
M A N N I N G

Matthew Fowler

Continued on inside back cover

I want to . . . How? Chapter(s)

Learn the basics of single-threaded concurrency Understand how selectors and the event loop
work

1, 3

Run two operations concurrently Use asyncio tasks and API functions 2, 4

Add a timeout to a long-running task Use the task’s wait_for method 2

Cancel a long-running task Use the task’s cancel method 2

Learn how non-blocking sockets work Create a non-blocking echo server with selectors 3

Handle graceful shutdowns of asyncio applications Use the signals API (*nix systems only) 3

Run multiple tasks concurrently Use asyncio API functions such as gather,
wait, and as_completed

4

Run asynchronous web API requests Use a library, such as aiohttp, with asyncio API
functions

4

Run multiple SQL queries concurrently Use an asynchronous library like asyncpg with
asyncio API functions and connection pools

5

Run CPU-intensive work concurrently Use multiprocessing and process pools 6

Use shared state among multiple processes Save the state to shared memory 6

Avoid race conditions in multiprocessing code Use multiprocessing locks 6

Run blocking I/O-based APIs, such as requests,
concurrently

Use multithreading and thread pools 7

Avoid race conditions and deadlocks in multi-
threading code

Use multithreading locks and reentrant locks 7

Build a responsive GUI with asyncio Use multithreading with threading queues 7

Run multiple CPU-intensive tasks, such as data
analysis with NumPy, concurrently

Use multiprocessing, multithreading in certain
circumstances

6, 7

Build a non-blocking command line application Use streams to asynchronously read data
(*nix systems only)

8

Build a web application with asyncio Use a web framework with ASGI support such as
Starlette or Django

9

Use WebSockets asynchronously Use the WebSocket library 9

Build a resilient backend-for-frontend microservice
architecture with async concepts

Use asyncio API functions with retries and the
circuit breaker pattern

10

Prevent single-threaded race conditions Use asyncio locks 11

Limit the number of tasks running concurrently Use asyncio semaphores 11

Wait until an event occurs before performing
an operation

Use asyncio events 11

Control access to a shared resource Use asyncio condtions 11

Python Concurrency
with asyncio

MATTHEW FOWLER

MANN I NG

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Doug Rudder
20 Baldwin Road Technical development editor: Robert Wenner
PO Box 761 Review editor: Mihaela Batinić
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Christian Berk
Proofreader: Keri Hales

Technical proofreader: Mayur Patil
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617298660
Printed in the United States of America

www.manning.com

 To my beautiful wife Kathy,
thank you for always being there.

contents
preface xi
acknowledgments xiii
about this book xiv
about the author xvii
about the cover illustration xviii

1 Getting to know asyncio 1
1.1 What is asyncio? 2
1.2 What is I/O-bound and what is CPU-bound? 3
1.3 Understanding concurrency, parallelism,

and multitasking 4
Concurrency 4 ■ Parallelism 5 ■ The difference between
concurrency and parallelism 6 ■ What is multitasking? 7
The benefits of cooperative multitasking 7

1.4 Understanding processes, threads, multithreading,
and multiprocessing 8
Process 8 ■ Thread 8

1.5 Understanding the global interpreter lock 12
Is the GIL ever released? 15 ■ asyncio and the GIL 17
v

CONTENTSvi
1.6 How single-threaded concurrency works 17
What is a socket? 17

1.7 How an event loop works 20

2 asyncio basics 23
2.1 Introducing coroutines 24

Creating coroutines with the async keyword 24 ■ Pausing
execution with the await keyword 26

2.2 Introducing long-running coroutines with sleep 27
2.3 Running concurrently with tasks 30

The basics of creating tasks 30 ■ Running multiple tasks
concurrently 31

2.4 Canceling tasks and setting timeouts 33
Canceling tasks 34 ■ Setting a timeout and canceling
with wait_for 35

2.5 Tasks, coroutines, futures, and awaitables 37
Introducing futures 37 ■ The relationship between futures, tasks,
and coroutines 39

2.6 Measuring coroutine execution time with decorators 40
2.7 The pitfalls of coroutines and tasks 42

Running CPU-bound code 42 ■ Running blocking APIs 44

2.8 Accessing and manually managing the event loop 45
Creating an event loop manually 46 ■ Accessing the event
loop 46

2.9 Using debug mode 47
Using asyncio.run 47 ■ Using command-line arguments 47
Using environment variables 48

3 A first asyncio application 50

3.1 Working with blocking sockets 51
3.2 Connecting to a server with Telnet 53

Reading and writing data to and from a socket 54 ■ Allowing
multiple connections and the dangers of blocking 56

3.3 Working with non-blocking sockets 57
3.4 Using the selectors module to build a socket

event loop 61

CONTENTS vii
3.5 An echo server on the asyncio event loop 64
Event loop coroutines for sockets 64 ■ Designing an asyncio
echo server 65 ■ Handling errors in tasks 67

3.6 Shutting down gracefully 69
Listening for signals 69 ■ Waiting for pending tasks to finish 70

4 Concurrent web requests 75

4.1 Introducing aiohttp 76
4.2 Asynchronous context managers 77

Making a web request with aiohttp 79 ■ Setting timeouts
with aiohttp 81

4.3 Running tasks concurrently, revisited 82
4.4 Running requests concurrently with gather 84

Handling exceptions with gather 86

4.5 Processing requests as they complete 88
Timeouts with as_completed 90

4.6 Finer-grained control with wait 92
Waiting for all tasks to complete 92 ■ Watching for
exceptions 94 ■ Processing results as they complete 96
Handling timeouts 99 ■ Why wrap everything in a task? 100

5 Non-blocking database drivers 102

5.1 Introducing asyncpg 103
5.2 Connecting to a Postgres database 103
5.3 Defining a database schema 104
5.4 Executing queries with asyncpg 107
5.5 Executing queries concurrently with connection

pools 109
Inserting random SKUs into the product database 110
Creating a connection pool to run queries concurrently 113

5.6 Managing transactions with asyncpg 118
Nested transactions 119 ■ Manually managing
transactions 120

5.7 Asynchronous generators and streaming result sets 122
Introducing asynchronous generators 123 ■ Using asynchronous
generators with a streaming cursor 124

CONTENTSviii
6 Handling CPU-bound work 128
6.1 Introducing the multiprocessing library 129
6.2 Using process pools 131

Using asynchronous results 132

6.3 Using process pool executors with asyncio 133
Introducing process pool executors 133 ■ Process pool executors
with the asyncio event loop 134

6.4 Solving a problem with MapReduce using asyncio 136
A simple MapReduce example 137 ■ The Google Books Ngram
dataset 139 ■ Mapping and reducing with asyncio 140

6.5 Shared data and locks 145
Sharing data and race conditions 146 ■ Synchronizing with
locks 149 ■ Sharing data with process pools 151

6.6 Multiple processes, multiple event loops 154

7 Handling blocking work with threads 159

7.1 Introducing the threading module 160
7.2 Using threads with asyncio 164

Introducing the requests library 164 ■ Introducing thread pool
executors 165 ■ Thread pool executors with asyncio 167
Default executors 168

7.3 Locks, shared data, and deadlocks 169
Reentrant locks 171 ■ Deadlocks 173

7.4 Event loops in separate threads 175
Introducing Tkinter 176 ■ Building a responsive UI with asyncio
and threads 178

7.5 Using threads for CPU-bound work 185
Multithreading with hashlib 185 ■ Multithreading with
NumPy 188

8 Streams 191

8.1 Introducing streams 192
8.2 Transports and protocols 192
8.3 Stream readers and stream writers 196
8.4 Non-blocking command-line input 198

Terminal raw mode and the read coroutine 202

CONTENTS ix
8.5 Creating servers 209
8.6 Creating a chat server and client 211

9 Web applications 217
9.1 Creating a REST API with aiohttp 218

What is REST? 218 ■ aiohttp server basics 219 ■ Connecting
to a database and returning results 220 ■ Comparing aiohttp
with Flask 226

9.2 The asynchronous server gateway interface 228
How does ASGI compare to WSGI? 228

9.3 ASGI with Starlette 230
A REST endpoint with Starlette 230 ■ WebSockets with
Starlette 231

9.4 Django asynchronous views 235
Running blocking work in an asynchronous view 240
Using async code in synchronous views 242

10 Microservices 244
10.1 Why microservices? 245

Complexity of code 245 ■ Scalability 246 ■ Team and stack
independence 246 ■ How can asyncio help? 246

10.2 Introducing the backend-for-frontend pattern 246
10.3 Implementing the product listing API 248

User favorite service 248 ■ Implementing the base services 249
Implementing the backend-for-frontend service 253 ■ Retrying
failed requests 258 ■ The circuit breaker pattern 261

11 Synchronization 267
11.1 Understanding single-threaded concurrency bugs 268
11.2 Locks 272
11.3 Limiting concurrency with semaphores 276

Bounded semaphores 278

11.4 Notifying tasks with events 280
11.5 Conditions 285

12 Asynchronous queues 290
12.1 Asynchronous queue basics 291

Queues in web applications 297 ■ A web crawler queue 300

CONTENTSx
12.2 Priority queues 303
12.3 LIFO queues 309

13 Managing subprocesses 312
13.1 Creating a subprocess 313

Controlling standard output 315 ■ Running subprocesses
concurrently 318

13.2 Communicating with subprocesses 322

14 Advanced asyncio 327
14.1 APIs with coroutines and functions 328
14.2 Context variables 330
14.3 Forcing an event loop iteration 331
14.4 Using different event loop implementations 333
14.5 Creating a custom event loop 334

Coroutines and generators 335 ■ Generator-based coroutines are
deprecated 335 ■ Custom awaitables 337 ■ Using sockets with
futures 340 ■ A task implementation 342 ■ Implementing
an event loop 343 ■ Implementing a server with a custom
event loop 346

index 349

preface
Nearly 20 years ago, I got my start in professional software engineering writing a
mashup of Matlab, C++, and VB.net code to control and analyze data from mass spec-
trometers and other laboratory devices. The thrill of seeing a line of code trigger a
machine to move how I wanted always stuck with me, and ever since then, I knew soft-
ware engineering was the career for me. Over the years, I gradually moved toward API
development and distributed systems, mainly focusing on Java and Scala, learning a
lot of Python along the way.

 I got my start in Python around 2015, primarily by working on a machine learning
pipeline that took sensor data and used it to make predictions—such as sleep track-
ing, step count, sit-to-stand transitions, and similar activities—about the sensor’s wearer.
At the time, this machine learning pipeline was slow to the point that it was becoming
a customer issue. One of the ways I worked on alleviating the issue was utilizing con-
currency. As I dug into the knowledge available for learning concurrent programming
in Python, I found things hard to navigate and learn compared to what I was used to
in the Java world. Why doesn’t multithreading work the same way that it would in Java?
Does it make more sense to use multiprocessing? What about the newly introduced
asyncio? What is the global interpreter lock, and why does it exist? There weren’t a lot
of books on the topic of concurrency in Python, and most knowledge was scattered
throughout documentation and a smattering of blogs with varying consistency of qual-
ity. Fast-forward to today, and things haven’t changed much. While there are more
resources, the landscape is still sparse, disjointed, and not as friendly for newcomers
to concurrency as it should be.
xi

PREFACExii
 Of course, a lot has changed in the past several years. Back then, asyncio was in its
infancy and has since become an important module in Python. Now, single-threaded
concurrency models and coroutines are a core component of concurrency in Python,
in addition to multithreading and multiprocessing. This means the concurrency land-
scape in Python has gotten larger and more complex, while still not having compre-
hensive resources for those wanting to learn it.

 My motivation for writing this book was to fill this gap that exists in the Python
landscape on the topic of concurrency, specifically with asyncio and single-threaded
concurrency. I wanted to make the complex and under-documented topic of single-
threaded concurrency more accessible to developers of all skill levels. I also wanted to
write a book that would enhance generic understanding of concurrency topics outside
of Python. Frameworks such as Node.js and languages such as Kotlin have single-
threaded concurrency models and coroutines, so knowledge gained here is helpful in
those domains as well. My hope is that all who read it find this book useful in their
day-to-day lives as developers—not only within the Python landscape but also within
the domain of concurrent programming.

acknowledgments
First, I want to thank my wife, Kathy, who was always there for me to proofread when I
wasn’t sure if something made sense, and who was extremely supportive through the
entire process. A close second goes to my dog, Dug, who was always around to drop his
ball near me to remind me to take a break from writing to play.

 Next, I’d like to thank my editor, Doug Rudder, and my technical reviewer, Robert
Wenner. Your feedback was invaluable in helping keep this book on schedule and
high quality, ensuring that my code and explanations made sense and were easy to
understand.

 To all the reviewers: Alexey Vyskubov, Andy Miles, Charles M. Shelton, Chris Viner,
Christopher Kottmyer, Clifford Thurber, Dan Sheikh, David Cabrero, Didier Garcia,
Dimitrios Kouzis-Loukas, Eli Mayost, Gary Bake, Gonzalo Gabriel Jiménez Fuentes,
Gregory A. Lussier, James Liu, Jeremy Chen, Kent R. Spillner, Lakshmi Narayanan
Narasimhan, Leonardo Taccari, Matthias Busch, Pavel Filatov, Phillip Sorensen,
Richard Vaughan, Sanjeev Kilarapu, Simeon Leyzerzon, Simon Tschöke, Simone
Sguazza, Sumit K. Singh, Viron Dadala, William Jamir Silva, and Zoheb Ainapore,
your suggestions helped make this a better book.

 Finally, I want to thank the countless number of teachers, coworkers, and mentors
I’ve had over the past years. I’ve learned and grown so much from all of you. The sum
of the experiences we’ve had together has given me the tools needed to produce this
work as well as succeed in my career. Without all of you, I wouldn’t be where I am
today. Thank you!
xiii

about this book
Python Concurrency with asyncio was written to teach you how to utilize concurrency in
Python to improve application performance, throughput, and responsiveness. We
start by focusing on core concurrency topics, explaining how asyncio’s model of single-
threaded concurrency works as well as how coroutines and async/await syntax works.
We then transition into practical applications of concurrency, such as making multiple
web requests or database queries concurrently, managing threads and processes,
building web applications, and handling synchronization issues.

Who should read this book?
This book is for intermediate to advanced developers who are looking to better
understand and utilize concurrency in their existing or new Python applications. One
of the goals of this book is to explain complex concurrency topics in plain, easy-to-
understand language. To that end, no prior experience with concurrency is needed,
though of course, it is helpful. In this book we’ll cover a wide range of uses, from web-
based APIs to command-line applications, so this book should be applicable to many
problems you’ll need to solve as a developer.
xiv

ABOUT THIS BOOK xv
How this book is organized: A road map
This book is organized into 14 chapters, covering gradually more advanced topics that
build on what you’ve learned in previous chapters.

 Chapter 1 focuses on basic concurrency knowledge in Python. We learn what
CPU-bound and I/O-bound work is and introduce how asyncio’s single-threaded
concurrency model works.

 Chapter 2 focuses on the basics of asyncio coroutines and how to use async/
await syntax to build applications utilizing concurrency.

 Chapter 3 focuses on how non-blocking sockets and selectors work and how to
build an echo server using asyncio.

 Chapter 4 focuses on how to make multiple web requests concurrently. Doing
this, we’ll learn more about the core asyncio APIs for running coroutines
concurrently.

 Chapter 5 focuses on how to make multiple database queries concurrently
using connection pools. We’ll also learn about asynchronous context managers
and asynchronous generators in the context of databases

 Chapter 6 focuses on multiprocessing, specifically how to utilize it with asyncio
to handle CPU-intensive work. We’ll build a map/reduce application to demon-
strate this.

 Chapter 7 focuses on multithreading, specifically how to utilize it with asyncio
to handle blocking I/O. This is useful for libraries that don’t have native
asyncio support but can still benefit from concurrency.

 Chapter 8 focuses on network streams and protocols. We’ll use this to create a
chat server and client capable of handling multiple users concurrently.

 Chapter 9 focuses on asyncio-powered web applications and the ASGI (asyn-
chronous server gateway interface). We’ll explore a few ASGI frameworks and
discuss how to build web APIs with them. We’ll also explore WebSockets.

 Chapter 10 describes how to use asyncio-based web APIs to build a hypothetical
microservice architecture.

 Chapter 11 focuses on single-threaded concurrency synchronization issues and
how to resolve them. We dive into locks, semaphores, events, and conditions.

 Chapter 12 focuses on asynchronous queues. We’ll use these to build a web appli-
cation that responds to client requests instantly, despite doing time-consuming
work in the background.

 Chapter 13 focuses on creating and managing subprocesses, showing you how
to read from and write data to them.

 Chapter 14 focuses on advanced topics, such as forcing event loop iterations,
context variables, and creating your own event loop. This information will be
most useful to asyncio API designers and those interested in how the innards of
the asyncio event loop function.

ABOUT THIS BOOKxvi
At minimum, you should read the first four chapters to get a full understanding of
how asyncio works, how to build your first real application, and how to use the core
asyncio APIs to run coroutines concurrently (covered in chapter 4). After this you
should feel free to move around the book based on your interests.

About the code
This book contains many code examples, both in numbered listings and in-line. Some
code listings are reused as imports in later listings in the same chapter, and some are
reused across multiple chapters. Code reused across multiple chapters will assume you’ve
created a module named util; you’ll create this in chapter 2. For each individual code
listing, we will assume you have created a module for that chapter named chapter_
{chapter_number} and then put the code in a file of the format listing_{chapter_
number}_{listing_number}.py within that module. For example, the code for listing
2.2 in chapter 2 will be in a module called chapter_2 in a file named listing_2_2.py.

 Several places in the book go through performance numbers, such as time for a
program to complete or web requests completed per second. Code samples in this
book were run and benchmarked on a 2019 MacBook Pro with a 2.4 GHz 8-Core Intel
Core i9 processor and 32 GB 2667 MHz DDR4 RAM, using a gigabit wireless internet
connection. Depending on the machine you run on, these numbers will be different,
and factors of speedup or improvement will be different.

 Executable snippets of code can be found in the liveBook (online) version of this
book at https://livebook.manning.com/book/python-concurrency-with-asyncio. The
complete source code can be downloaded free of charge from the Manning website at
https://www.manning.com/books/python-concurrency-with-asyncio, and is also avail-
able on Github at https://github.com/concurrency-in-python-with-asyncio.

liveBook discussion forum
Purchase of Python Concurrency with asyncio includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can
attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/#!/book/python-concurrency-with-asyncio/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website for as long as the book is in print.

https://www.manning.com/books/python-concurrency-with-asyncio
https://github.com/concurrency-in-python-with-asyncio
https://livebook.manning.com/#!/book/python-concurrency-with-asyncio/discussion
https://livebook.manning.com/#!/book/python-concurrency-with-asyncio/discussion
https://livebook.manning.com/#!/book/python-concurrency-with-asyncio/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://www.manning.com/books/python-concurrency-with-asyncio

about the author
MATTHEW FOWLER has nearly 20 years of software engineering
experience in roles from software architect to engineering
director. He started out writing software for scientific applica-
tions and moved into full-stack web development and distrib-
uted systems, eventually leading multiple teams of developers
and managers to do the same for an e-commerce site with tens
of millions of users. He lives in Lexington, Massachusetts with
his wife, Kathy.
xvii

about the cover illustration
The figure on the cover of Python Concurrency with asyncio is “Paysanne du Marquisat de
Bade,” or Peasant woman of the Marquisate of Baden, taken from a book by Jacques
Grasset de Saint-Sauveur published in 1797. Each illustration is finely drawn and col-
ored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xviii

Getting to know asyncio
Many applications, especially in today’s world of web applications, rely heavily on
I/O (input/output) operations. These types of operations include downloading
the contents of a web page from the internet, communicating over a network with a
group of microservices, or running several queries together against a database such
as MySQL or Postgres. A web request or communication with a microservice may
take hundreds of milliseconds, or even seconds if the network is slow. A database
query could be time intensive, especially if that database is under high load or the
query is complex. A web server may need to handle hundreds or thousands of
requests at the same time.

This chapter covers
 What asyncio is and the benefits it provides

 Concurrency, parallelism, threads, and processes

 The global interpreter lock and the challenges
it poses to concurrency

 How non-blocking sockets can achieve
concurrency with only one thread

 The basics of how event-loop-based concurrency
works
1

2 CHAPTER 1 Getting to know asyncio
 Making many of these I/O requests at once can lead to substantial performance
issues. If we run these requests one after another as we would in a sequentially run
application, we’ll see a compounding performance impact. As an example, if we’re
writing an application that needs to download 100 web pages or run 100 queries,
each of which takes 1 second to execute, our application will take at least 100 sec-
onds to run. However, if we were to exploit concurrency and start the downloads
and wait simultaneously, in theory, we could complete these operations in as little as
1 second.

 asyncio was first introduced in Python 3.4 as an additional way to handle these
highly concurrent workloads outside of multithreading and multiprocessing. Properly
utilizing this library can lead to drastic performance and resource utilization improve-
ments for applications that use I/O operations, as it allows us to start many of these
long-running tasks together.

 In this chapter, we’ll introduce the basics of concurrency to better understand how
we can achieve it with Python and the asyncio library. We’ll explore the differences
between CPU-bound work and I/O-bound work to know which concurrency model
best suits our specific needs. We’ll also learn about the basics of processes and threads
and the unique challenges to concurrency in Python caused by its global interpreter
lock (GIL). Finally, we’ll get an understanding of how we can utilize a concept called
non-blocking I/O with an event loop to achieve concurrency using only one Python pro-
cess and thread. This is the primary concurrency model of asyncio.

1.1 What is asyncio?
In a synchronous application, code runs sequentially. The next line of code runs as
soon as the previous one has finished, and only one thing is happening at once. This
model works fine for many, if not most, applications. However, what if one line of code
is especially slow? In that case, all other code after our slow line will be stuck waiting
for that line to complete. These potentially slow lines can block the application from
running any other code. Many of us have seen this before in buggy user interfaces,
where we happily click around until the application freezes, leaving us with a spinner
or an unresponsive user interface. This is an example of an application being blocked
leading to a poor user experience.

 While any operation can block an application if it takes long enough, many appli-
cations will block waiting on I/O. I/O refers to a computer’s input and output devices
such as a keyboard, hard drive, and, most commonly, a network card. These opera-
tions wait for user input or retrieve the contents from a web-based API. In a synchro-
nous application, we’ll be stuck waiting for those operations to complete before we
can run anything else. This can cause performance and responsiveness issues, as we can
only have one long operation running at any given time, and that operation will stop
our application from doing anything else.

 One solution to this issue is to introduce concurrency. In the simplest terms, con-
currency means allowing more than one task being handled at the same time. In the

3What is I/O-bound and what is CPU-bound?
case of concurrent I/O, examples include allowing multiple web requests to be made
at the same time or allowing simultaneous connections to a web server.

 There are several ways to achieve this concurrency in Python. One of the most
recent additions to the Python ecosystem is the asyncio library. asyncio is short for asyn-
chronous I/O. It is a Python library that allows us to run code using an asynchronous
programming model. This lets us handle multiple I/O operations at once, while still
allowing our application to remain responsive.

 So what is asynchronous programming? It means that a particular long-running
task can be run in the background separate from the main application. Instead of
blocking all other application code waiting for that long-running task to be completed,
the system is free to do other work that is not dependent on that task. Then, once the
long-running task is completed, we’ll be notified that it is done so we can process
the result.

 In Python version 3.4, asyncio was first introduced with decorators alongside gen-
erator yield from syntax to define coroutines. A coroutine is a method that can be
paused when we have a potentially long-running task and then resumed when that
task is finished. In Python version 3.5, the language implemented first-class support
for coroutines and asynchronous programming when the keywords async and await
were explicitly added to the language. This syntax, common in other programming
languages such as C# and JavaScript, allows us to make asynchronous code look like it
is run synchronously. This makes asynchronous code easy to read and understand,
as it looks like the sequential flow most software engineers are familiar with. asyncio is
a library to execute these coroutines in an asynchronous fashion using a concurrency
model known as a single-threaded event loop.

 While the name of asyncio may make us think that this library is only good for
I/O operations, it has functionality to handle other types of operations as well by
interoperating with multithreading and multiprocessing. With this interoperability,
we can use async and await syntax with threads and processes making these work-
flows easier to understand. This means this library not only is good for I/O based
concurrency but can also be used with code that is CPU intensive. To better under-
stand what type of workloads asyncio can help us with and which concurrency model
is best for each type of concurrency, let’s explore the differences between I/O and
CPU-bound operations.

1.2 What is I/O-bound and what is CPU-bound?
When we refer to an operation as I/O-bound or CPU-bound we are referring to the
limiting factor that prevents that operation from running faster. This means that if we
increased the performance of what the operation was bound on, that operation would
complete in less time.

 In the case of a CPU-bound operation, it would complete faster if our CPU was
more powerful, for instance by increasing its clock speed from 2 GHz to 3 GHz. In the
case of an I/O-bound operation, it would get faster if our I/O devices could handle

4 CHAPTER 1 Getting to know asyncio
more data in less time. This could be achieved by increasing our network bandwidth
through our ISP or upgrading to a faster network card.

 CPU-bound operations are typically computations and processing code in the
Python world. An example of this is computing the digits of pi or looping over the
contents of a dictionary, applying business logic. In an I/O-bound operation we spend
most of our time waiting on a network or other I/O device. An example of an I/O-
bound operation would be making a request to a web server or reading a file from our
machine’s hard drive.

import requests

response = requests.get('https:/ / www .example .com')

items = response.headers.items()

headers = [f'{key}: {header}' for key, header in items]

formatted_headers = '\n'.join(headers)

with open('headers.txt', 'w') as file:
 file.write(formatted_headers)

I/O-bound and CPU-bound operations usually live side by side one another. We first
make an I/O-bound request to download the contents of https:/ /www.example.com.
Once we have the response, we perform a CPU-bound loop to format the headers of
the response and turn them into a string separated by newlines. We then open a file
and write the string to that file, both I/O-bound operations.

 Asynchronous I/O allows us to pause execution of a particular method when we
have an I/O operation; we can run other code while waiting for our initial I/O to
complete in the background. This allows us to execute many I/O operations concur-
rently, potentially speeding up our application.

1.3 Understanding concurrency, parallelism,
and multitasking
To better understand how concurrency can help our applications perform better, it is
first important to learn and fully understand the terminology of concurrent program-
ming. We’ll learn more about what concurrency means and how asyncio uses a con-
cept called multitasking to achieve it. Concurrency and parallelism are two concepts
that help us understand how programming schedules and carries out various tasks,
methods, and routines that drive action.

1.3.1 Concurrency

When we say two tasks are happening concurrently, we mean those tasks are happening
at the same time. Take, for instance, a baker baking two different cakes. To bake these
cakes, we need to preheat our oven. Preheating can take tens of minutes depending

Listing 1.1 I/O-bound and CPU-bound operations

I/O-bound
web request

CPU-bound
response
processing

CPU-bound string
concatenation

I/O-bound write to disk

5Understanding concurrency, parallelism, and multitasking
on the oven and the baking temperature, but we don’t need to wait for our oven to
preheat before starting other tasks, such as mixing the flour and sugar together with
eggs. We can do other work until the oven beeps, letting us know it is preheated.

 We also don’t need to limit ourselves from starting work on the second cake before
finishing the first. We can start one cake batter, put it in a stand mixer, and start pre-
paring the second batter while the first batter finishes mixing. In this model, we’re
switching between different tasks concurrently. This switching between tasks (doing
something else while the oven heats, switching between two different cakes) is concur-
rent behavior.

1.3.2 Parallelism

While concurrency implies that multiple tasks are in process simultaneously, it does not
imply that they are running together in parallel. When we say something is running in
parallel, we mean not only are there two or more tasks happening concurrently, but they
are also executing at the same time. Going back to our cake baking example, imagine
we have the help of a second baker. In this scenario, we can work on the first cake while
the second baker works on the second. Two people making batter at once is parallel
because we have two distinct tasks running concurrently (figure 1.1).

Baker 1

Baker 1

Baker 2

Turn on oven

Mix dry

ingredients

for cake #1

Mix dry

ingredients

for cake #2

Start mixer

Time

Parallelism

Concurrency

Time

Start mixer

Put eggs

into mixer for

cake #1

Crack eggs

for cake #1

Mix dry

ingredients

for cake #1

Put eggs

into mixer for

cake #1

Put eggs

into mixer for

cake #2

Crack eggs

for cake #1

Mix dry

ingredients

for cake #2

Crack eggs

for cake #2

Turn on oven

Turn on oven

Figure 1.1 With concurrency, we have multiple tasks happening at the same time, but only
one we’re actively doing at a given point in time. With parallelism, we have multiple tasks
happening and are actively doing more than one simultaneously.

6 CHAPTER 1 Getting to know asyncio
Putting this into terms of applications run by our operating system, let’s imagine it has
two applications running. In a system that is only concurrent, we can switch between
running these applications, running one application for a short while before letting
the other one run. If we do this fast enough, it gives the appearance of two things hap-
pening at once. In a system that is parallel, two applications are running simultane-
ously, and we’re actively running two things concurrently.

 The concepts of concurrency and parallelism are similar (figure 1.2) and slightly
confusing to differentiate, but it is important to understand what makes them distinct
from one another.

1.3.3 The difference between concurrency and parallelism

Concurrency is about multiple tasks that can happen independently from one
another. We can have concurrency on a CPU with only one core, as the operation will
employ preemptive multitasking (defined in the next section) to switch between tasks.
Parallelism, however, means that we must be executing two or more tasks at the same
time. On a machine with one core, this is not possible. To make this possible, we need
a CPU with multiple cores that can run two tasks together.

Concurrency

Parallelism

Run application #1

Run application #2

Run

application

#1

CPU

CPU

CPU

Run

application

#2

Run

application

#1

Run

application

#2

Run

application

#1

Time

Time

Figure 1.2 With concurrency, we switch between running two applications. With
parallelism, we actively run two applications simultaneously.

7Understanding concurrency, parallelism, and multitasking
 While parallelism implies concurrency, concurrency does not always imply parallel-
ism. A multithreaded application running on a multiple-core machine is both concur-
rent and parallel. In this setup, we have multiple tasks running at the same time, and
there are two cores independently executing the code associated with those tasks.
However, with multitasking we can have multiple tasks happening concurrently, yet
only one of them is executing at a given time.

1.3.4 What is multitasking?

Multitasking is everywhere in today’s world. We multitask while making breakfast by
taking a call or answering a text while we wait for water to boil to make tea. We even
multitask while commuting to work, by reading a book while the train takes us to our
stop. Two main kinds of multitasking are discussed in this section: preemptive multitask-
ing and cooperative multitasking.

PREEMPTIVE MULTITASKING

In this model, we let the operating system decide how to switch between which work is
currently being executed via a process called time slicing. When the operating system
switches between work, we call it preempting.

 How this mechanism works under the hood is up to the operating system itself. It is
primarily achieved through using either multiple threads or multiple processes.

COOPERATIVE MULTITASKING

In this model, instead of relying on the operating system to decide when to switch
between which work is currently being executed, we explicitly code points in our
application where we can let other tasks run. The tasks in our application operate in a
model where they cooperate, explicitly saying, “I’m pausing my task for a while; go ahead
and run other tasks.”

1.3.5 The benefits of cooperative multitasking

asyncio uses cooperative multitasking to achieve concurrency. When our application
reaches a point where it could wait a while for a result to come back, we explicitly
mark this in code. This allows other code to run while we wait for the result to come
back in the background. Once the task we marked has completed, we in effect “wake
up” and resume executing the task. This gives us a form of concurrency because we
can have multiple tasks started at the same time but, importantly, not in parallel
because they aren’t executing code simultaneously.

 Cooperative multitasking has benefits over preemptive multitasking. First, cooper-
ative multitasking is less resource intensive. When an operating system needs to switch
between running a thread or process, it involves a context switch. Context switches are
intensive operations because the operating system must save information about the
running process or thread to be able to reload it.

 A second benefit is granularity. An operating system knows that a thread or task
should be paused based on whichever scheduling algorithm it uses, but that might not
be the best time to pause. With cooperative multitasking, we explicitly mark the areas

8 CHAPTER 1 Getting to know asyncio
that are the best for pausing our tasks. This gives us some efficiency gains in that we
are only switching tasks when we explicitly know it is the right time to do so. Now that
we understand concurrency, parallelism, and multitasking, we’ll use these concepts to
understand how to implement them in Python with threads and processes.

1.4 Understanding processes, threads, multithreading,
and multiprocessing
To better set us up to understand how concurrency works in the Python world, we’ll
first need to understand the basics about how threads and processes work. We’ll then
examine how to use them for multithreading and multiprocessing to do work concur-
rently. Let’s start with some definitions around processes and threads.

1.4.1 Process

A process is an application run that has a memory space that other applications cannot
access. An example of creating a Python process would be running a simple “hello
world” application or typing python at the command line to start up the REPL (read
eval print loop).

 Multiple processes can run on a single machine. If we are on a machine that has a
CPU with multiple cores, we can execute multiple processes at the same time. If we
are on a CPU with only one core, we can still have multiple applications running
simultaneously, through time slicing. When an operating system uses time slicing, it
will switch between which process is running automatically after some amount of time.
The algorithms that determine when this switching occurs are different, depending
on the operating system.

1.4.2 Thread

Threads can be thought of as lighter-weight processes. In addition, they are the small-
est construct that can be managed by an operating system. They do not have their own
memory as does a process; instead, they share the memory of the process that created
them. Threads are associated with the process that created them. A process will always
have at least one thread associated with it, usually known as the main thread. A process
can also create other threads, which are more commonly known as worker or back-
ground threads. These threads can perform other work concurrently alongside the
main thread. Threads, much like processes, can run alongside one another on a
multi-core CPU, and the operating system can also switch between them via time slic-
ing. When we run a normal Python application, we create a process as well as a main
thread that will be responsible for running our Python application.

import os
import threading

print(f'Python process running with process id: {os.getpid()}')

Listing 1.2 Processes and threads in a simple Python application

9Understanding processes, threads, multithreading, and multiprocessing
total_threads = threading.active_count()
thread_name = threading.current_thread().name

print(f'Python is currently running {total_threads} thread(s)')
print(f'The current thread is {thread_name}')

In figure 1.3, we sketch out the process for listing 1.2. We create a simple application to
show us the basics of the main thread. We first grab the process ID (a unique identifier
for a process) and print it to prove that we indeed have a dedicated process running. We
then get the active count of threads running as well as the current thread’s name to show
that we are running one thread—the main thread. While the process ID will be different
each time this code is run, running listing 1.2 will give output similar to the following:

Python process running with process id: 98230
Python currently running 1 thread(s)
The current thread is MainThread

Processes can also create other threads that share the memory of the main process.
These threads can do other work concurrently for us via what is known as multithreading.

import threading

def hello_from_thread():
 print(f'Hello from thread {threading.current_thread()}!')

hello_thread = threading.Thread(target=hello_from_thread)
hello_thread.start()

total_threads = threading.active_count()
thread_name = threading.current_thread().name

print(f'Python is currently running {total_threads} thread(s)')
print(f'The current thread is {thread_name}')

hello_thread.join()

Listing 1.3 Creating a multithreaded Python application

Parent process

Memory

Main thread

Figure 1.3 A process with one main
thread reading from memory

10 CHAPTER 1 Getting to know asyncio
In figure 1.4, we sketch out the process and threads for listing 1.3. We create a method
to print out the name of the current thread and then create a thread to run that
method. We then call the start method of the thread to start running it. Finally, we
call the join method. join will cause the program to pause until the thread we started
completed. If we run the previous code, we’ll see output similar to the following:

Hello from thread <Thread(Thread-1, started 123145541312512)>!
Python is currently running 2 thread(s)
The current thread is MainThread

Note that when running this you may see the hello from thread and python is currently run-
ning 2 thread(s) messages print on the same line. This is a race condition; we’ll explore a
bit about this in the next section and in chapters 6 and 7.

 Multithreaded applications are a common way to achieve concurrency in many
programming languages. There are a few challenges in utilizing concurrency with
threads in Python, however. Multithreading is only useful for I/O-bound work because
we are limited by the global interpreter lock, which is discussed in section 1.5.

 Multithreading is not the only way we can achieve concurrency; we can also create
multiple processes to do work concurrently for us. This is known as multiprocessing. In
multiprocessing, a parent process creates one or more child processes that it manages.
It can then distribute work to the child processes.

 Python gives us the multiprocessing module to handle this. The API is similar to
that of the threading module. We first create a process with a target function. Then,
we call its start method to execute it and finally its join method to wait for it to com-
plete running.

import multiprocessing
import os

def hello_from_process():
 print(f'Hello from child process {os.getpid()}!')

Listing 1.4 Creating multiple processes

Process

Memory

Main thread Worker thread Worker thread

Figure 1.4 A multithreaded
program with two worker
threads and one main thread,
each sharing the process’s
memory

11Understanding processes, threads, multithreading, and multiprocessing
if __name__ == '__main__':
 hello_process = multiprocessing.Process(target=hello_from_process)
 hello_process.start()

 print(f'Hello from parent process {os.getpid()}')

 hello_process.join()

In figure 1.5, we sketch out the process and threads for listing 1.4. We create one child
process that prints its process ID, and we also print out the parent process ID to prove
that we are running different processes. Multiprocessing is typically best when we have
CPU-intensive work.

 Multithreading and multiprocessing may seem like magic bullets to enable concur-
rency with Python. However, the power of these concurrency models is hindered by an
implementation detail of Python—the global interpreter lock.

Parent process

Child process Child process

Memory

Main thread

Memory Memory

Main thread Main thread

Figure 1.5 An application utilizing multiprocessing with one parent process and
two child processes

12 CHAPTER 1 Getting to know asyncio
1.5 Understanding the global interpreter lock
The global interpreter lock, abbreviated GIL and pronounced gill, is a controversial
topic in the Python community. Briefly, the GIL prevents one Python process from
executing more than one Python bytecode instruction at any given time. This means
that even if we have multiple threads on a machine with multiple cores, a Python
process can have only one thread running Python code at a time. In a world where we
have CPUs with multiple cores, this can pose a significant challenge for Python devel-
opers looking to take advantage of multithreading to improve the performance of
their application.

NOTE Multiprocessing can run multiple bytecode instructions concurrently
because each Python process has its own GIL.

So why does the GIL exist? The answer lies in how memory is managed in CPython. In
CPython, memory is managed primarily by a process known as reference counting. Refer-
ence counting works by keeping track of who currently needs access to a particular
Python object, such as an integer, dictionary, or list. A reference count is an integer
keeping track of how many places reference that particular object. When someone no
longer needs that referenced object, the reference count is decremented, and when
someone else needs it, it is incremented. When the reference count reaches zero, no
one is referencing the object, and it can be deleted from memory.

The conflict with threads arises in that the implementation in CPython is not thread
safe. When we say CPython is not thread safe, we mean that if two or more threads mod-
ify a shared variable, that variable may end in an unexpected state. This unexpected
state depends on the order in which the threads access the variable, commonly known
as a race condition. Race conditions can arise when two threads need to reference a
Python object at the same time.

 As shown in figure 1.6, if two threads increment the reference count at one time,
we could face a situation where one thread causes the reference count to be zero
when the object is still in use by the other thread. The likely result of this would be an
application crash when we try to read the potentially deleted memory.

 To demonstrate the effect of the GIL on multithreaded programming, let’s exam-
ine the CPU-intensive task of computing the nth number in the Fibonacci sequence.
We’ll use a fairly slow implementation of the algorithm to demonstrate a time-intensive

What is CPython?
CPython is the reference implementation of Python. By reference implementation we
mean it is the standard implementation of the language and is used as the reference
for proper behavior of the language. There are other implementations of Python such
as Jython, which is designed to run on the Java Virtual Machine, and IronPython,
which is designed for the .NET framework.

13Understanding the global interpreter lock
operation. A proper solution would utilize memoization or mathematical techniques
to improve performance.

import time

def print_fib(number: int) -> None:
 def fib(n: int) -> int:
 if n == 1:
 return 0
 elif n == 2:
 return 1
 else:
 return fib(n - 1) + fib(n - 2)

 print(f'fib({number}) is {fib(number)}')

def fibs_no_threading():
 print_fib(40)
 print_fib(41)

start = time.time()

fibs_no_threading()

end = time.time()

print(f'Completed in {end – start:.4f} seconds.')

This implementation uses recursion and is overall a relatively slow algorithm, requir-
ing exponential O(2^N) time to complete. If we are in a situation where we need to
print two Fibonacci numbers, it is easy enough to synchronously call them and time
the result, as we have done in the preceding listing.

Listing 1.5 Generating and timing the Fibonacci sequence

READ count = 0 READ count = 0

Count = count + 1

WRITE count = 1

Count = count + 1

WRITE count = 1

Thread paused

Reference count = 0

Reference count = 1

Reference count = 1

Reference count = 1

Figure 1.6 A race condition
where two threads try to
increment a reference count
simultaneously. Instead of an
expected count of two, we
get one.

14 CHAPTER 1 Getting to know asyncio
 Depending on the speed of the CPU we run on, we will see different timings, but
running the code in listing 1.5 will yield output similar to the following:

fib(40) is 63245986
fib(41) is 102334155
Completed in 65.1516 seconds.

This is a fairly long computation, but our function calls to print_fibs are indepen-
dent from one another. This means that they can be put in multiple threads that our
CPU can, in theory, run concurrently on multiple cores, thus, speeding up our
application.

import threading
import time

def print_fib(number: int) -> None:
 def fib(n: int) -> int:
 if n == 1:
 return 0
 elif n == 2:
 return 1
 else:
 return fib(n - 1) + fib(n - 2)

def fibs_with_threads():
 fortieth_thread = threading.Thread(target=print_fib, args=(40,))
 forty_first_thread = threading.Thread(target=print_fib, args=(41,))

 fortieth_thread.start()
 forty_first_thread.start()

 fortieth_thread.join()
 forty_first_thread.join()

start_threads = time.time()

fibs_with_threads()

end_threads = time.time()

print(f'Threads took {end_threads - start_threads:.4f} seconds.')

In the preceding listing, we create two threads, one to compute fib(40) and one to
compute fib(41) and start them concurrently by calling start() on each thread. Then
we make a call to join(), which will cause our main program to wait until the threads
finish. Given that we start our computation of fib(40) and fib(41) simultaneously and
run them concurrently, you would think we could see a reasonable speedup; however,
we will see an output like the following even on a multi-core machine.

Listing 1.6 Multithreading the Fibonacci sequence

15Understanding the global interpreter lock
fib(40) is 63245986
fib(41) is 102334155
Threads took 66.1059 seconds.

Our threaded version took almost the same amount of time. In fact, it was even a little
slower! This is almost entirely due to the GIL and the overhead of creating and manag-
ing threads. While it is true the threads run concurrently, only one of them is allowed to
run Python code at a time due to the lock. This leaves the other thread in a waiting state
until the first one completes, which completely negates the value of multiple threads.

1.5.1 Is the GIL ever released?

Based on the previous example, you may be wondering if concurrency in Python can
ever happen with threads, given that the GIL prevents running two lines of Python
concurrently. The GIL, however, is not held forever such that we can’t use multiple
threads to our advantage.

 The global interpreter lock is released when I/O operations happen. This lets us
employ threads to do concurrent work when it comes to I/O, but not for CPU-bound
Python code itself (there are some notable exceptions that release the GIL for CPU-
bound work in certain circumstances, and we’ll look at these in a later chapter). To
illustrate this, let’s use an example of reading the status code of a web page.

import time
import requests

def read_example() -> None:
 response = requests.get('https:/ / www .example .com')
 print(response.status_code)

sync_start = time.time()

read_example()
read_example()

sync_end = time.time()

print(f'Running synchronously took {sync_end - sync_start:.4f} seconds.')

In the preceding listing, we retrieve the contents of example.com and print the status
code twice. Depending on our network connection speed and our location, we’ll see
output similar to the following when running this code:

200
200
Running synchronously took 0.2306 seconds.

Listing 1.7 Synchronously reading status codes

16 CHAPTER 1 Getting to know asyncio
Now that we have a baseline for what a synchronous version looks like, we can write a
multithreaded version to compare to. In our multithreaded version, in an attempt to
run them concurrently, we’ll create one thread for each request to example.com.

import time
import threading
import requests

def read_example() -> None:
 response = requests.get('https:/ / www .example .com')
 print(response.status_code)

thread_1 = threading.Thread(target=read_example)
thread_2 = threading.Thread(target=read_example)

thread_start = time.time()

thread_1.start()
thread_2.start()

print('All threads running!')

thread_1.join()
thread_2.join()

thread_end = time.time()

print(f'Running with threads took {thread_end - thread_start:.4f} seconds.')

When we execute the preceding listing, we will see output like the following, depend-
ing again on our network connection and location:

All threads running!
200
200
Running with threads took 0.0977 seconds.

This is roughly two times faster than our original version that did not use threads,
since we’ve run the two requests at roughly the same time! Of course, depending on
your internet connection and machine specs, you will see different results, but the
numbers should be directionally similar.

 So how is it that we can release the GIL for I/O but not for CPU-bound opera-
tions? The answer lies in the system calls that are made in the background. In the case
of I/O, the low-level system calls are outside of the Python runtime. This allows the
GIL to be released because it is not interacting with Python objects directly. In this

Listing 1.8 Multithreaded status code reading

17How single-threaded concurrency works
case, the GIL is only reacquired when the data received is translated back into a
Python object. Then, at the operating-system level, the I/O operations execute con-
currently. This model gives us concurrency but not parallelism. In other languages,
such as Java or C++, we would get true parallelism on multi-core machines because we
don’t have the GIL and can execute simultaneously. However, in Python, because of
the GIL, the best we can do is concurrency of our I/O operations, and only one piece
of Python code is executing at a given time.

1.5.2 asyncio and the GIL

asyncio exploits the fact that I/O operations release the GIL to give us concurrency,
even with only one thread. When we utilize asyncio we create objects called coroutines.
A coroutine can be thought of as executing a lightweight thread. Much like we can
have multiple threads running at the same time, each with their own concurrent I/O
operation, we can have many coroutines running alongside one another. While we are
waiting for our I/O-bound coroutines to finish, we can still execute other Python
code, thus, giving us concurrency. It is important to note that asyncio does not circum-
vent the GIL, and we are still subject to it. If we have a CPU-bound task, we still need
to use multiple processes to execute it concurrently (which can be done with asyncio
itself); otherwise, we will cause performance issues in our application. Now that we
know it is possible to achieve concurrency for I/O with only a single thread, let’s dive
into the specifics of how this works with non-blocking sockets.

1.6 How single-threaded concurrency works
In the previous section, we introduced multiple threads as a mechanism for achieving
concurrency for I/O operations. However, we don’t need multiple threads to achieve
this kind of concurrency. We can do it all within the confines of one process and one
thread. We do this by exploiting the fact that, at the system level, I/O operations can
be completed concurrently. To better understand this, we’ll need to dive into how
sockets work and, in particular, how non-blocking sockets work.

1.6.1 What is a socket?

A socket is a low-level abstraction for sending and receiving data over a network. It is
the basis for how data is transferred to and from servers. Sockets support two main
operations: sending bytes and receiving bytes. We write bytes to a socket, which will
then get sent to a remote address, typically some type of server. Once we’ve sent those
bytes, we wait for the server to write its response back to our socket. Once these bytes
have been sent back to our socket, we can then read the result.

 Sockets are a low-level concept and are fairly easy to understand if you think of
them as mailboxes. You can put a letter in your mailbox that your letter carrier then
picks up and delivers to the recipient’s mailbox. The recipient opens their mailbox
and your letter. Depending on the contents, the recipient may send you a letter back.
In this analogy, you may think of the letter as the data or bytes we want to send. Consider

18 CHAPTER 1 Getting to know asyncio
that the act of putting a letter into the mailbox is writing the bytes to a socket, and
opening the mailbox to read the letter is reading bytes from a socket. The letter car-
rier can be thought of as the transfer mechanism over the internet, routing the data to
the correct address.

 In the case of getting the contents from example.com as we saw earlier, we open a
socket that connects to example.com’s server. We then write a request to get the con-
tents to that socket and wait for the server to reply with the result: in this case, the
HTML of the web page. We can visualize the flow of bytes to and from the server in fig-
ure 1.7.

Sockets are blocking by default. Simply put, this means that when we are waiting for a
server to reply with data, we halt our application or block it until we get data to read.
Thus, our application stops running any other tasks until we get data from the server,
an error happens, or there is a timeout.

 At the operating system level, we don’t need to do this blocking. Sockets can operate
in non-blocking mode. In non-blocking mode, when we write bytes to a socket, we can just
fire and forget the write or read, and our application can go on to perform other tasks.
Later, we can have the operating system tell us that we received bytes and deal with it at
that time. This lets the application do any number of things while we wait for bytes to
come back to us. Instead of blocking and waiting for data to come to us, we become
more reactive, letting the operating system inform us when there is data for us to act on.

 In the background, this is performed by a few different event notification systems,
depending on which operating system we’re running. asyncio is abstracted enough
that it switches between the different notification systems, depending on which one
our operating system supports. The following are the event notification systems used
by specific operating systems:

 kqueue—FreeBSD and MacOS
 epoll—Linux
 IOCP (I/O completion port)—Windows

These systems keep track of our non-blocking sockets and notify us when they are
ready for us to do something with them. This notification system is the basis of how
asyncio can achieve concurrency. In asyncio’s model of concurrency, we have only one

1. Write bytes

4. Read bytes

2. Send bytes

3. Reply bytes

ServerSocket

Figure 1.7 Writing bytes to a socket and reading bytes from a socket

19How single-threaded concurrency works
thread executing Python at any given time. When we hit an I/O operation, we hand it
over to our operating system’s event notification system to keep track of it for us. Once
we have done this handoff, our Python thread is free to keep running other Python
code or add more non-blocking sockets for the OS to keep track of for us. When our
I/O operation finishes, we “wake up” the task that was waiting for the result and then
proceed to run any other Python code that came after that I/O operation. We can
visualize this flow in figure 1.8 with a few separate operations that each rely on a socket.

But how do we keep track of which tasks are waiting for I/O as opposed to ones that
can just run because they are regular Python code? The answer lies in a construct
called an event loop.

Python thread OS watched sockets

Socket 1

Socket 2

Socket 3

Notify when socket 1 finished

Other code can execute

Add socket 3, return instantly

Notify when socket 2 finished

Notify when socket 3 finished

make_io_request_1()

make_io_request_2()

make_io_request_3()

execute_other_code()

process_response_1()

process_response_2()

process_response_3()

Add socket 2, return instantly

Add socket 1, return instantly

Figure 1.8 Making a non-blocking I/O request returns immediately and tells the O/S to watch
sockets for data. This allows execute_other_code() to run right away instead of waiting for the
I/O requests to finish. Later, we can be alerted when I/O is complete and process the response.

20 CHAPTER 1 Getting to know asyncio
1.7 How an event loop works
An event loop is at the heart of every asyncio application. Event loops are a fairly com-
mon design pattern in many systems and have existed for quite some time. If you’ve
ever used JavaScript in a browser to make an asynchronous web request, you’ve created
a task on an event loop. Windows GUI applications use what are called message loops
behind the scenes as a primary mechanism for handling events such as keyboard
input, while still allowing the UI to draw.

 The most basic event loop is extremely simple. We create a queue that holds a list
of events or messages. We then loop forever, processing messages one at a time as they
come into the queue. In Python, a basic event loop might look something like this:

from collections import deque

messages = deque()

while True:
 if messages:
 message = messages.pop()
 process_message(message)

In asyncio, the event loop keeps a queue of tasks instead of messages. Tasks are wrap-
pers around a coroutine. A coroutine can pause execution when it hits an I/O-bound
operation and will let the event loop run other tasks that are not waiting for I/O oper-
ations to complete.

 When we create an event loop, we create an empty queue of tasks. We can then add
tasks into the queue to be run. Each iteration of the event loop checks for tasks that need
to be run and will run them one at a time until a task hits an I/O operation. At that time
the task will be “paused,” and we instruct our operating system to watch any sockets for
I/O to complete. We then look for the next task to be run. On every iteration of the
event loop, we’ll check to see if any of our I/O has completed; if it has, we’ll “wake up”
any tasks that were paused and let them finish running. We can visualize this as follows in
figure 1.9: the main thread submits tasks to the event loop, which can then run them.

 To illustrate this, let’s imagine we have three tasks that each make an asynchronous
web request. Imagine these tasks have a bit of code to do setup, which is CPU-bound,
then they make a web request, and they follow with some CPU-bound postprocessing
code. Now, let’s submit these tasks to the event loop simultaneously. In pseudocode,
we would write something like this:

def make_request():
 cpu_bound_setup()
 io_bound_web_request()
 cpu_bound_postprocess()

task_one = make_request()
task_two = make_request()
task_three = make_request()

21How an event loop works
All three tasks start with CPU-bound work and we are single-threaded, so only the
first task starts executing code, and the other two are left waiting to run. Once the
CPU-bound setup work is finished in Task 1, it hits an I/O-bound operation and will
pause itself to say, “I’m waiting for I/O; any other tasks waiting to run can run.”

 Once this happens, Task 2 can begin executing. Task 2 starts its CPU-bound code
and then pauses, waiting for I/O. At this time both Task 1 and Task 2 are waiting con-
currently for their network request to complete. Since Tasks 1 and 2 are both paused
waiting for I/O, we start running Task 3.

 Now imagine once Task 3 pauses to wait for its I/O to complete, the web request
for Task 1 has finished. We’re now alerted by our operating system’s event notification
system that this I/O has finished. We can now resume executing Task 1 while both
Task 2 and Task 3 are waiting for their I/O to finish.

 In figure 1.10, we show the execution flow of the pseudocode we just described. If
we look at any vertical slice of this diagram, we can see that only one CPU-bound piece
of work is running at any given time; however, we have up to two I/O-bound opera-
tions happening concurrently. This overlapping of waiting for I/O per each task is
where the real time savings of asyncio comes in.

Python process

Event loop

Main thread Submits tasks

Socket 1

Socket 2

Socket 3

Socket N

Repeat

Check for completed I/O, and

unpause associated tasks

Run any unpaused tasks

until blocking I/O, pause

them, and register the socket

...

OS watched sockets

Add socket for OS to watch

Notifies when socket data is ready

Figure 1.9 An example of a thread submitting tasks to the event loop

22 CHAPTER 1 Getting to know asyncio
Summary
 CPU-bound work is work that primarily utilizes our computer’s processor whereas

I/O-bound work primarily utilizes our network or other input/output devices.
asyncio primarily helps us make I/O-bound work concurrent, but it exposes
APIs for making CPU-bound work concurrent as well.

 Processes and threads are the basic most units of concurrency at the operating
system level. Processes can be used for I/O and CPU-bound workloads and
threads can (usually) only be used to manage I/O-bound work effectively in
Python due to the GIL preventing code from executing in parallel.

 We’ve seen how, with non-blocking sockets, instead of stopping our application
while we wait for data to come in, we can instruct the operating system to tell us
when data has come in. Exploiting this is part of what allows asyncio to achieve
concurrency with only a single thread.

 We’ve introduced the event loop, which is the core of asyncio applications. The
event loop loops forever, looking for tasks with CPU-bound work to run while
also pausing tasks that are waiting for I/O.

Time

Task 1
Executing

cpu_bound_setup()

Waiting on I/O bound

web request

Executing

cpu_bound_postprocess()

Task 2 Waiting to run
Executing

cpu_bound_setup()

Executing

cpu_bound_postprocess()

Waiting on I/O bound

web request

Task 3 Waiting to run
Executing

cpu_bound_setup()

Executing

cpu_bound_postprocess()

Waiting on I/O bound

web request

Figure 1.10 Executing multiple tasks concurrently with I/O operations

asyncio basics
Chapter 1 dived into concurrency, looking at how we can achieve it with both pro-
cesses and threads. We also explored how we could utilize non-blocking I/O and
an event loop to achieve concurrency with only one thread. In this chapter, we’ll
cover the basics of how to write programs using this single-threaded concurrency
model with asyncio. Using the techniques in this chapter, you’ll be able to take
long-running operations, such as web requests, database queries, and network con-
nections and execute them in tandem.

 We’ll learn more about the coroutine construct and how to use async await syntax
to define and run coroutines. We’ll also examine how to run coroutines concurrently
by using tasks and examine the time savings we get from running concurrently by

This chapter covers
 The basics of async await syntax and coroutines

 Running coroutines concurrently with tasks

 Canceling tasks

 Manually creating the event loop

 Measuring a coroutine’s execution time

 Keeping eyes open for problems when running
coroutines
23

24 CHAPTER 2 asyncio basics
creating a reusable timer. Finally, we’ll look at common errors software engineers may
make when using asyncio and how to use debug mode to spot these problems.

2.1 Introducing coroutines
Think of a coroutine like a regular Python function but with the superpower that it
can pause its execution when it encounters an operation that could take a while to
complete. When that long-running operation is complete, we can “wake up” our
paused coroutine and finish executing any other code in that coroutine. While a
paused coroutine is waiting for the operation it paused for to finish, we can run other
code. This running of other code while waiting is what gives our application concur-
rency. We can also run several time-consuming operations concurrently, which can
give our applications big performance improvements.

 To both create and pause a coroutine, we’ll need to learn to use Python’s async
and await keywords. The async keyword will let us define a coroutine; the await key-
word will let us pause our coroutine when we have a long-running operation.

2.1.1 Creating coroutines with the async keyword

Creating a coroutine is straightforward and not much different from creating a nor-
mal Python function. The only difference is that, instead of using the def keyword, we
use async def. The async keyword marks a function as a coroutine instead of a nor-
mal Python function.

async def my_coroutine() -> None
 print(‘Hello world!’)

The coroutine in the preceding listing does nothing yet other than print “Hello
world!” It’s also worth noting that this coroutine does not perform any long-running
operations; it just prints our message and returns. This means that, when we put the
coroutine on the event loop, it will execute immediately because we don’t have any
blocking I/O, and nothing is pausing execution yet.

 This syntax is simple, but we’re creating something very different from a plain
Python function. To illustrate this, let’s create a function that adds one to an integer as
well as a coroutine that does the same and compare the results of calling each. We’ll
also use the type convenience function to look at the type returned by calling a corou-
tine as compared to calling our normal function.

Which Python version should I use?
The code in this book assumes you are using the latest version of Python at the time
of writing, which is Python 3.10. Running code with versions earlier than this may
have certain API methods missing, may function differently, or may have bugs.

Listing 2.1 Using the async keyword

25Introducing coroutines
async def coroutine_add_one(number: int) -> int:
 return number + 1

def add_one(number: int) -> int:
 return number + 1

function_result = add_one(1)
coroutine_result = coroutine_add_one(1)

print(f'Function result is {function_result} and the type is
{type(function_result)}')

print(f'Coroutine result is {coroutine_result} and the type is
{type(coroutine_result)}')

When we run this code, we’ll see output like the following:

Method result is 2 and the type is <class 'int'>
Coroutine result is <coroutine object coroutine_add_one at 0x1071d6040> and
the type is <class 'coroutine'>

Notice how when we call our normal add_one function it executes immediately and
returns what we would expect, another integer. However, when we call coroutine_
add_one we don’t get our code in the coroutine executed at all. We get a coroutine
object instead.

 This is an important point, as coroutines aren’t executed when we call them
directly. Instead, we create a coroutine object that can be run later. To run a corou-
tine, we need to explicitly run it on an event loop. So how can we create an event loop
and run our coroutine?

 In versions of Python older than 3.7, we had to create an event loop if one did not
already exist. However, the asyncio library has added several functions that abstract
the event loop management. There is a convenience function, asyncio.run, we can
use to run our coroutine. This is illustrated in the following listing.

import asyncio

async def coroutine_add_one(number: int) -> int:
 return number + 1

result = asyncio.run(coroutine_add_one(1))

print(result)

Listing 2.2 Comparing coroutines to normal functions

Listing 2.3 Running a coroutine

26 CHAPTER 2 asyncio basics
Running listing 2.3 will print “2,” as we would expect for returning the next integer.
We’ve properly put our coroutine on the event loop, and we have executed it!

 asyncio.run is doing a few important things in this scenario. First, it creates a
brand-new event. Once it successfully does so, it takes whichever coroutine we pass
into it and runs it until it completes, returning the result. This function will also do
some cleanup of anything that might be left running after the main coroutine fin-
ishes. Once everything has finished, it shuts down and closes the event loop.

 Possibly the most important thing about asyncio.run is that it is intended to be
the main entry point into the asyncio application we have created. It only executes
one coroutine, and that coroutine should launch all other aspects of our application.
As we progress further, we will use this function as the entry point into nearly all our
applications. The coroutine that asyncio.run executes will create and run other
coroutines that will allow us to utilize the concurrent nature of asyncio.

2.1.2 Pausing execution with the await keyword

The example we saw in listing 2.3 did not need to be a coroutine, as it executed only
non-blocking Python code. The real benefit of asyncio is being able to pause execu-
tion to let the event loop run other tasks during a long-running operation. To pause
execution, we use the await keyword. The await keyword is usually followed by a call
to a coroutine (more specifically, an object known as an awaitable, which is not always a
coroutine; we’ll learn more about awaitables later in the chapter).

 Using the await keyword will cause the coroutine following it to be run, unlike
calling a coroutine directly, which produces a coroutine object. The await expression
will also pause the coroutine where it is contained in until the coroutine we awaited
finishes and returns a result. When the coroutine we awaited finishes, we’ll have
access to the result it returned, and the containing coroutine will “wake up” to handle
the result.

