized for representing error bars. Two very specific kwargs used in this case are eColor, which specifies 
the color of the error bars, and capsize, which defines the width of the transverse lines that mark the ends of 
the error bars.

Another kwarg that you can use is alpha, which indicates the degree of transparency of the colored bar. 
Alpha is a value ranging from 0 to 1. When this value is 0, the object is completely transparent to become 
gradually more significant with the increase of the value, until arriving at 1, at which the color is fully 
represented.

As usual, the use of a legend is recommended, so in this case you should use a kwarg called label to 
identify the series that you are representing.

At the end you will get a bar chart with error bars, as shown in Figure 7-37.

import numpy as np
index = np.arange(5)
values1 = [5,7,3,4,6]
std1 = [0.8,1,0.4,0.9,1.3]
plt.title('A Bar Chart')
plt.bar(index,values1,yerr=std1,
        error_kw={'ecolor':'0.1','capsize':6},
        alpha=0.7,label='First')plt.xticks(index,['A','B','C','D','E'])
plt.legend(loc=2)
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Figure 7-37.  A bar chart with error bars

�Horizontal Bar Charts
So far you have seen the bar chart oriented vertically. There are also bar charts oriented horizontally. This 
mode is implemented by a special function called barh(). The arguments and the kwargs valid for the bar() 
function remain the same for this function. The only change that you have to take into account is that the 
roles of the axes are reversed. Now, the categories are represented on the y-axis and the numerical values are 
shown on the x-axis (see Figure 7-38).

import matplotlib.pyplot as plt
import numpy as np
index = np.arange(5)
values1 = [5,7,3,4,6]
std1 = [0.8,1,0.4,0.9,1.3]
plt.title('A Horizontal Bar Chart')
plt.barh(index,values1,xerr=std1,error_kw={'ecolor':'0.1','capsize':6},alpha=0.7, 
label='First')
plt.yticks(index,['A','B','C','D','E'])
plt.legend(loc=5)

Chapter 7 ■ Data Visualization with matplotlib and Seaborn



223

Figure 7-38.  A simple horizontal bar chart

�Multiserial Bar Charts
As line charts, bar charts are generally used to simultaneously display larger series of values. But in this 
case it is necessary to make some clarifications on how to structure a multiseries bar chart. So far you have 
defined a sequence of indexes, each corresponding to a bar, to be assigned to the x-axis. These indices 
should represent categories. In this case, however, you have more bars that must share the same category.

One approach used to overcome this problem is to divide the space occupied by an index (for 
convenience its width is 1) in as many parts as the bars sharing the index that you want to display. Moreover, 
it is advisable to add space, which will serve as a gap to separate one category with respect to the next (as 
shown in Figure 7-39).

import matplotlib.pyplot as plt
import numpy as np
index = np.arange(5)+0.5
values1 = [5,7,3,4,6]
values2 = [6,6,4,5,7]
values3 = [5,6,5,4,6]
bw = 0.3
plt.axis([0,5.5,0,8])
plt.title('A Multiseries Bar Chart',fontsize=20)
plt.bar(index,values1,bw,color='b')
plt.bar(index+bw,values2,bw,color='g')
plt.bar(index+2*bw,values3,bw,color='r')
plt.xticks(index+bw,['A','B','C','D','E'])
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Figure 7-39.  A multiseries bar chart displaying three series

Regarding the multiseries horizontal bar chart (see Figure 7-40), things are very similar. You have to 
replace the bar() function with the corresponding barh() function and remember to replace the xticks() 
function with the yticks() function. You also need to reverse the range of values covered by the axes in the 
axis() function.

import matplotlib.pyplot as plt
import numpy as np
index = np.arange(5)+0.5
values1 = [5,7,3,4,6]
values2 = [6,6,4,5,7]
values3 = [5,6,5,4,6]
bw = 0.3
plt.axis([0,8,0,5.5])
plt.title('A Multiseries Horizontal Bar Chart',fontsize=20)
plt.barh(index,values1,bw,color='b')
plt.barh(index+bw,values2,bw,color='g')
plt.barh(index+2*bw,values3,bw,color='r')
plt.yticks(index+bw,['A','B','C','D','E'])
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Figure 7-40.  A multiseries horizontal bar chart

�Multiseries Bar Charts with a pandas Dataframe
As you saw in the line charts, the matplotlib library also provides the ability to directly represent the 
dataframe objects containing the results of data analysis in the form of bar charts. And even here it does it 
quickly, directly, and automatically. The only thing you need to do is use the plot() function applied to the 
dataframe object and specify inside a kwarg called kind, to which you have to assign the type of chart you 
want to represent, which in this case is bar. Without specifying any other settings, you will get the bar chart 
shown in Figure 7-41.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = {'series1':[1,3,4,3,5],
        'series2':[2,4,5,2,4],
        'series3':[3,2,3,1,3]}
df = pd.DataFrame(data, index=['A','B','C','D','E'])
df.plot(kind='bar', xlabel='Class',rot=0, ylabel='Value')
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Figure 7-41.  The values in a dataframe can be directly displayed as a bar chart

However, if you want to get more control, or if your case requires it, you can still extract portions of the 
dataframe as NumPy arrays and use them as illustrated in the previous examples in this section. That is, by 
passing them separately as arguments to the matplotlib functions.

Moreover, regarding the horizontal bar chart, the same rules can be applied, but remember to set barh 
as the value of the kind kwarg.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = {'series1':[1,3,4,3,5],
        'series2':[2,4,5,2,4],
        'series3':[3,2,3,1,3]}
df = pd.DataFrame(data, index=['A','B','C','D','E'])
df.plot(kind='barh',ylabel='Class', xlabel='Value')
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You’ll get a multiseries horizontal bar chart, as shown in Figure 7-42.

Figure 7-42.  A horizontal bar chart could be a valid alternative to visualize your dataframe values

�Multiseries Stacked Bar Charts
Another way to represent a multiseries bar chart is in the stacked form, in which the bars are stacked one on 
the other. This is especially useful when you want to show the total value obtained by the sum of all the bars.

To transform a simple multiseries bar chart in a stacked one, you add the bottom kwarg to each bar() 
function. Each series must be assigned to the corresponding bottom kwarg. At the end, you will obtain the 
stacked bar chart, as shown in Figure 7-43.

import matplotlib.pyplot as plt
import numpy as np
series1 = np.array([3,4,5,3])
series2 = np.array([1,2,2,5])
series3 = np.array([2,3,3,4])
index = np.arange(4)
plt.axis([-0.5,3.5,0,15])
plt.title('A Multiseries Stacked Bar Chart')
plt.bar(index,series1,color='r')
plt.bar(index,series2,color='b',bottom=series1)
plt.bar(index,series3,color='g',bottom=(series2+series1))
plt.xticks(index,['Jan23','Feb23','Mar23','Apr23'])
plt.legend(['series1','series2','series3'], loc='upper left')
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Figure 7-43.  A multiseries stacked bar

Here too, in order to create the equivalent horizontal stacked bar chart, you need to replace the bar() 
function with barh() function, being careful to change the other parameters as well. Indeed, the xticks() 
function should be replaced with the yticks() function because the labels of the categories must now 
be reported on the y-axis. After making all these changes, you will obtain the horizontal stacked bar chart 
shown in Figure 7-44.

import matplotlib.pyplot as plt
import numpy as np
index = np.arange(4)
series1 = np.array([3,4,5,3])
series2 = np.array([1,2,2,5])
series3 = np.array([2,3,3,4])
plt.axis([0,15,-0.5,3.5])
plt.title('A Multiseries Horizontal Stacked Bar Chart')
plt.barh(index,series1,color='r')
plt.barh(index,series2,color='g',left=series1)
plt.barh(index,series3,color='b',left=(series1+series2))
plt.yticks(index,['Jan23','Feb23','Mar23','Apr23'])
plt.legend(['series1','series2','series3'], loc='lower right')

Chapter 7 ■ Data Visualization with matplotlib and Seaborn



229

Figure 7-44.  A multiseries horizontal stacked bar chart

�Stacked Bar Charts with a pandas Dataframe
Also with regard to stacked bar charts, it is very simple to directly represent the values contained in the 
dataframe object by using the plot() function. You need only to add as an argument the stacked kwarg set 
to True (see Figure 7-45).

import matplotlib.pyplot as plt
import pandas as pd

data = {'series1':[1,3,4,3,5],
        'series2':[2,4,5,2,4],
        'series3':[3,2,3,1,3]}
df = pd.DataFrame(data, index=['A','B','C','D','E'])
df.plot(kind='bar', stacked=True, rot=0, xlabel='Class', ylabel='Value')
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Figure 7-45.  The values of a dataframe can be directly displayed as a stacked bar chart

�Other Bar Chart Representations
Another type of very useful representation is that of a bar chart for comparison, where two series of values 
sharing the same categories are compared by placing the bars in opposite directions along the y-axis. In 
order to do this, you have to put the y values of one of the two series in a negative form. Also in this example, 
you will see the possibility of coloring the inner color of the bars in a different way. In fact, you can do this by 
setting the two different colors on a specific kwarg: facecolor.

Furthermore, in this example, you will see how to add the y value with a label at the end of each bar. 
This can increase the readability of the bar chart. You can do this using a for loop in which the text() 
function will show the y value. You can adjust the label position with the two kwargs called ha and va, which 
control the horizontal and vertical alignment, respectively. The result will be the chart shown in Figure 7-46.

import matplotlib.pyplot as plt
x0 = np.arange(8)
y1 = np.array([1,3,4,6,4,3,2,1])
y2 = np.array([1,2,5,4,3,3,2,1])
plt.ylim(-7,7)
plt.bar(x0,y1,0.9,facecolor='r')
plt.bar(x0,-y2,0.9,facecolor='b')
plt.xticks(())
plt.grid(True)
for x, y in zip(x0, y1):
           plt.text(x + 0.4, y + 0.05, '%d' % y, ha='center', va= 'bottom')
for x, y in zip(x0, y2):
           plt.text(x + 0.4, -y - 0.05, '%d' % y, ha='center', va= 'top')
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Figure 7-46.  Two series can be compared using this kind of bar chart

�Pie Charts
An alternative way to display data to the bar charts is the pie chart, easily obtainable using the pie() 
function.

Even for this type of function, you pass as the main argument a list containing the values to be 
displayed. I chose the percentages (their sum is 100), but you can use any kind of value. It will be up to the 
pie() function to inherently calculate the percentage occupied by each value.

Also with this type of representation, you need to define some key features using the kwargs. For 
example, if you want to define the sequence of the colors, which will be assigned to the sequence of input 
values correspondingly, you have to use the colors kwarg. Therefore, you have to assign a list of strings, each 
containing the name of the desired color. Another important feature is to add labels to each slice of the pie. 
To do this, you have to use the labels kwarg to which you assign a list of strings containing the labels to be 
displayed in sequence.

In addition, in order to draw the pie chart in a perfectly spherical way, you have to add the axis() 
function to the end, specifying the string 'equal' as an argument. You will get a pie chart as shown in 
Figure 7-47.

import matplotlib.pyplot as plt
labels = ['Nokia','Samsung','Apple','Lumia']
values = [10,30,45,15]
colors = ['yellow','green','red','blue']
plt.pie(values,labels=labels,colors=colors)
plt.axis('equal')
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Figure 7-47.  A very simple pie chart

To add complexity to the pie chart, you can draw it with a slice extracted from the pie. This is usually 
done when you want to focus on a specific slice. In this case, for example, you would highlight the slice 
referring to Nokia. In order to do this, there is a special kwarg named explode. It is nothing but a sequence of 
float values of 0 or 1, where 1 corresponds to the fully extended slice and 0 corresponds to slices completely 
in the pie. All intermediate values correspond to an intermediate degree of extraction (see Figure 7-48).

You can also add a title to the pie chart with the title() function. You can adjust the angle of rotation 
of the pie by adding the startangle kwarg, which takes an integer value between 0 and 360, which are the 
degrees of rotation precisely (0 is the default value).

The modified chart should appear as shown in Figure 7-48.

import matplotlib.pyplot as plt
labels = ['Nokia','Samsung','Apple','Lumia']
values = [10,30,45,15]
colors = ['yellow','green','red','blue']
explode = [0.3,0,0,0]
plt.title('A Pie Chart')
plt.pie(values,labels=labels,colors=colors,explode=explode,startangle=180)
plt.axis('equal')
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Figure 7-48.  A more advanced pie chart

But the possible additions that you can insert in a pie chart do not end here. For example, a pie chart 
does not have axes with ticks, so it is difficult to imagine the perfect percentage represented by each slice. To 
overcome this, you can use the autopct kwarg, which adds to the center of each slice a text label showing the 
corresponding value.

If you want to make it an even more appealing image, you can add a shadow with the shadow kwarg and 
setting it to True. In the end, you will get a pie chart as shown in Figure 7-49.

import matplotlib.pyplot as plt
labels = ['Nokia','Samsung','Apple','Lumia']
values = [10,30,45,15]
colors = ['yellow','green','red','blue']
explode = [0.3,0,0,0]
plt.title('A Pie Chart')
plt.pie(values,
        labels=labels,
        colors=colors,
        explode=explode,
        shadow=True,
        autopct='%1.1f%%',
        startangle=180)plt.axis('equal')
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Figure 7-49.  An even more advanced pie chart

�Pie Charts with a pandas Dataframe
Even for the pie chart, you can represent the values contained in a dataframe object. In this case, however, 
the pie chart can represent only one series at a time, so in this example you display only the values of the first 
series by specifying df['series1']. You have to specify the type of chart you want to represent through the 
kind kwarg in the plot() function, which in this case is pie. Furthermore, because you want to represent a 
pie chart as perfectly circular, it is necessary that you add the figsize kwarg. At the end, you will obtain a pie 
chart as shown in Figure 7-50.

import matplotlib.pyplot as plt
import pandas as pd
data = {'series1':[1,3,4,3,5],
                'series2':[2,4,5,2,4],
                'series3':[3,2,3,1,3]}
df = pd.DataFrame(data)
df['series1'].plot(kind='pie',figsize=(6,6))
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Figure 7-50.  The values in a pandas dataframe can be directly drawn as a pie chart

�Advanced Charts
In addition to the more classical charts such as bar charts and pie charts, you might want to represent your 
results in alternative ways. On the Internet and in various publications, there are many examples in which 
many alternative graphics solutions are discussed and proposed, some really brilliant and captivating. This 
section only shows some graphic representations; a more detailed discussion about this topic is beyond the 
purpose of this book. You can use this section as an introduction to a world that is constantly expanding: 
data visualization.

�Contour Plots
A quite common type of chart in the scientific world is the contour plot or contour map. This visualization is 
in fact suitable for displaying three-dimensional surfaces through a contour map composed of closed curves 
showing the points on the surface that are located at the same level, or that have the same z value.

Although visually the contour plot is a very complex structure, its implementation is not so difficult, 
thanks to the matplotlib library. First, you need the function z = f (x, y) to generate a three-dimensional 
surface. Then, once you have defined a range of values x, y that will define the area of the map to be 
displayed, you can calculate the z values for each pair (x, y), applying the function f(x, y) just defined in order 
to obtain a matrix of z values. Finally, thanks to the contour() function, you can generate the contour map of 
the surface. It is often desirable to add a color map along with a contour map. That is, the areas delimited by 
the curves of level are filled with a color gradient, defined by a color map. For example, as in Figure 7-51, you 
may indicate negative values with increasingly dark shades of blue, and move to yellow and then red with 
the increase of positive values.
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Figure 7-51.  A contour map can describe the z values of a surface

Furthermore, when you have to deal with this kind of representation, adding a color scale as a reference 
to the side of the graph is almost a must. This is possible by simply adding the colorbar() function to the 
end of the code.

import matplotlib.pyplot as plt
import numpy as np
dx = 0.01; dy = 0.01
x = np.arange(-2.0,2.0,dx)
y = np.arange(-2.0,2.0,dy)
X,Y = np.meshgrid(x,y)
def f(x,y):
           return (1 - y**5 + x**5)*np.exp(-x**2-y**2)
C = plt.contour(X,Y,f(X,Y),8,colors='black')
plt.contourf(X,Y,f(X,Y),8)
plt.clabel(C, inline=1, fontsize=10)
plt.colorbar()

The standard color gradient (color map) is represented in Figure 7-51. You can choose among a large 
number of color maps available just specifying them with the cmap kwarg.

�Polar Charts
Another type of advanced chart that is popular is the polar chart. This type of chart is characterized by a 
series of sectors that extend radially; each of these areas will occupy a certain angle. Thus you can display 
two different values by assigning them to the magnitudes that characterize the polar chart—the extension 
of the radius r and the angle θ occupied by the sector. These in fact are the polar coordinates (r, θ), an 
alternative way of representing functions at the coordinate axes. From the graphical point of view, you can 
imagine it as a kind of chart that has characteristics both of the pie chart and of the bar chart. In fact as the 
pie chart, the angle of each sector gives percentage information represented by that category with respect to 
the total. As for the bar chart, the radial extension is the numerical value of that category.
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So far you have used the standard set of colors using single characters as the color code (e.g., r to 
indicate red). In fact you can use any sequence of colors you want. You simply have to define a list of string 
values that contain RGB codes in the #rrggbb format corresponding to the colors you want.

Oddly, to get a polar chart you have to use the bar() function and pass the list containing the angles θ 
and a list of the radial extension of each sector. The result will be a polar chart, as shown in Figure 7-52.

import matplotlib.pyplot as plt
import numpy as np
N = 8
 theta = np.arange(0.,2 * np.pi, 2 * np.pi / N)
radii = np.array([4,7,5,3,1,5,6,7])
plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)
colors = np.array(['#4bb2c5', '#c5b47f', '#EAA228', '#579575', '#839557', '#958c12', 
'#953579', '#4b5de4'])
 bars = plt.bar(theta, radii, width=(2*np.pi/N), bottom=0.0, color=colors)

Figure 7-52.  A polar chart

�The mplot3d Toolkit
The mplot3d toolkit is included with all standard installations of matplotlib and allows you to extend the 
capabilities of visualization to 3D data. If the figure is displayed in a separate window, you can rotate the axes 
of the three-dimensional representation with the mouse.

With this package you are still using the Figure object, only instead of the Axes object, you will define a 
new kind of object, called Axes3D, which is introduced in this toolkit. Thus, you need to add a new import to 
the code if you want to use the Axes3D object.

from mpl_toolkits.mplot3d import Axes3D
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�3D Surfaces
In a previous section, you used the contour plot to represent the three-dimensional surfaces through the 
level lines. Using the mplot3D package, you can draw surfaces directly in 3D. In this example, you use the 
same function z = f (x, y) you used in the contour map.

Once you have calculated the meshgrid, you can view the surface with the plot_surface() function. A 
three-dimensional blue surface will appear, as shown in Figure 7-53.

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
X = np.arange(-2,2,0.1)
Y = np.arange(-2,2,0.1)
X,Y = np.meshgrid(X,Y)
def f(x,y):
   return (1 - y**5 + x**5)*np.exp(-x**2-y**2)
ax.plot_surface(X,Y,f(X,Y), rstride=1, cstride=1)

Figure 7-53.  A 3D surface can be represented with the mplot3d toolkit

A 3D surface stands out most by changing the color map, for example by setting the cmap kwarg. You 
can also rotate the surface using the view_init() function. In fact, this function adjusts the view point from 
which you see the surface, changing the two kwargs called elev and azim. Through their combination you 
can get the surface displayed from any angle. The first kwarg adjusts the height at which the surface is seen, 
while azim adjusts the angle of rotation of the surface.

For instance, you can change the color map using plt.cm.hot and moving the view point to elev=30 
and azim=125. The result is shown in Figure 7-54.

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
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ax = fig.add_subplot(111, projection="3d")
X = np.arange(-2,2,0.1)
Y = np.arange(-2,2,0.1)
X,Y = np.meshgrid(X,Y)
def f(x,y):
    return (1 - y**5 + x**5)*np.exp(-x**2-y**2)
ax.plot_surface(X,Y,f(X,Y), rstride=1, cstride=1, cmap=plt.cm.hot)
ax.view_init(elev=30,azim=125)

Figure 7-54.  The 3D surface can be rotated and observed from a higher viewpoint

�Scatter Plots in 3D
The mode most used among all 3D views remains the 3D scatter plot. With this type of visualization, you can 
identify if the points follow particular trends, but above all if they tend to cluster.

In this case, you use the scatter() function as the 2D case but applied to the Axes3D object. By doing 
this, you can visualize different series, expressed by the calls to the scatter() function, all together in the 
same 3D representation (see Figure 7-55).

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
xs = np.random.randint(30,40,100)
ys = np.random.randint(20,30,100)
zs = np.random.randint(10,20,100)
xs2 = np.random.randint(50,60,100)
ys2 = np.random.randint(30,40,100)
zs2 = np.random.randint(50,70,100)
xs3 = np.random.randint(10,30,100)
ys3 = np.random.randint(40,50,100)
zs3 = np.random.randint(40,50,100)
fig = plt.figure()

Chapter 7 ■ Data Visualization with matplotlib and Seaborn



240

ax = fig.add_subplot(111, projection="3d")
ax.scatter(xs,ys,zs)
ax.scatter(xs2,ys2,zs2,c='r',marker='^')
ax.scatter(xs3,ys3,zs3,c='g',marker='*')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')

Figure 7-55.  This 3D scatter plot shows three different clusters

�Bar Charts in 3D
Another type of 3D plot widely used in data analysis is the 3D bar chart. Also in this case, you use the bar() 
function applied to the object Axes3D. If you define multiple series, you can accumulate several calls to the 
bar() function in the same 3D visualization (see Figure 7-56).

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
x = np.arange(8)
y = np.random.randint(0,10,8)
y2 = y + np.random.randint(0,3,8)
y3 = y2 + np.random.randint(0,3,8)
y4 = y3 + np.random.randint(0,3,8)
y5 = y4 + np.random.randint(0,3,8)
clr = ['#4bb2c5', '#c5b47f', '#EAA228', '#579575', '#839557', '#958c12', '#953579', '#4b5de4']
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.bar(x,y,0,zdir='y',color=clr)
ax.bar(x,y2,10,zdir='y',color=clr)
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ax.bar(x,y3,20,zdir='y',color=clr)
ax.bar(x,y4,30,zdir='y',color=clr)
 ax.bar(x,y5,40,zdir='y',color=clr)
ax.set_xlabel('X Axis')
ax.set_ylabel('Y Axis')
ax.set_zlabel('Z Axis')
ax.view_init(elev=40)

Figure 7-56.  A 3D bar chart

�Multipanel Plots
So far you’ve seen different ways of representing data through a chart. You saw how to see more charts in the 
same figure by separating them with subplots. In this section, you deepen your understanding of this topic 
by analyzing more complex cases.

�Display Subplots Within Other Subplots
Now an even more advanced method is explained: the ability to view charts within others, enclosed within 
frames. Because you are dealing with frames, that is, Axes objects, you need to separate the main Axes (i.e., 
the general chart) from the frame you want to add that will be another instance of Axes. To do this, you use 
the figures() function to get the Figure object, on which you will define two different Axes objects using the 
add_axes() function. See the result of this example in Figure 7-57.

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_axes([0.1,0.1,0.8,0.8])
inner_ax = fig.add_axes([0.6,0.6,0.25,0.25])

Chapter 7 ■ Data Visualization with matplotlib and Seaborn



242

Figure 7-57.  A subplot is displayed within another plot

To better understand the effect of this mode of display, you can fill the previous Axes with real data, as 
shown in Figure 7-58.

import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_axes([0.1,0.1,0.8,0.8])
inner_ax = fig.add_axes([0.6,0.6,0.25,0.25])
x1 = np.arange(10)
y1 = np.array([1,2,7,1,5,2,4,2,3,1])
x2 = np.arange(10)
y2 = np.array([1,3,4,5,4,5,2,6,4,3])
ax.plot(x1,y1)
inner_ax.plot(x2,y2)
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Figure 7-58.  A more realistic visualization of a subplot within another plot

�Grids of Subplots
You have already seen the creation of subplots. It is quite simple to add subplots using the subplots() 
function and then dividing a plot into sectors. matplotlib allows you to manage even more complex cases 
using another function called GridSpec(). This subdivision allows splitting the drawing area into a grid of 
subareas, to which you can assign one or more of them to each subplot, so that in the end you can obtain 
subplots with different sizes and orientations, as you can see in Figure 7-59.

import matplotlib.pyplot as plt
gs = plt.GridSpec(3,3)
fig = plt.figure(figsize=(6,6))
fig.add_subplot(gs[1,:2])
fig.add_subplot(gs[0,:2])
fig.add_subplot(gs[2,0])
fig.add_subplot(gs[:2,2])
fig.add_subplot(gs[2,1:])
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Figure 7-59.  Subplots with different sizes can be defined on a grid of subareas

Now that it’s clear to you how to manage the grid by assigning the various sectors to the subplot, it’s 
time to see how to use these subplots. In fact, you can use the Axes object returned by each add_subplot() 
function to call the plot() function and draw the corresponding plot (see Figure 7-60).

import matplotlib.pyplot as plt
import numpy as np
gs = plt.GridSpec(3,3)
fig = plt.figure(figsize=(6,6))
x1 = np.array([1,3,2,5])
y1 = np.array([4,3,7,2])
x2 = np.arange(5)
y2 = np.array([3,2,4,6,4])
s1 = fig.add_subplot(gs[1,:2])
s1.plot(x,y,'r')
s2 = fig.add_subplot(gs[0,:2])
s2.bar(x2,y2)
s3 = fig.add_subplot(gs[2,0])
s3.barh(x2,y2,color='g')
s4 = fig.add_subplot(gs[:2,2])
s4.plot(x2,y2,'k')
s5 = fig.add_subplot(gs[2,1:])
s5.plot(x1,y1,'b^',x2,y2,'yo')
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Figure 7-60.  A grid of subplots can display many plots at the same time

�The Seaborn Library
Seaborn is a data visualization library based on the matplotlib library. Unlike matplotlib, this library 
already offers graphic solutions prepared with incorporated graphics and statistical calculation elements. 
This library was specifically designed to work closely with pandas and its data structures.

First you need to install the seaborn library inside your virtual environment. If you are using the 
Anaconda platform, you can simply install it through Anaconda Navigator. Select the package among those 
available in the virtual environment you are working on and start the installation, as shown in Figure 7-61.
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Figure 7-61.  Installing Seaborn with Anaconda Navigator

Or you can install the seaborn library through the CMD.exe Prompt console. Enter the following 
command:

conda install seaborn

For those who do not have an Anaconda platform, you can still install the package through the PyPI 
system with the pip command.

pip install seaborn

Once Seaborn is installed, you can open an IPython session, or rather a Jupyter Notebook, and import 
the library:

import seaborn as sns

At this point you can begin to chart with Seaborn. This task is divided into three parts:

–– Selecting a theme

–– Loading a dataset

–– Creating the graph

Let’s start with an extremely simple example that introduces these three steps.
First you need to select a theme. By theme, I mean a series of graphic settings (shape, color, grid) that 

determine the graphic layout and style. In this regard, Seaborn provides a series of ready-made themes, 
which can be selected by using the set_theme() function and passing the name of the theme as an 
argument. If you want to use the default one, it is sufficient not to set any arguments to the function.

sns.set_theme()

Otherwise, you can specify the various styles and predefined color palettes according to your needs or 
tastes, specifying the optional parameters with relative names. As an example:

sns.set_theme(style='darkgrid', palette='Set2')

This example sets a graphic theme with a background of dark grids and one of the many color palettes 
available in the library.
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At this point, the next step is to load a dataset containing the points and information to be displayed in a 
graph. Later, you will see how to load data from a pandas dataframe, but for the moment you will use one of 
the many example datasets available in the library.

tips = sns.load_dataset("tips")
tips

As a result, you will obtain a dataframe (see Figure 7-62) containing a series of data relating to the tips 
left to restaurant waiters by different individuals, categorized by gender, by type of meal, and by the cost of 
the meal.

Figure 7-62.  The contents of the tip dataframe in the Seaborn library

Now that you have looked at the content of the dataframe, you might want to create a chart in which 
the different tips (x-axis) are represented in relation to the bill paid (y-axis). To make a graph with Seaborn, 
you use the relplot() function. This function accepts a large number of parameters, which will then specify 
how the different dataframe data will be associated with different characteristics of the chart. In this case, it 
is very simple, since you only want to relate the values contained in the Tip and Total_Bill columns on the 
Cartesian axes.

sns.relplot(
    data=tips,
    x='total_bill', y='tip',
)
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In this case, you obtain a scatter plot identical to the one shown in Figure 7-63.

Figure 7-63.  Seaborn scatter plot showing the relationship between tips and bill paid

You can see the tendency of the points to a certain linear relationship, which tends to define a tip value 
of 20 percent of the bill paid, even though there is a good probability that the tips are less than this value and 
a very small probability that they are higher.

You can move forward with the data analysis by adding more information to your graph. Taking a look 
at the tips dataframe, you can see that each tip is associated with the gender of the payer. Let’s see if there 
is a different tendency between these two genders in giving tips. You need to insert the gender information 
into the graph, differentiating the appearance of the points represented using the style and hue parameters, 
which respectively indicate the shape of the point and its color.

sns.relplot(
    data=tips,
    x='total_bill', y='tip',
    hue='sex', style='sex',
)
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When you run the code, you will get a chart identical to the one shown in Figure 7-64.

Figure 7-64.  Scatter plot in which the dots separate the data relating to the payer's gender

In this case, it is clear that there is no distinction in the behavior of the payers, regardless of whether 
they are men or women.

But Seaborn is not limited only to graphical representations, rather it offers statistical tools that analyze 
the data to be displayed and add graphical components with statistical information as a result. In the scatter 
plot example, there is a discrete linear relationship between the amount of tips and the bill paid. Well, 
Seaborn offers a dedicated function called lmplot(). It makes a scatter plot graph like the one made earlier 
with relplot(), but with the addition of a graph showing the regression fit on the base scatter plot.

sns.lmplot(data=tips, x='total_bill', y='tip')
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Running this function, you will get a scatter plot like the one shown in Figure 7-65.

Figure 7-65.  Scatter plot with a linear regression graphic element

As you can see, what may at first appear to be a 20 percent trend with a quick scan has been proven 
wrong. Looking at the trend of the straight line, it is clear that this value becomes gradually smaller as the 
amount paid increases. It can therefore be assumed that there is a 20 percent trend in tipping for small bill 
expenses like $10, but then as the figure increases, the tips will gradually decrease in percentage (although 
the tip figure apparently always increases).

Continuing this data analysis approach, you previously made the assumption that the percentage of tips 
given did not depend on the gender of the payer. You therefore can represent the previous graph taking into 
account this subdivision by gender.

sns.lmplot(data=tips, x='total_bill', y='tip', hue='sex')

Chapter 7 ■ Data Visualization with matplotlib and Seaborn



251

Running this function, you obtain a scatter plot like the one shown in Figure 7-66.

Figure 7-66.  The scatter plot with linear regressions performed by gender

As you can see, the assumption you made with a quick glance proved to be true. The linear regression 
lines are virtually identical for men and women.

But what if you wanted to have statistical information in numerical form and not just as graphics? So far 
you have seen that Seaborn can add elements graphically for statistical evaluations such as linear regression 
on a set of points. However, to add precise numerical values to be reported on the scatter plot, it is necessary 
to obtain them using the SciPy library.

If you want to add these numbers to your chart, you have to add a few lines of code to the previous case 
(the one without distinction of gender, given that the statistics are almost the same).

import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats

g = sns.lmplot(data=tips, x='total_bill', y='tip')

def annotate(data, **kws):
    slope, intercept, r, p, std_err = stats.linregress(data['total_bill'],data['tip'])
    ax = plt.gca()
    �ax.text(.05, .8, 'y={0:.1f}x+{1:.1f}, r={2:.2f}, \np={3:.2g}, std_err={4:.3f}'.

format(slope,intercept,r,p, std_err),
            transform=ax.transAxes)

g.map_dataframe(annotate)
plt.show()
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The scatter plot is thus obtained with all the statistical information of the linear regression, such as the 
coefficients of the line, the rho and p values, and the standard deviation (see Figure 7-67).

Figure 7-67.  Scatter plot with addition of linear regression statistic values obtained from SciPy

A further and interesting approach with Seaborn is to graphically study the statistical distributions 
of a series of samples. Being able to graphically observe how certain values are distributed allows you to 
acquire a lot of information about the types of values you are studying. For example, using the tips dataframe 
example, with Seaborn it is possible to visualize the distribution of the values of the tips and the bills paid, to 
carry out an analysis on the sample taken into consideration. In this regard, the jointplot() function allows 
you to keep the graph of the scatter plot like the one seen previously, but add the distributions of the values 
of the points on the x-axis and y-axis as bar plots corresponding to each axis.

sns.jointplot(data=tips, x='total_bill', y='tip')
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By performing this simple function, you obtain a splendid scatter plot like the one shown in Figure 7-68.

Figure 7-68.  Scatter plot with addition of distributions of values on both axes

At a quick glance, you can see how the two distributions are very similar, mainly centering with their 
maximum value on a $15 bill and a $3 tip. It is possible to obtain other useful information on the population 
of the samples, for example, by reintroducing the gender distinction. In this case, it is sufficient to add the 
sex value to the hue parameter.

sns.jointplot(data=tips, x='total_bill', y='tip', hue='sex')
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If you run this function, you obtain a scatter plot similar to the one shown in Figure 7-69.

Figure 7-69.  Scatter plot with populations distinguished by gender, with relative distributions of values

The values present in the dataframe relate more to males than to females. As far as distributions are 
concerned, it would seem that men tend to pay slightly more expensive bills at restaurants (perhaps because 
they eat more or perhaps because they could be more gallant... ), while no differences in “generosity” can 
be deduced between the two sexes, as the maximum points are equivalent between the two distributions. In 
the case of accounts, although the distribution of the male population is greater, the maximum point is 
shifted toward higher figures.

So far you have used one of the many datasets available within the library, but in real cases, you will 
have to use dataframes external to it. Consider as an example one of the dataframes you used for matplotlib 
to generate multiseries bar plots.

import numpy as np
import pandas as pd
data = {'type':['A','B','C','D','E'],
        'series1':[1,3,4,3,5],
        'series2':[2,4,5,2,4],
        'series3':[3,2,3,1,3]}
df = pd.DataFrame(data)
df
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Running the code, you will get the dataframe shown in Figure 7-70.

Figure 7-70.  Dataframe to be used to generate a multiseries bar plot with Seaborn

But the dataframe in this form is not congenial to be used with Seaborn. It is appropriate to transform 
it into a different form. Indeed, in the dataframe, you have three columns of the same type: series1, series2, 
and series3. You can concatenate these three columns into one, adding a new column containing the name 
of these as a value. To do this, you can use unpivoting, which with pandas is achieved with the merge() 
function.

df_unpivot = pd.melt(df, id_vars='type', value_vars=['series1', 'series2', 'series3'])
df_unpivot

By performing the unpivoting operation, you will get a new dataframe like the one shown in Figure 7-71.
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Figure 7-71.  The result of unpivoting the starting dataframe
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Now that you have a dataframe of suitable structure to be used with Seaborn, you can use the barplot() 
function to generate the chart.

import seaborn as sns
%matplotlib inline
sns.barplot(data=df_unpivot, x='type', y='value', hue='variable')

Running the code, you will get a bar plot like the one shown in Figure 7-72.

Figure 7-72.  The multiseries bar plot

What you’ve seen here is just one of the many graphical possibilities available with Seaborn. For each 
case study, it is advisable to look for a graphical modality and a relative graphical-statistical approach that 
is adequate. Given the enormity of possible cases, the best advice is to look in the official documentation 
(https://seaborn.pydata.org/index.html) for the best solution.

�Conclusions
In this chapter, you received all the fundamental aspects of the matplotlib library, and through a series 
of examples, you learned about the basic tools for handling data visualization. You have become familiar 
with various examples of how to develop different types of charts with a few lines of code. The chapter then 
went on to introduce, with a series of examples, the seaborn library, which extends the graphical aspects of 
matplotlib with stat elements.

This chapter concludes the part of the book about the libraries that provide the basic tools to perform 
data analysis. In the next chapter, you begin to learn about topics most closely related to data analysis.
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CHAPTER 8

Machine Learning with scikit-learn

In the chain of processes that make up data analysis, the construction phase of predictive models and their 
validation are done by a powerful library called scikit-learn. In this chapter, you’ll see some examples that 
illustrate the basic construction of predictive models with some different methods.

�The scikit-learn Library
scikit-learn is a Python module that integrates many machine learning algorithms. This library was 
developed initially by Cournapeu in 2007, but the first real release was in 2010.