 We can use the await keyword by putting it in front of a coroutine call. Expanding
on our earlier program, we can write a program where we call the add_one function
inside of a “main” async function and get the result.

import asyncio

async def add_one(number: int) -> int:
 return number + 1

async def main() -> None:
 one_plus_one = await add_one(1)
 two_plus_one = await add_one(2)
 print(one_plus_one)
 print(two_plus_one)

asyncio.run(main())

Listing 2.4 Using await to wait for the result of coroutine

Pause, and wait
for the result of
add_one(1).

Pause, and wait
for the result of
add_one(2).

27Introducing long-running coroutines with sleep
In listing 2.4, we pause execution twice. We first await the call to add_one(1). Once
we have the result, the main function will be “unpaused,” and we will assign the return
value from add_one(1) to the variable one_plus_one, which in this case will be two.
We then do the same for add_one(2) and then print the results. We can visualize the
execution flow of our application, as shown in figure 2.1. Each block of the figure rep-
resents what is happening at any given moment for one or more lines of code.

As it stands now, this code does not operate differently from normal, sequential code.
We are, in effect, mimicking a normal call stack. Next, let’s look at a simple example of
how to run other code by introducing a dummy sleep operation while we’re waiting.

2.2 Introducing long-running coroutines with sleep
Our previous examples did not use any slow operations and were used to help us learn
the basic syntax of coroutines. To fully see the benefits and show how we can run mul-
tiple events simultaneously, we’ll need to introduce some long-running operations.
Instead of making web API or database queries right away, which are nondeterministic
as to how much time they will take, we’ll simulate long-running operations by specify-
ing how long we want to wait. We’ll do this with the asyncio.sleep function.

 We can use asyncio.sleep to make a coroutine “sleep” for a given number of sec-
onds. This will pause our coroutine for the time we give it, simulating what would hap-
pen if we had a long-running call to a database or web API.

 asyncio.sleep is itself a coroutine, so we must use it with the await keyword. If we
call it just by itself, we’ll get a coroutine object. Since asyncio.sleep is a coroutine,
this means that when a coroutine awaits it, other code will be able to run.

 Let’s examine a simple example, shown in the following listing, that sleeps for 1 sec-
ond and then prints a 'Hello World!' message.

Time

RUN main() PAUSE main() PAUSE main()

RUN add_one(1) RUN add_one(2)

return 1 + 1 return 1 + 2

RESUME main()

one_plus_one = 2await add_one(1) await add_one(2)

RESUME main()

two_plus_one = 3

print(one_plus_one)

print(one_plus_two)

Figure 2.1 When we hit an await expression, we pause our parent coroutine and run the coroutine in the
await expression. Once it is finished, we resume the parent coroutine and assign the return value.

28 CHAPTER 2 asyncio basics
import asyncio

async def hello_world_message() -> str:
 await asyncio.sleep(1)
 return ‘Hello World!’

async def main() -> None:
 message = await hello_world_message()
 print(message)

asyncio.run(main())

When we run this application, our program will wait 1 second before printing our
'Hello World!' message. Since hello_world_message is a coroutine and we pause it
for 1 second with asyncio.sleep, we now have 1 second where we could be running
other code concurrently.

 We’ll be using sleep a lot in the next few examples, so let’s invest the time to cre-
ate a reusable coroutine that sleeps for us and prints out some useful information.
We’ll call this coroutine delay. This is shown in the following listing.

import asyncio

async def delay(delay_seconds: int) -> int:
 print(f'sleeping for {delay_seconds} second(s)')
 await asyncio.sleep(delay_seconds)
 print(f'finished sleeping for {delay_seconds} second(s)')
 return delay_seconds

delay will take in an integer of the duration in seconds that we’d like the function to
sleep and will return that integer to the caller once it has finished sleeping. We’ll also
print when sleep begins and ends. This will help us see what other code, if any, is run-
ning concurrently while our coroutines are paused.

 To make referencing this utility function easier in future code listings, we’ll create
a module that we’ll import in the remainder of this book when needed. We’ll also add
to this module as we create additional reusable functions. We’ll call this module util,
and we’ll put our delay function in a file called delay_functions.py. We’ll also add
an __init__.py file with the following line, so we can nicely import the timer:

from util.delay_functions import delay

From now on in this book, we’ll use from util import delay whenever we need to use
the delay function. Now that we have a reusable delay coroutine, let’s combine it with
the earlier coroutine add_one to see if we can get our simple addition to run concur-
rently while hello_world_message is paused.

Listing 2.5 A first application with sleep

Listing 2.6 A reusable delay function

Pause hello_world_message
for 1 second.

Pause main until
hello_world_message
finishes.

29Introducing long-running coroutines with sleep
import asyncio
from util import delay

async def add_one(number: int) -> int:
 return number + 1

async def hello_world_message() -> str:
 await delay(1)
 return ‘Hello World!’

async def main() -> None:
 message = await hello_world_message()
 one_plus_one = await add_one(1)
 print(one_plus_one)
 print(message)

asyncio.run(main())

When we run this, 1 second passes before the results of both function calls are
printed. What we really want is the value of add_one(1) to be printed immediately
while hello_world_message()runs concurrently. So why isn’t this happening with this
code? The answer is that await pauses our current coroutine and won’t execute any
other code inside that coroutine until the await expression gives us a value. Since it
will take 1 second for our hello_world_message function to give us a value, the main
coroutine will be paused for 1 second. Our code behaves as if it were sequential in this
case. This behavior is illustrated in figure 2.2.

Both main and hello_world paused while we wait for delay(1) to finish. After it has
finished, main resumes and can execute add_one.

 We’d like to move away from this sequential model and run add_one concurrently
with hello_world. To achieve this, we’ll need to introduce a concept called tasks.

Listing 2.7 Running two coroutines

Pause main until
hello_world_message
returns.

Pause main until
add_one returns.

Time

1 second

RUN main() PAUSE main() PAUSE main()RESUME main() RESUME main()

one_plus_one = 1await hello_world() await add_one(1)message = ‘Hello World’

await delay(1)return 1 + 1 return 1 + 2return ‘Hello World!’

PAUSE

hello_world()
RUN hello_world() RUN add_one(1)

RESUME

hello_world()

Figure 2.2 Execution flow of listing 2.7

30 CHAPTER 2 asyncio basics
2.3 Running concurrently with tasks
Earlier we saw that, when we call a coroutine directly, we don’t put it on the event loop
to run. Instead, we get a coroutine object that we then need to either use the await
keyword on it or pass it in to asyncio.run to run and get a value. With only these tools
we can write async code, but we can’t run anything concurrently. To run coroutines
concurrently, we’ll need to introduce tasks.

 Tasks are wrappers around a coroutine that schedule a coroutine to run on the
event loop as soon as possible. This scheduling and execution happen in a non-blocking
fashion, meaning that, once we create a task, we can execute other code instantly
while the task is running. This contrasts with using the await keyword that acts in a
blocking manner, meaning that we pause the entire coroutine until the result of the
await expression comes back.

 The fact that we can create tasks and schedule them to run instantly on the event
loop means that we can execute multiple tasks at roughly the same time. When these
tasks wrap a long-running operation, any waiting they do will happen concurrently. To
illustrate this, let’s create two tasks and try to run them at the same time.

2.3.1 The basics of creating tasks

Creating a task is achieved by using the asyncio.create_task function. When we call
this function, we give it a coroutine to run, and it returns a task object instantly. Once
we have a task object, we can put it in an await expression that will extract the return
value once it is complete.

import asyncio
from util import delay

async def main():
 sleep_for_three = asyncio.create_task(delay(3))
 print(type(sleep_for_three))
 result = await sleep_for_three
 print(result)

asyncio.run(main())

In the preceding listing, we create a task that requires 3 seconds to complete. We also
print out the type of the task, in this case, <class '_asyncio.Task'>, to show that it is
different from a coroutine.

 One other thing to note here is that our print statement is executed immediately
after we run the task. If we had simply used await on the delay coroutine we would
have waited 3 seconds before outputting the message.

 Once we’ve printed our message, we apply an await expression to the task sleep_
for_three. This will suspend our main coroutine until we have a result from our task.

Listing 2.8 Creating a task

31Running concurrently with tasks
 It is important to know that we should usually use an await keyword on our tasks at
some point in our application. In listing 2.8, if we did not use await, our task would be
scheduled to run, but it would almost immediately be stopped and “cleaned up” when
asyncio.run shut down the event loop. Using await on our tasks in our application
also has implications for how exceptions are handled, which we’ll look at in chapter 3.
Now that we’ve seen how to create a task and allow other code to run concurrently, we
can learn how to run multiple long-running operations at the same time.

2.3.2 Running multiple tasks concurrently

Given that tasks are created instantly and are scheduled to run as soon as possible, this
allows us to run many long-running tasks concurrently. We can do this by sequentially
starting multiple tasks with our long-running coroutine.

import asyncio
from util import delay

async def main():
 sleep_for_three = asyncio.create_task(delay(3))
 sleep_again = asyncio.create_task(delay(3))
 sleep_once_more = asyncio.create_task(delay(3))

 await sleep_for_three
 await sleep_again
 await sleep_once_more

asyncio.run(main())

In the preceding listing we start three tasks, each taking 3 seconds to complete. Each
call to create_task returns instantly, so we reach the await sleep_for_three state-
ment right away. Previously, we mentioned that tasks are scheduled to run “as soon as
possible.” Generally, this means the first time we hit an await statement after creating
a task, any tasks that are pending will run as await triggers an iteration of the event
loop.

 Since we’ve hit await sleep_for_three, all three tasks start running and will
carry out any sleep operations concurrently. This means that the program in listing 2.9
will complete in about 3 seconds. We can visualize the concurrency as shown
in figure 2.3, noting that all three tasks are running their sleep coroutines at the
same time.

 Note that in figure 2.3 the code in the tasks labeled RUN delay(3) (in this case,
some print statements) does not run concurrently with other tasks; only the sleep
coroutines run concurrently. If we were to run these delay operations sequentially,
we’d have an application runtime of just over 9 seconds. By doing this concurrently,
we’ve decreased the total runtime of this application three-fold!

Listing 2.9 Running multiple tasks concurrently

32 CHAPTER 2 asyncio basics
NOTE This benefit compounds as we add more tasks; if we had launched 10
of these tasks, we would still take roughly 3 seconds, giving us a 10-fold
speedup.

Executing these long-running operations concurrently is where asyncio really shines
and delivers drastic improvements in our application’s performance, but the benefits
don’t stop there. In listing 2.9, our application was actively doing nothing, while it was
waiting for 3 seconds for our delay coroutines to complete. While our code is waiting,
we can execute other code. As an example, let’s say we wanted to print out a status
message every second while we were running some long tasks.

import asyncio
from util import delay

async def hello_every_second():
 for i in range(2):
 await asyncio.sleep(1)
 print("I'm running other code while I'm waiting!")

async def main():
 first_delay = asyncio.create_task(delay(3))
 second_delay = asyncio.create_task(delay(3))
 await hello_every_second()
 await first_delay
 await second_delay

Listing 2.10 Running code while other operations complete

Time

Approximately seconds3

task_1

task_2

task_3

await asyncio.sleep(3)

PAUSE delay()

await asyncio.sleep(3)

PAUSE delay()

await asyncio.sleep(3)

PAUSE delay()

task_1 finished

task_2 finished

task_3 finished

RUN main()

RUN

delay(3)

RUN

delay(3)

RUN

delay(3)

RUN

delay(3)

RUN

delay(3)

RUN

delay(3)

RUN main()PAUSE main()

task_1 = create_task(delay(3))

task_2 = create_task(delay(3))

task_3 = create_task(delay(3))

Figure 2.3 Execution flow of listing 2.9

33Canceling tasks and setting timeouts
In the preceding listing, we create two tasks, each of which take 3 seconds to com-
plete. While these tasks are waiting, our application is idle, which gives us the opportu-
nity to run other code. In this instance, we run a coroutine hello_every_second,
which prints a message every second 2 times. While our two tasks are running, we’ll
see messages being output, giving us the following:

sleeping for 3 second(s)
sleeping for 3 second(s)
I'm running other code while I'm waiting!
I'm running other code while I'm waiting!
finished sleeping for 3 second(s)
finished sleeping for 3 second(s)

We can imagine the execution flow as shown in figure 2.4.

First, we start two tasks that sleep for 3 seconds; then, while our two tasks are idle, we
start to see I’m running other code while I’m waiting! being printed every second.
This means that even when we’re running time-intensive operations, our application
can still be performing other tasks.

 One potential issue with tasks is that they can take an indefinite amount of time to
complete. We could find ourselves wanting to stop a task if it takes too long to finish.
Tasks support this use case by allowing cancellation.

2.4 Canceling tasks and setting timeouts
Network connections can be unreliable. A user’s connection may drop because of a
network slowdown, or a web server may crash and leave existing requests in limbo.
When making one of these requests, we need to be especially careful that we don’t
wait indefinitely. Doing so could lead to our application hanging, waiting forever for a
result that may never come. It could also lead to a poor user experience; if we allow
a user to make a request that takes too long, they are unlikely to wait forever for a
response. Additionally, we may want to allow our users a choice if a task continues to

RUN
hello_every

_second

PAUSE
hello_every

_second

RUN
hello_every

_second

RUN
hello_every

_second

PAUSE
hello_every

_second

Approximently seconds3

await asyncio.sleep()3
PAUSE delay()

first_delay finishedfirst_delay
RUN

delay(3)

RUN

delay(3)

await asyncio.sleep()3
PAUSE delay()

second_delay
finished

second_delay
RUN

delay(3)
RUN

delay(3)

for i in range()2
One

second

print(I’m running“
other code while

I’m waiting!”)

print(I’m running“
other code while

I’m waiting!”)

One
second

Figure 2.4 Execution flow of listing 2.10

34 CHAPTER 2 asyncio basics
run. A user may proactively decide things are taking too long, or they may want to stop
a task they made in error.

 In our previous examples, if our tasks took forever, we would be stuck waiting for
the await statement to finish with no feedback. We also had no way to stop things if we
wanted to. asyncio supports both these situations by allowing tasks to be canceled as
well as allowing them to specify a timeout.

2.4.1 Canceling tasks

Canceling a task is straightforward. Each task object has a method named cancel,
which we can call whenever we’d like to stop a task. Canceling a task will cause that
task to raise a CancelledError when we await it, which we can then handle as
needed.

 To illustrate this, let’s say we launch a long-running task that we don’t want to run
for longer than 5 seconds. If the task is not completed within 5 seconds, we’d like to
stop that task, reporting back to the user that it took too long and we’re stopping it.
We also want a status update printed every second, to provide up-to-date information
to our user, so they aren’t left without information for several seconds.

import asyncio
from asyncio import CancelledError
from util import delay

async def main():
 long_task = asyncio.create_task(delay(10))

 seconds_elapsed = 0

 while not long_task.done():
 print('Task not finished, checking again in a second.')
 await asyncio.sleep(1)
 seconds_elapsed = seconds_elapsed + 1
 if seconds_elapsed == 5:
 long_task.cancel()

 try:
 await long_task
 except CancelledError:
 print('Our task was cancelled')

asyncio.run(main())

In the preceding listing, we create a task that will take 10 seconds to run. We then create
a while loop to check if that task is done. The done method on the task returns True if a
task is finished and False otherwise. Every second, we check to see if the task has fin-
ished, keeping track of how many seconds we’ve checked so far. If our task has taken

Listing 2.11 Canceling a task

35Canceling tasks and setting timeouts
5 seconds, we cancel the task. Then, we will go on to await long_task, and we’ll see Our
task was cancelled printed out, indicating we’ve caught a CancelledError.

 Something important to note about cancellation is that a CancelledError can
only be thrown from an await statement. This means that if we call cancel on a task
when it is executing plain Python code, that code will run until completion until we
hit the next await statement (if one exists) and a CancelledError can be raised. Call-
ing cancel won’t magically stop the task in its tracks; it will only stop the task if you’re
currently at an await point or its next await point.

2.4.2 Setting a timeout and canceling with wait_for

Checking every second or at some other time interval, and then canceling a task, as we
did in the previous example, isn’t the easiest way to handle a timeout. Ideally, we’d
have a helper function that would allow us to specify this timeout and handle cancella-
tion for us.

 asyncio provides this functionality through a function called asyncio.wait_for.
This function takes in a coroutine or task object, and a timeout specified in seconds. It
then returns a coroutine that we can await. If the task takes more time to complete
than the timeout we gave it, a TimeoutException will be raised. Once we have reached
the timeout threshold, the task will automatically be canceled.

 To illustrate how wait_for works, we’ll look at a case where we have a task that
will take 2 seconds to complete, but we’ll only allow it 1 second to finish. When we
get a TimeoutError raised, we’ll catch the exception and check to see if the task was
canceled.

import asyncio
from util import delay

async def main():
 delay_task = asyncio.create_task(delay(2))
 try:
 result = await asyncio.wait_for(delay_task, timeout=1)
 print(result)
 except asyncio.exceptions.TimeoutError:
 print('Got a timeout!')
 print(f'Was the task cancelled? {delay_task.cancelled()}')

asyncio.run(main())

When we run the preceding listing, our application will take roughly 1 second to com-
plete. After 1 second our wait_for statement will raise a TimeoutError, which we
then handle. We’ll then see that our original delay task was canceled, giving the fol-
lowing output:

sleeping for 2 second(s)
Got a timeout!
Was the task cancelled? True

Listing 2.12 Creating a timeout for a task with wait_for

36 CHAPTER 2 asyncio basics
Canceling tasks automatically if they take longer than expected is normally a good
idea. Otherwise, we may have a coroutine waiting indefinitely, taking up resources
that may never be released. However, in certain circumstances we may want to keep
our coroutine running. For example, we may want to inform a user that something is
taking longer than expected after a certain amount of time but not cancel the task
when the timeout is exceeded.

 To do this we can wrap our task with the asyncio.shield function. This function
will prevent cancellation of the coroutine we pass in, giving it a “shield,” which cancel-
lation requests then ignore.

import asyncio
from util import delay

async def main():
 task = asyncio.create_task(delay(10))

 try:
 result = await asyncio.wait_for(asyncio.shield(task), 5)
 print(result)
 except TimeoutError:
 print("Task took longer than five seconds, it will finish soon!")
 result = await task
 print(result)

asyncio.run(main())

In the preceding listing, we first create a task to wrap our coroutine. This differs from
our first cancellation example because we’ll need to access the task in the except
block. If we had passed in a coroutine, wait_for would have wrapped it in a task, but
we wouldn’t be able to reference it, as it is internal to the function.

 Then, inside of a try block, we call wait_for and wrap the task in shield, which
will prevent the task from being canceled. Inside our exception block, we print a use-
ful message to the user, letting them know that the task is still running and then we
await the task we initially created. This will let it finish in its entirety, and the pro-
gram’s output will be as follows:

sleeping for 10 second(s)
Task took longer than five seconds!
finished sleeping for 10 second(s)
finished <function delay at 0x10e8cf820> in 10 second(s)

Cancellation and shielding are somewhat tricky subjects with several cases that are
noteworthy. We introduce the basics below, but as we get into more complicated cases,
we’ll explore how cancellation works in greater depth.

Listing 2.13 Shielding a task from cancellation

37Tasks, coroutines, futures, and awaitables
 We’ve now introduced the basics of tasks and coroutines. These concepts are inter-
twined with one another. In the following section, we’ll look at how tasks and corou-
tines are related to one another and understand a bit more about how asyncio is
structured.

2.5 Tasks, coroutines, futures, and awaitables
Coroutines and tasks can both be used in await expressions. So what is the common
thread between them? To understand, we’ll need to know about both a future as well
as an awaitable. You normally won’t need to use futures, but understanding them is a
key to understanding the inner workings of asyncio. As some APIs return futures, we
will reference them in the rest of the book.

2.5.1 Introducing futures

A future is a Python object that contains a single value that you expect to get at some
point in the future but may not yet have. Usually, when you create a future, it does
not have any value it wraps around because it doesn’t yet exist. In this state, it is con-
sidered incomplete, unresolved, or simply not done. Then, once you get a result, you
can set the value of the future. This will complete the future; at that time, we can
consider it finished and extract the result from the future. To understand the basics
of futures, let’s try creating one, setting its value and extracting that value back out.

from asyncio import Future

my_future = Future()

print(f'Is my_future done? {my_future.done()}')

my_future.set_result(42)

print(f'Is my_future done? {my_future.done()}')
print(f'What is the result of my_future? {my_future.result()}')

We can create a future by calling its constructor. At this time, the future will have
no result set on it, so calling its done method will return False. We then set the value
of the future with its set_result method, which will mark the future as done.
Alternatively, if we had an exception we wanted to set on the future, we could call
set_exception.

NOTE We don’t call the result method before the result is set because the
result method will throw an invalid state exception if we do so.

Futures can also be used in await expressions. If we await a future, we’re saying
“pause until the future has a value set that I can work with, and once I have a value,
wake up and let me process it.”

Listing 2.14 The basics of futures

38 CHAPTER 2 asyncio basics
 To understand this, let’s consider an example of making a web request that returns
a future. Making a request that returns a future should complete instantly, but as the
request will take some time, the future will not yet be defined. Then, later, once
the request has finished, the result will be set, then we can access it. If you have used
JavaScript in the past, this concept is analogous to promises. In the Java world, these are
known as completable futures.

from asyncio import Future
import asyncio

def make_request() -> Future:
 future = Future()
 asyncio.create_task(set_future_value(future))
 return future

async def set_future_value(future) -> None:
 await asyncio.sleep(1)
 future.set_result(42)

async def main():
 future = make_request()
 print(f'Is the future done? {future.done()}')
 value = await future
 print(f'Is the future done? {future.done()}')
 print(value)

asyncio.run(main())

In the preceding listing, we define a function make_request. In that function we
create a future and create a task that will asynchronously set the result of the
future after 1 second. Then, in the main function, we call make_request. When we
call this, we’ll instantly get a future with no result; it is, therefore, undone. Then,
we await the future. Awaiting this future will pause main for 1 second while we
wait for the value of the future to be set. Once this completes, value will be 42 and
the future is done.

 In the world of asyncio, you should rarely need to deal with futures. That said, you
will run into some asyncio APIs which return futures, and you may need to work with
callback-based code, which can require futures. You may also need to read or debug
some asyncio API code yourself. The implementation of these asyncio APIs heavily
rely on futures, so it is ideal to have a basic understanding of how they work.

Listing 2.15 Awaiting a future

Create a task to
asynchronously set
the value of the future.

Wait 1 second
before setting the
value of the future.

Pause main until
the future’s value
is set.

39Tasks, coroutines, futures, and awaitables
2.5.2 The relationship between futures, tasks, and coroutines

There is a strong relationship between tasks and futures. In fact, task directly inherits
from future. A future can be thought as representing a value that we won’t have for
a while. A task can be thought as a combination of both a coroutine and a future.
When we create a task, we are creating an empty future and running the coroutine.
Then, when the coroutine has completed with either an exception or a result, we set
the result or exception of the future.

 Given the relationship between futures and tasks, is there a similar relationship
between tasks and coroutines? After all, all these types can be used in await expressions.

 The common thread between these is the Awaitable abstract base class. This class
defines one abstract double underscore method __await__. We won’t go into the spe-
cifics about how to create our own awaitables, but anything that implements the
__await__ method can be used in an await expression. Coroutines inherit directly
from Awaitable, as do futures. Tasks then extend futures, which gives us the inheri-
tance diagram shown in figure 2.5.

Going forward, we’ll start to refer to objects that can be used in await expressions as
awaitables. You’ll frequently see the term awaitable referenced in the asyncio documen-
tation, as many API methods don’t care if you pass in coroutines, tasks, or futures.

 Now that we understand the basics of coroutines, tasks, and futures, how do we
assess their performance? So far, we’ve only theorized about how long they take. To
make things more rigorous, let’s add some functionality to measure execution time.

Awaitable

Coroutine

Task

Future

Figure 2.5 The class inheritance
hierarchy of Awaitable

40 CHAPTER 2 asyncio basics
2.6 Measuring coroutine execution time with decorators
So far, we’ve talked about roughly how long our applications take to run without tim-
ing them. To really understand and profile things we’ll need to introduce some code
to keep track of this for us.

 As a first try we could wrap every await statement and keep track of the start and
end time of the coroutine:

import asyncio
import time

async def main():
 start = time.time()
 await asyncio.sleep(1)
 end = time.time()
 print(f'Sleeping took {end - start} seconds')

asyncio.run(main())

However, this will get messy quickly when we have multiple await statements and tasks
to keep track of. A better approach is to come up with a reusable way to keep track of
how long any coroutine takes to finish. We can do this by creating a decorator that will
run an await statement for us (listing 2.16). We’ll call this decorator async_timed.

import functools
import time
from typing import Callable, Any

def async_timed():
 def wrapper(func: Callable) -> Callable:
 @functools.wraps(func)
 async def wrapped(*args, **kwargs) -> Any:
 print(f'starting {func} with args {args} {kwargs}')
 start = time.time()
 try:
 return await func(*args, **kwargs)
 finally:
 end = time.time()

What is a decorator?
A decorator is a pattern in Python that allows us to add functionality to existing func-
tions without changing that function’s code. We can “intercept” a function as it is
being called and apply any decorator code we’d like before or after that call. Decora-
tors are one way to tackle cross-cutting concerns. The following listing illustrates a
sample decorator.

Listing 2.16 A decorator for timing coroutines

41Measuring coroutine execution time with decorators
 total = end - start
 print(f'finished {func} in {total:.4f} second(s)')

 return wrapped

 return wrapper

In this decorator, we create a new coroutine called wrapped. This is a wrapper around
our original coroutine that takes its arguments, *args and **kwargs, calls an await
statement, and then returns the result. We surround that await statement with one
message when we start running the function and another message when we end run-
ning the function, keeping track of the start and end time in much the same way that
we did in our earlier start-time and end-time example. Now, as shown in listing 2.17,
we can put this annotation on any coroutine, and any time we run it, we’ll see how
long it took to run.

import asyncio

@async_timed()
async def delay(delay_seconds: int) -> int:
 print(f'sleeping for {delay_seconds} second(s)')
 await asyncio.sleep(delay_seconds)
 print(f'finished sleeping for {delay_seconds} second(s)')
 return delay_seconds

@async_timed()
async def main():
 task_one = asyncio.create_task(delay(2))
 task_two = asyncio.create_task(delay(3))

 await task_one
 await task_two

asyncio.run(main())

When we run the preceding listing, we’ll see console output similar to the following:

starting <function main at 0x109111ee0> with args () {}
starting <function delay at 0x1090dc700> with args (2,) {}
starting <function delay at 0x1090dc700> with args (3,) {}
finished <function delay at 0x1090dc700> in 2.0032 second(s)
finished <function delay at 0x1090dc700> in 3.0003 second(s)
finished <function main at 0x109111ee0> in 3.0004 second(s)

We can see that our two delay calls were both started and finished in roughly 2 and
3 seconds, respectively, for a total of 5 seconds. Notice, however, that our main corou-
tine only took 3 seconds to complete because we were waiting concurrently.

Listing 2.17 Timing two concurrent tasks with a decorator

42 CHAPTER 2 asyncio basics
 We’ll use this decorator and the resulting output throughout the next several
chapters to illustrate how long our coroutines are taking to execute as well as when
they start and complete. This will give us a clear picture of where we see performance
gains by executing our operations concurrently.

 To make referencing this utility decorator easier in future code listings, let’s add
this to our util module. We’ll put our timer in a file called async_timer.py. We’ll
also add a line to the module’s __init__.py file with the following line so we can
nicely import the timer:

from util.async_timer import async_timed

In the rest of this book, we’ll use from util import async_timed whenever we need to
use the timer.

 Now that we can use our decorator to understand the performance gains that
asyncio can provide when running tasks concurrently, we may be tempted to try and
use asyncio all over our existing applications. This can work, but we need to be careful
that we aren’t running into any of the common pitfalls with asyncio that can degrade
our application’s performance.

2.7 The pitfalls of coroutines and tasks
When seeing the performance improvements we can obtain from running some of
our longer tasks concurrently, we can be tempted to start to use coroutines and tasks
everywhere in our applications. While it depends on the application you’re writing,
simply marking functions async and wrapping them in tasks may not help application
performance. In certain cases, this may degrade performance of your applications.

 Two main errors occur when trying to turn your applications asynchronous. The first
is attempting to run CPU-bound code in tasks or coroutines without using multiprocess-
ing; the second is using blocking I/O-bound APIs without using multithreading.

2.7.1 Running CPU-bound code

We may have functions that perform computationally expensive calculations, such as
looping over a large dictionary or doing a mathematical computation. Where we have
several of these functions with the potential to run concurrently, we may get the idea
to run them in separate tasks. In concept, this is a good idea, but remember that
asyncio has a single-threaded concurrency model. This means we are still subject to
the limitations of a single thread and the global interpreter lock.

 To prove this to ourselves, let’s try to run some CPU-bound functions concurrently.

import asyncio
from util import delay

@async_timed()
async def cpu_bound_work() -> int:

Listing 2.18 Attempting to run CPU-bound code concurrently

43The pitfalls of coroutines and tasks
 counter = 0
 for i in range(100000000):
 counter = counter + 1
 return counter

@async_timed()
async def main():
 task_one = asyncio.create_task(cpu_bound_work())
 task_two = asyncio.create_task(cpu_bound_work())
 await task_one
 await task_two

asyncio.run(main())

When we run the preceding listing, we’ll see that, despite creating two tasks, our code
still executes sequentially. First, we run Task 1, then we run Task 2, meaning our total
runtime will be the sum of the two calls to cpu_bound_work:

starting <function main at 0x10a8f6c10> with args () {}
starting <function cpu_bound_work at 0x10a8c0430> with args () {}
finished <function cpu_bound_work at 0x10a8c0430> in 4.6750 second(s)
starting <function cpu_bound_work at 0x10a8c0430> with args () {}
finished <function cpu_bound_work at 0x10a8c0430> in 4.6680 second(s)
finished <function main at 0x10a8f6c10> in 9.3434 second(s)

Looking at the output above, we may be tempted to think that there are no drawbacks
to making all our code use async and await. After all, it ends up taking the same
amount of time as if we had run things sequentially. However, by doing this we can run
into situations where our application’s performance can degrade. This is especially true
when we have other coroutines or tasks that have await expressions. Consider creating
two CPU-bound tasks alongside a long-running task, such as our delay coroutine.

import asyncio
from util import async_timed, delay

@async_timed()
async def cpu_bound_work() -> int:
 counter = 0
 for i in range(100000000):
 counter = counter + 1
 return counter

@async_timed()
async def main():
 task_one = asyncio.create_task(cpu_bound_work())
 task_two = asyncio.create_task(cpu_bound_work())

Listing 2.19 CPU-bound code with a task

44 CHAPTER 2 asyncio basics
 delay_task = asyncio.create_task(delay(4))
 await task_one
 await task_two
 await delay_task

asyncio.run(main())

Running the preceding listing, we might expect to take the same amount of time as in
listing 2.18. After all, won’t delay_task run concurrently alongside the CPU-bound
work? In this instance it won’t because we create the two CPU-bound tasks first, which,
in effect, blocks the event loop from running anything else. This means the runtime
of our application will be the sum of time it took for our two cpu_bound_work tasks to
finish plus the 4 seconds that our delay task took.

 If we need to perform CPU-bound work and still want to use async / await syntax,
we can do so. To do this we’ll still need to use multiprocessing, and we need to tell
asyncio to run our tasks in a process pool. We’ll learn how to do this in chapter 6.

2.7.2 Running blocking APIs

We may also be tempted to use our existing libraries for I/O-bound operations by
wrapping them in coroutines. However, this will generate the same issues that we saw
with CPU-bound operations. These APIs block the main thread. Therefore, when we
run a blocking API call inside a coroutine, we’re blocking the event loop thread itself,
meaning that we stop any other coroutines or tasks from executing. Examples of
blocking API calls include libraries such as requests, or time.sleep. Generally, any
function that performs I/O that is not a coroutine or performs time-consuming CPU
operations can be considered blocking.

 As an example, let’s try getting the status code of www.example.com three times
concurrently, using the requests library. When we run this, since we’re running con-
currently we’ll be expecting this application to finish in about the length of time nec-
essary to get the status code once.

import asyncio
import requests
from util import async_timed

@async_timed()
async def get_example_status() -> int:
 return requests.get('http:/ / www .example .com').status_code

@async_timed()
async def main():
 task_1 = asyncio.create_task(get_example_status())
 task_2 = asyncio.create_task(get_example_status())

Listing 2.20 Incorrectly using a blocking API in a coroutine

http://www.example.com

45Accessing and manually managing the event loop
 task_3 = asyncio.create_task(get_example_status())
 await task_1
 await task_2
 await task_3

asyncio.run(main())

When running the preceding listing, we’ll see output similar to the following. Note how
the total runtime of the main coroutine is roughly the sum of time for all the tasks to get
the status we ran, meaning that we did not have any concurrency advantage:

starting <function main at 0x1102e6820> with args () {}
starting <function get_example_status at 0x1102e6700> with args () {}
finished <function get_example_status at 0x1102e6700> in 0.0839 second(s)
starting <function get_example_status at 0x1102e6700> with args () {}
finished <function get_example_status at 0x1102e6700> in 0.0441 second(s)
starting <function get_example_status at 0x1102e6700> with args () {}
finished <function get_example_status at 0x1102e6700> in 0.0419 second(s)
finished <function main at 0x1102e6820> in 0.1702 second(s)

This is again because the requests library is blocking, meaning it will block whichever
thread it is run on. Since asyncio only has one thread, the requests library blocks the
event loop from doing anything concurrently.

 As a rule, most APIs you employ now are blocking and won’t work out of the box
with asyncio. You need to use a library that supports coroutines and utilizes non-
blocking sockets. This means that if the library you are using does not return coroutines
and you aren’t using await in your own coroutines, you’re likely making a blocking call.

 In the above example we can use a library such as aiohttp, which uses non-block-
ing sockets and returns coroutines to get proper concurrency. We’ll introduce this
library later in chapter 4.

 If you need to use the requests library, you can still use async syntax, but you’ll
need to explicitly tell asyncio to use multithreading with a thread pool executor. We’ll see
how to do this in chapter 7.

 We’ve now seen a few things to look for when using asyncio and have built a few
simple applications. So far, we have not created or configured the event loop ourselves
but relied on convenience methods to do it for us. Next, we’ll learn to create the event
loop, which will allow us to access lower-level asyncio functionality and event loop con-
figuration properties.

2.8 Accessing and manually managing the event loop
Until now, we have used the convenient asyncio.run to run our application and cre-
ate the event loop for us behind the scenes. Given the ease of use, this is the preferred
method to create the event loop. However, there may be cases in which we don’t want
the functionality that asyncio.run provides. As an example, we may want to execute
custom logic to stop tasks that differ from what asyncio.run does, such as letting any
remaining tasks finish instead of stopping them.

46 CHAPTER 2 asyncio basics
 In addition, we may want to access methods available on the event loop itself.
These methods are typically lower level and, as such, should be used sparingly. How-
ever, if you want to perform tasks, such as working directly with sockets or scheduling
a task to run at a specific time in the future, you’ll need to access the event loop.
While we won’t, and shouldn’t, be managing the event loop extensively, this will be
necessary from time to time.

2.8.1 Creating an event loop manually

We can create an event loop by using the asyncio.new_event_loop method. This will
return an event loop instance. With this, we have access to all the low-level methods
that the event loop has to offer. With the event loop we have access to a method
named run_until_complete, which takes a coroutine and runs it until it finishes.
Once we are done with our event loop, we need to close it to free any resources it was
using. This should normally be in a finally block so that any exceptions thrown
don’t stop us from closing the loop. Using these concepts, we can create a loop and
run an asyncio application.

import asyncio

async def main():
 await asyncio.sleep(1)

loop = asyncio.new_event_loop()

try:
 loop.run_until_complete(main())
finally:
 loop.close()

The code in this listing is similar to what happens when we call asyncio.run with the
difference being that this does not perform canceling any remaining tasks. If we want
any special cleanup logic, we would do so in our finally clause.

2.8.2 Accessing the event loop

From time to time, we may need to access the currently running event loop. asyncio
exposes the asyncio.get_running_loop function that allows us to get the current
event loop. As an example, let’s look at call_soon, which will schedule a function to
run on the next iteration of the event loop.

import asyncio

def call_later():
 print("I'm being called in the future!")

Listing 2.21 Manually creating the event loop

Listing 2.22 Accessing the event loop

47Using debug mode
async def main():
 loop = asyncio.get_running_loop()
 loop.call_soon(call_later)
 await delay(1)

asyncio.run(main())

In the preceding listing, our main coroutine gets the event loop with asyncio.get
_running_loop and tells it to run call_later, which takes a function and will run it
on the next iteration of the event loop. In addition, there is an asyncio.get_event
_loop function that lets you access the event loop.

 This function can potentially create a new event loop if it is called when one is
not already running, leading to strange behavior. It is recommended to use get_
running_loop, as this will throw an exception if an event loop isn’t running, avoiding
any surprises.

 While we shouldn’t use the event loop frequently in our applications, there are
times when we will need to configure settings on the event loop or use low-level func-
tions. We’ll see an example of configuring the event loop in the next section on debug
mode.

2.9 Using debug mode
In previous sections, we mentioned how coroutines should always be awaited at some
point in the application. We also saw the drawbacks of running CPU-bound and other
blocking code inside coroutines and tasks. It can, however, be hard to tell if a corou-
tine is taking too much time on CPU, or if we accidently forgot an await somewhere
in our application. Luckily, asyncio gives us a debug mode to help us diagnose these
situations.

 When we run in debug mode, we’ll see a few helpful log messages when a corou-
tine or task takes more than 100 milliseconds to run. In addition, if we don’t await a
coroutine, an exception is thrown, so we can see where to properly add an await.
There are a few different ways to run in debug mode.

2.9.1 Using asyncio.run

The asyncio.run function we have been using to run coroutines exposes a debug
parameter. By default, this is set to False, but we can set this to True to enable
debug mode:

asyncio.run(coroutine(), debug=True)

2.9.2 Using command-line arguments

Debug mode can be enabled by passing a command-line argument when we start our
Python application. To do this we apply -X dev:

python3 -X dev program.py

48 CHAPTER 2 asyncio basics
2.9.3 Using environment variables

We can also use environment variables to enable debug mode by setting the
PYTHONASYNCIODEBUG variable to 1:

PYTHONASYINCIODEBUG=1 python3 program.py

NOTE In versions of Python older than 3.9, there is a bug within debug
mode. When using asyncio.run, only the boolean debug parameter will
work. Command-line arguments and environment variables will only work
when manually managing the event loop.

In debug mode, we’ll see informative messages logged when a coroutine takes too
long. Let’s test this out by trying to run CPU-bound code in a task to see if we get a
warning, as shown in the following listing.

import asyncio
from util import async_timed

@async_timed()
async def cpu_bound_work() -> int:
 counter = 0
 for i in range(100000000):
 counter = counter + 1
 return counter

async def main() -> None:
 task_one = asyncio.create_task(cpu_bound_work())
 await task_one

asyncio.run(main(), debug=True)

When running this, we’ll see a helpful message that task_one was taking too long,
therefore blocking the event loop from running any other tasks:

Executing <Task finished name='Task-2' coro=<cpu_bound_work() done, defined
at listing_2_9.py:5> result=100000000 created at tasks.py:382> took 4.829
seconds

This can be helpful for debugging issues where we may inadvertently be making a call
that is blocking. The default settings will log a warning if a coroutine takes longer than
100 milliseconds, but this may be longer or shorter than we’d like. To change this
value, we can set the slow callback duration by accessing the event loop as we do in list-
ing 2.24 and setting slow_callback_duration. This is a floating-point value repre-
senting the seconds we want the slow callback duration to be.

Listing 2.23 Running CPU-bound code in debug mode

49Summary
import asyncio

async def main():
 loop = asyncio.get_event_loop()
 loop.slow_callback_duration = .250

asyncio.run(main(), debug=True)

The preceding listing will set the slow callback duration to 250 milliseconds, meaning
we’ll get a message printed out if any coroutine takes longer than 250 milliseconds of
CPU time to run.

Summary
 We’ve learned how to create coroutines with the async keyword. Coroutines

can suspend their execution on a blocking operation. This allows for other
coroutines to run. Once the operation where the coroutine suspended com-
pletes, our coroutine will wake up and resume where it left off.

 We learned to use await in front of a call to a coroutine to run it and wait for it
to return a value. To do so, the coroutine with the await inside it will suspend
its execution, while waiting for a result. This allows other coroutines to run
while the first coroutine is awaiting its result.

 We’ve learned how to use asyncio.run to execute a single coroutine. We can
use this function to run the coroutine that is the main entry point into our
application.

 We’ve learned how to use tasks to run multiple long-running operations con-
currently. Tasks are wrappers around coroutines that will then be run on the
event loop. When we create a task, it is scheduled to run on the event loop as
soon as possible.

 We’ve learned how to cancel tasks if we want to stop them and how to add a
timeout to a task to prevent them from taking forever. Canceling a task will
make it raise a CancelledError while we await it. If we have time limits on how
long a task should take, we can set timeouts on it by using asycio.wait_for.

 We’ve learned to avoid common issues that newcomers make when using
asyncio. The first is running CPU-bound code in coroutines. CPU-bound code
will block the event loop from running other coroutines since we’re still single-
threaded. The second is blocking I/O, since we can’t use normal libraries with
asyncio, and you must use asyncio-specific ones that return coroutines. If your
coroutine does not have an await in it, you should consider it suspicious. There
are still ways to use CPU-bound and blocking I/O with asyncio, which we will
address in chapters 6 and 7.

 We’ve learned how to use debug mode. Debug mode can help us diagnose com-
mon issues in asyncio code, such as running CPU-intensive code in a coroutine.

Listing 2.24 Changing the slow callback duration

A first asyncio application
In chapters 1 and 2, we introduced coroutines, tasks, and the event loop. We also
examined how to run long operations concurrently and explored some of asyncio’s
APIs that facilitate this. Up to this point however, we’ve only simulated long opera-
tions with the sleep function.

 Since we’d like to build more than just demo applications, we’ll use some real-
world blocking operations to demonstrate how to create a server that can handle
multiple users concurrently. We’ll do this with only one thread, leading to a more
resource-efficient and simpler application than other solutions that would involve

This chapter covers
 Using sockets to transfer data over a network

 Using telnet to communicate with a socket-based
application

 Using selectors to build a simple event loop for
non-blocking sockets

 Creating a non-blocking echo server that allows
for multiple connections

 Handling exceptions in tasks

 Adding custom shutdown logic to an asyncio
application
50

51Working with blocking sockets
threads or multiple processes. We’ll take what we’ve learned about coroutines, tasks,
and asyncio’s API methods to build a working command-line echo server application
using sockets to demonstrate this. By the end of this chapter, you’ll be able to build
socket-based network applications with asyncio that can handle multiple users simulta-
neously with one thread.

 First, we’ll learn the basics of how to send and receive data with blocking sockets.
We’ll then use these sockets to attempt building a multi-client echo server. In doing
so, we’ll demonstrate that we can’t build an echo server that works properly for more
than one client at a time with only a single thread. We’ll then learn how to resolve
these issues by making our sockets non-blocking and using the operating system’s
event notification system. This will help us understand how the underlying machinery
of the asyncio event loop works. Then we’ll use asyncio’s non-blocking socket corou-
tines to allow multiple clients to connect properly. This application will let multiple
users connect simultaneously, letting them send and receive messages concurrently.
Finally, we’ll add custom shutdown logic to our application, so when our server shuts
down, we’ll give in-flight messages some time to complete.

3.1 Working with blocking sockets
In chapter 1, we introduced the concept of sockets. Recall that a socket is a way to
read and write data over a network. We can think of a socket as a mailbox: we put a let-
ter in, and it is delivered to the recipient’s address. The recipient can then read that
message, and possibly send us another back.

 To get started, we’ll create the main mailbox socket, which we’ll call our server
socket. This socket will first accept connection messages from clients that want to com-
municate with us. Once that connection is acknowledged by our server socket, we’ll cre-
ate a socket that we can use to communicate with the client. This means our server starts
to look more like a post office with multiple PO boxes rather than just one mailbox. The
client side can still be thought of as having a single mailbox as they will have one socket
to communicate with us. When a client connects to our server, we provide them a PO
box. We then use that PO box to send and receive messages to and from that client (see
figure 3.1).

Figure 3.1 A client connects
to our server socket. The server
then creates a new socket to
communicate with the client.

Client

Server

Server socket

Client socket

Establish client socket

Request to connect

Write

Read

Socket

52 CHAPTER 3 A first asyncio application
We can create this server socket with Python’s built-in socket module. This module
provides functionality for reading, writing, and manipulating sockets. To get started
creating sockets, we’ll create a simple server which listens for a connection from a cli-
ent and prints a message on a successful connection. This socket will be bound to
both a hostname and a port and will be the main “server socket” that any clients will
communicate with.

 It takes a few steps to create a socket. We first use the socket function to create
a socket:

import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

Here, we specify two parameters to the socket function. The first is socket.AF_INET—
this tells us what type of address our socket will be able to interact with; in this case a
hostname and a port number. The second is socket.SOCK_STREAM; this means that we
use the TCP protocol for our communication.

We also call setsockopt to set the SO_REUSEADDR flag to 1. This will allow us to reuse
the port number after we stop and restart the application, avoiding any address already
in use errors. If we didn’t do this, it might take some time for the operating system to
unbind this port and have our application start without error.

 Calling socket.socket lets us create a socket, but we can’t start communicating
with it yet because we haven’t bound it to an address that clients can talk to (our post
office needs an address!). For this example, we’ll bind the socket to an address on our
own computer at 127.0.0.1, and we’ll pick an arbitrary port number of 8000:

address = (127.0.0.1, 8000)
server_socket.bind(server_address)

Now we’ve set our socket up at the address 127.0.0.1:8000. This means that clients will
be able to use this address to send data to our server, and if we write data to a client,
they will see this as the address that it’s coming from.

What is the TCP protocol?
TCP, or transmission control protocol, is a protocol designed to transfer data between
applications over a network. This protocol is designed with reliability in mind. It per-
forms error checking, delivers data in order, and can retransmit data when needed.
This reliability comes at the cost of some overhead. The vast majority of the web is
built on TCP. TCP is in contrast to UDP, or user datagram protocol, which is less reli-
able but has much less overhead than TCP and tends to be more performant. We will
exclusively focus on TCP sockets in this book.

53Connecting to a server with Telnet
 Next, we need to actively listen for connections from clients who want to connect
to our server. To do this, we can call the listen method on our socket. This tells the
socket to listen for incoming connections, which will allow clients to connect to our
server socket. Then, we wait for a connection by calling the accept method on our socket.
This method will block until we get a connection and when we do, it will return a con-
nection and the address of the client that connected. The connection is just another
socket we can use to read data from and write data to our client:

server_socket.listen()
connection, client_address = server_socket.accept()

With these pieces, we have all the building blocks we need to create a socket-based
server application that will wait for a connection and print a message once we have one.

import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server_address = ('127.0.0.1', 8000)
server_socket.bind(server_address)
server_socket.listen()

connection, client_address = server_socket.accept()
print(f'I got a connection from {client_address}!')

In the preceding listing, when a client connects, we get their connection socket as well
as their address and print that we got a connection.

 So now that we’ve built this application, how do we connect to it to test it out?
While there are quite a few tools for this, in this chapter we’ll use the telnet command-
line application.

3.2 Connecting to a server with Telnet
Our simple example of accepting connections left us with no way to connect. There
are many command-line applications to read and write data to and from a server, but a
popular application that has been around for quite some time is Telnet.

 Telnet was first developed in 1969 and is short for “teletype network.” Telnet
establishes a TCP connection to a server and a host we specify. Once we do so, a ter-
minal is established and we’re free to send and receive bytes, all of which will be dis-
played in the terminal.

 On Mac OS you can install telnet with Homebrew with the command brew
install telnet (see https://brew.sh/ to install Homebrew). On Linux distributions
you will need to use the system package manager to install (apt-get install telnet

Listing 3.1 Starting a server and listening for a connection

Create a TCP server socket.

Set the address of the
socket to 127.0.0.1:8000.

Listen for connections or
“open the post office.”

Wait for a connection and
assign the client a PO box.

https://brew.sh/

54 CHAPTER 3 A first asyncio application
or similar). On Windows, PuTTy is the best option, and you can download this from
https://putty.org.

NOTE With PuTTY you’ll need to turn on local line editing for code samples
in this book to work. To do this go to Terminal on the left-hand side of the
PuTTy configuration window and set Local line editing to Force on.

To connect to the server we built in listing 3.1, we can use the Telnet command on a
command line and specify that we’d like to connect to localhost on port 8000:

telnet localhost 8000

Once we do this, we’ll see some output on our terminal telling us that we’ve success-
fully connected. Telnet then will display a cursor, which allows us to type and select
[Enter] to send data to the server.

telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

In the console output of our server application, we should now see output like the fol-
lowing, showing that we’ve established a connection with our Telnet client:

I got a connection from ('127.0.0.1', 56526)!

You’ll also see a Connection closed by foreign host message as the server code
exits, indicating the server has shut down the connection to our client. We now have
a way to connect to a server and write and read bytes to and from it, but our server
can’t read or send any data itself. We can do this with our client socket’s sendall
and recv methods.

3.2.1 Reading and writing data to and from a socket

Now that we’ve created a server capable of accepting connections, let’s examine how to
read data from our connections. The socket class has a method named recv that we can
use to get data from a particular socket. This method takes an integer representing the
number of bytes we wish to read at a given time. This is important because we can’t read
all data from a socket at once; we need to buffer until we reach the end of the input.

 In this case, we’ll treat the end of input as a carriage return plus a line feed or
'\r\n'. This is what gets appended to the input when a user presses [Enter] in telnet.
To demonstrate how buffering works with small messages, we’ll set a buffer size inten-
tionally low. In a real-world application, we would use a larger buffer size, such as 1024
bytes. We would typically want a larger buffer size, as this will take advantage of the
buffering that occurs at the operating system-level, which is more efficient than doing
it in your application.

https://putty.org

55Connecting to a server with Telnet
import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server_address = ('127.0.0.1', 8000)
server_socket.bind(server_address)
server_socket.listen()

try:
 connection, client_address = server_socket.accept()
 print(f'I got a connection from {client_address}!')

 buffer = b''

 while buffer[-2:] != b'\r\n':
 data = connection.recv(2)
 if not data:
 break
 else:
 print(f'I got data: {data}!')
 buffer = buffer + data

 print(f"All the data is: {buffer}")
finally:
 server_socket.close()

In the preceding listing, we wait for a connection with server_socket.accept, as
before. Once we get a connection, we try to receive two bytes and store it in our buffer.
Then, we go into a loop, checking each iteration to see if our buffer ends in a carriage
return and a line feed. If it does not, we get two more bytes and print out which bytes
we received and append that to the buffer. If we get '\r\n', then we end the loop and
we print out the full message we got from the client. We also close the server socket in
a finally block. This ensures that we close the connection even if an exception
occurs while reading data. If we connect to this application with telnet and send a
message 'testing123', we’ll see this output:

I got a connection from ('127.0.0.1', 49721)!
I got data: b'te'!
I got data: b'st'!
I got data: b'in'!
I got data: b'g1'!
I got data: b'23'!
I got data: b'\r\n'!
All the data is: b'testing123\r\n'

Now, we’re able to read data from a socket, but how do we write data back to a client?
Sockets have a method named sendall that will take a message and write it back to

Listing 3.2 Reading data from a socket

56 CHAPTER 3 A first asyncio application
the client for us. We can adapt our code in listing 3.2 to echo the message the client
sent to us by calling connection.sendall with the buffer once it is filled:

 while buffer[-2:] != b'\r\n':
 data = connection.recv(2)
 if not data:
 break
 else:
 print(f'I got data: {data}!')
 buffer = buffer + data
 print(f"All the data is: {buffer}")
 connection.sendall(buffer)

Now when we connect to this application and send it a message from Telnet, we
should see that message printed back on our telnet terminal. We’ve created a very
basic echo server with sockets!

 This application handles one client at a time right now, but multiple clients can
connect to a single server socket. Let’s adapt this example to allow multiple clients to
connect at the same time. In doing this we’ll demonstrate how we can’t properly sup-
port multiple clients with blocking sockets.

3.2.2 Allowing multiple connections and the dangers of blocking

A socket in listen mode allows multiple client connections simultaneously. This means
that we can call socket.accept repeatedly, and each time a client connects we will get
a new connection socket to read and write data to and from that client. With that
knowledge, we can straightforwardly adapt our previous example to handle multiple
clients. We loop forever, calling socket.accept to listen for new connections. Each
time we get one, we append it to a list of connections we’ve got so far. Then, we loop
over each connection, receiving data as it comes in and writing that data back out to
the client connection.

import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server_address = ('127.0.0.1', 8000)
server_socket.bind(server_address)
server_socket.listen()

connections = []

try:
 while True:
 connection, client_address = server_socket.accept()
 print(f'I got a connection from {client_address}!')
 connections.append(connection)

Listing 3.3 Allowing multiple clients to connect

57Working with non-blocking sockets
 for connection in connections:
 buffer = b''

 while buffer[-2:] != b'\r\n':
 data = connection.recv(2)
 if not data:
 break
 else:
 print(f'I got data: {data}!')
 buffer = buffer + data

 print(f"All the data is: {buffer}")

 connection.send(buffer)
finally:
 server_socket.close()

We can try this by making one connection with telnet and typing a message. Then,
once we have done that, we can connect with a second telnet client and send another
message. However, if we do this, we will notice a problem right away. Our first client
will work fine and will echo messages back as we’d expect, but our second client won’t
get anything echoed back to it. This is due to the default blocking behavior of sockets.
The methods accept and recv block until they receive data. This means that once the
first client connects, we will block waiting for it to send its first echo message to us.
This causes other clients to be stuck waiting for the next iteration of the loop, which
won’t happen until the first client sends us data (figure 3.2).

This obviously isn’t a satisfactory user experience; we’ve created something that
won’t properly scale when we have more than one user. We can solve this issue by
putting our sockets in non-blocking mode. When we mark a socket as non-blocking,
its methods will not block waiting to receive data before moving on to execute the
next line of code.

3.3 Working with non-blocking sockets
Our previous echo server allowed multiple clients to connect; however, when more
than one connected, we ran into issues where one client could cause others to wait for
it to send data. We can address this issue by putting sockets into non-blocking mode.

Figure 3.2 With blocking sockets, Client 1 connects, but Client 2 is blocked until client one sends data.

Echo server

Client 1 Client 2

Connect

Server blocked on

client 1 sending data

Client 2

blocked trying

to connect

until client 1

sends data

while True:

connection = socket.accept()

data = connection.recv(2)

58 CHAPTER 3 A first asyncio application
When we do this, any time we call a method that would block, such as recv, it is guaran-
teed to return instantly. If the socket has data ready for processing, then we will get data
returned as we would with a blocking socket. If not, the socket will instantly let us know it
does not have any data ready, and we are free to move on to execute other code.

import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server_socket.bind(('127.0.0.1', 8000))
server_socket.listen()
server_socket.setblocking(False)

Fundamentally, creating a non-blocking socket is no different from creating a block-
ing one, except that we must call setblocking with False. By default, a socket will
have this value set to True, indicating it is blocking. Now let’s see what happens when
we do this in our original application. Does this fix the issue?

import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server_address = ('127.0.0.1', 8000)
server_socket.bind(server_address)
server_socket.listen()
server_socket.setblocking(False)

connections = []

try:
 while True:
 connection, client_address = server_socket.accept()
 connection.setblocking(False)
 print(f'I got a connection from {client_address}!')
 connections.append(connection)

 for connection in connections:
 buffer = b''

 while buffer[-2:] != b'\r\n':
 data = connection.recv(2)
 if not data:
 break
 else:
 print(f'I got data: {data}!')
 buffer = buffer + data

 print(f"All the data is: {buffer}")

Listing 3.4 Creating a non-blocking socket

Listing 3.5 A first attempt at a non-blocking server

Mark the server socket
as non-blocking.

Mark the client
socket as non-
blocking.

59Working with non-blocking sockets
 connection.send(buffer)
finally:
 server_socket.close()

When we run listing 3.5, we’ll notice something different right away. Our application
crashes almost instantly! We’ll get thrown a BlockingIOError because our server
socket has no connection yet and therefore no data to process:

Traceback (most recent call last):
 File "echo_server.py", line 14, in <module>
 connection, client_address = server_socket.accept()
 File " python3.8/socket.py", line 292, in accept
 fd, addr = self._accept()
BlockingIOError: [Errno 35] Resource temporarily unavailable

This is the socket’s somewhat unintuitive way of telling us, “I don’t have any data, try
calling me again later.” There is no easy way for us to tell if a socket has data right now,
so one solution is to just catch the exception, ignore it, and keep looping until we
have data. With this tactic, we’ll constantly be checking for new connections and data
as fast as we can. This should solve the issue that our blocking socket echo server had.

import socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server_address = ('127.0.0.1', 8000)
server_socket.bind(server_address)
server_socket.listen()
server_socket.setblocking(False)

connections = []

try:
 while True:
 try:
 connection, client_address = server_socket.accept()
 connection.setblocking(False)
 print(f'I got a connection from {client_address}!')
 connections.append(connection)
 except BlockingIOError:
 pass

 for connection in connections:
 try:
 buffer = b''

 while buffer[-2:] != b'\r\n':
 data = connection.recv(2)
 if not data:
 break

Listing 3.6 Catching and ignoring blocking IO errors

60 CHAPTER 3 A first asyncio application
 else:
 print(f'I got data: {data}!')
 buffer = buffer + data

 print(f"All the data is: {buffer}")
 connection.send(buffer)
 except BlockingIOError:
 pass

finally:
 server_socket.close()

Each time we go through an iteration of our infinite loop, none of our calls to accept
or recv every block, and we either instantly throw an exception that we ignore, or we
have data ready to process and we process it. Each iteration of this loop happens
quickly, and we’re never dependent on anyone sending us data to proceed to the next
line of code. This addresses the issue of our blocking server and allows multiple cli-
ents to connect and send data concurrently.

 This approach works, but it comes at a cost. The first is code quality. Catching
exceptions any time we might not yet have data will quickly get verbose and is poten-
tially error-prone. The second is a resource issue. If you run this on a laptop, you may
notice your fan starts to sound louder after a few seconds. This application will always
be using nearly 100% of our CPU’s processing power (figure 3.3). This is because we
are constantly looping and getting exceptions as fast as we can inside our application,
leading to a workload that is CPU heavy.

Figure 3.3 When looping and catching exceptions, CPU usage spikes to 100%
and stays there.

61Using the selectors module to build a socket event loop
Earlier, we mentioned operating system-specific event notification systems that can
notify us when sockets have data that we can act on. These systems rely on hardware-
level notifications and don’t involve polling with a while loop, as we just did. Python
has a library for using this event notification system built in. Next, we’ll use this to
resolve our CPU utilization issues and build a mini event loop for socket events.

3.4 Using the selectors module to build a socket
event loop
Operating systems have efficient APIs that let us watch sockets for incoming data and
other events built in. While the actual API is dependent on the operating system
(kqueue, epoll, and IOCP are a few common ones), all of these I/O notification sys-
tems operate on a similar concept. We give them a list of sockets we want to monitor
for events, and instead of constantly checking each socket to see if it has data, the
operating system tells us explicitly when sockets have data.

 Because this is implemented at the hardware level, very little CPU utilization is
used during this monitoring, allowing for efficient resource usage. These notification
systems are the core of how asyncio achieves concurrency. Understanding how this
works gives us a view of how the underlying machinery of asyncio works.

 The event notification systems are different depending on the operating system.
Luckily, Python’s selectors module is abstracted such that we can get the proper
event for wherever we run our code. This makes our code portable across different
operating systems.

 This library exposes an abstract base class called BaseSelector, which has multi-
ple implementations for each event notification system. It also contains a Default-
Selector class, which automatically chooses which implementation is most efficient
for our system.

 The BaseSelector class has important concepts. The first is registration. When we
have a socket that we’re interested in getting notifications about, we register it with
the selector and tell it which events we’re interested in. These are events such as read
and write. Inversely, we can also deregister a socket we’re no longer interested in.

 The second major concept is select. select will block until an event has happened,
and once it does, the call will return with a list of sockets that are ready for processing
along with the event that triggered it. It also supports a timeout, which will return an
empty set of events after a specified amount of time.

 Given these building blocks, we can create a non-blocking echo server that does
not stress our CPU. Once we create our server socket, we’ll register it with the default
selector, which will listen for any connections from clients. Then, any time someone
connects to our server socket, we’ll register the client’s connection socket with the
selector to watch for any data sent. If we get any data from a socket that isn’t our server
socket, we know it is from a client that has sent data. We then receive that data and
write it back to the client. We will also add a timeout to demonstrate that we can have
other code execute while we’re waiting for things to happen.