This library is part of the SciPy (Scientific Python) group, which is a set of libraries created for scientific 
computing and especially for data analysis, many of which are discussed in this book. Generally, these 
libraries are defined as SciKits, hence the first part of the name of this library. The second part of the library’s 
name is derived from machine learning, the discipline pertaining to this library.

�Machine Learning
Machine learning is a discipline that deals with the study of methods for pattern recognition in datasets 
undergoing data analysis. In particular, it deals with the development of algorithms that learn from data and 
make predictions. Each methodology is based on building a specific model.

There are many methods that belong to the learning machine, each with its unique characteristics, 
which are specific to the nature of the data and the predictive model that you want to build. The choice of 
which method to apply is called a learning problem.

The data to be subjected to a pattern in the learning phase can be arrays composed of a single value per 
element, or of a multivariate value. These values are often referred to as features or attributes.

�Supervised and Unsupervised Learning
Depending on the type of the data and the model to be built, you can separate learning problems into two 
broad categories—supervised and unsupervised.
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�Supervised Learning
They are the methods in which the training set contains additional attributes that you want to predict (the 
target). Thanks to these values, you can instruct the model to provide similar values when you have to 
submit new values (the test set).

•	 Classification—The data in the training set belong to two or more classes or 
categories; then, the data, already being labeled, allow you to teach the system to 
recognize the characteristics that distinguish each class. When you need to consider 
a new value unknown to the system, the system can evaluate its class according to its 
characteristics.

•	 Regression—When the value to be predicted is a continuous variable. The simplest 
case to understand is when you want to find the line that describes the trend from a 
series of points represented in a scatterplot.

�Unsupervised Learning
These are the methods in which the training set consists of a series of input values, x, without any 
corresponding target value.

•	 Clustering—The goal of these methods is to discover groups of similar examples in a 
dataset.

•	 Dimensionality reduction—Reduction of a high-dimensional dataset to one with only 
two or three dimensions is useful not just for data visualization, but for converting 
data of very high dimensionality into data of much lower dimensionality such that 
each of the lower dimensions conveys much more information.

In addition to these two main categories, there is another group of methods that serves to validate and 
evaluate the models.

�Training Set and Testing Set
Machine learning enables the system to learn properties of a model from a dataset and apply these 
properties to new data. This is because a common practice in machine learning is to evaluate an algorithm. 
This valuation consists of splitting the data into two parts, one called the training set, which is used to learn 
the properties of the data, and the other called the testing set, on which to test these properties.

�Supervised Learning with scikit-learn
In this chapter, you see a number of examples of supervised learning.

•	 Classification, using the Iris Dataset

•	 K-Nearest Neighbors Classifier

•	 Support Vector Machines (SVC)

•	 Regression, using the Diabetes Dataset

•	 Linear Regression

•	 Support Vector Machines (SVR)
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Supervised learning consists of learning possible patterns between two or more features reading values 
from a training set; the learning is possible because the training set contains known results (target or labels). 
All models in scikit-learn are referred to as supervised estimators, using the fit(x, y) function that 
does the training. x comprises the features observed, while y indicates the target. Once the estimator has 
carried out the training, it can predict the value of y for any new observation x not labeled. This operation is 
completed using the predict(x) function.

�The Iris Flower Dataset
The Iris Flower Dataset is a particular dataset used for the first time by Sir Ronald Fisher in 1936. It is often 
also called the Anderson Iris Dataset, after the person who collected the data by measuring the size of the 
various parts of the iris. In this dataset, data from three different species of iris (Iris silky, virginica Iris, and 
Iris versicolor) are collected. These data correspond to the length and width of the sepals and the length and 
width of the petals (see Figure 8-1).

Figure 8-1.  Iris versicolor and the petal and sepal width and length

This dataset is currently being used as a good example for many types of analysis, in particular for the 
problems of classification, which can be approached by means of machine learning methodologies. It is no 
coincidence then that this dataset is provided with the scikit-learn library as a 150x4 NumPy array.

Now you will study this dataset in detail, importing it into a Jupyter Notebook or into a normal Python 
session.

from sklearn import datasets
iris = datasets.load_iris()
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In this way, you loaded all the data and metadata concerning the Iris Dataset into the iris variable. 
In order to see the values of the data collected in this variable, it is sufficient to call the data attribute of the 
iris variable.

iris.data
Out[ ]:
array([[ 5.1,  3.5,  1.4,  0.2],
       [ 4.9,  3. ,  1.4,  0.2],
       [ 4.7,  3.2,  1.3,  0.2],
       [ 4.6,  3.1,  1.5,  0.2],
       ...

As you can see, you get an array of 150 elements, each containing four numeric values: the size of sepals 
and petals respectively.

To determine instead what kind of flower belongs to each item, refer to the target attribute.

iris.target
Out[ ]:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

You obtain 150 items with three possible integer values (0, 1, and 2), which correspond to the three 
species of iris. To determine the correspondence between the species and number, you have to call the 
target_names attribute.

iris.target_names
Out[ ]:
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

To better understand this dataset, you can use the matplotlib library, using the techniques you learned 
in Chapter 7. Therefore create a scatterplot that displays the three different species in three different colors. 
The x-axis will represent the length of the sepal, while the y-axis will represent the width of the sepal.

import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from sklearn import datasets
iris = datasets.load_iris()
x = iris.data[:,0]  #X-Axis - sepal length
y = iris.data[:,1]  #Y-Axis - sepal length
species = iris.target     #Species
x_min, x_max = x.min() - .5,x.max() + .5
y_min, y_max = y.min() - .5,y.max() + .5
#SCATTERPLOT WITH MATPLOTLIB
plt.figure()
plt.title('Iris Dataset - Classification By Sepal Sizes')
plt.scatter(x,y, c=species)
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plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()

As a result, you get the scatterplot shown in Figure 8-2. The blue ones are the Iris setosa, the green ones 
are the Iris versicolor, and red ones are the Iris virginica.

From Figure 8-2 you can see how the Iris setosa features differ from the other two, forming a cluster of 
blue dots separate from the others.

Figure 8-2.  The different species of irises are shown with different colors

Try to follow the same procedure, but this time using the other two variables—that is, the measure of 
the length and width of the petal. You can use the same code and change just a few values.

import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from sklearn import datasets
iris = datasets.load_iris()
x = iris.data[:,2]  #X-Axis - petal length
y = iris.data[:,3]  #Y-Axis - petal length
species = iris.target     #Species
x_min, x_max = x.min() - .5,x.max() + .5
y_min, y_max = y.min() - .5,y.max() + .5
#SCATTERPLOT
plt.figure()
plt.title('Iris Dataset - Classification By Petal Sizes', size=14)
plt.scatter(x,y, c=species)
plt.xlabel('Petal length')
plt.ylabel('Petal width')
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plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())

The result is the scatterplot shown in Figure 8-3. In this case, the division between the three species is 
much more evident. As you can see, you have three different clusters.

Figure 8-3.  The different species of irises are shown with different colors

�The PCA Decomposition
You have seen how the three species can be characterized, taking into account four measurements of the 
petal and sepal sizes. It represented two scatterplots, one for the petals and one for sepals, but how can you 
unify the whole thing? Four dimensions are a problem that even a 3D scatterplot cannot solve.

In this regard, a special technique called Principal Component Analysis (PCA) has been developed. This 
technique allows you to reduce the number of dimensions of a system, keeping all the information for the 
characterization of the various points. The new dimensions are called principal components.

Hence, PCA is employed before applying the machine learning algorithm, as it minimizes the number 
of variables used. It does this by analyzing the contribution of each of them to the maximum amount of 
variance in the dataset. It determines which of these features do not contribute significantly (they provide 
the same information as other features) and discards them, eliminating them from the calculation of the 
machine learning model. This greatly lightens the model and the calculations related to it.

This technique compresses the number of features involved in the machine learning calculation, 
creating new ones (or rather transforming the existing ones) in a smaller number, but with the same 
information as the starting dataset (approximation).

From a strictly mathematical point of view, from the input data matrix X (num_observations x 
num_features), the covariance matrix Cov(X) is obtained, which is then used to calculate the eigenvectors 
(principal components) and their corresponding eigenvalues. The k eigenvectors obtained are the principal 
components (see Figure 8-4). The first k principal components are the eigenvectors corresponding to the k 
largest eigenvalues.
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Figure 8-4.  The processes involved in the PCA technique

Let's put this into practice using the Iris Dataset. You saw in the previous section that this dataset is 
made up of four features. You can apply the PCA method to analyze this technique in detail. To see if it 
is possible to reduce this number but still keep as much of the information as possible for the machine 
learning model, you write the following code:

from sklearn.decomposition import PCA
import numpy as np

covar_matrix = PCA(n_components=4)
covar_matrix.fit(iris.data)
variance = covar_matrix.explained_variance_ratio_
var = np.cumsum(np.round(variance, decimals=3)*100)
var
Out[ ]:
array([ 92.5, 97.8, 99.5, 100. ])

This code first imports the PCA() function from the sklearn.decomposition module and uses it 
to derive the covariance matrix. In this case, the technique considers all four features in the calculation 
(therefore, n = k) by imposing the n_components parameter equal to 4. Then it calculates the eigenvalue 
decomposition on this matrix using the fit() method. At this point, you can evaluate the contribution of 
each of the four features to the maximum value of the dataset variance. You extract the variance and then, 
with the NumPy function cumsum(), you obtain the cumulative contribution as a percentage made by each 
added feature. From the result, you can see that even if you reduced the size of the input dataset to just one 
feature, you would still retain 92 percent of the information. It can therefore be said that the information of a 
single feature could already be almost sufficient to obtain a good machine learning model. You can see it all 
graphically through matplotlib.

plt.ylabel('% Variance explained')
plt.xlabel('# of Features')
plt.title('PCA Analysis')
plt.ylim(90, 100.5)
plt.xticks([0, 1, 2, 3], [1,2,3,4])
plt.axvline(2, linestyle='--', c='#bbbbbb' )
plt.plot(var)

Running this code produces a plot like the one shown in Figure 8-5.
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Figure 8-5.  The contribution of each feature to the total variance

As you can clearly see from Figure 8-5, the use of three features is more than enough to build a good 
model, with a value of 99.5 percent. The use of a fourth feature is almost useless for this purpose, and it can 
be eliminated, thus simplifying the calculation.

In this case, you can reduce the system from four to three dimensions and plot the results in a 3D 
scatterplot.

The scikit-learn function that allows you to do the dimensional reduction is the fit_transform() 
function. It belongs to the PCA object. Apply the functions and methods you just used again.

from sklearn.decomposition import PCA
x_reduced = PCA(n_components=3).fit_transform(iris.data)

In addition, in order to visualize the new values, you will use a 3D scatterplot using the mpl_toolkits.
mplot3d module of matplotlib. If you don’t remember how to do this, see the section called “Scatter Plots in 
3D” in Chapter 7.

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets
from sklearn.decomposition import PCA
iris = datasets.load_iris()
species = iris.target     #Species
x_reduced = PCA(n_components=3).fit_transform(iris.data)
#SCATTERPLOT 3D
fig = plt.figure()
ax = Axes3D(fig)
ax.set_title('Iris Dataset by PCA', size=14)
ax.scatter(x_reduced[:,0],x_reduced[:,1],x_reduced[:,2], c=species)
ax.set_xlabel('First eigenvector')
ax.set_ylabel('Second eigenvector')
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ax.set_zlabel('Third eigenvector')
ax.w_xaxis.set_ticklabels(())
ax.w_yaxis.set_ticklabels(())
ax.w_zaxis.set_ticklabels(())

The result will be the scatterplot shown in Figure 8-6. The three species of iris are well characterized 
with respect to each other to form a cluster.

Figure 8-6.  3D scatterplot with three clusters representative of each species of iris

�K-Nearest Neighbors Classifier
Now, you will perform a classification, and to do this operation with the scikit-learn library, you need a 
classifier.

Given a new measurement of an iris flower, the task of the classifier is to determine to which of the three 
species it belongs. The simplest possible classifier is the nearest neighbor. This algorithm searches within the 
training set for the observation that most closely approaches the new test sample.

In fact, the mechanism behind the KNN algorithm is one of the simplest and most direct in machine 
learning. Despite this, KNN remains one of the most used techniques in this discipline and not only for 
classification, but also for other problems such as regression and outlier detection.

The algorithm first calculates the distance between the new data point to be classified in the 
(multidimensional) feature space and all the other data points whose class it belongs to (or has been 
previously evaluated). To calculate the distance between two points you can use different techniques such as 
Euclidean (the one we all study at school), Minkowski, Manhattan, and so on. The Euclidean method would 
appear to be the best, but in reality for a large number of dimensions, this is no longer so valid.

Once the distance has been calculated, the KNN algorithm selects, among all the points, the K points 
closest to the one to be classified. This K number is what gives the “K-Nearest Neighbors” algorithm its 
name. In a classification problem, the new point will be awarded to the class that has the most points among 
the K-nearest neighbors. See Figure 8-7.
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Figure 8-7.  The KNN mechanism of classification

A very important thing to consider at this point are the concepts of training set and testing set (already 
seen in Chapter 1). Indeed, if you have only a single dataset of data, it is important not to use the same data 
both for the test and for the training. In this regard, the elements of the dataset are divided into two parts, 
one dedicated to train the algorithm and the other to perform its validation.

Thus, before proceeding, you have to divide your Iris Dataset into two parts. However, it is wise to 
randomly mix the array elements and then make the division. In fact, often the data may have been collected 
in a particular order, and in your case the Iris Dataset contains items sorted by species. To blend elements 
of the dataset, you use a NumPy function called random.permutation(). The mixed dataset consists of 150 
different observations; the first 140 are used as the training set, the remaining 10 as the test set.

import numpy as np
from sklearn import datasets
np.random.seed(0)
iris = datasets.load_iris()
x = iris.data
y = iris.target
i = np.random.permutation(len(iris.data))
x_train = x[i[:-10]]
y_train = y[i[:-10]]
x_test = x[i[-10:]]
y_test = y[i[-10:]]

Now you can apply the K-Nearest Neighbor algorithm. Import the KNeighborsClassifier, call the 
constructor of the classifier, and then train it with the fit() function.

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(x_train,y_train)
KNeighborsClassifier(algorithm='auto',
                     leaf_size=30,
                     metric='minkowski',
                     metric_params=None,
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                     n_neighbors=5,
                     p=2,
                     weights='uniform')

Now that you have a predictive model that consists of the knn classifier, trained by 140 observations, you 
will find out how it is valid. The classifier should correctly predict the species of iris of the ten observations of 
the test set. In order to obtain the prediction, you have to use the predict() function, which will be applied 
directly to the predictive model, knn. Finally, you compare the results predicted with the actual observed 
results contained in y_test.

knn.predict(x_test)
Out[ ]: array([1, 2, 1, 0, 0, 0, 2, 1, 2, 0])
y_test
Out[ ]: array([1, 1, 1, 0, 0, 0, 2, 1, 2, 0])

You can see that you obtained a 10 percent error. You can visualize all this using decision boundaries in 
a space represented by the 2D scatterplot of sepals.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load_iris()
x = iris.data[:,:2]      #X-Axis - sepal length-width
y = iris.target          #Y-Axis - species
x_min, x_max = x[:,0].min() - .5,x[:,0].max() + .5
y_min, y_max = x[:,1].min() - .5,x[:,1].max() + .5
#MESH
cmap_light = ListedColormap(['#AAAAFF','#AAFFAA','#FFAAAA'])
h = .02
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
knn = KNeighborsClassifier()
knn.fit(x,y)
Z = knn.predict(np.c_[xx.ravel(),yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,Z,cmap=cmap_light, shading='auto')
#Plot the training points
plt.scatter(x[:,0],x[:,1],c=y)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
Out[ ]: (1.5, 4.900000000000003)
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You get a subdivision of the scatterplot in decision boundaries, as shown in Figure 8-8.

Figure 8-8.  The three decision boundaries are represented by three different colors

You can do the same thing considering the size of the petals.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load_iris()
x = iris.data[:,2:4]      #X-Axis - petals length-width
y = iris.target           #Y-Axis - species
x_min, x_max = x[:,0].min() - .5,x[:,0].max() + .5
y_min, y_max = x[:,1].min() - .5,x[:,1].max() + .5
#MESH
cmap_light = ListedColormap(['#AAAAFF','#AAFFAA','#FFAAAA'])
h = .02
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
knn = KNeighborsClassifier()
knn.fit(x,y)
Z = knn.predict(np.c_[xx.ravel(),yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,Z,cmap=cmap_light, shading='auto')
#Plot the training points
plt.scatter(x[:,0],x[:,1],c=y)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
Out[ ]: (-0.40000000000000002, 2.9800000000000031)

As shown in Figure 8-9, you have the corresponding decision boundaries regarding the characterization 
of iris flowers taking into account the size of the petals.
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Figure 8-9.  The decision boundaries on a 2D scatterplot describing the petal sizes

�Diabetes Dataset
Among the various datasets available in the scikit-learn library, there is the diabetes dataset. This dataset 
was used for the first time in 2004 (Annals of Statistics, by Efron, Hastie, Johnstone, and Tibshirani). Since 
then it has become an example widely used to study various predictive models and their effectiveness.

To upload the data contained in this dataset, you must first import the datasets module of the scikit-
learn library and then call the load_diabetes() function to load the dataset into a variable called diabetes.

from sklearn import datasets
 diabetes = datasets.load_diabetes()

This dataset contains physiological data collected on 442 patients and, as a corresponding target, an 
indicator of the disease progression after a year. The physiological data occupy the first ten columns with 
values that indicate the following, respectively:

•	 Age

•	 Sex

•	 Body mass index

•	 Blood pressure

•	 S1, S2, S3, S4, S5, and S6 (six blood serum measurements)

These measurements can be obtained by calling the data attribute. If you check the values in the 
dataset, you will find values very different from what you would have expected. For example, look at the ten 
values for the first patient.

diabetes.data[0]
Out[ ]:
array([ 0.03807591,  0.05068012,  0.06169621,  0.02187235, -0.0442235 ,
       -0.03482076, -0.04340085, -0.00259226,  0.01990842, -0.01764613])
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These values are in fact the result of processing. Each of the ten values was mean-centered and 
subsequently scaled by the standard deviation times the number of samples. Checking will reveal that the 
sum of the squares of each column is equal to 1. Try doing this calculation with the age measurements; you 
will obtain a value very close to 1.

np.sum(diabetes.data[:,0]**2)
Out[ ]: 1.0000000000000746

Even though these values are normalized and therefore difficult to read, they continue to express the 
ten physiological characteristics and therefore have not lost their value or statistical information.

As for the indicators of the progress of the disease, that is, the values that must correspond to the results 
of your predictions, these are obtainable by means of the target attribute.

diabetes.target
Out[ ]:
array([ 151.,   75.,  141.,  206.,  135.,   97.,  138.,   63.,  110.,
        310.,  101.,   69.,  179.,  185.,  118.,  171.,  166.,  144.,
         97.,  168.,   68.,   49.,   68.,  245.,  184.,  202.,  137
        . . .

You obtain a series of 442 integer values between 25 and 346.

�Linear Regression: The Least Square Regression
Linear regression is a procedure that uses data contained in the training set to build a linear model. The 
simplest is based on the equation of a rect with the two parameters a and b to characterize it. These 
parameters will be calculated so as to make the sum of the squared residuals as small as possible.

	 y a x c= +∗

	

In this expression, x is the training set, y is the target, b is the slope, and c is the intercept of the rect 
represented by the model. In scikit-learn, to use the predictive model for the linear regression, you must 
import the linear_model module and then use the manufacturer LinearRegression() constructor to create 
the predictive model, which you call linreg.

from sklearn import linear_model
linreg = linear_model.LinearRegression()

To practice with an example of linear regression, you can use the diabetes dataset described earlier. 
First you need to break the 442 patients into a training set (composed of the first 422 patients) and a test set 
(the last 20 patients).

from sklearn import datasets
diabetes = datasets.load_diabetes()
x_train = diabetes.data[:-20]
y_train = diabetes.target[:-20]
x_test = diabetes.data[-20:]
y_test = diabetes.target[-20:]
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Now apply the training set to the predictive model through the use of the fit() function.

linreg.fit(x_train,y_train)
Out[ ]: LinearRegression()

Once the model is trained, you can get the ten b coefficients calculated for each physiological variable, 
using the coef_ attribute of the predictive model.

linreg.coef_
Out[ ]:
array([  3.03499549e-01,  -2.37639315e+02,   5.10530605e+02,
         3.27736980e+02,  -8.14131709e+02,   4.92814588e+02,
         1.02848452e+02,   1.84606489e+02,   7.43519617e+02,
         7.60951722e+01])

If you apply the test set to the linreg prediction model, you will get a series of targets to be compared 
with the values actually observed.

linreg.predict(x_test)
Out[ ]:
array([ 197.61846908,  155.43979328,  172.88665147,  111.53537279,
        164.80054784,  131.06954875,  259.12237761,  100.47935157,
        117.0601052 ,  124.30503555,  218.36632793,   61.19831284,
        132.25046751,  120.3332925 ,   52.54458691,  194.03798088,
        102.57139702,  123.56604987,  211.0346317 ,   52.60335674])
y_test
Out[ ]:
array([ 233.,   91.,  111.,  152.,  120.,   67.,  310.,   94.,  183.,
         66.,  173.,   72.,   49.,   64.,   48.,  178.,  104.,  132.,
        220.,   57.])

However, a good indicator of which prediction should be perfect is the variance. The closer the variance 
is to 1, the more perfect the prediction.

linreg.score(x_test, y_test)
Out[ ]: 0.58507530226905713

Now you will start with the linear regression, taking into account a single physiological factor, for 
example, you can start from age.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn import datasets
diabetes = datasets.load_diabetes()
x_train = diabetes.data[:-20]
y_train = diabetes.target[:-20]
x_test = diabetes.data[-20:]
y_test = diabetes.target[-20:]
x0_test = x_test[:,0]
x0_train = x_train[:,0]
x0_test = x0_test[:,np.newaxis]
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x0_train = x0_train[:,np.newaxis]
linreg = linear_model.LinearRegression()
linreg.fit(x0_train,y_train)
y = linreg.predict(x0_test)
plt.scatter(x0_test,y_test,color='k')
plt.plot(x0_test,y,color='b',linewidth=3)

Figure 8-10 shows the line representing the linear correlation between the ages of the patients and the 
disease progression.

Figure 8-10.  A linear regression represents a linear correlation between a feature and the targets

Actually, you have ten physiological factors in the diabetes dataset. Therefore, to have a more complete 
picture of all the training set, you can create a linear regression for every physiological feature, creating ten 
models and seeing the result for each of them through a linear chart.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn import datasets
diabetes = datasets.load_diabetes()
x_train = diabetes.data[:-20]
y_train = diabetes.target[:-20]
x_test = diabetes.data[-20:]
y_test = diabetes.target[-20:]
plt.figure(figsize=(8,12))
for f in range(0,10):
   xi_test = x_test[:,f]
   xi_train = x_train[:,f]
   xi_test = xi_test[:,np.newaxis]
   xi_train = xi_train[:,np.newaxis]
   linreg.fit(xi_train,y_train)
   y = linreg.predict(xi_test)
   plt.subplot(5,2,f+1)
   plt.scatter(xi_test,y_test,color='k')
   plt.plot(xi_test,y,color='b',linewidth=3)
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Figure 8-11 shows ten linear charts, each of which represents the correlation between a physiological 
factor and the progression of diabetes.

Figure 8-11.  Ten linear charts showing the correlations between physiological factors and the progression of 
diabetes
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�Support Vector Machines (SVMs)
Support Vector Machines are a number of machine learning techniques that were first developed in the 
AT&T laboratories by Vapnik and colleagues in the early 90s. The basis of this class of procedures is in fact 
an algorithm called Support Vector, which is a generalization of a previous algorithm called Generalized 
Portrait, developed in Russia in 1963 by Vapnik as well.

In simple words, the SVM classifiers are binary or discriminating models, working on two classes of 
differentiation. Their main task is basically to discriminate against new observations between two classes. 
During the learning phase, these classifiers project the observations in a multidimensional space called 
decision space and build a separation surface called the decision boundary that divides this space into two 
areas of belonging. In the simplest case, that is, the linear case, the decision boundary will be represented 
by a plane (in 3D) or by a straight line (in 2D). In more complex cases, the separation surfaces are curved 
shapes with increasingly articulated shapes.

Also for SVM, the data points are distributed in a multidimensional space, where the values of a specific 
feature are distributed on each axis. The purpose of SVM is to find a hyperplane separating the space 
between the two classes (see Figure 8-12).

Figure 8-12.  SVM divides the decision space into two areas, each for each class, defining a straight line 
(decision boundary)

The straight line that must be defined must not limit itself to separating the points of the two classes 
from each other, but must respond to particular requirements. SVM finds the points that are closest to the 
dividing line. These are called “support vectors” and they give the algorithm its name (see Figure 8-13).
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Figure 8-13.  SVM optimizes the decision boundary, maximizing the margin between support vector points

The distance between the support vectors and the decision boundary (the straight line) is called the 
margin. SVM's task is to maximize this margin. When the margin reaches its maximum value, then the 
decision boundary will be the optimal one.

SVM is a very flexible technique that lends itself well to many applications. It can be used both in 
regression with the SVR (Support Vector Regression) and in classification with the SVC (Support Vector 
Classification).

�Support Vector Classification (SVC)
If you want to better understand how this algorithm works, you can start by referring to the simplest case, 
that is the linear 2D case, where the decision boundary is a straight line separating the decision area into two 
parts. Take for example a simple training set where some points are assigned to two different classes. The 
training set will consist of 11 points (observations) with two different attributes that have values between 0 
and 4. These values will be contained within a NumPy array called x. Their belonging to one of two classes is 
defined by 0 or 1 values contained in another array, called y.

Visualize distribution of these points in space with a scatterplot, which will then be defined as a 
decision space (see Figure 8-14).

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
     [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])
y = [0]*6 + [1]*5
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)
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Figure 8-14.  The scatterplot of the training set displays the decision space

Now that you have defined the training set, you can apply the SVC (Support Vector Classification) 
algorithm. This algorithm will create a line (decision boundary) in order to divide the decision area into two 
parts (see Figure 8-15), and this straight line will be placed to maximize the distance of closest observations 
contained in the training set. This condition should produce two different portions in which all points of a 
same class should be contained.

Then you apply the SVC algorithm to the training set and to do so, first you define the model with the 
SVC() constructor defining the kernel as linear. (A kernel is a class of algorithms for pattern analysis.) Then 
you use the fit() function with the training set as an argument. Once the model is trained, you can plot the 
decision boundary with the decision_function() function. Then you draw the scatterplot and provide a 
different color to the two portions of the decision space.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
     [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='linear').fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.1)
plt.contour(X,Y,Z,colors=['k'], linestyles=['-'],levels=[0])
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)

In Figure 8-15, you can see the two portions containing the two classes. It can be said that the division is 
successful except for a dark dot in the lighter portion.
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Figure 8-15.  The decision area is split into two portions

Once the model has been trained, it is simple to understand how the predictions operate. Graphically, 
depending on the position occupied by the new observation, you will know its corresponding membership 
in one of the two classes.

Instead, from a more programmatic point of view, the predict() function will return the number of the 
corresponding class of belonging (0 for class in blue, 1 for the class in red).

svc.predict([[1.5,2.5]])
Out[ ]: array([0])
svc.predict([[2.5,1]])
Out[ ]: array([1])

A related concept in the SVC algorithm is regularization. It is set by the C parameter and a small value 
of C means that the margin is calculated using many or all of the observations around the line of separation 
(greater regularization), while a large value of C means that the margin is calculated on the observations 
near to the line separation (lower regularization). Unless otherwise specified, the default value of C is equal 
to 1. You can highlight points that participated in the margin calculation, identifying them through the 
support_vectors array.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
     [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='linear',C=1).fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.1)
plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--'],levels=[-1,0,1])
plt.scatter(svc.support_vectors_[:,0],svc.support_vectors_[:,1],s=120,facecolors='r')
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)
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These points are represented by rimmed circles in the scatterplot. Furthermore, they will be within an 
evaluation area in the vicinity of the separation line (see the dashed lines in Figure 8-16).

Figure 8-16.  The number of points involved in the calculation depends on the C parameter

To see the effect on the decision boundary, you can restrict the value to C = 0.1. Take a look at how 
many points will be taken into consideration.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
     [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='linear',C=0.1).fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.1)
plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--'],levels=[-1,0,1])
plt.scatter(svc.support_vectors_[:,0],svc.support_vectors_[:,1],s=120,facecolors='w')
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)

The points taken into consideration are increased and consequently the separation line (decision 
boundary) has changed orientation. But now there are two points that are in the wrong decision areas (see 
Figure 8-17).
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Figure 8-17.  The number of points involved in the calculation grows when C decreases

�Nonlinear SVC
So far you have seen the SVC linear algorithm defining a line of separation that was intended to split the two 
classes. There are also more complex SVC algorithms that can establish curves (2D) or curved surfaces (3D) 
based on the same principles of maximizing the distances between the points closest to the surface. This 
section looks at the system using a polynomial kernel.

As the name implies, you can define a polynomial curve that separates the area decision into two 
portions. The degree of the polynomial can be defined by the degree option. Even in this case, C is the 
coefficient of regularization. Try to apply an SVC algorithm with a polynomial kernel of third degree and 
with a C coefficient equal to 1.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
     [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='poly',C=1, degree=3).fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.1)
plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--'],levels=[-1,0,1])
plt.scatter(svc.support_vectors_[:,0],svc.support_vectors_[:,1],s=120,facecolors='w')
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)
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You get the situation shown in Figure 8-18.

Figure 8-18.  The decision space using an SVC with a polynomial kernel

Another type of nonlinear kernel is the Radial Basis Function (RBF). In this case, the separation curves 
tend to define the zones radially with respect to the observation points of the training set.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],
     [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])
y = [0]*6 + [1]*5
svc = svm.SVC(kernel='rbf', C=1, gamma=3).fit(x,y)
X,Y = np.mgrid[0:4:200j,0:4:200j]
Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z > 0,alpha=0.1)
plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--'],levels=[-1,0,1])
plt.scatter(svc.support_vectors_[:,0],svc.support_vectors_[:,1],s=120,facecolors='w')
plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)

In Figure 8-19, you can see the two portions of the decision with all points of the training set correctly 
positioned.

Chapter 8 ■ Machine Learning with scikit-learn



283

Figure 8-19.  The decision area using an SVC with the RBF kernel

�Plotting Different SVM Classifiers Using the Iris Dataset
The SVM example that you just saw is based on a very simple dataset. This section uses more complex 
datasets for a classification problem with SVC. In fact, it uses the previously used dataset: the Iris Dataset.

The SVC algorithm used earlier learned from a training set containing only two classes. In this case, you 
will extend the case to three classifications, as the Iris Dataset is split into three classes, corresponding to the 
three different species of flowers.

In this case, the decision boundaries intersect each other, subdividing the decision area (2D) or the 
decision volume (3D) into several portions.

Both linear models have linear decision boundaries (intersecting hyperplanes), while models with 
nonlinear kernels (polynomial or Gaussian RBF) have nonlinear decision boundaries. These boundaries are 
more flexible, with figures that are dependent on the type of kernel and its parameters.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
iris = datasets.load_iris()
x = iris.data[:,:2]
y = iris.target
h = .05
svc = svm.SVC(kernel='linear',C=1.0).fit(x,y)
x_min,x_max = x[:,0].min() - .5, x[:,0].max() + .5
y_min,y_max = x[:,1].min() - .5, x[:,1].max() + .5
h = .02
X, Y = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max,h))
Z = svc.predict(np.c_[X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z,alpha=0.1)
plt.contour(X,Y,Z,colors='k')
plt.scatter(x[:,0],x[:,1],c=y)
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In Figure 8-20, the decision space is divided into three portions separated by decision boundaries.

Figure 8-20.  The decision boundaries split the decision area into three different portions

Now it’s time to apply a nonlinear kernel to generate nonlinear decision boundaries, such as the 
polynomial kernel.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
iris = datasets.load_iris()
x = iris.data[:,:2]
y = iris.target
h = .05
svc = svm.SVC(kernel='poly',C=1.0,degree=3).fit(x,y)
x_min,x_max = x[:,0].min() - .5, x[:,0].max() + .5
y_min,y_max = x[:,1].min() - .5, x[:,1].max() + .5
h = .02
X, Y = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max,h))
Z = svc.predict(np.c_[X.ravel(),Y.ravel()])
Z = Z.reshape(X.shape)
plt.contourf(X,Y,Z,alpha=0.1)
plt.contour(X,Y,Z,colors='k')
plt.scatter(x[:,0],x[:,1],c=y)

Figure 8-21 shows how the polynomial decision boundaries split the area in a very different way 
compared to the linear case.
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Figure 8-21.  Even in the polynomial case, the three portions remain almost unchanged

Now you can apply the RBF kernel to see the difference in the distribution of areas. It is sufficient to 
update the kernel value with rbf, inside the svm.SVC() function.

svc = svm.SVC(kernel='rbf', gamma=3, C=1.0).fit(x,y)

Figure 8-22 shows how the RBF kernel generates radial areas.

Figure 8-22.  The kernel RBF defines radial decision areas

�Support Vector Regression (SVR)
The SVC method can be extended to solve regression problems. This method is called Support Vector 
Regression.

The model produced by SVC actually does not depend on the complete training set, but uses only a 
subset of elements, that is, those closest to the decision boundary. In a similar way, the model produced by 
SVR also depends only on a subset of the training set.
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This section demonstrates how the SVR algorithm uses the diabetes dataset, which you have seen in 
this chapter. By way of example, it refers only to the third physiological data. It performs three different 
regressions, one linear and two nonlinear (polynomial). The linear case produces a straight line, as the linear 
predictive model is very similar to the linear regression seen previously, whereas polynomial regressions are 
built from the second and third degrees. The SVR() function is almost identical to the SVC() function seen 
previously.

The only aspect to consider is that the test set of data must be sorted in ascending order.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn import datasets
diabetes = datasets.load_diabetes()
x_train = diabetes.data[:-20]
y_train = diabetes.target[:-20]
x_test = diabetes.data[-20:]
y_test = diabetes.target[-20:]
x0_test = x_test[:,2]
x0_train = x_train[:,2]
x0_test = x0_test[:,np.newaxis]
x0_train = x0_train[:,np.newaxis]
x0_test.sort(axis=0)
x0_test = x0_test*100
x0_train = x0_train*100
svr = svm.SVR(kernel='linear',C=1000)
svr2 = svm.SVR(kernel='poly',C=1000,degree=2)
svr3 = svm.SVR(kernel='poly',C=1000,degree=3)
svr.fit(x0_train,y_train)
svr2.fit(x0_train,y_train)
svr3.fit(x0_train,y_train)
y = svr.predict(x0_test)
y2 = svr2.predict(x0_test)
y3 = svr3.predict(x0_test)
plt.scatter(x0_test,y_test,color='k')
plt.plot(x0_test,y,color='b')
plt.plot(x0_test,y2,c='r')
plt.plot(x0_test,y3,c='g')
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The three regression curves are represented with three colors. The linear regression will be blue (the 
straight line); the polynomial of the second degree (the concave line upwards, i.e. the parabolic line) will be 
red; and the polynomial of the third degree will be green (see Figure 8-23).

Figure 8-23.  The three regression curves produce very different trends starting from the training set

�Conclusions
In this chapter you saw simple cases of regression and classification problems solved using the scikit-
learn library. Many concepts of the validation phase for a predictive model were presented in a practical 
way through some practical examples.

In the next chapter, you see a complete case in which all steps of data analysis are discussed by way of 
a single practical example. Everything is implemented in IPython Notebook, an interactive and innovative 
environment well suited for sharing every step of the data analysis. It includes interactive documentation 
that's useful as a report or as a web presentation.
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CHAPTER 9

Deep Learning with TensorFlow

This chapter introduces an overview of the world of deep learning and the artificial neural networks on 
which its techniques are based. Furthermore, among the Python frameworks for deep learning, you will use 
TensorFlow, which is an excellent tool for research and development of deep learning analysis techniques. 
With this library, you will see how to develop different models of neural networks that are the basis of deep 
learning. In particular, in this third edition, the explanations and example codes are based on the new 
TensorFlow 2.x version, which has seen the incorporation of Keras and a complete upheaval in the modules 
and implementation paradigms.

�Artificial Intelligence, Machine Learning, and Deep Learning
For anyone dealing with the world of data analysis, these three terms are ultimately very common on the 
web, in text, and on seminars related to the subject. But what is the relationship between them? And what do 
they really consist of?

In this section you read detailed definitions of these three terms. You discover how in recent decades, 
the need to create more and more elaborate algorithms, and to be able to make predictions and classify data 
more and more efficiently, has led to machine learning. Then you discover how, thanks to new technological 
innovations, and in particular to the computing power achieved by the GPU, deep learning techniques have 
been developed based on neural networks.

�Artificial Intelligence
The term artificial intelligence was first used by John McCarthy in 1956, at a time full of great hope and 
enthusiasm for the technology world. They were at the dawn of electronics and computers as large as whole 
rooms that could do a few simple calculations, but they did so efficiently and quickly compared to humans. 
They had glimpsed possible future developments of electronic intelligence.

But without going into the world of science fiction, the current definition best suited to artificial 
intelligence, often referred to as AI, can be summarized briefly with the following sentence:

Automatic processing on a computer capable of performing operations that would seem to 
be exclusively relevant to human intelligence.
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Hence the concept of artificial intelligence is a variable concept that varies with the progress of the 
machines themselves and with the concept of “exclusive human relevance.” While in the 60s and 70s, we saw 
artificial intelligence as the ability of computers to perform calculations and find mathematical solutions 
of complex problems “of exclusive relevance of great scientists,” in the 80s and 90s, AI matured in its ability 
to assess risks, resources, and make decisions. In the year 2000, with the continuous growth of computer 
computing potential, the possibility of these systems to learn with machine learning was added to the 
definition.

Finally, in the last few years, the concept of artificial intelligence has focused on visual and auditory 
recognition operations, which until recently were thought of as “exclusive human relevance.”

These operations include:

•	 Image recognition

•	 Object detection

•	 Object segmentation

•	 Language translation

•	 Natural language understanding

•	 Speech recognition

These problems are still under study, thanks to deep learning techniques.

�Machine Learning Is a Branch of Artificial Intelligence
In the previous chapter you saw machine learning in detail, with many examples of the different techniques 
for classifying or predicting data.

Machine learning (ML), with all its techniques and algorithms, is a large branch of artificial intelligence. 
In fact, you refer to it, while remaining within the ambit of artificial intelligence, when you use systems that 
are able to learn (learning systems) to solve various problems that shortly before had been “considered 
exclusive to humans.”

�Deep Learning Is a Branch of Machine Learning
Within the machine learning techniques, a further subclass can be defined, called deep learning. You saw in 
Chapter 8 that machine learning uses systems that can learn, and this can be done through features inside 
the system (often parameters of a fixed model) that are modified in response to input data intended for 
learning (the training set).

Deep learning techniques take a step forward. In fact, deep learning systems are structured so as not to 
have these intrinsic characteristics in the model, but these characteristics are extracted and detected by the 
system automatically as a result of learning itself. Among these systems that can do this, this chapter refers in 
particular to artificial neural networks.

�The Relationship Between Artificial Intelligence, Machine Learning, 
and Deep Learning
To sum up, in this section you have seen that machine learning and deep learning are actually subclasses of 
artificial intelligence. Figure 9-1 shows a schematization of classes in this relationship.
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Figure 9-1.  Schematization of the relationship between artificial intelligence, machine learning, and deep 
learning

�Deep Learning
In this section, you learn about some significant factors that led to the development of deep learning and see 
how, in the last few years, there have been many steps forward.

�Neural Networks and GPUs
In the previous section, you learned that in the field of artificial intelligence, deep learning has become 
popular only in the last few years precisely to solve problems of visual and auditory recognition.

In the context of deep learning, a lot of calculation techniques and algorithms have been developed in 
recent years, making the most of the potential of the Python language. But the theory behind deep learning 
actually dates back many years. In fact, the concept of the neural network was introduced in 1943, and the 
first theoretical studies on artificial neural networks and their applications were developed in the 60s.

The fact is that only in recent years the neural networks, with the related deep learning techniques that 
use them, have proved useful to solve many problems of artificial intelligence. This is due to the fact that 
only now are there technologies that can be implemented in a useful and efficient way.

In fact, at the application level, deep learning requires very complex mathematical operations that 
require millions or even billions of parameters. The CPUs of the 90s, even if they were powerful, were not 
able to perform these kinds of operations efficiently. Even today, the calculation with the CPUs, although 
considerably improved, requires long processing times. This inefficiency is due to the particular architecture 
of the CPUs, which have been designed to efficiently perform mathematical operations not required by 
neural networks.

A new kind of hardware has developed in recent decades, the Graphics Processing Unit (GPU), thanks to 
the enormous commercial drive of the video game market. In fact, this type of processor has been designed 
to manage more and more efficient vector calculations, such as multiplications between matrices, which is 
necessary for 3D reality simulations and rendering.

Thanks to this technological innovation, many deep learning techniques have been realized. In fact, to 
realize the neural networks and their learning, tensors (multidimensional matrices) are used, carrying out 
many mathematical operations. It is precisely this kind of work that GPUs can do more efficiently. Thanks to 
their contribution, the processing speed of deep learning is increased by several orders of magnitude (days 
instead of months).
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�Data Availability: Open Data Source, Internet of Things, and Big Data
Another very important factor affecting the development of deep learning is the huge amount of data that 
can be accessed. In fact, the data are the fundamental ingredient for the functioning of neural networks, 
both for the learning phase and for the verification phase.

Thanks to the spread of the Internet all over the world, now everyone can access and produce data. 
While a few years ago only a few organizations were providing data for analysis, today, thanks to the IoT 
(Internet of Things), many sensors and devices acquire data and make them available on networks. Not only 
that, even social networks and search engines (like Facebook, Google, and so on) can collect huge amounts 
of data, analyzing in real time millions of users connected to their services (called Big Data).

Today a lot of data related to the problems you want to solve with the deep learning techniques are 
easily available, many of them in free form (as open data source).

�Python
Another factor that contributed to the great success and diffusion of deep learning techniques was the 
Python programming language.

In the past, planning neural network systems was very complex. The only language able to carry out 
this task was C ++, a very complex language, difficult to use and known only to a few specialists. Moreover, 
in order to work with the GPU (necessary for this type of calculation), it was necessary to know CUDA 
(Compute Unified Device Architecture), the hardware development architecture of NVIDIA graphics cards 
with all their technical specifications.

Today, thanks to Python, the programming of neural networks and deep learning techniques has 
become high level. In fact, programmers no longer have to think about the architecture and the technical 
specifications of the graphics card (GPU), but can focus exclusively on the part related to deep learning. 
Moreover, the characteristics of the Python language enable programmers to develop simple and intuitive 
code. You have already tried this with machine learning in the previous chapter, and the same applies to 
deep learning.

�Deep Learning Python Frameworks
Over the past two years, many developer organizations and communities have been developing Python 
frameworks that are greatly simplifying the calculation and application of deep learning techniques. There is 
a lot of excitement about it, and many of these libraries perform the same operations almost competitively, 
but each of them is based on different internal mechanisms.

Among these frameworks available today for free, it is worth mentioning some that are gaining some 
success.

•	 TensorFlow is an open source library for numerical calculation that bases its use on 
data flow graphs. These are graphs where the nodes represent the mathematical 
operations and the edges represent tensors (multidimensional data arrays). Its 
architecture is very flexible and can distribute the calculations on multiple CPUs and 
on multiple GPUs.

•	 Caffe2 is a framework developed to provide an easy and simple way to work on deep 
learning. It allows you to test model and algorithm calculations using the power of 
GPUs in the cloud.

•	 PyTorch is a scientific framework completely based on the use of GPUs. It works in a 
highly efficient way and was recently developed and is still not well consolidated. It is 
still proving a powerful tool for scientific research.
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•	 Theano is the most used Python library in the scientific field for the development, 
definition, and evaluation of mathematical expressions and physical models. 
Unfortunately, the development team announced that new versions will no longer 
be released. However, it remains a reference framework thanks to the number of 
programs developed with this library, both in literature and on the web.

�Artificial Neural Networks
Artificial neural networks are a fundamental element for deep learning and their use is the basis of many, if 
not almost all, deep learning techniques. In fact, these systems can learn, thanks to their particular structure 
that refers to the biological neural circuits.

In this section, you see in more detail what artificial neural networks are and how they are structured.

�How Artificial Neural Networks Are Structured
Artificial neural networks are complex structures created by connecting simple basic components that are 
repeated in the structure. Depending on the number of these basic components and the type of connections, 
more and more complex networks will be formed, with different architectures, each of which will present 
peculiar characteristics regarding the ability to learn and solve different problems of deep learning.

Figure 9-2 shows an example of how a generic artificial neural network is structured.

Figure 9-2.  A schematization of how a generic artificial neural network is structured

The basic units are called nodes (the darker circles shown in Figure 9-2), which in the biological model 
simulate the functioning of a neuron within a neural network. These artificial neurons perform very simple 
operations, similar to their biological counterparts. They are activated when the total sum of the input 
signals they receive exceeds an activation threshold.

These nodes can transmit signals between them by means of connections, called edges, which simulate 
the functioning of biological synapses (the arrows shown in Figure 9-2). Through these edges, the signals 
sent by a neuron pass to the next one, behaving as a filter. That is, an edge converts the output message 
from a neuron, into an inhibitory or excitant signal, decreasing or increasing its intensity, according to 
preestablished rules (a different weight is generally applied for each edge).
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The neural network has a certain number of nodes used to receive the input signal from the outside 
(see Figure 9-2). This first group of nodes is usually represented in a column at the far left end of the 
neural network schema. This group of nodes represents the first layer of the neural network (input layer). 
Depending on the input signals received, some (or all) of these neurons will be activated by processing the 
received signal and transmitting the result as output to another group of neurons, through edges.

This second group is in an intermediate position in the neural network, and it is called the hidden layer. 
This is because the neurons of this group do not communicate with the outside, neither in input nor in 
output, and are therefore hidden. As you can see in Figure 9-2, each of these neurons has lots of incoming 
edges, often with all the neurons of the previous layer. Even these hidden neurons will be activated whether 
the total incoming signal will exceed a certain threshold. If affirmative, they will process the signal and 
transmit it to another group of neurons (in the right direction of the scheme shown in Figure 9-2). This group 
can be another hidden layer or the output layer, that is, the last layer that will send the results directly to the 
outside.

In general, you have a flow of data that will enter the neural network (from left to right), will be 
processed in a more or less complex way depending on the structure, and will produce an output result.

The behavior, capabilities, and efficiency of a neural network will depend exclusively on how the nodes 
are connected and the total number of layers and neurons assigned to each of them. All these factors define 
the neural network architecture.

�Single Layer Perceptron (SLP)
The Single Layer Perceptron (SLP) is the simplest neural network model and was designed by Frank 
Rosenblatt in 1958. Its architecture is represented in Figure 9-3.

Figure 9-3.  The Single Layer Perceptron (SLP) architecture

The Single Layer Perceptron (SLP) structure is very simple; it is a two-layer neural network, without 
hidden layers, in which a number of input neurons send signals to an output neuron through different 
connections, each with its own weight. Figure 9-4 shows in more detail the inner workings of this type of 
neural network.
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Figure 9-4.  A more detailed Single Layer Perceptron (SLP) representation with the internal operation 
expressed mathematically

The edges of this structure are represented in this mathematic model by means of a weight vector 
consisting of the local memory of the neuron.
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The output neuron receives an input vector signals, xi, each coming from a different neuron.
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This is the simplest activation function (see function A in Figure 9-5), but you can also use other more 
complex ones, such as the sigmoid (see function D in Figure 9-5).
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Figure 9-5.  Some examples of activation functions

Now that you’ve seen the structure of the SLP neural network, you can now see how they can learn.
The learning procedure of a neural network, called the learning phase, works iteratively. That is, a 

predetermined number of cycles of operation of the neural network are carried out. The weights of the wi 
synapses are slightly modified in each cycle. Each learning cycle is called an epoch. In order to carry out 
the learning, you have to use appropriate input data, called the training sets (you have already used them in 
depth in Chapter 8).

In the training sets, for each input value, the expected output value is obtained. By comparing the 
output values produced by the neural network with the expected ones, you can analyze the differences 
and modify the weight values, and you can also reduce them. In practice this is done by minimizing a 
cost function (loss) that is specific of the problem of deep learning. In fact, the weights of the different 
connections are modified for each epoch in order to minimize the cost (loss).

In conclusion, supervised learning is applied to neural networks.
At the end of the learning phase, you pass to the evaluation phase, in which the learned SLP perceptron 

must analyze another set of inputs (test set) whose results are also known here. By evaluating the differences 
between the obtained and expected values, the degree of ability of the neural network to solve the problem 
of deep learning will be known. Often the percentage of cases guessed compared to the wrong ones is used 
to indicate this value, and it is called accuracy.

�Multilayer Perceptron (MLP)
A more complex and efficient architecture is Multilayer Perceptron (MLP). In this structure, there are one or 
more hidden layers interposed between the input layer and the output layer. The architecture is represented 
in Figure 9-6.
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Figure 9-6.  The Multilayer Perceptron (MLP) architecture

At the end of the learning phase, you pass to the evaluation phase, in which the learned SLP perceptron 
must analyze another set of inputs (test set) whose results are also known here. By evaluating the differences 
between the obtained and expected values, the degree of ability of the neural network to solve the problem 
of deep learning will be known. Often, the percentage of cases guessed compared to the wrong ones is used 
to indicate this value, and it is called accuracy.

Although more complex, the models of MLP neural networks are based primarily on the same concepts 
as the models of the SLP neural networks. Even in MLPs, weights are assigned to each connection. These 
weights must be minimized based on the evaluation of a training set, much like the SLPs. Here, too, each 
node must process all incoming signals through an activation function, even if this time the presence of 
several hidden layers makes the neural network capable of learning more, adapting more effectively to the 
type of problem deep learning is trying to solve.

On the other hand, from a practical point of view, the greater complexity of this system requires more 
complex algorithms both for the learning phase and for the evaluation phase. One of these is the back 
propagation algorithm, which is used to effectively modify the weights of the various connections to minimize 
the cost function, in order to converge the output values quickly and progressively with the expected ones.

Other algorithms are used specifically for the minimization phase of the cost (or error) function and are 
generally referred to as gradient descent techniques.

The study and detailed analysis of these algorithms is outside the scope of this text, which has only an 
introductory function of the argument, with the goal of trying to keep the topic of deep learning as simple 
and clear as possible. If you are so inclined, I suggest you go deeper into the subject, both in various books 
and on the Internet.

�Correspondence Between Artificial and Biological Neural Networks
So far you have seen how deep learning uses basic structures, called artificial neural networks, to simulate 
the functioning of the human brain, particularly in the way it processes information.

There is also a real correspondence between the two systems at the highest reading level. In fact, you’ve 
just seen that neural networks have structures based on layers of neurons. The first layer processes the 
incoming signal, then passes it to the next layer, which in turn processes it and so on, until it reaches a final 
result. For each layer of neurons, incoming information is processed in a certain way, generating different 
levels of representation of the same information.
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In fact, the whole operation of elaboration of an artificial neural network is nothing more than the 
transformation of information to ever more abstract levels.

This functioning is identical to what happens in the cerebral cortex. For example, when the eye receives 
an image, the image signal passes through various processing stages (such as the layers of the neural 
network), in which, for example, the contours of the figures are first detected (edge detection), then the 
geometric shape (form perception), and then to the recognition of the nature of the object with its name. 
Therefore, there has been a transformation at different levels of conceptuality of an incoming information, 
passing from an image, to lines, to geometrical figures, to arrive at a word.

�TensorFlow
In a previous section of this chapter, you saw that there are several frameworks in Python that allow you 
to develop projects for deep learning. One of these is TensorFlow. In this section, you learn know in detail 
about this framework, including how it works and how it is used to realize neural networks for deep learning.

�TensorFlow: Google’s Framework
TensorFlow (www.tensorflow.org) is a library developed by the Google Brain Team, a group of Machine 
Learning Intelligence, a research organization headed by Google.

The purpose of this library is to have an excellent tool in the field of research for machine learning and 
deep learning.

The first version of TensorFlow was released by Google in February 2017, and in a year and a half, 
many updates have been released, in which the potential, stability, and usability of this library are greatly 
increased. This is mainly thanks to the large number of users among professionals and researchers who 
are fully using this framework. At the present time, TensorFlow is already a consolidated deep learning 
framework, rich in documentation, tutorials, and projects available on the Internet.

In addition to the main package, there are many other libraries that have been released over time, 
including:

•	 TensorBoard—A kit that allows the visualization of internal graphs of TensorFlow 
(https://github.com/tensorflow/tensorboard).

•	 TensorFlow Fold—Produces beautiful dynamic calculation charts (https://github.
com/tensorflow/fold)

•	 TensorFlow Transform—Creates and manages input data pipelines (https://
github.com/tensorflow/transform)

�TensorFlow: Data Flow Graph
TensorFlow (www.tensorflow.org) is a library developed by the Google Brain Team, a group of Machine 
Learning Intelligence, a research organization headed by Google.

TensorFlow is based entirely on the structuring and use of graphs and on the flow of data through them, 
exploiting them in such a way as to make mathematical calculations.

The graph created internally in the TensorFlow runtime system is called Data Flow Graph and it is 
structured in runtime according to the mathematical model that is the basis of the calculation you want to 
perform. In fact, Tensor Flow allows you to define any mathematical model through a series of instructions 
implemented in the code. TensorFlow will take care of translating that model into the Data Flow Graph 
internally.
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When you go to model your deep learning neural network, it will be translated into a Data Flow Graph. 
Given the great similarity between the structure of neural networks and the mathematical representation of 
graphs, it is easy to understand why this library is excellent for developing deep learning projects.

TensorFlow is not limited to deep learning and can be used to represent artificial neural networks. 
Many other methods of calculation and analysis can be implemented with this library, since any physical 
system can be represented with a mathematical model. In fact, this library can also be used to implement 
other machine learning techniques, for the study of complex physical systems through the calculation of 
partial differentials, and so on.

The nodes of the Data Flow Graph represent mathematical operations, while the edges of the graph 
represent tensors (multidimensional data arrays). The name TensorFlow derives from the fact that these 
tensors represent the flow of data through graphs, which can be used to model artificial neural networks.

�Start Programming with TensorFlow
Now that you have seen in general what the TensorFlow framework consists of, you can start working with 
this library. In this section, you see how to install this framework, understand the differences between the 
old 1.x version and the new one, and the key features of the latter.

�TensorFlow 2.x vs TensorFlow 1.x
As anticipated at the beginning of the chapter, in this third edition, the text and example code related to 
the use of TensorFlow for deep learning have been completely rewritten. This is because the new version of 
TensorFlow 2.x has been introduced since 2019. There are many changes that have been made. Many of the 
modules present in the TensorFlow 1.x release have been removed or moved. Keras has been completely 
incorporated as a neural network management module, and therefore most of the previous programming 
mechanisms and paradigms (for example, those present in the second edition with TensorFlow 1.x) are no 
longer compatible.

Given the large amount of programs developed in recent years with TensorFlow 1.x, it’s important 
that these programs continued to compatible, and therefore usable. Rushing to address this issue, Google 
enabled a way to continue using the old code without having to rewrite much.

At the beginning of the code, you simply replace the classic import line:

import tensorflow as tf

with the following line:

import tensorflow.compat.v1 as tf

This replacement should guarantee in most cases the perfect execution of code developed with 
TensorFlow 1.x, even if your current version is TensorFlow 2.x.

As for present projects, if you are about to develop a new deep learning project with TensorFlow, the 
only reasonable path is to follow the TensorFlow 2.x paradigms. That’s why this chapter only mentions this 
latest version, without transcribing the old code.
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�Installing TensorFlow
Before starting work, you need to install this library on your computer.

If the TensorFlow library is already installed, it’s useful to determine which version is present, especially 
regarding the differences between TensorFlow 1.x and TensorFlow 2.x. You can easily find that out by 
opening a Python session and inserting the following lines of code:

import tensorflow as tf
tf.__version__

If the 1.x version is present, the best thing to do is create a new virtual environment on which to install 
the 2.x version without compromising the configuration of modules installed on your system. If the library 
is not present on your system, you can easily install TensorFlow 2.x. As in the previous chapters, the optimal 
solution is to have the Anaconda platform and graphically install the TensorFlow package from Navigator. If 
you prefer to use the command line, still on Anaconda, you can enter the following:

conda install tensorflow

If, on the other hand, you don’t have (or don’t want) the Anaconda platform, you can safely install 
TensorFlow via PyPI.

pip install tensorflow

■■ Note A t the time of this writing, I found some incompatibility issues in Anaconda between TensorFlow and 
other libraries for virtual environments based on Python 3.10 and 3.11. I then created a virtual environment with 
Python 3.9 and didn't encounter any problems.

�Programming with the Jupyter Notebook
Once TensorFlow is installed, you can start programming with this library. The examples in this chapter use 
Jupyter Notebook, but you can do the same things by opening a normal Python session.

With the latest versions of TensorFlow, the demand for resources becomes more and more 
preponderant. Deep learning with applications like IPython and Jupyter Notebook may not be possible 
without proper precautions. So in this case it is necessary to add the following lines of code in the first cell of 
the Notebook before starting to work (also in IPython):

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

In particular, by varying this environment variable, the OpenMP API active in the system on which you 
are operating is informed not to create problems if another instance of it is created (a case that leads to the 
crash of Jupyter Notebook).

�Tensors
The basic element of the TensorFlow library is the tensor. In fact, the data that follow the flow within the Data 
Flow Graph are tensors (see Figure 9-7).
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Figure 9-7.  Some representations of the tensors according to the different dimensions

A tensor is identified by three parameters:

•	 rank—Dimension of the tensor (a matrix has rank 2, a vector has rank 1)

•	 shape—Number of rows and columns (e.g., (3.3) is a 3x3 matrix)

•	 type—The type of tensor elements

type of tensor elements and columns (eg (3.3) is a 3x3 matrix)has rank 2, a vector has 
rank 1)s ic

Tensors are nothing more than multidimensional arrays. In previous chapters, you saw how easy it is to 
get them, thanks to the NumPy library. You can start by defining one with this library.

import numpy as np
t = np.arange(9).reshape((3,3))
t
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
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You can convert this multidimensional array into a TensorFlow tensor very easily, thanks to the tf.
convert_to_tensor() function, which takes as a parameter the array to convert.

tensor = tf.convert_to_tensor(t)
tensor
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=int64, numpy=
    array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])>

During the conversion from array to tensor, it is also possible to change the data type. In this case, 
you add the second optional parameter dtyle, specifying the new data type. For example, if you wanted to 
convert the integer input into floating numbers, you would write:

tensor2 = tf.convert_to_tensor(t, dtype='float64')
tensor2
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float64, numpy=
array([[0., 1., 2.],
           [3., 4., 5.],
           [6., 7., 8.]])>

As you can see, you have a tensor containing the same values and the dimensions as the 
multidimensional array defined with NumPy. This approach is very useful for calculating deep learning, 
since many input values are in the form of NumPy arrays.

But tensors can be built directly from TensorFlow, without using the NumPy library. There are a 
number of functions that make it possible to enhance the tensors quickly and easily.

For example, if you want to initialize a tensor with all 0 values, you can use the tf.zeros() method.

t0 = tf.zeros((3,3),'float64')
t0
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float64, numpy=
array([[0., 0., 0.],
           [0., 0., 0.],
           [0., 0., 0.]])>

Likewise, if you want a tensor with all values of 1, you use the tf.ones() method.

t1 = tf.ones((3,3),'float64')
t1
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float64, numpy=
array([[1., 1., 1.],
           [1., 1., 1.],
           [1., 1., 1.]])>

Finally, it is also possible to create a tensor containing random values, which follow a uniform 
distribution (all the values within a range are equally likely to exist), thanks to the tf.random_uniform() 
function.
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For example, if you want a 3x3 tensor with float values between 0 and 1, you can write:

trand = tf.random.uniform((3, 3), minval=0, maxval=1, dtype=tf.float32)
trand
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[0.99075377, 0.7289959 , 0.6183866 ],
           [0.51800334, 0.49188066, 0.01087034],
           [0.21716583, 0.29331267, 0.91550064]], dtype=float32)>

It can often be useful to create a tensor containing values that follow a normal distribution with a choice 
of mean and standard deviation. You can do this with the tf.random_normal() function.

For example, if you want to create a tensor of 3x3 size with mean of 0 and standard deviation of 3, you 
will write:

tnorm = tf.random.normal((3, 3), mean=0, stddev=3)
tnorm
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[-1.2079163 , -0.88857937, 5.041537 ],
           [-3.7309105 , 3.157123 , -3.4958515 ],
           [ 4.219907 , 1.7997034 , -5.020906 ]], dtype=float32)>

�Loading Data Into a Tensor from a pandas Dataframe
So far you’ve seen how to manually define the data within a tensor, or how to convert a NumPy array to 
a tensor. But a much more common operation in data analysis is having to insert the data present in a 
dataframe into a tensor. In fact, dataframes are one of the most commonly used formats during the data 
analysis process in Python. As you will see now, this operation is very simple in TensorFlow.

First import the pandas library into your Notebook.

import pandas as pd

Now define a simple dataframe as a basic example.

df = pd.DataFrame(np.array([[1, 2, 3],
                           [4, 5, 6],
                           [7, 8, 9]]),
                   columns=['a', 'b', 'c'])
df

For the output, you will get a dataframe like the one shown in Figure 9-8.
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Figure 9-8.  A simple example of a pandas dataframe

To convert the data inside the dataframe into a tensor, you can use the tf.convert_to_tensor() 
function that you used previously. This in fact also accepts a pandas dataframe as an argument.

tensor_df = tf.convert_to_tensor(df)
tensor_df
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=int64, numpy=
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])>

As you can see from the result, the conversion was very easy. Rarely, however, will you have to load 
all the data present within a dataframe, but rather the values of one or more columns. So you will use 
the following form more often, making a selection of the columns (or data) that interest you within the 
dataframe.

tensor_df = tf.convert_to_tensor(df[['a','b']])
tensor_df

Out[ ]:
<tf.Tensor: shape=(3, 2), dtype=int64, numpy=
array([[1, 2],
       [4, 5],
       [7, 8]])>

�Loading Data in a Tensor from a CSV File
Another format in which the data to be analyzed is often available is within files, especially CSV files. Also in 
this case the data of a CSV file can be loaded into a tensor using pandas. In fact, the pandas library provides 
many functions for loading data contained in CSV files (and other formats) within the dataframe. These can 
then be converted into tensors using the procedure seen earlier with the tf.convert_to_tensor() function.

For example, you can load the data present in the training_data.csv file containing the training 
data that you will use in the following examples of the chapter during the development and study of some 
models. To do this, you use the pandas function called read_csv().

df = pd.read_csv('training_data.csv')
df
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By loading the data contained in the CSV, you will obtain as a result a dataframe like the one shown in 
Figure 9-9.

Figure 9-9.  The pandas dataframe containing the training dataset

The training dataset contained in the dataframe is composed of three columns. The first two represent 
the X,Y coordinates of the points on a Cartesian plane, while the third column contains the labels, that is, 
the classes to which the correlated points belong. As you learned for machine learning (Chapter 8), training 
datasets are composed of two parts—the features and the labels. The same rule applies to deep learning, 
and therefore you have to extract two distinct tensors from the dataframe, one for the features and one for 
the labels.

df_features = df.copy()
df_labels = df_features.pop('label')
data_features = tf.convert_to_tensor(df_features)
data_features
Out [ ]:
<tf.Tensor: shape=(11, 2), dtype=float64, numpy=
array([[1. , 3. ],
       [1. , 2. ],
       [1. , 1.5],
       [1.5, 2. ],
       [2. , 3. ],
       [2.5, 1.5],
       [2. , 1. ],
       [3. , 1. ],
       [3. , 2. ],
       [3.5, 1. ],
       [3.5, 3. ]])>
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Run the same operation for the tensor of the labels.

data_labels = tf.convert_to_tensor(df_labels)
data_labels
Out [ ]:
<tf.Tensor: shape=(11,), dtype=int32, numpy=array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])>

Using the tf.conver_to_tensor() function, you now have two tensors: one for the features containing 
the X,Y coordinates of the points and one for the labels containing the classes to which the points belong.

�Operation on Tensors
Once the tensors have been defined, it will be necessary to carry out operations on them. Most mathematical 
calculations on tensors are based on the sum and multiplication between tensors.

Define two tensors, t1 and t2, that you will use to perform the operations between tensors.

t1 = tf.random.uniform((3, 3), minval=0, maxval=1, dtype=tf.float32)
t1
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[0.29003692, 0.92972696, 0.41073143],
           [0.46694946, 0.46367037, 0.11636639],
           [0.31574678, 0.70260215, 0.0642364 ]], dtype=float32)>

t2 = tf.random.uniform((3, 3), minval=0, maxval=1, dtype=tf.float32)
t2
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[0.23392928, 0.7185135 , 0.64518535],
           [0.6719583 , 0.7983806 , 0.10201716],
           [0.92533255, 0.32889807, 0.4179113 ]], dtype=float32)>

To sum these two tensors, you use the tf.add() function. To perform multiplication, you use the tf.
matmul() function.

sum = tf.add(t1,t2)
sum
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[0.5239662 , 1.6482404 , 1.0559168 ],
           [1.1389078 , 1.262051 , 0.21838355],
           [1.2410793 , 1.0315002 , 0.4821477 ]], dtype=float32)>

mul = tf.matmul(t1,t2)
mul
Out [ ]:
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1.0726491 , 1.0857601 , 0.453625 ],
         [0.5284779 , 0.7439676 , 0.39720213],
         [0.6054218 , 0.8089395 , 0.3022378 ]], dtype=float32)>
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Another very common operation with tensors is the calculation of the determinant. TensorFlow 
provides the tf.linalg.det() method for this purpose:

det = tf.linalg.det(t1)
det
Out [ ]:
<tf.Tensor: shape=(), dtype=float32, numpy=0.06581897>

The new tf.linalg module (introduced in TensorFlow 2.x) contains, in addition to the determinant 
calculation, many other algebraic operations on matrices, which are very useful during tensor calculations. 
These functions, along with the basic operations, allow you to implement many mathematical expressions 
that use tensors.

�Developing a Deep Learning Model with TensorFlow
Once you have seen the tensors that are the basis of the data to be used in TensorFlow, you can proceed 
further, analyzing in brief the fundamental steps to create a deep learning model with neural networks and 
its training and testing phases with TensorFlow 2.x. Those steps are as follows:

–– Definition of tensors (training and testing sets)

–– Model building

–– Model compiling

–– Model training

–– Model testing

–– Predictions making

You learned about the first part, the one related to the preparation of tensors from the training and 
testing datasets, in the previous section. The next section covers model building.

�Model Building
Regarding the construction of the model based on a neural network, you must define how the layers 
will be configured. As you saw in the first part of the chapter, each neural network is composed of one or 
more layers of neurons. With TensorFlow 2.x, it is not necessary to define each neuron and the individual 
connections that compose the network. But you can use one of the layers that’s predefined in Keras.

For example:

tf.keras.layers.Dense

This corresponds to a layer of neurons where all the connections are made with the adjacent layer of 
neurons, called a “regular densely-connected NN layer.”

Another widely used layer is as follows:

tf.keras.layers.Flatten

This layer is typically used at the beginning of the neural network, when the feature dataset is not one-
dimensional. This allows you to flatten the data, making them single-dimensional and thus usable by the 
subsequent layers of the neural network.
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To better understand, if you wanted to submit an image to a neural network, this would be composed 
of (nxn) pixels and therefore would be two-dimensional. Inserting a Flatten layer would make this training 
dataset one-dimensional.

Another widely used layer is as follows:

tf.keras.layers.Normalization

This layer, like the previous one, is also placed as the first layer of the neural network and is used to 
normalize the input data. This practice is very common in machine learning, making the data more easily 
actionable.

Therefore, thanks to the integration of Keras in TensorFlow 2.x, the building of the model can have 
many predefined layers, with a whole series of learning parameters inside that will vary during the training 
phase. These are already defined and therefore the model building operation is much easier.

In fact, to build a simple neural network like the ones you saw at the beginning of the chapter, it is 
sufficient to define tf.keras.Sequential() with the various predefined layers inside, in the order of 
construction.

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape(128,128)),
    tf.keras.layers.Dense(128),
    tf.keras.layers.Dense(12)
])

The model just described therefore represents a two-layer neural network (without hidden layers) in 
which two-dimensional tensors, such as 128x128 pixel images, are made one-dimensional in the first layer, 
to then be passed to the first layer composed of 128 neurons. These in turn are connected to another layer of 
12 neurons, which will probably correspond to 12 classes of belonging (as you will see later).

�Model Compiling
Now that a model has been defined, it is necessary to compile it. This second step requires the choice of 
functions and training parameters:

–– Loss function: Measures how accurate the model has to be during the training phase.

–– Optimizer: Takes care of how and which parameters should be updated during the 
training phase.

–– Metrics: The parameters used to monitor the progress of the training (and testing) 
of the model.

All these elements are already available within the Keras module, thus already providing a set of tools 
ready to use in a model.

Thus, compiling the model is reduced to a simple compile() function, in which these three elements 
are defined as arguments.

model.compile( optimizer = 'adam',
               �loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
               metrics = ['accuracy']
)

Chapter 9 ■ Deep Learning with TensorFlow



309

As you can see, in the new version of TensorFlow 2.x, the construction of a model and its compilation 
are very fast and high-level operations, contrary to the previous version, which required the detailed 
definition of most of these elements.

�Model Training and Testing
Now that the model is compiled, you can move on to training and testing it. For these two phases, a dataset 
is used in which there are features (a series of variables that describe the subject under study) and labels (the 
solutions such as, for example, the classes to which they belong). This is very similar to what you saw with 
machine learning in the previous chapter (Chapter 8). The dataset is divided into a training dataset and a 
testing dataset, with the former being much larger.

Each feature is then subdivided into two tensors, until four tensors are obtained:

–– train_features

–– train_labels

–– test_features

–– test_labels

The first two tensors are used for model learning, using the fit() function.

model.fit(train_features, train_labels, epochs=100)

The number of epochs is the third parameter, which is the number of times the learning phase is 
performed. At each of these stages, the accuracy metrics should improve, thus signaling successful model 
learning. Once done, you need to have an educated model ready for testing. Here, you use the other 
two tensors (test_features and test_labels) to evaluate the model’s ability to make predictions. The 
difference between these and the values contained in test_labels will provide the accuracy of these 
predictions.

For the testing phase, the evaluate() function is used.

test_loss, test_acc = model.evaluate( test_features, test_labels, verbose=2)

This function returns the loss and accuracy of the model as values.

�Prediction Making
The last phase submits the model to the purpose for which it was created, making predictions on input data 
whose solution you do not know (for example, the class it belongs to).

During this phase, an additional layer is often added to the model, called Softmax. This is placed at the 
end of the neural network and is used to convert the output of the last layer (logits) into probability values. In 
this case, it is not necessary to recompile the newly trained model again, but this can be extended by adding 
this layer at the end. You have thus defined a new extended model.

probability_model = tf.keras.Sequential([
       model,
       tf.keras.layers.Softmax()
])
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To complete the deep learning steps, the model makes predictions from data whose solutions you do 
not know. You create a new tensor and submit it to the predict() function.

predictions = probability_model.predict(samples_features)

An array with all predictions divided by the percentage is obtained as the returned value. It can be used 
to obtain the class to which it belongs.

np.argmax(prediction[i])

i is the ith element of the dataset.

�Practical Examples with TensorFlow 2.x
At this point, in theory, you should have acquired enough basic knowledge to be able to start working with 
real examples. Let’s put into practice what you have seen so far with different types of neural networks.

–– Single Layer Perceptron (SLP)

–– Multilayer Neural Network with One Hidden Layer

–– Multilayer Neural Network with Two Hidden Layers

�Single Layer Perceptron with TensorFlow
To better understand how to develop neural networks with TensorFlow, you will begin to implement a Single 
Layer Perceptron (SLP) neural network that is as simple as possible. You will use the tools made available in 
the TensorFlow library. By using the concepts you learned during the chapter and gradually introducing new 
ones, you can implement a Single Layer Perceptron (SLP) neural network.

�Before Starting
Before starting, open a new Jupyter Notebook or shut down and start the kernel again. Once the session is 
open it imports all the necessary modules:

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

�Data To Be Analyzed
For the examples that you consider in this chapter, you will use a series of data that you used in Chapter 8, in 
particular in the section entitled “Support Vector Machines (SVMs).”