62 CHAPTER 3 A first asyncio application

Get t
the
is

Re

w

import selectors
import socket
from selectors import SelectorKey
from typing import List, Tuple

selector = selectors.DefaultSelector()

server_socket = socket.socket()
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server_address = ('127.0.0.1', 8000)
server_socket.setblocking(False)
server_socket.bind(server_address)
server_socket.listen()

selector.register(server_socket, selectors.EVENT_READ)

while True:
 events: List[Tuple[SelectorKey, int]] = selector.select(timeout=1)

 if len(events) == 0:
 print('No events, waiting a bit more!')

 for event, _ in events:
 event_socket = event.fileobj

 if event_socket == server_socket:
 connection, address = server_socket.accept()
 connection.setblocking(False)
 print(f"I got a connection from {address}")
 selector.register(connection, selectors.EVENT_READ)
 else:
 data = event_socket.recv(1024)
 print(f"I got some data: {data}")
 event_socket.send(data)

When we run listing 3.7, we’ll see “No events, waiting a bit more!” printed roughly
every second unless we get a connection event. Once we get a connection, we register
that connection to listen for read events. Then, if a client sends us data, our selector
will return an event that we have data ready and we can read it with socket.recv.

 This is fully functioning echo server that supports multiple clients. This server has
no issues with blocking, as we only read or write data when we have data to act on. It
also has very little CPU utilization as we’re using the operating system’s efficient event
notification system (figure 3.4).

 What we’ve built is akin to a big part of what asyncio’s event loop does under the
hood. In this case, the events that matter are sockets receiving data. Each iteration of
our event loop and the asyncio event loop is triggered by either a socket event hap-
pening, or a timeout triggering an iteration of the loop. In the asyncio event loop,
when any of these two things happen, coroutines that are waiting to run will do so

Listing 3.7 Using selectors to build a non-blocking server

Create a selector
that will timeout

after 1 second.

If there are no events, print it out.
This happens when a timeout occurs.

he socket for
 event, which
 stored in the

fileobj field.

If the event socket is the same
as the server socket, we know
this is a connection attempt.

gister the client
that connected

ith our selector. If the event socket is not the
server socket, receive data from
the client, and echo it back.

63Using the selectors module to build a socket event loop
until they either complete or they hit the next await statement. When we hit an await
in a coroutine that utilizes a non-blocking socket, it will register that socket with the
system’s selector and keep track that the coroutine is paused waiting for a result. We
can translate this into pseudocode that demonstrates the concept:

paused = []
ready = []

while True:
 paused, new_sockets = run_ready_tasks(ready)
selector.register(new_sockets)
 timeout = calculate_timeout()
 events = selector.select(timeout)
 ready = process_events(events)

We run any coroutines that are ready to run until they are paused on an await state-
ment and store those in the paused array. We also keep track of any new sockets we need
to watch from running those coroutines and register them with the selector. We then
calculate the desired timeout for when we call select. While this timeout calculation is
somewhat complicated, it is typically looking at things we have scheduled to run at a spe-
cific time or for a specific duration. An example of this is asyncio.sleep. We then call
select and wait for any socket events or a timeout. Once either of those happen, we pro-
cess those events and turn that into a list of coroutines that are ready to run.

 While the event loop we’ve built is only for socket events, it demonstrates the main
concept of using selectors to register sockets we care about, only being woken up

Figure 3.4 CPU graph of the echo server with selectors. Utilization hovers around
0 and 1 percent with this method.

64 CHAPTER 3 A first asyncio application
when something we want to process happens. We’ll get more in-depth with how to
construct a custom event loop at the end of this book.

 Now, we understand a large part of the machinery that makes asyncio tick. How-
ever, if we just use selectors to build our applications, we would resort to implement-
ing our own event loop to achieve the same functionality, as provided by asyncio. To
see how to implement this with asyncio, let’s take what we have learned and translate it
into async / await code and use an event loop already implemented for us.

3.5 An echo server on the asyncio event loop
Working with select is a bit too low-level for most applications. We may want to have
code run in the background while we’re waiting for socket data to come in, or we may
want to have background tasks run on a schedule. If we were to do this with only selec-
tors, we’d likely build our own event loop, while asyncio has a nicely implemented one
ready to use. In addition, coroutines and tasks provide abstractions on top of selec-
tors, which make our code easier to implement and maintain, as we don’t need to
think about selectors at all.

 Now that we have a deeper understanding on how the asyncio event loop works,
let’s take the echo server that we built in the last section and build it again using
coroutines and tasks. We’ll still use lower-level sockets to accomplish this, but we’ll use
asyncio-based APIs that return coroutines to manage them. We’ll also add some more
functionality to our echo server to demonstrate a few key concepts to illustrate how
asyncio works.

3.5.1 Event loop coroutines for sockets

Given that sockets are a relatively low-level concept, the methods for dealing with
them are on asyncio’s event loop itself. There are three main coroutines we’ll want to
work with: sock_accept, sock_recv and sock_sendall. These are analogous to the
socket methods that we used earlier, except that they take in a socket as an argument
and return coroutines that we can await until we have data to act on.

 Let’s start with sock_accept. This coroutine is analogous to the socket.accept
method that we saw in our first implementation. This method will return a tuple (a
data structure that stores an ordered sequence of values) of a socket connection and
a client address. We pass it in the socket we’re interested in, and we can then await
the coroutine it returns. Once that coroutine completes, we’ll have our connection
and address. This socket must be non-blocking and should already be bound to a port:

connection, address = await loop.sock_accept(socket)

sock_recv and sock_sendall are called similarly to sock_accept. They take in a
socket, and we can then await for a result. sock_recv will await until a socket has
bytes we can process. sock_sendall takes in both a socket and data we want to send
and will wait until all data we want to send to a socket has been sent and will return
None on success:

65An echo server on the asyncio event loop
data = await loop.sock_recv(socket)
success = await loop.sock_sendall(socket, data)

With these building blocks, we’ll be able to translate our previous approaches into
one using coroutines and tasks.

3.5.2 Designing an asyncio echo server

In chapter 2, we introduced coroutines and tasks. So when should we use just a corou-
tine, and when should we wrap a coroutine in a task for our echo server? Let’s exam-
ine how we want our application to behave to make this determination.

 We’ll start with how we want to listen for connections in our application. When we
are listening for connections, we will only be able to process one connection at a time
as socket.accept will only give us one client connection. Behind the scenes, incom-
ing connections will be stored in a queue known as the backlog if we get multiple con-
nections at the same time, but here, we won’t get into how this works.

 Since we don’t need to process multiple connections concurrently, a single corou-
tine that loops forever makes sense. This will allow other code to run concurrently
while we’re paused waiting for a connection. We’ll define a coroutine called listen_
for_connections that will loop forever and listen for any incoming connections:

async def listen_for_connections(server_socket: socket,
 loop: AbstractEventLoop):
 while True:
 connection, address = await loop.sock_accept(server_socket)
 connection.setblocking(False)
 print(f"Got a connection from {address}")

Now that we have a coroutine for listening to connections, how about reading and writ-
ing data to the clients who have connected? Should that be a coroutine, or a coroutine
we wrap in a task? In this case, we will have multiple connections, each of which could
send data to us at any time. We don’t want to wait for data from one connection to block
another, so we need to read and write data from multiple clients concurrently. Because
we need to handle multiple connections at the same time, creating a task for each
connection to read and write data makes sense. On every connection we get, we’ll cre-
ate a task to both read data from and write data to that connection.

 We’ll create a coroutine named echo that is responsible for handling data from a
connection. This coroutine will loop forever listening for data from our client. Once it
receives data it will then send it back to the client.

 Then, in listen_for_connections we’ll create a new task that wraps our echo
coroutine for each connection that we get. With these two coroutines defined, we now
have all we need to build an asyncio echo server.

import asyncio
import socket
from asyncio import AbstractEventLoop

Listing 3.8 Building an asyncio echo server

66 CHAPTER 3 A first asyncio application

async def echo(connection: socket,
 loop: AbstractEventLoop) -> None:
 while data := await loop.sock_recv(connection, 1024):
 await loop.sock_sendall(connection, data)

async def listen_for_connection(server_socket: socket,
 loop: AbstractEventLoop):
 while True:
 connection, address = await loop.sock_accept(server_socket)
 connection.setblocking(False)
 print(f"Got a connection from {address}")
 asyncio.create_task(echo(connection, loop))

async def main():
 server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 server_address = ('127.0.0.1', 8000)
 server_socket.setblocking(False)
 server_socket.bind(server_address)
 server_socket.listen()

 await listen_for_connection(server_socket, asyncio.get_event_loop())

asyncio.run(main())

The architecture for the preceding listing looks like figure 3.5. We have one corou-
tine, listen_for_connection, listening for connections. Once a client connects, our
coroutine spawns an echo task for each client which then listens for data and writes it
back out to the client.

Loop forever waiting
for data from a client
connection

Once we have data, send
it back to that client.

Whenever we get a
connection, create an
echo task to listen for
client data.

Start the coroutine to
listen for connections.

Figure 3.5 The coroutine listening for connections spawns one task per each connection it gets.

Client 1
Client 1 echo task

Spawn task

Spawn task

Spawn task

Client 2 echo tasklisten_for_connection()

connection = await loop.sock_accept()

create_task(echo(connection))

Client N echo task

data = await sock_recv()

await sock_sendall(data)

data = await sock_recv()

await sock_sendall(data)

data = await sock_recv()

await sock_sendall(data)

Client 2

Client N

Read

Write

Read

Write

Read

Write

67An echo server on the asyncio event loop
When we run this application, we’ll be able to connect multiple clients concurrently
and send data to them concurrently. Under the hood, this is all using selectors as we
saw before, so our CPU utilization remains low.

 We’ve now built a fully functioning echo server entirely using asyncio! So is our
implementation error free? It turns out that the way we have designed this echo server
does have an issue when our echo task fails that we’ll need to handle.

3.5.3 Handling errors in tasks

Network connections are often unreliable, and we may get exceptions we don’t expect
in our application code. How would our application behave if reading or writing to a
client failed and threw an exception? To test this out, let’s change our implementation
of echo to throw an exception when a client passes us a specific keyword:

async def echo(connection: socket,
 loop: AbstractEventLoop) -> None:
 while data := await loop.sock_recv(connection, 1024):
 if data == b'boom\r\n':
 raise Exception("Unexpected network error")
 await loop.sock_sendall(connection, data)

Now, whenever a client sends “boom” to us, we will raise an exception and our task will
crash. So, what happens when we connect a client to our server and send this mes-
sage? We will see a traceback with a warning like the following:

Task exception was never retrieved
future: <Task finished name='Task-2' coro=<echo() done, defined at

asyncio_echo.py:5> exception=Exception('Unexpected network error')>
Traceback (most recent call last):
 File "asyncio_echo.py", line 9, in echo
 raise Exception("Unexpected network error")
Exception: Unexpected network error

The important part here is Task exception was never retrieved. What does this
mean? When an exception is thrown inside a task, the task is considered done with its
result as an exception. This means that no exception is thrown up the call stack. Fur-
thermore, we have no cleanup here. If this exception is thrown, we can’t react to the
task failing because we never retrieved the exception.

 To have the exception reach us, we must use the task in an await expression.
When we await a task that failed, the exception will get thrown where we perform the
await, and the traceback will reflect that. If we don’t await a task at some point in our
application, we run the risk of never seeing an exception that a task raised. While we
did see the exception output in the example, which may lead us to think it isn’t that
big an issue, there are subtle ways we could change our application so that we would
never see this message.

 As a demonstration of this, let’s say that, instead of ignoring the echo tasks we cre-
ate in listen_for_connections, we kept track of them in a list like so:

68 CHAPTER 3 A first asyncio application
tasks = []

async def listen_for_connection(server_socket: socket,
 loop: AbstractEventLoop):
 while True:
 connection, address = await loop.sock_accept(server_socket)
 connection.setblocking(False)
 print(f"Got a connection from {address}")
 tasks.append(asyncio.create_task(echo(connection, loop)))

One would expect this to behave in the same way as before. If we send the “boom”
message, we’ll see the exception printed along with the warning that we never
retrieved the task exception. However, this isn’t the case, since we’ll actually see noth-
ing printed until we forcefully terminate our application!

 This is because we’ve kept a reference around to the task. asyncio can only print
this message and the traceback for a failed task when that task is garbage collected.
This is because it has no way to tell if that task will be awaited at some other point in
the application and would therefore raise an exception then. Due to these complexi-
ties, we’ll either need to await our tasks or handle all exceptions that our tasks could
throw. So how do we do this in our echo server?

 The first thing we can do to fix this is wrap the code in our echo coroutine in a
try/catch statement, log the exception, and close the connection:

import logging

async def echo(connection: socket,
 loop: AbstractEventLoop) -> None:
 try:
 while data := await loop.sock_recv(connection, 1024):
 print('got data!')
 if data == b'boom\r\n':
 raise Exception("Unexpected network error")
 await loop.sock_sendall(connection, data)
 except Exception as ex:
 logging.exception(ex)
 finally:
 connection.close()

This will resolve the immediate issue of an exception causing our server to complain
that a task exception was never retrieved because we handle it in the coroutine itself.
It will also properly shut down the socket within the finally block, so we won’t be left
with a dangling unclosed exception in the event of a failure.

 It’s important to note that this implementation will properly close any connections
to clients we have open on application shutdown. Why is this? In chapter 2, we noted
that asyncio.run will cancel any tasks we have remaining when our application shuts
down. We also learned when we cancel a task, a CancelledError is raised whenever we
try to await it.

69Shutting down gracefully
 The important thing here is noting where that exception is raised. If our task is wait-
ing on a statement such as await loop.sock_recv, and we cancel that task, a Cancelled-
Error is thrown from the await loop.sock_recv line. This means that in the above case
our finally block will be executed, since we threw an exception on an await expression
when we canceled the task. If we change the exception block to catch and log these
exceptions, you will see one CancelledError per each task that was created.

 We’ve now handled the immediate issue of handling errors when our echo tasks
fail. What if we want to provide some cleanup of any errors or leftover tasks when our
application shuts down? We can do this with asyncio’s signal handlers.

3.6 Shutting down gracefully
Now, we’ve created an echo server that handles multiple concurrent connections and
also properly logs errors and cleans up when we get an exception. What happens if we
need to shut down our application? Wouldn’t it be nice if we could allow any in-flight
messages to complete before we shut down? We can do this by adding custom shut-
down logic to our application that allows any in-progress tasks a few seconds to finish
sending any messages they might want to send. While this won’t be a production-
worthy implementation, we’ll learn the concepts around shutting down as well as can-
celing all running tasks in our asyncio applications.

3.6.1 Listening for signals

Signals are a concept in Unix-based operating systems for asynchronously notifying
a process of an event that occurred at the operating system level. While this sounds
very low-level, you’re probably familiar with some signals. For instance, a common
signal is SIGINT, short for signal interrupt. This is triggered when you press CTRL-C
to kill a command-line application. In Python, we can often handle this by catching
the KeyboardInterrupt exception. Another common signal is SIGTERM, short for
signal terminate. This is triggered when we run the kill command on a particular
process to stop its execution.

 To implement custom shutdown logic, we’ll implement listeners in our application
for both the SIGINT and SIGTERM signals. Then, in these listeners we’ll implement
logic to allow any echo tasks we have a few seconds to finish.

 How do we listen for signals in our application? The asyncio event loop lets us
directly listen for any event we specify with the add_signal_handler method. This

Signals on Windows
Windows does not support signals. Therefore, this section only applies to Unix-based
systems. Windows uses a different system to handle this, that, at the time of writing
this book, does not perform with Python. To learn more about how to make this code
work in a cross-platform way, see the following answer on Stack Overflow: https://
stackoverflow.com/questions/35772001.

https://stackoverflow.com/questions/35772001
https://stackoverflow.com/questions/35772001
https://stackoverflow.com/questions/35772001

70 CHAPTER 3 A first asyncio application
differs from the signal handlers that you can set in the signal module with the signal
.signal function in that add_signal_handler can safely interact with the event loop.
This function takes in a signal we want to listen for and a function that we’ll call when
our application receives that signal. To demonstrate this, let’s look at adding a signal
handler that cancels all currently running tasks. asyncio has a convenience function
that returns a set of all running tasks named asyncio.all_tasks.

import asyncio, signal
from asyncio import AbstractEventLoop
from typing import Set

from util.delay_functions import delay

def cancel_tasks():
 print('Got a SIGINT!')
 tasks: Set[asyncio.Task] = asyncio.all_tasks()
 print(f'Cancelling {len(tasks)} task(s).')
 [task.cancel() for task in tasks]

async def main():
 loop: AbstractEventLoop = asyncio.get_running_loop()

 loop.add_signal_handler(signal.SIGINT, cancel_tasks)

 await delay(10)

asyncio.run(main())

When we run this application, we’ll see that our delay coroutine starts right away
and waits for 10 seconds. If we press CTRL-C within these 10 seconds we should see
got a SIGINT! printed out, followed by a message that we’re canceling our tasks. We
should also see a CancelledError thrown from asyncio.run(main()), since we’ve
canceled that task.

3.6.2 Waiting for pending tasks to finish

In the original problem statement, we wanted to give our echo server’s echo tasks a
few seconds to keep running before shutting down. One way for us to do this is to
wrap all our echo tasks in a wait_for and then await those wrapped tasks. Those tasks
will then throw a TimeoutError once the timeout has passed and we can terminate
our application.

 One thing you’ll notice about our shutdown handler is that this is a normal
Python function, so we can’t run any await statements inside of it. This poses a
problem for us, since our proposed solution involves await. One possible solution is

Listing 3.9 Adding a signal handler to cancel all tasks

71Shutting down gracefully
to just create a coroutine that does our shutdown logic, and in our shutdown han-
dler, wrap it in a task:

async def await_all_tasks():
 tasks = asyncio.all_tasks()
 [await task for task in tasks]

async def main():
 loop = asyncio.get_event_loop()
 loop.add_signal_handler(signal.SIGINT,
 lambda: asyncio.create_task(await_all_tasks()))

An approach like this will work, but the drawback is that if something in await_
all_tasks throws an exception, we’ll be left with an orphaned task that failed and a
“exception was never retrieved” warning. So, is there a better way to do this?

 We can deal with this by raising a custom exception to stop our main coroutine
from running. Then, we can catch this exception when we run the main coroutine
and run any shutdown logic. To do this, we’ll need to create an event loop ourselves
instead of using asyncio.run. This is because on an exception asyncio.run will can-
cel all running tasks, which means we aren’t able to wrap our echo tasks in a wait_for:

class GracefulExit(SystemExit):
 pass

def shutdown():
 raise GracefulExit()

loop = asyncio.get_event_loop()

loop.add_signal_handler(signal.SIGINT, shutdown)

try:
 loop.run_until_complete(main())
except GracefulExit:
 loop.run_until_complete(close_echo_tasks(echo_tasks))
finally:
 loop.close()

With this approach in mind, let’s write our shutdown logic:

async def close_echo_tasks(echo_tasks: List[asyncio.Task]):
 waiters = [asyncio.wait_for(task, 2) for task in echo_tasks]
 for task in waiters:
 try:
 await task
 except asyncio.exceptions.TimeoutError:
 # We expect a timeout error here
 pass

In close_echo_tasks, we take a list of echo tasks and wrap them all in a wait_for task
with a 2-second timeout. This means that any echo tasks will have 2 seconds to finish

72 CHAPTER 3 A first asyncio application
before we cancel them. Once we’ve done this, we loop over all these wrapped tasks
and await them. We catch any TimeoutErrors, as we expect this to be thrown from
our tasks after 2 seconds. Taking all these parts together, our echo server with shut-
down logic looks like the following listing.

import asyncio
from asyncio import AbstractEventLoop
import socket
import logging
import signal
from typing import List

async def echo(connection: socket,
 loop: AbstractEventLoop) -> None:
 try:
 while data := await loop.sock_recv(connection, 1024):
 print('got data!')
 if data == b'boom\r\n':
 raise Exception("Unexpected network error")
 await loop.sock_sendall(connection, data)
 except Exception as ex:
 logging.exception(ex)
 finally:
 connection.close()

echo_tasks = []

async def connection_listener(server_socket, loop):
 while True:
 connection, address = await loop.sock_accept(server_socket)
 connection.setblocking(False)
 print(f"Got a connection from {address}")
 echo_task = asyncio.create_task(echo(connection, loop))
 echo_tasks.append(echo_task)

class GracefulExit(SystemExit):
 pass

def shutdown():
 raise GracefulExit()

async def close_echo_tasks(echo_tasks: List[asyncio.Task]):
 waiters = [asyncio.wait_for(task, 2) for task in echo_tasks]
 for task in waiters:
 try:
 await task

Listing 3.10 A graceful shutdown

73Shutting down gracefully
 except asyncio.exceptions.TimeoutError:
 # We expect a timeout error here
 pass

async def main():
 server_socket = socket.socket()
 server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 server_address = ('127.0.0.1', 8000)
 server_socket.setblocking(False)
 server_socket.bind(server_address)
 server_socket.listen()

 for signame in {'SIGINT', 'SIGTERM'}:
 loop.add_signal_handler(getattr(signal, signame), shutdown)
 await connection_listener(server_socket, loop)

loop = asyncio.new_event_loop()

try:
 loop.run_until_complete(main())
except GracefulExit:
 loop.run_until_complete(close_echo_tasks(echo_tasks))
finally:
 loop.close()

Assuming we have at least one client connected, if we stop this application with either
CTRL-C, or we issue a kill command to our process, our shutdown logic will execute.
We will see the application wait for 2 seconds, while it allows our echo tasks some time
to finish before it stops running.

 There are a couple reasons why this is not a production-worthy shutdown. The first
is we don’t shut down our connection listener while we’re waiting for our echo tasks to
complete. This means that, as we’re shutting down, a new connection could come in
and then we won’t be able to add a 2-second shutdown. The other problem is that in
our shutdown logic we await every echo task we’re shutting down and only catch
TimeoutExceptions. This means that if one of our tasks threw something other than
that, we would capture that exception and any other subsequent tasks that may have
had an exception will be ignored. In chapter 4, we’ll see some asyncio methods for
more gracefully handling failures from a group of awaitables.

 While our application isn’t perfect and is a toy example, we’ve built a fully func-
tioning server using asyncio. This server can handle many users concurrently—all
within one single thread. With a blocking approach we saw earlier, we would need to turn
to threading to be able to handle multiple clients, adding complexity and increased
resource utilization to our application.

74 CHAPTER 3 A first asyncio application
Summary
In this chapter, we’ve learned about blocking and non-blocking sockets and have
explored more in depth how the asyncio event loop functions. We’ve also made our
first application with asyncio, a highly concurrent echo server. We have examined how
to handle errors in tasks and add custom shutdown logic in our application.

 We’ve learned how to create simple applications with blocking sockets. Block-
ing sockets will stop the entire thread when they are waiting for data. This pre-
vents us from achieving concurrency because we can get data from only one
client at a time.

 We’ve learned how to build applications with non-blocking sockets. These sock-
ets will always return right away, either with data because we have it ready, or
with an exception stating we have no data. These sockets let us achieve concur-
rency because their methods never block and return instantly.

 We’ve learned how to use the selectors module to listen for events on sockets in
an efficient manner. This library lets us register sockets we want to track and will
tell us when a non-blocking socket is ready with data.

 If we put select in an infinite loop, we’ve replicated the core of what the asyncio
event loop does. We register sockets we are interested in, and we loop forever,
running any code we want once a socket has data available to act on.

 We learned how to use asyncio’s event loop methods to build applications
with non-blocking sockets. These methods take in a socket and return a
coroutine which we can then use this in an await expression. This will sus-
pend our parent coroutine until the socket has data. Under the hood, this is
using the selectors library.

 We’ve seen how to use tasks to achieve concurrency for an asyncio-based echo
server with multiple clients sending and receiving data at the same time. We’ve
also examined how to handle errors within those tasks.

 We’ve learned how to add custom shutdown logic to an asyncio application. In
our case, we decided that when our server shuts down, we’d give it a few sec-
onds for any remaining clients to finish sending data. Using this knowledge, we
can add any logic our application needs when it is shutting down.

Concurrent web requests
In chapter 3, we learned more about the inner workings of sockets and built a basic
echo server. Now that we’ve seen how to design a basic application, we’ll take this
knowledge and apply it to making concurrent, non-blocking web requests. Utilizing
asyncio for web requests allows us to make hundreds of them at the same time, cut-
ting down on our application’s runtime compared to a synchronous approach. This
is useful for when we must make multiple requests to a set of REST APIs, as can
happen in a microservice architecture or when we have a web crawling task. This
approach also allows for other code to run as we’re waiting for potentially long web
requests to finish, allowing us to build more responsive applications.

This chapter covers
 Asynchronous context managers

 Making asyncio-friendly web requests with aiohttp

 Running web requests concurrently with gather

 Processing results as they come in with as
completed

 Keeping track of in-flight requests with wait

 Setting and handling timeouts for groups of
requests and canceling requests
75

76 CHAPTER 4 Concurrent web requests
 In this chapter, we’ll learn about an asynchronous library called aiohttp that
enables this. This library uses non-blocking sockets to make web requests and returns
coroutines for those requests, which we can then await for a result. Specifically, we’ll
learn how to take a list of hundreds of URLs we’d like to get the contents for, and run
all those requests concurrently. In doing so, we’ll examine the various API methods
that asyncio provides to run coroutines at one time, allowing us to choose between
waiting for everything to complete before moving on, or processing results as fast as
they come in. In addition, we’ll look at how to set timeouts for these requests, both at
the individual request level as well as for a group of requests. We’ll also see how to can-
cel a set of in-process requests, based on how other requests have performed. These
API methods are useful not only for making web requests but also for whenever we
need to run a group of coroutines or tasks concurrently. In fact, we’ll use the func-
tions we use here throughout the rest of this book, and you will use them extensively
as an asyncio developer.

4.1 Introducing aiohttp
In chapter 2, we mentioned that one of the problems that newcomers face when first
starting with asyncio is trying to take their existing code and pepper it with async and
await in hopes of a performance gain. In most cases, this won’t work, and this is espe-
cially true when working with web requests, as most existing libraries are blocking.

 One popular library for making web requests is the requests library. This library
does not perform well with asyncio because it uses blocking sockets. This means that if
we make a request, it will block the thread that it runs in, and since asyncio is single-
threaded, our entire event loop will halt until that request finishes.

 To address this issue and get concurrency, we need to use a library that is non-
blocking all the way down to the socket layer. aiohttp (Asynchronous HTTP Client/
Server for asyncio and Python) is one library that solves this problem with non-
blocking sockets.

 aiohttp is an open source library that is part of the aio-libs project, which is the self-
described “set of asyncio-based libraries built with high quality” (see https://github
.com/aio-libs). This library is a fully functioning web client as well as a web server, mean-
ing it can make web requests, and developers can create async web servers using it. (Doc-
umentation for the library is available at https://docs.aiohttp.org/.) In this chapter,
we’ll focus on the client side of aiohttp, but we will also see how to build web servers with
it later in the book.

 So how do we get started with aiohttp? The first thing to learn is to make a HTTP
request. We’ll first need to learn a bit of new syntax for asynchronous context manag-
ers. Using this syntax will allow us to acquire and close HTTP sessions cleanly. As an
asyncio developer, you will use this syntax frequently for asynchronously acquiring
resources, such as database connections.

https://docs.aiohttp.org/
https://github.com/aio-libs
https://github.com/aio-libs
https://github.com/aio-libs

77Asynchronous context managers
4.2 Asynchronous context managers
In any programming language, dealing with resources that must be opened and then
closed, such as files, is common. When dealing with these resources, we need to be
careful about any exceptions that may be thrown. This is because if we open a resource
and an exception is thrown, we may never execute any code to clean up, leaving us in
a status with leaking resources. Dealing with this in Python is straightforward using a
finally block. Though this example is not exactly Pythonic, we can always close a file
even if an exception was thrown:

file = open('example.txt')

try:
 lines = file.readlines()
finally:
 file.close()

This solves the issue of a file handle being left open if there was an exception during
file.readlines. The drawback is that we must remember to wrap everything in a try
finally, and we also need to remember the methods to call to properly close our
resource. This isn’t too hard to do for files, as we just need to remember to close
them, but we’d still like something more reusable, especially since our cleanup may be
more complicated than just calling one method. Python has a language feature to
deal with this known as a context manager. Using this, we can abstract the shutdown
logic along with the try/finally block:

with open(‘example.txt’) as file:
 lines = file.readlines()

This Pythonic way to manage files is a lot cleaner. If an exception is thrown in the with
block, our file will automatically be closed. This works for synchronous resources, but
what if we want to asynchronously use a resource with this syntax? In this case, the con-
text manager syntax won’t work, as it is designed to work only with synchronous
Python code and not coroutines and tasks. Python introduced a new language feature
to support this use case, called asynchronous context managers. The syntax is almost the
same as for synchronous context managers with the difference being that we say async
with instead of just with.

 Asynchronous context managers are classes that implement two special coroutine
methods, __aenter__, which asynchronously acquires a resource and __aexit__,
which closes that resource. The __aexit__ coroutine takes several arguments that
deal with any exceptions that occur, which we won’t review in this chapter.

 To fully understand async context managers, let’s implement a simple one using
the sockets we introduced in chapter 3. We can consider a client socket connection a
resource we’d like to manage. When a client connects, we acquire a client connection.
Once we are done with it, we clean up and close the connection. In chapter 3, we

78 CHAPTER 4 Concurrent web requests
wrapped everything in a try/finally block, but we could have implemented an asyn-
chronous context manager to do so instead.

import asyncio
import socket
from types import TracebackType
from typing import Optional, Type

class ConnectedSocket:

 def __init__(self, server_socket):
 self._connection = None
 self._server_socket = server_socket

 async def __aenter__(self):
 print('Entering context manager, waiting for connection')
 loop = asyncio.get_event_loop()
 connection, address = await loop.sock_accept(self._server_socket)
 self._connection = connection
 print('Accepted a connection')
 return self._connection

 async def __aexit__(self,
 exc_type: Optional[Type[BaseException]],
 exc_val: Optional[BaseException],
 exc_tb: Optional[TracebackType]):
 print('Exiting context manager')
 self._connection.close()
 print('Closed connection')

async def main():
 loop = asyncio.get_event_loop()

 server_socket = socket.socket()
 server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 server_address = ('127.0.0.1', 8000)
 server_socket.setblocking(False)
 server_socket.bind(server_address)
 server_socket.listen()

 async with ConnectedSocket(server_socket) as connection:
 data = await loop.sock_recv(connection, 1024)
 print(data)

asyncio.run(main())

In the preceding listing, we created a ConnectedSocket async context manager. This
class takes in a server socket, and in our __aenter__ coroutine we wait for a client to

Listing 4.1 An asynchronous context manager to wait for a client connection

This coroutine is called when
we enter the with block. It
waits until a client connects
and returns the connection.

This coroutine is called when
we exit the with block. In it,

we clean up any resources
we use. In this case, we close

the connection.

This calls __aenter__
and waits for a client

connection.

After this statement,
__aenter__ will execute, and
we’ll close our connection.

79Asynchronous context managers
connect. Once a client connects, we return that client’s connection. This lets us access
that connection in the as portion of our async with statement. Then, inside our
async with block, we use that connection to wait for the client to send us data. Once
this block finishes execution, the __aexit__ coroutine runs and closes the connec-
tion. Assuming a client connects with Telnet and sends some test data, we should see
output like the following when running this program:

Entering context manager, waiting for connection
Accepted a connection
b'test\r\n'
Exiting context manager
Closed connection

aiohttp uses async context managers extensively for acquiring HTTP sessions and con-
nections, and we’ll use this later in chapter 5 when dealing with async database con-
nections and transactions. Normally, you won’t need to write your own async context
managers, but it’s helpful to have an understanding of how they work and are differ-
ent from normal context managers. Now that we’ve introduced context managers and
their workings, let’s use them with aiohttp to see how to make an asynchronous web
request.

4.2.1 Making a web request with aiohttp

We’ll first need to install the aiohttp library. We can do this using pip by running the
following:

pip install -Iv aiohttp==3.8.1

This will install the latest version of aiohttp (3.8.1 at the time of this writing). Once
this is complete, you’re ready to start making requests.

 aiohttp, and web requests in general, employ the concept of a session. Think of a
session as opening a new browser window. Within a new browser window, you’ll make
connections to any number of web pages, which may send you cookies that your
browser saves for you. With a session, you’ll keep many connections open, which can
then be recycled. This is known as connection pooling. Connection pooling is an import-
ant concept that aids the performance of our aiohttp-based applications. Since creat-
ing connections is resource intensive, creating a reusable pool of them cuts down on
resource allocation costs. A session will also internally save any cookies that we receive,
although this functionality can be turned off if desired.

 Typically, we want to take advantage of connection pooling, so most aiohttp-
based applications run one session for the entire application. This session object is
then passed to methods where needed. A session object has methods on it for mak-
ing any number of web requests, such as GET, PUT, and POST. We can create a ses-
sion by using async with syntax and the aiohttp.ClientSession asynchronous
context manager.

80 CHAPTER 4 Concurrent web requests
import asyncio
import aiohttp
from aiohttp import ClientSession
from util import async_timed

@async_timed()
async def fetch_status(session: ClientSession, url: str) -> int:
 async with session.get(url) as result:
 return result.status

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 url = 'https:/ / www .example .com'
 status = await fetch_status(session, url)
 print(f'Status for {url} was {status}')

asyncio.run(main())

When we run this, we should see that the output Status for http:/ / www .example .com
was 200. In the preceding listing, we first created a client session in an async with block
with aiohttp.ClientSession(). Once we have a client session, we’re free to make any
web request desired. In this case, we define a convenience method fetch_status_code
that will take in a session and a URL and return the status code for the given URL. In
this function, we have another async with block and use the session to run a GET HTTP
request against the URL. This will give us a result, which we can then process within the
with block. In this case, we just grab the status code and return.

 Note that a ClientSession will create a default maximum of 100 connections by
default, providing an implicit upper limit to the number of concurrent requests we
can make. To change this limit, we can create an instance of an aiohttp TCPConnector
specifying the maximum number of connections and passing that to the Client-
Session. To learn more about this, review the aiohttp documentation at https://
docs.aiohttp.org/en/stable/client_advanced.html#connectors.

 We’ll reuse fetch_status throughout the chapter, so let’s make this function reus-
able. We’ll create a Python module named chapter_04 with its __init__.py contain-
ing this function. We’ll then import this in future examples in this chapter as from
chapter_04 import fetch_status.

Listing 4.2 Making an aiohttp web request

A note for Windows users
At the present time, an issue exists with aiohttp on Windows, where you may see errors
like RuntimeError: Event loop is closed even though your application works fine.
Read more about this issue at https://github.com/aio-libs/aiohttp/issues/4324

https://github.com/aio-libs/aiohttp/issues/4324
https://docs.aiohttp.org/en/stable/client_advanced.html#connectors
https://docs.aiohttp.org/en/stable/client_advanced.html#connectors
https://docs.aiohttp.org/en/stable/client_advanced.html#connectors

81Asynchronous context managers
4.2.2 Setting timeouts with aiohttp

Earlier we saw how we could specify a timeout for an awaitable by using asyncio.wait_
for. This will also work for setting timeouts for an aiohttp request, but a cleaner way to
set timeouts is to use the functionality that aiohttp provides out of the box.

 By default, aiohttp has a timeout of five minutes, which means that no single oper-
ation should take longer than that. This is a long timeout, and many application
developers may wish to set this lower. We can specify a timeout at either the session
level, which will apply that timeout for every operation, or at the request level, which
provides more granular control.

 We can specify timeouts using the aiohttp-specific ClientTimeout data structure.
This structure not only allows us to specify a total timeout in seconds for an entire
request but also allows us to set timeouts on establishing a connection or reading data.
Let’s examine how to use this by specifying a timeout for our session and one for an
individual request.

import asyncio
import aiohttp
from aiohttp import ClientSession

async def fetch_status(session: ClientSession,
 url: str) -> int:
 ten_millis = aiohttp.ClientTimeout(total=.01)
 async with session.get(url, timeout=ten_millis) as result:
 return result.status

async def main():
 session_timeout = aiohttp.ClientTimeout(total=1, connect=.1)
 async with aiohttp.ClientSession(timeout=session_timeout) as session:
 await fetch_status(session, 'https:/ / example .com')

asyncio.run(main())

In the preceding listing, we set two timeouts. The first timeout is at the client-session
level. Here we set a total timeout of 1 second and explicitly set a connection timeout
of 100 milliseconds. Then, in fetch_status we override this for our get request to set
a total timeout of 10 miliseconds. In this instance, if our request to example.com takes

and https://bugs.python.org/issue39232. To work around this issue, you can either
manually manage the event loop as shown in chapter 2 with asyncio.get_event_
loop().run_until_complete(main()), or you can change the event loop policy to
the Windows selector event loop policy by calling asyncio.set_event_loop_policy
(asyncio.WindowsSelectorEventLoopPolicy()) before asyncio.run(main()).

Listing 4.3 Setting timeouts with aiohttp

https://bugs.python.org/issue39232

82 CHAPTER 4 Concurrent web requests
more than 10 milliseconds, an asyncio.TimeoutError will be raised when we await
fetch_status. In this example, 10 milliseconds should be enough time for the
request to example.com to complete, so we’re not likely to see an exception. If you’d
like to check out this exception, change the URL to a page that takes a bit longer than
10 milliseconds to download.

 These examples show us the basics of aiohttp. However, our application’s perfor-
mance won’t benefit from running only a single request with asyncio. We’ll start to see
the real benefits when we run several web requests concurrently.

4.3 Running tasks concurrently, revisited
In the first few chapters of this book, we learned how to create multiple tasks to run
coroutines concurrently. To do this, we used asyncio.create_task and then awaited
the task as below:

import asyncio

async def main() -> None:
 task_one = asyncio.create_task(delay(1))
 task_two = asyncio.create_task(delay(2))

 await task_one
 await task_two

This works for simple cases like the previous one in which we have one or two corou-
tines we want to launch concurrently. However, in a world where we may make hun-
dreds, thousands, or even more web requests concurrently, this style would become
verbose and messy.

 We may be tempted to utilize a for loop or a list comprehension to make this a lit-
tle smoother, as demonstrated in the following listing. However, this approach can
cause issues if not written correctly.

import asyncio
from util import async_timed, delay

@async_timed()
async def main() -> None:
 delay_times = [3, 3, 3]
 [await asyncio.create_task(delay(seconds)) for seconds in delay_times]

asyncio.run(main())

Given that we ideally want the delay tasks to run concurrently, we’d expect the main
method to complete in about 3 seconds. However, in this case 9 seconds elapse to run,
since everything is done sequentially:

Listing 4.4 Using tasks with a list comprehension incorrectly

83Running tasks concurrently, revisited
starting <function main at 0x10f14a550> with args () {}
starting <function delay at 0x10f7684c0> with args (3,) {}
sleeping for 3 second(s)
finished sleeping for 3 second(s)
finished <function delay at 0x10f7684c0> in 3.0008 second(s)
starting <function delay at 0x10f7684c0> with args (3,) {}
sleeping for 3 second(s)
finished sleeping for 3 second(s)
finished <function delay at 0x10f7684c0> in 3.0009 second(s)
starting <function delay at 0x10f7684c0> with args (3,) {}
sleeping for 3 second(s)
finished sleeping for 3 second(s)
finished <function delay at 0x10f7684c0> in 3.0020 second(s)
finished <function main at 0x10f14a550> in 9.0044 second(s)

The problem here is subtle. It occurs because we use await as soon as we create the
task. This means that we pause the list comprehension and the main coroutine for
every delay task we create until that delay task completes. In this case, we will have
only one task running at any given time, instead of running multiple tasks concur-
rently. The fix is easy, although a bit verbose. We can create the tasks in one list com-
prehension and await in a second. This lets everything to run concurrently.

import asyncio
from util import async_timed, delay

@async_timed()
async def main() -> None:
 delay_times = [3, 3, 3]
 tasks = [asyncio.create_task(delay(seconds)) for seconds in delay_times]
 [await task for task in tasks]

asyncio.run(main())

This code creates a number of tasks all at once in the tasks list. Once we have created
all the tasks, we await their completion in a separate list comprehension. This works
because create_task returns instantly, and we don’t do any awaiting until all the tasks
have been created. This ensures that it only requires at most the maximum pause in
delay_times, giving a runtime of about 3 seconds:

starting <function main at 0x10d4e1550> with args () {}
starting <function delay at 0x10daff4c0> with args (3,) {}
sleeping for 3 second(s)
starting <function delay at 0x10daff4c0> with args (3,) {}
sleeping for 3 second(s)
starting <function delay at 0x10daff4c0> with args (3,) {}
sleeping for 3 second(s)
finished sleeping for 3 second(s)
finished <function delay at 0x10daff4c0> in 3.0029 second(s)
finished sleeping for 3 second(s)

Listing 4.5 Using tasks concurrently with a list comprehension

84 CHAPTER 4 Concurrent web requests
finished <function delay at 0x10daff4c0> in 3.0029 second(s)
finished sleeping for 3 second(s)
finished <function delay at 0x10daff4c0> in 3.0029 second(s)
finished <function main at 0x10d4e1550> in 3.0031 second(s)

While this does what we want, drawbacks remain. The first is that this consists of multi-
ple lines of code, where we must explicitly remember to separate out our task creation
from our awaits. The second is that it is inflexible, and if one of our coroutines finishes
long before the others, we’ll be trapped in the second list comprehension waiting for
all other coroutines to finish. While this may be acceptable in certain circumstances,
we may want to be more responsive, processing our results as soon as they arrive. The
third, and potentially biggest issue, is exception handling. If one of our coroutines has
an exception, it will be thrown when we await the failed task. This means that we
won’t be able to process any tasks that completed successfully because that one excep-
tion will halt our execution.

 asyncio has convenience functions to deal with all these situations and more.
These functions are recommended when running multiple tasks concurrently. In the
following sections, we’ll look at some of them, and examine how to use them in the con-
text of making multiple web requests concurrently.

4.4 Running requests concurrently with gather
A widely used asyncio API functions for running awaitables concurrently is asyncio
.gather. This function takes in a sequence of awaitables and lets us run them con-
currently, all in one line of code. If any of the awaitables we pass in is a coroutine,
gather will automatically wrap it in a task to ensure that it runs concurrently. This
means that we don’t have to wrap everything with asyncio.create_task separately
as we used above.

 asyncio.gather returns an awaitable. When we use it in an await expression, it
will pause until all awaitables that we passed into it are complete. Once everything we
passed in finishes, asyncio.gather will return a list of the completed results.

 We can use this function to run as many web requests as we’d like concurrently. To
illustrate this, let’s see an example where we make 1,000 requests at the same time and
grab the status code of each response. We’ll decorate our main coroutine with @async_
timed so we know how long things are taking.

import asyncio
import aiohttp
from aiohttp import ClientSession
from chapter_04 import fetch_status
from util import async_timed

@async_timed()
async def main():

Listing 4.6 Running requests concurrently with gather

85Running requests concurrently with gather
 async with aiohttp.ClientSession() as session:
 urls = ['https:/ / example .com' for _ in range(1000)]
 requests = [fetch_status(session, url) for url in urls]
 status_codes = await asyncio.gather(*requests)
 print(status_codes)

asyncio.run(main())

In the preceding listing, we first generate a list of URLs we’d like to retrieve the status
code from; for simplicity, we’ll request example.com repeatedly. We then take that
list of URLs and call fetch_status_code to generate a list of coroutines that we
then pass into gather. This will wrap each coroutine in a task and start running
them concurrently. When we execute this code, we’ll see 1,000 messages printed to
standard out, saying that the fetch_status_code coroutines started sequentially,
indicating that 1,000 requests started concurrently. As results come in, we’ll see mes-
sages like finished <function fetch_status_code at 0x10f3fe3a0> in 0.5453
second(s) arrive. Once we retrieve the contents of all the URLs we’ve requested,
we’ll see the status codes start to print out. This process is quick, depending on the
internet connection and speed of the machine, and this script can finish in as little
as 500–600 milliseconds.

 So how does this compare with doing things synchronously? It’s easy to adapt the
main function so that it blocks on each request by using an await when we call
fetch_status_code. This will pause the main coroutine for each URL, effectively
making things synchronous:

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 urls = ['https:/ / example .com' for _ in range(1000)]
 status_codes = [await fetch_status_code(session, url) for url in

urls]
 print(status_codes)

If we run this, notice that things will take much longer. We’ll also notice that, instead
of getting 1,000 starting function fetch_status_code messages followed by 1,000
finished function fetch_status_code messages, something like the following dis-
plays for each request:

starting <function fetch_status_code at 0x10d95b310>
finished <function fetch_status_code at 0x10d95b310> in 0.01884 second(s)

This indicates that requests occur one after another, waiting for each call to fetch_
status_code to finish before moving on to the next request. So how much slower is
this than using our async version? While this depends on your internet connection
and the machine you run this on, running sequentially can take around 18 seconds to

Generate a list of coroutines for
each request we want to make.

Wait for all requests to complete.

86 CHAPTER 4 Concurrent web requests
complete. Comparing this with our asynchronous version, which took around 600 mil-
liseconds, the latter runs an impressive 33 times faster.

 It is worth noting that the results for each awaitable we pass in may not complete in
a deterministic order. For example, if we pass coroutines a and b to gather in that
order, b may complete before a. A nice feature of gather is that, regardless of when
our awaitables complete, we are guaranteed the results will be returned in the order
we passed them in. Let’s demonstrate this by looking at the scenario we just described
with our delay function.

import asyncio
from util import delay

async def main():
 results = await asyncio.gather(delay(3), delay(1))
 print(results)

asyncio.run(main())

In the preceding listing, we pass two coroutines to gather. The first takes 3 seconds to
complete and the second takes 1 second. We may expect the result of this to be [1, 3],
since our 1-second coroutine finishes before our 3-second coroutine, but the result is
actually [3, 1]—the order we passed things in. The gather function keeps result
ordering deterministic despite the inherent nondeterminism behind the scenes. In
the background, gather uses a special kind of future implementation to do this. For
the curious reader, reviewing the source code of gather can be an instructive way to
understand how many asyncio APIs are built using futures.

 In the examples above, it’s assumed none of the requests will fail or throw an excep-
tion. This works well for the “happy path,” but what happens when a request fails?

4.4.1 Handling exceptions with gather

Of course, when we make a web request, we might not always get a value back; we
might get an exception. Since networks can be unreliable, different failure cases are
possible. For example, we could pass in an address that is invalid or has become
invalid because the site has been taken down. The server we connect to could also
close or refuse our connection.

 asyncio.gather gives us an optional parameter, return_exceptions, which allows us
to specify how we want to deal with exceptions from our awaitables. return_exceptions
is a Boolean value; therefore, it has two behaviors that we can choose from:

 return_exceptions=False—This is the default value for gather. In this case, if
any of our coroutines throws an exception, our gather call will also throw that
exception when we await it. However, even though one of our coroutines
failed, our other coroutines are not canceled and will continue to run as long as

Listing 4.7 Awaitables finishing out of order

87Running requests concurrently with gather
we handle the exception, or the exception does not result in the event loop
stopping and canceling the tasks.

 return_exceptions=True—In this case, gather will return any exceptions as
part of the result list it returns when we await it. The call to gather will not
throw any exceptions itself, and we’ll be able handle all exceptions as we wish.

To illustrate how these options work, let’s change our URL list to contain an invalid
web address. This will cause aiohttp to raise an exception when we attempt to make
the request. We’ll then pass that into gather and see how each of these return_
exceptions behaves:

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 urls = ['https:/ / example .com', 'python:/ / example .com']
 tasks = [fetch_status_code(session, url) for url in urls]
 status_codes = await asyncio.gather(*tasks)
 print(status_codes)

If we change our URL list to the above, the request for 'python:/ / example .com' will
fail because that URL is not valid. Our fetch_status_code coroutine will throw an
AssertionError because of this, meaning that python:/ / does not translate into a port.
This exception will get thrown when we await our gather coroutine. If we run this and
look at the output, we’ll see that our exception was thrown, but we’ll also see that our
other request continued to run (we’ve removed the verbose traceback for brevity):

starting <function main at 0x107f4a4c0> with args () {}
starting <function fetch_status_code at 0x107f4a3a0>
starting <function fetch_status_code at 0x107f4a3a0>
finished <function fetch_status_code at 0x107f4a3a0> in 0.0004 second(s)
finished <function main at 0x107f4a4c0> in 0.0203 second(s)
finished <function fetch_status_code at 0x107f4a3a0> in 0.0198 second(s)
Traceback (most recent call last):
 File "gather_exception.py", line 22, in <module>
 asyncio.run(main())
AssertionError

Process finished with exit code 1

asyncio.gather won’t cancel any other tasks that are running if there is a failure.
That may be acceptable for many use cases but is one of the drawbacks of gather.
We’ll see how to cancel tasks we run concurrently later in this chapter.

 Another potential issue with the above code is that if more than one exception
happens, we’ll only see the first one that occurred when we await the gather. We can
fix this by using return_exceptions=True, which will return all exceptions we
encounter when running our coroutines. We can then filter out any exceptions and
handle them as needed. Let’s examine our previous example with invalid URLs to
understand how this works:

88 CHAPTER 4 Concurrent web requests
@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 urls = ['https:/ / example .com', 'python:/ / example .com']
 tasks = [fetch_status_code(session, url) for url in urls]
 results = await asyncio.gather(*tasks, return_exceptions=True)

 exceptions = [res for res in results if isinstance(res, Exception)]
 successful_results = [res for res in results if not isinstance(res,

Exception)]

 print(f'All results: {results}')
 print(f'Finished successfully: {successful_results}')
 print(f'Threw exceptions: {exceptions}')

When running this, notice that no exceptions are thrown, and we get all the excep-
tions alongside our successful results in the list that gather returns. We then filter out
anything that is an instance of an exception to retrieve the list of successful responses,
resulting in the following output:

All results: [200, AssertionError()]
Finished successfully: [200]
Threw exceptions: [AssertionError()]

This solves the issue of not being able to see all the exceptions that our coroutines
throw. It is also nice that now we don’t need to explicitly handle any exceptions with a
try catch block, since we no longer throw an exception when we await. It is still
a little clunky that we must filter out exceptions from successful results, but the API
is not perfect.

 gather has a few drawbacks. The first, which was already mentioned, is that it isn’t
easy to cancel our tasks if one throws an exception. Imagine a case in which we’re
making requests to the same server, and if one request fails, all others will as well, such
as reaching a rate limit. In this case, we may want to cancel requests to free up
resources, which isn’t very easy to do because our coroutines are wrapped in tasks in
the background.

 The second is that we must wait for all our coroutines to finish before we can pro-
cess our results. If we want to deal with results as soon as they complete, this poses a
problem. For example, if we have one request needing 100 milliseconds, but another
that lasts 20 seconds, we’ll be stuck waiting for 20 seconds before we can process the
request that completed in only 100 milliseconds.

 asyncio provides APIs that allow us to solve for both issues. Let’s start by looking at
the problem of handling results as soon as they come in.

4.5 Processing requests as they complete
While asyncio.gather will work for many cases, it has the drawback that it waits for all
awaitables to finish before allowing access to any results. This is a problem if we’d like
to process results as soon as they come in. It can also be a problem if we have a few

89Processing requests as they complete
awaitables that could complete quickly and a few which could take some time, since
gather waits for everything to finish. This can cause our application to become unre-
sponsive; imagine a user makes 100 requests and two of them are slow, but the rest
complete quickly. It would be great if once requests start to finish, we could output
some information to our users.

 To handle this case, asyncio exposes an API function named as_completed. This
method takes a list of awaitables and returns an iterator of futures. We can then iterate
over these futures, awaiting each one. When the await expression completes, we will
retrieve the result of the coroutine that finished first out of all our awaitables. This
means that we’ll be able to process results as soon as they are available, but there is
now no deterministic ordering of results, since we have no guarantees as to which
requests will complete first.

 To show how this works, let’s simulate a case where one request completes quickly,
and another needs more time. We’ll add a delay parameter to our fetch_status
function and call asyncio.sleep to simulate a long request, as follows:

async def fetch_status(session: ClientSession,
 url: str,
 delay: int = 0) -> int:
 await asyncio.sleep(delay)
 async with session.get(url) as result:
 return result.status

We’ll then use a for loop to iterate over the iterator returned from as_completed.

import asyncio
import aiohttp
from aiohttp import ClientSession
from util import async_timed
from chapter_04 import fetch_status

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 fetchers = [fetch_status(session, 'https:/ / www.example .com', 1),
 fetch_status(session, 'https:/ / www.example .com', 1),
 fetch_status(session, 'https:/ / www.example .com', 10)]

 for finished_task in asyncio.as_completed(fetchers):
 print(await finished_task)

asyncio.run(main())

In the preceding listing, we create three coroutines—two that require about 1 second
to complete and one that will take 10 seconds. We then pass these into as_completed.

Listing 4.8 Using as_completed

90 CHAPTER 4 Concurrent web requests
Under the hood, each coroutine is wrapped in a task and starts running concurrently.
The routine instantly returned an iterator that starts to loop over. When we enter the for
loop, we hit await finished_task. Here we pause execution and wait for our first result
to come in. In this case, our first result comes in after 1 second, and we print the status
code. Then we reach the await result again, and since our requests ran concurrently,
we should see the second result almost instantly. Finally, our 10-second request will com-
plete, and our loop will finish. Executing this will give us output as follows:

starting <function fetch_status at 0x10dbed4c0>
starting <function fetch_status at 0x10dbed4c0>
starting <function fetch_status at 0x10dbed4c0>
finished <function fetch_status at 0x10dbed4c0> in 1.1269 second(s)
200
finished <function fetch_status at 0x10dbed4c0> in 1.1294 second(s)
200
finished <function fetch_status at 0x10dbed4c0> in 10.0345 second(s)
200
finished <function main at 0x10dbed5e0> in 10.0353 second(s)

In total, iterating over result_iterator still takes about 10 seconds, as it would have
if we used asynio.gather; however, we’re able to execute code to print the result of
our first request as soon as it finishes. This gives us extra time to process the result
of our first successfully finished coroutine while others are still waiting to finish, mak-
ing our application more responsive when our tasks complete.

 This function also offers better control over exception handling. When a task
throws an exception, we’ll be able to process it when it happens, as the exception is
thrown when we await the future.

4.5.1 Timeouts with as_completed

Any web-based request runs the risk of taking a long time. A server could be under a
heavy resource load, or we could have a poor network connection. Earlier, we saw how
to add timeouts for a particular request, but what if we wanted to have a timeout for a
group of requests? The as_completed function supports this use case by supplying an
optional timeout parameter, which lets us specify a timeout in seconds. This will keep
track of how long the as_completed call has taken; if it takes longer than the timeout,
each awaitable in the iterator will throw a TimeoutException when we await it.

 To illustrate this, let’s take our previous example and create two requests that take
10 seconds to complete and one request that takes 1 second. Then, we’ll set a timeout
of 2 seconds on as_completed. Once we’re done with the loop, we’ll print out all the
tasks we have that are currently running.

import asyncio
import aiohttp
from aiohttp import ClientSession

Listing 4.9 Setting a timeout on as_completed

91Processing requests as they complete
from util import async_timed
from chapter_04 import fetch_status

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 fetchers = [fetch_status(session, 'https:/ / example .com', 1),
 fetch_status(session, 'https:/ / example .com', 10),
 fetch_status(session, 'https:/ / example .com', 10)]

 for done_task in asyncio.as_completed(fetchers, timeout=2):
 try:
 result = await done_task
 print(result)
 except asyncio.TimeoutError:
 print('We got a timeout error!')

 for task in asyncio.tasks.all_tasks():
 print(task)

asyncio.run(main())

When we run this, we’ll notice the result from our first fetch, and after 2 seconds, we’ll
see two timeout errors. We’ll also see that two fetches are still running, giving output
similar to the following:

starting <function main at 0x109c7c430> with args () {}
200
We got a timeout error!
We got a timeout error!
finished <function main at 0x109c7c430> in 2.0055 second(s)
<Task pending name='Task-2' coro=<fetch_status_code()>>
<Task pending name='Task-1' coro=<main>>
<Task pending name='Task-4' coro=<fetch_status_code()>>

as_completed works well for getting results as fast as possible but has drawbacks. The
first is that while we get results as they come in, there isn’t any way to easily see which
coroutine or task we’re awaiting as the order is completely nondeterministic. If we
don’t care about order, this may be fine, but if we need to associate the results to the
requests somehow, we’re left with a challenge.

 The second is that with timeouts, while we will correctly throw an exception and
move on, any tasks created will still be running in the background. Since it’s hard to
figure out which tasks are still running if we want to cancel them, we have another
challenge. If these are problems we need to deal with, then we’ll need some finer-
grained knowledge of which awaitables are finished, and which are not. To handle this
situation, asyncio provides another API function called wait.

92 CHAPTER 4 Concurrent web requests
4.6 Finer-grained control with wait
One of the drawbacks of both gather and as_completed is that there is no easy way to
cancel tasks that were already running when we saw an exception. This might be okay
in many situations, but imagine a use case in which we make several coroutine calls
and if the first one fails, the rest will as well. An example of this would be passing in an
invalid parameter to a web request or reaching an API rate limit. This has the poten-
tial to cause performance issues because we’ll consume more resources by having
more tasks than we need. Another drawback we noted with as_completed is that, as
the iteration order is nondeterministic, it is challenging to keep track of exactly which
task had completed.

 wait in asyncio is similar to gather wait that offers more specific control to handle
these situations. This method has several options to choose from depending on when
we want our results. In addition, this method returns two sets: a set of tasks that are
finished with either a result or an exception, and a set of tasks that are still running.
This function also allows us to specify a timeout that behaves differently from how
other API methods operate; it does not throw exceptions. When needed, this function
can solve some of the issues we noted with the other asyncio API functions we’ve used
so far.

 The basic signature of wait is a list of awaitable objects, followed by an optional
timeout and an optional return_when string. This string has a few predefined values
that we’ll examine: ALL_COMPLETED, FIRST_EXCEPTION and FIRST_COMPLETED. It defaults
to ALL_COMPLETED. While as of this writing, wait takes a list of awaitables, it will change
in future versions of Python to only accept task objects. We’ll see why at the end of
this section, but for these code samples, as this is best practice, we’ll wrap all corou-
tines in tasks.

4.6.1 Waiting for all tasks to complete

This option is the default behavior if return_when is not specified, and it is the closest
in behavior to asyncio.gather, though it has a few differences. As implied, using this
option will wait for all tasks to finish before returning. Let’s adapt this to our example
of making multiple web requests concurrently to learn how this function works.

import asyncio
import aiohttp
from aiohttp import ClientSession
from util import async_timed
from chapter_04 import fetch_status

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:

Listing 4.10 Examining the default behavior of wait

93Finer-grained control with wait
 fetchers = \
 [asyncio.create_task(fetch_status(session, 'https:/ /example.com')),
 asyncio.create_task(fetch_status(session, 'https:/ /example.com'))]
 done, pending = await asyncio.wait(fetchers)

 print(f'Done task count: {len(done)}')
 print(f'Pending task count: {len(pending)}')

 for done_task in done:
 result = await done_task
 print(result)

asyncio.run(main())

In the preceding listing, we run two web requests concurrently by passing a list of
coroutines to wait. When we await wait it will return two sets once all requests
finish: one set of all tasks that are complete and one set of the tasks that are still run-
ning. The done set contains all tasks that finished either successfully or with excep-
tions. The pending set contains all tasks that have not finished yet. In this instance,
since we are using the ALL_COMPLETED option the pending set will always be zero,
since asyncio.wait won’t return until everything is completed. This will give us the
following output:

starting <function main at 0x10124b160> with args () {}
Done task count: 2
Pending task count: 0
200
200
finished <function main at 0x10124b160> in 0.4642 second(s)

If one of our requests throws an exception, it won’t be thrown at the asyncio.wait
call in the same way that asyncio.gather did. In this instance, we’ll get both the done
and pending sets as before, but we won’t see an exception until we await the task in
done that failed.

 With this paradigm, we have a few options on how to handle exceptions. We can
use await and let the exception throw, we can use await and wrap it in a try except
block to handle the exception, or we can use the task.result() and task.exception()
methods. We can safely call these methods since our tasks in the done set are guaran-
teed to be completed tasks; if they were not calling these methods, it would then pro-
duce an exception.

 Let’s say that we don’t want to throw an exception and have our application crash.
Instead, we’d like to print the task’s result if we have it and log an error if there was an
exception. In this case, using the methods on the Task object is an appropriate solu-
tion. Let’s see how to use these two Task methods to handle exceptions.

94 CHAPTER 4 Concurrent web requests
import asyncio
import logging

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 good_request = fetch_status(session, 'https:/ / www .example .com')
 bad_request = fetch_status(session, 'python:/ /bad')

 fetchers = [asyncio.create_task(good_request),
 asyncio.create_task(bad_request)]

 done, pending = await asyncio.wait(fetchers)

 print(f'Done task count: {len(done)}')
 print(f'Pending task count: {len(pending)}')

 for done_task in done:
 # result = await done_task will throw an exception
 if done_task.exception() is None:
 print(done_task.result())
 else:
 logging.error("Request got an exception",
 exc_info=done_task.exception())

asyncio.run(main())

Using done_task.exception() will check to see if we have an exception. If we don’t,
then we can proceed to get the result from done_task with the result method. It
would also be safe to do result = await done_task here, although it might throw an
exception, which may not be what we want. If the exception is not None, then we know
that the awaitable had an exception, and we can handle that as desired. Here we just
print out the exception’s stack trace. Running this will yield output similar to the fol-
lowing (we’ve removed the verbose traceback for brevity):

starting <function main at 0x10401f1f0> with args () {}
Done task count: 2
Pending task count: 0
200
finished <function main at 0x10401f1f0> in 0.12386679649353027 second(s)
ERROR:root:Request got an exception
Traceback (most recent call last):
AssertionError

4.6.2 Watching for exceptions

The drawbacks of ALL_COMPLETED are like the drawbacks we saw with gather. We
could have any number of exceptions while we wait for other coroutines to com-
plete, which we won’t see until all tasks complete. This could be an issue if, because
of one exception, we’d like to cancel other running requests. We may also want to

Listing 4.11 Exceptions with wait

95Finer-grained control with wait
immediately handle any errors to ensure responsiveness and continue waiting for
other coroutines to complete.