The set of data that you will study is a set of 11 points distributed in a Cartesian axis, divided into two 
classes of membership. The first six belong to the first class, the other five to the second. The coordinates (x, 
y) of the points are contained within a NumPy inputX array, while the class to which they belong is indicated 
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in inputY. This is a list of two-element arrays, with an element for each class they belong to. The value 1 in 
the first or second element indicates the class to which it belongs.

If the element has value [1.0], it will belong to the first class. If it has value [0,1], it belongs to the second 
class. The fact that they are floating point values ​​is due to the optimization calculation of deep learning. You 
will see later that the test results of the neural networks are floating numbers, indicating the probability that 
an element belongs to the first or second class.

Suppose, for example, that the neural network will give you the result of an element that will have the 
following values:

[0.910, 0.090]

This result will mean that the neural network considers that the element under analysis belongs 91 
percent to the first class and 9 percent to the second class. You will see this in practice at the end of the 
section, but it is important to explain the concept to better understand the purpose of some values.

Based on the values taken from the example of SVMs in Chapter 8, you can define the following values.

#Training set
inputX = np.array([[1.,3.],[1.,2.],[1.,1.5],
                   [1.5,2.],[2.,3.],[2.5,1.5],
                   [2.,1.],[3.,1.],[3.,2.],
                   [3.5,1.],[3.5,3.]])
inputY = [[1.,0.]]*6+ [[0.,1.]]*5
print(inputX)
print(inputY)
Out [ ]:
[[1.  3. ]
 [1.  2. ]
 [1.  1.5]
 [1.5 2. ]
 [2.  3. ]
 [2.5 1.5]
 [2.  1. ]
 [3.  1. ]
 [3.  2. ]
 [3.5 1. ]
 [3.5 3. ]]
[[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.0, 
1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

In reality, you have already seen these values previously, when we talked about how to import data from 
a CSV file by converting it to a pandas dataframe. Here, you use the NumPy array version (the same one used 
for machine learning, in particular in the section about the Support Vector Machines technique) to give an 
additional version of the starting data to be converted into tensors. Feel free to choose the format you prefer 
for the initial datasets.

To better see how these points are arranged spatially and which classes they belong to, there is no better 
approach than to plot everything with matplotlib.

yc = [0]*5 + [1]*6
print(yc)
plt.scatter(inputX[:,0],inputX[:,1],c=yc, s=50, alpha=0.9)
plt.show()
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Out [ ]:
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]

You will get the graph in Figure 9-8 as a result.

To help in the graphic representation (as shown in Figure 9-8) of the color assignment, the inputY array 
has been replaced with the yc array.

As you can see, the two classes are easily identifiable in two opposite regions. The first region covers 
the upper-left part, and the second region covers the lower-right part. All this would seem to be simply 
subdivided by an imaginary diagonal line, but to make the system more complex, there is an exception with 
the point 6 that is internal to the other points.

It will be interesting to see how and if the neural networks that you implement can correctly assign the 
class to points of this kind.

You then convert the values of the training arrays into tensors, as you have seen done previously.

train_features = tf.convert_to_tensor(inputX)
train_labels = tf.convert_to_tensor(inputY)
train_features
Out [ ]:
<tf.Tensor: shape=(11, 2), dtype=float64, numpy=
array([[1. , 3. ],
       [1. , 2. ],
       [1. , 1.5],
       [1.5, 2. ],
       [2. , 3. ],
       [2.5, 1.5],
       [2. , 1. ],
       [3. , 1. ],
       [3. , 2. ],
       [3.5, 1. ],
       [3.5, 3. ]])>

Figure 9-10.  The training set is a set of Cartesian points divided into two classes of membership (light 
and dark)
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train_labels
Out [ ]:
<tf.Tensor: shape=(11, 2), dtype=float32, numpy=
array([[1., 0.],
       [1., 0.],
       [1., 0.],
       [1., 0.],
       [1., 0.],
       [1., 0.],
       [0., 1.],
       [0., 1.],
       [0., 1.],
       [0., 1.],
       [0., 1.]], dtype=float32)>

Now you can build the Single Layer Perceptron model based on the neural network in Figure 9-11, 
adding the various Keras layers to the model definition.

Figure 9-11.  The Single Layer Perceptron model used in this example

model = tf.keras.Sequential([
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(2)
])

As you can see, it is a very simple model, but more than sufficient for making predictions in simple 
cases such as the one in question.

Because this is a binary classification problem, you can choose BinaryCrossentropy as the function 
loss for the compilation.

model.compile(optimizer='SGD',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])
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Once the model is compiled, you can move on to training it. Choose 200 epochs, assuming more than 
enough time for the model to learn.

h = model.fit(train_features, train_labels, epochs=2000)
Out [ ]:
Epoch 1/2000
1/1 [==============================] - 1s 637ms/step - loss: 2.0271 - accuracy: 0.5455
Epoch 2/2000
1/1 [==============================] - 0s 4ms/step - loss: 1.9807 - accuracy: 0.5455
Epoch 3/2000
1/1 [==============================] - 0s 5ms/step - loss: 1.9356 - accuracy: 0.5455
Epoch 4/2000
1/1 [==============================] - 0s 9ms/step - loss: 1.8918 - accuracy: 0.5455
Epoch 5/2000
1/1 [==============================] - 0s 8ms/step - loss: 1.8493 - accuracy: 0.5455
Epoch 6/2000
1/1 [==============================] - 0s 6ms/step - loss: 1.8079 - accuracy: 0.5455
Epoch 7/2000
...

In the output, you will have all the learning situations epoch by epoch, through a scroll bar that shows 
the completion for each of them. The loss and accuracy value will then be shown next to each line of output.

However, it is clear that this output is not the easiest way to understand how this neural network model 
behaved during the learning phase. For this purpose, I have saved the output in the return value h (for 
history), which you can use for graphical visualizations that can help you.

Extract from the history variable the loss values corresponding to the various periods.

acc_set = h.history['loss']
epoch_set = h.epoch

Arrange these values in a plotting chart to see the learning progress graphically, thanks to the 
matplotlib library.

# return list of every 100th item in a larger list
plt.plot(epoch_set[0::100],acc_set[0::100], 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

As a result, you will obtain a graph similar to the one shown in Figure 9-12.
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Figure 9-12.  The less value decreases during the learning phase (less optimization)

Now move on to the testing phase, defining the other two tensors.

testX = np.array([[1.,2.25],[1.25,3.],
                  [2,2.5],[2.25,2.75],
                  [2.5,3.],[2.,0.9],
                  [2.5,1.2],[3.,1.25],
                  [3.,1.5],[3.5,2.],
                  [3.5,2.5]])
testY = [[1.,0.]]*5 + [[0.,1.]]*6

test_features = tf.convert_to_tensor(testX)
test_labels = tf.convert_to_tensor(testY)

Evaluate the accuracy of the newly educated SLP model.

test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2)
Out [ ]:
1/1 - 0s - loss: 0.1812 - accuracy: 1.0000 - 233ms/epoch - 233ms/step

As you can see, the accuracy is at best, given the simplicity of the classification. So you can expect a very 
good level of prediction of the newly educated model.

Now move on to the proper classification, passing to the neural network a very large amount of data 
(points on the Cartesian plane) without knowing to which class they belong. This is, in fact, the moment that 
the neural network informs you about the possible classes.

To this end, the program simulates experimental data, creating points on the Cartesian plane that are 
completely random. For example, you can generate an array containing 1,000 random points.

exp_features = 3*np.random.random((1000,2))

Now you extend the model with Softmax to obtain an output of the probability of the different points 
belonging to the two classes.
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probability_model = tf.keras.Sequential([
    model,
    tf.keras.layers.Softmax()
])

Now make the predictions of the experimental data with the model you just extended.

predictions = probability_model.predict(exp_features)

Let’s determine the probability of a single point belonging to the two classes. For example, the first:

predictions[0]
Out [ ]:
array([0.073105 , 0.9268949], dtype=float32)

If, on the other hand, we want to know directly which of the two classes it belongs to, we write the 
following code obtaining the class it belongs to (0 for the first and 1 for the second):

np.argmax(predictions[0])
Out [ ]:
1

Instead of analyzing point by point in a textual way, there is a graphical way to visualize the result of 
these predictions. In the previous scatterplots, you classified the points on the Cartesian plane with two 
colors (yellow and purple). Now that you considered the probability of a point belonging to these two 
classes, for all intermediate probabilities, an intermediate color of the gradient will be displayed. It will fade 
from yellow to purple depending on how close it is to one of the two classes.

yc = predictions[:,1]
plt.scatter(exp_features[:,0],exp_features[:,1],c=yc, s=50, alpha=1)
plt.show()

Running the code, you will get a scatterplot like the one shown in Figure 9-13.

Figure 9-13.  A scatterplot with all the experimental points and the estimate of the classes to which they belong
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As you can see according to the shades, two areas of classification are delimited on the plane, with a 
color gradient in the central part (green color) indicating the zones of uncertainty.

The classification results can be made more comprehensible and clearer by deciding to establish 
based them on the probability of the point belonging to one or the other class. If the probability of a point 
belonging to a class is greater than 0.5, it will belong to it.

You can modify the previous scatterplot by requiring that each point belong to one or another class, 
according to the most probable option.

yc = np.round(predictions[:,1])
plt.scatter(exp_features[:,0],exp_features[:,1],c=yc, s=50, alpha=1)
plt.show()

Running the code, you will get a scatterplot similar to the one shown in Figure 9-14.

Figure 9-14.  The points delimit the two regions corresponding to the two classes

In the scatterplot shown in Figure 9-14, you can clearly see the two regions of the Cartesian plane that 
characterize the two classes of belonging.

�Multilayer Perceptron (with One Hidden Layer) with TensorFlow
In this section, you deal with the same problem as in the previous section, but using an MLP (Multilayer 
Perceptron) neural network.

Start a new Jupyter Notebook, or continue with the same one, but reset the kernel.
As you saw earlier in the chapter, an MLP neural network differs from an SLP neural network in that it 

can have one or more hidden layers.
To build this model, which compared to the previous one has a hidden layer of two neurons, you define 

a model similar to the previous one, but with an intermediate Dense layer.

model = tf.keras.Sequential([
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(2)
])
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The next step is to compile the model, choosing an optimization method. For MLP neural networks, a 
good choice is the Adam optimization method. Instead, keep the loss function and the metrics unchanged.

model.compile(optimizer='Adam',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])

As with the previous SLP model, train it using the same training dataset.

h = model.fit(train_features, train_labels, epochs=2000)
Out [ ]:
Epoch 1/2000
1/1 [==============================] - 0s 426ms/step - loss: 1.8568 - accuracy: 0.4545
Epoch 2/2000
1/1 [==============================] - 0s 3ms/step - loss: 1.8473 - accuracy: 0.4545
Epoch 3/2000
1/1 [==============================] - 0s 3ms/step - loss: 1.8378 - accuracy: 0.4545
Epoch 4/2000
1/1 [==============================] - 0s 646us/step - loss: 1.8284 - accuracy: 0.4545
Epoch 5/2000
1/1 [==============================] - 0s 0s/step - loss: 1.8190 - accuracy: 0.4545
Epoch 6/2000
1/1 [==============================] - 0s 0s/step - loss: 1.8097 - accuracy: 0.4545
Epoch 7/2000
1/1 [==============================] - 0s 14ms/step - loss: 1.8004 - accuracy: 0.4545
Epoch 8/2000
...

Extract the training history and create the same graph showing the behavior of the model during the 
training process.

acc_set = h.history['loss']
epoch_set = h.epoch# return list of every 50th item in a larger list
plt.plot(epoch_set[0::50],acc_set[0::50], 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

Running the previous code, you will get a chart like the one shown in Figure 9-15.
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Figure 9-15.  The learning curve of the MLP model shows two distinct optimization phases

As you can see, even a more complex neural network shows different stages of learning. In this case, the 
choice of 2,000 epochs was fundamental to obtain an increase in the forecasting capacity of the model. If you 
had stopped at 1,000 epochs, the loss would have been 0.7 instead of 0.2.

As the result of testing this last model, you get an accuracy of 100 percent and a loss value of 01.

test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2)
Out [ ]:
1/1 - 0s - loss: 0.1602 - accuracy: 1.0000 - 105ms/epoch - 105ms/step

�Multilayer Perceptron (with Two Hidden Layers) with TensorFlow
In this section, you extend the previous structure by adding two neurons to the first hidden layer (four in all) 
and adding a second hidden layer with two neurons.

As you did previously, start a new Jupyter Notebook and write the necessary code of the previous 
examples, or restart the kernel and execute the cells with the necessary code.

).
model = tf.keras.Sequential([
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(4),
    tf.keras.layers.Dense(2),
    tf.keras.layers.Dense(2)
])
model.compile(optimizer='Adam',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])
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Then train the new two hidden layer MLP model with the same training dataset you used previously.

h = model.fit(train_features, train_labels, epochs=2000)
Out [ ]:
Epoch 1/2000
1/1 [==============================] - 1s 826ms/step - loss: 0.6980 - accuracy: 0.4545
Epoch 2/2000
1/1 [==============================] - 0s 3ms/step - loss: 0.6970 - accuracy: 0.4545
Epoch 3/2000
1/1 [==============================] - 0s 3ms/step - loss: 0.6961 - accuracy: 0.4545
Epoch 4/2000
1/1 [==============================] - 0s 0s/step - loss: 0.6953 - accuracy: 0.4545
Epoch 5/2000
1/1 [==============================] - 0s 0s/step - loss: 0.6945 - accuracy: 0.4545
Epoch 6/2000
1/1 [==============================] - 0s 0s/step - loss: 0.6938 - accuracy: 0.4545
Epoch 7/2000
1/1 [==============================] - 0s 3ms/step - loss: 0.6931 - accuracy: 0.4545
Epoch 8/2000
1/1 [==============================] - 0s 0s/step - loss: 0.6925 - accuracy: 0.4545
...

Also for this model, you can analyze the learning phase of the neural network by displaying the loss 
values as the epochs increase in a chart.

acc_set = h.history['loss']
epoch_set = h.epoch
# return list of every 50th item in a larger list
plt.plot(epoch_set[0::50],acc_set[0::50], 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

Running the code, you will get a plot like the one in Figure 9-16.
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Figure 9-16.  The trend of the loss during the learning phase for an MLP with two hidden layers

From what you can see in Figure 9-16, learning in this case is much faster than the previous case (at 
1,000 epochs, you would be fine).

test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2)
Out [ ]:
1/1 - 0s - loss: 0.0951 - accuracy: 1.0000 - 124ms/epoch - 124ms/step

The optimized loss is the best of those obtained so far, and only at 700 epochs (0.0951 versus 0.16 in the 
previous case, at 2,000 epochs). It is clear that adding the hidden layer of four neurons has made the model 
faster and more efficient.

�Conclusions
In this chapter, you learned about the branch of machine learning that uses neural networks as a computing 
structure, called deep learning. You read an overview of the basic concepts of deep learning, which involves 
neural networks and their structure. Finally, thanks to the TensorFlow library, you implemented different 
types of neural networks, such as Perceptron Single Layer and Perceptron Multilayer.

Deep learning, with all its techniques and algorithms, is a very complex subject, and it is practically 
impossible to treat it properly in one chapter. However, you have now become familiar with deep learning 
and can begin implementing more complex neural networks.
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CHAPTER 10

An Example—Meteorological Data

One type of data that’s easier to find on the Internet is meteorological data. Many sites provide historical 
data on many meteorological parameters, such as pressure, temperature, humidity, rain, and so on. You 
only need to specify the location and the date to get a file with datasets of measurements collected by 
weather stations. These data are a source of a wide range of information. As you read in the first chapter of 
this book, the purpose of data analysis is to transform the raw data into information and then convert it into 
knowledge.

In this chapter, you will see a simple example of how to use meteorological data. This example is useful 
for getting a general idea of how to apply many of the techniques seen in the previous chapters.

�A Hypothesis to Be Tested: The Influence of the Proximity 
of the Sea
At the time of writing of this chapter, I find myself at the beginning of summer and temperatures rising. On 
the weekend, many inland people travel to mountain villages or cities close to the sea, in order to enjoy a 
little refreshment and get away from the sultry weather of the inland cities. This has always made me wonder 
what effect the proximity of the sea has on the climate.

This simple question can be a good starting point for data analysis. I don’t want to pass this chapter 
off as something scientific; it’s just a way for someone passionate about data analysis to put knowledge into 
practice in order to answer this question—what influence, if any, does the proximity of the sea have on local 
climate?

�The System in the Study: The Adriatic Sea and the Po Valley
Now that the problem has been defined, it is necessary to look for a system that is well suited to the study of 
the data and to provide a setting suitable for this question.

First you need a sea. Well, I’m in Italy and I have many seas to choose from, since Italy is a peninsula 
surrounded by seas. Why limit myself to Italy? Well, the problem involves a behavior typical of the Italians, 
that is, they take refuge in places close to the sea during the summer to avoid the heat of the hinterland. Not 
knowing if this behavior is the same for people of other nations, I will only consider Italy as a system of study.

But what areas of Italy might we consider studying? Can we assess the effects of the sea at various 
distances? This creates a lot of problems. In fact, Italy is rich in mountainous areas and doesn’t have a lot 
territory that uniformly extends for many kilometers inland. So, to assess the effects of the sea, I exclude the 
mountains, as they may introduce many other factors that also affect climate, such as altitude, for example.
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A part of Italy that is well suited to this assessment is the Po Valley. This plain starts from the Adriatic 
Sea and spreads inland for hundreds of kilometers (see Figure 10-1). It is surrounded by mountains, but the 
width of the valley mitigates any mountain effects. It also has many towns and so it is easy to choose a set of 
cities increasingly distant from the sea, to cover a distance of almost 400 km in this evaluation.

Figure 10-1.  An image of the Po Valley and the Adriatic Sea (Google Maps)

The first step is to choose a set of ten cities that will serve as reference standards. These cities are 
selected in order to cover the entire range of the plain (see Figure 10-2).
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Figure 10-2.  The ten cities chosen as samples (there is another one used as a reference for distances from 
the sea)

In Figure 10-2, you can see the ten cities that were chosen to analyze weather data: five cities within the 
first 100 km and the other five distributed in the remaining 300 km.

Here are the chosen cities:

•	 Ferrara

•	 Torino

•	 Mantova

•	 Milano

•	 Ravenna

•	 Asti

•	 Bologna

•	 Piacenza

•	 Cesena

•	 Faenza

Now you have to determine the distances of these cities from the sea. You can follow many procedures 
to obtain these values. In this case, you can use the service provided by the site TheDistanceNow (www.
thedistancenow.com/), which is available in many languages (see Figure 10-3).
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Figure 10-3.  TheDistanceNow website allows you to calculate distances between two cities

Thanks to this service, it is possible to calculate the approximate distances of the cities from the sea. 
You can do this by selecting a city on the coast as the destination. For many of them, you can choose the 
city of Comacchio as a reference to calculate the distance from the sea (see Figure 10-2). Once you have 
determined the distances from the ten cities, you will get the values shown in Table 10-1.

Table 10-1.  The Distances from the Sea of the Ten Cities

City Distance (km) Note

Ravenna 8 Measured with Google Earth

Cesena 14 Measured with Google Earth

Faenza 37 Distance Faenza-Ravenna +8km

Ferrara 47 Distance Ferrara-Comacchio

Bologna 71 Distance Bologna-Comacchio

Mantova 121 Distance Mantova-Comacchio

Piacenza 200 Distance Piacenza-Comacchio

Milano 250 Distance Milano-Comacchio

Asti 315 Distance Asti-Comacchio

Torino 357 Distance Torino-Comacchio
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�Finding the Data Source
Once you have defined the system under study, you need to establish a data source from which to obtain 
the needed data. By browsing the Internet, you can discover many sites that provide meteorological 
data measured from various locations around the world. One such site is OpenWeather, available at 
openweathermap.org (see Figure 10-4).

Figure 10-4.  The OpenWeather site

After you’ve signed up for an account and received an app ID code, this site enables you to capture data 
by specifying the city through a request via an URL.

https://api.openweathermap.org/data/2.5/weather?q=Atlanta,US&appid=5807ad2a45eb6bf4e81d13
7dafe74e15

This request will return a JSON file containing all the information about the current weather situation 
in the city in question (see Figure 10-5). This JSON file will be submitted for data analysis using the Python 
pandas library.
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Figure 10-5.  The JSON file containing the meteorological data on the city requested

�Data Analysis on Jupyter Notebook
This chapter addresses data analysis using Jupyter Notebook. It allows you to enter and study portions of 
code gradually.

After the service has started, create a new Notebook.
Start by importing the necessary libraries:

import numpy as np
import pandas as pd
import datetime

The first step is to study the structure of the data received from the site through a specific request.
Choose a city from those chosen for the study, for example Ferrara, and make a request for its current 

meteorological data, using the URL specified. Without a browser, you can get the text content of a page by 
using the request.get() text function. Because the content obtained is in JSON format, you can directly 
read the text received following this format with the json.load() function.

import json
import requests
ferrara = json.loads(requests.get('https://api.openweathermap.org/data/2.5/weather?q=Ferrara, 
IT&appid=5807ad2a45eb6bf4e81d137dafe74e15').text)

Now you can see the contents of the JSON file with the meteorological data related to the city of Ferrara.

ferrara
Out [ ]:
{'coord': {'lon': 11.8333, 'lat': 44.8},
 'weather': [{'id': 804,
   'main': 'Clouds',
   'description': 'overcast clouds',
   'icon': '04d'}],
 'base': 'stations',
 'main': {'temp': 292.51,
  'feels_like': 292.22,
  'temp_min': 292.04,
  'temp_max': 293.74,
  'pressure': 1017,
  'humidity': 66,
  'sea_level': 1017,
  'grnd_level': 1017},
 'visibility': 10000,
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 'wind': {'speed': 2.68, 'deg': 50, 'gust': 7.76},
 'clouds': {'all': 100},
 'dt': 1685511558,
 'sys': {'type': 2,
  'id': 2007888,
  'country': 'IT',
  'sunrise': 1685503859,
  'sunset': 1685558996},
 'timezone': 7200,
 'id': 3177088,
 'name': 'Provincia di Ferrara',
 'cod': 200}

When you want to analyze the structure of a JSON file, the following command is useful:

list(ferrara.keys())
Out [ ]:
['coord',
 'weather',
 'base',
 'main',
 'visibility',
 'wind',
 'clouds',
 'dt',
 'sys',
 'id',
 'name',
 'cod']

This way, you can have a list of all the keys that make up the internal structure of the JSON file. Once you 
know the name of these keys, you can easily access internal data.

print('Coordinates = ', ferrara['coord'])
print('Weather = ', ferrara['weather'])
print('base = ', ferrara['base'])
print('main = ', ferrara['main'])
print('visibility = ', ferrara['visibility'])
print('wind = ', ferrara['wind'])
print('clouds = ', ferrara['clouds'])
print('dt = ', ferrara['dt'])
print('sys = ', ferrara['sys'])
print('id = ', ferrara['id'])
print('name = ', ferrara['name'])
print('cod = ', ferrara['cod'])
Out [ ]:
Coordinates =  {'lon': 11.8333, 'lat': 44.8}
Weather =  [{'id': 804, 'main': 'Clouds', 'description': 'overcast clouds', 'icon': '04d'}]
base =  stations
main =  {'temp': 292.51, 'feels_like': 292.22, 'temp_min': 292.04, 'temp_max': 293.74, 
'pressure': 1017, 'humidity': 66, 'sea_level': 1017, 'grnd_level': 1017}
visibility =  10000
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wind =  {'speed': 2.68, 'deg': 50, 'gust': 7.76}
clouds =  {'all': 100}
dt =  1685511558
sys =  {'type': 2, 'id': 2007888, 'country': 'IT', 'sunrise': 1685503859, 'sunset': 
1685558996}
id =  3177088
name =  Provincia di Ferrara
cod =  200

Now choose the values that you consider most interesting or useful for this type of analysis. For 
example, an important value is temperature:

ferrara['main']['temp']
Out [ ]:
292.51

The purpose of this analysis of the initial structure is to identify the data that could be most important in 
the JSON structure. These data must be processed for analysis. That is, the data must be extracted from the 
structure, cleaned or modified according to your needs, and ordered in a dataframe. This way, you can apply 
all the data analysis techniques presented in this book.

A convenient way to avoid repeating the same code is to insert some extraction procedures into a 
function, such as the following:

def prepare(city,city_name):
    temp = [ ]
    humidity = [ ]
    pressure = [ ]
    description = [ ]
    dt = [ ]
    wind_speed = [ ]
    wind_deg = [ ]
    temp.append(city['main']['temp']-273.15)
    humidity.append(city['main']['humidity'])
    pressure.append(city['main']['pressure'])
    description.append(city['weather'][0]['description'])
    dt.append(city['dt'])
    wind_speed.append(city['wind']['speed'])
    wind_deg.append(city['wind']['deg'])
    headings = ['temp','humidity','pressure','description','dt','wind_speed','wind_deg']
    data = [temp,humidity,pressure,description,dt,wind_speed,wind_deg]
    df = pd.DataFrame(data,index=headings)
    city = df.T
    city['city'] = city_name
    city['day'] = city['dt'].apply(datetime.datetime.fromtimestamp)
    return city

This function does nothing more than take the meteorological data you are interested in from the JSON 
structure, and once they are cleaned or modified (for example, dates and times), that data are collected in a 
row of a dataframe (as shown in Figure 10-6).

t1 = prepare(ferrara,'ferrara')
t1
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Figure 10-6.  The dataframe obtained with the data processed from JSON extraction

Among all the parameters described in the JSON structure in the list column, these are the most 
appropriate for the study:

•	 Temperature

•	 Humidity

•	 Pressure

•	 Description

•	 Wind speed

•	 Wind degree

All these properties will be related to the time of acquisition expressed from the dt column, which 
contains a timestamp as the type of data. This value is difficult to read, so you can convert it into a datetime 
format that allows you to express the date and time in a manner more familiar to you. The new column will 
be called day.

city['day'] = city['dt'].apply(datetime.datetime.fromtimestamp)

Temperature is expressed in degrees Kelvin, and you can convert these values to Celsius by subtracting 
273.15 from each value.

Finally, add the name of the city passed as a second argument of the prepare() function.
Data is collected at regular intervals, during different times of the day. For example, you could use a 

program that executes these requests every hour. Each acquisition will have a row of the dataframe structure 
that will be added to a general dataframe related to the city, called for example, df_ferrara (as shown in 
Figure 10-7).

df_ferrara = t1
t2 = prepare(ferrara,'ferrara')
df_ferrara = pd.concat([df_ferrara, t2])
df_ferrara

Figure 10-7.  The dataframe structure corresponding to a city

It often happens that data that’s useful to this analysis is not present in the JSON source. In that case, 
you have to resort to other data sources and import the missing data into the structure. In this example, the 
distances of the cities to the sea are indispensable. You repeat the procedure just described for all the cities 
in the list that you want to analyze. Then you add the distance values to the dataframe you obtain.
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.
df_ravenna['dist'] = 8
df_cesena['dist'] = 14
df_faenza['dist'] = 37
df_ferrara['dist'] = 47
df_bologna['dist'] = 71
df_mantova['dist'] = 121
df_piacenza['dist'] = 200
df_milano['dist'] = 250
df_asti['dist'] = 315
df_torino['dist'] = 357
.

�Analysis of Processed Meteorological Data
For practical purposes, I have already collected data from all the cities involved in the analysis. I have already 
processed and collected them in a dataframe, which I saved as a CSV file.

If you want to refer to the data used in this chapter, you have to load the ten CSV files that I saved at the 
time of writing. These files contain data already processed to be used for this analysis.

df_ferrara=pd.read_csv('ferrara_270615.csv')
df_milano=pd.read_csv('milano_270615.csv')
df_mantova=pd.read_csv('mantova_270615.csv')
df_ravenna=pd.read_csv('ravenna_270615.csv')
df_torino=pd.read_csv('torino_270615.csv')
df_asti=pd.read_csv('asti_270615.csv')
df_bologna=pd.read_csv('bologna_270615.csv')
df_piacenza=pd.read_csv('piacenza_270615.csv')
df_cesena=pd.read_csv('cesena_270615.csv')
df_faenza=pd.read_csv('faenza_270615.csv')

Thanks to the read_csv() function of pandas, you can convert CSV files to the dataframe in just 
one step.

Once you have uploaded data for each city as a dataframe, you can easily see the content.

df_cesena

As you can see in Figure 10-8, Jupyter Notebook makes it much easier to read dataframes with the 
generation of graphical tables. Furthermore, you can see that each row shows the measured values for each 
hour of the day, covering a timeline of about 20 hours in the past.
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Figure 10-8.  The dataframe structure corresponding to a city

In the case shown in Figure 10-8, note that there are only 19 rows. In fact, observing other cities, it looks 
like the meteorological measurement systems sometimes failed during the measuring process, leaving holes 
in the acquisition. If the data collected make up 19 rows, as in this case, they are sufficient to describe the 
trend of the meteorological properties during the day. However, it is good practice to check the size of all 
ten dataframes. If a city provides insufficient data to describe the daily trend, you need to replace it with 
another city.

There is an easy way to check the size, without having to put one table after another. Thanks to the 
shape() function, you can determine the number of data acquired (lines) for each city.

print(df_ferrara.shape)
print(df_milano.shape)
print(df_mantova.shape)
print(df_ravenna.shape)
print(df_torino.shape)
print(df_asti.shape)
print(df_bologna.shape)
print(df_piacenza.shape)
print(df_cesena.shape)
print(df_faenza.shape)

This will give the following result:

(20, 9)
(18, 9)
(20, 9)
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(18, 9)
(20, 9)
(20, 9)
(20, 9)
(20, 9)
(20, 9)
(19, 9)

As you can see, the choice of ten cities is optimal, since the control units have provided enough data to 
continue with the data analysis.

A normal way to analyze the data you just collected is to use data visualization. You saw that the 
matplotlib library includes a set of tools to generate charts on which to display data. In fact, data 
visualization helps you during data analysis to discover features of the system you are studying.

Next, activate the necessary libraries:

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

For example, there is a simple way to analyze the trend of the temperature during the day. Consider the 
city of Milan.

y1 = df_milano['temp']
df_milano['day'] = pd.to_datetime(df_milano['day'])
x1 = df_milano['day']
fig, ax = plt.subplots()
plt.xticks(rotation=70)
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)
ax.plot(x1,y1,'r')

Executing this code, you get the graph shown in Figure 10-9. As you can see, the temperature trend 
follows a nearly sinusoidal pattern characterized by a temperature that rises in the morning, to reach 
the maximum value during the heat of the afternoon (between 2:00 and 6:00 pm). Then the temperature 
decreases to a minimum value corresponding to just before dawn, that is, at 6:00 am.
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Figure 10-9.  Temperature trend of Milan during the day

Because the purpose of your analysis is to try to interpret the weather, it is possible to assess how and if 
the sea influences this trend. This time, you evaluate the trends of different cities simultaneously. This is the 
only way to see if the analysis is going in the right direction. Thus, choose the three cities closest to the sea 
and the three cities farthest from it.

y1 = df_ravenna['temp']
df_ravenna['day'] = pd.to_datetime(df_ravenna['day'])
x1 = df_ravenna['day']
y2 = df_faenza['temp']
df_faenza['day'] = pd.to_datetime(df_faenza['day'])
x2 = df_faenza['day']
y3 = df_cesena['temp']
df_cesena['day'] = pd.to_datetime(df_cesena['day'])
x3 = df_cesena['day']
y4 = df_milano['temp']
df_milano['day'] = pd.to_datetime(df_milano['day'])
x4 = df_milano['day']
y5 = df_asti['temp']
df_asti['day'] = pd.to_datetime(df_asti['day'])
x5 = df_asti['day']
y6 = df_torino['temp']
df_torino['day'] = pd.to_datetime(df_torino['day'])
x6 = df_torino['day']
fig, ax = plt.subplots()
plt.xticks(rotation=70)
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)
plt.plot(x1,y1,'r',x2,y2,'r',x3,y3,'r')
plt.plot(x4,y4,'g',x5,y5,'g',x6,y6,'g')

This code will produce the chart shown in Figure 10-10. The temperatures of the three cities closest to 
the sea are shown in red, while the temperatures of the three cities farthest away are in green.
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Figure 10-10.  The trend of the temperatures of six different cities (red is the closest to the sea; green is the 
farthest)

Looking at Figure 10-10, the results seem promising. In fact, the three closest cities have maximum 
temperatures much lower than those farthest away, whereas there seems to be little difference in the 
minimum temperatures.

In order to go deep into this aspect, you can collect the maximum and minimum temperatures of all ten 
cities and display a line chart that charts these temperatures compared to their distances from the sea.

dist = [df_ravenna['dist'][0],
     df_cesena['dist'][0],
     df_faenza['dist'][0],
     df_ferrara['dist'][0],
     df_bologna['dist'][0],
     df_mantova['dist'][0],
     df_piacenza['dist'][0],
     df_milano['dist'][0],
     df_asti['dist'][0],
     df_torino['dist'][0]
]temp_max = [df_ravenna['temp'].max(),
     df_cesena['temp'].max(),
     df_faenza['temp'].max(),
     df_ferrara['temp'].max(),
     df_bologna['temp'].max(),
     df_mantova['temp'].max(),
     df_piacenza['temp'].max(),
     df_milano['temp'].max(),
     df_asti['temp'].max(),
     df_torino['temp'].max()
]
temp_min = [df_ravenna['temp'].min(),
     df_cesena['temp'].min(),
     df_faenza['temp'].min(),
     df_ferrara['temp'].min(),
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     df_bologna['temp'].min(),
     df_mantova['temp'].min(),
     df_piacenza['temp'].min(),
     df_milano['temp'].min(),
     df_asti['temp'].min(),
     df_torino['temp'].min()
]

Start by representing the maximum temperatures.

plt.plot(dist,temp_max,'ro')

The result is shown in Figure 10-11.

Figure 10-11.  Trend of maximum temperature in relation to distance from the sea

As shown in Figure 10-11, you can affirm the hypothesis that the presence of the sea somehow 
influences meteorological parameters is true (at least in the day today ☺).

Furthermore, you can see that the effect of the sea decreases rapidly, and after about 60-70 km, the 
maximum temperatures reach a plateau.

An interesting idea would be to represent the two different trends with two straight lines obtained by 
linear regression. To do this, you can use the SVR method provided by the scikit-learn library.

If you haven’t installed the scikit-learn library yet, do so now. If you are working with Anaconda, you 
can install it via Anaconda Navigator by selecting it from the packages available in your virtual environment 
(see Figure 10-12), or from the CMD.exe Prompt console, by entering this command:

conda install scikit-learn
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Figure 10-12.  Installation of the scikit-learn library with Anaconda Navigator

At this point, you can continue with the example by inserting the following code into a cell in the 
Notebook:

x = np.array(dist)
y = np.array(temp_max)
x1 = x[x<100]
x1 = x1.reshape((x1.size,1))
y1 = y[x<100]
x2 = x[x>50]
x2 = x2.reshape((x2.size,1))
y2 = y[x>50]
from sklearn.svm import SVR
svr_lin1 = SVR(kernel='linear', C=1e3)
svr_lin2 = SVR(kernel='linear', C=1e3)
svr_lin1.fit(x1, y1)
svr_lin2.fit(x2, y2)
xp1 = np.arange(10,100,10).reshape((9,1))
xp2 = np.arange(50,400,50).reshape((7,1))
yp1 = svr_lin1.predict(xp1)
yp2 = svr_lin2.predict(xp2)
plt.plot(xp1, yp1, c='r', label='Strong sea effect')
plt.plot(xp2, yp2, c='b', label='Light sea effect')
plt.axis((0,400,27,32))
plt.scatter(x, y, c='k', label='data')

This code will produce the chart shown in Figure 10-13.
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Figure 10-13.  The two trends described by the maximum temperatures in relation to distance

As you can see, temperature increase in the first 60 km is very rapid, rising from 28 to 31 degrees. It then 
increases very mildly (if at all) over longer distances. The two trends are described by two straight lines that 
have the following expression

	 x ax b= + 	

where a is the slope and the b is the intercept.

print( svr_lin1.coef_)
print( svr_lin1.intercept_)
print( svr_lin2.coef_)
print( svr_lin2.intercept_)
Out [ ]:
[[-0.04794118]]
[ 27.65617647]
[[-0.00317797]]
[ 30.2854661]

You might consider the intersection point of the two lines as the point between the area where the sea 
exerts its influence and the area where it doesn’t, or at least not as strongly.

from scipy.optimize import fsolve
def line1(x):
    a1 = svr_lin1.coef_[0][0]
    b1 = svr_lin1.intercept_[0]
    return a1*x + b1
def line2(x):
    a2 = svr_lin2.coef_[0][0]
    b2 = svr_lin2.intercept_[0]
    return a2*x + b2
def findIntersection(fun1,fun2,x0):
 return fsolve(lambda x : fun1(x) - fun2(x),x0)
result = findIntersection(line1,line2,0.0)
print("[x,y] = [ %d , %d ]" % (result,line1(result)))
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x = np.linspace(0,300,31)
plt.plot(x,line1(x),x,line2(x),result,line1(result),'ro')

Executing the code, you can find the point of intersection as follows:

Out [ ]:
[x,y] = [ 58, 30 ]

This point is represented in the chart shown in Figure 10-14.

Figure 10-14.  The point of intersection between two straight lines obtained by linear regression

You can say that the average distance in which the effects of the sea vanish is 58 km.
Now you can analyze the minimum temperatures.

plt.axis((0,400,15,25))
plt.plot(dist,temp_min,'bo')

Doing this, you’ll obtain the chart shown in Figure 10-15.

Figure 10-15.  The minimum temperatures appear to be independent of the distance from the sea
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In this case, it appears very clear that the sea has no effect on minimum temperatures recorded during 
the night, or rather, around six in the morning. If I remember well, when I was a child I was taught that the 
sea mitigated the cold temperatures, or that the sea released the heat absorbed during the day. This does not 
seem to be the case. This case tracks summer in Italy; it would be interesting to see if this hypothesis is true 
in the winter or somewhere else.

Another meteorological measure contained in the ten dataframes is the humidity. Even for this 
measure, you can see the trend of the humidity during the day for the three cities closest to the sea and for 
the three farthest away.

y1 = df_ravenna['humidity']
x1 = df_ravenna['day']
y2 = df_faenza['humidity']
x2 = df_faenza['day']
y3 = df_cesena['humidity']
x3 = df_cesena['day']
y4 = df_milano['humidity']
x4 = df_milano['day']
y5 = df_asti['humidity']
x5 = df_asti['day']
y6 = df_torino['humidity']
x6 = df_torino['day']
fig, ax = plt.subplots()
plt.xticks(rotation=70)
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)
plt.plot(x1,y1,'r',x2,y2,'r',x3,y3,'r')
plt.plot(x4,y4,'g',x5,y5,'g',x6,y6,'g')

This code will create the chart shown in Figure 10-16.

Figure 10-16.  The trend of the humidity during the day for three cities nearest the sea (shown in red) and 
three cities farthest away (indicated in green)
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At first glance, it would seem that the cities closest to the sea experience more humidity than those 
farthest away and that this difference in moisture (about 20 percent) extends throughout the day. You can 
see if this remains true when you report the maximum and minimum humidity with respect to the distances 
from the sea.

hum_max = [df_ravenna['humidity'].max(),
     df_cesena['humidity'].max(),
     df_faenza['humidity'].max(),
     df_ferrara['humidity'].max(),
     df_bologna['humidity'].max(),
     df_mantova['humidity'].max(),
     df_piacenza['humidity'].max(),
     df_milano['humidity'].max(),
     df_asti['humidity'].max(),
     df_torino['humidity'].max()
]
plt.plot(dist,hum_max,'bo')

The maximum humidity of ten cities according to their distance from the sea is represented in the chart 
in Figure 10-17.

Figure 10-17.  The trend of the maximum humidity function with respect to the distance from the sea

hum_min = [df_ravenna['humidity'].min(),
     df_cesena['humidity'].min(),
     df_faenza['humidity'].min(),
     df_ferrara['humidity'].min(),
     df_bologna['humidity'].min(),
     df_mantova['humidity'].min(),
     df_piacenza['humidity'].min(),
     df_milano['humidity'].min(),
     df_asti['humidity'].min(),
     df_torino['humidity'].min()
]
plt.plot(dist,hum_min,'bo')
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The minimum humidity of ten cities according to their distance from the sea is represented in the chart 
in Figure 10-18.

Figure 10-18.  The trend of the minimum humidity as a function of distance from the sea

Looking at Figures 10-17 and 10-18, you can certainly see that the humidity, both the minimum and 
maximum, is greater in the cities closest to the sea. However, in my opinion, it is not possible to say that 
there is a linear relationship or some other kind of relationship to draw a curve. The collected points (ten) 
are too few to highlight a trend in this case.

�The RoseWind
Among the various meteorological data that were collected for each city are those related to the wind:

•	 Wind degree (direction)

•	 Wind speed

If you analyze the dataframe, you will notice that the wind speed is relative to the direction it blows 
and the time of day. For instance, each measurement shows the direction in which the wind blows (see 
Figure 10-19).
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Figure 10-19.  The wind data contained in the dataframe

To better analyze this kind of data, it is necessary to visualize them. In this case, a linear chart in 
Cartesian coordinates is not the most optimal approach.

If you use the classic scatterplot with the points contained in a single dataframe:

plt.plot(df_ravenna['wind_deg'],df_ravenna['wind_speed'],'ro')

You get a chart like the one shown in Figure 10-20, which certainly is not very educational.
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Figure 10-20.  A scatterplot representing a distribution of 360 degrees

To represent a distribution of points in 360 degrees, it’s best to use another type of visualization: the 
polar chart. You have already seen this kind of chart in Chapter 8.

First you need to create a histogram, whereby the data are distributed over the interval of 360 degrees 
divided into eight bins, each of which is 45 degrees.

hist, bins = np.histogram(df_ravenna['wind_deg'],8,[0,360])
print(hist)
print(bins)

The values returned are occurrences within each bin expressed by an array called hist:

Out [ ]:
[ 0  5 11  1  0  1  0  0]

and an array called bins, which defines the edges of each bin within the range of 360 degrees.

Out [ ]:
 [   0.   45.   90.  135.  180.  225.  270.  315.  360.]

These arrays will be useful to correctly define the polar chart to be drawn. For this purpose, you have to 
create a function in part by using the code contained in Chapter 8. This function is called showRoseWind(), 
and it will need three different arguments: values is the array containing the values to be displayed, which in 
this case is the hist array; city_name is a string containing the name of the city to be shown as the chart title; 
and max_value is an integer that establishes the maximum value for presenting the blue color.

Defining a function of this kind helps you avoid rewriting the same code many times, and it produces 
more modular code, which allows you to focus on the concepts related to a particular operation within a 
function.

def showRoseWind(values,city_name,max_value):
   N = 8
   theta = np.arange(0.,2 * np.pi, 2 * np.pi / N)
   radii = np.array(values)
   plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)
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   colors = [(1-x/max_value, 1-x/max_value, 0.75) for x in radii]
   plt.bar(theta +np.pi/8, radii, width=(2*np.pi/N), bottom=0.0, color=colors)
   plt.title(city_name,x=0.2, fontsize=20)

One thing that changed is the color map. In this case, the closer to blue the slice is, the greater the value 
it represents.

Once you define a function, you can use it:

showRoseWind(hist,'Ravenna',max(hist))

Executing this code, you will obtain a polar chart like the one shown in Figure 10-21.

Figure 10-21.  The polar chart represents the distribution of values within a range of 360 degrees

As you can see in Figure 10-20, you have a range of 360 degrees divided into eight areas of 45 degrees each 
(bin), in which a scale of values is represented radially. In each of the eight areas, a slice is represented with a 
variable length that corresponds precisely to the corresponding value. The more radially extended the slice is, 
the greater the value represented. In order to increase the readability of the chart, a color scale has been entered 
that corresponds to the extension of its slice. The wider the slice is, the more the color tends to a deep blue.

This polar chart provides you with information about how the wind direction will be distributed 
radially. In this case, the wind has blown purely toward the southwest/west most of the day.

Once you have defined the showRoseWind function, it is very easy to observe the winds with respect to 
any of the ten sample cities.

hist, bin = np.histogram(df_ferrara['wind_deg'],8,[0,360])
print(hist)
showRoseWind(hist,'Ferrara', 15.0)
Out [ ]:
[7 2 3 3 3 2 0 0]
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Figure 10-22 shows the polar charts of the ten cities.

Figure 10-22.  The polar charts display the distribution of the wind direction

�Calculating the Mean Distribution of the Wind Speed
Even the other quantity that relates the speed of the winds can be represented as a distribution on 360 
degrees.

Now define a feature called RoseWind_Speed that will allow you to calculate the mean wind speeds for 
each of the eight bins into which 360 degrees are divided.

def RoseWind_Speed(df_city):
   degs = np.arange(45,361,45)
   tmp =  []
   for deg in degs:
      �tmp.append(df_city[(df_city['wind_deg']>(deg-46)) & (df_city['wind_deg']<deg)]['wind_

speed'].mean())
   return np.nan_to_num(tmp)

This function returns a NumPy array containing the eight mean wind speeds. This array will be used 
as the first argument of the ShowRoseWind_Speed() function, which is an improved version of the previous 
ShowRoseWind() function used to represent the polar chart.

def showRoseWind_Speed(speeds,city_name):
    N = 8
    theta = np.arange(0,2 * np.pi, 2 * np.pi / N)
    radii = np.array(speeds)
    plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)
    colors = [(1-x/10.0, 1-x/10.0, 0.75) for x in radii]
    bars = plt.bar(theta+np.pi/8, radii, width=(2*np.pi/N), bottom=0.0, color=colors)
    plt.title(city_name,x=0.2, fontsize=20)
showRoseWind_Speed(RoseWind_Speed(df_ravenna),'Ravenna')
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Figure 10-23 represents the RoseWind corresponding to the wind speeds distributed around 360 
degrees.

Figure 10-23.  This polar chart represents the distribution of wind speeds within 360 degrees

At the end of all this work, you can save the dataframe as a CSV file, thanks to the to_csv () function of 
the pandas library.

df_ferrara.to_csv('ferrara.csv')
df_milano.to_csv('milano.csv')
df_mantova.to_csv('mantova.csv')
df_ravenna.to_csv('ravenna.csv')
df_torino.to_csv('torino.csv')
df_asti.to_csv('asti.csv')
df_bologna.to_csv('bologna.csv')
df_piacenza.to_csv('piacenza.csv')
df_cesena.to_csv('cesena.csv')
df_faenza.to_csv('faenza.csv')

�Conclusions
The purpose of this chapter was mainly to show how you can get information from raw data. Some of this 
information will not lead to important conclusions, while other information will lead to the confirmation of 
a hypothesis, thus increasing your state of knowledge. These are the cases in which data analysis has led to a 
success.

In the next chapter, you see another case related to real data obtained from an open data source. You 
also see how you can further enhance the graphical representation of the data using the D3 JavaScript 
library. This library, although not Python, can be easily integrated into Python.
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CHAPTER 11

Embedding the JavaScript D3 
Library in the IPython Notebook

In this chapter, you will learn how to extend the capabilities of the graphical representation including the 
JavaScript D3 library in your Jupyter Notebook. This library has enormous potential graphics and allows you 
to build graphical representations that even the matplotlib library cannot represent.

In the course of the various examples, you will see how to implement JavaScript code in a Python 
environment, using the large capacity of the integrative Jupyter Notebook. You’ll also see different ways to 
use the data contained in pandas dataframes and representations based on JavaScript code.

�The Open Data Source for Demographics
In this chapter, you use demographic data as the dataset on which to perform the analysis. This chapter  
uses the United States Census Bureau site (www.census.gov) as the data source for the demographics  
(see Figure 11-1).

Figure 11-1.  This is the home page of the United States Census Bureau

© Fabio Nelli 2023 
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-9532-8_11
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The United States Census Bureau is part of the United States Department of Commerce, and it is 
officially in charge of collecting demographic data on the U.S. population and reporting statistics about it. 
Its site provides a large amount of data as CSV files, which, as you have seen in previous chapters, are easily 
imported in the form of pandas dataframes.

For the purposes of this chapter, you want the data that estimates the population of the states and 
counties in the United States. On the site there is a series of datasets made available for studies at the link 
www2.census.gov/programs-surveys/popest/datasets/. Among the available datasets, look for the 
most recent one and download it to your computer. This example uses the CSV file called co-est2022-
alldata.csv.

Now, open a Jupyter Notebook and import all the necessary libraries for this kind of analysis in the 
first cell.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

You can start by importing data from Census.gov in your Notebook. You need to upload the co-
est2022--alldata.csv file directly in the form of a pandas dataframe. The pd.read_csv() function will 
convert tabular data contained in a CSV file to a pandas dataframe, which you should name pop2022. Using 
the dtype option, you can force some fields that could be interpreted as numbers to be interpreted as strings 
instead.

pop2022 =pd.read_csv('co-est2022-alldata.csv' ,encoding='latin-1',dtype={'STATE': 'str', 
'COUNTY': 'str'})

Once you have acquired and collected data in the pop2022 dataframe, you can see how the data are 
structured by simply writing:

pop2022

You will obtain an image like the one shown in Figure 11-2.

Figure 11-2.  The pop2022 dataframe contains all demographics for the years 2020, 2021, and 2022
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Carefully analyzing the nature of the data, you can see how they are organized within the dataframe. 
The SUMLEV column contains the geographic level of the data; for example, 40 indicates a state and 50 
indicates data covering a single county.

The REGION, DIVISION, STATE, and COUNTY columns contain hierarchical subdivisions of all areas in 
which the U.S. territory has been divided. STNAME and CTYNAME indicate the name of the state and the county, 
respectively. The following columns contain the data on population. POPESTIMATE2020 is the column that 
contains the population estimate for 2020, followed by those for 2021 and 2022.

You will use these values of population estimates as data to be represented in the examples discussed in 
this chapter.

The pop2022 dataframe contains a large number of columns and rows that you are not interested in, 
so it is smart to eliminate unnecessary information. First, you are interested in the values of the people who 
relate to entire states, and so you can extract only the rows with SUMLEV equal to 40. Collect these data within 
the pop2022_by_state dataframe.

pop2022_by_state = pop2022[pop2022.SUMLEV == 40]
pop2022_by_state

You get a dataframe like the one shown in Figure 11-3.

Figure 11-3.  The pop2022_by_state dataframe contains all demographics related to the states

The dataframe just obtained still contains too many columns with unnecessary information. Given 
the large number of columns, instead of removing them with the drop() function, it is more convenient to 
perform an extraction.

states = pop2022_by_state[['STNAME','POPESTIMATE2020', 'POPESTIMATE2021', 
'POPESTIMATE2022']]

Now that you have the essential information, you can start to make graphical representations. For 
example, you could determine the five most populated states in the country.

states.sort_values(['POPESTIMATE2022'], ascending=False)[:5]

Listing them in descending order, you will receive the dataframe shown in Figure 11-4.
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Figure 11-4.  The five most populous states in the United States

For example, you could use a bar chart to represent the five most populous states in descending 
order. This work is easily achieved using matplotlib, but in this chapter, you take advantage of this simple 
representation to see how you can use the JavaScript D3 library to create the same representation.

�The JavaScript D3 Library
D3 is a JavaScript library that allows direct inspection and manipulation of the DOM object (HTML5), but it 
is intended solely for data visualization and it does its job excellently. In fact, the name D3 is derived from 
the three Ds contained in “data-driven documents.” D3 was entirely developed by Mike Bostock.

This library is proving to be very versatile and powerful, thanks to the technologies upon which it 
is based: JavaScript, SVG, and CSS. D3 combines powerful visualization components with a data-driven 
approach to the DOM manipulation. In so doing, D3 takes full advantage of the capabilities of the modern 
browser.

Given that even Jupyter Notebooks are web objects and use the same technologies that are the basis of 
the current browser, the idea of using this library in a notebook is not as preposterous as it may seem at first, 
even though it’s a JavaScript library.

For those not familiar with the JavaScript D3 library and want to know more about this topic, I 
recommend reading another book, entitled Create Web Charts with D3, by F. Nelli (Apress, 2014).

Indeed, Jupyter Notebook has the magic function called %% javascript that integrates JavaScript code 
into Python code.

But the JavaScript code, in a manner similar to Python, requires you to import some libraries. The 
libraries are available online and must be loaded each time you launch the execution. In HTML, the process 
of importing a library has a particular construct:

<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>

This is an HTML tag. To make the import within an Jupyter Notebook, you should use this different 
construct:

%%javascript
require.config({
    paths: {
        d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min'
    }
});
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Using require.config(), you can import all the necessary JavaScript libraries.
In addition, if you are familiar with HTML code, you will know for sure that you need to define CSS 

styles if you want to strengthen the capacity of visualization of an HTML page. In parallel, also in the Jupyter 
Notebook, you can define a set of CSS styles. To do this, you can write HTML code, thanks to the HTML() 
function belonging to the IPython.core.display module. Therefore, make the appropriate CSS definitions 
as follows:

from IPython.display import display, Javascript, HTML
display(HTML("""
<style>
.bar {
   fill: steelblue;
}
.bar:hover{
   fill: brown;
}
.axis {
   font: 10px sans-serif;
}
.axis path,
.axis line {
   fill: none;
   stroke: #000;
}
.x.axis path {
   display: none;
}
</style>
<div id="chart_d3" />
"""))

At the bottom of the previous code, note that the <div> HTML tag is identified as chart_d3. This tag 
identifies the location where it will be represented.

Now you have to write the JavaScript code by using the functions provided by the D3 library. Using the 
Template object provided by the Jinja2 library, you can define dynamic JavaScript code, where you can 
replace the text depending on the values contained in a pandas dataframe.

If there is still not a Jinja2 library installed on your system, you can always install it with Anaconda.

conda install jinja2

Or by using this

pip install jinja2

After you have installed this library, you can define the template.

import jinja2
myTemplate = jinja2.Template("""
require(["d3"], function(d3){
   var data = []
   {% for row in data %}
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    data.push({ 'state': '{{ row[1] }}', 'population': '{{ row[4] }}'  });
       {% endfor %}
d3.select("#chart_d3 svg").remove()
    var margin = {top: 20, right: 20, bottom: 30, left: 40},
        width = 800 - margin.left - margin.right,
        height = 400 - margin.top - margin.bottom;
    var x = d3.scale.ordinal()
        .rangeRoundBands([0, width], .25);
    var y = d3.scale.linear()
        .range([height, 0]);
    var xAxis = d3.svg.axis()
        .scale(x)
        .orient("bottom");
    var yAxis = d3.svg.axis()
        .scale(y)
        .orient("left")
        .ticks(10)
        .tickFormat(d3.format('.1s'));
    var svg = d3.select("#chart_d3").append("svg")
        .attr("width", width + margin.left + margin.right)
        .attr("height", height + margin.top + margin.bottom)
        .append("g")
        .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
    x.domain(data.map(function(d) { return d.state; }));
    y.domain([0, d3.max(data, function(d) { return d.population; })]);
    svg.append("g")
        .attr("class", "x axis")
        .attr("transform", "translate(0," + height + ")")
        .call(xAxis);
    svg.append("g")
        .attr("class", "y axis")
        .call(yAxis)
        .append("text")
        .attr("transform", "rotate(-90)")
        .attr("y", 6)
        .attr("dy", ".71em")
        .style("text-anchor", "end")
        .text("Population");
    svg.selectAll(".bar")
        .data(data)
        .enter().append("rect")
        .attr("class", "bar")
        .attr("x", function(d) { return x(d.state); })
        .attr("width", x.rangeBand())
        .attr("y", function(d) { return y(d.population); })
        .attr("height", function(d) { return height - y(d.population); });
});
""");
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You aren’t finished. Now is the time to launch the representation of the D3 chart you just defined. You 
also need to write the commands needed to pass data contained in the pandas dataframe to the template, so 
they can be directly integrated into the JavaScript code written previously. The representation of JavaScript 
code, or rather the template just defined, is executed by launching the render() function.

display(Javascript(myTemplate.render(
    data=states.sort_values(['POPESTIMATE2022'], ascending=False)[:10].itertuples()
)))

The bar chart will appear in the previous frame in which the <div> was placed, as shown in Figure 11-5, 
which shows all the population estimates for the year 2022.

Figure 11-5.  The five most populous states of the United States represented by a bar chart relative to 2022

�Drawing a Clustered Bar Chart
So far you have relied broadly on what had been described in the fantastic article written by Barto. However, 
the type of data that you extracted has given you the trend of population estimates in the last four years for 
the United States. A more useful chart for visualizing data would be to show the trend of the population of 
each state over time.

To do that, a good choice is to use a clustered bar chart, where each cluster is one of the five most 
populous states and each cluster will have four bars that represent the population in a given year.

At this point you can modify the previous code or write new code in your Jupyter Notebook.

display(HTML("""
<style>
.bar2020 {
   fill: steelblue;
}
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.bar2021 {
   fill: red;
}
.bar2022 {
   fill: yellow;
}
.axis {
   font: 10px sans-serif;
}
.axis path,
.axis line {
   fill: none;
   stroke: #000;
}
.x.axis path {
   display: none;
}
</style>
<div id="chart_d3" />
"""))

You have to modify the template as well, by adding the other three sets of data corresponding to the 
years 2020 and 2021. These years will be represented by a different color on the clustered bar chart.

import jinja2
myTemplate = jinja2.Template("""
require(["d3"], function(d3){
   var data = []
   var data2 = []
   var data3 = []

   {% for row in data %}
   data.push ({ 'state': '{{ row[1] }}', 'population': '{{ row[2] }}'  });
   data2.push({ 'state': '{{ row[1] }}', 'population': '{{ row[3] }}'  });
   data3.push({ 'state': '{{ row[1] }}', 'population': '{{ row[4] }}'  });
   {% endfor %}
d3.select("#chart_d3 svg").remove()
    var margin = {top: 20, right: 20, bottom: 30, left: 40},
        width = 800 - margin.left - margin.right,
        height = 400 - margin.top - margin.bottom;
    var x = d3.scale.ordinal()
        .rangeRoundBands([0, width], .25);
    var y = d3.scale.linear()
        .range([height, 0]);
    var xAxis = d3.svg.axis()
        .scale(x)
        .orient("bottom");
    var yAxis = d3.svg.axis()
        .scale(y)
        .orient("left")
        .ticks(10)
        .tickFormat(d3.format('.1s'));
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    var svg = d3.select("#chart_d3").append("svg")
        .attr("width", width + margin.left + margin.right)
        .attr("height", height + margin.top + margin.bottom)
        .append("g")
        .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
    x.domain(data.map(function(d) { return d.state; }));
    y.domain([0, d3.max(data, function(d) { return d.population; })]);
    svg.append("g")
        .attr("class", "x axis")
        .attr("transform", "translate(0," + height + ")")
        .call(xAxis);
    svg.append("g")
        .attr("class", "y axis")
        .call(yAxis)
        .append("text")
        .attr("transform", "rotate(-90)")
        .attr("y", 6)
        .attr("dy", ".71em")
        .style("text-anchor", "end")
        .text("Population");
    svg.selectAll(".bar2020")
        .data(data)
        .enter().append("rect")
        .attr("class", "bar2020")
        .attr("x", function(d) { return x(d.state); })
        .attr("width", x.rangeBand()/4)
        .attr("y", function(d) { return y(d.population); })
        .attr("height", function(d) { return height - y(d.population); });
    svg.selectAll(".bar2021")
        .data(data2)
        .enter().append("rect")
        .attr("class", "bar2021")
        .attr("x", function(d) { return (x(d.state)+x.rangeBand()/3); })
        .attr("width", x.rangeBand()/3)
        .attr("y", function(d) { return y(d.population); })
        .attr("height", function(d) { return height - y(d.population); });
    svg.selectAll(".bar2022")
        .data(data3)
        .enter().append("rect")
        .attr("class", "bar2022")
        .attr("x", function(d) { return (x(d.state)+2*x.rangeBand()/3); })
        .attr("width", x.rangeBand()/3)
        .attr("y", function(d) { return y(d.population); })
        .attr("height", function(d) { return height - y(d.population); });
});
""");

The series of data to be passed from the dataframe to the template are now four, so you have to refresh 
the data and the changes that you just made to the code. Therefore, you need to rerun the code of the 
render() function.
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display(Javascript(myTemplate.render(
    data=states.sort_values(['POPESTIMATE2022'], ascending=False)[:5].itertuples()
)))

Once you launch the render() function again, you get a chart like the one shown in Figure 11-6.

Figure 11-6.  A clustered bar chart representing the populations of the five most populous states from 
2020 to 2022

�The Choropleth Maps
In the previous sections, you saw how to use JavaScript code and the D3 library to represent a bar chart. Well, 
these achievements would have been easy with matplotlib and perhaps implemented in an even better 
way. The purpose of the previous code was only for educational purposes.

Something quite different is the use of much more complex views that are unobtainable by matplotlib. 
This section illustrates the true potential made available by the D3 library. The choropleth maps are very 
complex types of representations.

The choropleth maps are geographical representations where the land areas are divided into portions 
characterized by different colors. The colors and the boundaries between a portion geographical and 
another are themselves representations of data.

This type of representation is very useful for representing the results of data analysis carried out on 
demographic or economic information, and this is also the case for data that correlates to their geographical 
distributions.

The representation of choropleth is based on a particular file called TopoJSON. This type of file contains 
all the inside information representing a choropleth map, such as the United States (see Figure 11-7).
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Figure 11-7.  The representation of a choropleth map of U.S. territories with no value related to each county 
or state

A good link to find such material is the U.S. Atlas TopoJSON (https://github.com/mbostock/ 
us-atlas), but a lot of literature about it is available online.

A representation of this kind is not only possible but is also customizable. Thanks to the D3 library, you 
can correlate the geographic portions based on the value of particular columns contained in a dataframe.

First, start with an example already on the Internet, in the D3 library, http://bl.ocks.org/
mbostock/4060606, but fully developed in HTML. So now you learn how to adapt a D3 example in HTML in 
an IPython Notebook.

If you look at the code shown on the web page of the example, you can see that there are three necessary 
JavaScript libraries. This time, in addition to the D3 library, you need to import the queue and TopoJSON libraries.

<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/queue-async/1.0.7/queue.min.
js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/topojson.min.
js"></script>

You have to use require.config() as you did in the previous sections.

%%javascript
require.config({
    paths: {
        d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min',
        queue: '//cdnjs.cloudflare.com/ajax/libs/queue-async/1.0.7/queue.min',
        topojson: '//cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/topojson.min'
    }
});
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The pertinent part of the CSS is shown again, all within the HTML() function.

from IPython.display import display, Javascript, HTML
display(HTML("""
<style>
.counties {
  fill: none;
}
.states {
  fill: none;
  stroke: #fff;
  stroke-linejoin: round;
}
.q0-9 { fill:rgb(247,251,255); }
.q1-9 { fill:rgb(222,235,247); }
.q2-9 { fill:rgb(198,219,239); }
.q3-9 { fill:rgb(158,202,225); }
.q4-9 { fill:rgb(107,174,214); }
.q5-9 { fill:rgb(66,146,198); }
.q6-9 { fill:rgb(33,113,181); }
.q7-9 { fill:rgb(8,81,156); }
.q8-9 { fill:rgb(8,48,107); }
</style>
<div id="choropleth" />
"""))

Here is the new template that mirrors the code shown in the Bostock example, with some changes:

import jinja2
choropleth = jinja2.Template("""
require(["d3","queue","topojson"], function(d3,queue,topojson){
d3.select("#choropleth svg").remove()
var width = 960,
    height = 600;
var rateById = d3.map();
var quantize = d3.scale.quantize()
    .domain([0, .15])
    .range(d3.range(9).map(function(i) { return "q" + i + "-9"; }));
var projection = d3.geo.albersUsa()
    .scale(1280)
    .translate([width / 2, height / 2]);
var path = d3.geo.path()
    .projection(projection);
//row to modify
var svg = d3.select("#choropleth").append("svg")
    .attr("width", width)
    .attr("height", height);
queue()
    .defer(d3.json, "us.json")
    .defer(d3.tsv, "unemployment.tsv", function(d) { rateById.set(d.id, +d.rate); })
    .await(ready);
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function ready(error, us) {
  if (error) throw error;
  svg.append("g")
      .attr("class", "counties")
    .selectAll("path")
      .data(topojson.feature(us, us.objects.counties).features)
    .enter().append("path")
      .attr("class", function(d) { return quantize(rateById.get(d.id)); })
      .attr("d", path);
  svg.append("path")
      .datum(topojson.mesh(us, us.objects.states, function(a, b) { return a !== b; }))
      .attr("class", "states")
      .attr("d", path);
}
});
""");

Now you launch the representation, this time without any value for the template, since all the values are 
contained in the us.json and unemployment.tsv files (you can find them in the source code of this book).

display(Javascript(choropleth.render()))

The results are identical to those shown in the Bostock example (see Figure 11-8).

Figure 11-8.  The choropleth map of the United States with the coloring of the counties based on the values 
contained in the file TSV
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�The Choropleth Map of the U.S. Population in 2022
Now that you have seen how to extract demographic information from the U.S. Census Bureau and you can 
create a choropleth map, you can unify both things to represent a choropleth map showing the population 
values. The more populous the county, the deeper blue it will be. In counties with very low population levels, 
the hue will tend toward white.

In the first section of the chapter, you extracted information about the states using the pop2022 
dataframe. This was done by selecting the rows of the dataframe with SUMLEV values equal to 40. In this 
example, you instead need the values of the populations of each county. Therefore, you have to take out a 
new dataframe by taking pop2022 using only lines with a SUMLEV of 50.

You must instead select the rows to level 50.

pop2022_by_county = pop2022[pop2022.SUMLEV == 50]
pop2022_by_county

You get a dataframe that contains all U.S. counties, as shown in Figure 11-9.

Figure 11-9.  The pop2022_by_county dataframe contains all demographics of all U.S. counties

You must use your data instead of the TSV previously used. Inside it, there are the ID numbers 
corresponding to the various counties. You can use a file on the web to determine their names. You can 
download it and turn it into a dataframe.

USJSONnames = pd.read_table('us-county-names.tsv')
USJSONnames

Thanks to this file, you see the codes with the corresponding counties (see Figure 11-10).
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Figure 11-10.  The codes of the counties are contained in the TSV file

If you take for example the Baldwin county:

USJSONnames[USJSONnames['name'] == 'Baldwin']

You can see that there are actually two counties with the same name, but they are identified by two 
different identifiers (Figure 11-11).

Figure 11-11.  There are two Baldwin counties

You get a table and see that there are two counties and two different codes. Now you see this in your 
dataframe with data taken from the data source at census.gov (see Figure 11-12).

pop2022_by_county[pop2022_by_county['CTYNAME'] == 'Baldwin County']
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Figure 11-12.  The ID codes in the TSV files correspond to the combination of the values contained in the 
STATE and COUNTY columns

You can recognize that there is a match. The ID contained in TOPOJSON matches the numbers in the 
STATE and COUNTY columns if combined, but removing the 0 when it is the digit at the beginning of the 
code. So now you can reconstruct all the data needed to replicate the TSV example of choropleth from the 
counties dataframe. The file will be saved as population.csv.

counties = pop2022_by_county[['STATE','COUNTY','POPESTIMATE2022']]
counties.is_copy = False
counties['id'] = counties['STATE'].str.lstrip('0') + "" + counties['COUNTY']
del counties['STATE']
del counties['COUNTY']
counties.columns = ['pop','id']
counties = counties[['id','pop']]
counties.to_csv('population.csv')

Now you rewrite the contents of the HTML() function by specifying a new <div> tag with the ID as 
choropleth2.

from IPython.display import display, Javascript, HTML
display(HTML("""
<style>
.counties {
  fill: none;
}
.states {
  fill: none;
  stroke: #fff;
  stroke-linejoin: round;
}
.q0-9 { fill:rgb(247,251,255); }
.q1-9 { fill:rgb(222,235,247); }
.q2-9 { fill:rgb(198,219,239); }
.q3-9 { fill:rgb(158,202,225); }
.q4-9 { fill:rgb(107,174,214); }
.q5-9 { fill:rgb(66,146,198); }
.q6-9 { fill:rgb(33,113,181); }
.q7-9 { fill:rgb(8,81,156); }
.q8-9 { fill:rgb(8,48,107); }
</style>
<div id="choropleth2" />
"""))
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You also have to define a new Template object.

choropleth2 = jinja2.Template("""
require(["d3","queue","topojson"], function(d3,queue,topojson){
   var data = []
d3.select("#choropleth2 svg").remove()
var width = 960,
    height = 600;
var rateById = d3.map();
var quantize = d3.scale.quantize()
    .domain([0, 1000000])
    .range(d3.range(9).map(function(i) { return "q" + i + "-9"; }));
var projection = d3.geo.albersUsa()
    .scale(1280)
    .translate([width / 2, height / 2]);
var path = d3.geo.path()
    .projection(projection);
var svg = d3.select("#choropleth2").append("svg")
    .attr("width", width)
    .attr("height", height);
queue()
    .defer(d3.json, "us.json")
    .defer(d3.csv,"population.csv", function(d) { rateById.set(d.id, +d.pop); })
    .await(ready);
function ready(error, us) {
  if (error) throw error;
  svg.append("g")
      .attr("class", "counties")
    .selectAll("path")
      .data(topojson.feature(us, us.objects.counties).features)
    .enter().append("path")
      .attr("class", function(d) { return quantize(rateById.get(d.id)); })
      .attr("d", path);
  svg.append("path")
      .datum(topojson.mesh(us, us.objects.states, function(a, b) { return a !== b; }))
      .attr("class", "states")
      .attr("d", path);
}
});
""");

Finally, you can execute the render() function to get the chart.

display(Javascript(choropleth2.render()))

The choropleth map will be shown with the counties differently colored depending on their population, 
as shown in Figure 11-13.
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Figure 11-13.  A choropleth map of the United States showing the density of the population of all counties

�Conclusions
In this chapter, you learned how it is possible to further extend the ability to display data using a JavaScript 
library called D3. Choropleth maps are just one of many examples of advanced graphics that are used to 
represent data. This is also a very good way to see the Jupyter Notebook in action. The world does not revolve 
around Python alone, but Python can provide additional capabilities for your work.

In the next chapter, you learn how to apply data analysis to images. You also see how easy it is to build a 
model that can recognize handwritten numbers.
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CHAPTER 12

Recognizing Handwritten Digits

So far you have seen how to apply the techniques of data analysis to pandas dataframes containing numbers 
and strings. However, data analysis is not limited to numbers and strings, because images and sounds can 
also be analyzed and classified.

In this short but no-less-important chapter, you will learn about handwriting recognition.

�Handwriting Recognition
Recognizing handwritten text is a problem that can be traced back to the first automatic machines that 
needed to recognize individual characters in handwritten documents. Think about, for example, the 
ZIP codes on letters at the post office and the automation needed to recognize these five digits. Perfect 
recognition of these codes is necessary in order to sort mail automatically and efficiently.

Included among the other applications that may come to mind is OCR (Optical Character Recognition) 
software. OCR software must read handwritten text, or pages of printed books, for general electronic 
documents in which each character is well defined.

But the problem of handwriting recognition goes farther back in time, more precisely to the early 20th 
century (1920s), when Emanuel Goldberg (1881–1970) began his studies regarding this issue and suggested 
that a statistical approach would be an optimal choice.

To address this issue in Python, the scikit-learn library provides a good example. This library can 
help you better understand this technique, the issues involved, and the possibility of making predictions.

�Recognizing Handwritten Digits with scikit-learn
The scikit-learn library (http://scikit-learn.org/) enables you to approach this type of data analysis 
in a way that is slightly different from what you’ve used in the book so far. The data to be analyzed is closely 
related to numerical values or strings, but can also involve images and sounds.

The problem you face in this chapter involves predicting a numeric value, and then reading and 
interpreting an image that uses a handwritten font.

In this case, you have an estimator with the task of learning through a fit() function, and once it 
reaches a degree of predictive capability (the model is sufficiently valid), it will produce a prediction with the 
predict() function. The training and validation sets are created this time from a series of images.

This chapter uses Jupyter Notebook to run through the Python code examples, so open Jupyter and 
create a new Notebook.

An estimator that is useful in this case is sklearn.svm.SVC, which uses the technique of Support Vector 
Classification (SVC).
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Thus, you have to import the svm module of the scikit-learn library. You can create an estimator of 
SVC type and then choose an initial setting, assigning the values C and gamma generic values. These values 
can then be adjusted in a different way during the course of the analysis.

from sklearn import svm
svc = svm.SVC(gamma=0.001, C=100.)

�The Digits Dataset
As you saw in Chapter 8, the scikit-learn library provides numerous datasets that are useful for testing 
many problems of data analysis and prediction of the results. Also in this case there is a dataset of images 
called Digits.

This dataset consists of 1,797 images that are 8x8 pixels in size. Each image is a handwritten digit in 
grayscale, as shown in Figure 12-1.