 To support these use cases, wait supports the FIRST_EXCEPTION option. When we
use this option, we’ll get two different behaviors, depending on whether any of our
tasks throw exceptions.

To illustrate how wait behaves in these scenarios, look at what happens when we have
a couple of long-running web requests we’d like to cancel when one coroutine fails
immediately with an exception.

import aiohttp
import asyncio
import logging
from chapter_04 import fetch_status
from util import async_timed

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 fetchers = \
 [asyncio.create_task(fetch_status(session, 'python:/ / bad.com')),
 asyncio.create_task(fetch_status(session, 'https:/ / www.example
 .com', delay=3)),
 asyncio.create_task(fetch_status(session, 'https:/ / www.example
 .com', delay=3))]

 done, pending = await asyncio.wait(fetchers,
return_when=asyncio.FIRST_EXCEPTION)

 print(f'Done task count: {len(done)}')
 print(f'Pending task count: {len(pending)}')

No exceptions from any awaitables
If we have no exceptions from any of our tasks, then this option is equivalent to
ALL_COMPLETED. We’ll wait for all tasks to finish and then the done set will contain
all finished tasks and the pending set will be empty.

One or more exception from a task
If any task throws an exception, wait will immediately return once that exception is
thrown. The done set will have any coroutines that finished successfully alongside
any coroutines with exceptions. The done set is, at minimum, guaranteed to have one
failed task in this case but may have successfully completed tasks. The pending set
may be empty, but it may also have tasks that are still running. We can then use this
pending set to manage the currently running tasks as we desire.

Listing 4.12 Canceling running requests on an exception

96 CHAPTER 4 Concurrent web requests
 for done_task in done:
 if done_task.exception() is None:
 print(done_task.result())
 else:
 logging.error("Request got an exception",
 exc_info=done_task.exception())

 for pending_task in pending:
 pending_task.cancel()

asyncio.run(main())

In the preceding listing, we make one bad request and two good ones; each lasts 3 sec-
onds. When we await our wait statement, we return almost immediately since our
bad request errors out right away. Then we loop through the done tasks. In this instance,
we’ll have only one in the done set since our first request ended immediately with an
exception. For this, we’ll execute the branch that prints the exception.

 The pending set will have two elements, as we have two requests that take roughly
3 seconds each to run and our first request failed almost instantly. Since we want to
stop these from running, we can call the cancel method on them. This will give us the
following output:

starting <function main at 0x105cfd280> with args () {}
Done task count: 1
Pending task count: 2
finished <function main at 0x105cfd280> in 0.0044 second(s)
ERROR:root:Request got an exception

NOTE Our application took almost no time to run, as we quickly reacted to
the fact that one of our requests threw an exception; the power of using this
option is we achieve fail fast behavior, quickly reacting to any issues that arise.

4.6.3 Processing results as they complete

Both ALL_COMPLETED and FIRST_EXCEPTION have the drawback that, in the case where
coroutines are successful and don’t throw an exception, we must wait for all corou-
tines to complete. Depending on the use case, this may be acceptable, but if we’re in a
situation where we want to respond to a coroutine as soon as it completes successfully,
we are out of luck.

 In the instance in which we want to react to a result as soon as it completes, we
could use as_completed; however, the issue with as_completed is there is no easy way
to see which tasks are remaining and which tasks have completed. We get them only
one at a time through an iterator.

 The good news is that the return_when parameter accepts a FIRST_COMPLETED
option. This option will make the wait coroutine return as soon as it has at least one
result. This can either be a coroutine that failed or one that ran successfully. We can
then either cancel the other running coroutines or adjust which ones to keep running,

97Finer-grained control with wait
depending on our use case. Let’s use this option to make a few web requests and pro-
cess whichever one finishes first.

import asyncio
import aiohttp
from util import async_timed
from chapter_04 import fetch_status

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 url = 'https:/ / www .example .com'
 fetchers = [asyncio.create_task(fetch_status(session, url)),
 asyncio.create_task(fetch_status(session, url)),
 asyncio.create_task(fetch_status(session, url))]

 done, pending = await asyncio.wait(fetchers,
return_when=asyncio.FIRST_COMPLETED)

 print(f'Done task count: {len(done)}')
 print(f'Pending task count: {len(pending)}')

 for done_task in done:
 print(await done_task)

asyncio.run(main())

In the preceding listing, we start three requests concurrently. Our wait coroutine will
return as soon as any of these requests completes. This means that done will have one
complete request, and pending will contain anything still running, giving us the fol-
lowing output:

starting <function main at 0x10222f1f0> with args () {}
Done task count: 1
Pending task count: 2
200
finished <function main at 0x10222f1f0> in 0.1138 second(s)

These requests can complete at nearly the same time, so we could also see output that
says two or three tasks are done. Try running this listing a few times to see how the
result varies.

 This approach lets us respond right away when our first task completes. What if we
want to process the rest of the results as they come in like as_completed? The above
example can be adopted easily to loop on the pending tasks until they are empty. This
will give us behavior similar to as_completed, with the benefit that at each step we
know exactly which tasks have finished and which are still running.

Listing 4.13 Processing as they complete

98 CHAPTER 4 Concurrent web requests
import asyncio
import aiohttp
from chapter_04 import fetch_status
from util import async_timed

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 url = 'https:/ / www .example .com'
 pending = [asyncio.create_task(fetch_status(session, url)),
 asyncio.create_task(fetch_status(session, url)),
 asyncio.create_task(fetch_status(session, url))]

 while pending:
 done, pending = await asyncio.wait(pending,

return_when=asyncio.FIRST_COMPLETED)

 print(f'Done task count: {len(done)}')
 print(f'Pending task count: {len(pending)}')

 for done_task in done:
 print(await done_task)

asyncio.run(main())

In the preceding listing, we create a set named pending that we initialize to the
coroutines we want to run. We loop while we have items in the pending set and call
wait with that set on each iteration. Once we have a result from wait, we update the
done and pending sets and then print out any done tasks. This will give us behavior
similar to as_completed with the difference being we have better insight into which
tasks are done and which tasks are still running. Running this, we’ll see the follow-
ing output:

starting <function main at 0x10d1671f0> with args () {}
Done task count: 1
Pending task count: 2
200
Done task count: 1
Pending task count: 1
200
Done task count: 1
Pending task count: 0
200
finished <function main at 0x10d1671f0> in 0.1153 second(s)

Since the request function may complete quickly, such that all requests complete at
the same time, it’s not impossible that we see output similar to this as well:

Listing 4.14 Processing all results as they come in

99Finer-grained control with wait
starting <function main at 0x1100f11f0> with args () {}
Done task count: 3
Pending task count: 0
200
200
200
finished <function main at 0x1100f11f0> in 0.1304 second(s)

4.6.4 Handling timeouts

In addition to allowing us finer-grained control on how we wait for coroutines to com-
plete, wait also allows us to set timeouts to specify how long we want for all awaitables
to complete. To enable this, we can set the timeout parameter with the maximum
number of seconds desired. If we’ve exceeded this timeout, wait will return both the
done and pending task set. There are a couple of differences in how timeouts behave
in wait as compared to what we have seen thus far with wait_for and as_completed.

For example, let’s examine a case where two requests complete quickly and one takes
a few seconds. We’ll use a timeout of 1 second with wait to understand what happens
when we have tasks that take longer than the timeout. For the return_when parame-
ter, we’ll use the default value of ALL_COMPLETED.

@async_timed()
async def main():
 async with aiohttp.ClientSession() as session:
 url = 'https:/ / example .com'
 fetchers = [asyncio.create_task(fetch_status(session, url),
 asyncio.create_task(fetch_status(session, url),
 asyncio.create_task(fetch_status(session, url, delay=3))]

 done, pending = await asyncio.wait(fetchers, timeout=1)

 print(f'Done task count: {len(done)}')
 print(f'Pending task count: {len(pending)}')

Coroutines are not canceled
When we used wait_for, if our coroutine timed out it would automatically request
cancellation for us. This is not the case with wait; it behaves closer to what we saw
with gather and as_completed. In the case we want to cancel coroutines due to a
timeout, we must explicitly loop over the tasks and cancel them.

Timeout errors are not raised
wait does not rely on exceptions in the event of timeouts as do wait_for and as_
completed. Instead, if the timeout occurs the wait returns all tasks done and all
tasks that are still pending up to that point when the timeout occurred.

Listing 4.15 Using timeouts with wait

100 CHAPTER 4 Concurrent web requests
 for done_task in done:
 result = await done_task
 print(result)

asyncio.run(main())

Running the preceding listing, our wait call will return our done and pending sets
after 1 second. In the done set we’ll see our two fast requests, as they finished within 1 sec-
ond. Our slow request is still running and is, therefore, in the pending set. We then await
the done tasks to extract out their return values. We also could have canceled the pending
task if we so desired. Running this code, we will see the following output:

starting <function main at 0x11c68dd30> with args () {}
Done task count: 2
Pending task count: 1
200
200
finished <function main at 0x11c68dd30> in 1.0022 second(s)

Note that, as before, our tasks in the pending set are not canceled and will continue to
run despite the timeout. If we have a use case where we want to terminate the pending
tasks, we’ll need to explicitly loop through the pending set and call cancel on each task.

4.6.5 Why wrap everything in a task?

At the start of this section, we mentioned that it is best practice to wrap the coroutines
we pass into wait in tasks. Why is this? Let’s go back to our previous timeout example
and change it a little bit. Let’s say that we have requests to two different web APIs that
we’ll call API A and API B. Both can be slow, but our application can run without the
result from API B, so it is just a “nice to have.” Since we’d like a responsive application,
we set a timeout of 1 second for the requests to complete. If the request to API B is still
pending after that timeout, we cancel it and move on. Let’s see what happens if we
implement this without wrapping the requests in tasks.

import asyncio
import aiohttp
from chapter_04 import fetch_status

async def main():
 async with aiohttp.ClientSession() as session:
 api_a = fetch_status(session, 'https:/ / www .example .com')
 api_b = fetch_status(session, 'https:/ / www .example .com', delay=2)

 done, pending = await asyncio.wait([api_a, api_b], timeout=1)

 for task in pending:
 if task is api_b:

Listing 4.16 Canceling a slow request

101Summary
 print('API B too slow, cancelling')
 task.cancel()

asyncio.run(main())

We’d expect for this code to print out API B is too slow and cancelling, but what
happens if we don’t see this message at all? This can happen because when we call
wait with just coroutines they are automatically wrapped in tasks, and the done and
pending sets returned are those tasks that wait created for us. This means that we
can’t do any comparisons to see which specific task is in the pending set such as if
task is api_b, since we’ll be comparing a task object, we have no access to with a
coroutine. However, if we wrap fetch_status in a task, wait won’t create any new
objects, and the comparison if task is api_b will work as we expect. In this case,
we’re correctly comparing two task objects.

Summary
 We’ve learned how to use and create our own asynchronous context managers.

These are special classes that allow us to asynchronously acquire resources and
then release them, even if an exception occurred. These let us clean up any
resources we may have acquired in a non-verbose manner and are useful when
working with HTTP sessions as well as database connections. We can use them
with the special async with syntax.

 We can use the aiohttp library to make asynchronous web requests. aiohttp is a
web client and server that uses non-blocking sockets. With the web client, we
can execute multiple web requests concurrently in a way that does not block the
event loop.

 The asyncio.gather function lets us run multiple coroutines concurrently and
wait for them to complete. This function will return once all awaitables we pass
into it have completed. If we want to keep track of any errors that happen, we
can set return_exeptions to True. This will return the results of awaitables that
completed successfully alongside any exceptions we received.

 We can use the as_completed function to process results of a list of awaitables
as soon as they complete. This will give us an iterator of futures that we can loop
over. As soon as a coroutine or task has finished, we’ll be able to access the
result and process it.

 If we want to run multiple tasks concurrently but want to be able to understand
which tasks are done and which are still running, we can use wait. This func-
tion also allows us greater control on when it returns results. When it returns,
we get a set of tasks that have finished and set of tasks that are still running. We
can then cancel any tasks we wish or do any other awaiting we need.

Non-blocking
database drivers
Chapter 4 explored making non-blocking web requests with the aiohttp library, and
it also addressed using several different asyncio API methods for running these
requests concurrently. With the combination of the asyncio APIs and the aiohttp
library, we can run multiple long-running web requests concurrently, leading to an
improvement in our application’s runtime. The concepts we learned in chapter 4
do not apply only to web requests; they also apply to running SQL queries and can
improve the performance of database-intensive applications.

 Much like web requests, we’ll need to use an asyncio-friendly library since typi-
cal SQL libraries block the main thread, and therefore the event loop, until a result
is retrieved. In this chapter, we’ll learn more about asynchronous database access

This chapter covers
 Running asyncio friendly database queries

with asyncpg

 Creating database connection pools running
multiple SQL queries concurrently

 Managing asynchronous database transactions

 Using asynchronous generators to stream query
results
102

103Connecting to a Postgres database
with the asyncpg library. We’ll first create a simple schema to keep track of products
for an e-commerce storefront that we’ll then use to run queries against asynchro-
nously. We’ll then look at how to manage transactions and rollbacks within our data-
base, as well as setting up connection pooling.

5.1 Introducing asyncpg
As we’ve mentioned earlier, our existing blocking libraries won’t work seamlessly with
coroutines. To run queries concurrently against a database, we’ll need to use an
asyncio-friendly library that uses non-blocking sockets. To do this, we’ll use a library
called asyncpg, which will let us asynchronously connect to Postgres databases and run
queries against them.

 In this chapter we’ll focus on Postgres databases, but what we learn here will also
be applicable to MySQL and other databases as well. The creators of aiohttp have also
created the aiomysql library, which can connect and run queries against a MySQL data-
base. While there are some differences, the APIs are similar, and the knowledge is trans-
ferable. It is worth noting that the asyncpg library did not implement the Python
database API specification defined in PEP-249 (available at https://www.python.org/
dev/peps/pep-0249). This was a conscious choice on the part of the library implemen-
tors, since a concurrent implementation is inherently different from a synchronous one.
The creators of aiomysql, however, took a different route and do implement PEP-249,
so this library’s API will feel familiar to those who have used synchronous database
drivers in Python.

 The current documentation for asynpg is available at https://magicstack.github
.io/asyncpg/current/. Now that we’ve learned a little about the driver we’ll be using,
let’s connect to our first database.

5.2 Connecting to a Postgres database
To get started with asyncpg, we’ll use a real-world scenario of creating a product data-
base for an e-commerce storefront. We’ll use this example database throughout the
chapter to demonstrate database problems in this domain that we might need to solve.

 The first thing for getting started creating our product database and running que-
ries is establishing a database connection. For this section and the rest of the chapter,
we’ll assume that you have a Postgres database running on your local machine on the
default port of 5432, and we’ll assume the default user postgres has a password of
'password'.

WARNING We’ll be hardcoding the password in these code examples for
transparency and learning purposes; but note you should never hardcode a
password in your code as this violates security principles. Always store pass-
words in environment variables or some other configuration mechanism.

You can download and install a copy of Postgres from https://www.postgresql.org/
download/; just choose the appropriate operating system you’re working on. You may

https://magicstack.github.io/asyncpg/current/
https://magicstack.github.io/asyncpg/current/
https://magicstack.github.io/asyncpg/current/
https://www.python.org/dev/peps/pep-0249
https://www.python.org/dev/peps/pep-0249
https://www.python.org/dev/peps/pep-0249
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/

104 CHAPTER 5 Non-blocking database drivers
also consider using the Docker Postgres image; more information can be found at
https://hub.docker.com/_/postgres/.

 Once we have our database set up, we’ll install the asyncpg library. We’ll use pip3
to do this, and we’ll install the latest version at the time of writing, 0.0.23:

pip3 install -Iv asyncpg==0.23.0

Once installed, we can now import the library and establish a connection to our data-
base. asyncpg provides this with the asyncpg.connect function. Let’s use this to con-
nect and print out the database version number.

import asyncpg
import asyncio

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='postgres',
 password='password')
 version = connection.get_server_version()
 print(f'Connected! Postgres version is {version}')
 await connection.close()

asyncio.run(main())

In the preceding listing, we create a connection to our Postres instance as the default
postgres user and the default postgres database. Assuming our Postgres instance is
up and running, we should see something like "Connected! Postgres version is
ServerVersion(major=12, minor=0, micro=3, releaselevel='final' serial=0)"
displayed on our console, indicating we’ve successfully connected to our database.
Finally, we close the connection to the database with await connection.close().

 Now we’ve connected, but nothing is currently stored in our database. The next
step is to create a product schema that we can interact with. In creating this schema,
we’ll learn how to execute basic queries with asyncpg.

5.3 Defining a database schema
To begin running queries against our database, we’ll need to create a database
schema. We’re going to select a simple schema that we’ll call products, modeling real-
world products that an online storefront might have in stock. Let’s define a few differ-
ent entities that we can then turn into tables in our database.

Listing 5.1 Connecting to a Postgres database as the default user

https://hub.docker.com/_/postgres/

105Defining a database schema
Putting this all together, we’ll be modeling a database schema, as shown in figure 5.1.
 Now, let’s define some variables with the SQL we’ll need to create this schema.

Using asyncpg, we’ll execute these statements to create our product database. Since
our sizes and colors are known ahead of time, we’ll also insert a few records into the
product_size and product_color tables. We’ll reference these variables in the upcom-
ing code listings, so we don’t need to repeat lengthy SQL create statements.

Brand
A brand is a manufacturer of many distinct products. For instance, Ford is a brand
that produces many different models of cars (e.g., Ford F150, Ford Fiesta, etc.).

Product
A product is associated with one brand and there is a one-to-many relationship
between brands and products. For simplicity, in our product database, a product will
just have a product name. In the Ford example, a product is a compact car called the
Fiesta; the brand is Ford. In addition, each product in our database will come in mul-
tiple sizes and colors. We’ll define the available sizes and colors as SKUs.

SKU
SKU stands for stock keeping unit. A SKU represents a distinct item that a storefront
has for sale. For instance, jeans may be a product for sale and a SKU might be Jeans,
size: medium, color: blue; or jeans, size: small, color: black. There is a one-to-many rela-
tionship between a product and a SKU.

Product size
A product can come in multiple sizes. For this example, we’ll consider that there are
only three sizes available: small, medium, and large. Each SKU has one product size
associated with it, so there is a one-to-many relationship between product sizes and
SKUs.

Product color
A product can come in multiple colors. For this example, we’ll say our inventory con-
sists of only two colors: black and blue. There is a one-to-many relationship between
product color and SKUs.

106 CHAPTER 5 Non-blocking database drivers
CREATE_BRAND_TABLE = \
 """
 CREATE TABLE IF NOT EXISTS brand(
 brand_id SERIAL PRIMARY KEY,
 brand_name TEXT NOT NULL
);"""

CREATE_PRODUCT_TABLE = \
 """
 CREATE TABLE IF NOT EXISTS product(
 product_id SERIAL PRIMARY KEY,
 product_name TEXT NOT NULL,
 brand_id INT NOT NULL,
 FOREIGN KEY (brand_id) REFERENCES brand(brand_id)
);"""

CREATE_PRODUCT_COLOR_TABLE = \
 """
 CREATE TABLE IF NOT EXISTS product_color(
 product_color_id SERIAL PRIMARY KEY,
 product_color_name TEXT NOT NULL
);"""

CREATE_PRODUCT_SIZE_TABLE = \
 """
 CREATE TABLE IF NOT EXISTS product_size(
 product_size_id SERIAL PRIMARY KEY,

Listing 5.2 Product schema table create statements

brand

brand_id INT

brand_name TEXT

Indexes

product

product_id INT

product_name TEXT

brand_id INT

Indexes

sku

sku_id INT

product_id INT

product_size_id INT

product_color_id INT

Indexes

product_size

product_size_id INT

product_size_name TEXT

Indexes

product_color

product_color_id INT

product_color_name TEXT

Indexes

Figure 5.1 The entity diagram for the products database

107Executing queries with asyncpg
 product_size_name TEXT NOT NULL
);"""

CREATE_SKU_TABLE = \
 """
 CREATE TABLE IF NOT EXISTS sku(
 sku_id SERIAL PRIMARY KEY,
 product_id INT NOT NULL,
 product_size_id INT NOT NULL,
 product_color_id INT NOT NULL,
 FOREIGN KEY (product_id)
 REFERENCES product(product_id),
 FOREIGN KEY (product_size_id)
 REFERENCES product_size(product_size_id),
 FOREIGN KEY (product_color_id)
 REFERENCES product_color(product_color_id)
);"""

COLOR_INSERT = \
 """
 INSERT INTO product_color VALUES(1, 'Blue');
 INSERT INTO product_color VALUES(2, 'Black');
 """

SIZE_INSERT = \
 """
 INSERT INTO product_size VALUES(1, 'Small');
 INSERT INTO product_size VALUES(2, 'Medium');
 INSERT INTO product_size VALUES(3, 'Large');
 """

Now that we have the statements to create our tables and insert our sizes and colors,
we need a way to run queries against them.

5.4 Executing queries with asyncpg
To run queries against our database, we’ll first need to connect to our Postgres
instance and create the database directly outside of Python. We can create the data-
base by executing the following statement once connected to the database as the
default Postgres user:

CREATE DATABASE products;

You can execute this via the command line by running sudo -u postgres psql -c
"CREATE TABLE products;". In the next examples, we’ll assume you have executed this
statement, as we’ll connect to the products database directly.

 Now that we’ve created our products database, we’ll connect to it and execute our
create statements. The connection class has a coroutine called execute that we can
use to run our create statements one by one. This coroutine returns a string repre-
senting the status of the query that Postgres returned. Let’s take the statements we cre-
ated in the last section and execute them.

108 CHAPTER 5 Non-blocking database drivers
import asyncpg
import asyncio

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 statements = [CREATE_BRAND_TABLE,
 CREATE_PRODUCT_TABLE,
 CREATE_PRODUCT_COLOR_TABLE,
 CREATE_PRODUCT_SIZE_TABLE,
 CREATE_SKU_TABLE,
 SIZE_INSERT,
 COLOR_INSERT]

 print('Creating the product database...')
 for statement in statements:
 status = await connection.execute(statement)
 print(status)
 print('Finished creating the product database!')
 await connection.close()

asyncio.run(main())

We first create a connection to our products database similarly to what we did in our
first example, the difference being that here we connect to the products database.
Once we have this connection, we then start to execute our CREATE TABLE statements
one at a time with connection.execute(). Note that execute() is a coroutine, so to
run our SQL we need to await the call. Assuming everything worked properly, the sta-
tus of each execute statement should be CREATE TABLE, and each insert statement
should be INSERT 0 1. Finally, we close the connection to the product database. Note
that in this example we await each SQL statement in a for loop, which ensures that we
run the INSERT statements synchronously. Since some tables depend on others, we
can’t run them concurrently.

 These statements don’t have any results associated with them, so let’s insert a few
pieces of data and run some simple select queries. We’ll first insert a few brands and
then query them to ensure we’ve inserted them properly. We can insert data with the
execute coroutine, as before, and we can run a query with the fetch coroutine.

import asyncpg
import asyncio
from asyncpg import Record
from typing import List

Listing 5.3 Using an execute coroutine to run create statements

Listing 5.4 Inserting and selecting brands

109Executing queries concurrently with connection pools
async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 await connection.execute("INSERT INTO brand VALUES(DEFAULT, 'Levis')")
 await connection.execute("INSERT INTO brand VALUES(DEFAULT, 'Seven')")

 brand_query = 'SELECT brand_id, brand_name FROM brand'
 results: List[Record] = await connection.fetch(brand_query)

 for brand in results:
 print(f'id: {brand["brand_id"]}, name: {brand["brand_name"]}')

 await connection.close()

asyncio.run(main())

We first insert two brands into the brand table. Once we’ve done this, we use connection
.fetch to get all brands from our brand table. Once this query has finished, we will
have all results in memory in the results variable. Each result will be an asyncpg
Record object. These objects act similarly to dictionaries; they allow us to access data
by passing in a column name with subscript syntax. Executing this will give us the fol-
lowing output:

id: 1, name: Levis
id: 2, name: Seven

In this example, we fetch all data for our query into a list. If we wanted to fetch a sin-
gle result, we could call connection.fetchrow(), which will return a single record
from the query. The default asyncpg connection will pull all results from our query
into memory, so for the time being there is no performance difference between
fetchrow and fetch. Later in this chapter, we’ll see how to use streaming result sets
with cursors. These will only pull a few results into memory at a time, which is a useful
technique for times when queries may return large amounts of data.

 These examples run queries one after another, and we could have had similar per-
formance by using a non-asyncio database driver. However, since we’re now returning
coroutines, we can use the asyncio API methods we learned in chapter 4 to execute
queries concurrently.

5.5 Executing queries concurrently with connection pools
The true benefit of asyncio for I/O-bound operations is the ability to run multiple
tasks concurrently. Queries independent from one another that we need to make repeat-
edly are good examples of where we can apply concurrency to make our application per-
form better. To demonstrate this, let’s pretend that we’re a successful e-commerce
storefront. Our company carries 100,000 SKUs for 1,000 distinct brands.

110 CHAPTER 5 Non-blocking database drivers
 We’ll also pretend that we sell our items through partners. These partners make
requests for thousands of products at a given time through a batch process we have
built. Running all these queries sequentially could be slow, so we’d like to create an
application that executes these queries concurrently to ensure a speedy experience.

 Since this is an example, and we don’t have 100,000 SKUs on hand, we’ll start by
creating a fake product and SKU records in our database. We’ll randomly generate
100,000 SKUs for random brands and products, and we’ll use this data set as a basis
for running our queries.

5.5.1 Inserting random SKUs into the product database

Since we don’t want to list brands, products, and SKUs ourselves, we’ll randomly gen-
erate them. We’ll pick random names from a list of the 1,000 most frequently occurring
English words. For the sake of this example, we’ll assume we have a text file that con-
tains these words, called common_words.txt. You can download a copy of this file from
the book’s GitHub data repository at https://github.com/concurrency-in-python-with-
asyncio/data.

 The first thing we’ll want to do is insert our brands, since our product table
depends on brand_id as a foreign key. We’ll use the connection.executemany corou-
tine to write parameterized SQL to insert these brands. This will allow us to write one
SQL query and pass in a list of parameters we want to insert instead of having to create
one INSERT statement for each brand.

 The executemany coroutine takes in one SQL statement and a list of tuples with
values we’d like to insert. We can parameterize the SQL statement by using $1, $2 ... $N
syntax. Each number after the dollar sign represents the index of the tuple we’d like
to use in the SQL statement. For instance, if we have a query we write as "INSERT INTO
table VALUES($1, $2)" and a list of tuples [('a', 'b'), ('c', 'd')] this would exe-
cute two inserts for us:

INSERT INTO table ('a', 'b')
INSERT INTO table ('c', 'd')

We’ll first generate a list of 100 random brand names from our list of common words.
We’ll return this as a list of tuples each with one value inside of it, so we can use this in
the executemany coroutine. Once we’ve created this list, it’s a matter of passing a
parameterized INSERT statement alongside this list of tuples.

import asyncpg
import asyncio
from typing import List, Tuple, Union
from random import sample

def load_common_words() -> List[str]:
 with open('common_words.txt') as common_words:
 return common_words.readlines()

Listing 5.5 Inserting random brands

https://github.com/concurrency-in-python-with-asyncio/data
https://github.com/concurrency-in-python-with-asyncio/data

111Executing queries concurrently with connection pools
def generate_brand_names(words: List[str]) -> List[Tuple[Union[str,]]]:
 return [(words[index],) for index in sample(range(100), 100)]

async def insert_brands(common_words, connection) -> int:
 brands = generate_brand_names(common_words)
 insert_brands = "INSERT INTO brand VALUES(DEFAULT, $1)"
 return await connection.executemany(insert_brands, brands)

async def main():
 common_words = load_common_words()
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 await insert_brands(common_words, connection)

asyncio.run(main())

Internally, executemany will loop through our brands list and generate one INSERT
statement per each brand. Then it will execute all those insert statements at once.
This method of parameterization will also prevent us from SQL injection attacks, as
the input data is sanitized. Once we run this, we should have 100 brands in our system
with random names.

 Now that we’ve seen how to insert random brands, let’s use the same technique to
insert products and SKUs. For products, we’ll create a description of 10 random words
and a random brand ID. For SKUs, we’ll pick a random size, color, and product. We’ll
assume that our brand ID starts at 1 and ends at 100.

import asyncio
import asyncpg
from random import randint, sample
from typing import List, Tuple
from chapter_05.listing_5_5 import load_common_words

def gen_products(common_words: List[str],
 brand_id_start: int,
 brand_id_end: int,
 products_to_create: int) -> List[Tuple[str, int]]:
 products = []
 for _ in range(products_to_create):
 description = [common_words[index] for index in sample(range(1000), 10)]
 brand_id = randint(brand_id_start, brand_id_end)
 products.append((" ".join(description), brand_id))
 return products

Listing 5.6 Inserting random products and SKUs

112 CHAPTER 5 Non-blocking database drivers
def gen_skus(product_id_start: int,
 product_id_end: int,
 skus_to_create: int) -> List[Tuple[int, int, int]]:
 skus = []
 for _ in range(skus_to_create):
 product_id = randint(product_id_start, product_id_end)
 size_id = randint(1, 3)
 color_id = randint(1, 2)
 skus.append((product_id, size_id, color_id))
 return skus

async def main():
 common_words = load_common_words()
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')

 product_tuples = gen_products(common_words,
 brand_id_start=1,
 brand_id_end=100,
 products_to_create=1000)
 await connection.executemany("INSERT INTO product VALUES(DEFAULT, $1, $2)",
 product_tuples)

 sku_tuples = gen_skus(product_id_start=1,
 product_id_end=1000,
 skus_to_create=100000)
 await connection.executemany("INSERT INTO sku VALUES(DEFAULT, $1, $2, $3)",
 sku_tuples)

 await connection.close()

asyncio.run(main())

When we run this listing, we should have a database with 1,000 products and 100,000
SKUs. Depending on your machine, this may take several seconds to run. With a few
joins, we can now query all available SKUs for a particular product. Let’s see what this
query would look like for product id 100:

product_query = \
"""
SELECT
p.product_id,
p.product_name,
p.brand_id,
s.sku_id,
pc.product_color_name,
ps.product_size_name
FROM product as p
JOIN sku as s on s.product_id = p.product_id

113Executing queries concurrently with connection pools
JOIN product_color as pc on pc.product_color_id = s.product_color_id
JOIN product_size as ps on ps.product_size_id = s.product_size_id
WHERE p.product_id = 100"""

When we execute this query, we’ll get one row for each SKU for a product, and we’ll
also get the proper English name for size and color instead of an ID. Assuming we
have a lot of product IDs we’d like to query at a given time, this provides us a good
opportunity to apply concurrency. We may naively try to apply asyncio.gather with
our existing connection like so:

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 print('Creating the product database...')
 queries = [connection.execute(product_query),
 connection.execute(product_query)]
 results = await asyncio.gather(*queries)

However, if we run this we’ll be greeted with an error:

RuntimeError: readexactly() called while another coroutine is already waiting
for incoming data

Why is this? In the SQL world, one connection means one socket connection to our
database. Since we have only one connection and we’re trying to read the results of
multiple queries concurrently, we experience an error. We can resolve this by creating
multiple connections to our database and executing one query per connection. Since
creating connections is resource expensive, caching them so we can access them when
needed makes sense. This is commonly known as a connection pool.

5.5.2 Creating a connection pool to run queries concurrently

Since we can only run one query per connection at a time, we need a mechanism for
creating and managing multiple connections. A connection pool does just that. You
can think of a connection pool as a cache of existing connections to a database
instance. They contain a finite number of connections that we can access when we
need to run a query.

 Using connection pools, we acquire connections when we need to run a query.
Acquiring a connection means we ask the pool, “Does the pool currently have any con-
nections available? If so, give me one so I can run my queries.” Connection pools facili-
tate the reuse of these connections to execute queries. In other words, once a
connection is acquired from the pool to run a query and that query finishes, we return
or “release” it to the pool for others to use. This is important because establishing a con-
nection with a database is time-expensive. If we had to create a new connection for every
query we wanted to run, our application’s performance would quickly degrade.

114 CHAPTER 5 Non-blocking database drivers
 Since the connection pool has a finite number of connections, we could be waiting
for some time for one to become available, as other connections may be in use. This
means connection acquisition is an operation that may take time to complete. If we
only have 10 connections in the pool, each of which is in use, and we ask for another,
we’ll need to wait until 1 of the 10 connections becomes available for our query to
execute.

 To illustrate how this works in terms of asyncio, let’s imagine we have a connection
pool with two connections. Let’s also imagine we have three coroutines and each runs
a query. We’ll run these three coroutines concurrently as tasks. With a connection
pool set up this way, the first two coroutines that attempt to run their queries will
acquire the two available connections and start running their queries. While this is
happening, the third coroutine will be waiting for a connection to become available.
When either one of the first two coroutines finishes running its query, it will release its
connection and return it to the pool. This lets the third coroutine acquire it and start
using it to run its query (figure 5.2).

In this model, we can have at most two queries running concurrently. Normally, the
connection pool will be a bit bigger to enable more concurrency. For our examples,
we’ll use a connection pool of six, but the actual number you want to use is dependent
on the hardware your database and your application run on. In this case, you’ll need
to benchmark which connection pool size works best. Keep in mind, bigger is not
always better, but that’s a much larger topic.

 Now that we understand how connection pools work, how do we create one with
asyncpg? asyncpg exposes a coroutine named create_pool to accomplish this. We use

Connection pool

Connection 1

Database

Connection 2

Coroutine 1

Coroutine 2

Coroutine 3

Acquire connection

Acquire connection

Wait for available connection

Figure 5.2 Coroutines 1 and 2 acquire connections to run their queries while Coroutine 3 waits for a
connection. Once either Coroutine 1 or 2 finishes, Coroutine 3 will be able to use the newly released connection
and will be able to execute its query.

115Executing queries concurrently with connection pools
this instead of the connect function we used earlier to establish a connection to our
database. When we call create_pool, we’ll specify the number of connections we wish
to create in the pool. We’ll do this with the min_size and max_size parameters. The
min_size parameter specifies the minimum number of connections in our connec-
tion pool. This means that once we set up our pool, we are guaranteed to have this
number of connections inside of it already established. The max_size parameter spec-
ifies the maximum number of connections we want in our pool, determining the max-
imum number of connections we can have. If we don’t have enough connections
available, the pool will create a new one for us if the new connection won’t cause the
pool size to be above the value set in max_size. For our first example, we’ll set both
these values to six. This guarantees we always have six connections available.

 asyncpg pools are asynchronous context managers, meaning that we must use async
with syntax to create a pool. Once we’ve established a pool, we can acquire connec-
tions using the acquire coroutine. This coroutine will suspend execution until we
have a connection available. Once we do, we can then use that connection to execute
whatever SQL query we’d like. Acquiring a connection is also an async context man-
ager that returns the connection to the pool when we are done with it, so we’ll need to
use async with syntax just like we did when we created the pool. Using this, we can
rewrite our code to run several queries concurrently.

import asyncio
import asyncpg

product_query = \
 """
SELECT
p.product_id,
p.product_name,
p.brand_id,
s.sku_id,
pc.product_color_name,
ps.product_size_name
FROM product as p
JOIN sku as s on s.product_id = p.product_id
JOIN product_color as pc on pc.product_color_id = s.product_color_id
JOIN product_size as ps on ps.product_size_id = s.product_size_id
WHERE p.product_id = 100"""

async def query_product(pool):
 async with pool.acquire() as connection:
 return await connection.fetchrow(product_query)

async def main():
 async with asyncpg.create_pool(host='127.0.0.1',
 port=5432,
 user='postgres',

Listing 5.7 Establishing a connection pool and running queries concurrently

116 CHAPTER 5 Non-blocking database drivers
 password='password',
 database='products',
 min_size=6,
 max_size=6) as pool:

 await asyncio.gather(query_product(pool),
 query_product(pool))

asyncio.run(main())

In the preceding listing, we first create a connection pool with six connections. We
then create two query coroutine objects and schedule them to run concurrently with
asyncio.gather. In our query_product coroutine, we first acquire a connection from
the pool with pool.acquire(). This coroutine will then suspend running until a con-
nection is available from the connection pool. We do this in an async with block; this
will ensure that once we leave the block, the connection will be returned to the pool.
This is important because if we don’t do this we can run out of connections, and we’ll
end up with an application that hangs forever, waiting for a connection that will never
become available. Once we’ve acquired a connection, we can then run our query as
we did in previous examples.

 We can expand this example to run 10,000 queries by creating 10,000 different
query coroutine objects. To make this interesting, we’ll write a version that runs the
queries synchronously and compare how long things take.

import asyncio
import asyncpg
from util import async_timed

product_query = \
 """
SELECT
p.product_id,
p.product_name,
p.brand_id,
s.sku_id,
pc.product_color_name,
ps.product_size_name
FROM product as p
JOIN sku as s on s.product_id = p.product_id
JOIN product_color as pc on pc.product_color_id = s.product_color_id
JOIN product_size as ps on ps.product_size_id = s.product_size_id
WHERE p.product_id = 100"""

async def query_product(pool):
 async with pool.acquire() as connection:
 return await connection.fetchrow(product_query)

Listing 5.8 Synchronous queries vs. concurrent

Create a
connection
pool with six
connections.

Execute two
product queries
concurrently.

117Executing queries concurrently with connection pools
@async_timed()
async def query_products_synchronously(pool, queries):
 return [await query_product(pool) for _ in range(queries)]

@async_timed()
async def query_products_concurrently(pool, queries):
 queries = [query_product(pool) for _ in range(queries)]
 return await asyncio.gather(*queries)

async def main():
 async with asyncpg.create_pool(host='127.0.0.1',
 port=5432,
 user='postgres',
 password='password',
 database='products',
 min_size=6,
 max_size=6) as pool:
 await query_products_synchronously(pool, 10000)
 await query_products_concurrently(pool, 10000)

asyncio.run(main())

In query_products_synchronously, we put an await in a list comprehension, which
will force each call to query_product to run sequentially. Then, in query_products_
concurrently we create a list of coroutines we want to run and then run them con-
currently with gather. In the main coroutine, we then run our synchronous and
concurrent version with 10,000 queries each. While the exact results can vary sub-
stantially based on your hardware, the concurrent version is nearly five times as fast as
the serial version:

starting <function query_products_synchronously at 0x1219ea1f0> with args
(<asyncpg.pool.Pool object at 0x12164a400>, 10000) {}

finished <function query_products_synchronously at 0x1219ea1f0> in 21.8274
second(s)

starting <function query_products_concurrently at 0x1219ea310> with args
(<asyncpg.pool.Pool object at 0x12164a400>, 10000) {}

finished <function query_products_concurrently at 0x1219ea310> in 4.8464
second(s)

An improvement like this is significant, but there are still more improvements we can
make if we need more throughput. Since our query is relatively fast, this code is a mix-
ture of CPU-bound in addition to I/O-bound. In chapter 6, we’ll see how to squeeze
even more performance out of this setup.

 So far, we’ve seen how to insert data into our database assuming we don’t have any
failures. But what happens if we are in the middle of inserting products, and we get a
failure? We don’t want an inconsistent state in our database, so this is where database
transactions come into play. Next, we’ll see how to use asynchronous context manag-
ers to acquire and manage transactions.

118 CHAPTER 5 Non-blocking database drivers

tr
5.6 Managing transactions with asyncpg
Transactions are a core concept in many databases that satisfy the ACID (atomic, con-
sistent, isolated, durable) properties. A transaction consists of one or more SQL state-
ments that are executed as one atomic unit. If no errors occur when we execute the
statements within a transaction, we commit the statements to the database, making any
changes a permanent part of the database. If there are any errors, we roll back the state-
ments, and it is as if none of them ever happened. In the context of our product data-
base, we may need to roll back a set of updates if we attempt to insert a duplicate
brand, or if we have violated a database constraint we’ve set.

 In asyncpg, the easiest way to deal with transactions is to use the connection
.transaction asynchronous context manager to start them. Then, if there is an excep-
tion in the async with block, the transaction will automatically be rolled back. If every-
thing executes successfully, it will be automatically committed. Let’s look at how to create
a transaction and execute two simple insert statements to add a couple of brands.

import asyncio
import asyncpg

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 async with connection.transaction():
 await connection.execute("INSERT INTO brand "
 "VALUES(DEFAULT, 'brand_1')")
 await connection.execute("INSERT INTO brand "
 "VALUES(DEFAULT, 'brand_2')")

 query = """SELECT brand_name FROM brand
 WHERE brand_name LIKE 'brand%'"""
 brands = await connection.fetch(query)
 print(brands)

 await connection.close()

asyncio.run(main())

Assuming our transaction committed successfully, we should see [<Record brand_
name='brand_1'>, <Record brand_name='brand_2'>] printed out to the console. This
example assumes zero errors running the two insert statements, and everything was
committed successfully. To demonstrate what happens when a rollback occurs, let’s
force a SQL error. To test this out, we’ll try and insert two brands with the same pri-
mary key id. Our first insert will work successfully, but our second insert will raise a
duplicate key error.

Listing 5.9 Creating a transaction

Start a
database

ansaction.

Select brands to ensure
that our transaction
was committed.

119Managing transactions with asyncpg

an
lo
import asyncio
import logging
import asyncpg

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 try:
 async with connection.transaction():
 insert_brand = "INSERT INTO brand VALUES(9999, 'big_brand')"
 await connection.execute(insert_brand)
 await connection.execute(insert_brand)
 except Exception:
 logging.exception('Error while running transaction')
 finally:
 query = """SELECT brand_name FROM brand
 WHERE brand_name LIKE 'big_%'"""
 brands = await connection.fetch(query)
 print(f'Query result was: {brands}')

 await connection.close()

asyncio.run(main())

In the following code, our second insert statement throws an error. This leads to the
following output:

ERROR:root:Error while running transaction
Traceback (most recent call last):
 File "listing_5_10.py", line 16, in main
 await connection.execute("INSERT INTO brand "
 File "asyncpg/connection.py", line 272, in execute
 return await self._protocol.query(query, timeout)
 File "asyncpg/protocol/protocol.pyx", line 316, in query
asyncpg.exceptions.UniqueViolationError: duplicate key value violates unique

constraint "brand_pkey"
DETAIL: Key (brand_id)=(9999) already exists.
Query result was: []

We first retrieved an exception because we attempted to insert a duplicate key and
then see that the result of our select statement was empty, indicating that we success-
fully rolled back the transaction.

5.6.1 Nested transactions

asyncpg also supports the concept of a nested transaction through a Postgres feature
called savepoints. Savepoints are defined in Postgres with the SAVEPOINT command.
When we define a savepoint, we can roll back to that savepoint and any queries executed

Listing 5.10 Handling an error in a transaction

This insert
statement will
error because
of a duplicate
primary key.

If we had
 exception,

g the error.

Select the brands to
ensure we didn’t
insert anything.

120 CHAPTER 5 Non-blocking database drivers
after the savepoint will roll back, but any queries successfully executed before it will
not roll back.

 In asyncpg, we can create a savepoint by calling the connection.transaction con-
text manager within an existing transaction. Then, if there is any error within this
inner transaction it is rolled back, but the outer transaction is not affected. Let’s try
this out by inserting a brand in a transaction and then within a nested transaction
attempting to insert a color that already exists in our database.

import asyncio
import asyncpg
import logging

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 async with connection.transaction():
 await connection.execute("INSERT INTO brand VALUES(DEFAULT,

'my_new_brand')")

 try:
 async with connection.transaction():
 await connection.execute("INSERT INTO product_color VALUES(1,

'black')")
 except Exception as ex:
 logging.warning('Ignoring error inserting product color',

exc_info=ex)

 await connection.close()

asyncio.run(main())

When we run this code, our first INSERT statement runs successfully, since we don’t
have this brand in our database yet. Our second INSERT statement fails with a dupli-
cate key error. Since this second insert statement is within a transaction and we catch
and log the exception, despite the error our outer transaction is not rolled back, and
the brand is properly inserted. If we did not have the nested transaction, the second
insert statement would have also rolled back our brand insert.

5.6.2 Manually managing transactions

So far, we have used asynchronous context managers to handle committing and roll-
ing back our transactions. Since this is less verbose than managing things ourselves,
it is usually the best approach. That said, we may find ourselves in situations where

Listing 5.11 A nested transaction

121Managing transactions with asyncpg

tr
we need to manually manage a transaction. For example, we may want to have cus-
tom code execute on rollback, or we may want to roll back on a condition other
than an exception.

 To manually manage a transaction, we can use the transaction manager returned
by connection.transaction outside of a context manager. When we do this, we’ll
manually need to call its start method to start a transaction and then commit on
success and rollback on failure. Let’s look at how to do this by rewriting our first
example.

import asyncio
import asyncpg
from asyncpg.transaction import Transaction

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 transaction: Transaction = connection.transaction()
 await transaction.start()
 try:
 await connection.execute("INSERT INTO brand "
 "VALUES(DEFAULT, 'brand_1')")
 await connection.execute("INSERT INTO brand "
 "VALUES(DEFAULT, 'brand_2')")
 except asyncpg.PostgresError:
 print('Errors, rolling back transaction!')
 await transaction.rollback()
 else:
 print('No errors, committing transaction!')
 await transaction.commit()

 query = """SELECT brand_name FROM brand
 WHERE brand_name LIKE 'brand%'"""
 brands = await connection.fetch(query)
 print(brands)

 await connection.close()

asyncio.run(main())

We first start by creating a transaction with the same method call we used with async con-
text manager syntax, but instead, we store the Transaction instance that this call
returns. Think of this class as a manager for our transaction, since with this we’ll be able
to perform any commits and rollbacks we need. Once we have a transaction instance, we
can then call the start coroutine. This will execute a query to start the transaction in

Listing 5.12 Manually managing a transaction

Create a
transaction
instance.Start the

ansaction.

If there was an
exception, roll back.

If there was no
exception, commit.

122 CHAPTER 5 Non-blocking database drivers
Postgres. Then, within a try block we can execute any queries we’d like. In this case we
insert two brands. If there were errors with any of those INSERT statements, we’ll expe-
rience the except block and roll back the transaction by calling the rollback coroutine.
If there were no errors, we call the commit coroutine, which will end the transaction and
make any changes in our transaction permanent in the database.

 Up until now we have been running our queries in a way that pulls all query results
into memory at once. This makes sense for many applications, since many queries
will return small result sets. However, we may have a situation where we are dealing
with a large result set that may not fit in memory all at once. In these cases, we may
want to stream results to avoid taxing our system’s random access memory (RAM).
Next, we’ll explore how to do this with asyncpg and, along the way, introduce asyn-
chronous generators.

5.7 Asynchronous generators and streaming result sets
One drawback of the default fetch implementation asynpg provides is that it pulls
all data from any query we execute into memory. This means that if we have a query
that returns millions of rows, we’d attempt to transfer that entire set from the data-
base to the requesting machine. Going back to our product database example, imag-
ine we’re even more successful and have billions of products available. It is highly
likely that we’ll have some queries that will return very large result sets, potentially
hurting performance.

 Of course, we could apply LIMIT statements to our query and paginate things, and
this makes sense for many, if not most, applications. That said, there is overhead with
this approach in that we are sending the same query multiple times, potentially creat-
ing extra stress on the database. If we find ourselves hampered by these issues, it can
make sense to stream results for a particular query only as we need them. This will
save on memory consumption at our application layer as well as save load on the data-
base. However, it does come at the expense of making more round trips over the net-
work to the database.

 Postgres supports streaming query results through the concept of cursors. Consider
a cursor as a pointer to where we currently are in iterating through a result set. When
we get a single result from a streamed query, we advance the cursor to the next ele-
ment, and so on, until we have no more results.

 Using asyncpg, we can get a cursor directly from a connection which we can then
use to execute a streaming query. Cursors in asyncpg use an asyncio feature we have
not used yet called asynchronous generators. Asynchronous generators generate results
asynchronously one by one, similarly to regular Python generators. They also allow us
to use a special for loop style syntax to iterate over any results we get. To fully under-
stand how this works, we’ll first introduce asynchronous generators as well as async
for syntax to loop these generators.

123Asynchronous generators and streaming result sets
5.7.1 Introducing asynchronous generators

Many developers will be familiar with generators from the synchronous Python world.
Generators are an implementation of the iterator design pattern made famous in the
book Design Patterns: Elements of Reusable Object-Oriented Software by the “gang of four”
(Addison-Wesley Professional, 1994). This pattern allows us to define sequences of data
“lazily” and iterate through them one element at a time. This is useful for potentially
large sequences of data, where we don’t need to store everything in memory all at once.

 A simple synchronous generator is a normal Python function which contains a yield
statement instead of a return statement. For example, let’s see how creating and using a
generator returns positive integers, starting from zero until a specified end.

def positive_integers(until: int):
 for integer in range(until):
 yield integer

positive_iterator = positive_integers(2)

print(next(positive_iterator))
print(next(positive_iterator))

In the preceding listing, we create a function which takes an integer that we want to
count to. We then start a loop until our specified end integer. Then, at each iteration
of the loop, we yield the next integer in the sequence. When we call positive_
integers(2), we don’t return an entire list or even run the loop in our method. In
fact, if we check the type of positive_iterator, we’ll get <class 'generator'>.

 We then use the next utility function to iterate over our generator. Each time we
call next, this will trigger one iteration of the for loop in positive_integers, giving
us the result of the yield statement per each iteration. Thus, the code in listing 5.13
will print 0 and 1 to the console. Instead of using next, we could have used a for loop
with our generator to loop through all values in our generator.

 This works for synchronous methods, but what if we wanted to use coroutines to
generate a sequence of values asynchronously? Using our database example, what if
we wanted to generate a sequence of rows that we “lazily” get from our database? We
can do this with Python’s asynchronous generators and special async for syntax. To
demonstrate a simple asynchronous generator, let’s start with our positive integer
example but introduce a call to a coroutine that takes a few seconds to complete.
We’ll use the delay function from chapter 2 for this.

import asyncio
from util import delay, async_timed

Listing 5.13 A synchronous generator

Listing 5.14 A simple asynchronous generator

124 CHAPTER 5 Non-blocking database drivers
async def positive_integers_async(until: int):
 for integer in range(1, until):
 await delay(integer)
 yield integer

@async_timed()
async def main():
 async_generator = positive_integers_async(3)
 print(type(async_generator))
 async for number in async_generator:
 print(f'Got number {number}')

asyncio.run(main())

Running the preceding listing, we’ll see the type is no longer a plain generator but
<class 'async_generator'>, an asynchronous generator. An asynchronous generator
differs from a regular generator in that, instead of generating plain Python objects as
elements, it generates coroutines that we can then await until we get a result. Because of
this, our normal for loops and next functions won’t work with these types of generators.
Instead, we have a special syntax, async for, to deal with these types of generators. In
this example, we use this syntax to iterate over positive_integers_async.

 This code will print the numbers 1 and 2, waiting 1 second before returning the
first number and 2 seconds before returning the second. Note that this is not running
the coroutines generated concurrently; instead, it is generating and awaiting them
one at a time in a series.

5.7.2 Using asynchronous generators with a streaming cursor

The concept of asynchronous generators pairs nicely with the concept of a streaming
database cursor. Using these generators, we’ll be able to fetch one row at a time with a
simple for loop-like syntax. To perform streaming with asyncpg, we’ll first need to start
a transaction, as Postgres requires this to use cursors. Once we’ve started a transaction,
we can then call the cursor method on the Connection class to obtain a cursor. When
we call the cursor method, we’ll pass in the query we’d like to stream. This method will
return an asynchronous generator that we can use to stream results one at a time.

 To get familiar with how to do this, let’s run a query to get all products from our
database with a cursor. We’ll then use async for syntax to fetch elements one at a time
from our result set.

import asyncpg
import asyncio
import asyncpg

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',

Listing 5.15 Streaming results one by one

125Asynchronous generators and streaming result sets
 port=5432,
 user='postgres',
 database='products',
 password='password')

 query = 'SELECT product_id, product_name FROM product'
 async with connection.transaction():
 async for product in connection.cursor(query):
 print(product)

 await connection.close()

asyncio.run(main())

The preceding listing will print all our products out one at a time. Despite having put
1,000 products in this table, we’ll only pull a few into memory at a time. At the time of
writing, to cut down on network traffic the cursor defaults to prefetching 50 records at
a time. We can change this behavior by setting the prefetch parameter with however
many elements we’d like to prefetch.

 We can also use these cursors to skip around our result set and fetch an arbitrary
number of rows at a time. Let’s see how to do this by getting a few records from the
middle of the query we just used.

import asyncpg
import asyncio

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 async with connection.transaction():
 query = 'SELECT product_id, product_name from product'
 cursor = await connection.cursor(query)
 await cursor.forward(500)
 products = await cursor.fetch(100)
 for product in products:
 print(product)

 await connection.close()

asyncio.run(main())

The code in the preceding listing will first create a cursor for our query. Note that we
use this in an await statement like a coroutine instead of an asynchronous generator;
this is because in asyncpg a cursor is both an asynchronous generator and an
awaitable. For the most part, this is similar to using an async generator, but there is a

Listing 5.16 Moving the cursor and fetching records

Create a
cursor for
the query.

Move the cursor
forward 500
records.

Get the next
100 records.

126 CHAPTER 5 Non-blocking database drivers
difference in prefetch behavior when creating a cursor this way. Using this method, we
cannot set a prefetch value. Doing so would raise an InterfaceError.

 Once we have the cursor, we use its forward coroutine method to move forward in
the result set. This will effectively skip the first 500 records in our product table. Once
we’ve moved our cursor forward, we then fetch the next 100 products and print them
each out to the console.

 These types of cursors are non-scrollable by default, meaning we can only advance
forward in the result set. If you want to use scrollable cursors that can move both for-
wards and backwards, you’ll need to execute the SQL to do so manually using DECLARE
... SCROLL CURSOR (you can read more on how to do this in the Postgres documenta-
tion at https://www.postgresql.org/docs/current/plpgsql-cursors.html).

 Both techniques are useful if we have a really large result set and don’t want to
have the entire set residing in memory. The async for loops we saw in listing 5.16
are useful for looping over the entire set, while creating a cursor and using the
fetch coroutine method is useful for fetching a chunk of records or skipping a set
of records.

 However, what if we only want to retrieve a fixed set of elements at a time with
prefetching and still use an async for loop? We could add a counter in our async for
loop and break out after we’ve seen a certain number of elements, but that isn’t par-
ticularly reusable if we need to do this often in our code. What we can do to make this
easier is build our own async generator. We’ll call this generator take. This generator
will take an async generator and the number of elements we wish to extract. Let’s
investigate creating this and grabbing the first five elements from a result set.

import asyncpg
import asyncio

async def take(generator, to_take: int):
 item_count = 0
 async for item in generator:
 if item_count > to_take - 1:
 return
 item_count = item_count + 1
 yield item

async def main():
 connection = await asyncpg.connect(host='127.0.0.1',
 port=5432,
 user='postgres',
 database='products',
 password='password')
 async with connection.transaction():
 query = 'SELECT product_id, product_name from product'
 product_generator = connection.cursor(query)

Listing 5.17 Getting a specific number of elements with an asynchronous generator

https://www.postgresql.org/docs/current/plpgsql-cursors.html

127Summary
 async for product in take(product_generator, 5):
 print(product)

 print('Got the first five products!')

 await connection.close()

asyncio.run(main())

Our take async generator keeps track of how many items we’ve seen so far with
item_count. We then enter an async_for loop and yield each record that we see.
Once we yield, we check item_count to see if we have yielded the number of items the
caller requested. If we have, we return, which ends the async generator. In our main
coroutine, we can then use take within a normal async for loop. In this example, we use
it to ask for the first five elements from the cursor, giving us the following output:

<Record product_id=1 product_name='among paper foot see shoe ride age'>
<Record product_id=2 product_name='major wait half speech lake won't'>
<Record product_id=3 product_name='war area speak listen horse past edge'>
<Record product_id=4 product_name='smell proper force road house planet'>
<Record product_id=5 product_name='ship many dog fine surface truck'>
Got the first five products!

While we’ve defined this in code ourselves, an open source library, aiostream, has this
functionality and more for processing asynchronous generators. You can view the doc-
umentation for this library at aiostream.readthedocs.io.

Summary
In this chapter, we’ve learned the basics around creating and selecting records in Post-
gres using an asynchronous database connection. You should now be able to take this
knowledge and create concurrent database clients.

 We’ve learned how to use asyncpg to connect to a Postgres database.
 We’ve learned how to use various asyncpg coroutines to create tables, insert

records, and execute single queries.
 We’ve learned how to create a connection pool with asyncpg. This allows us to

run multiple queries concurrently with asyncio’s API methods such as gather.
Using this we can potentially speed up our applications by running our queries
in tandem.

 We’ve learned how to manage transactions with asyncpg. Transactions allow us to
roll back any changes we make to a database as the result of a failure, keeping our
database in a consistent state even when something unexpected happens.

 We’ve learned how to create asynchronous generators and how to use them for
streaming database connections. We can use these two concepts together to
work with large data sets that can’t fit in memory all at once.

http://aiostream.readthedocs.io

Handling
CPU-bound work
Until now, we’ve been focused on performance gains we can get with asyncio when
running I/O-bound work concurrently. Running I/O-bound work is asyncio’s
bread and butter, and with the way we’ve written code so far, we need to be careful
not to run any CPU-bound code in our coroutines. This seems like it severely limits
asyncio, but the library is more versatile than just handling I/O-bound work.

 asyncio has an API for interoperating with Python’s multiprocessing library.
This lets us use async await syntax as well as asyncio APIs with multiple processes.

This chapter covers
 The multiprocessing library

 Creating process pools to handle CPU-bound work

 Using async and await to manage CPU-bound
work

 Using MapReduce to solve a CPU-intensive
problem with asyncio

 Handling shared data between multiple
processes with locks

 Improving the performance of work with both
CPU- and I/O-bound operations
128

129Introducing the multiprocessing library
Using this, we can get the benefits of the asyncio library even when using CPU-bound
code. This allows us to achieve performance gains for CPU-intensive work, such as
mathematical computations or data processing, letting us sidestep the global inter-
preter lock and take full advantage of a multicore machine.

 In this chapter, we’ll first learn about the multiprocessing module to become famil-
iar with the concept of executing multiple processes. We’ll then learn about process
pool executors and how we can hook them into asyncio. We’ll then take this knowledge
and use it to solve a CPU-intensive problem with MapReduce. We’ll also learn about
managing shared states amongst multiple processes, and we’ll introduce the concept
of locking to avoid concurrency bugs. Finally, we’ll look at how to use multiprocessing
to improve the performance of an application that is both I/O- and CPU-bound as we
saw in chapter 5.

6.1 Introducing the multiprocessing library
In chapter 1, we introduced the global interpreter lock. The global interpreter lock
prevents more than one piece of Python bytecode from running in parallel. This
means that for anything other than I/O-bound tasks, excluding some small excep-
tions, using multithreading won’t provide any performance benefits, the way it would
in languages such as Java and C++. It seems like we might be stuck with no solution for
our parallelizable CPU-bound work in Python, but this is where the multiprocessing
library provides a solution.

 Instead of our parent process spawning threads to parallelize things, we instead
spawn subprocesses to handle our work. Each subprocess will have its own Python
interpreter and be subject to the GIL, but instead of one interpreter we’ll have sev-
eral, each with its own GIL. Assuming we run on a machine with multiple CPU
cores, this means that we can parallelize any CPU-bound workload effectively. Even
if we have more processes than cores, our operating system will use preemptive mul-
titasking to allow our multiple tasks to run concurrently. This setup is both concur-
rent and parallel.

 To get started with the multiprocessing library, let’s start by running a couple of func-
tions in parallel. We’ll use a very simple CPU-bound function that counts from zero to a
large number to examine how the API works as well as the performance benefits.

import time
from multiprocessing import Process

def count(count_to: int) -> int:
 start = time.time()
 counter = 0
 while counter < count_to:
 counter = counter + 1
 end = time.time()

Listing 6.1 Two parallel processes with multiprocessing

130 CHAPTER 6 Handling CPU-bound work
 print(f'Finished counting to {count_to} in {end-start}')
 return counter

if __name__ == "__main__":
 start_time = time.time()

 to_one_hundred_million = Process(target=count, args=(100000000,))
 to_two_hundred_million = Process(target=count, args=(200000000,))

 to_one_hundred_million.start()
 to_two_hundred_million.start()

 to_one_hundred_million.join()
 to_two_hundred_million.join()

 end_time = time.time()
 print(f'Completed in {end_time-start_time}')

In the preceding listing, we create a simple count function which takes an integer and
loops one by one until we count to the integer we pass in. We then create two pro-
cesses, one to count to 100,000,000 and one to count to 200,000,000. The Process
class takes in two arguments, a target which is the function name we wish to run in
the process and args representing a tuple of arguments we wish to pass to the func-
tion. We then call the start method on each process. This method returns instantly
and will start running the process. In this example we start both processes one after
another. We then call the join method on each process. This will cause our main pro-
cess to block until each process has finished. Without this, our program would exit
almost instantly and terminate the subprocesses, as nothing would be waiting for their
completion. Listing 6.1 runs both count functions concurrently; assuming we’re run-
ning on a machine with at least two CPU cores, we should see a speedup. When this
code runs on a 2.5 GHz 8-core machine, we achieve the following results:

Finished counting down from 100000000 in 5.3844
Finished counting down from 200000000 in 10.6265
Completed in 10.8586

In total, our countdown functions took a bit over 16 seconds, but our application fin-
ished in just under 11 seconds. This gives us a time savings over running sequentially
of about 5 seconds. Of course, the results you see when you run this will be highly vari-
able depending on your machine, but you should see something directionally equiva-
lent to this.

 Notice the addition of if __name__ == "__main__": to our application where we
haven’t before. This is a quirk of the multiprocessing library; if you don’t add this you
may receive the following error: An attempt has been made to start a new process
before the current process has finished its bootstrapping phase. The reason this
happens is to prevent others who may import your code from accidentally launching
multiple processes.

Create a process to
run the countdown

function.

Start the process. This
method returns instantly.

Wait for the process to finish.
This method blocks until the
process is done.

131Using process pools
 This gives us a decent performance gain; however, it is awkward because we must
call start and join for each process we start. We also don’t know which process will
complete first; if we want to do something like asyncio.as_completed and process
results as they finish, we’re out of luck. The join method also does not return the
value our target function returns; in fact, currently there is no way to get the value our
function returns without using shared inter-process memory!

 This API will work for simple cases, but it clearly won’t work if we have functions
where we want to get the return value out or want to process results as soon as they
come in. Luckily, process pools provide a way for us to deal with this.

6.2 Using process pools
In the previous example, we manually created processes and called their start and
join methods to run and wait for them. We identified several issues with this approach,
from code quality to not having the ability to access the results our process returned. The
multiprocessing module has an API that lets us deal with this issue, called process pools.

 Process pools are a concept similar to the connection pools that we saw in chap-
ter 5. The difference in this case is that, instead of a collection of connections to a
database, we create a collection of Python processes that we can use to run functions
in parallel. When we have a CPU-bound function we wish to run in a process, we ask
the pool directly to run it for us. Behind the scenes, this will execute this function in
an available process, running it and returning the return value of that function. To see
how a process pool works, let’s create a simple one and run a few “hello world”-style
functions with it.

from multiprocessing import Pool

def say_hello(name: str) -> str:
 return f'Hi there, {name}'

if __name__ == "__main__":
 with Pool() as process_pool:
 hi_jeff = process_pool.apply(say_hello, args=('Jeff',))
 hi_john = process_pool.apply(say_hello, args=('John',))
 print(hi_jeff)
 print(hi_john)

In the preceding listing, we create a process pool using with Pool() as process_pool.
This is a context manager because once we are done with the pool, we need to appro-
priately shut down the Python processes we created. If we don’t do this, we run the
risk of leaking processes, which can cause resource-utilization issues. When we instan-
tiate this pool, it will automatically create Python processes equal to the number of
CPU cores on the machine you’re running on. You can determine the number of CPU

Listing 6.2 Creating a process pool

Create a
new process
pool.

Run say_hello with
the argument 'Jeff ' in a

separate process and
get the result.

132 CHAPTER 6 Handling CPU-bound work
cores you have in Python by running the multiprocessing.cpu_count() function.
You can set the processes argument to any integer you’d like when you call Pool().
The default value is usually a good starting point.

 Next, we use the apply method of the process pool to run our say_hello function
in a separate process. This method looks similar to what we did previously with the
Process class, where we passed in a target function and a tuple of arguments. The dif-
ference here is that we don’t need to start the process or call join on it ourselves. We
also get back the return value of our function, which we couldn’t do in the previous
example. Running this code, you should see the following printed out:

Hi there, Jeff
Hi there, John

This works, but there is a problem. The apply method blocks until our function com-
pletes. That means that, if each call to say_hello took 10 seconds, our entire pro-
gram’s run time would be about 20 seconds because we’ve run things sequentially,
negating the point of running in parallel. We can solve this problem by using the pro-
cess pool’s apply_async method.

6.2.1 Using asynchronous results

In the previous example, each call to apply blocked until our function completed.
This doesn’t work if we want to build a truly parallel workflow. To work around this, we
can use the apply_async method instead. This method returns an AsyncResult instantly
and will start running the process in the background. Once we have an AsyncResult, we
can use its get method to block and obtain the results of our function call. Let’s take
our say_hello example and adapt it to use asynchronous results.

from multiprocessing import Pool

def say_hello(name: str) -> str:
 return f'Hi there, {name}'

if __name__ == "__main__":
 with Pool() as process_pool:
 hi_jeff = process_pool.apply_async(say_hello, args=('Jeff',))
 hi_john = process_pool.apply_async(say_hello, args=('John',))
 print(hi_jeff.get())
 print(hi_john.get())

When we call apply_async, our two calls to say_hello start instantly in separate pro-
cesses. Then, when we call the get method, our parent process will block until each
process returns a value. This lets things run concurrently, but what if hi_jeff took 10
seconds, but hi_john only took one? In this case, since we call get on hi_jeff first,

Listing 6.3 Using async results with process pools

133Using process pool executors with asyncio
our program would block for 10 seconds before printing our hi_john message even
though we were ready after only 1 second. If we want to respond to things as soon as
they finish, we’re left with an issue. What we really want is something like asyncio’s
as_completed in this instance. Next, let’s see how to use process pool executors with
asyncio, so we can address this issue.

6.3 Using process pool executors with asyncio
We’ve seen how to use process pools to run CPU-intensive operations concurrently.
These pools are good for simple use cases, but Python offers an abstraction on top of
multiprocessing’s process pools in the concurrent.futures module. This module
contains executors for both processes and threads that can be used on their own but
also interoperate with asyncio. To get started, we’ll learn the basics of ProcessPool-
Executor, which is similar to ProcessPool. Then, we’ll see how to hook this into
asyncio, so we can use the power of its API functions, such as gather.

6.3.1 Introducing process pool executors

Python’s process pool API is strongly coupled to processes, but multiprocessing is
one of two ways to implement preemptive multitasking, the other being multi-
threading. What if we need to easily change the way in which we handle concur-
rency, seamlessly switching between processes and threads? If we want a design like
this, we need to build an abstraction that encompasses the core of distributing work
to a pool of resources that does not care if those resources are processes, threads, or
some other construct.

 The concurrent.futures module provides this abstraction for us with the Executor
abstract class. This class defines two methods for running work asynchronously. The
first is submit, which will take a callable and return a Future (note that this is not
the same as asyncio futures but is part of the concurrent.futures module)—this is
equivalent to the Pool.apply_async method we saw in the last section. The second
is map. This method will take a callable and a list of function arguments and then
execute each argument in the list asynchronously. It returns an iterator of the
results of our calls similarly to asyncio.as_completed in that results are available
once they complete. Executor has two concrete implementations: ProcessPool-
Executor and ThreadPoolExecutor. Since we’re using multiple processes to handle
CPU-bound work, we’ll focus on ProcessPoolExecutor. In chapter 7, we’ll examine
threads with ThreadPoolExecutor. To learn how a ProcessPoolExecutor works,
we’ll reuse our count example with a few small numbers and a few large numbers to
show how results come in.

import time
from concurrent.futures import ProcessPoolExecutor

Listing 6.4 Process pool executors

134 CHAPTER 6 Handling CPU-bound work
def count(count_to: int) -> int:
 start = time.time()
 counter = 0
 while counter < count_to:
 counter = counter + 1
 end = time.time()
 print(f'Finished counting to {count_to} in {end - start}')
 return counter

if __name__ == "__main__":
 with ProcessPoolExecutor() as process_pool:
 numbers = [1, 3, 5, 22, 100000000]
 for result in process_pool.map(count, numbers):
 print(result)

Much like before, we create a ProcessPoolExecutor in context manager. The num-
ber of resources also defaults to the number of CPU cores our machine has, as process
pools did. We then use process_pool.map with our count function and a list of num-
bers that we want to count to.

 When we run this, we’ll see that our calls to countdown with a low number will fin-
ish quickly and be printed out nearly instantly. Our call with 100000000 will, however,
take much longer and will be printed out after the few small numbers, giving us the
following output:

Finished counting down from 1 in 9.5367e-07
Finished counting down from 3 in 9.5367e-07
Finished counting down from 5 in 9.5367e-07
Finished counting down from 22 in 3.0994e-06
1
3
5
22
Finished counting down from 100000000 in 5.2097
100000000

While it seems that this works the same as asyncio.as_completed, the order of itera-
tion is deterministic based on the order we passed in the numbers list. This means that
if 100000000 was our first number, we’d be stuck waiting for that call to finish before
we could print out the other results that completed earlier. This means we aren’t quite
as responsive as asyncio.as_completed.

6.3.2 Process pool executors with the asyncio event loop

Now that we’ve know the basics of how process pool executors work, let’s see how
to hook them into the asyncio event loop. This will let us use the API functions
such as gather and as_completed that we learned of in chapter 4 to manage multi-
ple processes.

 Creating a process pool executor to use with asyncio is no different from what we
just learned; that is, we create one in within a context manager. Once we have a

135Using process pool executors with asyncio
pool, we can use a special method on the asyncio event loop called run_in_executor.
This method will take in a callable alongside an executor (which can be either a
thread pool or process pool) and will run that callable inside the pool. It then
returns an awaitable, which we can use in an await statement or pass into an API
function such as gather.

 Let’s implement our previous count example with a process pool executor. We’ll
submit multiple count tasks to the executor and wait for them all to finish with
gather. run_in_executor only takes a callable and does not allow us to supply func-
tion arguments; so, to get around this, we’ll use partial function application to build
countdown calls with 0 arguments.

import asyncio
from asyncio.events import AbstractEventLoop
from concurrent.futures import ProcessPoolExecutor
from functools import partial
from typing import List

def count(count_to: int) -> int:
 counter = 0
 while counter < count_to:
 counter = counter + 1
 return counter

async def main():
 with ProcessPoolExecutor() as process_pool:
 loop: AbstractEventLoop = asyncio.get_running_loop()
 nums = [1, 3, 5, 22, 100000000]
 calls: List[partial[int]] = [partial(count, num) for num in nums]
 call_coros = []

 for call in calls:
 call_coros.append(loop.run_in_executor(process_pool, call))

 results = await asyncio.gather(*call_coros)

What is partial function application?
Partial function application is implemented in the functools module. Partial applica-
tion takes a function that accepts some arguments and turns it into a function that
accepts fewer arguments. It does this by “freezing” some arguments that we supply.
As an example, our count function takes one argument. We can turn it into a function
with 0 arguments by using functools.partial with the parameter we want to call
it with. If we want to have a call to count(42) but pass in no arguments we can say
call_with_42 = functools.partial(count, 42) that we can then call as call_
with_42().

Listing 6.5 Process pool executors with asyncio

Create a partially
applied function for
countdown with its

argument.
Submit each

call to the
process pool
and append

it to a list.

Wait for all
results to finish.

136 CHAPTER 6 Handling CPU-bound work
 for result in results:
 print(result)

if __name__ == "__main__":
 asyncio.run(main())

We first create a process pool executor, as we did before. Once we have this, we get the
asyncio event loop, since run_in_executor is a method on the AbstractEventLoop.
We then partially apply each number in nums to the count function, since we can’t call
count directly. Once we have count function calls, then we can submit them to the
executor. We loop over these calls, calling loop.run_in_executor for each partially
applied count function and keep track of the awaitable it returns in call_coros. We
then take this list and wait for everything to finish with asyncio.gather.

 If we had wanted, we could also use asyncio.as_completed to get the results from
the subprocesses as they completed. This would solve the problem we saw earlier with
process pool’s map method, where if we had a task it took a long time.

 We’ve now seen all we need to start using process pools with asyncio. Next, let’s
look at how to improve the performance of a real-world problem with multiprocess-
ing and asyncio.

6.4 Solving a problem with MapReduce using asyncio
To understand the type of problem we can solve with MapReduce, we’ll introduce a
hypothetical real-world problem. We’ll then take that understanding and use it to
solve a similar problem with a large, freely available data set.

 Going back to our example of an e-commerce storefront from chapter 5, we’ll pre-
tend our site receives a lot of text data through our customer support portal’s questions
and concerns field. Since our site is successful, this data set of customer feedback is mul-
tiple terabytes in size and growing every day.

 To better understand the common issues our users are facing, we’ve been tasked to
find the most frequently used words in this data set. A simple solution would be to use a
single process to loop through each comment and keep track of how many times each
word occurs. This will work, but since our data is large, going through this in serial
could take a long time. Is there a faster way we could approach this type of problem?

 This is the exact kind of problem that MapReduce can solve. The MapReduce pro-
gramming model solves a problem by first partitioning up a large data set into smaller
chunks. We can then solve our problem for that smaller subset of data instead of
entire set—this is known as mapping, as we “map” our data to a partial result.

 Once the problem for each subset is solved, we can then combine the results into
a final answer. This step is known as reducing, as we “reduce” multiple answers into
one. Counting the frequency of words in a large text data set is a canonical Map-
Reduce problem. If we have a large enough dataset, splitting it into smaller chunks
can yield performance benefits as each map operation can run in parallel, as shown
in figure 6.1.

137Solving a problem with MapReduce using asyncio
Systems such as Hadoop and Spark exist to perform MapReduce operations in a clus-
ter of computers for truly large datasets. However, many smaller workloads can be pro-
cessed on one computer with multiprocessing. In this section, we’ll see how to
implement a MapReduce workflow with multiprocessing to find how frequently cer-
tain words have appeared in literature since the year 1500.

6.4.1 A simple MapReduce example

To fully understand how MapReduce works, let’s walk through a concrete example.
Let’s say we have text data on each line of a file. For this example, we’ll pretend we
have four lines to handle:

I know what I know.
I know that I know.
I don’t know that much.
They don’t know much.

We’d like to count how many times each distinct word occurs in this data set. This
example is small enough that we could solve it with a simple for loop, but let’s
approach it using a MapReduce model.

 First, we need to partition this data set into smaller chunks. For simplicity, we’ll
define a smaller chunk as one line of text. Next, we need to define the mapping oper-
ation. Since we want to count word frequencies, we’ll split the line of text on a space.
This will get us an array of each individual word in the string. We can then loop over
this, keeping track of each distinct word in the line of text in a dictionary.

 Finally, we need to define a reduce operation. This will take one or more results
from our map operation and combine them into an answer. In this example, we need
to take two dictionaries from our map operation and combine them into one. If a

Partition

Partition 1

Partition 2

Partition 3

Partition 4

map(partition 1)

map(partition 2)

map(partition 3)

map(partition 4)

Result 1

Result 2

Result 1

Result 2

Final result

Result 3

Result 4

Map Reduce

Data

Figure 6.1 A large set of data is split into partitions, then a map function produces intermediate results.
These intermediate results are combined into a result.

138 CHAPTER 6 Handling CPU-bound work

word exists in both dictionaries, we add their word counts together; if not, we copy
over the word count to the result dictionary. Once we’ve defined these operations, we
can then run our map operation on each individual line of text and our reduce opera-
tion on each pair of results from our map. Let’s see how to do this example in code
with the four lines of text we introduced earlier.

import functools
from typing import Dict

def map_frequency(text: str) -> Dict[str, int]:
 words = text.split(' ')
 frequencies = {}
 for word in words:
 if word in frequencies:
 frequencies[word] = frequencies[word] + 1
 else:
 frequencies[word] = 1
 return frequencies

def merge_dictionaries(first: Dict[str, int],
 second: Dict[str, int]) -> Dict[str, int]:
 merged = first
 for key in second:
 if key in merged:
 merged[key] = merged[key] + second[key]
 else:
 merged[key] = second[key]
 return merged

lines = ["I know what I know",
 "I know that I know",
 "I don't know much",
 "They don't know much"]

mapped_results = [map_frequency(line) for line in lines]

for result in mapped_results:
 print(result)

print(functools.reduce(merge_dictionaries, mapped_results))

For each line of text, we apply our map operation, giving us the frequency count for
each line of text. Once we have these mapped partial results, we can begin to combine
them. We use our merge function merge_dictionaries along with the functools
.reduce function. This will take our intermediate results and add them together into
one result, giving us the following output:

Listing 6.6 Single-threaded MapReduce

If we have the word
in our frequency
dictionary, add one
to the count.

If we do not have the word in
our frequency dictionary, set
its count to one.

If the word is in both
dictionaries, combine
frequency counts.

If the word is not in both
dictionaries, copy over
the frequency count.

For each line of
text, perform our
map operation.

Reduce all our
intermediate
frequency counts
into one result.

139Solving a problem with MapReduce using asyncio
Mapped results:
{'I': 2, 'know': 2, 'what': 1}
{'I': 2, 'know': 2, 'that': 1}
{'I': 1, "don't": 1, 'know': 1, 'much': 1}
{'They': 1, "don't": 1, 'know': 1, 'much': 1}

Final Result:
{'I': 5, 'know': 6, 'what': 1, 'that': 1, "don't": 2, 'much': 2, 'They': 1}

Now that we understand the basics of MapReduce with a sample problem, we’ll see
how to apply this to a real-world data set where multiprocessing can yield perfor-
mance improvements.

6.4.2 The Google Books Ngram dataset

We’ll need a sufficiently large set of data to process to see the benefits of MapReduce
with multiprocessing. If our dataset is too small, we’ll see no benefit from Map-
Reduce and will likely see performance degradation from the overhead of managing
processes. A data set of a few uncompressed should be enough for us to show a mean-
ingful performance gain.

 The Google Books Ngram dataset is a sufficiently large data set for this purpose. To
understand what this data set is, we’ll first define what an n-gram is.

 An n-gram is a concept from natural language processing and is a phrase of N words
from a sample of given text. The phrase “the fast dog” has six n-grams. Three 1-grams or
unigrams, each of one single word (the, fast, and dog), two 2-grams or digrams (the fast
and fast dog), and one 3-gram or trigram (the fast dog).

 The Google Books Ngram dataset is a scan of n-grams from a set of over 8,000,000
books, going back to the year 1500, comprising more than six percent of all books
published. It counts the number of times a distinct n-gram appears in text, grouped
by the year it appears. This data set has everything from unigrams to 5-grams in tab-
separated format. Each line of this data set has an n-gram, the year when it was seen,
the number of times it was seen, and how many books it occurred in. Let’s look at the
first few entries in the unigram dataset for the word aardvark:

Aardvark 1822 2 1
Aardvark 1824 3 1
Aardvark 1827 10 7

This means that in the year 1822, the word aardvark appeared twice in one book.
Then, in 1827, the word aardvark appeared ten times in seven different books. The
dataset has many more entries for aardvark (for example, aardvark occurred 1,200
times in 2007), demonstrating the upwards trajectory of aardvarks in literature over
the years.

 For the sake of this example, we’ll count the occurrences of single words (uni-
grams) for words that start with a. This dataset is approximately 1.8 GB in size. We’ll
aggregate this to the number of times each word has been seen in literature since 1500.

140 CHAPTER 6 Handling CPU-bound work
We’ll use this to answer the question, “How many times has the word aardvark appeared
in literature since the year 1500?” The relevant file we want to work with is download-
able at https://storage.googleapis.com/books/ngrams/books/googlebooks-eng-all-
1gram-20120701-a.gz or at https://mattfowler.io/data/googlebooks-eng-all-1gram-
20120701-a.gz. You can also download any other part of the dataset from http://
storage.googleapis.com/books/ngrams/books/datasetsv2.html.

6.4.3 Mapping and reducing with asyncio

To have a baseline to compare to, let’s first write a synchronous version to count the
frequencies of words. We’ll then use this frequency dictionary to answer the question,
“How many times has the word aardvark appeared in literature since 1500?” We’ll first
load the entire contents of the dataset into memory. Then we can use a dictionary to
keep track of a mapping of words to the total time they have occurred. For each line
of our file, if the word on that line is in our dictionary, we add to the count in our dic-
tionary with the count for that word. If it is not, we add the word and the count on
that line to the dictionary.

import time

freqs = {}

with open('googlebooks-eng-all-1gram-20120701-a', encoding='utf-8') as f:
 lines = f.readlines()

 start = time.time()

 for line in lines:
 data = line.split('\t')
 word = data[0]
 count = int(data[2])
 if word in freqs:
 freqs[word] = freqs[word] + count
 else:
 freqs[word] = count

 end = time.time()
 print(f'{end-start:.4f}')

To test how long the CPU-bound operation takes, we’ll time how long the frequency
counting takes and won’t include the length of time needed to load the file. For mul-
tiprocessing to be a viable solution, we need to run on a machine with sufficient CPU
cores to make parallelization worth the effort. To see sufficient gains, we’ll likely need
a machine with more CPUs than most laptops have. To test on such a machine, we’ll
use a large Elastic Compute Cloud (EC2) instance on Amazon Web Servers (AWS).

 AWS is a cloud computing service run by Amazon. AWS is a collection of cloud ser-
vices that enable users to handle tasks from file storage to large-scale machine learning

Listing 6.7 Counting frequencies of words that start with a

https://storage.googleapis.com/books/ngrams/books/googlebooks-eng-all-1gram-20120701-a.gz
https://storage.googleapis.com/books/ngrams/books/googlebooks-eng-all-1gram-20120701-a.gz
https://mattfowler.io/data/googlebooks-eng-all-1gram-20120701-a.gz
https://mattfowler.io/data/googlebooks-eng-all-1gram-20120701-a.gz
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

141Solving a problem with MapReduce using asyncio
jobs—all without managing their own physical servers. One such service offered is
EC2. Using this, you can rent a virtual machine in AWS to run any application you
want, specifying how many CPU cores and memory you need on your virtual machine.
You can learn more about AWS and EC2 at https://aws.amazon.com/ec2.

 We’ll test on a c5ad.8xlarge instance. At the time of writing, this machine has 32
CPU cores, 64 GB of RAM, and a solid-state drive, or SSD. On this instance, listing
6.7’s script requires approximately 76 seconds. Let’s see if we can do any better with
multiprocessing and asyncio. If you run this on a machine with fewer CPU cores or
other resources, your results may vary.

 Our first step is to take our data set and partition it into a smaller set of chunks.
Let’s define a partition generator which can take our large list of data and grab
chunks of arbitrary size.

def partition(data: List,
 chunk_size: int) -> List:
 for i in range(0, len(data), chunk_size):
 yield data[i:i + chunk_size]

We can use this partition generator to create slices of data that are chunk_size long.
We’ll use this to generate the data to pass into our map functions, which we will then
run in parallel. Next, let’s define our map function. This is almost the same as our
map function from the previous example, adjusted to work with our data set.

def map_frequencies(chunk: List[str]) -> Dict[str, int]:
 counter = {}
 for line in chunk:
 word, _, count, _ = line.split('\t')
 if counter.get(word):
 counter[word] = counter[word] + int(count)
 else:
 counter[word] = int(count)
 return counter

For now, we’ll keep our reduce operation, as in the previous example. We now have all
the blocks we need to parallelize our map operations. We’ll create a process pool, par-
tition our data into chunks, and for each partition run map_frequencies in a resource
(“worker”) on the pool. We have almost everything we need, but one question
remains: what partition size should I use?

 There isn’t an easy answer for this. One rule of thumb is the Goldilocks approach;
that is, the partition should not be too big or too small. The reason the partition size
should not be small is that when we create our partitions they are serialized (“pick-
led”) and sent to our worker processes, then the worker process unpickles them. The
process of serializing and deserializing this data can take up a significant amount of
time, quickly eating into any performance gains if we do it too often. For example, a
chunk size of two would be a poor choice as we would have nearly 1,000,000 pickle
and unpickle operations.

https://aws.amazon.com/ec2

142 CHAPTER 6 Handling CPU-bound work
 We also don’t want the partition size to be too large; otherwise, we might not
fully utilize the power of our machine. For example, if we have 10 CPU cores but
only create two partitions, we’re missing out on eight cores that could run work-
loads in parallel.

 For this example, we’ll chose a partition size of 60,000, as this seems to offer rea-
sonable performance for the AWS machine we’re using based on benchmarking. If
you’re considering this approach for your data processing task, you’ll need to test out
a few different partition sizes to find the one for your data and the machine you’re
running on, or develop a heuristic algorithm for determining the right partition size.
We can now combine all these parts together with a process pool and the event loop’s
run_in_executor coroutine to parallelize our map operations.

import asyncio
import concurrent.futures
import functools
import time
from typing import Dict, List

def partition(data: List,
 chunk_size: int) -> List:
 for i in range(0, len(data), chunk_size):
 yield data[i:i + chunk_size]

def map_frequencies(chunk: List[str]) -> Dict[str, int]:
 counter = {}
 for line in chunk:
 word, _, count, _ = line.split('\t')
 if counter.get(word):
 counter[word] = counter[word] + int(count)
 else:
 counter[word] = int(count)
 return counter

def merge_dictionaries(first: Dict[str, int],
 second: Dict[str, int]) -> Dict[str, int]:
 merged = first
 for key in second:
 if key in merged:
 merged[key] = merged[key] + second[key]
 else:
 merged[key] = second[key]
 return merged

async def main(partition_size: int):
 with open('googlebooks-eng-all-1gram-20120701-a', encoding='utf-8') as f:
 contents = f.readlines()

Listing 6.8 Parallel MapReduce with process pools

143Solving a problem with MapReduce using asyncio

ap

Re
in

in
 loop = asyncio.get_running_loop()
 tasks = []
 start = time.time()
 with concurrent.futures.ProcessPoolExecutor() as pool:
 for chunk in partition(contents, partition_size):
 tasks.append(loop.run_in_executor(pool,

functools.partial(map_frequencies, chunk)))

 intermediate_results = await asyncio.gather(*tasks)
 final_result = functools.reduce(merge_dictionaries,

intermediate_results)

 print(f"Aardvark has appeared {final_result['Aardvark']} times.")

 end = time.time()
 print(f'MapReduce took: {(end - start):.4f} seconds')

if __name__ == "__main__":
 asyncio.run(main(partition_size=60000))

In the main coroutine we create a process pool and partition the data. For each parti-
tion, we launch a map_frequencies function in a separate process. We then use
asyncio.gather to wait for all intermediate dictionaries to finish. Once all our map
operations are complete, we run our reduce operation to produce our result.

 Running this on the instance we described, this code completes in roughly 18 sec-
onds, delivering a significant speedup compared with our serial version. This is quite a
nice performance gain for not a whole lot more code! You may also wish to experi-
ment with a machine with more CPU cores to see if you can further improve the per-
formance of this algorithm.

 You may notice in this implementation that we still have some CPU-bound work
happening in our parent process that is parallelizable. Our reduce operation takes
thousands of dictionaries and combines them together. We can apply the partitioning
logic we used on the original data set and split these dictionaries into chunks and
combine them across multiple processes. Let’s write a new reduce function that does
that. In this function, we’ll partition the list and call reduce on each chunk in a
worker process. Once this completes, we’ll keep partitioning and reducing until we
have one dictionary remaining. (In this listing, we’ve removed the partition, map, and
merge functions for brevity.)

import asyncio
import concurrent.futures
import functools
import time
from typing import Dict, List
from chapter_06.listing_6_8 import partition, merge_dictionaries,

map_frequencies

Listing 6.9 Parallelizing the reduce operation

For each partition,
run our map
operation in a
separate process.

Wait for all m
operations to
complete.duce all our

termediate
map results
to a result.

144 CHAPTER 6 Handling CPU-bound work
async def reduce(loop, pool, counters, chunk_size) -> Dict[str, int]:
 chunks: List[List[Dict]] = list(partition(counters, chunk_size))
 reducers = []
 while len(chunks[0]) > 1:
 for chunk in chunks:
 reducer = functools.partial(functools.reduce,
 merge_dictionaries, chunk)
 reducers.append(loop.run_in_executor(pool, reducer))
 reducer_chunks = await asyncio.gather(*reducers)
 chunks = list(partition(reducer_chunks, chunk_size))
 reducers.clear()
 return chunks[0][0]

async def main(partition_size: int):
 with open('googlebooks-eng-all-1gram-20120701-a', encoding='utf-8') as f:
 contents = f.readlines()
 loop = asyncio.get_running_loop()
 tasks = []
 with concurrent.futures.ProcessPoolExecutor() as pool:
 start = time.time()

 for chunk in partition(contents, partition_size):
 tasks.append(loop.run_in_executor(pool,

functools.partial(map_frequencies, chunk)))

 intermediate_results = await asyncio.gather(*tasks)
 final_result = await reduce(loop, pool, intermediate_results, 500)

 print(f"Aardvark has appeared {final_result['Aardvark']} times.")

 end = time.time()
 print(f'MapReduce took: {(end - start):.4f} seconds')

if __name__ == "__main__":
 asyncio.run(main(partition_size=60000))

If we run this parallelized reduce, we may see some small performance gain or only a
small gain, depending on the machine you run on. In this instance, the overhead of
pickling the intermediate dictionaries and sending them to the children processes
will eat away much of the time savings by running in parallel. This optimization may
not do much to make this problem less troublesome; however, if our reduce opera-
tion was more CPU-intensive, or we had a much larger data set, this approach can
yield benefits.

 Our multiprocessing approach has clear performance benefits over a synchronous
approach, but right now there isn’t an easy way to see how many map operations we’ve
completed at any given time. In the synchronous version, we would only need to add a
counter we incremented for every line we processed to see how far along we were.
Since multiple processes by default do not share any memory, how can we create a
counter to track our job’s progress?

Partition the
dictionaries into
parallelizable
chunks.

Reduce each
partition into a
single dictionary.

Wait for
all reduce

operations
to complete.

Partition the results
again, and start a new

iteration of the loop.

145Shared data and locks
6.5 Shared data and locks
In chapter 1, we discussed the fact that, in multiprocessing, each process has its own
memory, separate from other processes. This presents a challenge when we have shared
state to keep track of. So how can we share data between processes if their memory
spaces are all distinct?

 Multiprocessing supports a concept called shared memory objects. A shared memory
object is a chunk of memory allocated that a set of separate processes can access.
Each process, as shown in figure 6.2, can then read and write into that memory space
as needed.

 Shared state is complicated and can lead to hard-to-reproduce bugs if not properly
implemented. Generally, it is best to avoid shared state if possible. That said, some-
times it is necessary to introduce shared state. One such instance is a shared counter.

Shared memory

Parent process

Child process Child process

Memory

Main thread

Memory Memory

Main thread Main thread

Figure 6.2 A parent process with two children processes, all sharing memory

146 CHAPTER 6 Handling CPU-bound work
To learn more about shared data, we’ll take our MapReduce example from above and
keep a counter of how many map operations we’ve completed. We’ll then periodically
output this number to show how far along we are to the user.

6.5.1 Sharing data and race conditions

Multiprocessing supports two kinds of shared data: values and array. A value is a singu-
lar value, such as an integer or floating-point number. An array is an array of singular
values. The types of data that we can share in memory are limited by the types defined
in the Python array module, available at https://docs.python.org/3/library/array
.html#module-array.

 To create a value or array, we first need to use the typecode from the array module
that is just a character. Let’s create two shared pieces of data—one integer value and
one integer array. We’ll then create two processes to increment each of these shared
pieces of data in parallel.

from multiprocessing import Process, Value, Array

def increment_value(shared_int: Value):
 shared_int.value = shared_int.value + 1

def increment_array(shared_array: Array):
 for index, integer in enumerate(shared_array):
 shared_array[index] = integer + 1

if __name__ == '__main__':
 integer = Value('i', 0)
 integer_array = Array('i', [0, 0])

 procs = [Process(target=increment_value, args=(integer,)),
 Process(target=increment_array, args=(integer_array,))]

 [p.start() for p in procs]
 [p.join() for p in procs]

 print(integer.value)
 print(integer_array[:])

In the preceding listing, we create two processes—one to increment our shared inte-
ger value and one to increment each element in our shared array. Once our two sub-
processes complete, we print out the data.

 Since our two pieces of data are never touched by different processes, this code
works well. Will this code continue to work if we have multiple processes modifying
the same shared data? Let’s test this out by creating two processes to increment a

Listing 6.10 Shared values and arrays

https://docs.python.org/3/library/array.html#module-array
https://docs.python.org/3/library/array.html#module-array
https://docs.python.org/3/library/array.html#module-array

147Shared data and locks
shared integer value in parallel. We’ll run this code repeatedly in a loop to see if we
get consistent results. Since we have two processes, each incrementing a shared
counter by one, once the processes finish we expect the shared value to always be two.

from multiprocessing import Process, Value

def increment_value(shared_int: Value):
 shared_int.value = shared_int.value + 1

if __name__ == '__main__':
 for _ in range(100):
 integer = Value('i', 0)
 procs = [Process(target=increment_value, args=(integer,)),
 Process(target=increment_value, args=(integer,))]

 [p.start() for p in procs]
 [p.join() for p in procs]
 print(integer.value)
 assert(integer.value == 2)

While you will see different output because this problem is nondeterministic, at some
point you should see that the result isn’t always 2.

2
2
2
Traceback (most recent call last):
 File "listing_6_11.py", line 17, in <module>
 assert(integer.value == 2)
AssertionError
1

Sometimes our result is 1! Why is this? What we’ve encountered is called a race condi-
tion. A race condition occurs when the outcome of a set of operations is dependent on
which operation finishes first. You can imagine the operations as racing against one
another; if the operations win the race in the right order, everything works fine. If
they win the race in the wrong order, bizarre behavior results.

 So where is the race occurring in our example? The problem lies in that incre-
menting a value involves both read and write operations. To increment a value, we
first need to read the value, add one to it, then write the result back to memory.
The value each process sees in the shared data is entirely dependent on when it
reads the shared value.

 If the processes run in the following order, everything works fine, as seen in fig-
ure 6.3.

Listing 6.11 Incrementing a shared counter in parallel

148 CHAPTER 6 Handling CPU-bound work
In this example, Process 1 increments the value just before Process 2 reads it and wins
the race. Since Process 2 finishes second, this means that it will see the correct value of
one and will add to it, producing the correct final value.

 What happens if there is a tie in our virtual race? Look at figure 6.4.

In this instance, Processes 1 and 2 both read the initial value of zero. They then incre-
ment that value to 1 and write it back at the same time, producing the incorrect value.

 You may ask, “But our code is only one line. Why are there two operations!?”
Under the hood, incrementing is written as two operations, which causes this issue.
This makes it non-atomic or not thread-safe. This isn’t easy to figure out. An explanation
of which operations are atomic and which operations are non-atomic is available at
http://mng.bz/5Kj4.

 These types of errors are tricky because they are often difficult to reproduce. They
aren’t like normal bugs, since they depend on the order in which our operating sys-
tem runs things, which is out of our control when we use multiprocessing. So how do
we fix this nasty bug?

Process 1

Process 2

READ shared_data = 0 shared_data = 0

shared_data = 1

shared_data = 2

WRITE shared_data = 0 + 1 READ shared_data = 1

WRITE shared_data = 1 + 1

Figure 6.3 Successfully avoiding a race condition

Process 1 Process 2

READ shared_data = 0 shared_data = 0

shared_data = 1WRITE shared_data = 0 + 1

READ shared_data = 0

WRITE shared_data = 0 + 1

Figure 6.4 A race condition

http://mng.bz/5Kj4

149Shared data and locks
6.5.2 Synchronizing with locks

We can avoid race conditions by synchronizing access to any shared data we want to
modify. What does it mean to synchronize access? Revisiting our race example, it
means that we control access to any shared data so that any operations we have finish
the race in an order that makes sense. If we’re in a situation where a tie between two
operations could occur, we explicitly block the second operation from running until
the first completes, guaranteeing operations to finish the race in a consistent manner.
You can imagine this as a referee at the finish line, seeing that a tie is about to happen
and telling the runners, “Hold up a minute. One racer at a time!” and picking one
runner to wait while the other crosses the finish line.

 One mechanism for synchronizing access to shared data is a lock, also known as a
mutex (short for mutual exclusion). These structures allow for a single process to “lock”
a section of code, preventing other processes from running that code. The locked sec-
tion of code is commonly called a critical section. This means that if one process is exe-
cuting the code of a locked section and a second process tries to access that code, the
second process will need to wait (blocked by the referee) until the first process is fin-
ished with the locked section.

 Locks support two primary operations: acquiring and releasing. When a process
acquires a lock, it is guaranteed that it will be the only process running that section of
code. Once the section of code that needs synchronized access is finished, we release
the lock. This allows other processes to acquire the lock and run any code in the criti-
cal section. If a process tries to run code that is locked by another process, acquiring
the lock will block until the other process releases that lock.

 Revisiting our counter race condition example, and using figure 6.5, let’s visualize
what happens when two processes try and acquire a lock at roughly the same time.
Then, let’s see how it prevents the counter from getting the wrong value.

 In this diagram, Process 1 first acquires the lock successfully and reads and
increments the shared data. The second process tries to acquire the lock but is
blocked from advancing further until the first process releases the lock. Once the
first process releases the lock, the second process can successfully acquire the lock
and increment the shared data. This prevents the race condition because the lock
prevents more than one process from reading and writing the shared data at the
same time.

 So how do we implement this synchronization with our shared data? The multipro-
cessing API implementors thought of this and nicely included a method to get a lock
on both value and array. To acquire a lock, we call get_lock().acquire() and to
release a lock we call get_lock().release(). Using listing 6.12, let’s apply this to our
previous example to fix our bug.

150 CHAPTER 6 Handling CPU-bound work
from multiprocessing import Process, Value

def increment_value(shared_int: Value):
 shared_int.get_lock().acquire()
 shared_int.value = shared_int.value + 1
 shared_int.get_lock().release()

if __name__ == '__main__':
 for _ in range(100):
 integer = Value('i', 0)
 procs = [Process(target=increment_value, args=(integer,)),
 Process(target=increment_value, args=(integer,))]

 [p.start() for p in procs]
 [p.join() for p in procs]
 print(integer.value)
 assert (integer.value == 2)

Listing 6.12 Acquiring and releasing a lock

Process 1 Process 2

READ shared_data = 0

READ shared_data = 1

shared_data = 0

shared_data = 1

shared_data = 1

shared_data = 2

WRITE shared_data = 0 + 1

RELEASE LOCK

LOCK ACQUIRED

LOCK ACQUIRED

ATTEMPT ACQUIRE LOCK

ATTEMPT ACQUIRE LOCK

WRITE shared_data = 1 + 1

Figure 6.5 Process 2 is blocked from reading shared data until Process 1 releases the lock.

151Shared data and locks
When we run this code, every value we get should be 2. We’ve fixed our race condi-
tion! Note that locks are also context managers, and to clean up our code we could
have written increment_value using a with block. This will acquire and release the
lock for us automatically:

def increment_value(shared_int: Value):
 with shared_int.get_lock():
 shared_int.value = shared_int.value + 1

Notice that we have taken concurrent code and have just forced it to be sequential,
negating the value of running in parallel. This is an important observation and is a
caveat of synchronization and shared data in concurrency in general. To avoid race
conditions, we must make our parallel code sequential in critical sections. This can
hurt the performance of our multiprocessing code. Care must be taken to lock only
the sections that absolutely need it so that other parts of the application can execute
concurrently. When faced with a race condition bug, it is easy to protect all your
code with a lock. This will “fix” the problem but will likely degrade your applica-
tion’s performance.

6.5.3 Sharing data with process pools

We’ve just seen how to share data within a couple of processes, so how do we apply this
knowledge to process pools? Process pools operate a bit differently than creating pro-
cesses manually, posing a challenge with shared data. Why is this?

 When we submit a task to a process pool, it may not run immediately because the
processes in the pool may be busy with other tasks. How does the process pool handle
this? In the background, process pool executors keep a queue of tasks to manage this.
When we submit a task to the process pool, its arguments are pickled (serialized) and
put on the task queue. Then, each worker process asks for a task from the queue when
it is ready for work. When a worker process pulls a task off the queue, it unpickles
(deserializes) the arguments and begins to execute the task.

 Shared data is, by definition, shared among worker processes. Therefore, pickling
and unpickling it to send it back and forth between processes makes little sense. In
fact, neither Value nor Array objects can be pickled, so if we try to pass the shared
data in as arguments to our functions as we did before, we’ll get an error along the
lines of can’t pickle Value objects.

 To handle this, we’ll need to put our shared counter in a global variable and some-
how let our worker processes know about it. We can do this with process pool initializers.
These are special functions that are called when each process in our pool starts up.
Using this, we can create a reference to the shared memory that our parent process
created. We can pass this function in when we create a process pool. To see how this
works, let’s create a simple example that increments a counter.

152 CHAPTER 6 Handling CPU-bound work
from concurrent.futures import ProcessPoolExecutor
import asyncio
from multiprocessing import Value

shared_counter: Value

def init(counter: Value):
 global shared_counter
 shared_counter = counter

def increment():
 with shared_counter.get_lock():
 shared_counter.value += 1

async def main():
 counter = Value('d', 0)
 with ProcessPoolExecutor(initializer=init,
 initargs=(counter,)) as pool:
 await asyncio.get_running_loop().run_in_executor(pool, increment)
 print(counter.value)

if __name__ == "__main__":
 asyncio.run(main())

We first define a global variable, shared_counter, which will contain the reference to
the shared Value object we create. In our init function, we take in a Value and initial-
ize shared_counter to that value. Then, in the main coroutine, we create the counter
and initialize it to 0, then pass in our init function and our counter to the initializer
and initargs parameter when creating the process pool. The init function will be
called for each process that the process pool creates, correctly initializing our shared_
counter to the one we created in our main coroutine.

 You may ask, “Why do we need to bother with all this? Can’t we just initialize the
global variable as shared_counter: Value = Value('d', 0) instead of leaving it
empty?” The reason we can’t do this is that when each process is created, the script we
created it from is run again, per each process. This means that each process that starts
will execute shared_counter: Value = Value('d', 0), meaning that if we have 100
processes, we’d get 100 shared_counter values, each set to 0, resulting in some
strange behavior.

 Now that we know how to initialize shared data properly with a process pool, let’s
see how to apply this to our MapReduce application. We’ll create a shared counter
that we’ll increment each time a map operation completes. We’ll also create a progress
reporter1 task that will run in the background and output our progress to the console
every second. For this example, we’ll import some of our code around partitioning
and reducing, to avoid repeating ourselves.

Listing 6.13 Initializing a process pool

This tells the pool to
execute the function

init with the argument
counter for each process.

153Shared data and locks
from concurrent.futures import ProcessPoolExecutor
import functools
import asyncio
from multiprocessing import Value
from typing import List, Dict
from chapter_06.listing_6_8 import partition, merge_dictionaries

map_progress: Value

def init(progress: Value):
 global map_progress
 map_progress = progress

def map_frequencies(chunk: List[str]) -> Dict[str, int]:
 counter = {}
 for line in chunk:
 word, _, count, _ = line.split('\t')
 if counter.get(word):
 counter[word] = counter[word] + int(count)
 else:
 counter[word] = int(count)

 with map_progress.get_lock():
 map_progress.value += 1

 return counter

async def progress_reporter(total_partitions: int):
 while map_progress.value < total_partitions:
 print(f'Finished {map_progress.value}/{total_partitions} map

operations')
 await asyncio.sleep(1)

async def main(partiton_size: int):
 global map_progress

 with open('googlebooks-eng-all-1gram-20120701-a', encoding='utf-8') as f:
 contents = f.readlines()
 loop = asyncio.get_running_loop()
 tasks = []
 map_progress = Value('i', 0)

 with ProcessPoolExecutor(initializer=init,
 initargs=(map_progress,)) as pool:
 total_partitions = len(contents) // partiton_size
 reporter =

asyncio.create_task(progress_reporter(total_partitions))

Listing 6.14 Keeping track of map operation progress

154 CHAPTER 6 Handling CPU-bound work
 for chunk in partition(contents, partiton_size):
 tasks.append(loop.run_in_executor(pool,

functools.partial(map_frequencies, chunk)))

 counters = await asyncio.gather(*tasks)

 await reporter

 final_result = functools.reduce(merge_dictionaries, counters)

 print(f"Aardvark has appeared {final_result['Aardvark']} times.")

if __name__ == "__main__":
 asyncio.run(main(partiton_size=60000))

The main change from our original MapReduce implementation, aside from initializ-
ing a shared counter, is inside our map_frequencies function. Once we have finished
counting all words in that chunk, we acquire the lock for the shared counter and
increment it. We also added a progress_reporter coroutine, which will run in the
background and report how many jobs we’ve completed every second. When running
this, you should see output similar to the following:

Finished 17/1443 map operations
Finished 144/1443 map operations
Finished 281/1443 map operations
Finished 419/1443 map operations
Finished 560/1443 map operations
Finished 701/1443 map operations
Finished 839/1443 map operations
Finished 976/1443 map operations
Finished 1099/1443 map operations
Finished 1230/1443 map operations
Finished 1353/1443 map operations
Aardvark has appeared 15209 times.

We now know how to use multiprocessing with asyncio to improve the performance of
CPU-intensive work. What happens if we have a workload that has work that has both
heavily CPU-bound and I/O-bound operations? We can use multiprocessing, but is
there a way for us to combine the ideas of multiprocessing and a single-threaded con-
currency model to further improve performance?

6.6 Multiple processes, multiple event loops
While multiprocessing is mainly useful for CPU-bound tasks, it can have benefits for
workloads that are I/O-bound as well. Let’s take our example of running multiple
SQL queries concurrently from listing 5.8 in the previous chapter. Can we use multi-
processing to further improve its performance? Let’s look at what its CPU usage graph
looks like on a single core, as illustrated in figure 6.6.

155Multiple processes, multiple event loops
While this code is mostly making I/O-bound queries to our database, there is still a
significant amount of CPU utilization happening. Why is this? In this instance,
there is work happening to process the raw results we get from Postgres, leading to
higher CPU utilization. Since we’re single-threaded, while this CPU-bound work is
happening, our event loop isn’t processing results from other queries. This poses a
potential throughput issue. If we issue 10,000 SQL queries concurrently, but we can
only process one result at a time, we may end up with a backlog of query results to
process.

 Is there a way for us to improve our throughput by using multiprocessing? Using
multiprocessing, each process has its own thread and its own Python interpreter. This
opens up the opportunity to create one event loop per each process in our pool. With
this model, we can distribute our queries over several processes. As seen in figure 6.7,
this will spread the CPU load across multiple processes.

 While this won’t make our I/O throughput increase, it will increase how many
query results we can process at a time. This will increase the overall throughout of our
application. Let’s take our example from listing 5.7 and use it to create this architec-
ture, as shown in listing 6.15.

Figure 6.6 The CPU utilization graph for the code in listing 5.8

156 CHAPTER 6 Handling CPU-bound work
import asyncio
import asyncpg
from util import async_timed
from typing import List, Dict
from concurrent.futures.process import ProcessPoolExecutor

product_query = \
 """
SELECT
p.product_id,
p.product_name,

Listing 6.15 One event loop per process

Worker process 1

Database

Connection

pool

Event

loop

Event

loop

Event

loop

Connection

pool

Connection

pool

Worker process 2

Worker process N

Event

loop

Process pool

Parent process

Figure 6.7 A parent process creates a process pool. The parent process then creates workers, each with its
own event loop.

157Multiple processes, multiple event loops
p.brand_id,
s.sku_id,
pc.product_color_name,
ps.product_size_name
FROM product as p
JOIN sku as s on s.product_id = p.product_id
JOIN product_color as pc on pc.product_color_id = s.product_color_id
JOIN product_size as ps on ps.product_size_id = s.product_size_id
WHERE p.product_id = 100"""

async def query_product(pool):
 async with pool.acquire() as connection:
 return await connection.fetchrow(product_query)

@async_timed()
async def query_products_concurrently(pool, queries):
 queries = [query_product(pool) for _ in range(queries)]
 return await asyncio.gather(*queries)

def run_in_new_loop(num_queries: int) -> List[Dict]:
 async def run_queries():
 async with asyncpg.create_pool(host='127.0.0.1',
 port=5432,
 user='postgres',
 password='password',
 database='products',
 min_size=6,
 max_size=6) as pool:
 return await query_products_concurrently(pool, num_queries)

 results = [dict(result) for result in asyncio.run(run_queries())]
 return results

@async_timed()
async def main():
 loop = asyncio.get_running_loop()
 pool = ProcessPoolExecutor()
 tasks = [loop.run_in_executor(pool, run_in_new_loop, 10000) for _ in

range(5)]
 all_results = await asyncio.gather(*tasks)
 total_queries = sum([len(result) for result in all_results])
 print(f'Retrieved {total_queries} products the product database.')

if __name__ == "__main__":
 asyncio.run(main())

We create a new function: run_in_new_loop. This function has an inner coroutine,
run_queries, which creates a connection pool and runs the number of queries we
specify concurrently. We then call run_queries with asyncio.run, which creates a
new event loop and runs the coroutine.

Run queries in a
new event loop,

and convert them
to dictionaries.

Create five processes
each with their own

event loop to run
queries.

Wait for all query
results to complete.

158 CHAPTER 6 Handling CPU-bound work
 One thing to note here is that we convert our results into dictionaries because
asyncpg record objects cannot be pickled. Converting to a data structure that is serial-
izable ensures that we can send our result back to our parent process.

 In our main coroutine, we create a process pool and make five calls to run_in_
new_loop. This will concurrently kick off 50,000 queries—10,000 per each of five pro-
cesses. When you run this, you should see five processes launched quickly, followed by
each of these processes finishing at roughly the same time. The runtime of the entire
application should take slightly longer than the slowest process. When running this
on an eight-core machine, this script was able to complete in roughly 13 seconds.
Going back to our previous example from chapter 5, we made 10,000 queries in about
6 seconds. This output means we were getting a throughput of roughly 1,666 queries
per second. With the multiprocessing and multiple event loop approach, we com-
pleted 50,000 queries in 13 seconds, or roughly 3,800 queries per second, more than
doubling our throughput.

Summary
 We’ve learned how to run multiple Python functions in parallel with a process

pool.
 We’ve learned how to create a process pool executor and run Python functions

in parallel. A process pool executor lets us use asyncio API methods such as
gather to run multiple processes concurrently and wait for the results.

 We’ve learned how to solve a problem with MapReduce using process pools and
asyncio. This workflow not only applies to MapReduce but can be used in gen-
eral with any CPU-bound work that we can split into multiple smaller chunks.

 We’ve learned how to share state between multiple processes. This lets us keep
track of data that is relevant for subprocesses we kick off, such as a status counter.

 We’ve learned how to avoid race conditions by using locks. Race conditions
happen when multiple processes attempt to access data at roughly the same
time and can lead to hard-to reproduce bugs.

 We’ve learned how to use multiprocessing to extend the power of asyncio by cre-
ating an event loop per each process. This has the potential to improve perfor-
mance of workloads that have a mixture of CPU-bound and I/O-bound work.

Handling blocking
work with threads
When developing a new I/O-bound application from scratch, asyncio may be a
natural technology choice. From the beginning, you’ll be able to use non-blocking
libraries that work with asyncio, such as asyncpg and aiohttp, as you begin devel-
opment. However, greenfields (a project lacking constraints imposed by prior
work) development is a luxury that many software developers don’t have. A large
portion of our work may be managing existing code using blocking I/O libraries,
such as requests for HTTP requests, psycopg for Postgres databases, or any num-
ber of blocking libraries. We may also be in a situation where an asyncio-friendly
library does not yet exist. Is there a way to get the performance gains of concur-
rency while still using asyncio APIs in these cases?

This chapter covers
 Reviewing the multithreading library

 Creating thread pools to handle blocking I/O

 Using async and await to manage threads

 Handling blocking I/O libraries with thread pools

 Handling shared data and locking with threads

 Handling CPU-bound work in threads
159

160 CHAPTER 7 Handling blocking work with threads
 Multithreading is the solution to this question. Since blocking I/O releases the
global interpreter lock, this enables the possibility to run I/O concurrently in separate
threads. Much like the multiprocessing library, asyncio exposes a way for us to utilize
pools of threads, so we can get the benefits of threading while still using the asyncio
APIs, such as gather and wait.

 In this chapter, we’ll learn how to use multithreading with asyncio to run blocking
APIs, such as requests, in threads. In addition, we’ll learn how to synchronize shared
data like we did in the last chapter and examine more advanced locking topics such as
reentrant locks and deadlocks. We’ll also see how to combine asyncio with synchronous
code by building a responsive GUI to run a HTTP stress test. Finally, we’ll look at the
few exceptions for which threading can be used for CPU-bound work.

7.1 Introducing the threading module
Python lets developers create and manage threads via the threading module. This
module exposes the Thread class, which, when instantiated, accepts a function to run
in a separate thread. The Python interpreter runs single-threaded within a process,
meaning that only one piece of Python bytecode can be running at one time even if
we have code running in multiple threads. The global interpreter lock will only allow
one thread to execute code at a time.

 This seems like Python limits us from using multithreading to any advantage, but
there are a few cases in which the global interpreter lock is released, the primary one
being during I/O operations. Python can release the GIL in this case because, under
the hood, Python is making low-level operating system calls to perform I/O. These sys-
tem calls are outside the Python interpreter, meaning that no Python bytecode needs
to run while we’re waiting for I/O to finish.

 To get a better sense of how to create and run threads in the context of blocking
I/O, we’ll revisit our example of an echo server from chapter 3. Recall that to handle
multiple connections, we needed to switch our sockets to non-blocking mode and use
the select module to watch for events on the sockets. What if we were working with a
legacy codebase where non-blocking sockets weren’t an option? Could we still build
an echo server that can handle more than one client at a time?

 Since a socket’s recv and sendall are I/O-bound methods, and therefore release
the GIL, we should be able to run them in separate threads concurrently. This means
that we can create one thread per each connected client and read and write data in that
thread. This model is a common paradigm in web servers such as Apache and is known
as a thread-per-connection model. Let’s give this idea a try by waiting for connections in our
main thread and then creating a thread to echo for each client that connects.

from threading import Thread
import socket

Listing 7.1 A multithreaded echo server

161Introducing the threading module
def echo(client: socket):
 while True:
 data = client.recv(2048)
 print(f'Received {data}, sending!')
 client.sendall(data)

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as server:
 server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 server.bind(('127.0.0.1', 8000))
 server.listen()
 while True:
 connection, _ = server.accept()
 thread = Thread(target=echo, args=(connection,))
 thread.start()

In the preceding listing, we enter an infinite loop listening for connections on our
server socket. Once we have a client connected, we create a new thread to run our
echo function. We supply the thread with a target that is the echo function we want to
run and args, which is a tuple of arguments passed to echo. This means that we’ll call
echo(connection) in our thread. Then, we start the thread and loop again, waiting
for a second connection. Meanwhile, in the thread we created, we loop forever listen-
ing for data from our client, and when we have it, we echo it back.

 You should be able to connect an arbitrary amount of telnet clients concurrently
and have messages echo properly. Since each recv and sendall operates in a separate
thread per client, these operations never block each other; they only block the thread
they are running in.

 This solves the problem of multiple clients being unable to connect at the same
time with blocking sockets, although the approach has some issues unique to threads.
What happens if we try to kill this process with CTRL-C while we have clients con-
nected? Does our application shut down the threads we created cleanly?

 It turns out that things don’t shut down quite so cleanly. If you kill the application,
you should see a KeyboardInterrupt exception thrown on server.accept(), but
your application will hang as the background thread will keep the program alive. Fur-
thermore, any connected clients will still be able to send and receive messages!

 Unfortunately, user-created threads in Python do not receive KeyboardInterrupt
exceptions; only the main thread will receive them. This means that our threads will keep
running, happily reading from our clients and preventing our application from exiting.

 There are a couple approaches to handle this; specifically, we can use what are
called daemon threads (pronounced demon), or we can come up with our own way of
canceling or “interrupting” a running thread. Daemon threads are a special kind of
thread for long-running background tasks. These threads won’t prevent an applica-
tion from shutting down. In fact, when only daemon threads are running, the appli-
cation will shut down automatically. Since Python’s main thread is not a daemon
thread, this means that, if we make all our connection threads daemonic, our appli-
cation will terminate on a KeyboardInterrupt. Adapting our code from listing 7.1

Block waiting
for a client to
connect. Once a client

connects, create a
thread to run our
echo function.

Start running
the thread.

162 CHAPTER 7 Handling blocking work with threads
to use daemonic threads is easy; all we need to do is set thread.daemon = True
before we run thread.start(). Once we make that change, our application will ter-
minate properly on CTRL-C.

 The problem with this approach is we have no way to run any cleanup or shutdown
logic when our threads stop, since daemon threads terminate abruptly. Let’s say that
on shutdown we want to write out to each client that the server is shutting down. Is
there a way we can have some type of exception interrupt our thread and cleanly shut
down the socket? If we call a socket’s shutdown method, any existing calls to recv will
return zero, and sendall will throw an exception. If we call shutdown from the main
thread, this will have the effect of interrupting our client threads that are blocking a
recv or sendall call. We can then handle the exception in the client thread and per-
form any cleanup logic we’d like.

 To do this, we’ll create threads slightly differently than before, by subclassing the
Thread class itself. This will let us define our own thread with a cancel method, inside
of which we can shut down the client socket. Then, our calls to recv and sendall will
be interrupted, allowing us to exit our while loop and close out the thread.

 The Thread class has a run method that we can override. When we subclass
Thread, we implement this method with the code that we want the thread to run when
we start it. In our case, this is the recv and sendall echo loop.

from threading import Thread
import socket

class ClientEchoThread(Thread):

 def __init__(self, client):
 super().__init__()
 self.client = client

 def run(self):
 try:
 while True:
 data = self.client.recv(2048)
 if not data:
 raise BrokenPipeError('Connection closed!')
 print(f'Received {data}, sending!')
 self.client.sendall(data)
 except OSError as e:
 print(f'Thread interrupted by {e} exception, shutting down!')

 def close(self):
 if self.is_alive():
 self.client.sendall(bytes('Shutting down!', encoding='utf-8'))
 self.client.shutdown(socket.SHUT_RDWR)

Listing 7.2 Subclassing the thread class for a clean shutdown

If there is no data, raise
an exception. This happens
when the connection was
closed by the client or the
connection was shut down.

When we have
an exception,
exit the run
method. This
terminates
the thread.

Shut down the connection if the thread is alive; the thread
may not be alive if the client closed the connection.

Shut down the client
connection for reads
and writes.

163Introducing the threading module

.

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as server:
 server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 server.bind(('127.0.0.1', 8000))
 server.listen()
 connection_threads = []
 try:
 while True:
 connection, addr = server.accept()
 thread = ClientEchoThread(connection)
 connection_threads.append(thread)
 thread.start()
 except KeyboardInterrupt:
 print('Shutting down!')
 [thread.close() for thread in connection_threads]

We first create a new class, ClientEchoThread, that inherits from Thread. This class
overrides the run method with the code from our original echo function, but with a
few changes. First, we wrap everything in a try catch block and intercept OSError
exceptions. This type of exception is thrown from methods such as sendall when we
close the client socket. We also check to see if the data from recv is 0. This happens in
two cases: if the client closes the connection (someone quits telnet, for example) or
when we shut down the client connection ourselves. In this case we throw a Broken-
PipeError ourselves (a subclass of OSError), execute the print statement in the
except block, and exit the run method, which shuts down the thread.

 We also define a close method on our ClientEchoThread class. This method first
checks to see if the thread is alive before shutting down the client connection. What
does it mean for a thread to be “alive,” and why do we need to do this? A thread is alive
if its run method is executing; in this case this is true if our run method does not
throw any exceptions. We need this check because the client itself may have closed the
connection, resulting in a BrokenPipeError exception in the run method before we
call close. This means that calling sendall would result in an exception, as the con-
nection is no longer valid.

 Finally, in our main loop, which listens for new incoming connections, we inter-
cept KeyboardInterrupt exceptions. Once we have one, we call the close method on
each thread we’ve created. This will send a message to the client, assuming the con-
nection is still active and shut down the connection.

 Overall, canceling running threads in Python, and in general, is a tricky problem
and depends on the specific shutdown case you’re trying to handle. You’ll need to
take special care that your threads do not block your application from exiting and to
figure out where to put in appropriate interrupt points to exit your threads.

 We’ve now seen a couple ways to manage threads manually ourselves, creating a
thread object with a target function and subclassing Thread and overriding the run
method. Now that we understand threading basics, let’s see how to use them with
asyncio to work with popular blocking libraries.

Call the close
method on our
threads to shut
down each client
connection on
keyboard interrupt

164 CHAPTER 7 Handling blocking work with threads
7.2 Using threads with asyncio
We now know how to create and manage multiple threads to handle blocking work.
The drawback of this approach is that we must individually create and keep track of
threads. We’d like to be able to use all the asyncio-based APIs we’ve learned to wait for
results from threads without having to manage them ourselves. Like process pools
from chapter 6, we can use thread pools to manage threads in this manner. In this sec-
tion, we’ll introduce a popular blocking HTTP client library and see how to use
threads with asyncio to run web requests concurrently.