Figure 12-1.  One of 1,797 handwritten number images that make up the Digits dataset

Thus, you can load the Digits dataset into your Notebook.

from sklearn import datasets
digits = datasets.load_digits()

After loading the dataset, you can analyze the content. First, you can read lots of information about the 
datasets by calling the DESCR attribute.

print(digits.DESCR)

For a textual description of the dataset, the authors who contributed to its creation and the references 
appear as shown in Figure 12-2.
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Figure 12-2.  Each dataset in the scikit-learn library has a field containing all the information

The images of the handwritten digits are contained in a digits.images array. Each element in this 
array is an image that is represented by an 8x8 matrix of numerical values that correspond to grayscale array. 
White has a value of 0 and black has a value of 15.

digits.images[0]

You will get the following result:

array([[  0.,   0.,   5.,  13.,   9.,   1.,   0.,   0.],
       [  0.,   0.,  13.,  15.,  10.,  15.,   5.,   0.],
       [  0.,   3.,  15.,   2.,   0.,  11.,   8.,   0.],
       [  0.,   4.,  12.,   0.,   0.,   8.,   8.,   0.],
       [  0.,   5.,   8.,   0.,   0.,   9.,   8.,   0.],
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       [  0.,   4.,  11.,   0.,   1.,  12.,   7.,   0.],
       [  0.,   2.,  14.,   5.,  10.,  12.,   0.,   0.],
       [  0.,   0.,   6.,  13.,  10.,   0.,   0.,   0.]])

You can visually check the contents of this result using the matplotlib library.

import matplotlib.pyplot as plt
plt.imshow(digits.images[0], cmap=plt.cm.gray_r, interpolation='nearest')

When you launch this command, you obtain the grayscale image shown in Figure 12-3.

Figure 12-3.  One of the 1,797 handwritten digits

The numerical values represented by images, that is, the targets, are contained in the digits.target array.

digits.targetOut [ ]:
array([0, 1, 2, ..., 8, 9, 8])

It was reported that the dataset is a training set consisting of 1,797 images. You can determine if that 
is true.

digits.target.sizeOut [ ]:
1797

�Learning and Predicting
Now that you have loaded the Digits dataset into your Notebook and have defined an SVC estimator, you can 
start learning.

As you learned in Chapter 8, once you define a predictive model, you must instruct it with a training set, 
which is a set of data in which you already know the class. Given the large quantity of elements contained in 
the Digits dataset, you will certainly obtain a very effective model, that is, one that’s capable of recognizing 
with good certainty the handwritten number.
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This dataset contains 1,797 elements, so you can consider the first 1,791 as a training set and use the last 
6 as a validation set.

You can see in detail these six handwritten digits by using the matplotlib library:

import matplotlib.pyplot as plt
plt.subplot(321)
plt.imshow(digits.images[1791], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(322)
plt.imshow(digits.images[1792], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(323)
plt.imshow(digits.images[1793], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(324)
plt.imshow(digits.images[1794], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(325)
plt.imshow(digits.images[1795], cmap=plt.cm.gray_r, interpolation='nearest')
plt.subplot(326)
plt.imshow(digits.images[1796], cmap=plt.cm.gray_r, interpolation='nearest')

This will produce an image with six digits, as shown in Figure 12-4.

Figure 12-4.  The six digits of the validation set
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Now you can train the svc estimator that you defined earlier.

svc.fit(digits.data[1:1790], digits.target[1:1790])

This will produce an image as shown in Figure 12-5.

Figure 12-5.  The parameters of the SVC estimator

Now you have to test your estimator, making it interpret the six digits of the validation set.

svc.predict(digits.data[1791:1976])
Out [ ]: array([4, 9, 0, 8, 9, 8])

If you compare them with the actual digits, as follows:

digits.target[1791:1976]
Out [ ]:
array([4, 9, 0, 8, 9, 8])

You can see that the svc estimator has learned correctly. It recognizes the handwritten digits, 
interpreting correctly all six digits of the validation set.

�Recognizing Handwritten Digits with TensorFlow
You have just seen an example of how machine learning techniques can recognize handwritten numbers. 
Now the same problem is applied to the deep learning techniques that you used in Chapter 9. As was the 
case in Chapter 9, the following section regarding TensorFlow has been completely rewritten from the 
previous edition. In fact, here too you will use the new TensorFlow 2.x version, which is completely different 
from TensorFlow 1.x. The code used here is therefore not present in older editions of this book.

Given the great value of the MNIST dataset, the TensorFlow library also contains a copy of it. It will 
therefore be very easy to perform studies and tests on neural networks with this dataset, without having to 
download or import them from other data sources.

In addition to TensorFlow, install the tensorflow-dataset package. You can do this either using 
Anaconda Navigator or via the command console:

conda install tensorflow-dataset

If you don’t have the Anaconda platform, you can install the package through the PyPI system.

pip install tensorflow-dataset
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Importing the MNIST dataset into the Jupyter Notebook (in any Python session) is very simple. Indeed, 
with the new version of TensorFlow 2.x, there is no need to import test datasets like MNIST from other 
libraries, as they are available within Keras, which is integrated within the tensorflow module you already 
imported. You can simply import the libraries like numpy and matplotlib along with tensorflow, which also 
contains the MNIST dataset.

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
ì

Now load the dataset directly into your Notebook by simply writing the following line of code.

(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()

Then you can load the dataset directly into your Notebook.

x_validation = x_train[55000:]
x_train = x_train[:55000]
y_validation = y_train[55000:]
y_train = y_train[:55000]
len(x_train)
Out [ ]:
55000

len(x_test)
Out [ ]:
10000

len(x_validation)
Out [ ]:
5000

The MNIST data is split into three parts: 55,000 data points of training data (x_train), 10,000 points of 
test data (x_test), and 5,000 points of validation data (x_validation).

All this data will be submitted to the model: x is the feature dataset and y is the label dataset. As you 
saw earlier, these are images of handwritten letters. You can look at the first image of the training dataset 
(features).

x_train[0].shape
Out [ ]:
(28, 28)

This is a square image of 28 pixels per side.

plt.imshow(x_train[0], cmap=plt.cm.gray_r, interpolation='nearest')

You will get the black and white image of a handwritten number, similar to the one shown in 
Figure 12-6.
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Figure 12-6.  A digit of the training set in the MNIST dataset provided by the TensorFlow library

To give you an idea of the contents of the MNIST dataset, a better visualization is the following:

fig, ax = plt.subplots(10, 10)
k = 0
for i in range(10):
    for j in range(10):
        ax[i][j].imshow(x_train[k].reshape(28, 28),
                        cmap=plt.cm.gray_r,
                        interpolation='nearest',
                        aspect='auto')
        ax[i][j].set_xticks([])
        ax[i][j].set_yticks([])
        k += 1

Running the code, you will get a pattern of 100 numbers in the dataset, as shown in Figure 12-7.
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Figure 12-7.  100 digits of the training dataset from MNIST dataset provided by the TensorFlow library

Because these are images and therefore two-dimensional arrays, as you learned in Chapter 9, you have 
to use a flatten layer at the beginning of the neural network to flatten the input data and make them one-
dimensional.

As for the types of values to be submitted to the neural network, you have integer values ranging from 
0 to 255.

print(np.max(x_train))
np.min(x_train)
Out [ ]:
255
0

In fact, these are grayscale images which, like RGB colors, are included in a range of values between 0 
and 255. You therefore also have to add a normalization layer to the neural network model.

Now convert all the arrays to tensors for use in TensorFlow.

train_features = tf.convert_to_tensor(x_train)
train_labels = tf.convert_to_tensor(y_train)
test_features = tf.convert_to_tensor(x_test)
test_labels =  tf.convert_to_tensor(y_test)
exp_features = tf.convert_to_tensor(x_validation)
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Let’s look at the characteristics of one of the tensors as an example.

train_features
Out [ ]:
<tf.Tensor: shape=(55000, 28, 28), dtype=uint8, numpy=
array([[[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]],
...

The results obtained are what you would expect.

�Learning and Predicting with an SLP
Now that you’ve seen how to get the training set, the testing set, and the validation set with TensorFlow, it’s 
time to do an analysis with a neural network, very similar to the one you used in Chapter 9. Let’s start by 
using a Single Layer Perceptron (SLP).

First define a model with a single dense layer with ten outputs corresponding to the ten numerical digits 
ranging from 0 to 9, and which correspond to the ten classes of membership of the handwritten digits to 
be identified. To this single layer, you will add the two layers: Normalization and Flatten. The former will 
normalize the pixel values of the images from 0 to 255 in the range of 0 to 1, and the latter will convert the 
two-dimensional array of 28x28 images into a single one-dimensional array.

model = tf.keras.Sequential([
    tf.keras.layers.Normalization(),
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(10, activation='sigmoid')
])

Once the model has been defined, you can compile it, setting Adam as an optimizer and sparse_
categorical_crossentropy as a function. Then you can start learning the model with 20 epochs.

model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy'])
h = model.fit(train_features, train_labels, epochs=20)
Out [ ]:
Epoch 1/20
1719/1719 [==============================] - 3s 1ms/step - loss: 10.6817 - accuracy: 0.8341
Epoch 2/20
1719/1719 [==============================] - 2s 1ms/step - loss: 6.1368 - accuracy: 0.8759
Epoch 3/20
1719/1719 [==============================] - 3s 2ms/step - loss: 5.7782 - accuracy: 0.8798
Epoch 4/20
1719/1719 [==============================] - 3s 1ms/step - loss: 5.5405 - accuracy: 0.8824
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Epoch 5/20
1719/1719 [==============================] - 2s 1ms/step - loss: 5.4812 - accuracy: 0.8840
Epoch 6/20
1719/1719 [==============================] - 2s 1ms/step - loss: 5.3873 - accuracy: 0.8851
Epoch 7/20
1719/1719 [==============================] - 2s 1ms/step - loss: 5.3120 - accuracy: 0.8861
...

Now check the learning phase through the history by graphically monitoring the trend of the loss.

acc_set = h.history['loss']
epoch_set = h.epoch
plt.plot(epoch_set,acc_set, 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

Running the code, you get a plot like the one shown in Figure 12-8.

Figure 12-8.  The loss trend during the learning phase of the SLP neural network

You can also evaluate the model numerically using the following line of code:

model.evaluate(test_features, test_labels)
Out [ ]:
313/313 [==============================] - 1s 1ms/step - loss: 5.8654 - accuracy: 0.8925
[5.865407466888428, 0.8924999833106995]

As you can see from the numerical values, an accuracy of 0.89 is not optimal and the loss value does not 
seem to drop too much, stabilizing at a value of 5.86.
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Let’s see how this model can recognize handwritten numbers that have not been used for learning or 
for testing. For this purpose, a third dataset has been set aside: exp_features. You extend the model with the 
Softmax layer to get the probabilities of belonging to the various classes as a result. You then let the newly 
educated SLP model make the predictions.

probability_model = tf.keras.Sequential([
    model,
    tf.keras.layers.Softmax()
])
predictions = probability_model.predict(exp_features)
Out [ ]:
157/157 [==============================] - 0s 981us/step

Now take the first image to be predicted, with the probabilities of recognition at each of the ten 
numerical digits.

predictions[0]
Out [ ]:
array([0.04717345, 0.12823072, 0.12823072, 0.12823072, 0.1282307 ,
       0.08905466, 0.04721416, 0.04717345, 0.12823072, 0.12823072],
      dtype=float32)

From the list of ten probabilities in the output, the situation is not so legible. If you use a graphical 
approach, representing the various probabilities in a barplot, you get better results.

p = plt.bar(np.arange(10),predictions[0])
plt.xticks(np.arange(10))
predicted_label = np.argmax(predictions[0])
p[predicted_label].set_color('red')

Running the previous code will give you a barplot similar to the one shown in Figure 12-9.

Figure 12-9.  The loss trend during the learning phase of the SLP neural network
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You can immediately see that many digits have the same probability of being the one represented in 
the image. Although the barplot shows the most probable figure in red, in this case there is an error since 
many other figures have the same probability (the graph shows only the first maximum in the case of parity 
of values). So the forecast was not successful. Now determine the true value of the image submitted to 
the model.

y_validation[0]
Out [ ]:
1

You can also look at it graphically.

plt.imshow(x_validation[0], cmap=plt.cm.gray_r, interpolation='nearest')

Executing the previous code, you obtain the number shown in Figure 12-10.

Figure 12-10.  The image shows the handwritten number 1

As you can see, it is the number 1, which is present among the most probable results. However, there are 
too many probable options, so you cannot consider this a good prediction. Now take a number that is easier 
to recognize and see if the SLP model can recognize it correctly.

Choose the 14th number, which is easily recognizable.

plt.imshow(x_validation[13], cmap=plt.cm.gray_r, interpolation='nearest')

By running the code, you will get the image of this easily recognizable number, as shown in 
Figure 12-11.
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Figure 12-11.  The image shows the handwritten number 9

The image clearly shows the number 9. Now check the corresponding label.

y_validation[13]
Out [ ]:
9

Let’s see, in this very simple case, if the model recognized the number 9 clearly.

predictions[13]
Out [ ]:
array([0.07372559, 0.07270355, 0.07317524, 0.07424378, 0.13360192,
       0.07305884, 0.07261127, 0.13158722, 0.09798288, 0.1973097 ],
      dtype=float32)

You can also look at this graphically.

p = plt.bar(np.arange(10),predictions[13])
plt.xticks(np.arange(10))
predicted_label = np.argmax(predictions[13])
p[predicted_label].set_color('red')

Running the code will result in a barplot like the one shown in Figure 12-12.
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Figure 12-12.  The barplot shows the 9 digit as the most probable result (red bar)

Although it guessed the number correctly this time, giving it a probability of around 20 percent is 
certainly not a good prediction. The number is easily recognizable, and it should have a much higher 
probability of recognition than the other digits.

�Learning and Predicting with an MLP
Given the moderate success of the SLP model, this section builds a much more complex neural network, 
with more layers and more neurons in play. This network uses a Multiple Layer Perceptron (MLP) model 
with a hidden layer to predict handwritten digits. Furthermore, it brings the number of neurons of the first 
layer to 256, to which you will add another 128 for the hidden layer. It leaves the output layer unchanged at 
ten neurons (the ten digits to be classified).

model = tf.keras.Sequential([
    tf.keras.layers.Normalization(),
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(256, activation='sigmoid'),
    tf.keras.layers.Dense(128, activation='sigmoid'),
    tf.keras.layers.Dense(10, activation='sigmoid')
])

You can compile the model and train it with the same number of epochs as the previous one (20).

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
h = model.fit(train_features, train_labels, epochs=20)
Out [ ]:
Epoch 1/20
1719/1719 [==============================] - 4s 2ms/step - loss: 0.4885 - accuracy: 0.8658
Epoch 2/20
1719/1719 [==============================] - 4s 2ms/step - loss: 0.3243 - accuracy: 0.9013
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Epoch 3/20
1719/1719 [==============================] - 3s 2ms/step - loss: 0.2935 - accuracy: 0.9093
Epoch 4/20
1719/1719 [==============================] - 3s 2ms/step - loss: 0.2630 - accuracy: 0.9171
Epoch 5/20
1719/1719 [==============================] - 3s 2ms/step - loss: 0.2423 - accuracy: 0.9250
Epoch 6/20
1719/1719 [==============================] - 3s 2ms/step - loss: 0.2370 - accuracy: 0.9268
Epoch 7/20
...

You can also graphically see the trend of the loss during the learning phase of the model.

acc_set = h.history['loss']
epoch_set = h.epoch
plt.plot(epoch_set,acc_set, 'o', label='Training phase')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()

By executing the previous code, you obtain a plot like the one shown in Figure 12-13.

Figure 12-13.  The image shows how the value of the loss is optimized during the training phase

You can also evaluate the model learning process numerically.

model.evaluate(test_features, test_labels)
Out [ ]:
313/313 [==============================] - 1s 1ms/step - loss: 0.1537 - accuracy: 0.9511
[0.1537058800458908, 0.9510999917984009]
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As you can clearly see, this time the learning, in addition to being regular, also reaches a good accuracy 
value and a low loss value. You could also increase the number of epochs during the training phase to 
further increase the predictive power of this MLP model. However, leave things unchanged to compare the 
performance of this model to the previous one.

Now you can see how this model recognizes numbers using the same two images that you submitted to 
the SLP model.

probability_model = tf.keras.Sequential([
    model,
    tf.keras.layers.Softmax()
])
predictions = probability_model.predict(exp_features)
Out [ ]:
157/157 [==============================] - 0s 1ms/step

First you saw how the model assigns the probabilities of belonging to the ten digits of the image with the 
number 1.

predictions[0]
array([0.07896608, 0.21424502, 0.08096407, 0.07952367, 0.08464722,
       0.07919335, 0.08132026, 0.11285783, 0.10845622, 0.07982624],
      dtype=float32)

You can represent these graphically in a barplot.

p = plt.bar(np.arange(10),predictions[0])
plt.xticks(np.arange(10))
predicted_label = np.argmax(predictions[0])
p[predicted_label].set_color('red')

Running this code, you get the barplot shown in Figure 12-14.

Figure 12-14.  The barplot shows the 1 digit as the most probable result (red bar)
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As you can see, this model guessed the number represented in the image, with a much higher 
probability than the other digits. This time, the number 1 has been clearly identified.

If you carry out the same operations with the second image (representing the number 9), you will get a 
similar result, as shown in the barplot in Figure 12-15.

Figure 12-15.  The barplot shows the 1 digit as the most probable (red bar)

It is therefore clear that a more complex neural network model such, as the one used in the example, is 
more efficient: it learns faster and is more adept at identifying the handwritten numbers in the images. But 
it is not always true that a more complex neural network model leads to an increase in potential. Only an 
adequate study of the various models, the optimizations used, the loss functions chosen, and all the other 
parameters used can prove the accuracy of a model. I therefore invite you to study this topic further, if you 
are fascinated by it.

�Conclusions
In this chapter, you learned how many application possibilities this data analysis process has. It is not limited 
only to the analysis of numerical and textual data, but also can analyze images, such as the handwritten 
digits read by a camera or a scanner.

Furthermore, you have seen that predictive models can provide optimal results, thanks to machine 
learning and deep learning techniques, which are powerful analysis tools thanks to libraries such as 
TensorFlow.
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CHAPTER 13

Textual Data Analysis with NLTK

In this book, you have seen various analysis techniques and numerous examples that worked on data in 
numerical or tabular form, which is easily processed through mathematical expressions and statistical 
techniques. But most of the data is composed of text, which responds to grammatical rules (or sometimes 
not even that :)) that differ from language to language. In text, the words and the meanings attributable to 
the words (as well as the emotions they transmit) can be a very useful source of information.

In this chapter, you will learn about some text analysis techniques using the NLTK (Natural Language 
Toolkit) library, which allows you to perform otherwise complex operations. Furthermore, the topics 
covered will help you understand this important part of data analysis.

�Text Analysis Techniques
In recent years, with the advent of Big Data and the immense amount of textual data coming from the 
Internet, a lot of text analysis techniques have been developed by necessity. In fact, this form of data can be 
very difficult to analyze, but at the same time represents a source of a lot of useful information, also given the 
enormous availability of data. Just think of all the literature produced—the numerous posts published on the 
Internet, for example. Comments on social networks and chats can also be a great source of data, especially 
to understand the degree of approval or disapproval of a particular topic.

Analyzing these texts has therefore become a source of enormous interest, and there are many 
techniques that have been introduced for this purpose, creating a real discipline in itself. Some of the more 
important techniques are listed here.

For preprocessing:

•	 Lowercase conversion

•	 Word and sentence tokenization

•	 Punctuation mark removal

•	 Stopword removal

•	 Stemming

•	 Lemmatization

For text analysis:

•	 Analysis of the frequency distribution of words

•	 Pattern recognition
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•	 Tagging

•	 Analysis of links and associations

•	 Sentiment analysis

�The Natural Language Toolkit (NLTK)
If you program in Python and want to analyze data in text form, one of the most commonly used tools at the 
moment is the Python Natural Language Toolkit (NLTK).

NLTK is nothing more than a Python library (www.nltk.org) in which there are many tools specialized 
in processing and text data analysis. NLTK was created in 2001 for educational purposes, then over time it 
developed to such an extent that it became a real analysis tool.

Within the NLTK library, there is also a large collection of sample texts, called corpora. This collection 
of texts is taken largely from literature and is very useful as a basis for the application of the techniques 
developed with the NLTK library. In particular, it’s used to perform tests (a role similar to the MNIST dataset 
present in TensorFlow, which is discussed in Chapter 9).

Installing NLTK on your computer is a very simple operation.
If you are not currently using an Anaconda platform, you can install it using the PyPI system.

pip install nltk

If, on the other hand, you have an Anaconda platform to develop your projects in Python, on the 
virtual environment you want to use, install the nltk package graphically via Anaconda Navigator, or via the 
command console:

conda install nltk

�Import the NLTK Library and the NLTK Downloader Tool
In order to be more confident with NLTK, there is no better method than working directly with the Python 
code. This way, you can see and gradually understand the operation of this library.

The first thing you need to do is open a Jupyter Notebook. The first command imports the NLTK library.

import nltk

Then you need to import text from the corpora collection. To do this, there is a function called nltk.
download_shell(), which opens a tool called NLTK Downloader. The downloader allows you to make 
selections through a guided choice of options.

If you enter this command on the terminal:

nltk.download_shell()

You will see in output the NLTK Downloader suggesting various options in text format, as shown in 
Figure 13-1.
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Figure 13-1.  The NTLK Downloader in a Jupyter Notebook

Now the tool is waiting for an option. If you want to see a list of possible NLTK extensions, enter L for list 
and press Enter. You will immediately see a list of all the possible packages belonging to NLTK that you can 
download to extend the functionality of NLTK, including the texts of the corpora collection.

Packages:
  [ ] abc................. Australian Broadcasting Commission 2006
  [ ] alpino.............. Alpino Dutch Treebank
  [ ] averaged_perceptron_tagger Averaged Perceptron Tagger
  [ ] averaged_perceptron_tagger_ru Averaged Perceptron Tagger (Russian)
  [ ] basque_grammars..... Grammars for Basque
  [ ] biocreative_ppi..... BioCreAtIvE (Critical Assessment of Information
                           Extraction Systems in Biology)
  [ ] bllip_wsj_no_aux.... BLLIP Parser: WSJ Model
  [ ] book_grammars....... Grammars from NLTK Book
  [ ] brown............... Brown Corpus
  [ ] brown_tei........... Brown Corpus (TEI XML Version)
  [ ] cess_cat............ CESS-CAT Treebank
  [ ] cess_esp............ CESS-ESP Treebank
  [ ] chat80.............. Chat-80 Data Files
  [ ] city_database....... City Database
  [ ] cmudict............. The Carnegie Mellon Pronouncing Dictionary (0.6)
  [ ] comparative_sentences Comparative Sentence Dataset
  [ ] comtrans............ ComTrans Corpus Sample
  [ ] conll2000........... CONLL 2000 Chunking Corpus
  [ ] conll2002........... CONLL 2002 Named Entity Recognition Corpus
Hit Enter to continue:

Pressing Enter again will continue displaying the list by showing other packages in alphabetical order. 
Press Enter until the list is finished to see all the possible packages. At the end of the list, the different initial 
options of the NLTK Downloader will reappear.

To create a series of examples to learn about the library, you need a series of texts to work on. An 
excellent source of texts suitable for this purpose is the Gutenberg corpus, present in the corpora collection. 
The Gutenberg corpus is a small selection of texts extracted from the electronic archive called the Project 
Gutenberg (www.gutenberg.org). There are over 25,000 e-books in this archive.

■■ Note A ttention, in some countries such as Italy, this site is not accessible.
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To download this package, first enter the d option to download it. The tool will ask you for the package 
name, so you then enter the name gutenberg.

---------------------------------------------------------------------------
    d) Download   l) List    u) Update   c) Config   h) Help   q) Quit
---------------------------------------------------------------------------
Downloader> d
Download which package (l=list; x=cancel)?
  Identifier> gutenberg

At this point the package will start to download.
When you already know the name of the package you want to download, just enter the command nltk.

download() with the package name as an argument. This will not open the NLTK Downloader tool, but will 
directly download the required package. So the previous operation is equivalent to writing:

nltk.download ('gutenberg')

Once it’s completed, you can see the contents of the package thanks to the fileids() function, which 
shows the names of the files contained in it.

gb = nltk.corpus.gutenberg
print ("Gutenberg files:", gb.fileids ())

An array will appear on the terminal with all the text files contained in the gutenberg package.

Out [ ]:
Gutenberg files :  ['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-
kjv.txt', 'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt', 'carroll-
alice.txt', 'chesterton-ball.txt', 'chesterton-brown.txt', 'chesterton-thursday.txt', 
'edgeworth-parents.txt', 'melville-moby_dick.txt', 'milton-paradise.txt', 'shakespeare-
caesar.txt', 'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']

To access the internal content of one of these files, you first select one, for example Shakespeare’s 
Macbeth (shakespeare-macbeth.txt), and then assign it to a variable of convenience. An extraction mode 
is for words, that is, you want to create an array containing words as elements. In this regard, you need to use 
the words() function.

macbeth = nltk.corpus.gutenberg.words ('shakespeare-macbeth.txt')

If you want to see the length of this text (in words), you can use the len() function.

len (macbeth)
Out [ ]:
23140

The text used for these examples is therefore composed of 23140 words.
The macbeth variable is a long array containing the words of the text. If you want to see the first ten 

words of the text, you can write the following command.

macbeth [:10]
Out [ ]:
['[',
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 'The',
 'Tragedie',
 'of',
 'Macbeth',
 'by',
 'William',
 'Shakespeare',
 '1603',
 ']']

As you can see, the first ten words contain the title of the work, but also the square brackets, which 
indicate the beginning and end of a sentence. If you had used the sentence extraction mode with the 
sents() function, you would have obtained a more structured array, with each sentence as an element. 
These elements, in turn, would be arrays with words for elements.

macbeth_sents = nltk.corpus.gutenberg.sents ('shakespeare-macbeth.txt')
macbeth_sents [: 5]
Out [ ]:
[['[',
  'The',
  'Tragedie',
  'of',
  'Macbeth',
  'by',
  'William',
  'Shakespeare',
  '1603',
  ']'],
 ['Actus', 'Primus', '.'],
 ['Scoena', 'Prima', '.'],
 ['Thunder', 'and', 'Lightning', '.'],
 ['Enter', 'three', 'Witches', '.']]

�Search for a Word with NLTK
One of the most basic things you need to do when you have an NLTK corpus (that is, an array of words extracted 
from a text) is to do research inside it. The concept of research is slightly different than what you are used to.

The concordance() function looks for all occurrences of a word passed as an argument within a corpus.
The first time you run this command, the system will take several seconds to return a result. The 

subsequent times will be faster. In fact, the first time this command is executed on a corpus, it creates an 
indexing of the content to perform the search, which once created will be used in subsequent calls. This 
explains why the system takes longer the first time.

First, make sure that the corpus is an object nltk.Text, and then search internally for the word 'Stage'.

text = nltk.Text(macbeth)
text.concordance('Stage')
Out [ ]:
Displaying 3 of 3 matches:
nts with Dishes and Seruice ouer the Stage . Then enter Macbeth Macb . If it we
with mans Act , Threatens his bloody Stage : byth ' Clock ' tis Day , And yet d
 struts and frets his houre vpon the Stage , And then is heard no more . It is
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You have obtained three different occurrences of the text.
Another form of searching for a word present in NLTK is that of context. That is, the previous word and 

the word next to the one you are looking for. To do this, you must use the common_contexts() function.

text.common_contexts(['Stage'])
Out [ ]:
the_ bloody_: the_,

If you look at the results of the previous research, you can see that the three results correspond to what 
has been said.

Once you understand how NLTK conceives the concept of the word and its context during the search, 
it is easy to understand the concept of a synonym. That is, it is assumed that all words that have the same 
context can be possible synonyms. To search for all words that have the same context as the searched one, 
you must use the similar() function.

text.similar('Stage')
Out [ ]:
fogge ayre bleeding reuolt good shew heeles skie other sea feare
consequence heart braine seruice herbenger lady round deed doore

These methods of research may seem rather strange for those who are not used to processing and 
analyzing text, but you will soon understand that these methods of research are perfectly suited to the words 
and their meaning in relation to the text in which they are present.

�Analyze the Frequency of Words
One of the simplest and most basic examples for the analysis of a text is to calculate the frequency of 
the words contained in it. This operation is so common that it has been incorporated into a single nltk.
FreqDist() function to which the variable containing the word array is passed as an argument.

So to get a statistical distribution of all the words in the text, you enter a simple command.

fd = nltk.FreqDist(macbeth)

If you want to see the first ten most common words in the text, you can use the most_common() function.

fd.most_common(10)
Out [ ]:
[(',', 1962),
 ('.', 1235),
 ("'", 637),
 ('the', 531),
 (':', 477),
 ('and', 376),
 ('I', 333),
 ('of', 315),
 ('to', 311),
 ('?', 241)]

From the result obtained, you can see that the most common elements are punctuation, prepositions, 
and articles, and this applies to many languages, including English. Because these have little meaning 
during text analysis, it is often necessary to eliminate them. These are called stopwords.
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Stopwords are words that have little meaning in the analysis and must be filtered. There is no general 
rule to determine whether a word is a stopword (to be deleted) or not. However, the NLTK library comes to 
the rescue by providing you with an array of pre-selected stopwords. To download these stopwords, you can 
use the nltk.download() command.

nltk.download('stopwords')
Out [ ]:
[nltk_data] Downloading package stopwords to
[nltk_data]     C:\Users\nelli\AppData\Roaming\nltk_data...
[nltk_data]   Package stopwords is already up-to-date!
True

Once you have downloaded all the stopwords, you can select only those related to English, saving them 
in a variable sw.

sw = set(nltk.corpus.stopwords.words ('english'))
print(len(sw))
list(sw) [:10]
Out [ ]:
179
['through',
 'are',
 'than',
 'nor',
 'ain',
 "didn't",
 'didn',
 "shan't",
 'down',
 'our']

There are 179 stopwords in the English vocabulary according to NLTK. Now you can use these 
stopwords to filter the macbeth variable.

macbeth_filtered = [w for w in macbeth if w.lower() not in sw]
fd = nltk.FreqDist (macbeth_filtered)
fd.most_common(10)
Out [ ]:
[(',', 1962),
 ('.', 1235),
 ("'", 637),
 (':', 477),
 ('?', 241),
 ('Macb', 137),
 ('haue', 117),
 ('-', 100),
 ('Enter', 80),
 ('thou', 63)]
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Now that the first ten most common words are returned, you can see that the stopwords have been 
eliminated, but the result is still not satisfactory. In fact, punctuation is still present in the words. To 
eliminate all punctuation, you can change the previous code by inserting in the filter an array of punctuation 
containing the punctuation symbols. This punctuation array can be obtained by importing the string 
function.

import string
punctuation = set (string.punctuation)
macbeth_filtered2 = [w.lower () for w in macbeth if w.lower () not in sw and w.lower () not 
in punctuation]

Now you can recalculate the frequency distribution of words.

fd = nltk.FreqDist (macbeth_filtered2)
fd.most_common(10)
Out [ ]:
[('macb', 137),
 ('haue', 122),
 ('thou', 90),
 ('enter', 81),
 ('shall', 68),
 ('macbeth', 62),
 ('vpon', 62),
 ('thee', 61),
 ('macd', 58),
 ('vs', 57)]

Finally, the result is what you were looking for.

�Select Words from Text
Another form of processing and data analysis is the process of selecting words contained in a body of text 
based on particular characteristics. For example, you might be interested in extracting words based on 
their length.

To get all the longest words, for example words that are longer than 12 characters, you enter the 
following command.

long_words = [w for w in macbeth if len(w)> 12]

All words longer than 12 characters have now been entered in the long_words variable. You can list 
them in alphabetical order by using the sort() function.

sorted(long_words)
Out [ ]:
['Assassination',
 'Chamberlaines',
 'Distinguishes',
 'Gallowgrosses',
 'Metaphysicall',
 'Northumberland',
 'Voluptuousnesse',
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 'commendations',
 'multitudinous',
 'supernaturall',
 'vnaccompanied']

As you can see, there are 11 words that meet this criteria.
Another example is to look for all the words that contain a certain sequence of characters, such as 

'ious'. You only have to change the condition in the for in loop to get the desired selection.

ious_words = [w for w in macbeth if 'ious' in w]
ious_words = set(ious_words)
sorted(ious_words)
Out [ ]:
['Auaricious',
 'Gracious',
 'Industrious',
 'Iudicious',
 'Luxurious',
 'Malicious',
 'Obliuious',
 'Pious',
 'Rebellious',
 'compunctious',
 'furious',
 'gracious',
 'pernicious',
 'pernitious',
 'pious',
 'precious',
 'rebellious',
 'sacrilegious',
 'serious',
 'spacious',
 'tedious']

This example uses sort() to make a list casting, so that it did not contain duplicate words.
These two examples are just a starting point to show you the potential of this tool and the ease with 

which you can filter words.

�Bigrams and Collocations
Another basic element of text analysis is to consider pairs of words (bigrams) instead of single words. The 
words “is” and “yellow” are for example a bigram, since their combination is possible and meaningful. So “is 
yellow” can be found in textual data. We all know that some of these bigrams are so common in our literature 
that they are almost always used together. Examples include “fast food,” “pay attention,” “good morning,” and 
so on. These bigrams are called collocations.
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Textual analysis can also involve the search for any bigrams within the text under examination. To find 
them, simply use the bigrams() function. In order to exclude stopwords and punctuation from the bigrams, 
you must use the set of words already filtered, such as macbeth_filtered2.

bgrms = nltk.FreqDist(nltk.bigrams(macbeth_filtered2))
bgrms.most_common(15)
Out [ ]:
[(('enter', 'macbeth'), 16),
 (('exeunt', 'scena'), 15),
 (('thane', 'cawdor'), 13),
 (('knock', 'knock'), 10),
 (('st', 'thou'), 9),
 (('thou', 'art'), 9),
 (('lord', 'macb'), 9),
 (('haue', 'done'), 8),
 (('macb', 'haue'), 8),
 (('good', 'lord'), 8),
 (('let', 'vs'), 7),
 (('enter', 'lady'), 7),
 (('wee', 'l'), 7),
 (('would', 'st'), 6),
 (('macbeth', 'macb'), 6)]

By displaying the most common bigrams in the text, linguistic locations can be found.
In addition to the bigrams, there can also be placements based on trigrams, which are combinations of 

three words. In this case, the trigrams() function is used.

tgrms = nltk.FreqDist(nltk.trigrams (macbeth_filtered2))
tgrms.most_common(10)
Out [ ]:
[(('knock', 'knock', 'knock'), 6),
 (('enter', 'macbeth', 'macb'), 5),
 (('enter', 'three', 'witches'), 4),
 (('exeunt', 'scena', 'secunda'), 4),
 (('good', 'lord', 'macb'), 4),
 (('three', 'witches', '1'), 3),
 (('exeunt', 'scena', 'tertia'), 3),
 (('thunder', 'enter', 'three'), 3),
 (('exeunt', 'scena', 'quarta'), 3),
 (('scena', 'prima', 'enter'), 3)]

�Preprocessing Steps
Text preprocessing is one of the most important and fundamental phases of text analysis. After collecting the 
text to be analyzed from various available sources, you will soon realize that in order to use the text in the 
various NLP techniques, it is necessary to clean it, transform it, and then prepare it specifically to be usable. 
This section looks at some of the more common preprocessing operations.
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The lower conversion is perhaps the most frequent and common operation, not only in the 
preprocessing phase, but also in the following phases of the analysis. In fact, the text contains many words in 
which some characters are capitalized. Most parsing techniques require that all words be lowercased, so that 
“word” and “Word” are considered the same word.