7.2.1 Introducing the requests library

The requests library is a popular HTTP client library for Python, self-described as “HTTP
for humans.” You can view the latest documentation for the library at https://requests
.readthedocs.io/en/master/. Using it, you can make HTTP requests to web servers
much like we did with aiohttp. We’ll use the latest version (as of this writing, version
2.24.0). You can install this library by running the following pip command:

pip install -Iv requests==2.24.0

Once we’ve installed the library, we’re ready to make some basic HTTP requests. Let’s
start out by making a couple of requests to example.com to retrieve the status code, as
we did earlier with aiohttp.

import requests

def get_status_code(url: str) -> int:
 response = requests.get(url)
 return response.status_code

url = 'https:// www .example .com'
print(get_status_code(url))
print(get_status_code(url))

The preceding listing executes two HTTP GET requests in series. Running this, you
should see two 200 outputs. We didn’t create a HTTP session here, as we did with
aiohttp, but the library does support this as needed to keep cookies persistent across
different requests.

 The requests library is blocking, meaning that each call to requests.get will stop
any thread from executing other Python code until the request finishes. This has
implications for how we can use this library in asyncio. If we try to use this library in a
coroutine or a task by itself, it will block the entire event loop until the request fin-
ishes. If we had a HTTP request that took 2 seconds, our application wouldn’t be able

Listing 7.3 Basic usage of requests

https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/

165Using threads with asyncio
to do anything other than wait for those 2 seconds. To properly use this library with
asyncio, we must run these blocking operations inside of a thread.

7.2.2 Introducing thread pool executors

Much like process pool executors, the concurrent.futures library provides an
implementation of the Executor abstract class to work with threads named Thread-
PoolExecutor. Instead of maintaining a pool of worker processes like a process pool
does, a thread pool executor will create and maintain a pool of threads that we can
then submit work to.

 While a process pool will by default create one worker process for each CPU core
our machine has available, determining how many worker threads to create is a bit
more complicated. Internally, the formula for the default number of threads is
min(32, os.cpu_count() + 4). This causes the maximum (upper) bound of worker
threads to be 32 and the minimum (lower) bound to be 5. The upper bound is set
to 32 to avoid creating a surprising number of threads on machines with large
amounts of CPU cores (remember, threads are resource-expensive to create and
maintain). The lower bound is set to 5 because on smaller 1–2 core machines, spin-
ning up only a couple of threads isn’t likely to improve performance much. It often
makes sense to create a few more threads than your available CPUs for I/O-bound
work. For example, on an 8-core machine the above formula means we’ll create 12
threads. While only 8 threads can run concurrently, we can have other threads
paused waiting for I/O to finish, letting our operating resume them when I/O
is done.

 Let’s adapt our example from listing 7.3 to run 1,000 HTTP requests concur-
rently with a thread pool. We’ll time the results to get an understanding of what the
benefit is.

import time
import requests
from concurrent.futures import ThreadPoolExecutor

def get_status_code(url: str) -> int:
 response = requests.get(url)
 return response.status_code

start = time.time()

with ThreadPoolExecutor() as pool:
 urls = ['https:// www .example .com' for _ in range(1000)]
 results = pool.map(get_status_code, urls)
 for result in results:
 print(result)

Listing 7.4 Running requests with a thread pool

166 CHAPTER 7 Handling blocking work with threads
end = time.time()

print(f'finished requests in {end - start:.4f} second(s)')

On an 8-core machine with a speedy internet connection, this code can execute in
as little as 8–9 seconds with the default number of threads. It is easy to write this syn-
chronously to understand the impact that threading has by doing something, as in
the following:

start = time.time()

urls = ['https:// www .example .com' for _ in range(1000)]

for url in urls:
 print(get_status_code(url))

end = time.time()

print(f'finished requests in {end - start:.4f} second(s)')

Running this code can take upwards of 100 seconds! This makes our threaded code a
bit more than 10 times faster than our synchronous code, giving us a pretty big perfor-
mance bump.

 While this is clearly an improvement, you may remember from chapter 4, on
aiohttp, that we were able to make 1,000 requests concurrently in less than 1 second.
Why is this so much slower than our threading version? Remember that our maximum
number of worker threads is limited to 32 (that is, the number of CPUs plus 4), mean-
ing that by default we can only run a maximum of 32 requests concurrently. We can
try to get around this by passing in max_workers=1000 when we create our thread
pool, as in the following:

with ThreadPoolExecutor(max_workers=1000) as pool:
 urls = ['https:// www .example .com' for _ in range(1000)]
 results = pool.map(get_status_code, urls)
 for result in results:
 print(result)

This approach can yield some improvements, as we now have one thread per each
request we make. However, this still won’t come very close to our coroutine-based
code. This is due to the resource overhead associated with threads. Threads are cre-
ated at the operating-system level and are more expensive to create than coroutines.
In addition, threads have a context-switching cost at the OS level. Saving and restoring
thread state when a context switch happens eats up some of the performance gains
obtained by using threads.

 When you’re determining the number of threads to use for a particular problem,
it is best to start small (the amount of CPU cores plus a few is a good starting point),
test it, and benchmark it, gradually increasing the number of threads. You’ll usually

167Using threads with asyncio
find a “sweet spot,” after which the run time will plateau and may even degrade, no
matter how many more threads you add. This sweet spot is usually a fairly low number
relative to the requests you want to make (to make it clear, creating 1,000 threads for
1,000 requests probably isn’t the best use of resources).

7.2.3 Thread pool executors with asyncio

Using thread pool executors with the asyncio event loop isn’t much different than
using ProcessPoolExecutors. This is the beauty of having the abstract Executor base
class in that we can use the same code to run threads or processes by only having to
change one line of code. Let’s adapt our example of running 1,000 HTTP requests
to use asyncio.gather instead of pool.map.

import functools
import requests
import asyncio
from concurrent.futures import ThreadPoolExecutor
from util import async_timed

def get_status_code(url: str) -> int:
 response = requests.get(url)
 return response.status_code

@async_timed()
async def main():
 loop = asyncio.get_running_loop()
 with ThreadPoolExecutor() as pool:
 urls = ['https:// www .example .com' for _ in range(1000)]
 tasks = [loop.run_in_executor(pool,

functools.partial(get_status_code, url)) for url in urls]
 results = await asyncio.gather(*tasks)
 print(results)

asyncio.run(main())

We create the thread pool as we did before, but instead of using map we create a list of
tasks by calling our get_status_code function with loop.run_in_executor. Once we
have a list of tasks, we can wait for them to finish with asyncio.gather or any of the
other asyncio APIs we learned earlier.

 Internally, loop.run_in_executor calls the thread pool executor’s submit method.
This will put each function we pass in onto a queue. Worker threads in the pool then
pull from the queue, running each work item until it completes. This approach does
not yield any performance benefits over using a pool without asyncio, but while we’re
waiting for await asyncio.gather to finish, other code can run.

Listing 7.5 Using a thread pool executor with asyncio

168 CHAPTER 7 Handling blocking work with threads
7.2.4 Default executors

Reading the asyncio documentation, you may notice that the run_in_executor method’s
executor parameter can be None. In this case, run_in_executor will use the event
loop’s default executor. What is a default executor? Think of it as a reusable singleton
executor for your entire application. The default executor will always default to a
ThreadPoolExecutor unless we set a custom one with the loop.set_default_executor
method. This means that we can simplify the code from listing 7.5, as shown in the fol-
lowing listing.

import functools
import requests
import asyncio
from util import async_timed

def get_status_code(url: str) -> int:
 response = requests.get(url)
 return response.status_code

@async_timed()
async def main():
 loop = asyncio.get_running_loop()
 urls = ['https:// www .example .com' for _ in range(1000)]
 tasks = [loop.run_in_executor(None, functools.partial(get_status_code,

url)) for url in urls]
 results = await asyncio.gather(*tasks)
 print(results)

asyncio.run(main())

In the preceding listing, we eliminate creating our own ThreadPoolExecutor and
using it in a context manager as we did before and, instead, pass in None as the exec-
utor. The first time we call run_in_executor, asyncio creates and caches a default
thread pool executor for us. Each subsequent call to run_in_executor reuses the
previously created default executor, meaning the executor is then global to the
event loop. Shutdown of this pool is also different from what we saw before. Previ-
ously, the thread pool executor we created was shut down when we exited a context
manager’s with block. When using the default executor, it won’t shut down until the
event loop closes, which usually happens when our application finishes. Using the
default thread pool executor when we want to use threads simplifies things, but can
we make this even easier?

 In Python 3.9, the asyncio.to_thread coroutine was introduced to further sim-
plify putting work on the default thread pool executor. It takes in a function to run in
a thread and a set of arguments to pass to that function. Previously, we had to use
functools.partial to pass in arguments, so this makes our code a little cleaner. It

Listing 7.6 Using the default executor

169Locks, shared data, and deadlocks
then runs the function with its arguments in the default thread pool executor and the
currently running event loop. This lets us simplify our threading code even more.
Using the to_thread coroutine eliminates using functools.partial and our call to
asyncio.get_running_loop, cutting down our total lines of code.

import requests
import asyncio
from util import async_timed

def get_status_code(url: str) -> int:
 response = requests.get(url)
 return response.status_code

@async_timed()
async def main():
 urls = ['https:// www .example .com' for _ in range(1000)]
 tasks = [asyncio.to_thread(get_status_code, url) for url in urls]
 results = await asyncio.gather(*tasks)
 print(results)

asyncio.run(main())

So far, we’ve only seen how to run blocking code inside of threads. The power of com-
bining threads with asyncio is that we can run other code while we’re waiting for our
threads to finish. To see how to run other code while threads are running, we’ll revisit
our example from chapter 6 of periodically outputting the status of a long-running task.

7.3 Locks, shared data, and deadlocks
Much like multiprocessing code, multithreaded code is also susceptible to race condi-
tions when we have shared data, as we do not control the order of execution. Any time
you have two threads or processes that could modify a shared piece of non-thread-safe
data, you’ll need to utilize a lock to properly synchronize access. Conceptually, this is
no different from the approach we took with multiprocessing; however, the memory
model of threads changes the approach slightly.

 Recall that with multiprocessing, by default the processes we create do not share
memory. This meant we needed to create special shared memory objects and properly
initialize them so that each process could read from and write to that object. Since
threads do have access to the same memory of their parent process, we no longer need
to do this, and threads can access shared variables directly.

 This simplifies things a bit, but since we won’t be working with shared Value
objects that have locks built in, we’ll need to create them ourselves. To do this, we’ll
need to use the threading module’s Lock implementation, which is different from the
one we used with multiprocessing. This is as easy as importing Lock from the threading

Listing 7.7 Using the to_thread coroutine

170 CHAPTER 7 Handling blocking work with threads
module and calling its acquire and release methods around critical sections of code
or using it in a context manager.

 To see how to use locks with threading, let’s revisit our task from chapter 6 of keep-
ing track and displaying the progress of a long task. We’ll take our previous example
of making thousands of web requests and use a shared counter to keep track of how
many requests we’ve completed so far.

import functools
import requests
import asyncio
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
from util import async_timed

counter_lock = Lock()
counter: int = 0

def get_status_code(url: str) -> int:
 global counter
 response = requests.get(url)
 with counter_lock:
 counter = counter + 1
 return response.status_code

async def reporter(request_count: int):
 while counter < request_count:
 print(f'Finished {counter}/{request_count} requests')
 await asyncio.sleep(.5)

@async_timed()
async def main():
 loop = asyncio.get_running_loop()
 with ThreadPoolExecutor() as pool:
 request_count = 200
 urls = ['https:// www .example .com' for _ in range(request_count)]
 reporter_task = asyncio.create_task(reporter(request_count))
 tasks = [loop.run_in_executor(pool,

functools.partial(get_status_code, url)) for url in urls]
 results = await asyncio.gather(*tasks)
 await reporter_task
 print(results)

asyncio.run(main())

This should look familiar, as it is like the code we wrote to output progress of our map
operation in chapter 6. We create a global counter variable as well as a counter_lock

Listing 7.8 Printing status of requests

171Locks, shared data, and deadlocks
to synchronize access to it in critical sections. In our get_status_code function we
acquire the lock when we increment the counter. Then, in our main coroutine we
kick off a reporter background task that outputs how many requests we’ve finished
every 500 milliseconds. Running this, you should see output similar to the following:

Finished 0/200 requests
Finished 48/200 requests
Finished 97/200 requests
Finished 163/200 requests

We now know the basics around locks with both multithreading and multiprocess-
ing, but there is still quite a bit to learn about locking. Next, we’ll look at the con-
cept of reentrancy.

7.3.1 Reentrant locks

Simple locks work well for coordinating access to a shared variable across multiple
threads, but what happens when a thread tries to acquire a lock it has already
acquired? Is this even safe? Since the same thread is acquiring the lock, this should be
okay since this is single-threaded by definition and, therefore, thread-safe.

 While this access should be okay, it does cause problems with the locks we have
been using so far. To illustrate this, let’s imagine we have a recursive sum function that
takes a list of integers and produces the sum of the list. The list we want to sum can be
modified from multiple threads, so we need to use a lock to ensure the list we’re sum-
ming does not get modified during our sum operation. Let’s try implementing this
with a normal lock to see what happens. We’ll also add some console output to see
how our function is executing.

from threading import Lock, Thread
from typing import List

list_lock = Lock()

def sum_list(int_list: List[int]) -> int:
 print('Waiting to acquire lock...')
 with list_lock:
 print('Acquired lock.')
 if len(int_list) == 0:
 print('Finished summing.')
 return 0
 else:
 head, *tail = int_list
 print('Summing rest of list.')
 return head + sum_list(tail)

Listing 7.9 Recursion with locks

172 CHAPTER 7 Handling blocking work with threads
thread = Thread(target=sum_list, args=([1, 2, 3, 4],))
thread.start()
thread.join()

If you run this code, you’ll see the following few messages and then the application
will hang forever:

Waiting to acquire lock...
Acquired lock.
Summing rest of list.
Waiting to acquire lock...

Why is this happening? If we walk through this, we acquire list_lock the first time
perfectly fine. We then unpack the list and recursively call sum_list on the remainder
of the list. This then causes us to attempt to acquire list_lock a second time. This is
where our code hangs because, since we already acquired the lock, we block forever
trying to acquire the lock a second time. This also means we never exit the first with
block and can’t release the lock; we’re waiting for a lock that will never be released!

 Since this recursion is coming from the same thread that originated it, acquiring the
lock more than once shouldn’t be a problem as this won’t cause race conditions. To sup-
port these use cases, the threading library provides reentrant locks. A reentrant lock is a
special kind of lock that can be acquired by the same thread more than once, allowing
that thread to “reenter” critical sections. The threading module provides reentrant
locks in the RLock class. We can take our above code and fix the problem by modifying
only two lines of code—the import statement and the creation of the list_lock:

from threading import Rlock

list_lock = RLock()

If we modify these lines our code will work properly, and a single thread will be able to
acquire the lock multiple times. Internally, reentrant locks work by keeping a recur-
sion count. Each time we acquire the lock from the thread that first acquired the lock,
the count increases, and each time we release the lock it decreases. When the count is
0, the lock is finally released for other threads to acquire it.

 Let’s examine a more real-world application to truly understand the concept of
recursion with locks. Imagine we’re trying to build a thread-safe integer list class with
a method to find and replace all elements of a certain value with a different value.
This class will contain a normal Python list and a lock we use to prevent race condi-
tions. We’ll pretend our existing class already has a method called indices_of(to_
find: int) that takes in an integer and returns all the indices in the list that match
to_find. Since we want to follow the DRY (don’t repeat yourself) rule, we’ll reuse this
method when we define our find-and-replace method (note this is not the technically
the most efficient way to do this, but we’ll do it to illustrate the concept). This means
our class and method will look something like the following listing.

173Locks, shared data, and deadlocks
from threading import Lock
from typing import List

class IntListThreadsafe:

 def __init__(self, wrapped_list: List[int]):
 self._lock = Lock()
 self._inner_list = wrapped_list

 def indices_of(self, to_find: int) -> List[int]:
 with self._lock:
 enumerator = enumerate(self._inner_list)
 return [index for index, value in enumerator if value == to_find]

 def find_and_replace(self,
 to_replace: int,
 replace_with: int) -> None:
 with self._lock:
 indices = self.indices_of(to_replace)
 for index in indices:
 self._inner_list[index] = replace_with

threadsafe_list = IntListThreadsafe([1, 2, 1, 2, 1])
threadsafe_list.find_and_replace(1, 2)

If someone from another thread modifies the list during our indices_of call, we
could obtain an incorrect return value, so we need to acquire the lock before we
search for matching indices. Our find_and_replace method must acquire the lock
for the same reason. However, with a normal lock we wind up hanging forever when
we call find_and_replace. The find-and-replace method first acquires the lock and
then calls another method, which tries to acquire the same lock. Switching to an
RLock in this case will fix this problem because one call to find_and_replace will
always acquire any locks from the same thread. This illustrates a generic formula for
when you need to use reentrant locks. If you are developing a thread-safe class with a
method A, which acquires a lock, and a method B that also needs to acquire a lock and
call method A, you likely need to use a reentrant lock.

7.3.2 Deadlocks

You may be familiar with the concept of deadlock from political negotiations on the news,
where one party makes a demand of the other side, and the other side makes a counter-
demand. Both sides disagree on the next step and negotiation reaches a standstill. The
concept in computer science is similar in that we reach a state where there is contention
over a shared resource with no resolution, and our application hangs forever.

Listing 7.10 A thread-safe list class

174 CHAPTER 7 Handling blocking work with threads
 The issue we saw in the previous section, where non-reentrant locks can cause our
program to hang forever, is one example of a deadlock. In that case, we reach a state
where we’re stuck in a standstill negotiation with ourselves, demanding to acquire a
lock that is never released. This situation can also arise when we have two threads
using more than one lock. Figure 7.1 illustrates this scenario: if thread A asks for a lock
that thread B has acquired, and thread B is asking for a lock that A has acquired, we
reach a standstill and a deadlock. In that instance, using reentrant locks won’t help, as
we have multiple threads stuck waiting on a resource the other thread holds.

Let’s look at how to create this type of deadlock in code. We’ll create two locks, lock A
and B, and two methods which need to acquire both locks. One method will acquire A
first and then B and another will acquire B first and then A.

from threading import Lock, Thread
import time

lock_a = Lock()
lock_b = Lock()

def a():
 with lock_a:
 print('Acquired lock a from method a!')
 time.sleep(1)
 with lock_b:
 print('Acquired both locks from method a!')

def b():
 with lock_b:
 print('Acquired lock b from method b!')
 with lock_a:
 print('Acquired both locks from method b!')

Listing 7.11 A deadlock in code

Acquire lock A

Request lock B Wait for lock B
Wait for lock A

Lock A Lock B Acquire lock B

Request lock A

Figure 7.1 Threads 1 and 2 acquire locks A and B at roughly the same time. Then, thread 1 waits for lock B,
which thread 2 holds; meanwhile, thread 2 is waiting for A, which thread 1 holds. This circular dependency
causes a deadlock and will hang the application.

Acquire lock A.
Sleep for 1 second; this
ensures we create the right
conditions for deadlock.

Acquire
lock B.

Acquire
lock A.

175Event loops in separate threads
thread_1 = Thread(target=a)
thread_2 = Thread(target=b)
thread_1.start()
thread_2.start()
thread_1.join()
thread_2.join()

When we run this code, we’ll see the following output, and our application will hang
forever:

Acquired lock a from method a!
Acquired lock b from method b!

We first call method A and acquire lock A, then we introduce an artificial delay to give
method B a chance to acquire lock B. This leaves us in a state where method A holds
lock A and method B holds lock B. Next, method A attempts to acquire lock B, but
method B is holding that lock. At the same time, method B tries to acquire lock A,
but method A is holding it, stuck waiting for B to release its lock. Both methods are
stuck waiting on one another to release a resource, and we reach a standstill.

 How do we handle this situation? One solution is the so-called “ostrich algo-
rithm,” named for the situation (although ostriches don’t actually behave this way)
where an ostrich sticks its head in the sand whenever it senses danger. With this
strategy, we ignore the problem and devise a strategy to restart our application when
we encounter the issue. The driving idea behind this approach is if the issue hap-
pens rarely enough, investing in a fix isn’t worth it. If you remove the sleep from
the above code, you’ll only rarely see deadlock occur, as it relies on a very specific
sequence of operations. This isn’t really a fix and isn’t ideal but is a strategy used
with deadlocks that rarely occur.

 However, in our situation there is an easy fix, where we change the locks in both
methods to always be acquired in the same order. For instance, both methods A and B
can acquire lock A first then lock B. This resolves the issue, as we’ll never acquire locks
in an order where a deadlock could occur. The other option would be to refactor the
locks so we use only one instead of two. It is impossible to have a deadlock with one
lock (excluding the reentrant deadlock we saw earlier). Overall, when dealing with
multiple locks that you need to acquire, ask yourself, “Am I acquiring these locks in a
consistent order? Is there a way I can refactor this to use only one lock?”

 We’ve now seen how to use threads effectively with asyncio and have investigated
more complex locking scenarios. Next, let’s see how to use threads to integrate asyncio
into existing synchronous applications that may not work smoothly with asyncio.

7.4 Event loops in separate threads
We have mainly focused on building applications that are completely implemented
from the bottom up with coroutines and asyncio. When we’ve had any work that does
not fit within a single-threaded concurrency model, we have run it inside of threads or

176 CHAPTER 7 Handling blocking work with threads
processes. Not all applications will fit into this paradigm. What if we’re working in an
existing synchronous application and we want to incorporate asyncio?

 One such situation where we can run into this scenario is building desktop user
interfaces. The frameworks to build GUIs usually run their own event loop, and the
event loop blocks the main thread. This means that any long-running operations can
cause the user interface to freeze. In addition, this UI event loop will block us from
creating an asyncio event loop. In this section, we’ll learn how to use multithreading
to run multiple event loops at the same time by building a responsive HTTP stress-
testing user interface in Tkinter.

7.4.1 Introducing Tkinter

Tkinter is a platform-independent desktop graphical user interface (GUI) toolkit pro-
vided in the default Python installation. Short for “Tk interface,” it is an interface to
the low-level Tk GUI toolkit that is written in the tcl language. With the creation of the
Tkinter Python library, Tk has grown into a popular way for Python developers to
build desktop user interfaces.

 Tkinter has a set of “widgets,” such as labels, text boxes, and buttons, that we can
place in a desktop window. When we interact with a widget, such as entering text or
pressing a button, we can trigger a function to execute code. The code that runs in
response to a user action could be as simple as updating another widget or triggering
another operation.

 Tkinter, and many other GUI libraries, draw their widgets and handle widget inter-
actions through their own event loops. The event loop is constantly redrawing the
application, processing events, and checking to see if any code should run in response
to a widget event. To get familiar with Tkinter and its event loop, let’s create a basic
hello world application. We’ll create an application with a “say hello” button that will
output “Hello there!” to the console when we click on it.

import tkinter
from tkinter import ttk

window = tkinter.Tk()
window.title('Hello world app')
window.geometry('200x100')

def say_hello():
 print('Hello there!')

hello_button = ttk.Button(window, text='Say hello', command=say_hello)
hello_button.pack()

window.mainloop()

Listing 7.12 “Hello world” with Tkinter

177Event loops in separate threads
This code first creates a Tkinter window (see figure 7.2) and sets the application title
and window size. We then place a button on the window and set its command to the
say_hello function. When a user presses this button, the say_hello function exe-
cutes, printing out our message. We then call window.mainloop() that starts the Tk
event loop, running our application.

One thing to note here is that our application will block on window.mainloop().
Internally, this method runs the Tk event loop. This is an infinite loop that is checking
for window events and constantly redrawing the window until we close it. The Tk
event loop has interesting parallels to the asyncio event loop. For example, what hap-
pens if we try to run blocking work in our button’s command? If we add a 10-second
delay to the say_hello function with time.sleep(10), we’ll start to see a problem:
our application will freeze for 10 seconds!

 Much like asyncio, Tkinter runs everything in its event loop. This means that if we
have a long-running operation, such as making a web request or loading a large file,
we’ll block the tk event loop until that operation finishes. The effect on the user is
that the UI hangs and becomes unresponsive. The user can’t click on any buttons, we
can’t update any widgets with status or progress, and the operating system will likely
display a spinner (like the example in figure 7.3) to indicate the application is hang-
ing. This is clearly an undesirable, unresponsive user interface.

This is an instance where asynchronous programming can, in theory, help us out. If
we can make asynchronous requests that don’t block the tk event loop, we can avoid

Figure 7.2 The “hello world”
application from listing 7.12

Figure 7.3 The dreaded “beach ball of doom”
occurs as we block the event loop on a Mac.

178 CHAPTER 7 Handling blocking work with threads
this problem. This is trickier than it may seem as Tkinter is not asyncio-aware, and you
can’t pass in a coroutine to run on a button click. We could try running two event
loops at the same time in the same thread, but this won’t work. Both Tkinter and
asyncio are single-threaded—this idea is the same as trying to run two infinite loops in
the same thread at the same time, which can’t be done. If we start the asyncio event
loop before the Tkinter event loop, the asyncio event loop will block the Tkinter loop
from running, and vice versa. Is there a way for us to run an asyncio application along-
side a single-threaded application?

 We can in fact combine these two event loops to create a functioning application
by running the asyncio event loop in a separate thread. Let’s look at how to do this
with an application that will responsively update the user on the status of a long-running
task with a progress bar.

7.4.2 Building a responsive UI with asyncio and threads

First, let’s introduce our application and sketch out a basic UI. We’ll build a URL
stress test application. This application will take a URL and many requests to send as
input. When we press a submit button, we’ll use aiohttp to send out web requests as
fast as we can, delivering a predefined load to the web server we choose. Since this
may take a long time, we’ll add a progress bar to visualize how far along we are in the
test. We’ll update the progress bar after every 1% of total requests are finished to show
progress. Further, we’ll let the user cancel the request if they’d like. Our UI will have a
few widgets, including a text input for the URL to test, a text input for the number of
requests we wish to issue, a start button, and a progress bar. We’ll design a UI that
looks like the illustration in figure 7.4.

Now that we have our UI sketched out, we need to think through how to have two
event loops running alongside one another. The basic idea is that we’ll have the
Tkinter event loop running in the main thread, and we’ll run the asyncio event loop
in a separate thread. Then, when the user clicks “Submit,” we’ll submit a coroutine to
the asyncio event loop to run the stress test. As the stress test is running, we’ll issue
commands from the asyncio event loop back to the Tkinter event loop to update our
progress. This gives us an architecture that looks like the drawing in figure 7.5.

 This new architecture includes communication across threads. We need to be care-
ful about race conditions in this situation, especially since the asyncio event loop is not

Figure 7.4 The URL requester GUI

179Event loops in separate threads
thread-safe! Tkinter is designed with thread safety in mind, so there are fewer con-
cerns with calling it from a separate thread (in Python 3+ at least; we’ll look more
closely at this soon).

 We may be tempted to submit coroutines from Tkinter using asyncio.run, but this
function blocks until the coroutine we pass in finishes and will cause the Tkinter applica-
tion to hang. We’ll need a function which submits a coroutine to the event loop without
any blocking. There are a few new asyncio functions to learn that are both non-blocking
and have thread safety built in to submit this kind of work properly. The first is a method
on the asyncio event loop named call_soon_threadsafe. This function takes in a
Python function (not a coroutine) and schedules it to execute it in a thread-safe manner
at the next iteration of the asyncio event loop. The second function is asyncio.run_
coroutine_threadsafe. This function takes in a coroutine and submits it to run in a
thread-safe manner, immediately returning a future that we can use to access a result of
the coroutine. Importantly, and confusingly, this future is not an asyncio future but rather
from the concurrent.futures module. The logic behind this is that asyncio futures are
not thread-safe, but concurrent.futures futures are. This future class does however
have the same functionality as the future from the asyncio module.

 Let’s start defining and implementing a few classes to build our stress test appli-
cation based on what we described above. The first thing we’ll build is a stress test
class. This class will be responsible for starting and stopping one stress test and keep-
ing track of how many requests have completed. Its constructor will take in a URL,
an asyncio event loop, the number of desired requests to make, and a progress
updater callback. We’ll call this callback when we want to trigger a progress bar
update. When we get to implementing the UI, this callback will trigger an update to
the progress bar. Internally, we’ll calculate a refresh rate, which is the rate at which
we’ll execute the callback. We’ll default this rate to every 1% of the total requests we
plan to send.

GUI process

Main thread asyncio thread

Submit test

Update progress

Tk event

loop

asyncio

event loop

Figure 7.5 The tk event loop
submits a task to the asyncio
event loop, which runs in a
separate thread.

180 CHAPTER 7 Handling blocking work with threads
import asyncio
from concurrent.futures import Future
from asyncio import AbstractEventLoop
from typing import Callable, Optional
from aiohttp import ClientSession

class StressTest:

 def __init__(self,
 loop: AbstractEventLoop,
 url: str,
 total_requests: int,
 callback: Callable[[int, int], None]):
 self._completed_requests: int = 0
 self._load_test_future: Optional[Future] = None
 self._loop = loop
 self._url = url
 self._total_requests = total_requests
 self._callback = callback
 self._refresh_rate = total_requests // 100

 def start(self):
 future = asyncio.run_coroutine_threadsafe(self._make_requests(),

self._loop)
 self._load_test_future = future

 def cancel(self):
 if self._load_test_future:
 self._loop.call_soon_threadsafe(self._load_test_future.cancel)

 async def _get_url(self, session: ClientSession, url: str):
 try:
 await session.get(url)
 except Exception as e:
 print(e)
 self._completed_requests = self._completed_requests + 1
 if self._completed_requests % self._refresh_rate == 0 \
 or self._completed_requests == self._total_requests:
 self._callback(self._completed_requests, self._total_requests)

 async def _make_requests(self):
 async with ClientSession() as session:
 reqs = [self._get_url(session, self._url) for _ in

range(self._total_requests)]
 await asyncio.gather(*reqs)

In our start method, we call run_coroutine_threadsafe with _make_requests that
will start making requests on the asyncio event loop. We also keep track of the future
this returns in _load_test_future. Keeping track of this future lets us cancel the load
test in our cancel method. In our _make_requests method we create a list coroutines

Listing 7.13 The stress test class

Start making the
requests, and store the
future, so we can later
cancel if needed.

If we want to cancel, call
the cancel function on

the load test future.

Once we’ve completed 1% of requests, call
the callback with the number of completed

requests and the total requests.

181Event loops in separate threads
to make all our web requests, passing them into asyncio.gather to run them. Our
_get_url coroutine makes the request, increments the_completed_requests counter,
and calls the callback with the total number of completed requests if necessary. We
can use this class by simply instantiating it and calling the start method, optionally
canceling by calling the cancel method.

 One interesting thing to note is that we didn’t use any locking around the_
completed requests counter despite updates happening to it from multiple corou-
tines. Remember that asyncio is single-threaded, and the asyncio event loop only runs a
piece of Python code at any given time. This has the effect of making incrementing the
counter atomic when used with asyncio, despite it being non-atomic when happening
between multiple threads. asyncio saves us from many kinds of race conditions that we
see with multithreading but not all. We’ll examine this more in a later chapter.

 Next, let’s implement our Tkinter GUI to use this load tester class. For code clean-
liness, we’ll subclass the TK class directly and initialize our widgets in the constructor.
When a user clicks the start button, we’ll create a new StressTest instance and start
it. The question now becomes what do we pass in as a callback to our StressTest
instance? Thread safety becomes an issue here as our callback will be called in the
worker thread. If our callback modifies shared data from the worker thread that our
main thread can also modify, this could cause race conditions. In our case, since
Tkinter has thread safety built in and all we’re doing is updating the progress bar, we
should be okay. But what if we needed to do something with shared data? Locking is
one approach, but if we could run our callback in the main thread, we’d avoid any
race conditions. We’ll use a generic pattern to demonstrate how to do this, though
updating the progress bar directly should be safe.

 One common pattern to accomplish this is to use a shared thread-safe queue from
the queue module. Our asyncio thread can put progress updates into this queue.
Then, our Tkinter thread can check this queue for updates in its thread, updating the
progress bar in the correct thread. We’ll need to tell Tkinter to poll the queue in the
main thread to do this.

 Tkinter has a method that lets us queue up a function to run after a specified time
increment in the main thread called after. We’ll use this to run a method that asks
the queue if it has a new progress update (listing 7.14). If it does, we can update the
progress bar safely from the main thread. We’ll poll the queue every 25 milliseconds
to ensure we get updates with reasonable latency.

Is Tkinter really thread-safe?
If you search for Tkinter and thread safety, you'll find a lot of conflicting information.
The threading situation in Tkinter is quite complicated. This is in part because, for
several years, Tk and Tkinter lacked proper thread support. Even when threaded mode
was added, it had several bugs that have since been fixed. Tk supports both non-
threaded and threaded modes. In non-threaded mode, there is no thread safety; and
using Tkinter from anything other than the main thread is inviting a crash. In older

182 CHAPTER 7 Handling blocking work with threads
from queue import Queue
from tkinter import Tk
from tkinter import Label
from tkinter import Entry
from tkinter import ttk
from typing import Optional
from chapter_07.listing_7_13 import StressTest

class LoadTester(Tk):

 def __init__(self, loop, *args, **kwargs):
 Tk.__init__(self, *args, **kwargs)
 self._queue = Queue()
 self._refresh_ms = 25

 self._loop = loop
 self._load_test: Optional[StressTest] = None
 self.title('URL Requester')

 self._url_label = Label(self, text="URL:")
 self._url_label.grid(column=0, row=0)

 self._url_field = Entry(self, width=10)
 self._url_field.grid(column=1, row=0)

 self._request_label = Label(self, text="Number of requests:")
 self._request_label.grid(column=0, row=1)

 self._request_field = Entry(self, width=10)
 self._request_field.grid(column=1, row=1)

 self._submit = ttk.Button(self, text="Submit", command=self._start)
 self._submit.grid(column=2, row=1)

 self._pb_label = Label(self, text="Progress:")
 self._pb_label.grid(column=0, row=3)

 self._pb = ttk.Progressbar(self, orient="horizontal", length=200,
mode="determinate")

 self._pb.grid(column=1, row=3, columnspan=2)

(continued)

versions of Python, Tk thread safety was not turned on; however, in versions of
Python 3 and later, thread safety is turned on by default and we have thread-safe
guarantees. In threaded mode, if an update is issued from a worker thread, Tkinter
acquires a mutex and writes the update event to a queue for the main thread to later
process. The relevant code where this happens is in CPython in the Tkapp_Call func-
tion in Modules/_tkinter.c.

Listing 7.14 The Tkinter GUI

In our constructor, we
set up the text inputs,
labels, submit button,
and progress bar.

When clicked, our
submit button will call

the _start method.

183Event loops in separate threads

T
u
q
o
p

 def _update_bar(self, pct: int):
 if pct == 100:
 self._load_test = None
 self._submit['text'] = 'Submit'
 else:
 self._pb['value'] = pct
 self.after(self._refresh_ms, self._poll_queue)

 def _queue_update(self, completed_requests: int, total_requests: int):
 self._queue.put(int(completed_requests / total_requests * 100))

 def _poll_queue(self):
 if not self._queue.empty():
 percent_complete = self._queue.get()
 self._update_bar(percent_complete)
 else:
 if self._load_test:
 self.after(self._refresh_ms, self._poll_queue)

 def _start(self):
 if self._load_test is None:
 self._submit['text'] = 'Cancel'
 test = StressTest(self._loop,
 self._url_field.get(),
 int(self._request_field.get()),
 self._queue_update)
 self.after(self._refresh_ms, self._poll_queue)
 test.start()
 self._load_test = test
 else:
 self._load_test.cancel()
 self._load_test = None
 self._submit['text'] = 'Submit'

In our application’s constructor, we create all the widgets we need for the user inter-
face. Most notably, we create Entry widgets for the URL to test and the number of
requests to run, a submit button, and a horizontal progress bar. We also use the grid
method to arrange these widgets in the window appropriately.

 When we create the submit button widget, we specify the command as the _start
method. This method will create a StressTest object and starts running it unless we
already have a load test running, in which case we will cancel it. When we create a
StressTest object, we pass in the _queue_update method as a callback. The Stress-
Test object will call this method whenever it has a progress update to issue. When this
method runs, we calculate the appropriate percentage and put this into the queue.
We then use Tkinter’s after method to schedule the _poll_queue method to run
every 25 milliseconds.

 Using the queue as a shared communication mechanism instead of directly calling
_update_bar will ensure that our _update_bar method runs in the Tkinter event loop
thread. If we don’t do this, the progress bar update would happen in the asyncio event
loop as the callback is run within that thread.

The update bar method will set
the progress bar to a percentage
complete value from 0 to 100.
This method should only be
called in the main thread.

This method is the callback
we pass to the stress test;
it adds a progress update

to the queue.
ry to get a progress
pdate from the
ueue; if we have
ne, update the
rogress bar.

Start the load test, and start
polling every 25 milliseconds
for queue updates.

184 CHAPTER 7 Handling blocking work with threads
 Now that we’ve implemented the UI application, we can glue these pieces all
together to create a fully working application. We’ll create a new thread to run the
event loop in the background and then start our newly created LoadTester application.

import asyncio
from asyncio import AbstractEventLoop
from threading import Thread
from chapter_07.listing_7_14 import LoadTester

class ThreadedEventLoop(Thread):
 def __init__(self, loop: AbstractEventLoop):
 super().__init__()
 self._loop = loop
 self.daemon = True

 def run(self):
 self._loop.run_forever()

loop = asyncio.new_event_loop()

asyncio_thread = ThreadedEventLoop(loop)
asyncio_thread.start()

app = LoadTester(loop)
app.mainloop()

We first define a ThreadedEventLoopClass that inherits from Thread to run our event
loop. In this class’s constructor, we take in an event loop and set the thread to be a dae-
mon thread. We set the thread to be daemon because the asyncio event loop will block
and run forever in this thread. This type of infinite loop would prevent our GUI applica-
tion from shutting down if we ran in non-daemon mode. In the thread’s run method,
we call the event loop’s run_forever method. This method is well named, as it quite lit-
erally just starts the event loop running forever, blocking until we stop the event loop.

 Once we’ve created this class, we create a new asyncio event loop with the
new_event_loop method. We then create a ThreadedEventLoop instance, passing in
the loop we just created and start it. This creates a new thread with our event loop run-
ning inside of it. Finally, we create an instance of our LoadTester app and call the
mainloop method, kicking off the Tkinter event loop.

 When we run a stress test with this application, we should see the progress bar
update smoothly without freezing the user interface. Our application remains respon-
sive, and we can click cancel to stop the load test whenever we please. This technique
of running the asyncio event loop in a separate thread is useful for building respon-
sive GUIs, but also is useful for any synchronous legacy applications where coroutines
and asyncio don’t fit smoothly.

Listing 7.15 The load tester app

We create a new thread
class to run the asyncio
event loop forever.

Start the new thread
to run the asyncio event
loop in the background.

Create the load tester Tkinter application,
and start its main event loop.

185Using threads for CPU-bound work
 We’ve now seen how to utilize threads for various I/O-bound workloads, but what
about CPU-bound workloads? Recall that the GIL prevents us from running Python
bytecode concurrently in threads, but there are a few notable exceptions to this that
let us do some CPU-bound work in threads.

7.5 Using threads for CPU-bound work
The global interpreter lock is a tricky subject in Python. The rule of thumb is multi-
threading only makes sense for blocking I/O work, as I/O will release the GIL. This is
true in most cases but not all. To properly release the GIL and avoid any concurrency
bugs, the code that is running needs to avoid interacting with Python objects (dictio-
naries, lists, Python integers, and so on). This can happen when a large portion of our
libraries’ work is done in low-level C code. There are a few notable libraries, such as
hashlib and NumPy, that perform CPU-intensive work in pure C and release the GIL.
This enables us to use multithreading to improve the performance of certain CPU-
bound workloads. We’ll examine two such instances: hashing sensitive text for security
and solving a data analysis problem with NumPy.

7.5.1 Multithreading with hashlib

In today’s world, security has never been more important. Ensuring that data is not
read by hackers is key to avoiding leaking sensitive customer data, such as passwords
or other information that can be used to identify or harm them.

 Hashing algorithms solve this problem by taking a piece of input data and creating
a new piece of data that is unreadable and unrecoverable (if the algorithm is secure) to
a human. For example, the password “password” may be hashed to a string that looks
more like 'a12bc21df'. While no one can read or recover the input data, we’re still able
to check if a piece of data matches a hash. This is useful for scenarios such as validating
a user’s password on login or checking if a piece of data has been tampered with.

 There are many different hashing algorithms today, such as SHA512, BLAKE2,
and scrypt, though SHA is not the best choice for storing passwords, as it is suscepti-
ble to brute-force attacks. Several of these algorithms are implemented in Python’s
hashlib library. Many functions in this library release the GIL when hashing data
greater than 2048 bytes, so multithreading is an option to improve this library’s per-
formance. In addition, the scrypt function, used for hashing passwords, always
releases the GIL.

 Let’s introduce a (hopefully) hypothetical scenario to see when multithreading
might be useful with hashlib. Imagine you’ve just started a new job as principal soft-
ware architect at a successful organization. Your manager assigns you your first bug to
get started learning the company’s development process—a small issue with the login
system. To debug this issue, you start to look at a few database tables, and to your hor-
ror you notice that all your customers’ passwords are stored in plaintext! This means
that if your database is compromised, attackers could get all your customers’ pass-
words and log in as them, potentially exposing sensitive data such as saved credit

186 CHAPTER 7 Handling blocking work with threads
card numbers. You bring this to your manager’s attention, and they ask you to find a
solution to the problem as soon as possible.

 Using the scrypt algorithm to hash the plaintext passwords is a good solution for
this kind of problem. It is secure and the original password is unrecoverable, as it
introduces a salt. A salt is a random number that ensures that the hash we get for the
password is unique. To test out using scrypt, we can quickly write a synchronous script
to create random passwords and hash them to get a sense of how long things will take.
For this example, we’ll test on 10,000 random passwords.

import hashlib
import os
import string
import time
import random

def random_password(length: int) -> bytes:
 ascii_lowercase = string.ascii_lowercase.encode()
 return b''.join(bytes(random.choice(ascii_lowercase)) for _ in

range(length))

passwords = [random_password(10) for _ in range(10000)]

def hash(password: bytes) -> str:
 salt = os.urandom(16)
 return str(hashlib.scrypt(password, salt=salt, n=2048, p=1, r=8))

start = time.time()

for password in passwords:
 hash(password)

end = time.time()
print(end - start)

We first write a function to create random lowercase passwords and then use that to
create 10,000 random passwords of 10 characters each. We then hash each password
with the scrypt function. We’ll gloss over the details (n, p, and r parameters of the
scrypt function), but these are used to tune how secure we’d like our hash to be and
memory/CPU usage.

 Running this on the servers you have, which are 2.4 Ghz 8-core machines, this
code completes in just over 40 seconds, which is not too bad. The issue is that you
have a large user base, and you need to hash 1,000,000,000 passwords. Doing the cal-
culation based on this test, it will take a bit over 40 days to hash the entire database!
We could split up our data set and run this procedure on multiple machines, but we’d

Listing 7.16 Hashing passwords with scrypt

187Using threads for CPU-bound work
need a lot of machines to do that, given how slow this is. Can we use threading to
improve the speed and therefore cut down on the time and machines we need to use?
Let’s apply what we know about multithreading to give this a shot. We’ll create a
thread pool and hash passwords in multiple threads.

import asyncio
import functools
import hashlib
import os
from concurrent.futures.thread import ThreadPoolExecutor
import random
import string

from util import async_timed

def random_password(length: int) -> bytes:
 ascii_lowercase = string.ascii_lowercase.encode()
 return b''.join(bytes(random.choice(ascii_lowercase)) for _ in

range(length))

passwords = [random_password(10) for _ in range(10000)]

def hash(password: bytes) -> str:
 salt = os.urandom(16)
 return str(hashlib.scrypt(password, salt=salt, n=2048, p=1, r=8))

@async_timed()
async def main():
 loop = asyncio.get_running_loop()
 tasks = []

 with ThreadPoolExecutor() as pool:
 for password in passwords:
 tasks.append(loop.run_in_executor(pool, functools.partial(hash,

password)))

 await asyncio.gather(*tasks)

asyncio.run(main())

This approach involves us creating a thread pool executor and creating a task for each
password we want to hash. Since hashlib releases the GIL we realize some decent per-
formance gains. This code runs in about 5 seconds as opposed to the 40 we got earlier.
We’ve just cut our runtime down from 47 days to a bit over 5! As a next step, we could
take this application and run it concurrently on different machines to further cut run-
time, or we could get a machine with more CPU cores.

Listing 7.17 Hashing with multithreading and asyncio

188 CHAPTER 7 Handling blocking work with threads
7.5.2 Multithreading with NumPy

NumPy is an extremely popular Python library, widely used in data science and
machine learning projects. It has a multitude of mathematical functions common to
arrays and matrices that tend to outperform plain Python arrays. This increased per-
formance is because much of the underlying library is implemented in C and Fortran
that are low-level languages and tend to be more performant than Python.

 Because many of this library’s operations are in low-level code outside of Python,
this opens the opportunity for NumPy to release the GIL and allow us to multithread
some of our code. The caveat here is this functionality is not well-documented, but it
is generally safe to assume matrix operations can potentially be multithreaded for a
performance win. That said, depending on how the numpy function is implemented,
the win could be large or small. If the code directly calls C functions and releases
the GIL there is a potential bigger win; if there is a lot of supporting Python code
around any low-level calls, the win will be smaller. Given that this is not well docu-
mented, you may have to try adding multithreading to specific bottlenecks in your
application (you can determine where the bottlenecks are with profiling) and bench-
marking what gains you get. You’ll then need to decide if the extra complexity is
worth any potential gains you get.

 To see this in practice, we’ll create a large matrix of 4,000,000,000 data points in 50
rows. Our task will be to obtain the mean for reach row. NumPy has an efficient func-
tion, mean, to compute this. This function has an axis parameter which lets us calcu-
late all the means across an axis without having to write a loop. In our case, an axis of 1
will calculate the mean for every row.

import numpy as np
import time

data_points = 4000000000
rows = 50
columns = int(data_points / rows)

matrix = np.arange(data_points).reshape(rows, columns)

s = time.time()

res = np.mean(matrix, axis=1)

e = time.time()
print(e - s)

This script first creates an array with 4,000,000,000 integer data points, ranging from
1,000,000,000–4,000,000,000 (note that this takes quite a bit of memory; if your appli-
cation crashes with an out-of-memory error, lower this number). We then “reshape”
the array into a matrix with 50 rows. Finally, we call NumPy’s mean function with an

Listing 7.18 Means of a large matrix with NumPy

189Using threads for CPU-bound work
axis of 1, calculating the mean for each individual row. All told, this script runs in
about 25–30 seconds on an 8-core 2.4 Ghz CPU. Let’s adapt this code slightly to work
with threads. We’ll run the median for each row in a separate thread and use
asyncio.gather to wait for all the median of all rows.

import functools
from concurrent.futures.thread import ThreadPoolExecutor
import numpy as np
import asyncio
from util import async_timed

def mean_for_row(arr, row):
 return np.mean(arr[row])

data_points = 4000000000
rows = 50
columns = int(data_points / rows)

matrix = np.arange(data_points).reshape(rows, columns)

@async_timed()
async def main():
 loop = asyncio.get_running_loop()
 with ThreadPoolExecutor() as pool:
 tasks = []
 for i in range(rows):
 mean = functools.partial(mean_for_row, matrix, i)
 tasks.append(loop.run_in_executor(pool, mean))

 results = asyncio.gather(*tasks)

asyncio.run(main())

First, we create a mean_for_row function that calculates the mean for one row. Since
our plan is to calculate the mean for every row in a separate thread, we can no longer
use the mean function with an axis as we did before. We then create a main coroutine
with a thread pool executor and create a task to calculate the mean for each row, wait-
ing for all the calculations to finish with gather.

 On the same machine, this code runs in roughly 9–10 seconds, nearly a 3× boost in
performance! Multithreading can help us in certain cases with NumPy, although the
documentation for what can benefit from threads is lacking at the time of writing.
When in doubt, if threading will help a CPU-bound workload, the best way to see if it
will help is to test it out and benchmark.

 In addition, keep in mind that your NumPy code should be as vectorized as possi-
ble before trying threading or multiprocessing to improve performance. This means

Listing 7.19 Threading with NumPy

190 CHAPTER 7 Handling blocking work with threads
avoiding things like Python loops or functions like NumPy’s apply_along_axis, which
just hides a loop. With NumPy, you will often see much better performance by push-
ing as much computation as you can to the library’s low-level implementations.

Summary
 We’ve learned how to run I/O-bound work using the threading module.
 We’ve learned how to cleanly terminate threads on application shutdown.
 We’ve learned how to use thread pool executors to distribute work to a pool of

threads. This allows us to use asyncio API methods like gather to wait for results
from threads.

 We’ve learned how to take existing blocking I/O APIs, such as requests, and
run them in threads with thread pools and asyncio for performance wins.

 We’ve learned how to avoid race conditions with locks from the threading mod-
ule. We’ve also learned how to avoid deadlocks with reentrant locks.

 We’ve learned how to run the asyncio event loop in a separate thread and send
coroutines to it in a thread-safe manner. This lets us build responsive user inter-
faces with frameworks such as Tkinter.

 We’ve learned how to use multithreading with hashlib and numpy. Low-level
libraries will sometimes release the GIL, which lets us use threading for CPU-
bound work.

Streams
When writing network applications, such as our echo clients in prior chapters,
we’ve employed the socket library to read from and write to our clients. While
directly using sockets is useful when building low-level networking libraries, they
are ultimately complex creatures with nuances outside the scope of this book. That
said, many use cases of sockets rely on a few conceptually simple operations, such as
starting a server, waiting for client connections, and sending data to clients. The
designers of asyncio realized this and built network stream APIs to abstract away
handling the nuances of sockets for us. These higher-level APIs are much easier to
work with than sockets, making any client-server applications easier to build and
more robust than using sockets ourselves. Using streams is the recommended way
to build network-based applications in asyncio.

 In this chapter, we’ll first learn using the lower-level transport and protocol
APIs by building a simple HTTP client. Learning about these APIs will give us the

This chapter covers
 Transports and protocols

 Using streams for network connections

 Processing command-line input asynchronously

 Creating client/server applications with streams
191

192 CHAPTER 8 Streams
foundation for understanding how the higher-level stream APIs work in the back-
ground. We’ll then use this knowledge to learn about stream readers and writers and
use them to build a non-blocking command-line SQL client. This application will
asynchronously process user input, allowing us to run multiple queries concurrently
from the command line. Finally, we’ll learn how to use asyncio’s server API to create
client and server applications, building a functional chat server and chat client.

8.1 Introducing streams
In asyncio, streams are a high-level set of classes and functions that create and manage
network connections and generic streams of data. Using them, we can create client
connections to read and write to servers, or even create servers and manage them our-
selves. These APIs abstract a lot of knowledge around managing sockets, such as deal-
ing with SSL or lost connections, making our lives as developers a little easier.

 The stream APIs are built on top of a lower-level set of APIs known as transports and
protocols. These APIs directly wrap the sockets we used in previous chapters (generally,
any generic stream of data), providing us with a clean API for reading and writing
data to sockets.

 These APIs are structured a little differently from others in that they use a callback
style design. Instead of actively waiting for data from a socket like we did previously, a
method on a class we implement is called for us when data is available. We then pro-
cess the data we receive in this method as needed. To get started learning how these
callback-based APIs work, let’s first see how to use the lower-level transport and proto-
col APIs by building a basic HTTP client.

8.2 Transports and protocols
At a high level, a transport is an abstraction for communication with an arbitrary
stream of data. When we communicate with a socket or any data stream such as stan-
dard input, we work with a familiar set of operations. We read data from or write data
to a source, and when we’re finished working with it, we close it. A socket cleanly fits
how we’ve defined this transport abstraction; that is, we read and write data to it and
once we’ve finished, we close it. In short, a transport provides definitions for sending
and receiving data to and from a source. Transports have several implementations
depending on which type of source we’re using. We’re mainly concerned with Read-
Transport, WriteTransport, and Transport, though there are others for dealing with
UDP connections and subprocess communication. Figure 8.1 illustrates the class hier-
archy of transports.

 Transmitting data to and from a socket is only part of the equation. What about the
lifecycle of a socket? We establish a connection; we write data and then process any
response we get. These are the set of operations a protocol owns. Note that a protocol
simply refers to a Python class here and not a protocol like HTTP or FTP. A transport
manages data transmission and calls methods on a protocol when events occur, such as a
connection being established or data being ready to process, as shown in figure 8.2.

193Transports and protocols
To understand how transports and protocols work together, we’ll build a basic applica-
tion to run a single HTTP GET request. The first thing we’ll need to do is define a
class that extends asyncio.Protocol. We’ll implement a few methods from the base
class to make the request, receive data from the request, and handle any errors with
the connection.

 The first protocol method we’ll need to implement is connection_made. The trans-
port calls this method when the underlying socket has successfully connected with the
HTTP server. This method employs a Transport as an argument that we can use to

BaseTransport

Transport

DatagramTransport ReadTransport WriteTransport SubprocessTransport

Figure 8.1 The class hierarchy of transports

Socket transport Protocol

Call protocol.connection_made
Create socket connection

Write data to socket

Socket receives data

connection_made called

Write data to transport

data_received called

Call transport.write

Call protocol.data_received

Figure 8.2 A transport calls methods on a protocol when events happen.
A protocol can write data to a transport.

194 CHAPTER 8 Streams
communicate with the server. In this case, we’ll use the transport to send the HTTP
request immediately.

 The second method we’ll need to implement is data_received. The transport
calls this method whenever it receives data, passing it to us as bytes. This method can
be called multiple times, so we’ll need to create an internal buffer to store the data.

 The question now becomes, how do we tell when our response is finished? To
answer this, we’ll implement a method called eof_received. This method is called
when we receive the end of file, which, in the case of a socket, happens when the server
closes the connection. Once this method is called, we are guaranteed that data_
received will never be called again. The eof_received method returns a Boolean
value that determines how to shut down the transport (close the client socket in this
example). Returning False ensures that the transport will shut itself down, whereas
True means that the protocol implementation we wrote will shut things down. In this
case, as we don’t need to do any special logic on shutdown, our method should return
False, so we don’t need to handle closing the transport ourselves.

 With what we’ve described, we have only a way to store things in an internal buffer.
So, how do consumers of our protocol get the result once the request is finished? To
do this, we can create a Future internally to hold the result when it is complete. Then,
in the eof_received method we’ll set the result of the future to the result of the
HTTP response. We’ll then define a coroutine we’ll name get_response that will
await the future.

 Let’s take what we’ve described above and implement it as our own protocol. We’ll
call it HTTPGetClientProtocol.

import asyncio
from asyncio import Transport, Future, AbstractEventLoop
from typing import Optional

class HTTPGetClientProtocol(asyncio.Protocol):

 def __init__(self, host: str, loop: AbstractEventLoop):
 self._host: str = host
 self._future: Future = loop.create_future()
 self._transport: Optional[Transport] = None
 self._response_buffer: bytes = b''

 async def get_response(self):
 return await self._future

 def _get_request_bytes(self) -> bytes:
 request = f"GET / HTTP/1.1\r\n" \
 f"Connection: close\r\n" \
 f"Host: {self._host}\r\n\r\n"
 return request.encode()

Listing 8.1 Running a HTTP request with transports and protocols

Await the internal future until we
get a response from the server.

Create the
HTTP request.

195Transports and protocols

O
da

clos
th
 def connection_made(self, transport: Transport):
 print(f'Connection made to {self._host}')
 self._transport = transport
 self._transport.write(self._get_request_bytes())

 def data_received(self, data):
 print(f'Data received!')
 self._response_buffer = self._response_buffer + data

 def eof_received(self) -> Optional[bool]:
 self._future.set_result(self._response_buffer.decode())
 return False

 def connection_lost(self, exc: Optional[Exception]) -> None:
 if exc is None:
 print('Connection closed without error.')
 else:
 self._future.set_exception(exc)

Now that we’ve implemented our protocol, let’s use it to make a real request. To do
this, we’ll need to learn a new coroutine method on the asyncio event loop named
create_connection. This method will create a socket connection to a given host and
wrap it in an appropriate transport. In addition to a host and port, it takes in a protocol
factory. A protocol factory is a function that creates protocol instances; in our case, an
instance of the HTTPGetClientProtocol class we just created. When we call this corou-
tine, we’re returned both the transport that the coroutine created along with the pro-
tocol instance the factory created.

import asyncio
from asyncio import AbstractEventLoop
from chapter_08.listing_8_1 import HTTPGetClientProtocol

async def make_request(host: str, port: int, loop: AbstractEventLoop) -> str:
 def protocol_factory():
 return HTTPGetClientProtocol(host, loop)

 _, protocol = await loop.create_connection(protocol_factory, host=host,
port=port)

 return await protocol.get_response()

async def main():
 loop = asyncio.get_running_loop()
 result = await make_request('www .example .com', 80, loop)
 print(result)

asyncio.run(main())

Listing 8.2 Using the protocol

Once we’ve
established a
connection, use
the transport to
send the request.

nce we have
ta, save it to
our internal

buffer.

Once the
connection

es, complete
e future with

the buffer.
If the connection closes

without error, do nothing;
otherwise, complete the

future with an exception.

196 CHAPTER 8 Streams
We first define a make_request method that takes in the host and port we’d like to
make a request to, and the server’s response. Inside this method, we create an inner
method for our protocol factory that creates a new HTTPGetClientProtocol. We then
call create_connection with the host and port that returns both a transport and the
protocol our factory created. We won’t need the transport, and we ignore it, but we
will need the protocol because we’ll want to use the get_response coroutine; there-
fore, we’ll keep track of it in the protocol variable. Finally, we await the get_response
coroutine of our protocol that will wait until the HTTP server has responded with a
result. In our main coroutine, we await make_request and print the response. Execut-
ing this, you should see a HTTP response like the following (we’ve omitted the HTML
body for brevity):

Connection made to www .example .com
Data received!
HTTP/1.1 200 OK
Age: 193241
Cache-Control: max-age=604800
Content-Type: text/html; charset=UTF-8
Connection closed without error.

We’ve learned to use transports and protocols. These APIs are lower-level and, as such,
aren’t the recommended way to work with streams in asyncio. Let’s see how to use
streams, a higher-level abstraction that expands on transports and protocols.

8.3 Stream readers and stream writers
Transports and protocols are lower-level APIs that are best suited for when we need
direct control over what is happening as we send and receive data. As an example, if
we’re designing a networking library or web framework, we may consider transports
and protocols. For most applications, we don’t need this level of control, and using
transports and protocols would involve us writing a bunch of repetitive code.

 The designers of asyncio realized this and created the higher-level streams APIs.
This API encapsulates the standard use cases of transports and protocols into two
classes that are easy to understand and use: StreamReader and StreamWriter. As you
can guess, they handle reading from and writing to streams, respectively. Using these
classes is the recommended way to develop networking applications in asyncio.

 To get an understanding of how to use these APIs, let’s take our example of mak-
ing a HTTP GET request and translate it into streams. Instead of directly instantiating
StreamReader and StreamWriter instances, asyncio provides a library coroutine func-
tion named open_connection that will create them for us. This coroutine takes in a
host and port that we’ll connect to and returns a StreamReader and a StreamWriter
as a tuple. Our plan will be to use the StreamWriter to send out the HTTP request
and the StreamReader to read the response. StreamReader methods are easy to under-
stand, and we have a convenient readline coroutine that waits until we have a line of
data. Alternatively, we could also use StreamReader’s read coroutine that waits for a
specified number of bytes to arrive.

197Stream readers and stream writers
 StreamWriter is a little more complex. It has a write method as we’d expect, but it
is a plain method and not a coroutine. Internally, stream writers try to write to a
socket’s output buffer right away, but this buffer can be full. If the socket’s write buffer
is full, the data is instead stored in an internal queue where it can later go into to the
buffer. This poses a potential problem in that calling write does not necessarily send
out data immediately. This can cause potential memory issues. Imagine our network
connection becomes slow, able to send out 1 KB per second, but our application is
writing out 1 MB per second. In this case, our application’s write buffer will fill up at a
much faster rate than we can send the data out to the socket’s buffer, and eventually
we’ll start to hit memory limits on the machine, inviting a crash.

 How can we wait until all our data is properly sent out? To solve this issue, we have
a coroutine method called drain. This coroutine will block until all queued data gets
sent to the socket, ensuring we’ve written everything before moving on. The pattern
we’ll want to use functions after we call write we’ll always await a call to drain. Tech-
nically, it’s not necessary to call drain after every write, but it is a good idea to help
prevent bugs.

import asyncio
from asyncio import StreamReader
from typing import AsyncGenerator

async def read_until_empty(stream_reader: StreamReader) ->
AsyncGenerator[str, None]:

 while response := await stream_reader.readline():
 yield response.decode()

async def main():
 host: str = 'www .example .com'
 request: str = f"GET / HTTP/1.1\r\n" \
 f"Connection: close\r\n" \
 f"Host: {host}\r\n\r\n"

 stream_reader, stream_writer = await
asyncio.open_connection('www .example .com', 80)

 try:
 stream_writer.write(request.encode())
 await stream_writer.drain()

 responses = [response async for response in
read_until_empty(stream_reader)]

 print(''.join(responses))
 finally:
 stream_writer.close()
 await stream_writer.wait_closed()

asyncio.run(main())

Listing 8.3 A HTTP request with stream readers and writers

Read a line and
decode it until
we don’t have
any left.