In Python, the operation is very simple (there is no need to use the nltk library), since string variables 
have the lower() method that applies the conversion.

text = 'This is a Demo Sentence'
lower_text = text.lower()
lower_text
Out [ ]:
'this is a demo sentence'

Word tokenization is another very common operation in NLP. Text consists of words with spaces 
between them. Therefore, the operation of converting text into a list of words is fundamental in order to be 
able to process the text computationally. NLTK provides the word_tokenize() function for this purpose. But 
first you need to download the 'punkt' resource from nltk.

nltk.download('punkt')

text = 'This is a Demo Sentence'
tokens = nltk.word_tokenize(text)
tokens
Out [ ]:
['This', 'is', 'a', 'Demo', 'Sentence']

Tokenization can also be performed at a higher level, by separating the sentences that make up the 
text and converting them into elements of a list, instead of single words. In this case, the sent_tokenize() 
function is used.

text = 'This is a Demo Sentence. This is another sentence'
tokens = nltk.sent_tokenize(text)
tokens
Out [ ]:
['This is a Demo Sentence.', 'This is another sentence']

Another common preprocessing operation is punctuation mark removal. Often you have to submit 
comments taken from social networks or product reviews on the web for analysis. Many of these texts are 
rich in punctuation marks, which compromise correct tokenization of the words contained in them. For 
this operation, NLTK provides a particular tokenizer object called RegexpTokenizer, which allows you to 
define the tokenization criteria through regular expressions. The following example sets RegexpTokenizer to 
remove all punctuation marks present in the text.

from nltk.tokenize import RegexpTokenizer

text = 'This% is a #!!@ Sentence full of punctuation marks :-) '
regexpt = RegexpTokenizer(r'[a-zA-Z0-9]+')
tokens = regexpt.tokenize(text)
tokens
Out [ ]:
['This', 'is', 'a', 'Sentence', 'full', 'of', 'punctuation', 'marks']
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The stopword removal operation is instead more complex. In fact, stopwords are not particular 
characters that can be discarded using regular expressions, but are real words that “do not provide 
information to the text.” These words are clearly related to each individual language, and they vary in each 
language. In English, words like “the,” “a,” “on,” and “in” are basically stopwords. To remove them from the 
text being analyzed, you can operate as follows.

First, you load the stopwords from nltk and then import them into the code. You do the normal word 
tokenization and then later remove the English stopwords.

nltk.download('stopwords')

from nltk.corpus import stopwords

text = 'This is a Demo Sentence. This is another sentence'
eng_sw = stopwords.words('english')
tokens = nltk.word_tokenize(text)
clean_tokens = [word for word in tokens if word not in eng_sw]
clean_tokens
Out [ ]:
['This', 'Demo', 'Sentence', '.', 'This', 'another', 'sentence']

Another type of preprocessing operation involves linguistics. Operations such as stemming and 
lemmatization operate on individual words by evaluating their linguistic root (in the first case) and lemma 
(in the second case). Stemming then groups all words having the same root, considering them the single, 
same word. Lemmatization instead looks for all the inflected forms of a word or a verb and groups them 
under the same lemma, considering them all a single word.

For stemming, you therefore have all the roots of the words contained in the text in the tokens. You 
import a stemmer available in NLTK as SnowballStemmer and set it to English. Then a classic tokenization is 
performed on the words. Only at this point are they cleaned up by converting them into their linguistic roots.

from nltk.stem import SnowballStemmer

text = 'This operation operates for the operator curiosity. A decisive decision'
stemmer = SnowballStemmer('english')
tokens = nltk.word_tokenize(text)
stemmed_tokens = [stemmer.stem(word) for word in tokens]
print(stemmed_tokens)
Out [ ]:
['this', 'oper', 'oper', 'for', 'the', 'oper', 'curios', '.', 'a', 'decis', 'decis']

As far as lemmatization is concerned, the operation is very similar. But first you need to download from 
nltk two components, like WordNet and Omw. A classic word tokenization is performed on the text and then 
a lemmatizer is defined. At this point this is applied to the tokens to perform the lemmatization of the single 
words. All inflected forms are lumped together, including singular and plural words and verb conjugations.

nltk.download('omw-1.4')
nltk.download('wordnet')

from nltk.stem import WordNetLemmatizer

text = 'A verb: I split, it splits. Splitted verbs.'
tokens = nltk.word_tokenize(text)
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lmtzr = WordNetLemmatizer()
lemma_tokens = [lmtzr.lemmatize(word) for word in tokens]
print(lemma_tokens)
Out [ ]:
['A', 'verb', ':', 'I', 'split', ',', 'it', 'split', '.', 'Splitted', 'verb', '.']

�Use Text on the Network
So far you have seen a series of examples that use ordered and included text (called a corpus) within the 
NLTK library as gutenberg. But in reality, you will need to access the Internet to extract the text and collect it 
as a corpus to be used for analysis with NLTK.

In this section, you see how simple this kind of operation is. First, you need to import a library that 
allows you to connect to the contents of web pages. The urllib library is an excellent candidate for this 
purpose, as it allows you to download the text content from the Internet, including HTML pages.

So first you import the request() function, which specializes in this kind of operation, from the urllib 
library.

from urllib import request

Then you have to write the URL of the page that contains the text to be extracted. Still referring to the 
gutenberg project, you can choose, for example, a book written by Dostoevsky (www.gutenberg.org). On the 
site, there is text in different formats; this example uses the one in the raw format (.txt).

url = "http://www.gutenberg.org/files/2554/2554-0.txt"
response = request.urlopen(url)
raw = response.read().decode('utf8')

Within the raw text is all the textual content of the book, downloaded from the Internet. Always check 
the contents of what you downloaded. To do this, the first 75 characters are enough.

raw[:75]
Out [ ]:
'\ufeffThe Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r'

As you can see, these characters correspond to the title of the text. You can see that there is also an error 
in the first word of the text. In fact there is the Unicode character BOM \ufeff. This happened because this 
example used the utf8 decoding system, which is valid in most cases, but not in this case. The most suitable 
system in this case is utf-8-sig. Replace the incorrect value with the correct one.

raw = response.read().decode('utf8-sig')
raw[:75]
Out [ ]:
'The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r\n'

To be able to work on it, you have to convert it into a corpus compatible with NLTK. To do this, enter the 
following conversion commands.

tokens = nltk.word_tokenize (raw)
webtext = nltk.Text (tokens)
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These commands do nothing more than split the character text into tokens (that is, words) using the 
nltk.word_tokenize() function and then convert the tokens into a textual body suitable for NLTK using 
nltk.Text().

You can see the title by entering this command:

webtext[:12]
Out [ ]:
['The',
 'Project',
 'Gutenberg',
 'EBook',
 'of',
 'Crime',
 'and',
 'Punishment',
 ',',
 'by',
 'Fyodor',
 'Dostoevsky']

Now you have a correct corpus on which to carry out your analysis.

�Extract the Text from the HTML Pages
In the previous example, you created a NLTK corpus from text downloaded from the Internet. But most of 
the documentation on the Internet is in the form of HTML pages. In this section, you see how to extract text 
from HTML pages.

You always use the request() function of the urllib library to download the HTML content of a 
web page.

url = "https://news.bbc.co.uk/2/hi/health/2284783.stm"
html = request.urlopen(url).read().decode('utf8')
html[:120]
Out [ ]:
'<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-
html40/loose.dtd">\r\n<html>\r\n<hea'

Now, however, the conversion into NLTK corpus requires an additional library, bs4 (BeautifulSoup), 
which provides you with suitable parsers that can recognize HTML tags and extract the text contained 
in them.

from bs4 import BeautifulSoup
raw = BeautifulSoup(html, "lxml").get_text()
tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens)

Now you also have a corpus in this case, even if you often have to perform more complex cleaning 
operations than the previous case to eliminate the words that do not interest you.
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�Sentiment Analysis
Sentiment analysis is a new field of research that has developed very recently in order to evaluate people’s 
opinions about a particular topic. This discipline is based on different techniques that use text analysis and 
its field of work in the world of social media and forums (opinion mining).

Thanks to comments and reviews by users, sentiment analysis algorithms can evaluate the degree of 
appreciation or evaluation based on certain keywords. This degree of appreciation is called opinion and has 
three possible values: positive, neutral, or negative. The assessment of this opinion thus becomes a form of 
classification.

So many sentiment analysis techniques are actually classification algorithms, similar to those you saw 
in previous chapters covering machine learning and deep learning (see Chapters 8 and 9).

As an example to better understand this methodology, I reference a classification tutorial using the 
Naïve Bayes algorithm on the official website (www.nltk.org/book/ch06.html), where it is possible to find 
many other useful examples to better understand this library.

As a training set, this example uses another corpus present in NLTK, which is very useful for these types 
of classification problems: movie_reviews. This corpus contains numerous film reviews in which there is 
text of a discrete length together with another field that specifies whether the critique is positive or negative. 
Therefore, it serves as great learning material.

The purpose of this tutorial is to find the words that recur most in negative documents, or words that 
recur more in positive ones, so as to focus on the keywords related to an opinion. This evaluation is carried 
out through a Naïve Bayes classification integrated into NLTK.

First of all, the corpus called movie_reviews is important.

nltk.download('movie_reviews')
Out [ ]:
[nltk_data] Downloading package movie_reviews to
[nltk_data]     C:\Users\nelli\AppData\Roaming\nltk_data...
[nltk_data]   Package movie_reviews is already up-to-date!
True

Then you build the training set from the corpus obtained, creating an array of element pairs called 
documents. This array contains in the first field the text of the single review, and in the second field the 
negative or positive evaluation. At the end, you mix all the elements of the array in random order.

import random
reviews = nltk.corpus.movie_reviews
documents = [(list(reviews.words(fileid)), category)
                for category in reviews.categories()
          for fileid in reviews.fileids(category)]
random.shuffle(documents)

To better understand this, take a look at the contents of the documents in detail. The first element 
contains two fields; the first is the review containing all the words used.

first_review = ' '.join(documents[0][0])
print(first_review)
Out [ ]:
topless women talk about their lives falls into that category that i mentioned in the 
devil ' s advocate : movies that have a brilliant beginning but don ' t know how to end . 
it begins by introducing us to a selection of characters who all know each other . there 
is liz , who oversleeps and so is running late for her appointment , prue who is getting 
married ,...
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The second field instead contains the evaluation of the review:

documents[0][1]
Out [ ]:
'neg'

But the training set is not yet ready; in fact you have to create a frequency distribution of all the words in 
the corpus. This distribution is converted into a casting list with the list() function.

all_words = nltk.FreqDist(w.lower() for w in reviews.words())
word_features = list(all_words)

Then the next step is to define a function for the calculation of the features, that is, words that are 
important enough to establish the opinion of a review.

def document_features(document, word_features):
     document_words = set(document)
     features = {}
     for word in word_features:
         features ['{}'.format(word)] = (word in document_words)
     return features

Once you have defined the document_features() function, you can create feature sets from documents.

featuresets = [(document_features(d,word_features), c) for (d,c) in documents]

The aim is to create a set of all the words contained in the whole movie corpus, analyze whether they 
are present (True or False) in each single review, and see how much they contribute to the positive or 
negative judgment of the review. The more often a word is present in the negative reviews and the less often 
it’s present in the positive ones, the more it’s evaluated as a “bad” word. The opposite is true for a “good” 
word evaluation.

To determine how to subdivide this feature set for the training set and the testing set, you must first 
determine how many elements it contains.

len (featuresets)
Out [ ]:
2000

To evaluate the accuracy of the model, you use the first 1,500 elements of the set for the training set, and 
the last 500 items for the testing set.

train_set, test_set = featuresets[1500:], featuresets[:500]

Finally, you apply the Naïve Bayes classifier provided by the NLTK library to classify this problem. Then 
you calculate its accuracy, submitting the test set to the model.

classifier = nltk.NaiveBayesClassifier.train(train_set)
print (nltk.classify.accuracy(classifier, test_set))
Out [ ]:
0.85
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The accuracy is not as high as in the examples from the previous chapters, but you are working with 
words contained in text, and therefore it is very difficult to create accurate models relative to numerical 
problems.

Now that you have completed the analysis, you can see which words have the most weight in evaluating 
the negative or positive opinion of a review.

classifier.show_most_informative_features(10)
Out [ ]:
Most Informative Features
              compelling = True              pos : neg    =     11.9 : 1.0
             outstanding = True              pos : neg    =     11.2 : 1.0
                    lame = True              neg : pos    =     10.2 : 1.0
           extraordinary = True              pos : neg    =      9.7 : 1.0
                   lucas = True              pos : neg    =      9.7 : 1.0
                    bore = True              neg : pos    =      8.3 : 1.0
                   catch = True              neg : pos    =      8.3 : 1.0
                 journey = True              pos : neg    =      8.3 : 1.0
             magnificent = True              pos : neg    =      8.3 : 1.0
                 triumph = True              pos : neg    =      8.3 : 1.0

Looking at the results, you will not be surprised to find that the word “badly” is a bad opinion word and 
that “finest” is a good opinion word. The interesting thing here is that “julie” is a bad opinion word.

�Conclusions
In this chapter, you took a small glimpse of the text analysis world. In fact, there are many other techniques 
and examples that could be discussed. However, at the end of this chapter, you should be familiar with this 
branch of analysis and especially have begun to learn about the NLTK (Natural Language Toolkit) library, a 
powerful tool for text analysis.
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CHAPTER 14

Image Analysis and Computer 
Vision with OpenCV

In the previous chapters, the analysis of data was centered entirely on numerical and tabulated data, while in 
the previous chapter, you saw how to process and analyze data in textual form. This book rightfully closes by 
introducing the last aspect of data analysis: image analysis.

This chapter introduces topics such as computer vision and face recognition. You will see how 
the techniques of deep learning are at the base of this kind of analysis. Furthermore, another library is 
introduced, called openCV, which has always been the reference point for image analysis.

�Image Analysis and Computer Vision
Throughout the book, you have seen how the purpose of the analysis is to extract new information, to draw 
new concepts and characteristics from a system under investigation. You did it with numerical and textual 
data, but the same can be done with images.

This branch of analysis is called image analysis and it is based on calculation techniques applied to 
images (called image filters), which you will see in the next sections.

In recent years, especially because of the development of deep learning, image analysis has experienced 
huge development in solving problems that were previously impossible, giving rise to a new discipline called 
computer vision.

In Chapter 9, you learned about artificial intelligence, which is the branch of calculation that deals 
with solving problems of pure “human relevance.” Computer vision is part of this, since its purpose is to 
reproduce the way the human brain perceives images.

In fact, seeing is not just the acquisition of a two-dimensional image—above all it is the interpretation 
of the content of that area. The captured image is decomposed and elaborated into levels of representation 
that are gradually more abstract (contours, figures, objects, and words) and therefore recognizable by the 
human mind.

In the same way, computer vision intends to process a two-dimensional image and extract the same 
levels of representation from it. This is done through various operations that can be classified as follows:

•	 Detection: Detect shapes, objects, or other subjects of investigation in an image (for 
example, finding cars)

•	 Recognition: The identified subjects are then led back to generic classes (for example, 
subdividing cars by brands and types)

•	 Identification: An instance of the previous class is identified (for example, 
find my car)
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�OpenCV and Python
OpenCV (Open Source Computer Vision) is a library written in C ++ that is specialized for computer 
vision and image analysis (https://opencv.org/). This powerful library, designed by Gary Bradsky, 
was born as an Intel project. The first version was released in 2000. Then with the passage of time, it 
was released under an open source license, and since then has gradually becoming more widespread, 
reaching version 4.8 (June 2023). At this time, OpenCV supports many algorithms related to computer 
vision and machine learning and is expanding day by day.

Its usefulness and spread is due precisely to its antagonist: matlab. In fact, those who need to work with 
image analysis have two choices: purchase matlab packages or compile and install the open source version 
of OpenCV. Well, it is easy to see why many have opted for the second choice.

�OpenCV and Deep Learning
There is a close relationship between computer vision and deep learning. Since 2017 was a significant year 
for the development of deep learning (read my article about it at www.meccanismocomplesso.org/en/2017-
the-year-of-deep-learning-frameworks/), the release of the new version of OpenCV 3.3 has seen the 
enhancement of the library, with many new features of deep learning and neural networks in general. In 
fact, the library has a module called dnn (deep neural networks) dedicated to this aspect. This module has 
been specifically developed for use with many deep learning frameworks, including Caffe2, TensorFlow, and 
PyTorch (for information on these frameworks, see Chapter 9).

�Installing OpenCV
You can install a OpenCV package on many operating systems (Windows, iOS, and Android) through the 
official website (https://opencv.org/releases/).

If you use Anaconda as a distribution medium, I recommend using this approach. The installation is 
very simple and clean.

conda install opencv

Unfortunately for Linux systems, there is no official PyPI package (with pip to be clear) to be installed. 
Manual installation is required and may vary depending on the distribution and version used. Many 
procedures are present on the Internet, some more or less valid.

�First Approaches to Image Processing and Analysis
This section familiarizes you with the opencv library. First, you start to see how to upload and view images. 
Then you pass some simple operations to them, add and subtract two images, and see an example of 
image blending. All these operations are very useful, as they serve as a basis for many other image analysis 
operations.

�Before Starting
Once the opencv library is installed, you can open an IPython session on the Jupyter QtConsole or in a 
Jupyter Notebook.
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Before you start programming, you need to import the openCV library.

import numpy as np
import cv2

�Load and Display an Image
First, mainly because OpenCV works on pictures, it is important to know how to load images in a program in 
Python, manipulate them again, and finally view them to see the results.

The first thing you need to do is read the file containing the image using the openCV library. You can 
do this using the imread() method. This method reads the file in a compressed format such as JPG and 
translates it into a data structure that’s made of a numerical matrix corresponding to color gradations and 
position.

■■ Note Y ou can find the images and files in the source code of this book.

img = cv2.imread('italy2018.jpg')

If you are interested in more details, you can see the content of an image directly. You will notice an 
array of arrays, each corresponding to a specific position of the image, and each characterized by numbers 
between 0 and 255.

In fact, if you look at the contents of the first element of the image, you get the following.

img[0]
Out [ ]:
array([[38, 43, 11],
       [37, 42, 10],
       [36, 41,  9],
       ...,
       [24, 37, 15],
       [22, 36, 12],
       [23, 36, 12]], dtype=uint8)

Continuing with the code, you now use the matplotlib library to show the image loaded in the img 
variable. First import what you need for plotting from the matplotlib library:

from matplotlib import pyplot as plt

Now you can use pyplot’s imshow() method to display the loaded image. Because by default the color 
format in OpenCV is BGR (blue, green, red), it is important to specify the conversion to RGB format via cv2.
COLOR_BGR2RGB. Also, since pyplot is set up for plotting, you need to remove the axes and ticks from the 
display, so disable them by setting plt.axis to off.

plt.axis('off')
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
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When you execute this command, a new window opens and shows the image in Figure 14-1.

Figure 14-1.  The photo of the Italian national football team during training

�Work with Images
Now that you’ve seen how to view existing images in your file system, you can proceed to the next step: 
processing an image by performing an operation on it and saving the result to a new file.

Continuing with the previous example, you will use the same code. This time, however, you will 
perform a simple image manipulation, for example, by decomposing the three RGB channels. Then you will 
exchange the channels to form a new image. This new image will have all altered colors.

After loading the image, decompose it into the three RGB channels. You can do this easily by using the 
split() method.

b,r,g = cv2.split(img)

Now reassemble the three channels, but change the order, for example by exchanging the red channel 
with the green channel. You can easily recombine the channels using the merge() method.

img2 = cv2.merge((b,g,r))

The new image is contained in the img2 variable. Display it along with the original in a new window.

plt.axis('off')
plt.imshow(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))
plt.show()
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By running the program, a new window appears with altered colors (as shown in Figure 14-2).

Figure 14-2.  The processed image has altered colors

�Save the New Image
Finally you have to save your new image by saving the file system.

At the end of the program, add an imwrite() method with the name of the new file that you want to 
save, which can also be of another format, such as PNG.

cv2.imwrite('italy2018altered.png', img2)
Out [ ]:
True

Execute this command and you will notice a new italy2018altered.png file in the workspace.

�Elementary Operations on Images
The most basic operation is the addition of two images. With the openCV library, this operation is very simple 
and you can do it using the cv2.add() function. The result obtained will be a combination of the two images.

But do not forget that the two images must have the same dimensions to be added together. In this case, 
the images are both 512x331 pixels.

The first thing you need to do is load a second image with the same dimensions, in this case soccer.jpg 
(you can find it in the source code).

img2 = cv2.imread('soccer.jpg')
plt.axis('off')
plt.imshow(img2)
plt.show()
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By executing the code, you will get the image shown in Figure 14-3.

Figure 14-3.  A new image that’s the same size (512x331 pixels)

Now you add the two images using the add() function.

img3 = cv2.add(img,img2)
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()

By executing this code, you will receive a combination of the two images (as shown in Figure 14-4). 
Unfortunately, the effect is not very appealing.

Figure 14-4.  A new image obtained by adding the two images
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The result is not what you might expect. The prevalence of white is in fact the result of the simple 
arithmetic sum of the three RGB values, which is calculated for each individual pixel.

In fact, you know that each of the three RGB components takes values from 0 to 255. Therefore, if 
the sum of the values of a given pixel is greater than 255 (which is quite likely), the value will still be 255. 
Therefore, the simple task of adding the images does not lead to an image that’s a merger of the two, but 
instead shifts gradually more and more toward white.

Later you learn how to add two images to create a new image that is half of the two (it is not the 
arithmetic sum).

You can do the same thing by subtracting two images. This operation can be performed with the cv2.
subtract() function. This time you would expect an image that will tend more and more toward the black. 
Replace the cv2.add() function with the following.

img3 = cv2.subtract(img, img2)
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()

By running the program, you will get a much darker image (even if you do not see much), as shown in 
Figure 14-5.

Figure 14-5.  A new image obtained by subtracting one image from another

Note that this effect is even worse if you do the reverse and subtract the second image from the first.

img3 = cv2.subtract(img2, img)
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()
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You get a blackish image, as shown in Figure 14-6.

Figure 14-6.  A new image obtained by subtracting one image from another

However, this is useful to know that the order of the operators is important for the result.
More concretely, you have already seen that an image created with the opencv library is nothing more 

than an array of arrays that responds perfectly to the canons of NumPy. Thus, you can use the operations 
between matrices provided by NumPy, such as the addition of matrices. But be careful, because the result 
will certainly not be the same.

img = img1 + img2

In fact, the cv2.add() and cv2.subtract() functions maintain the values between 0 and 255, regardless 
of the value of the operators. If the sum exceeds 255, the result is interpreted differently, thus creating a very 
strange color effect (maybe as a module of 255). The same thing happens when the removal produces a 
negative value; the result would be 0. Arithmetic operations do not have this feature.

However, you can try this directly.

img3 = img + img2
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()

Executing this code, you will get an image with a very strong color contrast (which are the points over 
255), as shown in Figure 14-7.
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Figure 14-7.  An image obtained by adding two images as two NumPy matrices

�Image Blending
In the previous example, you saw that the addition or subtraction of two images does not produce an 
intermediate image between the two, but instead changes the coloration toward white or black.

The correct operation is called blending. That is, you can consider the operation of superimposing the 
two images, one above the other, making the one placed above gradually more and more transparent. By 
adjusting the transparency gradually, you get a mixture of the two images, creating a new one that is the 
intermediate.

The blending operation does not correspond to a simple addition; the formula corresponds to the 
following equation.

img = α · img1 + (1 – α ) · img2 with 0 ≥ α ≥ 1

As you can see from this equation, the two images have two numerical coefficients that take values 
between 0 and 1. With the growth of the α parameter, you will have a smooth transition from the first image 
to the second.

The opencv library provides the blending operation with the cv2.addWeighted() function.
Therefore, if you want to create an intermediate image between two source images, you can use the 

following code.

img3 = cv2.addWeighted(img, 0.3, img2, 0.7, 0)
plt.axis('off')
plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB))
plt.show()
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The result will be an image like the one shown in Figure 14-8.

Figure 14-8.  An image obtained with image blending

�Image Analysis
The purpose of the examples in the previous section was to understand that images are nothing but 
NumPy arrays. As such, these numerical matrices can be processed. Therefore, you can implement many 
mathematical functions that will process the numbers within these matrices to get new images. These new 
images, obtained from operations, will serve to provide new information.

This is the concept underlying image analysis. The mathematical operations carried out by a starting 
image (matrix) to a resultant image (matrix) are called image filters (see Figure 14-9). To understand this 
process, you will certainly have to deal with photo editing applications (like Photoshop). In any case, 
you have certainly seen that filters that can be applied to photos. These filters are nothing more than 
algorithms (sequences of mathematical operations) that modify the numerical values in the matrix of the 
starting image.
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Figure 14-9.  A representation of the image filters that are the basis of image analysis

�Edge Detection and Image Gradient Analysis
In the previous sections, you learned how to perform some basic operations that are useful for image 
analysis. In this section, you start with a real case of image analysis, called edge detection.

�Edge Detection
While analyzing an image, and especially during computer vision, one of the fundamental operations is to 
understand the content of the image, such as objects and people. It is first necessary to understand what 
possible forms are represented in the image. To understand the geometries represented, it is necessary to 
recognize the outlines that delimit an object from the background or from other objects. This is precisely the 
task of edge detection.

In edge detection, a great many algorithms and techniques have been developed and they exploit 
different principles in order to determine the contours of objects. Many of these techniques are based on the 
principle of color gradients, and they exploit the image gradient analysis process.

�The Image Gradient Theory
Among the various operations that can be applied to images, there are the convolutions of an image in which 
certain filters are applied to edit the image in order to obtain information or some other utility. You have 
already seen that an image is represented as a large numerical matrix in which the colors of each pixel are 
represented by a number from 0 to 255 in the matrix. The convolutions process all these numerical values by 
applying a mathematical operation (image filter) to produce new values in a new matrix of the same size.
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One of these operations is the derivative. In simple words, the derivative is a mathematical operation 
that allows you to get the numerical values indicating the speed at which a value changes (in space, 
time, etc.).

How could the derivative be important in the case of the images? It has to do with color variation, called 
a gradient.

Being able to calculate the gradient of a color is an excellent tool to calculate the edges of an image. In 
fact, your eye can distinguish the outlines of a figure present in an image, thanks to the jumps between one 
color to another. In addition, your eye can perceive the depths thanks to the various shades of color ranging 
from light to dark, which is the gradient.

From all this, it is quite clear that measuring a gradient in an image is crucial to being able to detect the 
edges of the image. It’s done with a simple operation (a filter) that is carried out on the image.

To get a better look at this from a mathematical point of view, look at Figure 14-10.

Figure 14-10.  The image gradient theory representation

As you can see in Figure 14-10, an edge is no more than a quick transition from one hue to another. To 
simplify, 0 is black and 1 is white. All shades of gray are floating values between 0 and 1.

If you chart all corresponding values to the gradient values, you get the function f(). As you can see, 
there is a sudden transition from 0 to 1, which indicates the edge.

The derivative of the function f() results in the function f'(). As you can see, the maximum variation 
of the hue leads to values close to 1. So when converting colors, you will get a figure in which white will 
indicate the edge.
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�A Practical Example of Edge Detection with the Image 
Gradient Analysis
Moving on to the practical part, you will use two images created specifically to test the analysis of the 
contours, since they have several important characteristics in them.

The first image (shown in Figure 14-11) consists of two arrows in black and white and corresponds to 
the blackandwhite.jpg file. In this image, the color contrast is very strong and the contours of the arrows 
have all the possible orientations (horizontal, vertical, and diagonal). This test image will evaluate the effect 
of edge detection in a black-and-white system.

Figure 14-11.  A black-and-white image representing two arrows

The second image, gradients.jpg, shows different gradients of gray, which, when placed next to each 
other, create rectangles whose edges have all the possible gradations and combinations of shades (as shown 
in Figure 14-12). This image is a good test to evaluate the true edge detection capabilities of the system.

Figure 14-12.  A set of gray gradients placed next to each other
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Now you can start to develop the code needed for edge detection. You will use matplotlib to display 
different images in the same window. In this test, you will use two different types of image filters provided by 
OpenCV: sobel and laplacian. In fact, their names correspond to the name of the mathematical operations 
performed on the matrices (images). The openCV library provides cv2.Sobel() and cv2.Laplacian() to 
apply these two calculations.

First it starts by analyzing the edge detection applied to the blackandwhite.jpg image.

from matplotlib import pyplot as plt
img = cv2.imread('blackandwhite.jpg',0)
laplacian = cv2.Laplacian(img, cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()

When you run this code, you get a window with four boxes (as shown in Figure 14-13). The first box is 
the original image in black and white, while the other three boxes are the result of the three filters applied to 
the image.

Figure 14-13.  The result from the edge detection applied to the blackandwhite.jpg image
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Regarding the Sobel filters, edge detection is perfect, even if limited horizontally or vertically. The 
diagonal lines are visible in both cases, since they have both horizontal and vertical components, but the 
horizontal edges in the Sobel X and those in the vertical Sobel Y are not detected in any way.

Combining the two filters (the calculation of two derivatives) to obtain the Laplacian filter, the 
determination of the edges is omnidirectional but has some loss of resolution. In fact, you can see that the 
ripples corresponding to the edges are more subdued.

The coloring in gray is very useful for detecting edges and gradients, but if you are interested in only 
detecting edges, you have to set as output an image file in cv2.CV_8U.

Therefore, you can change the type of output data from cv2.CV_64F to cv2.CV_8U in the filters function 
of the previous code. Replace the arguments passed to the two image filters as follows.

laplacian = cv2.Laplacian(img, cv2.CV_8U)
sobelx = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_8U,0,1,ksize=5)

By running the code, you will get similar results (as shown in Figure 14-14), but this time only in black 
and white, where the edges are displayed in white on a black background.

Figure 14-14.  The result from the edge detection applied to the blackandwhite.jpg image
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If you look carefully at the panels of the Sobel filter X and Y, you will notice right away that something is 
wrong. Where are the missing edges? Note this issue in Figure 14-15.

Figure 14-15.  Missing edges in the blackandwhite.jpg image

In fact, there was a problem while converting the data. The gradients reported in the grayscale with 
cv2.CV_64F values are represented by positive values (positive slope) when changing from black to white. 
However, they are represented by negative values (negative slope) when switching from white to black. In 
the conversion from cv2.CV_64F to cv2.CV_8U, all negative slopes are reduced to 0, and then the information 
relating to those edges is lost. When the program displays the image, the edges from white to black are 
not shown.

To overcome this, you should keep the data in the output of the filter in cv2.CV_64F (instead of cv2.
CV_8U), then calculate the absolute value, and finally do the conversion in cv2.CV_8U.

Make these changes to the code:

laplacian64 = cv2.Laplacian(img, cv2.CV_64F)
sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely64 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
laplacian = np.uint8(np.absolute(laplacian64))
sobelx = np.uint8(np.absolute(sobelx64))
sobely = np.uint8(np.absolute(sobely64))
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
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plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()

Now, if you execute it, you will get the right representation in white on the black edges of the arrows (as 
shown in Figure 14-16). As you can see, the edges do not appear in Sobel X and Sobel Y because they are 
parallel to the direction of detection (horizontal and vertical).

Figure 14-16.  The result from the edge detection applied to the blackandwhite.jpg image

In addition to the edges, you see that the Laplacian and Sobel filters can also detect the level of 
gradients across a grayscale. Apply what you’ve seen to the gradient.jpg image. You have to make some 
changes to the previous code, leaving only one image (Laplacian) visible.

from matplotlib import pyplot as plt
img = cv2.imread('gradients.jpg',0)
laplacian = cv2.Laplacian(img, cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
laplacian64 = cv2.Laplacian(img, cv2.CV_64F)
sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely64 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
laplacian = np.uint8(np.absolute(laplacian64))
sobelx = np.uint8(np.absolute(sobelx64))
sobely = np.uint8(np.absolute(sobely64))
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plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.show()

By executing this code, you will get an image showing the white borders on a black background (as 
shown in Figure 14-17).

Figure 14-17.  The result from the edge detection applied to the gradients.jpg image

�A Deep Learning Example: Face Detection
In this last section of the chapter, you shift your attention to another highly studied and used case in 
computer vision, face detection.

This is a far more complex case than edge detection, and it is based on identifying human faces in an 
image. Given the complexity of the problem, face detection uses deep learning. In fact at the base of this 
technique, there are neural networks that are specially designed to recognize different subjects, including 
the faces of a person, in a photo. Object detection techniques also work very similarly. This example is very 
useful to fully understand the heart of computer vision, that of interpreting the subjects present in a photo.

In this example, you use an already learned neural network. In fact, educating a neural network for this 
kind of problem can be a complex operation and require a great deal of time and resources.

Fortunately, there are neural networks on the web already trained to perform these kinds of operations, 
and for this test you will use a model developed using the Caffe2 framework (see Chapter 9 for more 
information).

When you want to use a deep neural network module with Caffe models in the OpenCV environment, 
you need two types of files, as follows:

•	 A prototxt file, which defines the model architecture (i.e., the layers themselves). 
You will use a deploy.prototxt.txt file downloaded from the web (https://
github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.
prototxt).
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•	 A caffemodel file, which contains the weights for the actual layers in the deep neural 
network. This file is the most important because it contains all the “learning” of 
that neural network to perform a given task. For your purposes, a caffemodel file is 
available at https://github.com/opencv/opencv_3rdparty/tree/dnn_samples_
face_detector_20170830.

■■ Note Y ou can also find these files in the source code of this book.

Now that you have everything you need, start by uploading the neural network model and all the 
information about your learning.

The opencv library supports many deep learning frameworks, and it has many features in it that help 
you with this. In particular (mentioned at the beginning of the chapter), OpenCV has the dnn module, which 
specializes in these kinds of operations.

To load a learned neural network, you can use the dnn.readNetFromCaffe() function.

net = cv2.dnn.readNetFromCaffe('deploy.prototxt.txt', 'res10_300x300_ssd_iter_140000.
caffemodel')

As a test image, you can use the photo of the players of the Italian national team, italy2018.jpg. This 
image is a great example, as there are many faces inside.

image = cv2.imread('italy2018.jpg')
(h, w) = image.shape[:2]

Another function, called dnn.blobFromImage(), takes care of preprocessing the image to be adapted to 
neural networks. For example, resize the image to 300x300 pixels so that it can be used by the caffemodel file 
that has been trained for images of this size.

blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 
177.0, 123.0))

Then define a confidence threshold with an optimal value of 0.5.

confidence_threshold = 0.5

And finally, perform the face detection test.

net.setInput(blob)
detections = net.forward()
for i in range(0, detections.shape[2]):
    confidence = detections[0, 0, i, 2]
    if confidence > confidence_threshold:
        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
        (startX, startY, endX, endY) = box.astype("int")
        text = "{:.2f}%".format(confidence * 100)
        y = startY - 10 if startY - 10 > 10 else startY + 10
        cv2.rectangle(image, (startX, startY), (endX, endY),(0, 0, 255), 2)
        �cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45,  

(0, 0, 255), 2)
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plt.axis('off')
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show()

By executing the code, a window will appear with the results of processing the face detection (shown 
in Figure 14-18). The results are incredible, since the faces of all the players have been detected. You can 
see the faces surrounded by a red square that highlights them in the image with a percentage of confidence. 
Confidence percentages are all greater than 50 percent for the confidence_threshold parameter that you 
specified at the start of the test.

Figure 14-18.  The faces of the national football players have all been accurately recognized

�Conclusions
In this chapter, you saw some simple examples of techniques that form the basis of image analysis and in 
particular of computer vision. In fact, you saw how images are processed through image filters, and how 
some complex techniques can be built using edge detection. You also saw how computer vision works by 
using deep learning neural networks to recognize faces in an image (called face detection).

I hope this chapter has been a good starting point for your further insights on the subject. 
If you are interested, you can find in-depth information on this topic on my website at https://
meccanismocomplesso.org.
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�APPENDIX A

Writing Mathematical Expressions 
with LaTeX

LaTeX is extensively used in Python. In this appendix there are many examples that can be useful to 
represent LaTeX expressions inside Python implementations. This same information can be found at the link 
https://matplotlib.org/2.0.2/users/mathtext.html.

�With matplotlib
You can enter the LaTeX expression directly as an argument of various functions that can accept it. For 
example, the title() function draws a chart title.

import matplotlib.pyplot as plt
%matplotlib inline
plt.title(r'$\alpha > \beta$')

�With Jupyter Notebook in a Python Cell
To write expressions directly in LaTeX on Jupyter Notebook cells, import the IPython.display module.

from IPython.display import Latex

Then you can display the expressions with the Latex() function.

Latex('$\\frac{a}{b}$')

	

a

b 	
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�With Jupyter Notebook in a Markdown Cell
You can enter the LaTeX expression between two $$.

$$c = \sqrt{a^2 + b^2}$$

	 c a b� �2 2
	

�Subscripts and Superscripts
To create subscripts and superscripts, use the _ and ^ symbols:

r'$\alpha_i > \beta_i$'

	 � �i i� 	

This can be very useful when you have to write summations:

r'$\sum_{i=0}^\infty x_i$'

	 i�

�

�
0

xi

	

�Fractions, Binomials, and Stacked Numbers
Fractions, binomials, and stacked numbers can be created with the \frac{}{}, \binom{}{}, and  
\stackrel{}{} commands, respectively:

r'$\frac{3}{4} \binom{3}{4} \stackrel{3}{4}$'

	

3

4

3

4

3

4�

�
�

�

�
�

	

Fractions can be arbitrarily nested:

	

5
1

4

−
x
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Note that you need to take special care to place parentheses and brackets around fractions. You have to 
insert \left and \right preceding the bracket in order to inform the parser that those brackets encompass 
the entire object:

	

5
1

4

��

�

�
�
��

�

�

�
�
��

x

	

�Radicals
Radicals can be produced with the \sqrt[]{} command.

r'$\sqrt{2}$'

	 2 	

�Fonts
The default font is italics for mathematical symbols. To change fonts, for example with trigonometric 
functions as sin:

	 s t A t� � � � �sin 2� 	

The choices available with all fonts are

from IPython.display import Math
display(Math(r'\mathrm{Roman}'))
display(Math(r'\mathit{Italic}'))
display(Math(r'\mathtt{Typewriter}'))
display(Math(r'\mathcal{CALLIGRAPHY}'))
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�Accents
An accent command may precede any symbol to add an accent above it. There are long and short forms for 
some of them.