Write the http
request, and drain
the writer.

Read each
line, and store
it in a list.

Close the writer,
and wait for it to
finish closing.

198 CHAPTER 8 Streams
In the preceding listing, we first create a convenience async generator to read all lines
from a StreamReader, decoding them into strings until we don’t have any left to pro-
cess. Then, in our main coroutine we open a connection to example.com, creating a
StreamReader and StreamWriter instance in the process. We then write the request
and drain the stream writer, using write and drain, respectively. Once we’ve written
our request, we use our async generator to get each line from the response back, stor-
ing them in the responses list. Finally, we close the StreamWriter instance by calling
close and then awaiting the wait_closed coroutine. Why do we need to call a method
and a coroutine here? The reason is that when we call close a few things happen, such
as deregistering the socket and calling the underlying transport’s connection_lost
method. These all happen asynchronously on a later iteration of the event loop, mean-
ing that immediately after we call close our connection isn’t closed until sometime
later. If you need to wait for the connection to close before proceeding or are con-
cerned about any exceptions that may happen while you’re closing, calling wait_
closed is best practice.

 We’ve now learned the basics around the stream APIs by making web requests.
The usefulness of these classes extends beyond web- and network-based applica-
tions. Next, we’ll see how to utilize stream readers to create non-blocking command-
line applications.

8.4 Non-blocking command-line input
Traditionally in Python, when we need to get user input, we use the input function.
This function will stop execution flow until the user has provided input and presses
Enter. What if we want to run code in the background while remaining responsive to
input? For example, we may want to let the user launch multiple long-running tasks
concurrently, such as long-running SQL queries. In the case of a command-line chat
application, we likely want the user to be able to type a message while receiving mes-
sages from other users.

 Since asyncio is single-threaded, using input in an asyncio application means we
stop the event loop from running until the user provides input, halting our entire
application. Even using tasks to kick off an operation in the background won’t work.
To demonstrate this, let’s attempt to create an application where the user enters a
time for the application to sleep. We’d like to be able to run multiple of these sleep
operations concurrently while still accepting user input, so we’ll ask for the number of
seconds to sleep and create a delay task in a loop.

import asyncio
from util import delay

async def main():
 while True:

Listing 8.4 Attempting background tasks

199Non-blocking command-line input
 delay_time = input('Enter a time to sleep:')
 asyncio.create_task(delay(int(delay_time)))

asyncio.run(main())

If this code worked the way we intended, after we input a number we’d expect to see
sleeping for n second(s) printed out followed by finished sleeping for n second(s)
n seconds later. However, this isn’t the case, and we see nothing except our prompt to
enter a time to sleep. This is because there is no await inside our code and, therefore,
the task never gets a chance to run on the event loop. We can hack around this by put-
ting await asyncio.sleep(0) after the create_task line that will schedule the task
(this is known as ”yielding to the event loop” and will be covered in chapter 14). Even
with this trick, as it stops the entire thread the input call still blocks any background
task we create from running to completion.

 What we really want is for the input function to be a coroutine instead, so we could
write something like delay_time = await input('Enter a time to sleep:'). If we
could do this, our task would schedule properly and continue to run while we waited
for user input. Unfortunately, there is no coroutine variant of input, so we’ll need to
do something else.

 This is where protocols and stream readers can help us out. Recall that a stream
reader has the readline coroutine that is the type of coroutine we’re looking for. If
we had a way to hook a stream reader to standard input, we could then use this corou-
tine for user input.

 asyncio has a coroutine method on the event loop called connect_read_pipe that
connects a protocol to a file-like object, which is almost what we want. This coroutine
method accepts a protocol factory and a pipe. A protocol factory is just a function that
creates a protocol instance. A pipe is a file-like object, which is defined as an object
with methods such as read and write on it. The connect_read_pipe coroutine will
then connect the pipe to the protocol the factory creates, taking data from the pipe
and sending it to the protocol.

 In terms of standard console input, sys.stdin fits the bill of a file-like object that
we can pass in to connect_read_pipe. Once we call this coroutine, we’ll get a tuple of
the protocol our factory function created and a ReadTransport. The question now
becomes what protocol should we create in our factory, and how do we connect this
with a StreamReader that has the readline coroutine we’d like to use?

 asyncio provides a utility class called StreamReaderProtocol for connecting
instances of stream readers to protocols. When we instantiate this class, we pass in an
instance of a stream reader. The protocol class then delegates to the stream reader we
created, allowing us to use the stream reader to read data from standard input. Put-
ting all these pieces together, we can create a command-line application that does not
block the event loop when waiting for user input.

200 CHAPTER 8 Streams
Since we’ll be reusing the asynchronous standard in reader throughout the rest of the
chapter, let’s create it in its own file, listing_8_5.py. We’ll then import it in the rest
of the chapter.

import asyncio
from asyncio import StreamReader
import sys

async def create_stdin_reader() -> StreamReader:
 stream_reader = asyncio.StreamReader()
 protocol = asyncio.StreamReaderProtocol(stream_reader)
 loop = asyncio.get_running_loop()
 await loop.connect_read_pipe(lambda: protocol, sys.stdin)
 return stream_reader

In the preceding listing, we create a reusable coroutine named create_stdin_reader
that creates a StreamReader that we’ll use to asynchronously read standard input. We
first create a stream reader instance and pass it to a stream reader protocol. We then call
connect_read_pipe, passing in a protocol factory as a lambda function. This lambda
returns the stream reader protocol we created earlier. We also pass sys.stdin to con-
nect standard input to our stream reader protocol. Since we won’t need them, we
ignore the transport and protocol that connect_read_pipe returns. We can now use this
function to asynchronously read from standard input and build our application.

import asyncio
from chapter_08.listing_8_5 import create_stdin_reader
from util import delay

async def main():
 stdin_reader = await create_stdin_reader()
 while True:
 delay_time = await stdin_reader.readline()
 asyncio.create_task(delay(int(delay_time)))

asyncio.run(main())

For Windows users
Unfortunately, on Windows connect_read_pipe will not work with sys.stdin. This
is due to an unfixed bug caused by the way Windows implements file descriptors. For
this to work on Windows, you’ll need to call sys.stdin.readline() in a separate
thread using techniques we explored in chapter 7. You can read more about this
issue at https://bugs.python.org/issue26832.

Listing 8.5 An asynchronous standard input reader

Listing 8.6 Using stream readers for input

https://bugs.python.org/issue26832

201Non-blocking command-line input
In our main coroutine, we call create_stdin_reader and loop forever, waiting for
input from the user with the readline coroutine. Once user presses Enter on the key-
board, this coroutine will deliver the input text entered. Once we have input from the
user, we convert it into an integer (note here that for a real application, we should add
code to handle bad input, as we’ll crash if we pass in a string right now) and create a
delay task. Running this, you’ll be able to run multiple delay tasks concurrently while
still entering command-line input. For instance, entering delays of 5, 4, and 3 seconds,
respectively, you should see the following output:

5
sleeping for 5 second(s)
4
sleeping for 4 second(s)
3
sleeping for 3 second(s)
finished sleeping for 5 second(s)
finished sleeping for 4 second(s)
finished sleeping for 3 second(s)

This works, but this approach has a critical flaw. What happens if a message appears
on the console while we’re typing an input delay time? To test this out, we’ll enter a
delay time of 3 seconds and then start rapidly pressing 1. Doing this, we’ll see some-
thing like the following:

3
sleeping for 3 second(s)
111111finished sleeping for 3 second(s)
11

While we were typing, the message from our delay task prints out, disrupting our
input line and forcing it to continue on the next line. In addition, the input buffer is
now only 11, meaning if we press Enter, we’ll create a delay task for that amount of
time, losing the first few pieces of input. This is because, by default, the terminal runs
in cooked mode. In this mode, the terminal echoes user input to standard output, and
also processes special keys, such as Enter and CTRL-C. This issue arises because the
delay coroutine writes to standard out at the same time the terminal is echoing out-
put, causing a race condition.

 There is also a single position on the screen where standard out writes to. This is
known as a cursor and is much like a cursor you’d see in a word processor. As we enter
input, the cursor rests on the line where our keyboard input prints out. This means
that any output messages from other coroutines will print on the same line as our
input, since this is where the cursor is, causing odd behavior.

 To solve these issues, we need a combination of two solutions. The first is to bring
the echoing of input from the terminal into our Python application. This will ensure
that, while echoing input from the user, we don’t write any output messages from
other coroutines as we’re single-threaded. The second is to move the cursor around

202 CHAPTER 8 Streams
the screen when we write output messages, ensuring that we don’t write output mes-
sages on the same line as our input. We can do these by manipulating the settings of
our terminal and using escape sequences.

8.4.1 Terminal raw mode and the read coroutine

Because our terminal is running in cooked mode, it handles echoing user input on
readline for us outside of our application. How can we bring this processing into our
application, so we can avoid the race conditions we saw previously?

 The answer is switching the terminal to raw mode. In raw mode, instead of the ter-
minal doing buffering, preprocessing, and echoing for us, every keystroke is sent to
the application. It is then up to us to echo and preprocess as we’d like. While this
means we must do extra work, it also means we have fine-grained control around writ-
ing to standard out, giving us the needed power to avoid race conditions.

 Python allows us to change the terminal to raw mode but also allows for cbreak
mode. This mode behaves like raw mode with the difference being that keystrokes like
CTRL-C will still be interpreted for us, saving us some work. We can enter raw mode
by using the tty module and the setcbreak function like so:

import tty
import sys
tty.setcbreak(sys.stdin)

Once we’re in cbreak mode, we’ll need to rethink how we designed our application.
The readline coroutine will no longer work, as it won’t echo any input for us in raw
mode. Instead, we’ll want to read one character at a time and store it in our own inter-
nal buffer, echoing each character typed in. The standard input stream reader we cre-
ated has a method called read that takes in a number of bytes to read from the stream.
Calling read(1) will read one character at a time, which we can then store in a buffer
and echo to standard out.

 We now have two pieces of the puzzle to solve this, entering cbreak mode and
reading one input character at a time, echoing it to standard out. We need to think
through how to display the output of the delay coroutines, so it won’t interfere with
our input.

 Let’s define a few requirements to make our application more user-friendly and
solve the issue with output writing on the same line as input. We’ll then let these
requirements inform how we implement things:

1 The user input field should always remain at the bottom of the screen.
2 Coroutine output should start from the top of the screen and move down.
3 When there are more messages than available lines on the screen, existing mes-

sages should scroll up.

Given these requirements, how can we display the output from the delay coroutine?
Given that we want to scroll messages up when there are more messages than available

203Non-blocking command-line input
lines, writing directly to standard out with print will prove tricky. Instead of doing this,
the approach we’ll take is keeping a deque (double-ended queue) of the messages we
want to write to standard out. We’ll set the maximum number of elements in the
deque to the number of rows on the terminal screen. This will give us the scrolling
behavior we want when the deque is full, as items in the back of the deque will be dis-
carded. When a new message is appended to the deque, we’ll move to the top of the
screen and redraw each message. This will get us the scrolling behavior we desire with-
out having to keep much information about the state of standard out. This makes our
application flow look like the illustration in figure 8.3.

Our game plan for the application will then be as follows:

1 Move the cursor to the bottom of the screen, and when a key is pressed, append
it to our internal buffer, and echo the keypress to standard out.

2 When the user presses Enter, create a delay task. Instead of writing output mes-
sages to standard out, we’ll append them to a deque with a maximum number
of elements equal to the number of rows on the console.

3 Once a message goes into the deque, we’ll redraw the output on the screen. We
first move the cursor to the top left of the screen. We then print out all mes-
sages in the deque. Once we’re done, we return the cursor to the input row and
column where it was before.

To implement the application in this way, we’ll first need to learn how to move the
cursor around the screen. We can use ANSI escape codes to do this. These are special
codes we can write to standard out performing actions like changing the color of text,
moving the cursor up or down, and deleting lines. Escape sequences are first intro-
duced with an escape code; in Python, we can do this by printing \033 to the con-
sole. Many of the escape sequences we’ll need to use are introduced by control sequence

Message deque

Redraw messages from deque

Console

Append messages

to message deque

Create delay task

on pressing nterE

Accept user input

delay: 1 delay(1)

Message 1
Message 2

Message 1 Message 2 Message 3

Figure 8.3 The delay console application

204 CHAPTER 8 Streams
introducers, which are started by printing \033[. To better understand this, let’s see
how to move the cursor to five lines below where it currently is.

 sys.stdout.write('\033[5E')

This escape sequence starts with the control sequence introducer followed by 5E. 5
represents the number of rows from the current cursor row we’d like to move down,
and E is the code for “move the cursor down this number of lines.” Escape sequences
are terse and a little hard to follow. In the next listing, we’ll create several functions
with clear names to explain what each escape code does, and we’ll import them in
future listings. If you’d like more explanation on ANSI escape sequences and how
they work, the Wikipedia article on the subject has great information at https://en
.wikipedia.org/wiki/ANSI_escape_code.

 Let’s think through how we’ll need to move the cursor around the screen to figure
out which functions we’ll need to implement. First, we’ll need to move the cursor to the
bottom of the screen to accept user input. Then, once the user presses Enter, we’ll need
to clear any text they have entered. To print coroutine output messages from the top of
the screen, we’ll need to be able to move to the first line of the screen. We’ll also need to
save and restore the current position of the cursor, since while we’re typing a message
from a coroutine it may print a message, meaning we’ll need to move it back to the
proper spot. We can do these with the following escape code functions:

import sys
import shutil

def save_cursor_position():
 sys.stdout.write('\0337')

def restore_cursor_position():
 sys.stdout.write('\0338')

def move_to_top_of_screen():
 sys.stdout.write('\033[H')

def delete_line():
 sys.stdout.write('\033[2K')

def clear_line():
 sys.stdout.write('\033[2K\033[0G')

def move_back_one_char():
 sys.stdout.write('\033[1D')

Listing 8.7 Escape sequence convenience functions

https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code

205Non-blocking command-line input
def move_to_bottom_of_screen() -> int:
 _, total_rows = shutil.get_terminal_size()
 input_row = total_rows - 1
 sys.stdout.write(f'\033[{input_row}E')
 return total_rows

Now that we have a set of reusable functions to move the cursor around the screen,
let’s implement a reusable coroutine for reading standard input one character at a
time. We’ll use the read coroutine to do this. Once we have read a character, we’ll
write it to standard output, storing the character in an internal buffer. Since we also
want to handle a user pressing Delete, we’ll watch for the Delete key. When a user
presses it, we’ll delete the character from the buffer and standard output.

import sys
from asyncio import StreamReader
from collections import deque
from chapter_08.listing_8_7 import move_back_one_char, clear_line

async def read_line(stdin_reader: StreamReader) -> str:
 def erase_last_char():
 move_back_one_char()
 sys.stdout.write(' ')
 move_back_one_char()

 delete_char = b'\x7f'
 input_buffer = deque()
 while (input_char := await stdin_reader.read(1)) != b'\n':
 if input_char == delete_char:
 if len(input_buffer) > 0:
 input_buffer.pop()
 erase_last_char()
 sys.stdout.flush()
 else:
 input_buffer.append(input_char)
 sys.stdout.write(input_char.decode())
 sys.stdout.flush()
 clear_line()
 return b''.join(input_buffer).decode()

Our coroutine takes in a stream reader that we’ve attached to standard input. We then
define a convenience function to erase the previous character from standard output,
as we’ll need this when a user presses Delete. We then enter a while loop reading
character by character until the user hits Enter. If the user presses Delete, we remove
the last character from the buffer and from standard out. Otherwise, we append it to
the buffer and echo it. Once the user presses Enter, we clear the input line and return
the contents of the buffer.

 Next, we’ll need to define the queue where we’ll store the messages we want to
print to standard out. Since we want to redraw output whenever we append a message,

Listing 8.8 Reading input one character at a time

Convenience function to
delete the previous character
from standard output

If the input character
is backspace, remove
the last character.

If the input character is
not backspace, append it
to the buffer and echo.

206 CHAPTER 8 Streams
we’ll define a class that wraps a deque and takes in a callback awaitable. The callback
we pass in will be responsible for redrawing output. We’ll also add an append corou-
tine method to our class that will append items to the deque and call the callback with
the current set of items in the deque.

from collections import deque
from typing import Callable, Deque, Awaitable

class MessageStore:
 def __init__(self, callback: Callable[[Deque], Awaitable[None]],

max_size: int):
 self._deque = deque(maxlen=max_size)
 self._callback = callback

 async def append(self, item):
 self._deque.append(item)
 await self._callback(self._deque)

Now, we have all the pieces to create the application. We’ll rewrite our delay coroutine
to add messages to the message store. Then, in our main coroutine, we’ll create a helper
coroutine to redraw messages in our deque to standard out. This is the callback we’ll
pass to our MessageStore. Then, we’ll use the read_line coroutine we implemented
earlier to accept user input, creating a delay task when the user hits Enter.

import asyncio
import os
import tty
from collections import deque
from chapter_08.listing_8_5 import create_stdin_reader
from chapter_08.listing_8_7 import *
from chapter_08.listing_8_8 import read_line
from chapter_08.listing_8_9 import MessageStore

async def sleep(delay: int, message_store: MessageStore):
 await message_store.append(f'Starting delay {delay}')
 await asyncio.sleep(delay)
 await message_store.append(f'Finished delay {delay}')

async def main():
 tty.setcbreak(sys.stdin)
 os.system('clear')
 rows = move_to_bottom_of_screen()

 async def redraw_output(items: deque):
 save_cursor_position()

Listing 8.9 A message store

Listing 8.10 The asynchronous delay application

Append the
output messages
to the message
store.

Callback to move the
cursor to the top of the
screen; redraw output and
move the cursor back.

207Non-blocking command-line input
 move_to_top_of_screen()
 for item in items:
 delete_line()
 print(item)
 restore_cursor_position()

 messages = MessageStore(redraw_output, rows - 1)

 stdin_reader = await create_stdin_reader()

 while True:
 line = await read_line(stdin_reader)
 delay_time = int(line)
 asyncio.create_task(sleep(delay_time, messages))

asyncio.run(main())

Running this, you’ll be able to create delays and watch input write to the console even
as you type. While it is more complicated than our first attempt, we’ve built an applica-
tion that avoids the problems writing to standard out that we faced earlier.

 What we’ve built works for the delay coroutine, but what about something more
real-world? The pieces we’ve just defined are robust enough we can make more use-
ful applications by reusing them. For example, let’s think through how to create a
command-line SQL client. Certain queries may take a long time to execute, but we
may want to run other queries in the meantime or cancel a running query. Using what
we’ve just built, we can create this type of client. Let’s build one using our previous
e-commerce product database from chapter 5, where we created a schema with a set
of clothing brands, products, and SKUs. We’ll create a connection pool to connect to
our database, and we’ll reuse our code from previous examples to accept and run que-
ries. We’ll output basic information about the queries to the console—for now, just
the number of rows returned.

import asyncio
import asyncpg
import os
import tty
from collections import deque
from asyncpg.pool import Pool
from chapter_08.listing_8_5 import create_stdin_reader
from chapter_08.listing_8_7 import *
from chapter_08.listing_8_8 import read_line
from chapter_08.listing_8_9 import MessageStore

async def run_query(query: str, pool: Pool, message_store: MessageStore):
 async with pool.acquire() as connection:
 try:

Listing 8.11 An asynchronous command-line sql client

208 CHAPTER 8 Streams
 result = await connection.fetchrow(query)
 await message_store.append(f'Fetched {len(result)} rows from:

{query}')
 except Exception as e:
 await message_store.append(f'Got exception {e} from: {query}')

async def main():
 tty.setcbreak(0)
 os.system('clear')
 rows = move_to_bottom_of_screen()

 async def redraw_output(items: deque):
 save_cursor_position()
 move_to_top_of_screen()
 for item in items:
 delete_line()
 print(item)
 restore_cursor_position()

 messages = MessageStore(redraw_output, rows - 1)

 stdin_reader = await create_stdin_reader()

 async with asyncpg.create_pool(host='127.0.0.1',
 port=5432,
 user='postgres',
 password='password',
 database='products',
 min_size=6,
 max_size=6) as pool:

 while True:
 query = await read_line(stdin_reader)
 asyncio.create_task(run_query(query, pool, messages))

asyncio.run(main())

Our code is almost the same as before, with the difference that instead of a delay
coroutine, we create a run_query coroutine. Instead of just sleeping for an arbitrary
amount of time, this runs a query the user entered that can take an arbitrary amount
of time. This lets us issue new queries from the command line while others are still
running; it and also lets us see output from completed ones even as we are typing in
new queries.

 We now know how to create command-line clients that can handle input while
other code executes and writes to the console. Next, we’ll learn how to create servers
using higher-level asyncio APIs.

209Creating servers

n,

r.
8.5 Creating servers
When we have built servers, such as our echo server, we’ve created a server socket,
bound it to a port and waited for incoming connections. While this works, asyncio lets
us create servers at a higher level of abstraction, meaning we can create them without
ever worrying about managing sockets. Creating servers this way simplifies the code
we need to write with sockets, and as such, using these higher-level APIs is the recom-
mended way to create and manage servers using asyncio.

 We can create a server with the asyncio.start_server coroutine. This coroutine
takes in several optional parameters to configure things such as SSL, but the main
parameters we’ll be interested in are the host, port, and client_connected_cb. The
host and port are like what we’ve seen before: the address that the server socket will
listen for connections. The more interesting piece is client_connected_cb, which is
either a callback function or a coroutine that will run whenever a client connects to
the server. This callback takes in a StreamReader and StreamWriter as parameters
that will let us read from and write to the client that connected to the server.

 When we await start_server, it will return an AbstractServer object. This class
lacks many interesting methods that we’ll need to use, other than serve_forever,
which runs the server forever until we terminate it. This class is also an asynchronous
context manager. This means we can use an instance of it with async with syntax to
have the server properly shut down on exit.

 To get a handle on creating servers, let’s create an echo server again but make it a
little more advanced. Instead of just echoing back output, we’ll display information
about how many other clients are connected. We’ll also display information when a
client disconnects from the server. To manage this, we’ll create a class we’ll call
ServerState to manage how many users are connected. Once a user connects, we’ll
add them to the server state and notify other clients that they connected.

import asyncio
import logging
from asyncio import StreamReader, StreamWriter

class ServerState:

 def __init__(self):
 self._writers = []

 async def add_client(self, reader: StreamReader, writer: StreamWriter):
 self._writers.append(writer)
 await self._on_connect(writer)
 asyncio.create_task(self._echo(reader, writer))

 async def _on_connect(self, writer: StreamWriter):
 writer.write(f'Welcome! {len(self._writers)} user(s) are

online!\n'.encode())

Listing 8.12 Creating an echo server with server objects

Add a client to the
server state, and

create an echo task.

On a new connectio
tell the client how
many users are
online, and notify
others of a new use

210 CHAPTER 8 Streams

 await writer.drain()
 await self._notify_all('New user connected!\n')

 async def _echo(self, reader: StreamReader, writer: StreamWriter):
 try:
 while (data := await reader.readline()) != b'':
 writer.write(data)
 await writer.drain()
 self._writers.remove(writer)
 await self._notify_all(f'Client disconnected. {len(self._writers)}

user(s) are online!\n')
 except Exception as e:
 logging.exception('Error reading from client.', exc_info=e)
 self._writers.remove(writer)

 async def _notify_all(self, message: str):
 for writer in self._writers:
 try:
 writer.write(message.encode())
 await writer.drain()
 except ConnectionError as e:
 logging.exception('Could not write to client.', exc_info=e)
 self._writers.remove(writer)

async def main():
 server_state = ServerState()

 async def client_connected(reader: StreamReader, writer:
StreamWriter) -> None:

 await server_state.add_client(reader, writer)

 server = await asyncio.start_server(client_connected, '127.0.0.1', 8000)

 async with server:
 await server.serve_forever()

asyncio.run(main())

When a user connects to our server, our client_connected callback responds with a
reader and writer for that user, which in turn calls the server state’s add_client corou-
tine. In the add_client coroutine, we store the StreamWriter, so we can send mes-
sages to all connected clients and remove it when a client disconnects. We then call
_on_connect, which sends a message to the client informing them how many other
users are connected. In _on_connect, we also notify any other connected clients that a
new user has connected.

 The_echo coroutine is similar to what we’ve done in the past with the twist being that
when a user disconnects, we notify any other connected clients that someone discon-
nected. When running this, you should have a functioning echo server that lets each
individual client know when a new user connects and disconnects from the server.

Handle echoing user
input when a client
disconnects, and
notify other users
of a disconnect.

Helper method to send a
message to all other users.
If a message fails to send,
remove that user.

When a client
connects, add
that client to the
server state.

Start the server,
and start serving

forever.

211Creating a chat server and client
 We’ve now seen how to create an asyncio server that is a little more advanced than
what we’ve done previously. Next, let’s build on top of this knowledge and create a
chat server and chat client—something even more advanced.

8.6 Creating a chat server and client
We now know how to both create servers and handle asynchronous command-line
input. We can combine what we know in these two areas to create two applications. The
first is a chat server that accepts multiple chat clients at the same time, and the second is
a chat client that connects to the server and sends and receives chat messages.

 Before we begin designing our application, let’s start with some requirements that
will help us make the correct design choices. First, for our server:

1 A chat client should be able to connect to the server when they provide a
username.

2 Once a user is connected, they should be able to send chat messages to the
server, and each message should be sent to every user connected to the server.

3 To prevent idle users taking up resources, if a user is idle for more than one
minute, the server should disconnect them.

Second, for our client:

1 When a user starts the application, the client should prompt for a username
and attempt to connect to the server.

2 Once connected, the user will see any messages from other clients scroll down
from the top of the screen.

3 The user should have an input field at the bottom of the screen. When the user
presses Enter, the text in the input should be sent to the server and then to all
other connected clients.

Given these requirements, let’s first think through what our communication between
the client and server should look like. First, we’ll need to send a message from the cli-
ent to the server with our username. We need to disambiguate connecting with a user-
name from a message send, so we’ll introduce a simple command protocol to indicate
that we’re sending a username. To keep things simple, we’ll just pass a string with a
command name called CONNECT followed by the user-provided username. For exam-
ple, CONNECT MissIslington will be the message we’ll send to the server to connect a
user with the username “MissIslington.”

 Once we’ve connected, we’ll just send messages directly to the server, which will
then send the message to all connected clients (including ourselves; as needed, you
could optimize this away). For a more robust application, you may want to consider a
command that the server sends back to the client to acknowledge that the message
was received, but we’ll skip this for brevity.

 With this in mind, we have enough to start designing our server. We’ll create a
ChatServerState class similar to what we did in the previous section. Once a client
connects, we’ll wait for them to provide a username with the CONNECT command.

212 CHAPTER 8 Streams

o
e
,
.

Assuming they provide it, we’ll create a task to listen for messages from the client and
write them to all other connected clients. To keep track of connected clients, we’ll
keep a dictionary of the connected usernames to their StreamWriter instances. If a
connected user is idle for more than a minute, we’ll disconnect them and remove
them from the dictionary, sending a message to other users that they left the chat.

import asyncio
import logging
from asyncio import StreamReader, StreamWriter

class ChatServer:

 def __init__(self):
 self._username_to_writer = {}

 async def start_chat_server(self, host: str, port: int):
 server = await asyncio.start_server(self.client_connected, host, port)

 async with server:
 await server.serve_forever()

 async def client_connected(self, reader: StreamReader, writer: StreamWriter):
 command = await reader.readline()
 print(f'CONNECTED {reader} {writer}')
 command, args = command.split(b' ')
 if command == b'CONNECT':
 username = args.replace(b'\n', b'').decode()
 self._add_user(username, reader, writer)
 await self._on_connect(username, writer)
 else:
 logging.error('Got invalid command from client, disconnecting.')
 writer.close()
 await writer.wait_closed()

 def _add_user(self, username: str, reader:
StreamReader, writer: StreamWriter):

 self._username_to_writer[username] = writer
 asyncio.create_task(self._listen_for_messages(username, reader))

 async def _on_connect(self, username: str, writer: StreamWriter):
 writer.write(f'Welcome! {len(self._username_to_writer)} user(s) are

online!\n'.encode())
 await writer.drain()
 await self._notify_all(f'{username} connected!\n')

 async def _remove_user(self, username: str):
 writer = self._username_to_writer[username]
 del self._username_to_writer[username]
 try:
 writer.close()

Listing 8.13 A chat server

Wait for the client t
provide a valid usernam

command; otherwise
disconnect them

Store a user’s stream writer
instance and create a task
to listen for messages.

Once a user
connects, notify

all others that
they have

connected.

213Creating a chat server and client

m

a
 await writer.wait_closed()
 except Exception as e:
 logging.exception('Error closing client writer, ignoring.',

exc_info=e)

 async def _listen_for_messages(self,
 username: str,
 reader: StreamReader):
 try:
 while (data := await asyncio.wait_for(reader.readline(), 60)) != b'':
 await self._notify_all(f'{username}: {data.decode()}')
 await self._notify_all(f'{username} has left the chat\n')
 except Exception as e:
 logging.exception('Error reading from client.', exc_info=e)
 await self._remove_user(username)

 async def _notify_all(self, message: str):
 inactive_users = []
 for username, writer in self._username_to_writer.items():
 try:
 writer.write(message.encode())
 await writer.drain()
 except ConnectionError as e:
 logging.exception('Could not write to client.', exc_info=e)
 inactive_users.append(username)

 [await self._remove_user(username) for username in inactive_users]

async def main():
 chat_server = ChatServer()
 await chat_server.start_chat_server('127.0.0.1', 8000)

asyncio.run(main())

Our ChatServer class encapsulates everything about our chat server in one clean
interface. The main entry point is the start_chat_server coroutine. This corou-
tine starts a server on the specified host and port, and calls serve_forever. For our
server’s client connected callback, we use our client_connected coroutine. This
coroutine waits for the first line of data from the client, and if it receives a valid
CONNECT command, it calls _add_user and then_on_connect; otherwise, it terminates
the connection.

 The _add_user function stores the username and user’s stream writer in an inter-
nal dictionary and then creates a task to listen for chat messages from the user. The
_on_connect coroutine sends a message to the client welcoming them to the chat
room and then notifies all other connected clients that the user connected.

 When we called _add_user, we created a task for the _listen_for_messages corou-
tine. This coroutine is where the meat of our application lies. We loop forever, reading
messages from the client until we see an empty line, indicating the client disconnected.

Listen for messages fro
a client and send them
to all other clients,
waiting a maximum of
minute for a message.

Send a message
to all connected
clients, removing
any disconnected
users.

214 CHAPTER 8 Streams
Once we get a message, we call _notify_all to send the chat message to all con-
nected clients. To satisfy the requirement that a client should be disconnected after
being idle for a minute, we wrap our readline coroutine in wait_for. This will throw
a TimeoutError if the client has idled for longer than a minute. In this case, we have a
broad exception clause that catches TimeoutError and any other exceptions thrown.
We handle any exception by removing the client from the _username_to_writer dic-
tionary, so we stop sending messages to them.

 We now have a complete server, but the server is meaningless without a client to
connect to it. We’ll implement the client similarly to the command-line SQL client we
wrote earlier. We’ll create a coroutine to listen for messages from the server and
append them to a message store, redrawing the screen when a new message comes in.
We’ll also put the input at the bottom of the screen, and when the user presses Enter,
we’ll send the message to the chat server.

import asyncio
import os
import logging
import tty
from asyncio import StreamReader, StreamWriter
from collections import deque
from chapter_08.listing_8_5 import create_stdin_reader
from chapter_08.listing_8_7 import *
from chapter_08.listing_8_8 import read_line
from chapter_08.listing_8_9 import MessageStore

async def send_message(message: str, writer: StreamWriter):
 writer.write((message + '\n').encode())
 await writer.drain()

async def listen_for_messages(reader: StreamReader,
 message_store: MessageStore):
 while (message := await reader.readline()) != b'':
 await message_store.append(message.decode())
 await message_store.append('Server closed connection.')

async def read_and_send(stdin_reader: StreamReader,
 writer: StreamWriter):
 while True:
 message = await read_line(stdin_reader)
 await send_message(message, writer)

async def main():
 async def redraw_output(items: deque):
 save_cursor_position()
 move_to_top_of_screen()

Listing 8.14 The chat client

Listen for
messages from
the server,
appending
them to the
message store.

Read input from
the user, and
send it to the
server.

215Creating a chat server and client
 for item in items:
 delete_line()
 sys.stdout.write(item)
 restore_cursor_position()

 tty.setcbreak(0)
 os.system('clear')
 rows = move_to_bottom_of_screen()

 messages = MessageStore(redraw_output, rows - 1)

 stdin_reader = await create_stdin_reader()
 sys.stdout.write('Enter username: ')
 username = await read_line(stdin_reader)

 reader, writer = await asyncio.open_connection('127.0.0.1', 8000)

 writer.write(f'CONNECT {username}\n'.encode())
 await writer.drain()

 message_listener = asyncio.create_task(listen_for_messages(reader, messages))
 input_listener = asyncio.create_task(read_and_send(stdin_reader, writer))

 try:
 await asyncio.wait([message_listener, input_listener],

return_when=asyncio.FIRST_COMPLETED)
 except Exception as e:
 logging.exception(e)
 writer.close()
 await writer.wait_closed()

asyncio.run(main())

We first ask the user for their username, and once we have one, we send our CONNECT
message to the server. Then, we create two tasks: one to listen for messages from the
server and one to continuously read chat messages and send them to the server. We
then take these two tasks and wait for whichever one completes first by wrapping them
in asyncio.wait. We do this because the server could disconnect us, or the input lis-
tener could throw an exception. If we just awaited each task independently, we may
find ourselves stuck. For instance, if the server disconnected us, we’d have no way to
stop the input listener if we had awaited that task first. Using the wait coroutine pre-
vents this issue because if either the message listener or input listener finishes, our
application will exit. If we wanted to have more robust logic here, we could do this by
checking the done and pending sets wait returns. For instance, if the input listener
threw an exception, we could cancel the message listener task.

 If you first run the server, then run a couple of chat clients, you’ll be able to send
and receive messages in the client like a normal chat application. For example, two
users connecting to the chat may produce output like the following:

Open a connection to
the server, and send
the connect message

with the username.

Create a task to
listen for messages,
and listen for input;

wait until one
finishes.

216 CHAPTER 8 Streams
Welcome! 1 user(s) are online!
MissIslington connected!
SirBedevere connected!
SirBedevere: Is that your nose?
MissIslington: No, it's a false one!

We’ve built a chat server and client that can handle multiple users connected simulta-
neously with only one thread. This application could stand to be more robust. For
example, you may want to consider retrying message sends on failure or a protocol to
acknowledge a client received a message. Making this a production-worthy application
is rather complex and is outside the scope of this book, though it might be a fun exer-
cise for the reader, as there are many failure points to think through. Using similar
concepts to what we’ve explored in this example, you’ll be able to create robust client
and server applications to suit your needs.

Summary
 We’ve learned how to use the lower-level transport and protocol APIs to build a

simple HTTP client. These APIs are the bedrock of the higher-level stream
asyncio stream APIs and are generally not recommended for general use.

 We’ve learned how to use the StreamReader and StreamWriter classes to build
network applications. These higher-level APIs are the recommended approach
to work with streams in asyncio.

 We’ve learned how to use streams to create non-blocking command-line appli-
cations that can remain responsive to user input while running tasks in the
background.

 We’ve learned how to create servers using the start_server coroutine. This
approach is the recommended way to create servers in asyncio, as opposed to
using sockets directly.

 We’ve learned how to create responsive client and server applications using
streams and servers. Using this knowledge, we can create network-based appli-
cations, such as chat servers and clients.

Web applications
Web applications power most of the sites we use on the internet today. If you’ve
worked as a developer for a company with an internet presence, you’ve likely
worked on a web application at some point in your career. In the world of synchro-
nous Python, this means you’ve used frameworks such as Flask, Bottle, or the
extremely popular Django. With the exception of more recent versions of Django,
these web frameworks were not built to work with asyncio out of the box. As such,
when our web applications perform work that could be parallelized, such as query-
ing a database or making calls to other APIs, we don’t have options outside of multi-
threading or multiprocessing. This means that we’ll need to explore new frameworks
that are compatible with asyncio.

 In this chapter, we’ll learn about a few popular asyncio-ready web frameworks.
We’ll first see how to use a framework we’ve already dealt with, aiohttp, to build async

This chapter covers
 Creating web applications with aiohttp

 The asynchronous server gateway interface
(ASGI)

 Creating ASGI web applications with Starlette

 Using Django’s asynchronous views
217

218 CHAPTER 9 Web applications
RESTful APIs. We’ll then learn about the asynchronous server gateway interface, or
ASGI, which is the async replacement for the WSGI (web server gateway interface) and
is how many web applications run. Using ASGI with Starlette, we’ll build a simple REST
API with WebSocket support. We’ll also look at using Django’s asynchronous views. Per-
formance of web applications is always a consideration when scaling, so we’ll also take a
look at performance numbers by benchmarking with a load testing tool.

9.1 Creating a REST API with aiohttp
Previously, we used aiohttp as a HTTP client to make thousands of concurrent web
requests to web applications. aiohttp has not only support as a HTTP client but also
has functionality to create asyncio-ready web application servers as well.

9.1.1 What is REST?

REST is an abbreviation for representational state transfer. It is a widely used paradigm in
modern web application development, especially in conjunction with single-page appli-
cations with frameworks like React and Vue. REST provides us with a stateless, struc-
tured way to design our web APIs independently of client-side technology. A REST API
should be able to interoperate with any number of clients from a mobile phone to a
browser, and all that should need to change is the client-side presentation of the data.

 The key concept in REST is a resource. A resource is typically anything that can be
represented by a noun. For example, a customer, a product, or an account can be REST-
ful resources. The resources we just listed reference a single customer or product.
Resources can also be collections, for example, “customers” or “products” that have
singletons we can access by some unique identifier. Singletons may also have sub-
resources. A customer could have a list of favorite products as an example. Let’s take a
look at a couple of REST APIs to get a better understanding:

customers
customers/{id}
customers/{id}/favorites

We have three REST API endpoints here. Our first endpoint, customers, references a
collection of customers. As consumers of this API, we would expect this to return a list
of customers (this may be paginated as it could potentially be a large set). Our second
endpoint references a single customer and takes in an id as a parameter. If we
uniquely identify customers with an integer ID, calling customers/1 would give us
data for the customer with an id of 1. Our final endpoint is an example of a sub-entity.
A customer could have a list of favorite products, making the list of favorites a sub-
entity of a customer. Calling customers/1/favorites would return the list of favorites
for the customer with id of 1.

 We’ll design our REST APIs going forward to return JSON as this is typical, though
we could choose any format that suits our need. REST APIs can sometimes support
multiple data representations through content negotiation via HTTP headers.

219Creating a REST API with aiohttp
 While a proper look into all the details of REST is outside the scope of this book, the
creator of REST’s PhD dissertation is a good place to learn about the concepts. It is avail-
able at http://mng.bz/1jAg.

9.1.2 aiohttp server basics

Let’s get started by creating a simple “hello world”-style API with aiohttp. We’ll start by
creating a simple GET endpoint that will give us some basic data in JSON format about
the time and date. We’ll call our endpoint /time and will expect it to return the
month, day, and current time.

 aiohttp provides web server functionality in the web module. Once we import this,
we can define endpoints (called routes in aiohttp) with a RouteTableDef. A Route-
TableDef provides a decorator that lets us specify a request type (GET, POST, etc.) and a
string representing the endpoint name. We can then use the RouteTableDef decora-
tor to decorate coroutines that will execute when we call that endpoint. Inside these
decorated coroutines, we can perform whatever application logic we’d like and then
return data to the client.

 Creating these endpoints by themselves does nothing, however, and we still need to
start the web application to serve the routes. We do this by first creating an Application
instance, adding the routes from our RouteTableDef and running the application.

from aiohttp import web
from datetime import datetime
from aiohttp.web_request import Request
from aiohttp.web_response import Response

routes = web.RouteTableDef()

@routes.get('/time')
async def time(request: Request) -> Response:
 today = datetime.today()

 result = {
 'month': today.month,
 'day': today.day,
 'time': str(today.time())
 }

 return web.json_response(result)

app = web.Application()
app.add_routes(routes)
web.run_app(app)

In the preceding listing, we first create a time endpoint. @routes.get('/time') speci-
fies that the decorated coroutine will execute when a client executes a HTTP GET request

Listing 9.1 The current time endpoint

Create a time GET endpoint;
when a client calls this endpoint,
the time coroutine will run.

Take the result
dictionary, and turn it
into a JSON response.

Create the web application,
register the routes, and
run the application.

http://mng.bz/1jAg

220 CHAPTER 9 Web applications
against the /time URI. In our time coroutine, we get the month, day, and time and
store it in a dictionary. We then call web.json_response, which takes the dictionary and
serializes it into JSON format. It also configures the HTTP response we send back. In
particular, it sets the status code to 200 and the content type to 'application/json'.

 We then create the web application and start it. First, we create an Application
instance and call add_routes. This registers all the decorators we created with the web
application. We then call run_app, which starts the web server. By default, this starts
the web server on localhost port 8080.

 When we run this, we’ll be able to test this out by either going to local-
host:8080/time in a web browser or using a command-line utility, such as cURL or
Wget. Let’s test it out with cURL to take a look at the full response by running curl -i
localhost:8080/time. You should see something like the following:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 51
Date: Mon, 23 Nov 2020 16:35:32 GMT
Server: Python/3.9 aiohttp/3.6.2

{"month": 11, "day": 23, "time": "11:35:32.033271"}

This shows that we’ve successfully created our first endpoint with aiohttp! One thing
you may have noticed from our code listing is that our time coroutine had a single
parameter named request. While we didn’t need to use it in this example, it will soon
become important. This data structure has information about the web request the
client sent, such as the body, query parameters, and so on. To get a glimpse of the
headers in the request, add print(request.headers) somewhere inside the time
coroutine, and you should see something similar to this:

<CIMultiDictProxy('Host': 'localhost:8080', 'User-Agent': 'curl/7.64.1',
'Accept': '*/*')>

9.1.3 Connecting to a database and returning results

While our time endpoint shows us the basics, most web applications are not this sim-
ple. We’ll usually need to connect to a database such as Postgres or Redis, and may
need to communicate with other REST APIs, for example, if we query or update a ven-
dor API we use.

 To see how to do this, we’ll build a REST API around our e-commerce storefront
database from chapter 5. Specifically, we’ll design a REST API to get existing products
from our database as well as create new ones.

 The first thing we’ll need to do is create a connection to our database. Since we
expect our application will have many concurrent users, using a connection pool
instead of a single connection makes the most sense. The question becomes: where can
we create and store the connection pool for easy use by our application’s endpoints?

221Creating a REST API with aiohttp
 To answer the question of where we can store the connection pool, we’ll need to
first answer the broader question of where we can store shared application data in
aiohttp applications. We’ll then use this mechanism to hold a reference to our con-
nection pool.

 To store shared data, aiohttp’s Application class acts as a dictionary. For example,
if we had some shared dictionary we wanted all our routes to have access to, we could
store it in our application as follows:

app = web.Application()
app['shared_dict'] = {'key' : 'value'}

We can now access the shared dictionary by executing app['shared_dict']. Next, we
need to figure out how to access the application from within a route. We could make
the app instance global, but aiohttp provides a better way though the Request class.
Every request that our route gets will have a reference to the application instance
through the app field, allowing us easy access to any shared data. For example, getting
the shared dictionary and returning it as a response might look like the following:

@routes.get('/')
async def get_data(request: Request) -> Response:
 shared_data = request.app['shared_dict']
 return web.json_response(shared_data)

We’ll use this paradigm to store and retrieve our database connection pool once we
create it. Now we decide the best place to create our connection pool. We can’t easily
do it when we create our application instance, as this happens outside of any corou-
tine meaning, and we can’t use the needed await expressions.

 aiohttp provides a signal handler on the application instance to handle setup tasks
like this called on_startup. You can think of this as a list of coroutines that will exe-
cute when we start the application. We can add coroutines to run on startup by calling
app.on_startup.append(coroutine). Each coroutine we append to on_startup has
a single parameter: the Application instance. We can store our database pool in the
application instance passed in to this coroutine once we’ve instantiated it.

 We also need to consider what happens when our web application shuts down. We
want to actively close and clean up database connections when we shut down; other-
wise, we could leave dangling connections, putting unneeded stress on our database.
aiohttp also provides a second signal handler: on_cleanup. The coroutines in this han-
dler will run when our application closes, giving us an easy place to shut down the
connection pool. This behaves like the on_startup handler in that we just call append
with coroutines we’d like to run.

 Putting all these pieces together, we can create a web application that creates a
connection pool to our product database. To test this out, let’s create an endpoint
that gets all brand data in our database. This will be a GET endpoint called /brands.

222 CHAPTER 9 Web applications
import asyncpg
from aiohttp import web
from aiohttp.web_app import Application
from aiohttp.web_request import Request
from aiohttp.web_response import Response
from asyncpg import Record
from asyncpg.pool import Pool
from typing import List, Dict

routes = web.RouteTableDef()
DB_KEY = 'database'

async def create_database_pool(app: Application):
 print('Creating database pool.')
 pool: Pool = await asyncpg.create_pool(host='127.0.0.1',
 port=5432,
 user='postgres',
 password='password',
 database='products',
 min_size=6,
 max_size=6)
 app[DB_KEY] = pool

async def destroy_database_pool(app: Application):
 print('Destroying database pool.')
 pool: Pool = app[DB_KEY]
 await pool.close()

@routes.get('/brands')
async def brands(request: Request) -> Response:
 connection: Pool = request.app[DB_KEY]
 brand_query = 'SELECT brand_id, brand_name FROM brand'
 results: List[Record] = await connection.fetch(brand_query)
 result_as_dict: List[Dict] = [dict(brand) for brand in results]
 return web.json_response(result_as_dict)

app = web.Application()
app.on_startup.append(create_database_pool)
app.on_cleanup.append(destroy_database_pool)

app.add_routes(routes)
web.run_app(app)

We first define two coroutines to create and destroy the connection pool. In create_
database_pool, we create a pool and store it in the application under the DB_KEY.
Then, in destroy_database_pool, we get the pool from the application instance and
wait for it to close. When we start our application, we append these two coroutines to
the on_startup and on_cleanup signal handlers, respectively.

Listing 9.2 Connecting to a product database

Create the database
pool, and store it in
the application
instance.

Destroy the pool in the
application instance.

Query all brands and
return results to the client.

Add the create
and destroy pool
coroutines to startup
and cleanup.

223Creating a REST API with aiohttp
 Next, we define our brands route. We first grab the database pool from the request
and run a query to get all brands in our database. We then loop over each brand,
casting them to dictionaries. This is because aiohttp does not know how to serialize
asyncpg Record instances. When running this application, you should be able to go to
localhost:8080/brands in a browser and see all brands in your database displayed as
a JSON list, giving you something like the following:

[{"brand_id": 1, "brand_name": "his"}, {"brand_id": 2, "brand_name": "he"},
{"brand_id": 3, "brand_name": "at"}]

We’ve now created our first RESTful collection API endpoint. Next, let’s see how to
create endpoints to create and update singleton resources. We’ll implement two end-
points: one GET endpoint to retrieve a product by a specific ID and one POST end-
point to create a new product.

 Let’s start with our GET endpoint for a product. This endpoint will take in an inte-
ger ID parameter, meaning to get the product with ID 1 we’d call /products/1. How
can we create a route that has a parameter in it? aiohttp lets us parameterize our
routes by wrapping any parameters in curly brackets, so our product route will be
/products/{id}. When we parameterize like this, we’ll see an entry in our request’s
match_info dictionary. In this case, whatever the user passed into the id parameter
will be available in request.match_info['id'] as a string.

 Since we could pass in an invalid string for an ID, we’ll need to add some error
handling. A client could also ask for an ID that does not exist, so we’ll need to han-
dle the “not found” case appropriately as well. For these error cases, we’ll return a
HTTP 400 status code to indicate the client issued a bad request. For the case
where the product does not exist, we’ll return a HTTP 404 status code. To repre-
sent these error cases, aiohttp provides a set of exceptions for each HTTP status
code. In the error cases, we can just raise them, and the client will receive the
appropriate status code.

import asyncpg
from aiohttp import web
from aiohttp.web_app import Application
from aiohttp.web_request import Request
from aiohttp.web_response import Response
from asyncpg import Record
from asyncpg.pool import Pool

routes = web.RouteTableDef()
DB_KEY = 'database'

@routes.get('/products/{id}')
async def get_product(request: Request) -> Response:
 try:

Listing 9.3 Getting a specific product

224 CHAPTER 9 Web applications
 str_id = request.match_info['id']
 product_id = int(str_id)

 query = \
 """
 SELECT
 product_id,
 product_name,
 brand_id
 FROM product
 WHERE product_id = $1
 """

 connection: Pool = request.app[DB_KEY]
 result: Record = await connection.fetchrow(query, product_id)

 if result is not None:
 return web.json_response(dict(result))
 else:
 raise web.HTTPNotFound()
 except ValueError:
 raise web.HTTPBadRequest()

async def create_database_pool(app: Application):
 print('Creating database pool.')
 pool: Pool = await asyncpg.create_pool(host='127.0.0.1',
 port=5432,
 user='postgres',
 password='password',
 database='products',
 min_size=6,
 max_size=6)
 app[DB_KEY] = pool

async def destroy_database_pool(app: Application):
 print('Destroying database pool.')
 pool: Pool = app[DB_KEY]
 await pool.close()

app = web.Application()
app.on_startup.append(create_database_pool)
app.on_cleanup.append(destroy_database_pool)

app.add_routes(routes)
web.run_app(app)

Next, let’s see how to create a POST endpoint to create a new product in the database.
We’ll send the data we want in the request body as a JSON string, and we’ll then trans-
late that into an insert query. We’ll need to do some error checking here to see if the
JSON is valid, and if it isn’t, send the client a bad request error.

Get the product_id
parameter from the URL.

Run the query for
a single product.

If we have a result, convert
it to JSON and send to the
client; otherwise, send a
“404 not found.”

225Creating a REST API with aiohttp
import asyncpg
from aiohttp import web
from aiohttp.web_app import Application
from aiohttp.web_request import Request
from aiohttp.web_response import Response
from chapter_09.listing_9_2 import create_database_pool,

destroy_database_pool

routes = web.RouteTableDef()
DB_KEY = 'database'

@routes.post('/product')
async def create_product(request: Request) -> Response:
 PRODUCT_NAME = 'product_name'
 BRAND_ID = 'brand_id'

 if not request.can_read_body:
 raise web.HTTPBadRequest()

 body = await request.json()

 if PRODUCT_NAME in body and BRAND_ID in body:
 db = request.app[DB_KEY]
 await db.execute('''INSERT INTO product(product_id,
 product_name,
 brand_id)
 VALUES(DEFAULT, $1, $2)''',
 body[PRODUCT_NAME],
 int(body[BRAND_ID]))
 return web.Response(status=201)
 else:
 raise web.HTTPBadRequest()

app = web.Application()
app.on_startup.append(create_database_pool)
app.on_cleanup.append(destroy_database_pool)

app.add_routes(routes)
web.run_app(app)

We first check to see if we even have a body with request.can_read_body, and if we
don’t, we quickly return a bad response. We then grab the request body as a dictionary
with the json coroutine. Why is this a coroutine and not a plain method? If we have
an especially large request body, the result may be buffered and could take some time
to read. Instead of blocking our handler waiting for all data to come in, we await until
all data is there. We then insert the record into the product table and return a HTTP
201 created status back to the client.

Listing 9.4 A create product endpoint

226 CHAPTER 9 Web applications
 Using cURL, you should be able to execute something like the following to insert a
product into your database, getting a HTTP 201 response.

curl -i -d '{"product_name":"product_name", "brand_id":1}'
localhost:8080/product

HTTP/1.1 201 Created
Content-Length: 0
Content-Type: application/octet-stream
Date: Tue, 24 Nov 2020 13:27:44 GMT
Server: Python/3.9 aiohttp/3.6.2

While the error handling here should be more robust (what happens if the brand ID
is a string and not an integer or the JSON is malformed?), this illustrates how to pro-
cess postdata to insert a record into our database.

9.1.4 Comparing aiohttp with Flask

Working with aiohttp and an asyncio-ready web framework gives us the benefit of
using libraries such as asyncpg. Outside of the use of asyncio libraries, are there any
benefits to using a framework like aiohttp as opposed to a similar synchronous frame-
work such as Flask?

 While it highly depends on server configuration, database hardware, and other fac-
tors, asyncio-based applications can have better throughput with fewer resources. In a
synchronous framework, each request handler runs from start to finish without inter-
ruption. In an asynchronous framework, when our await expressions suspend execu-
tion, they give the framework a chance to handle other work, resulting in greater
efficiency.

 To test this out, let’s build a Flask replacement for our brands endpoint. We’ll
assume basic familiarity with Flask and synchronous database drivers, although even if
you don’t know these you should be able to follow the code. To get started, we’ll install
Flask and psycopg2, a synchronous Postgres driver, with the following commands:

pip install -Iv flask==2.0.1
pip install -Iv psycopg2==2.9.1

For psycopg, you may run into compile errors on install. If you do, you may need to
install Postgres tools, and open SSL or another library. A web search with your error
should yield the answer. Now, let’s implement our endpoint. We’ll first create a con-
nection to the database. Then, in our request handler we’ll reuse the brand query
from our previous example and return the results as a JSON array.

from flask import Flask, jsonify
import psycopg2

app = Flask(__name__)

Listing 9.5 A Flask application to retrieve brands

227Creating a REST API with aiohttp
conn_info = "dbname=products user=postgres password=password host=127.0.0.1"
db = psycopg2.connect(conn_info)

@app.route('/brands')
def brands():
 cur = db.cursor()
 cur.execute('SELECT brand_id, brand_name FROM brand')
 rows = cur.fetchall()
 cur.close()
 return jsonify([{'brand_id': row[0], 'brand_name': row[1]} for row in rows])

Now, we need to run our application. Flask comes with a development server, but it is
not production-ready and wouldn’t be a fair comparison, especially since it would only
run one process, meaning we could only handle one request at a time. We’ll need to
use a production WSGI server to test this. We’ll use Gunicorn for this example,
though there are many you could choose. Let’s start by installing Gunicorn with the
following command:

pip install -Iv gunicorn==20.1.0

We’ll be testing this out on an 8-core machine, so we’ll spawn eight workers with Guni-
corn. Running gunicorn -w 8 chapter_09.listing_9_5:app, and you should see
eight workers start up:

[2020-11-24 09:53:39 -0500] [16454] [INFO] Starting gunicorn 20.0.4
[2020-11-24 09:53:39 -0500] [16454] [INFO] Listening at:

http:/ /127.0.0.1:8000 (16454)
[2020-11-24 09:53:39 -0500] [16454] [INFO] Using worker: sync
[2020-11-24 09:53:39 -0500] [16458] [INFO] Booting worker with pid: 16458
[2020-11-24 09:53:39 -0500] [16459] [INFO] Booting worker with pid: 16459
[2020-11-24 09:53:39 -0500] [16460] [INFO] Booting worker with pid: 16460
[2020-11-24 09:53:39 -0500] [16461] [INFO] Booting worker with pid: 16461
[2020-11-24 09:53:40 -0500] [16463] [INFO] Booting worker with pid: 16463
[2020-11-24 09:53:40 -0500] [16464] [INFO] Booting worker with pid: 16464
[2020-11-24 09:53:40 -0500] [16465] [INFO] Booting worker with pid: 16465
[2020-11-24 09:53:40 -0500] [16468] [INFO] Booting worker with pid: 16468

This means we have created eight connections to our database and can serve eight
requests concurrently. Now, we need a tool to benchmark performance between Flask
and aiohttp. A command-line load tester will work for a quick test. While this won’t be
the most accurate picture, it will give us a directional idea of performance. We’ll use a
load tester called wrk, though any load tester, such as Apache Bench or Hey, will work.
You can view installation instructions on wrk at https://github.com/wg/wrk.

 Let’s start by running a 30-second load test on our Flask server. We’ll use one
thread and 200 connections, simulating 200 concurrent users hitting our app as fast as
they can. On an 8-core 2.4 Ghz machine you could see results similar to the following:

https://github.com/wg/wrk

228 CHAPTER 9 Web applications
Running 30s test @ http:/ /localhost:8000/brands
 1 threads and 200 connections
 16534 requests in 30.02s, 61.32MB read
 Socket errors: connect 0, read 1533, write 276, timeout 0
Requests/sec: 550.82
Transfer/sec: 2.04MB

We served about 550 requests per second—not a bad result. Let’s rerun the same with
aiohttp and compare the results:

Running 30s test @ http:/ /localhost:8080/brands
 1 threads and 200 connections
 46774 requests in 30.01s, 191.45MB read
Requests/sec: 1558.46
Transfer/sec: 6.38MB

Using aiohttp, we were able to serve over 1,500 requests per second, which is about
three times what we were able to do with Flask. More importantly, we did this with only
one process, where Flask needed a total of eight processes to handle one-third of the
requests! You could further improve the performance of aiohttp by putting NGINX in
front of it and starting more worker processes.

 We now know the basics of how to use aiohttp to build a database-backed web
application. In the world of web applications, aiohttp is a little different than most
in that it is a web server itself, and it does not conform to WSGI and can stand
alone on its own. As we saw with Flask, this is not usually the case. Next, let’s under-
stand how ASGI works and see how to use it with an ASGI-compliant framework
called Starlette.

9.2 The asynchronous server gateway interface
When we used Flask in the previous example, we used the Gunicorn WSGI server to
serve our application. WSGI is a standardized way to forward web requests to a web
framework, such as Flask or Django. While there are many WSGI servers, they were
not designed to support asynchronous workloads, as the WSGI specification long pre-
dates asyncio. As asynchronous web applications become more widely used, a way to
abstract frameworks from their servers proved necessary. Thus, the asynchronous server
gateway interface, or ASGI, was created. ASGI is a relative newcomer to the internet
space but already has several popular implementations and frameworks that support
it, including Django.

9.2.1 How does ASGI compare to WSGI?

WSGI was born out of a fractured landscape of web application frameworks. Prior to
WSGI, the choice of one framework could limit the kinds of usable interface web serv-
ers, as there was no standardized interface between the two. WSGI addressed this by
providing a simple API for web servers to talk to Python frameworks. WSGI received
formal acceptance into the Python ecosystem in 2004 with the acceptance of PEP-333

229The asynchronous server gateway interface
(Python enhancement proposal; https://www.python.org/dev/peps/pep-0333/) and is
now the de facto standard for web application deployment.

 When it comes to asynchronous workloads however, WSGI does not work. The
heart of the WSGI specification is a simple Python function. For example, let’s see the
simplest WSGI application we can build.

def application(env, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 return [b"WSGI hello!"]

We can run this application with Gunicorn by running gunicorn chapter_09.listing_
9_6 and test it out with curl http:/ /127.0.0.1:8000. As you can see, there isn’t any
place for us to use an await. In addition, WSGI only supports response/request life-
cycles, meaning it won’t work with long-lived connection protocols, such as WebSockets.
ASGI fixes this by redesigning the API to use coroutines. Let’s translate our WSGI
example to ASGI.

async def application(scope, receive, send):
 await send({
 'type': 'http.response.start',
 'status': 200,
 'headers': [[b'content-type', b'text/html']]
 })
 await send({'type': 'http.response.body', 'body': b'ASGI hello!'})

An ASGI application function has three parameters: a scope dictionary, a receive
coroutine, and a send coroutine, which allow us to send and receive data, respectively.
In our example, we send the start of the HTTP response, followed by the body.

 Now, how do we serve the above application? There are a few implementations of
ASGI available, but we’ll use a popular one called Uvicorn (https://www.uvicorn
.org/). Uvicorn is built on top of uvloop and httptools, which are fast C implementa-
tions of the asyncio event loop (we’re actually not tied to the event loop that comes
with asyncio, as we’ll learn more in chapter 14) and HTTP parsing. We can install Uvi-
corn by running the following:

pip install -Iv uvicorn==0.14.0

Now, we can run our application with the following command:

uvicorn chapter_09.listing_9_7:application

And we should see our “hello” message printed if we go to http:/ /localhost:8000.
While we used Uvicorn directly here to test things out, it is better practice to use

Listing 9.6 A WSGI application

Listing 9.7 A simple ASGI application

https://www.python.org/dev/peps/pep-0333/
https://www.uvicorn.org/
https://www.uvicorn.org/
https://www.uvicorn.org/

230 CHAPTER 9 Web applications
Uvicorn with Gunicorn, as Gunicorn will have logic to restart workers on crashes for
us. We’ll see how to do this with Django in section 9.4.

 We should keep in mind that, while WSGI is an accepted PEP, ASGI is not yet
accepted, and as of this writing it is still relatively new. Expect the details of how ASGI
works to evolve and change as the asyncio landscape changes.

 Now, we know the basics of ASGI and how it compares to WSGI. What we have
learned is very low-level, though; we want a framework to handle ASGI for us! There
are a few ASGI-compliant frameworks, let’s look at a popular one.