\acute a or \'a

\bar a

\breve a

\ddot a or \"a

\dot a or \.a

\grave a or \`a

\hat a or \^a

\tilde a or \~a

\vec a

\overline{abc}

Symbols
You can also use a large number of the TeX symbols.

Lowercase Greek

 \alpha  \beta  \chi  \delta  \digamma

 \epsilon  \eta  \gamma  \iota  \kappa

 \lambda  \mu  \nu  \omega  \phi

 \pi  \psi  \rho  \sigma  \tau

 \theta  \upsilon  \varepsilon  \varkappa  \varphi

 \varpi  \varrho  \varsigma  \vartheta  \xi

 \zeta
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Uppercase Greek

 \Delta  \Gamma  \Lambda  \Omega  \Phi  \Pi

 \Psi  \Sigma  \Theta  \Upsilon  \Xi  \mho

 \nabla

Hebrew

 \aleph  \beth  \daleth  \gimel

Delimiters

/  [ \Downarrow \Uparrow \Vert \backslash

\downarrow \langle \lceil \lfloor \llcorner \lrcorner

\rangle \rceil \rfloor \ulcorner \uparrow \urcorner

\vert \{ \| \}  ] |

Big Symbols

\bigcap \bigcup \bigodot \bigoplus \bigotimes

\biguplus \bigvee \bigwedge \coprod \int

\oint \prod \sum
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Standard Function Names

\Pr \arccos \arcsin \arctan

\arg \cos \cosh \cot

\coth \csc \deg \det

\dim \exp \gcd \hom

\inf \ker \lg \lim

\liminf \limsup \ln \log

\max \min \sec \sin

\sinh \sup \tan \tanh

Binary Operation and Relation Symbols

\Bumpeq \Cap \Cup

\Doteq \Join \Subset

\Supset \Vdash \Vvdash

\approx \approxeq \ast

\asymp \backepsilon \backsim

\backsimeq \barwedge \because

\between \bigcirc \bigtriangledown

\bigtriangleup \blacktriangleleft \blacktriangleright

\bot \bowtie \boxdot

\boxminus \boxplus  \boxtimes

\bullet \bumpeq  \cap

\cdot \circ  \circeq

\coloneq \cong  \cup

 \curlyeqprec \curlyeqsucc  \curlyvee

(continued)
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(continued)

  \curlywedge \dag  \dashv

  \ddag  \diamond  \div

 \divideontimes  \doteq  \doteqdot

  \dotplus  \doublebarwedge  \eqcirc

  \eqcolon  \eqsim  \eqslantgtr

 \eqslantless  \equiv  \fallingdotseq

 \frown  \geq  \geqq

  \geqslant  \gg  \ggg

 \gnapprox  \gneqq  \gnsim

  \gtrapprox  \gtrdot  \gtreqless

  \gtreqqless  \gtrless  \gtrsim

  \in  \intercal  \leftthreetimes

  \leq  \leqq  \leqslant

  \lessapprox  \lessdot  \lesseqgtr

  \lesseqqgtr  \lessgtr  \lesssim

  \ll  \lll  \lnapprox

 \lneqq  \lnsim  \ltimes

  \mid  \models  \mp

  \nVDash  \nVdash  \napprox

  \ncong  \ne  \neq

  \neq  \nequiv  \ngeq

  \ngtr  \ni  \nleq

  \nless  \nmid  \notin
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  \nparallel  \nprec  \nsim

  \nsubset  \nsubseteq  \nsucc

  \nsupset  \nsupseteq  \ntriangleleft

 \ntrianglelefteq  \ntriangleright  \ntrianglerighteq

  \nvDash  \nvdash  \odot

  \ominus  \oplus  \oslash

  \otimes  \parallel  \perp

  \pitchfork  \pm  \prec

  \precapprox  \preccurlyeq  \preceq

  \precnapprox  \precnsim  \precsim

  \propto  \rightthreetimes  \risingdotseq

  \rtimes  \sim  \simeq

  \slash  \smile  \sqcap

  \sqcup  \sqsubset  \sqsubset

  \sqsubseteq  \sqsupset  \sqsupset

  \sqsupseteq  \star  \subset

  \subseteq  \subseteqq  \subsetneq

  \subsetneqq  \succ  \succapprox

  \succcurlyeq  \succeq  \succnapprox

  \succnsim  \succsim  \supset

 \supseteq  \supseteqq  \supsetneq

  \supsetneqq  \therefore  \times

 \top  \triangleleft  \trianglelefteq

  \triangleq  \triangleright  \trianglerighteq

  \uplus  \vDash  \varpropto

 \vartriangleleft  \vartriangleright  \vdash

  \vee  \veebar  \wedge

  \wr
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Arrow Symbols

  \Downarrow  \Leftarrow

  \Leftrightarrow  \Lleftarrow

  \Longleftarrow  \Longleftrightarrow

  \Longrightarrow  \Lsh

  \Nearrow  \Nwarrow

  \Rightarrow  \Rrightarrow

  \Rsh  \Searrow

  \Swarrow  \Uparrow

 \Updownarrow  \circlearrowleft

  \circlearrowright  \curvearrowleft

  \curvearrowright  \dashleftarrow

  \dashrightarrow  \downarrow

 \downdownarrows  \downharpoonleft

  \downharpoonright  \hookleftarrow

  \hookrightarrow  \leadsto

  \leftarrow  \leftarrowtail

  \leftharpoondown  \leftharpoonup

  \leftleftarrows  \leftrightarrow

  \leftrightarrows  \leftrightharpoons

  \leftrightsquigarrow  \leftsquigarrow

  \longleftarrow  \longleftrightarrow

  \longmapsto  \longrightarrow

  \looparrowleft  \looparrowright

  \mapsto  \multimap

 \nLeftarrow  \nLeftrightarrow

  \nRightarrow  \nearrow

  \nleftarrow  \nleftrightarrow

(continued)
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(continued)

  \nrightarrow  \nwarrow

  \rightarrow  \rightarrowtail

  \rightharpoondown  \rightharpoonup

  \rightleftarrows  \rightleftarrows

  \rightleftharpoons  \rightleftharpoons

 \rightrightarrows  \rightrightarrows

  \rightsquigarrow  \searrow

  \swarrow  \to

  \twoheadleftarrow  \twoheadrightarrow

 \uparrow  \updownarrow

  \updownarrow  \upharpoonleft

 \upharpoonright  \upuparrows

Miscellaneous Symbols

  \$  \AA  \Finv

  \Game  \Im  \P

  \Re  \S  \angle

  \backprime  \bigstar  \blacksquare

 \blacktriangle  \blacktriangledown  \cdots

  \checkmark  \circledR  \circledS

  \clubsuit  \complement  \copyright

  \ddots  \diamondsuit  \ell

  \emptyset  \eth  \exists

  \flat  \forall  \hbar

  \heartsuit  \hslash  \iiint

  \iint  \iint  \imath
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  \infty  \jmath  \ldots

 \measuredangle  \natural  \neg

  \nexists  \oiiint  \partial

  \prime  \sharp  \spadesuit

 \sphericalangle  \ss  \triangledown

  \varnothing  \vartriangle  \vdots

  \wp  \yen
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�APPENDIX B

Open Data Sources

�Political and Government Data
Data.gov (https://data.gov/)—The resource for most government-related data.

Socrata (https://dev.socrata.com/data/Socrata)—This is a good place to explore government-
related data. Furthermore, it provides some visualization tools for exploring data.

U.S. Census Bureau (www.census.gov/data.html)—This site provides information about U.S. citizens 
covering population data, geographic data, and education.

UN3ta (https://data.un.org/UNdata)—This site is an Internet-based data service that includes UN 
statistical databases.

European Union Open Data Portal (https://data.europa.eu/en)—This site provides a lot of data 
from European Union institutions.

Data.gov.uk (https://www.data.gov.uk/)—This site of the UK Government includes the British 
National Bibliography, which has metadata on all UK books and publications published since 1950.

The CIA World Factbook (https://www.cia.gov/the-world-factbook/)—This site of the Central 
Intelligence Agency provides a lot of information on history, population, economy, government, 
infrastructure, and military of 267 countries.

�Health Data
Healthdata.gov (https://www.healthdata.gov/)—This site provides medical data about epidemiology and 
population statistics.

NHS Health and Social Care Information Centre (https://digital.nhs.uk/)— This site contains 
health datasets from the UK National Health Service.

�Social Data
Facebook Graph (https://developers.facebook.com/docs/graph-api)—Facebook provides this API, 
which allows you to query the huge amount of information that users are sharing with the world.

Google Trends (https://trends.google.com/trends/explore)— This site includes statistics on 
search volume (as a proportion of total search) for any given term, since 2004.
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�Miscellaneous and Public Datasets
Amazon Web Services public datasets (https://registry.opendata.aws/)—The public datasets on 
Amazon Web Services (AWS) provide a centralized repository of public datasets. An interesting dataset is the 
1,000 Genome Project, an attempt to build the most comprehensive database of human genetic information. 
Also includes a NASA database of satellite imagery of Earth.

DBPedia (https://www.dbpedia.org/)—Wikipedia contains millions of pieces of data, structured 
and unstructured, on every subject. DBPedia is an ambitious project to catalogue and create a public, freely 
distributable database allowing anyone to analyze this data.

Gapminder (https://www.gapminder.org/data/)—This site provides data coming from the World 
Health Organization and World Bank covering economic, medical, and social statistics from around 
the world.

�Financial Data
Google Finance (https://www.google.com/finance/)— This site includes forty years’ worth of stock 
market data, updated in real time.

�Climatic Data
National Climatic Data Center (https://www.ncei.noaa.gov/weather-climate-links#loc-clim)— 
This site is a huge collection of environmental, meteorological, and climate datasets from the U.S. National 
Climatic Data Center. The world’s largest archive of weather data.

WeatherBase (https://www.weatherbase.com/)—This site provides climate averages, forecasts, and 
current conditions for over 40,000 cities worldwide.

Wunderground (https://www.wunderground.com/)—This site provides climatic data from satellites 
and weather stations, allowing you to get information about the temperature, wind, and other climatic 
measurements.

�Sports Data
Pro-Football-Reference (https://www.pro-football-reference.com/)—This site provides data about 
football and several other sports.

�Publications, Newspapers, and Books
The New York Times (https://archive.nytimes.com/www.nytimes.com/ref/membercenter/nytarchive.
html)—This is a searchable, indexed archive of news articles going back to 1851.

Google Books Ngrams (https://storage.googleapis.com/books/ngrams/books/datasetsv2.html)—
This source searches and analyzes the full text of any of the millions of books digitized as part of the Google 
Books project.

�Musical Data
Million Song Dataset (https://aws.amazon.com/it/datasets/million-song-dataset/)—This site  
includes metadata on over a million songs and pieces of music. Part of Amazon Web Services (AWS).
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Index

�       � A
Accents, 426–433
Accuracy, 296, 297, 309, 315, 319, 377, 400
Activation function, 295–297
Adam optimization method, 318
add() function, 408
Adriatic Sea, 323–326
Aggregate functions, 55, 59, 60, 178
Algorithms, 3, 12, 259, 289–291, 321, 399, 412
Amazon Web Services (AWS), 436
Anaconda, 19, 20, 46, 74–78, 135, 144, 184, 245, 

300, 404
Anaconda Navigator, 24, 34, 35, 75, 76, 185, 338

button menu, 22
conda command, 20
environments panel, 22
home panel, 21
identical panel, 23
learning panel, 23
operating system environment, 21

annotate() function, 216, 217
apply() function, 103, 179, 180
arange() function, 50, 51, 194
Arithmetic operators, 52–54, 100, 101
Array manipulation, 47, (see also NumPy library)

joining, 62, 63
splitting, 63, 64

Artificial intelligence, 3, 289, 290
ML, 290
relationship, 290

Artificial neural networks, 293, 294, 298
MLP, 296, 297
SLP, 294–296

Assigning values, 81, 91–92
Attributes, 7, 47, 81, 196, 259, 277
autopct kwarg, 233
Axes, 164–166, 188, 196–198, 215, 241, 244
axis() function, 193, 224, 231
Axis labels, 186, 193, 198, 199

�       � B
Back propagation algorithm, 297
Baldwin counties, 363
Bar charts

horizontal, 222, 223
matplotlib, 220
multiserial, 223–225
multiseries, 225–227
representations, 230, 231
stacked, 227–229
in 3D, 240
x-axis, 221

bar() function, 219, 221, 222, 224, 227, 237, 240
barh() function, 222, 224, 228
Barplot, 378–381, 383, 384
barplot() function, 257
bfill method, 97
Big Data, 292, 385
Bigrams, 393–394
bigrams() function, 394
Binary classification, 313
Binary files, 70
Binning, 166–169
Binomials, 424–425
Bins, 166–168, 218, 219, 345, 347
Biological neural networks, 298–299
Blending, 404, 411–412
Books, 134, 297, 367, 435, 436
Boolean operators, 60, 61
Bostock, 352, 360, 361
Broadcasting, 64–68

�       � C
Caffe2, 292, 404, 420
caffemodel, 421
Cartesian axes, 215, 216, 247
Cartesian coordinates, 344
Cartesian plane, 305, 315–317
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Cartesian points, 312
Categorical data, 4
CentOS Linux systems, 19
Charts, 1

adding elements
grid, 202, 203
legend, 203–206
text, 198–202

bar (see Bar charts)
contour plots, 235, 236
line, 211–218
pie, 231–235
polar, 236, 237
saving

code, 206, 207
as image, 208
notebook, 207, 208

typology, 211
Choropleth maps, 358–362

geographical representations, 358
TopoJSON, 358
U.S. Population, 362–366

Classification models, 7
Climatic data, 436
Clustered bar chart, 355–358
Clustering models, 7
Code execution phase, 16–17
Code saving, 206, 207
Collocations, 393–394
colorbar() function, 236
Color codes, 214
Column deletion, 93
Comma-separated values (CSV), 70, 116, (see also 

Text file)
data reading, 116–123
pandas, 116

common_contexts() function, 390
compile() function, 172, 308
Compiling, 16, 17, 308
Composite artists, 187, 188
Computer science knowledge, 2
Computer vision, 403, 404, 413, 420, 422
Compute Unified Device Architecture  

(CUDA), 292
concatenate() function, 154
Concatenation

data combination, 154
dataframe, 155, 156
hierarchical index, 155

concordance() function, 389
Contour map, 235, 236, 238
Contour plot, 235–236, 238
Convolutions, 413
Corpora, 386, 387
Correlation, 107–108, 274, 275

corrwith() method, 107
Covariance, 107–108, 264, 265
cPickle, 136–137
CPython, 16–18
create_engine() function, 138
Cross-validation technique, 8
cut() function, 166–168
cv2.add() function, 407, 409, 410
cv2.subtract() function, 409, 410
Cython, 17, 18

�       � D
data attribute, 262, 271
Data aggregation

advancement, 179–182
categorization, 174
GroupBy, 174
group iteration, 176–178
hierarchical grouping, 176
SQL language, 174

Data analysis, 328–332
data exploration/visualization, 7
data nature, 4
deployment, 2, 8
description, 1
extraction, data, 6
knowledge domains, 2, 3
model validation, 8
predictive modeling, 7
predictive power, 1
preparation, 6
problem definition, 5, 6
process, 5
and Python, 12, 13
quantitative/qualitative, 9
stages, 4, 5
statistical techniques, 3
types, 4

Data exploration, 4, 7
Data extraction, 4, 6, 73
Data Flow Graph, 292, 298–300
Dataframe, 73, 80, 87–89, 120,  

145, 179, 331
assigning values, 91, 92
column, 93
elements selection, 89–91
filtering, 93
membership value, 93, 94
nested dict, 94
and series, 101, 102
transposition, 94

DataFrame() constructor, 87, 94, 107
Data.gov, 10, 435
DataHub, 10
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Data preparation, 6
combining, 156, 157
concatenating, 154–157
list, 149, 150
merging operation, 150–153
pandas library, 149
pivoting, 158–160 (see also Pivoting)
removal of columns, 160

Dataset, 11, 260–265, 268
Data source finding, 327, 328
Data structures, 27, 28

dataframes and series, 101, 102
flexible arithmetic methods, 100
operations, 83, 86

Data transformation
duplicates removal, 161, 162
mapping, 162–166

Data visualization, 1, 7
charts (see Charts)
with Jupyter Notebook, 191–195

Date values handling, 208–210
DayLocator() function, 210
DBPedia, 436
Debian-Ubuntu Linux systems, 18
Decision boundaries, 269–271, 276, 283, 284
decision_function() function, 278
Decision space, 276–278, 282, 284
Deep learning, 420–422

artificial neural networks, 293, 294
data availability, 292
ML, 290
neural networks and GPU, 291
OpenCV, 404
Python frameworks, 289, 292, 293
relationship, 290
TensorFlow, 289, 307–310

Demographics, 349–352, 362
Deployment, 2, 5, 8
Derivative, 184, 414, 417
DESCR attribute, 368
describe() function, 104, 168
Detection, 161, 403, 419, 422
Diabetes dataset, 260, 271–272, 274, 286
Digits dataset, 368–370
digits.images array, 369
Discretization, 166–168
Display subplots, 241–242
Distances from the Sea, 325, 326, 336, 342
D3 library, 349, 353–356, 358, 359
dnn.blobFromImage(), 421
dnn.readNetFromCaffe() function, 421
Docker, 140–146
document_features() function, 400
Downloader tool, NLTK, 386–389
drop() function, 98, 160, 351

dropna() function, 109
dtype option, 50, 68, 350
duplicated() function, 161

�       � E
Eclipse (pyDev), 38, 40
Edge detection, 298, 413–420, 422
Elementary operations, images, 100, 407–411
Elements selection, 89–90
Element-wise addition, 52
Error bars, 221, 222
Euclidean method, 267
European Union Open Data Portal, 10, 435
Evaluation phase, 296, 297
Execution phases, 16–17
Extensible Markup Language (XML), 127–129

�       � F
Face detection, 420–422
figures() function, 241
fileids() function, 388
Filtering, 83, 84, 93–94, 161, 168–169
Financial data, 436
fit() function, 265, 268, 273, 278, 309, 367
Fonts, 425
Formatter, 188
Fractions, 424–425
Functional programming, 29–30
Functions on Groups, 178
Functions, pandas

by element, 102
row/column, 102, 103
statistics, 103

�       � G
genfromtxt(), 71
getroot() function, 127
Google Trends Datastore, 10
Government data, 435
Gradient, 235, 236, 316, 413–415, 417–420
gradients.jpg, 415, 419
Graphics processing unit (GPU), 289, 291, 292
Grid addition, 202–203
grid() function, 202
GridSpec(), 243
GroupBy, 174–176, 178, 180
groupby() function, 175
Group iteration

chain of transformations, 177, 178
data portion, 176

gutenberg, 388, 397
Gutenberg corpus, 387
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�       � H
Handwritten digits

digits dataset, 368–370
learning and predicting, 370–372

MLP, 381–384
SLP, 376–381

recognition, 367
scikit-learn library, 367, 368
TensorFlow, 372–376

Hierarchical data format (HDF5), 135–136
Health data, 435
Healthdata.gov, 10, 435
Hierarchical grouping, 176
Hierarchical indexing, 73, 110–114, 158–160
hist() function, 218, 219
Histograms, 218–219
Horizontal bar charts, 222–223, 225–227
Horizontal subplots, 197
hstack() function, 62
HTML() function, 353, 360, 364, 365
HTML files

reading data, 126
writing data, 124, 125
saving, 207, 208

�       � I
Identifiers, 363
Image analysis

and computer vision, 403
filters, 413

Image blending, 404, 411, 412
Image filters, 403, 412, 413, 416, 417, 422
Image gradient theory

blackandwhite.jpg file, 415, 416, 418
black background, 420
black edges, 419
convolutions, 413
derivative, 414
gradient, 414
grayscale, 418
opencv library, 416
output data, 417
values, 414

Image processing
elementary operations, 407–411
IPython session, 404
load and display, 405, 406
saving, image, 407
working with images, 406, 407

imread() method, 405
imwrite() method, 407
Indentation, 30
Indexes

arithmetic and data alignment, 99, 100

dropping, 98, 99
duplicate labels, 95, 96
merging, 153
reindexing, 96–98

Indexing, 55–57
Index objects, 94, 95

duplicate labels, 95, 96
methods, 95

index option, 81, 88, 89, 94
Information and knowledge, 4, (see also Knowledge 

domains)
Installation, Python

Anaconda, 19, 20
Anaconda Navigator, 20–23
code writing, 26
distributions, 19
functional programming, 29–31
and IDE, 25
program running, 25

Integrated Development Environments (IDEs), 19, 
25, 37–43

Internal elements, 81, 82
Internet of Things (IoT), 292
Interpreter, 15–19, 23–26, 30, 201
Intrinsic creation, array, 50, 51
I/O API tools, 115–116
IPython, 25

Jupyter Lab, 34–36
Jupyter Notebook, 33, 34
Jupyter Project, 32
Jupyter QtConsole, 32, 33
shell, 31
tools, 30

IPython Notebook, 15, 30, 287, 359
Iris Dataset, 260–262, 265, 268, 283–285
Iris Flower Dataset, 261–267
IronPython, 18
isin() function, 84, 93
isnull() function, 85

�       � J
JavaScript D3 Library, 349, 352–355
JavaScript Object Notation (JSON), 131–135, 

327, 328
join() function, 153, 154, 171
JOIN query, 150
jointplot() function, 252
Jupyter Lab, 34–36
Jupyter Notebook, 19, 33, 34, 134, 261, 300, 310, 350, 

352, 355–358
chart, 192
data analysis, 328–332
data visualization, 191–195
in markdown cell, 424
matplotlib library/NumPy, 194, 195
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Python Cell, 423
subscripts/superscripts, 424
value pairs, 192

Jupyter QtConsole, 32–33, 404
Jython, 18

�       � K
Kaggle, 10
Keras layers, 313
K-nearest neighbors (KNN), 8, 260, 267–271
Knowledge domains

artificial intelligence, 3
computer science, 2
machine learning, 3
mathematics and statistics, 3

Komodo, 41–42
kwargs

axes, 196–198
linewidth keyword, 196
multiple figures, 196–198
plot() function, 196

�       � L
Labels, 80–82, 95–98, 135, 160, 162, 164, 201, 

215, 309
Latex() function, 423
LaTeX, 184, 201, 202, 214–216, 423
Learning curve, 319
Learning phase, 259, 276, 296, 297, 315, 378
Learning problem, 259
Least square regression, 272–275
legend() function, 203, 205
Legend addition, 203–206
Lemmatization, 385, 396
Leveling, 110–114
Liclipse IDE, 40
Linear regression, 250–252, 272–275
Line charts, 211–218
list() function, 400
lmplot(), 249
load() functions, 70
Locator, 188
loc Keyword, 204
LOD cloud diagram, 11
Lower conversion, 395

�       � M
macbeth variable, 388, 391
Machine learning (ML), 3

artificial intelligence, 290
scikit-learn, 259 (see also Scikit-learn library)
relationship, 290

supervised learning, 260
testing set, 260
training Set, 260
unsupervised learning, 260

map() function, 29, 62, 164, 165
Mapping, 162

adding values, 164, 165
renaming of indexes, 164–166
replacing values, 162, 163

match() function, 173
Mathematical functions, 83, 211, 212, 412
MATLAB, 2, 12, 16, 23, 135, 184, 190
matplot-generated charts, 191
matplotlib functions, 226
matplotlib library, 235, 245, 262, 314, 334, 349, 370, 

371, 423
artist layer, 186–188
backend layer, 186
graphical representations, 184
graphical view/syntactic form, 183
installation, 184, 185
interactivity, 183
kwargs, 196–199
and NumPy, 194, 195
plotting window, 189–191
pylab, 188–189
pyplot, 188–189
scripting layer, 188
two-dimensional charts, 183

Matrix product, 53–54
merge() function, 150, 152, 255
merge() method, 406
Merging operation, 150–153
Metacharacters, 119
Meteorological data

Adriatic Sea, 323–327
CSV files, 332
dataframe structure, 333
data source finding, 327, 328
humidity, 341–343
intersection point, 339, 340
Jupyter Notebook, 328–332
Po Valley, 323–327
RoseWind, 343–345
temperature trend, 334–336

Microsoft Excel Files, 129–132
MNIST, 373–375, 386
Model building, 307–308
Model compiling, 308–309
Model testing, 309
Model training, 309
MonthLocator() function, 210
most_common() function, 390
movie_reviews, 399
mplot3d toolkit
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scatter plots in 3D, 239, 240
3D surfaces, 238, 239

Multi layer perceptron (MLP)
artificial neural networks, 296, 297
learning and predicting, 381–384
TensorFlow, hidden layers, 317–321

Multip-panel plots
display subplots, 241, 242
subplots, 243–245

Multiseries bar charts, 223–227
Multiseries stacked bar charts, 227–229
Musical data, 436
myFrame.html, 125

�       � N
Naïve Bayes classifier, 400
Nasa Earth Observations, 10
Natural Language Toolkit (NLTK)

corpora, 386
downloader tool, 386–389
HTML pages, 398
searching, word, 389, 390
text on the network, 397, 398
word frequency, 390–392
words from text, 392, 393

ndarray (N-dimensional array)
array creation, 48, 49
array() function, 47
data types, 49
dtype option, 50
intrinsic creation, 50, 51
shape and axes, 47

Neural networks, 291, 292, 294, 296, 307, 310–312
Newspapers, 436
NinjaIDE (NinjaIDE is “Not Just Another IDE”), 41
nltk package, 386
nltk.download(), 388, 391
nltk.download_shell(), 386
nltk.FreqDist() function, 390
nltk.Text, 389
nltk.word_tokenize() function, 398
Nodes, 128, 135, 292–294, 299
Normalization, 133, 375
NoSQL databases, 146–148
Not a Number (NaN)

assigning, 108
filling occurrences, 110
filtering Out, 109
values, 85, 86

Notebook, 207, 208, 338
notnull() function, 85, 109
np.arange() function, 91, 92, 211
np.sin() function, 211
Numarray, 45

Numerical data, 4
NumPy arrays, 79, 82, 83, 277, 302, 311

filtering values, 83
matplotlib library, 194, 195

NumPy library
broadcasting, 66–68
conditions and Boolean operators, 60, 61
copies, 64
indexing, 55–57
installation, 46
iterating an array, 59, 60
logo, 46
multidimensional arrays, 45
ndarray, 47–51
object views, 64
operations

aggregate functions, 55
arithmetic, 52, 53
increment and decrement, 54
matrix product, 53, 54
universal functions (ufunc), 54

reading and writing array data, 70, 71
shape manipulation, 61, 62
slicing, 57–59
structured arrays, 68–70
vectorization, 65, 66

NumPy matrices, 411

�       � O
Open data, 9–12
Open Data Source, 292, 349–352, 435
Open Source Computer Vision (OpenCV)

and deep learning, 404
installation, 404
and Python, 404

OpenWeatherMap site, 327
Optical Character Recognition (OCR), 367
Outliers, 168–169

�       � P
Package managers, 19, 20, 36
pandas.concat() function, 150
Pandas dataframe, 218, 225–227, 247, 303–305, 

350, 355
pandas.DataFrame.combine_first() function, 150
pandas.io.sql module, 138
Pandas library, 78, 79, 137, (see also Pickle module)

assigning values, 82
CSV and textual files, 116–123
data aggregation, 173–178
data preparation, 149–154
data transformation, 161–174
evaluating values, 84, 85
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filtering values, 83
HTML files, 123–126
installation

from Anaconda, 74–78
from PyPI, 78

interacting, databases, 138–147
internal elements, 81, 82
I/O API tools, 115, 116
JSON data, 131–135
line charts, 217
Microsoft Excel Files, 129–132
multiseries bar charts, 225–227
NoSQL databases, 146
NumPy arrays, 82, 83
operations/mathematical functions, 83
pie charts, 234, 235
Python data analysis, 73, 74
series/dataframes, 73, 80
stacked bar charts, 227–229
XML files, 127–129

pandas.merge() function, 150
Parsing, 17, 120, 121, 126, 127, 395
Permutation, 169, 170
pgAdmin, 142, 143
Pickle module

with pandas, 137
Python object, 136, 137

Pie charts, 211, 231–235
pie() function, 231
Pivoting, 150, 157–161
plot() function, 189, 192, 196, 205, 209, 211, 212, 

225, 244
Plot properties, 192–194
plot_surface() function, 238
Plotting window, 189–191
plt.plot() function, 191, 192
Polar charts, 236, 237, 345, 346
Political data, 435
Polynomial kernel, 281, 282, 284
pop2022 dataframe, 350, 351, 362
PostgreSQL database, 140–146
Po Valley, 323–327
predict() function, 269, 279, 310, 367
Prediction making, 309–310
Predictive modeling, 7–8
Predictive power, 1, 383
prepare() function, 331
Preprocessing steps, 394–397
Primitive artists, 187
Principal component analysis (PCA), 264–267
Probability, 7, 248, 309, 311, 315, 379
Professional fields, 3
Project planning stage, 6
prototxt file, 420
Publications, 8, 184, 235, 435, 436

Public datasets, 436
Punctuation mark removal, 395
pylab, 188, 189
pyplot, 188, 189, 196, 200, 203
pyplot’s imshow() method, 405
PyPy interpreter, 18
Pyston, 17
PyTables, 135
Python, 3, 12, 13, 292, 423

calculations, 26
execution phases, 16, 17
installing (see Installation, Python)
interactive programming language, 16
interfaced, 16
interpreted programming language, 15
interpreter, 16, 17
libraries/functions importing, 26, 27
object-oriented programming language, 16
open-source programming language, 16
pandas library, 327
pickle module, 136, 137
portable programming language, 15
shell, 23–25, 79, 117

Python Package Index (PyPI)
downloading and installation, 36
Eclipse, 38, 39
IDE, 37
Komodo, 41, 42
Liclipse, 40, 41
NinjaIDE, 41
repository, 36
SciPy, 42, 43
Spyder, 37
Sublime, 39, 40

Python virtual machine (PVM), 17
PyTorch, 292

�       � Q
QtConsole, 30, 32–33, 78, 183, 212, 404
Qualitative data analysis, 9
Quantitative data analysis, 9

�       � R
Radial Basis Function (RBF), 282, 283, 285
Radicals, 425
random.randint() function, 170, 218
Random sampling, 170
Ranking, 104–107, 126
read_csv(), 117, 118, 304, 332, 350
read_html() function, 123, 126
read_table() function, 117, 119
Red Hat, 19
Regex, 172, 173
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RegexpTokenizer, 395
Regression models, 7
Regular expressions, 172
Reindexing, 96–98
relplot() function, 247, 249
rename() function, 162, 164–166
render() function, 355, 357, 358, 365
Reordering levels, 112–113
replace() function, 163, 164, 172
request() function, 397, 398
require.config(), 353, 359
reshape() function, 51, 61
RoseWind, 343–347
RoseWind_Speed, 347
RustPython, 18

�       � S
savefig() function, 208
save() functions, 70
scatter() function, 239
Scientific Python Development Environment 

(Spyder), 19, 37, 40, 43
Scikit-learn library, 271, 337

diabetes dataset, 271, 272
handwritten digits, 367, 368
Iris Flower Dataset, 261–267
KNN classifier, 267–271
linear regression, 272–275
svm module, 368

SciKits, 259
SciPy

matplotlib, 43
NumPy, 42, 43
Pandas, 43

Seaborn library
CMD.exe Prompt, 246
contents, 247
dataframes, 254, 255
by gender, 251
gender distinction, 253
identical chart, 249
installation, 245
linear regression, 250, 252
multiseries bar plot, 257
optional parameters, 246
probability, 248

Sentimental analysis, 399–401
sents() function, 389
sent_tokenize() function, 395
Series, 80, 81

declaration, 80, 81
as dictionaries, 86, 87
operations, 86

Series() constructor, 80

set_position() function, 215
set_theme() function, 246
shadow kwarg, 233
Shape manipulation, 61–62
ShowRoseWind() function, 345, 347
ShowRoseWind_Speed() function, 347
similar() function, 390
sin() function, 194, 211
Single Layer Perceptron (SLP)

artificial neural networks, 294–296
learning/predicting, 376–381
with TensorFlow, 310–317

sklearn.decomposition module, 265
Slicing, 43, 57–58, 60, 65
SnowballStemmer, 396
Sobel filters, 417–419
Social data, 435
Softmax, 309, 315, 378
sort() function, 392, 393
sort_index() function, 104, 105, 113
Sorting, 104–107, 112
sort_values() function, 105, 106
Split-apply-combine, 174, 175, 180
split() function, 64, 170, 172
Splitting arrays, 62–64
Sports data, 436
sqlalchemy, 138
SQLite3, 138–140
SQL Query language, 2
Stacked bar charts, 227–230
Stacked numbers, 424–425
stack() function, 111, 158
Statistics functions, 103–104
std() function, 168
Stemming, 396
Stopwords, 390–392, 394, 396
string function, 392
String manipulation

built-in methods, 170–172
regular expressions, 172, 173

Structured arrays, 68–69, 71, 389
Subjective interpretations, 9
subplot() function, 196, 197
Subplots, 196–198, 241–245
Subscripts, 424
Summarization process, 7
Superscripts, 424
Supervised estimators, 261
Supervised learning, 260–261, 296, (see also 

Scikit-learn library)
Support Vector Classification (SVC), 367

C parameter, 280
nonlinear, 281–283
regularization, 279
straight line separating, 277
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training set, 278
visualize distribution, 277

Support Vector Machines (SVMs)
data points, 276
decision boundary, 277
decision space, 276
Iris Dataset, 283–285
and SVC (see Support Vector Classification (SVC))
and SVR, 285–287

Support Vector Regression (SVR), 260, 277, 285–287
support_vectors array, 279
Support vectors, 276, 277
svc estimator, 372
SVC() constructor, 278
svm.SVC() function, 285

�       � T
Tabular data, 43, 70–72, 87, 94, 116, 350
take() function, 169
target attribute, 262, 272
Template object, 353, 365
Ten linear charts, 275
TensorBoard, 298
TensorFlow, 292

Data Flow Graph, 298
deep learning, 307–310
Google’s framework, 298
handwritten digits, 372–376
installation, 300
Jupyter Notebook, 300
loading data

CSV file, 304–306
pandas dataframe, 303, 304

tensors, 300–303
TensorFlow 1.x, 299, 300, 372
TensorFlow 2.x, 299, 300, 307–310, 372
TensorFlow Fold, 298
TensorFlow Transform, 298
Tensors, 291, 300–303

operation on, 306, 307
parameters, 301

Testing set, 260, 268, 376, 400
text() function, 200, 230, 398
Text file

reading, 121
regexp, 119–121

Textual data analysis techniques, 385–386
Theano, 293
title() function, 198, 232, 423
to_csv() function, 122, 123
to_json() function, 131, 132, 148
Tokenization, 17, 395, 396
TopoJSON, 358, 359
Training set, 8, 260, 267, 268, 272–274, 290, 297, 370, 

399, 400
transform() method, 179
Transposition, 94
TSV files, 363, 364
TXT file, 119–121, (see also Text file)
Type list, 28

�       � U
United States Census Bureau, 349, 350
Universal Functions (ufunc), 54–55
Unsupervised learning, 259, 260
urllib library, 397, 398

�       � V
value_counts() function, 84, 167
Value membership, 93, 94
Values evaluation, 84, 85
Variance, 107–108, 265, 266, 273
Vectorization, 65–66

�       � W
Web scraping, 2, 6, 123
Wind data, 344
Wind speed, 331, 341, 347–348
words() function, 388
Words frequency, 390–392
World Bank Open Data, 10
World Health Organization, 10, 436

�       � X
xticks() function, 214, 220, 224, 228

�       � Y, Z
yticks() function, 214, 224, 228
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