9.3 ASGI with Starlette
Starlette is a small ASGI-compliant framework created by Encode, the creators of Uvi-
corn and other popular libraries such as Django REST framework. It offers fairly
impressive performance (at the time of writing), WebSocket support, and more. You
can view its documentation at https://www.starlette.io/. Let’s see how to implement
simple REST and WebSocket endpoints using it. To get started, let’s first install it with
the following command:

pip install -Iv starlette==0.15.0

9.3.1 A REST endpoint with Starlette

Let’s start to learn Starlette by reimplementing our brands endpoint from previous sec-
tions. We’ll create our application by creating an instance of the Starlette class. This
class takes a few parameters that we’ll be interested in using: a list of route objects and a
list of coroutines to run on startup and shutdown. Route objects are mappings from a
string path—brands, in our case—to a coroutine or another callable object. Much like
aiohttp, these coroutines have one parameter representing the request, and they return
a response, so our route handle will look very similar to our aiohttp version. What is
slightly different is how we handle sharing our database pool. We still store it on our
Starlette application instance, but it is inside a state object instead.

import asyncpg
from asyncpg import Record
from asyncpg.pool import Pool
from starlette.applications import Starlette
from starlette.requests import Request
from starlette.responses import JSONResponse, Response
from starlette.routing import Route
from typing import List, Dict

async def create_database_pool():
 pool: Pool = await asyncpg.create_pool(host='127.0.0.1',
 port=5432,
 user='postgres',
 password='password',

Listing 9.8 A Starlette brands endpoint

https://www.starlette.io/

231ASGI with Starlette
 database='products',
 min_size=6,
 max_size=6)
 app.state.DB = pool

async def destroy_database_pool():
 pool = app.state.DB
 await pool.close()

async def brands(request: Request) -> Response:
 connection: Pool = request.app.state.DB
 brand_query = 'SELECT brand_id, brand_name FROM brand'
 results: List[Record] = await connection.fetch(brand_query)
 result_as_dict: List[Dict] = [dict(brand) for brand in results]
 return JSONResponse(result_as_dict)

app = Starlette(routes=[Route('/brands', brands)],
 on_startup=[create_database_pool],
 on_shutdown=[destroy_database_pool])

Now that we have our brands endpoint, let’s use Uvicorn to start it up. We’ll start up
eight workers, as we did before, with the following command:

uvicorn --workers 8 --log-level error chapter_09.listing_9_8:app

You should be able to hit this endpoint at localhost:8000/brands and see the con-
tents of the brand table, as before. Now that we have our application running, let’s
run a quick benchmark to see how it compares to aiohttp and Flask. We’ll use the
same wrk command as before with 200 connections over 30 seconds:

Running 30s test @ http:/ /localhost:8000/brands
 1 threads and 200 connections
Requests/sec: 4365.37
Transfer/sec: 16.07MB

We’ve served over 4,000 requests per second, outperforming Flask and even aiohttp
by a wide margin! Since we only ran one aiohttp worker process earlier, this isn’t exactly
a fair comparison (we’d get similar numbers with eight aiohttp workers behind
NGINX), but this shows the throughput power that async frameworks offer.

9.3.2 WebSockets with Starlette

In a traditional HTTP request, the client sends a request to the server, the server hands
a back a response, and that is the end of the transaction. What if we want to build a web
page that updates without a user having to refresh? For example, we may have a live
counter of how many users are currently on the site. We can do this over HTTP with
some JavaScript that polls an endpoint, telling us how many users are on the site. We
could hit the endpoint every few seconds, updating the page with the latest result.

232 CHAPTER 9 Web applications
 While this will work, it has drawbacks. The main drawback is that we’re creating an
extra load on our web server, each request and response cycle taking time and
resources. This is especially egregious because our user count might not change
between requests, causing a strain on our system for no new information (we could mit-
igate this with caching, but the point still stands, and caching introduces other complex-
ity and overhead). HTTP polling is the digital equivalent of a child in the backseat of
the car repeatedly asking, “Are we there yet?”

 WebSockets provide an alternative to HTTP polling. Instead of a request/response
cycle like HTTP, we establish one persistent socket. Then, we just send data freely
across that socket. This socket is bidirectional, meaning we can both send data to and
receive data from our server without having to go through a HTTP request lifecycle
every time. To apply this to the example of displaying an up-to-date user count, once
we connect to a WebSocket the server can just tell us when there is a new user count.
As shown in figure 9.1, we don’t need to ask repeatedly, creating extra load and poten-
tially receiving data that isn’t new.

Starlette provides out-of-the-box support for WebSockets using an easy-to-understand
interface. To see this in action, we’ll build a simple WebSocket endpoint that will tell
us how many users are connected to a WebSocket endpoint simultaneously. To get
started we’ll first need to install WebSocket support:

pip install -Iv websockets==9.1

Next, we’ll need to implement our WebSocket endpoint. Our game plan will be to keep
an in-memory list of all connected client WebSockets. When a new client connects, we’ll
add them to the list and send the new count of users to all clients in the list. When a cli-
ent disconnects, we’ll remove them from the list and update other clients about the
change in user count as well. We’ll also add some basic error handling. If sending one of
these messages results in an exception, we’ll remove the client from the list.

Figure 9.1 HTTP polling to retrieve data compared to WebSockets

HTTP polling

What’s the user count?

It’s two

What’s the user count?

It’s two

What’s the user count?

It’s three

Web client Web server

Web sockets

Web socket connect

The user count is two

The user count is three

Web client Web server

233ASGI with Starlette
 In Starlette, we can subclass WebSocketEndpoint to create an endpoint to handle a
WebSocket connection. This class has a few coroutines we’ll need to implement. The first
is on_connect, which gets fired when a client connects to our socket. In on_connect, we’ll
store the client’s WebSocket in a list and send the length of the list to all other sockets.
The second coroutine is on_receive; this gets fired when the client connection sends a
message to the server. In our case, we won’t need to implement this, as we don’t expect
the client to send us any data. The final coroutine is on_disconnect, which runs when a
client disconnects. In this case, we’ll remove the client from the list of connected Web-
Sockets and update other connected clients with the latest user count.

import asyncio
from starlette.applications import Starlette
from starlette.endpoints import WebSocketEndpoint
from starlette.routing import WebSocketRoute

class UserCounter(WebSocketEndpoint):
 encoding = 'text'
 sockets = []

 async def on_connect(self, websocket):
 await websocket.accept()
 UserCounter.sockets.append(websocket)
 await self._send_count()

 async def on_disconnect(self, websocket, close_code):
 UserCounter.sockets.remove(websocket)
 await self._send_count()

 async def on_receive(self, websocket, data):
 pass

 async def _send_count(self):
 if len(UserCounter.sockets) > 0:
 count_str = str(len(UserCounter.sockets))
 task_to_socket =

{asyncio.create_task(websocket.send_text(count_str)): websocket
 for websocket
 in UserCounter.sockets}

 done, pending = await asyncio.wait(task_to_socket)

 for task in done:
 if task.exception() is not None:
 if task_to_socket[task] in UserCounter.sockets:
 UserCounter.sockets.remove(task_to_socket[task])

app = Starlette(routes=[WebSocketRoute('/counter', UserCounter)])

Listing 9.9 A Starlette WebSocket endpoint

When a client connects, add it
to the list of sockets and notify
other users of the new count.

When a client
disconnects, remove
it from the list of
sockets and notify
other users of the
new count.

Notify other users how
many users are connected.
If there is an exception
while sending, remove
them from the list.

234 CHAPTER 9 Web applications
Now, we’ll need to define a page to interact with our WebSocket. We’ll add create a
basic script to connect to our WebSocket endpoint. When we receive a message, we’ll
update a counter on the page with the latest value.

<!DOCTYPE html>
<html lang="">
<head>
 <title>Starlette Web Sockets</title>
 <script>
 document.addEventListener("DOMContentLoaded", () => {
 let socket = new WebSocket("ws:/ /localhost:8000/counter");

 socket.onmessage = (event) => {
 const counter = document.querySelector("#counter");
 counter.textContent = event.data;
 };
 });
 </script>
</head>
<body>
 Users online:

</body>
</html>

In the preceding listing, the script is where most of the work happens. We first con-
nect to our endpoint and then define an onmessage callback. When the server sends
us data, this callback runs. In this callback, we grab a special element from the DOM
and set its content to the data we receive. Note that in our script we don’t execute this
code until after the DOMContentLoaded event, without which our counter element may
not exist when the script executes.

 If you start the server with uvicorn --workers 1 chapter_09.listing_9_9:app
and open the web page, you should see the 1 displayed on the page. If you open the
page multiple times in separate tabs, you should see the count increment on all the
tabs. When you close a tab, you should see the count decrement across all other open
tabs. Note that we only use one worker here, as we have shared state (the socket list)
in memory; if we use multiple workers, each worker will have its own socket list. To
deploy properly, you’ll need some persistent store, such as a database.

 We can now use both aiohttp and Starlette to create asyncio-based web applica-
tions for both REST and WebSocket endpoints. While these frameworks are popu-
lar, they are not close in popularity to Django, the 1,000-pound gorilla of Python
web frameworks.

Listing 9.10 Using the WebSocket endpoint

235Django asynchronous views
9.4 Django asynchronous views
Django is one of the most popular and widely used Python frameworks. It has a wealth
of functionality out of the box, from an ORM (object relational mapper) to handle
databases to a customizable admin console. Until version 3.0, Django applications sup-
ported deploying as a WSGI application alone and had little support for asyncio out-
side of the channels library. Version 3.0 introduced support for ASGI and began the
process of making Django fully asynchronous. More recently, version 3.1 gained sup-
port for asynchronous views, allowing you to use asyncio libraries directly in your
Django views. At the time of writing, async support for Django is new, and the overall
feature set is still lacking (for example, the ORM is entirely synchronous, but support-
ing async is in the future). Expect support for this to grow and evolve as Django
becomes more async-aware.

 Let’s learn how to use async views by building a small application that uses aiohttp
in a view. Imagine that we’re integrating with an external REST API, and we want to
build a utility to run a few requests concurrently to see response times, body length,
and how many failures (exceptions) we have. We’ll build a view that takes in a URL
and request count as query parameters and calls out to this URL and aggregates the
results, returning them in a tabular format.

 Let’s get started by ensuring that we have the appropriate version of Django installed:

pip install -Iv django==3.2.8

Now, let’s use the Django admin tool to create the skeleton for our application. We’ll
call our project async_views:

django-admin startproject async_views

Once you run this command, you should see a directory named async_views created
with the following structure:

async_views/
 manage.py
 async_views/
 __init__.py
 settings.py
 urls.py
 asgi.py
 wsgi.py

Note that we have both a wsgi.py and an asgi.py file, showing that we can deploy
to both types of gateway interfaces. You should now be able to use Uvicorn to serve
the basic Django hello world page. Run the following command from the top-level
async_views directory:

gunicorn async_views.asgi:application -k uvicorn.workers.UvicornWorker

236 CHAPTER 9 Web applications
Then, when you go to localhost:8000, you should see the Django welcome page
(figure 9.2).

Next, we’ll need to create our app, which we’ll call async_api. Within the async_
views directory, run python manage.py startapp async_api. This will build model,
view, and other files for the async_api app.

 Now, we have everything we need to create our first asynchronous view. Within the
async_api directory there should be a views.py file. Inside of this, we can specify a
view as asynchronous by simply declaring it as a coroutine. In this file, we’ll add an
async view to make HTTP requests concurrently and display their status codes and
other data in an HTML table.

import asyncio
from datetime import datetime
from aiohttp import ClientSession
from django.shortcuts import render
import aiohttp

Listing 9.11 A Django asynchronous view

Figure 9.2 The Django welcome page

237Django asynchronous views
async def get_url_details(session: ClientSession, url: str):
 start_time = datetime.now()
 response = await session.get(url)
 response_body = await response.text()
 end_time = datetime.now()
 return {'status': response.status,
 'time': (end_time - start_time).microseconds,
 'body_length': len(response_body)}

async def make_requests(url: str, request_num: int):
 async with aiohttp.ClientSession() as session:
 requests = [get_url_details(session, url) for _ in range(request_num)]
 results = await asyncio.gather(*requests, return_exceptions=True)
 failed_results = [str(result) for result in results if

isinstance(result, Exception)]
 successful_results = [result for result in results if not

isinstance(result, Exception)]
 return {'failed_results': failed_results, 'successful_results':

successful_results}

async def requests_view(request):
 url: str = request.GET['url']
 request_num: int = int(request.GET['request_num'])
 context = await make_requests(url, request_num)
 return render(request, 'async_api/requests.html', context)

In the preceding listing, we first create a coroutine to make a request and return a dic-
tionary of the response status, the total time of the request, and the length of the
response body. Next, we define an async view coroutine named requests_view. This
view gets the URL and request count from the query parameters and then makes
requests via get_url_details concurrently with gather. Finally, we filter out the success-
ful responses from any failures and put the results in a context dictionary that we then
pass to render to build the response. Note that we haven’t built our template for the
response yet and are passing in async_views/requests.html only for right now. Next,
let’s build the template, so we can view the results.

 First, we’ll need to create a templates directory under the async_api directory,
then within the templates directory we’ll need to create an async_api folder. Once we
have this directory structure in place, we can add a view inside async_api/templates/
async_api. We’ll call this view requests.html, and we’ll loop over the context dictio-
nary from our view, putting the results in table format.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Request Summary</title>
</head>

Listing 9.12 The requests view

238 CHAPTER 9 Web applications
<body>
<h1>Summary of requests:</h1>
<h2>Failures:</h2>
<table>
 {% for failure in failed_results %}
 <tr>
 <td>{{failure}}</td>
 </tr>
 {% endfor %}
</table>
<h2>Successful Results:</h2>
<table>
 <tr>
 <td>Status code</td>
 <td>Response time (microseconds)</td>
 <td>Response size</td>
 </tr>
 {% for result in successful_results %}
 <tr>
 <td>{{result.status}}</td>
 <td>{{result.time}}</td>
 <td>{{result.body_length}}</td>
 </tr>
 {% endfor %}
</table>
</body>
</html>

In our view, we create two tables: one to display any exceptions we encountered, and a
second to display the successful results we were able to get. While this won’t be the
prettiest web page ever created, it will have all the relevant information we want.

 Next, we’ll need to hook our template and view up to a URL, so it will run when we
hit it in a browser. In the async_api folder, create a url.py file with the following:

from django.urls import path
from . import views

app_name = 'async_api'

urlpatterns = [
 path('', views.requests_view, name='requests'),
]

Now, we’ll need to include the async_api app’s URLs within our Django application.
Within the async_views/async_views directory, you should already have a urls.py
file. Inside this file, you’ll need to modify the urlpatterns list to reference async_
api, and once done this should look like the following:

from django.contrib import admin
from django.urls import path, include

Listing 9.13 The async_api/url.py file

239Django asynchronous views
urlpatterns = [
 path('admin/', admin.site.urls),
 path('requests/', include('async_api.urls'))
]

Finally, we’ll need to add the async_views application to the installed apps. In async_
views/async_views/settings.py, modify the INSTALLED_APPS list to include async_
api; once done it should look like this:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'async_api'
]

Now, we finally have everything we need to run our application. You can start the app
with the same gunicorn command we used when we first created the Django app. Now,
you can go to our endpoint and make requests. For example, to hit example.com 10
times concurrently and get the results, go to:

http:/ /localhost:8000/requests/?url=http:/ / example .com&request_num=10

While numbers will differ on your machine, you should see a page like that shown in
figure 9.3 displayed.

 We’ve now built a Django view that can make an arbitrary amount of HTTP
requests concurrently by hosting it with ASGI, but what if you’re in a situation where
ASGI isn’t an option? Perhaps you’re working with an older application that relies on
it; can you still host an async view? We can try this out by running our application
under Gunicorn with the WSGI application from wsgi.py with the synchronous worker
with the following command:

gunicorn async_views.wsgi:application

You should still be able to hit the requests endpoint, and everything will work fine. So
how does this work? When we run as a WSGI application, a fresh event loop is created
each time we hit an asynchronous view. We can prove this to ourselves by adding a
couple of lines of code somewhere in our view:

loop = asyncio.get_running_loop()
print(id(loop))

The id function will return an integer that is guaranteed to be unique over the lifetime
of an object. When running as a WSGI application, each time you hit the requests
endpoint, this will print a distinct integer, indicating that we create a fresh event loop

240 CHAPTER 9 Web applications
on a per-request basis. Keep the same code when running as an ASGI application, and
you’ll see the same integer printed every time, since ASGI will only have one event
loop for the entire application.

 This means we can get the benefits of async views and running things concurrently
even when running as a WSGI application. However, anything that needs an event loop
to live across multiple requests won’t work unless you deploy as an ASGI application.

9.4.1 Running blocking work in an asynchronous view

What about blocking work in an async view? We’re still in a world where many libraries
are synchronous, but this is incompatible with a single-threaded concurrency model. The
ASGI specification has a function to deal with these situations named sync_to_async.

 In chapter 7, we saw that we could run synchronous APIs in thread pool executors
and get back awaitables we could use with asyncio. The sync_to_async function essen-
tially does that with a few noteworthy caveats.

 The first caveat is that sync_to_async has a notion of thread sensitivity. In many
contexts, synchronous APIs with shared state weren’t designed to be called from mul-
tiple threads, and doing so could cause race conditions. To deal with this, sync_to_
async defaults to a “thread sensitive” mode (specifically, this function has a thread_
sensitive flag that defaults to True). This makes any sync code we pass in run in

Figure 9.3 The requests asynchronous view

241Django asynchronous views
Django’s main thread. This means that any blocking we do here will block the entire
Django application (well, at least one WSGI/ASGI worker if we’re running multiple),
making us lose some benefits of an async stack by doing this.

 If we’re in a situation where thread sensitivity isn’t an issue (in other words, when
there is no shared state, or the shared state does not rely on being in a specific
thread), we can change thread_sensitive to False. This will make things run in a
new thread per each call, giving us something that won’t block Django’s main thread
and preserving more benefits of an asynchronous stack.

 To see this in action, let’s make a new view to test out the variations of sync_
to_async. We’ll create a function that uses time.sleep to put a thread to sleep, and
we’ll pass that in to sync_to_async. We’ll add a query parameter to our endpoint, so
we can easily switch between thread sensitivity modes to see the impact. First, add the
following definition to async_views/async_api/views.py:

from functools import partial
from django.http import HttpResponse
from asgiref.sync import sync_to_async

def sleep(seconds: int):
 import time
 time.sleep(seconds)

async def sync_to_async_view(request):
 sleep_time: int = int(request.GET['sleep_time'])
 num_calls: int = int(request.GET['num_calls'])
 thread_sensitive: bool = request.GET['thread_sensitive'] == 'True'
 function = sync_to_async(partial(sleep, sleep_time),

thread_sensitive=thread_sensitive)
 await asyncio.gather(*[function() for _ in range(num_calls)])
 return HttpResponse('')

Next, add the following to async_views/async_api/urls.py to the urlpatterns list
to wire up the view:

path('sync_to_async', views.sync_to_async_view)

Now, you’ll be able to hit the endpoint. To test this out, let’s sleep for 5 seconds five
times in thread-insensitive mode with the following URL:

http:/ /127.0.0.1:8000/requests/sync_to_async?sleep_time=5&num_calls=
5&thread_sensitive=False

You’ll notice that this only takes 5 seconds to complete since we’re running multiple
threads. You’ll also notice if you hit this URL more than once that each request still
takes only 5 seconds, indicating the requests aren’t blocking each other. Now, let’s

Listing 9.14 The sync_to_async view

242 CHAPTER 9 Web applications
change the thread_sensitive url parameter to True, and you’ll see quite different
behavior. First, the view will take 25 seconds to return since it is making five 5-second
calls sequentially. Second, if you hit the URL multiple times, each will block until the
other completed, since we’re blocking Django’s main thread. The sync_to_async func-
tion offers us several options to use existing code with async views, but you need to be
aware of the thread-sensitivity of what you’re running, as well as the limitations that
this can place on async performance benefits.

9.4.2 Using async code in synchronous views

The next logical question is, “What if I have a synchronous view, but I want to use an
asyncio library?” The ASGI specification also has a special function named async_
to_sync. This function accepts a coroutine and runs it in an event loop, returning the
results in a synchronous fashion. If there is no event loop (as is the case in a WSGI
application), a new one will be created for us on each request; otherwise, this will run
in the current event loop (as is the case when we run as an ASGI application). To try
this out, let’s create a new version of our requests endpoint as a synchronous view,
while still using our async request function.

from asgiref.sync import async_to_sync

def requests_view_sync(request):
 url: str = request.GET['url']
 request_num: int = int(request.GET['request_num'])
 context = async_to_sync(partial(make_requests, url, request_num))()
 return render(request, 'async_api/requests.html', context)

Next, add the following to the urlpatterns list in urls.py:

path('async_to_sync', views.requests_view_sync)

Then, you’ll be able to hit the following url and see the same results as we saw with our
first async view:

http:/ /localhost:8000/requests/async_to_sync?url=http:/ / example.com&request_
num=10

Even in a synchronous WSGI world, sync_to_async lets us get some of the perfor-
mance benefits of an asynchronous stack without being fully asynchronous.

Listing 9.15 Calling async code in a synchronous view

243Summary
Summary
 We’ve learned how to create basic RESTful APIs that hook up to a database with

aiohttp and asyncpg.
 We’ve learned how to create ASGI compliant web applications with Starlette.
 We’ve learned how to use WebSockets with Starlette to build web applications

with up-to-date information without HTTP polling.
 We’ve learned how to use asynchronous views with Django, and also learned

how to use async code in synchronous views and vice versa.

Microservices
Many web applications are structured as monoliths. A monolith generally refers to a
medium-to-large-sized application containing multiple modules that are inde-
pendently deployed and managed as one unit. While there is nothing inherently
wrong with this model (monoliths are perfectly fine, and even preferable, for most
web applications, as they are generally simpler), it does have its drawbacks.

 As an example, if you make a small change to a monolithic application, you need
to deploy the entire application, even parts that may be unaffected by your change.
For instance, a monolithic e-commerce application may have order management
and product listing endpoints in one application, meaning a tweak to a product end-
point would require a redeploy of order management code. A microservice architec-
ture can help with such pain points. We could create separate services for orders and
products, then a change in one service wouldn’t affect the other.

This chapter covers
 The basics of microservices

 The backend-for-frontend pattern

 Using asyncio to handle microservice
communication

 Using asyncio to handle failures and retries
244

245Why microservices?
 In this chapter, we’ll learn a bit more about microservices and the motivations
behind them. We’ll learn a pattern called backend-for-frontend and apply this to an
e-commerce microservice architecture. We’ll then implement this API with aiohttp
and asyncpg, learning how to employ concurrency to help us improve the performance
of our application. We’ll also learn how to properly deal with failure and retries with
the circuit breaker pattern to build a more robust application.

10.1 Why microservices?
First, let’s define what microservices are. This is a rather tricky question, as there is no
standardized definition, and you’ll probably get different answers depending on who
you ask. Generally, microservices follow a few guiding principles:

 They are loosely coupled and independently deployable.
 They have their own independent stack, including a data model.
 They communicate with one another over a protocol such as REST or gRPC.
 They follow the “single responsibility” principle; that is, a microservice should

“do one thing and do it well.”

Let’s apply these principles to a concrete example of an e-commerce storefront. An
application like this has users that provide shipping and payment information to our
hypothetical organization who then buy our products. In a monolithic architecture,
we’d have one application with one database to manage user data, account data (such
as their orders and shipping information), and our available products. In a microser-
vice architecture, we would have multiple services, each with their own database for
separate concerns. We might have a product API with its own database, which only
handles data around products. We might have a user API with its own database, which
handles user account information, and so on.

 Why would we choose this architectural style over monoliths? Monoliths are per-
fectly fine for most applications; they are simpler to manage. Make a code change,
and run all the test suites to make sure your seemingly small change does not affect
other areas of the system. Once you’ve run tests, you deploy the application as one
unit. Is your application not performing well under load? In this case you can scale
horizontally or vertically, either deploying more instances of your application or
deploying to more powerful machines to handle the additional users. While manag-
ing a monolith is operationally simpler, this simplicity has drawbacks that may matter
a lot, depending on which tradeoffs you want to make.

10.1.1 Complexity of code

As the application grows and acquires new features its complexity grows. Data models
may become more coupled, causing unforeseen and hard-to-understand dependen-
cies. Technical debt gets larger and larger, making development slower and more
complicated. While this is true of any growing system, a large codebase with multiple
concerns can exacerbate this.

246 CHAPTER 10 Microservices
10.1.2 Scalability

In a monolithic architecture, if you need to scale you need to add more instances of
your entire application, which can lead to technology cost inefficiencies. In the context
of an e-commerce application, you will typically get much fewer orders than people
just browsing products. In a monolithic architecture, to scale up to handle more peo-
ple viewing your products, you’ll need to scale up your order capabilities as well. In a
microservice architecture, you can just scale the product service and leave the order
service untouched if it has no issues.

10.1.3 Team and stack independence

As a development team grows, new challenges emerge. Imagine you have five teams
working on the same monolithic codebase with each team committing code several
times per day. Merge conflicts will become an increasing issue that everyone needs to
handle, as will coordinating deploys across teams. With independent, loosely coupled
microservices, this becomes less of an issue. If a team owns a service, they can work on
it and deploy it mostly independently. This also allows for teams to use different tech
stacks if desired, one service can be in Java and one in Python.

10.1.4 How can asyncio help?

Microservices generally need to communicate with one another over a protocol such
as REST or gRPC. Since we may be talking to multiple microservices at the same time,
this opens up the possibility to run requests concurrently, creating an efficiency that
we otherwise wouldn’t have in a synchronous application.

 In addition to the resource efficiency benefits we get from an async stack, we also
get the error-handling benefits of the asyncio APIs, such as wait and gather, which
allow us to aggregate exceptions from a group of coroutines or tasks. If a particular
group of requests takes too long or a portion of that group has an exception, we can
handle them gracefully. Now that we understand the basic motivations behind micro-
services, let’s learn one common microservice architecture pattern and see how to
implement it.

10.2 Introducing the backend-for-frontend pattern
When we’re building UIs in a microservice architecture, we’ll typically need to get
data from multiple services to create a particular UI view. For example, if we’re build-
ing a user order history UI, we’ll probably have to get the user’s order history from an
order service and merge that with product data from a product service. Depending on
requirements, we may need data from other services as well.

 This poses a few challenges for our frontend clients. The first is a user experience
issue. With standalone services, our UI clients will have to make one call to each ser-
vice over the internet. This poses issues with latency and time to load the UI. We can’t
assume all our users will have a good internet connection or fast computer; some may
be on a mobile phone in a poor reception area, some may be on older computers,

247Introducing the backend-for-frontend pattern
and some may be in developing countries without access to high-speed internet at all.
If we make five slow requests to five services, there is the potential to cause more issues
than making one slow request.

 In addition to network latency challenges, we also have challenges related to good
software design principles. Imagine we have both web-based UIs as well as iOS and
Android mobile UIs. If we directly call each service and merge the resulting responses,
we need to replicate the logic to do so across three different clients, which is redun-
dant and puts us at risk of having inconsistent logic across clients.

 While there are many microservice design patterns, one that can help us address
the above issues is the backend-for-frontend pattern. In this design pattern, instead of
our UIs directly communicating with our services, we create a new service that
makes these calls and aggregates the responses. This addresses our issues, and
instead of making multiple requests we can just make one, cutting down on our
round trips across the internet. We can also embed any logic related to failovers or
retries inside of this service, saving our clients the work of having to repeat the same
logic and introducing one place for us to update the logic when we need to change
it. This also enables multiple backend-for-frontend services for different types of cli-
ents. The services we need to communicate with may need to vary depending on if
we’re a mobile client versus a web-based UI. This is illustrated in figure 10.1. Now
that we understand the backend-for-frontend design pattern and the problems it
addresses, let’s apply it to build a backend-for-frontend service for an e-commerce
storefront.

Mobile clients

Web clients

Backend for--

frontend

service

User service

Cart service

Order service

Product

service Figure 10.1 The backend-for-
frontend pattern

248 CHAPTER 10 Microservices
10.3 Implementing the product listing API
Let’s implement the backend-for-frontend pattern for an all products page of our
e-commerce storefront’s desktop experience. This page displays all products available
on our site, along with basic information about our user’s cart and favorited items in a
menu bar. To increase sales, the page has a low inventory warning when only a few
items are left available. This page also has a navigation bar up on top with information
about our user’s favorite products as well as what data is in their cart. Figure 10.2 illus-
trates our UI.

Given a microservice architecture with several independent services, we’ll need to
request the appropriate data from each service and stitch them together to form a cohe-
sive response. Let’s first start by defining the base services and data models we’ll need.

10.3.1 User favorite service

This service keeps track of a mapping from a user to the product IDs they have put in
their favorites list. Next, we’ll need to implement these services to support our backend-
for-frontend product, inventory, user cart, and user favorites.

User cart service
This contains a mapping from user ID to product IDs they have put in the cart; the
data model is the same as the user favorite service.

Inventory service
This contains a mapping from a product ID to the available inventory for that product.

Product name Product name

Favorited: 5 items

Web browser
http://example-storefront.com

Cart: 3 items

Product name

Only 5 left.

Shop now!

Product name

Figure 10.2 A mockup of the
products listing page

249Implementing the product listing API
10.3.2 Implementing the base services

Let’s start by implementing an aiohttp application for our inventory service, as we’ll
make this our simplest service. For this service we won’t create a separate data model;
instead, we’ll just return a random number from 0 to 100 to simulate available inven-
tory. We’ll also add a random delay to simulate our service being intermittently slow,
and we’ll use this to demonstrate how to handle timeouts in our product list service.
We’ll host this service on port 8001 for development purposes, so it does not interfere
with our product service from chapter 9, which runs on port 8000.

import asyncio
import random
from aiohttp import web
from aiohttp.web_response import Response

routes = web.RouteTableDef()

@routes.get('/products/{id}/inventory')
async def get_inventory(request: Request) -> Response:
 delay: int = random.randint(0, 5)
 await asyncio.sleep(delay)
 inventory: int = random.randint(0, 100)
 return web.json_response({'inventory': inventory})

app = web.Application()
app.add_routes(routes)
web.run_app(app, port=8001)

Next, let’s implement the user cart and user favorite service. The data model for these
two is identical, so the services will be almost the same, with the difference being table
names. Let’s start with the two data models, “user cart” and “user favorite.” We’ll also
insert a few records in these tables, so we have some data to start with. First, we’ll start
with the user cart table.

CREATE TABLE user_cart(
 user_id INT NOT NULL,
 product_id INT NOT NULL
);

Product service
This contains product information, such as descriptions and SKUs. This is similar to
the service we implemented in chapter 9 around our products database.

Listing 10.1 The inventory service

Listing 10.2 User cart table

250 CHAPTER 10 Microservices
INSERT INTO user_cart VALUES (1, 1);
INSERT INTO user_cart VALUES (1, 2);
INSERT INTO user_cart VALUES (1, 3);
INSERT INTO user_cart VALUES (2, 1);
INSERT INTO user_cart VALUES (2, 2);
INSERT INTO user_cart VALUES (2, 5);

Next, we’ll create the user favorite table and insert a few values; this will look very sim-
ilar to the previous table.

CREATE TABLE user_favorite
(
 user_id INT NOT NULL,
 product_id INT NOT NULL
);

INSERT INTO user_favorite VALUES (1, 1);
INSERT INTO user_favorite VALUES (1, 2);
INSERT INTO user_favorite VALUES (1, 3);
INSERT INTO user_favorite VALUES (3, 1);
INSERT INTO user_favorite VALUES (3, 2);
INSERT INTO user_favorite VALUES (3, 3);

To simulate multiple databases, we’ll want to create these tables each in their own
Postgres database. Recall from chapter 5 that we can run arbitrary SQL with the psql
command-line utility, meaning that we can create two databases for user favorites and
user cart with the following two commands:

sudo -u postgres psql -c "CREATE DATABASE cart;"
sudo -u postgres psql -c "CREATE DATABASE favorites;"

Since we’ll now need to set up and tear down connections to multiple different data-
bases, let’s create some reusable code across our services to create asyncpg connection
pools. We’ll reuse this in our aiohttp on_startup and on_cleanup hooks.

import asyncpg
from aiohttp.web_app import Application
from asyncpg.pool import Pool

DB_KEY = 'database'

async def create_database_pool(app: Application,
 host: str,
 port: int,
 user: str,
 database: str,
 password: str):

Listing 10.3 User favorite table

Listing 10.4 Creating and tearing down database pools

251Implementing the product listing API
 pool: Pool = await asyncpg.create_pool(host=host,
 port=port,
 user=user,
 password=password,
 database=database,
 min_size=6,
 max_size=6)
 app[DB_KEY] = pool

async def destroy_database_pool(app: Application):
 pool: Pool = app[DB_KEY]
 await pool.close()

The preceding listing should look similar to code we wrote in chapter 5 to set up data-
base connections. In create_database_pool, we create a connection pool and then
put it in our Application instance. In destroy_database_pool, we grab the connec-
tion pool from the application instance and close it.

 Next, let’s create the services. In REST terms, both favorites and cart are a sub-
entity of a particular user. This means that each endpoint’s root will be users and will
accept a user ID as an input. For example, /users/3/favorites will fetch the favorite
products for user id 3. First, we’ll create the user favorite service:

import functools
from aiohttp import web
from aiohttp.web_request import Request
from aiohttp.web_response import Response
from chapter_10.listing_10_4 import DB_KEY, create_database_pool,

destroy_database_pool

routes = web.RouteTableDef()

@routes.get('/users/{id}/favorites')
async def favorites(request: Request) -> Response:
 try:
 str_id = request.match_info['id']
 user_id = int(str_id)
 db = request.app[DB_KEY]
 favorite_query = 'SELECT product_id from user_favorite where user_id = $1'
 result = await db.fetch(favorite_query, user_id)
 if result is not None:
 return web.json_response([dict(record) for record in result])
 else:
 raise web.HTTPNotFound()
 except ValueError:
 raise web.HTTPBadRequest()

Listing 10.5 The user favorite service

252 CHAPTER 10 Microservices
app = web.Application()
app.on_startup.append(functools.partial(create_database_pool,
 host='127.0.0.1',
 port=5432,
 user='postgres',
 password='password',
 database='favorites'))
app.on_cleanup.append(destroy_database_pool)

app.add_routes(routes)
web.run_app(app, port=8002)

Next, we’ll create the user cart service. This code will look mostly similar to our previ-
ous service with the main difference being we’ll interact with the user_cart table.

import functools
from aiohttp import web
from aiohttp.web_request import Request
from aiohttp.web_response import Response
from chapter_10.listing_10_4 import DB_KEY, create_database_pool,

destroy_database_pool

routes = web.RouteTableDef()

@routes.get('/users/{id}/cart')
async def time(request: Request) -> Response:
 try:
 str_id = request.match_info['id']
 user_id = int(str_id)
 db = request.app[DB_KEY]
 favorite_query = 'SELECT product_id from user_cart where user_id = $1'
 result = await db.fetch(favorite_query, user_id)
 if result is not None:
 return web.json_response([dict(record) for record in result])
 else:
 raise web.HTTPNotFound()
 except ValueError:
 raise web.HTTPBadRequest()

app = web.Application()
app.on_startup.append(functools.partial(create_database_pool,
 host='127.0.0.1',
 port=5432,
 user='postgres',
 password='password',
 database='cart'))
app.on_cleanup.append(destroy_database_pool)

app.add_routes(routes)
web.run_app(app, port=8003)

Listing 10.6 The user cart service

253Implementing the product listing API
Finally, we’ll implement the product service. This will be similar to the API we built in
chapter 9 with the difference being that we’ll fetch all products from our database
instead of just one. With the following listing, we’ve created four services to power our
theoretical e-commerce storefront!

import functools
from aiohttp import web
from aiohttp.web_request import Request
from aiohttp.web_response import Response
from chapter_10.listing_10_4 import DB_KEY, create_database_pool,

destroy_database_pool

routes = web.RouteTableDef()

@routes.get('/products')
async def products(request: Request) -> Response:
 db = request.app[DB_KEY]
 product_query = 'SELECT product_id, product_name FROM product'
 result = await db.fetch(product_query)
 return web.json_response([dict(record) for record in result])

app = web.Application()
app.on_startup.append(functools.partial(create_database_pool,
 host='127.0.0.1',
 port=5432,
 user='postgres',
 password='password',
 database='products'))
app.on_cleanup.append(destroy_database_pool)

app.add_routes(routes)
web.run_app(app, port=8000)

10.3.3 Implementing the backend-for-frontend service

Next, let’s build the backend-for-frontend service. We’ll first start with a few require-
ments for our API based on the needs of our UI. Product load times are crucial for
our application, as the longer our users must wait, the less likely they are to continue
browsing our site and the less likely they are to buy our products. This makes our
requirements center around delivering the minimum viable data to the user as quickly
as possible:

 The API should never wait for the product service more than 1 second. If it
takes longer than 1 second, we should respond with a timeout error (HTTP
code 504), so the UI does not hang indefinitely.

 The user cart and favorites data is optional. If we can get it in within 1 second,
that’s great! If not, we should just return what product data we have.

Listing 10.7 The product service

254 CHAPTER 10 Microservices
 The inventory data for products is optional as well. If we can’t get it, just return
the product data.

With these requirements, we’ve given ourselves a few ways to short-circuit around slow
services or services that have crashed or have other network issues. This makes our ser-
vice, and therefore the user interfaces that consume it, more resilient. While it may
not always have all the data to provide a complete user experience, it has enough to
create a usable experience. Even if the result is a catastrophic failure of the product
service, we won’t leave the user hanging indefinitely with a busy spinner or some other
poor user experience.

 Next, let’s define what we want our response to look like. All we need for the naviga-
tion bar is the number of items in our cart and in our favorites list, so we’ll have our
response just represent these as scalar values. Since our cart or favorite service could time
out or could have an error, we’ll allow this value to be null. For our product data, we’ll
just want our normal product data augmented with the inventory value, so we’ll add this
data in a products array. This means we’ll have a response similar to the following:

{
 "cart_items": 1,
 "favorite_items": null,
 "products": [{"product_id": 4, "inventory": 4},
 {"product_id": 3, "inventory": 65}]
}

In this case, the user has one item in their cart. They may have favorite items, but the
result is null because there was an issue reaching the favorite service. Finally, we have
two products to display with 4 and 65 items in stock respectively.

 So how should we begin implementing this functionality? We’ll need to communi-
cate with our REST services over HTTP, so aiohttp’s web client functionality is a natural
choice for this, as we’re already using the framework’s web server. Next, what requests
do we make, and how do we group them and manage timeouts? First, we should think
about the most requests we can run concurrently. The more we can run concurrently,
the faster we can theoretically return a response to our clients. In our case, we can’t ask
for inventory before we have product IDs, so we can’t run that concurrently, but our
products, cart, and favorite services are not dependent on one another. This means we
can run them concurrently with an asyncio API such as wait. Using wait with a timeout
will give us a done set where we can check which requests finished with error and which
are still running after the timeout, giving us a chance to handle any failures. Then, once
we have product IDs and potentially user favorite and cart data, we can begin to stitch
together our final response and send that back to the client.

 We’ll create an endpoint /products/all to do this that will return this data. Nor-
mally, we’d want to accept the currently logged-in user’s ID somewhere in the URL,
the request headers, or a cookie, so we can use that when making requests to our
downstream services. In this example, for simplicity’s sake, we’ll just hardcode this ID
to the user for whom we’ve already inserted data into our database.

255Implementing the product listing API

If t
pr
re
ou
an
we
pr

import asyncio
from asyncio import Task
import aiohttp
from aiohttp import web, ClientSession
from aiohttp.web_request import Request
from aiohttp.web_response import Response
import logging
from typing import Dict, Set, Awaitable, Optional, List

routes = web.RouteTableDef()

PRODUCT_BASE = 'http:/ /127.0.0.1:8000'
INVENTORY_BASE = 'http:/ /127.0.0.1:8001'
FAVORITE_BASE = 'http:/ /127.0.0.1:8002'
CART_BASE = 'http:/ /127.0.0.1:8003'

@routes.get('/products/all')
async def all_products(request: Request) -> Response:
 async with aiohttp.ClientSession() as session:
 products = asyncio.create_task(session.get(f'{PRODUCT_BASE}/products'))
 favorites =

asyncio.create_task(session.get(f'{FAVORITE_BASE}/users/3/favorites'))
 cart = asyncio.create_task(session.get(f'{CART_BASE}/users/3/cart'))

 requests = [products, favorites, cart]
 done, pending = await asyncio.wait(requests, timeout=1.0)

 if products in pending:
 [request.cancel() for request in requests]
 return web.json_response({'error': 'Could not reach products service.'},

status=504)
 elif products in done and products.exception() is not None:
 [request.cancel() for request in requests]
 logging.exception('Server error reaching product service.',

exc_info=products.exception())
 return web.json_response({'error': 'Server error reaching products

service.'}, status=500)
 else:
 product_response = await products.result().json()
 product_results: List[Dict] = await get_products_with_inventory(session,

product_response)

 cart_item_count: Optional[int] = await get_response_item_count(cart,
 done,
 pending,
 'Error getting

user cart.')
 favorite_item_count: Optional[int] = await get_response_item_count(favorites,
 done,
 pending,
 'Error

getting user favorites.')

Listing 10.8 The product backend-for-frontend

Create tasks to query
the three services we
have and run them
concurrently.

he
oducts
quest times
t, return
 error, as
 can’t
oceed.

Extract data
from the
product
response,
and use it to
get inventory
data.

256 CHAPTER 10 Microservices
 return web.json_response({'cart_items': cart_item_count,
 'favorite_items': favorite_item_count,
 'products': product_results})

async def get_products_with_inventory(session: ClientSession,
product_response) -> List[Dict]:

 def get_inventory(session: ClientSession, product_id: str) -> Task:
 url = f"{INVENTORY_BASE}/products/{product_id}/inventory"
 return asyncio.create_task(session.get(url))

 def create_product_record(product_id: int, inventory: Optional[int]) -> Dict:
 return {'product_id': product_id, 'inventory': inventory}

 inventory_tasks_to_product_id = {
 get_inventory(session, product['product_id']): product['product_id'] for product

in product_response
 }

 inventory_done, inventory_pending = await
asyncio.wait(inventory_tasks_to_product_id.keys(), timeout=1.0)

 product_results = []

 for done_task in inventory_done:
 if done_task.exception() is None:
 product_id = inventory_tasks_to_product_id[done_task]
 inventory = await done_task.result().json()
 product_results.append(create_product_record(product_id,

inventory['inventory']))
 else:
 product_id = inventory_tasks_to_product_id[done_task]
 product_results.append(create_product_record(product_id, None))
 logging.exception(f'Error getting inventory for id {product_id}',
 exc_info=inventory_tasks_to_product_id[done_task]

.exception())

 for pending_task in inventory_pending:
 pending_task.cancel()
 product_id = inventory_tasks_to_product_id[pending_task]
 product_results.append(create_product_record(product_id, None))

 return product_results

async def get_response_item_count(task: Task,
 done: Set[Awaitable],
 pending: Set[Awaitable],
 error_msg: str) -> Optional[int]:
 if task in done and task.exception() is None:
 return len(await task.result().json())
 elif task in pending:
 task.cancel()
 else:
 logging.exception(error_msg, exc_info=task.exception())

Given a product
response, make
requests for inventory.

Convenience
method to get
the number of
items in a JSON
array response

257Implementing the product listing API
 return None

app = web.Application()
app.add_routes(routes)
web.run_app(app, port=9000)

In the preceding listing, we first define a route handler named all_products. In
all_products, we send requests to our products, cart, and favorite services concur-
rently, giving these requests 1 second to complete with wait. Once either all of them
finish, or we have waited for 1 second, we begin to process the results.

 Since the product response is critical, we check its status first. If it is still pending or
has an exception, we cancel any pending requests and return an error to the client. If
there was an exception, we respond with a HTTP 500 error, indicating a server issue.
If there was a timeout, we respond with a 504 error, indicating we couldn’t reach the
service. This specificity gives our clients a hint as to whether they should try again and
also gives us more information useful for any monitoring and altering we may have
(we can have alerts specifically to watch 504 response rates, for example).

 If we have a successful response from the product service, we can now start to pro-
cess it and ask for inventory numbers. We do this work in a helper function called
get_products_with_inventory. In this helper function, we pull product IDs from the
response body and use these to construct requests to the inventory service. Since our
inventory service only accepts one product ID at a time (ideally, you would be able to
batch these into a single request, but we’ll pretend the team that manages the inven-
tory service has issues with this approach), we’ll create a list of tasks to request inven-
tory per each product. We’ll again pass these into the wait coroutine, giving them all
1 second to complete.

 Since inventory numbers are optional, once our timeout is up, we begin process-
ing everything in both the done and pending sets of inventory requests. If we have a
successful response from the inventory service, we create a dictionary with the prod-
uct information alongside the inventory number. If there was either an exception or
the request is still in the pending set, we create a record with the inventory as None,
indicating we couldn’t retrieve it. Using None will give us a null value when we turn
our response into JSON.

 Finally, we check the cart and favorite responses. All we need to do for both these
requests is count the number of items returned. Since this logic is nearly identical for
both services, we create a helper method to count items named get_response_item_
count. In get_response_item_count, if we have a successful result from either the
cart or favorite service, it will be a JSON array, so we count and return the number of
items in that array. If there was an exception or the request took longer than 1 second,
we set the result to None, so we get a null value in our JSON response.

 This implementation provides us with a reasonably robust way to deal with failures
and timeouts of our non-critical services, ensuring that we give a sensible response
quickly even in the result of downstream issues. No single request to a downstream

258 CHAPTER 10 Microservices
service will take longer than 1 second, creating an approximate upper bound for how
slow our service can be. However, while we’ve created something fairly robust, there
are still a few ways we can make this even more resilient to issues.

10.3.4 Retrying failed requests

One issue with our first implementation is that it pessimistically assumes that if we get
an exception from a service, we assume we can’t get results and we move on. While
this can make sense, it is the case that an issue with a service could be transient. For
example, there may be a networking hiccup that disappears rather quickly, there may
be a temporary issue with any load balancers we’re using, or there could be any other
host of temporary issues.

 In these cases, it can make sense to retry a few times with a short delay in between
retries. This gives the error a chance to clear up and can give our users more data
than they would otherwise have if we were pessimistic about our failures. This of
course comes with the tradeoff of having our users wait longer, potentially just to see
the same failure they would have otherwise.

 To implement this functionality, the wait_for coroutine function is a perfect can-
didate. It will raise any exception we get, and it lets us specify a timeout. If we surpass
that timeout, it raises a TimeoutException and cancels the task we started. Let’s try
and create a reusable retry coroutine that does this for us. We’ll create a retry corou-
tine function that takes in coroutine as well as a number of times to retry. If the corou-
tine we pass in fails or times out, we’ll retry up to the number of times we specified.

import asyncio
import logging
from typing import Callable, Awaitable

class TooManyRetries(Exception):
 pass

async def retry(coro: Callable[[], Awaitable],
 max_retries: int,
 timeout: float,
 retry_interval: float):
 for retry_num in range(0, max_retries):
 try:
 return await asyncio.wait_for(coro(), timeout=timeout)
 except Exception as e:
 logging.exception(f'Exception while waiting (tried {retry_num}

times), retrying.', exc_info=e)
 await asyncio.sleep(retry_interval)
 raise TooManyRetries()

Listing 10.9 A retry coroutine

Wait for a response
for the specified

timeout.

If we get an exception,
log it and sleep for the
retry interval.

If we’ve failed too many times,
raise an exception to indicate that.

259Implementing the product listing API
In the preceding listing, we first create a custom exception class that we’ll raise when
we are still failing after the maximum amount of retries. This will let any callers catch
this exception and handle this specific issue as they see fit. The retry coroutine takes
in a few arguments. The first argument is a callable that returns an awaitable; this is
the coroutine that we’ll retry. The second argument is the number of times we’d like
to retry, and the final arguments are the timeout and the interval to wait to retry after
a failure. We create a loop that wraps the coroutine in wait_for, and if this completes
successfully, we return the results and exit the function. If there was an error, timeout
or otherwise, we catch the exception, log it, and sleep for the specified interval time,
retrying again after we’ve slept. If our loop finishes without an error-free call of our
coroutine, we raise a TooManyRetries exception.

 We can test this out by creating a couple of coroutines that exhibit the failure
behavior we’d like to handle. First, one which always throws an exception and second,
one which always times out.

import asyncio
from chapter_10.listing_10_9 import retry, TooManyRetries

async def main():
 async def always_fail():
 raise Exception("I've failed!")

 async def always_timeout():
 await asyncio.sleep(1)

 try:
 await retry(always_fail,
 max_retries=3,
 timeout=.1,
 retry_interval=.1)
 except TooManyRetries:
 print('Retried too many times!')

 try:
 await retry(always_timeout,
 max_retries=3,
 timeout=.1,
 retry_interval=.1)
 except TooManyRetries:
 print('Retried too many times!')

asyncio.run(main())

For both retries, we define a timeout and retry interval of 100 milliseconds and a max
retry amount of three. This means we give the coroutine 100 milliseconds to com-
plete, and if it doesn’t complete within that time, or it fails, we wait 100 milliseconds

Listing 10.10 Testing the retry coroutine

260 CHAPTER 10 Microservices
before trying again. Running this listing, you should see each coroutine try to run
three times and finally print Retried too many times!, leading to output similar to the
following (tracebacks omitted for brevity):

ERROR:root:Exception while waiting (tried 1 times), retrying.
Exception: I've failed!
ERROR:root:Exception while waiting (tried 2 times), retrying.
Exception: I've failed!
ERROR:root:Exception while waiting (tried 3 times), retrying.
Exception: I've failed!
Retried too many times!
ERROR:root:Exception while waiting (tried 1 times), retrying.
ERROR:root:Exception while waiting (tried 2 times), retrying.
ERROR:root:Exception while waiting (tried 3 times), retrying.
Retried too many times!

Using this, we can add some simple retry logic to our product backend-for-frontend.
For example, let’s say we wanted to retry our initial requests to the products, cart, and
favorite services a few times before considering their error unrecoverable. We can do
this by wrapping each request in the retry coroutine like so:

product_request = functools.partial(session.get, f'{PRODUCT_BASE}/products')
favorite_request = functools.partial(session.get,

f'{FAVORITE_BASE}/users/5/favorites')
cart_request = functools.partial(session.get, f'{CART_BASE}/users/5/cart')

products = asyncio.create_task(retry(product_request,
 max_retries=3,
 timeout=.1,
 retry_interval=.1))

favorites = asyncio.create_task(retry(favorite_request,
 max_retries=3,
 timeout=.1,
 retry_interval=.1))

cart = asyncio.create_task(retry(cart_request,
 max_retries=3,
 timeout=.1,
 retry_interval=.1))

requests = [products, favorites, cart]
done, pending = await asyncio.wait(requests, timeout=1.0)

In this example, we try each service a maximum of three times. This lets us recover
from issues with our services that may be transient. While this is an improvement,
there is another potential issue that can hurt our service. For example, what happens
if our product service always times out?

261Implementing the product listing API
10.3.5 The circuit breaker pattern

One issue we still have in our implementation occurs when a service is consistently
slow enough such that it always times out. This can happen when a downstream ser-
vice is under load, there is some other network issue happening, or a multitude of
other application or network errors.

 You may be tempted to ask, “Well, our application handles the timeout gracefully;
the user won’t wait for more than 1 second before seeing an error or getting partial
data, so what is the problem?” And you’re not wrong to ask. However, while we’ve
designed our system to be robust and resilient, consider the user experience. For
example, if the cart service is experiencing an issue such that it always takes 1 second
to time out, this means that all users will be stuck waiting for 1 second for results from
the service.

 In this instance, since this issue with the cart service could last for some time, any-
one who hits our backend-for-frontend will be stuck waiting for 1 second when we
know that this issue is highly likely to happen. Is there a way we can short-circuit a call
that is likely to fail, so we don’t cause unneeded delays to our users?

 There is an aptly named pattern to handle this called the circuit breaker pattern. Pop-
ularized by Michael Nygard’s book Release It (The Pragmatic Bookshelf, 2017), this
pattern lets us “flip a circuit breaker,” and when we have a specified number of errors
in each time period, we can use this to bypass the slow service until the issues with it
clear up, ensuring our response to our users remains as fast as possible.

 Much like an electrical circuit breaker, a basic circuit breaker pattern has two states
associated with it that are the same as a normal circuit breaker on your electrical
panel: an open state and a closed state. The closed state is a happy path; we make a
request to a service and it returns normally. The open state happens when the circuit
is tripped. In this state, we don’t bother to call the service, as we know it has a prob-
lem; instead, we instantly return an error. The circuit breaker pattern stops us from
sending electricity to the bad service. In addition to these two states there is a “half-
open” state. This happens when we’re in the open state after a certain time interval. In
this state we issue a single request to check if the issue with the service is fixed. If it is,
we close the circuit breaker, and if not, we keep it open. For the sake of keeping our
example simple, we’ll skip the half-open state and just focus on the closed and open
states, as shown in figure 10.3.

 Let’s implement a simple circuit breaker to understand how this works. We’ll
allow the users of the circuit breaker to specify a time window and a maximum num-
ber of failures. If more than the maximum number of errors happens within the
time window, we’ll open the circuit breaker and fail any other calls. We’ll do this
with a class that takes the coroutine we wish to run and keeps track if we are in the
open or closed state.

262 CHAPTER 10 Microservices
import asyncio
from datetime import datetime, timedelta

class CircuitOpenException(Exception):
 pass

class CircuitBreaker:

 def __init__(self,
 callback,
 timeout: float,
 time_window: float,
 max_failures: int,
 reset_interval: float):
 self.callback = callback
 self.timeout = timeout
 self.time_window = time_window
 self.max_failures = max_failures
 self.reset_interval = reset_interval
 self.last_request_time = None
 self.last_failure_time = None
 self.current_failures = 0

 async def request(self, *args, **kwargs):
 if self.current_failures >= self.max_failures:
 if datetime.now() > self.last_request_time +

timedelta(seconds=self.reset_interval):
 self._reset('Circuit is going from open to closed, resetting!')
 return await self._do_request(*args, **kwargs)

Listing 10.11 A simple circuit breaker

Make request

Fail!

Make request

Fail!

Make request

Timeout

Timeout

Make request

Make request

Fail!

Make request

Fail!

Service

Circuit breaker

OPEN

Failure count = 2

OPEN

Failure count = 2

CLOSED

Failure count = 1

CLOSED

Failure count = 0

Figure 10.3 A circuit breaker that opens after two failures. Once opened, all requests will fail instantly.

Make the request,
failing fast if we’ve
exceeded the
failure count.

263Implementing the product listing API
 else:
 print('Circuit is open, failing fast!')
 raise CircuitOpenException()
 else:
 if self.last_failure_time and datetime.now() >

self.last_failure_time + timedelta(seconds=self.time_window):
 self._reset('Interval since first failure elapsed, resetting!')
 print('Circuit is closed, requesting!')
 return await self._do_request(*args, **kwargs)

 def _reset(self, msg: str):
 print(msg)
 self.last_failure_time = None
 self.current_failures = 0

 async def _do_request(self, *args, **kwargs):
 try:
 print('Making request!')
 self.last_request_time = datetime.now()
 return await asyncio.wait_for(self.callback(*args, **kwargs),

timeout=self.timeout)
 except Exception as e:
 self.current_failures = self.current_failures + 1
 if self.last_failure_time is None:
 self.last_failure_time = datetime.now()
 raise

Our circuit breaker class takes five constructor parameters. The first two are the call-
back we wish to run with the circuit breaker and a timeout which represents how long
we’ll allow the callback to run before failing with a timeout. The next three are related
to handling failures and resets. The max_failure parameter is the maximum number
of failures we’ll tolerate within time_window seconds before opening the circuit. The
reset_interval parameter is how many seconds we wait to reset the breaker from the
open to closed state after max_failure failures have occurred.

 We then define a coroutine method request, which calls our callback and keeps
track of how many failures we’ve had, returning the result of the callback if there were
no errors. When we have a failure, we keep track of this in a counter failure_count.
If the failure count exceeds the max_failure threshold we set within the specified
time interval, any further calls to request will raise a CircuitOpenException. If the
reset interval has elapsed, we reset the failure_count to zero and begin making
requests again (if our breaker was closed, which it may not be).

 Now, let’s see our breaker in action with a simple example application. We’ll create
a slow_callback coroutine that sleeps for just 2 seconds. We’ll then use that in our
breaker, setting a short timeout that will let us easily trip the breaker.

import asyncio
from chapter_10.listing_10_11 import CircuitBreaker

Listing 10.12 The breaker in action

Reset our
counters and last
failure time.

Make the request, keeping
track of how many failures
we’ve had and when they
last happened.

264 CHAPTER 10 Microservices
async def main():
 async def slow_callback():
 await asyncio.sleep(2)

 cb = CircuitBreaker(slow_callback,
 timeout=1.0,
 time_window=5,
 max_failures=2,
 reset_interval=5)

 for _ in range(4):
 try:
 await cb.request()
 except Exception as e:
 pass

 print('Sleeping for 5 seconds so breaker closes...')
 await asyncio.sleep(5)

 for _ in range(4):
 try:
 await cb.request()
 except Exception as e:
 pass

asyncio.run(main())

In the preceding listing, we create a breaker with a 1-second timeout that tolerates two
failures within a 5-second interval and resets after 5 seconds once the breaker is open.
We then try to make four requests rapidly to the breaker. The first two should take 1 sec-
ond before failing with a timeout, then every subsequent call will fail instantly as the
breaker is open. We then sleep for 5 seconds; this lets the breaker’s reset_interval
elapse, so it should move back to the closed state and start to make calls to our call-
back again. Running this, you should see output as follows:

Circuit is closed, requesting!
Circuit is closed, requesting!
Circuit is open, failing fast!
Circuit is open, failing fast!
Sleeping for 5 seconds so breaker closes...
Circuit is going from open to closed, requesting!
Circuit is closed, requesting!
Circuit is open, failing fast!
Circuit is open, failing fast!

Now that we have a simple implementation, we can combine this with our retry logic
and use it in our backend-for-frontend. Since we’ve purposefully made our inventory
service slow to simulate a real-life legacy service, this is a natural place to add our circuit

265Summary
breaker. We’ll set a timeout of 500 milliseconds and tolerate five failures within 1 sec-
ond, after which we’ll set a reset interval of 30 seconds. We’ll need to rewrite our
get_inventory function into a coroutine to do this like so:

async def get_inventory(session: ClientSession, product_id: str):
 url = f"{INVENTORY_BASE}/products/{product_id}/inventory"
 return await session.get(url)

inventory_circuit = CircuitBreaker(get_inventory, timeout=.5, time_window=5.0,
max_failures=3, reset_interval=30)

Then, in our all_products coroutine we’ll need to change how we create our inven-
tory service requests. We’ll create a task with a call to our inventory circuit breaker
instead of the get_inventory coroutine:

inventory_tasks_to_pid = {
 asyncio.create_task(inventory_circuit.request(session,

product['product_id'])): product['product_id']
 for product in product_response
}

inventory_done, inventory_pending = await
asyncio.wait(inventory_tasks_to_pid.keys(), timeout=1.0)

Once we’ve made these changes, you should see call time decrease to the products’
backend-for-frontend after a few calls. Since we’re simulating an inventory service that
is slow under load, we’ll eventually trip the circuit breaker with a few timeouts and
then any subsequent call won’t make any more requests to the inventory service until
the breaker resets. Our backend-for-frontend service is now more robust in the face of
a slow and failure-prone inventory service. We could also apply this to all our other
calls if desired to increase the stability of these as well.

 In this example, we’ve implemented a very simple circuit breaker to demonstrate
how it works and how to build it with asyncio. There are several existing implementa-
tions of this pattern with many other features to tune to your specific needs. If you’re
considering this pattern, take some time to do research on the circuit breaker librar-
ies available before implementing it yourself.

Summary
 Microservices have several benefits over monoliths, including, but not limited

to, independent scalability and deployability.
 The backend-for-frontend pattern is a microservice pattern that aggregates the

calls from several downstream services. We’ve learned how to apply a microser-
vice architecture to an e-commerce use case, creating multiple independent
services with aiohttp.

266 CHAPTER 10 Microservices
 We’ve used asyncio utility functions such as wait to ensure that our backend-
for-frontend service remains resilient and responsive to failures of downstream
services.

 We’ve created a utility to manage retries of HTTP requests with asyncio and
aiohttp.

 We’ve implemented a basic circuit breaker pattern to ensure a service failure
does not negatively impact other services.

Synchronization
When we write applications using multiple threads and multiple processes, we need
to worry about race conditions when using non-atomic operations. Something as sim-
ple as incrementing an integer concurrently can cause subtle, hard-to-reproduce
bugs. When we are using asyncio, however, we’re always using a single thread (unless
we’re interoperating with multithreading and multiprocessing), so doesn’t that mean
we don’t need to worry about race conditions? It turns out it is not quite so simple.

 While certain concurrency bugs that would occur in multithreaded or multipro-
cessing applications are eliminated by asyncio’s single-threaded nature, they are not
completely eliminated. While you likely won’t need to use synchronization often with
asyncio, there are still cases where we need these constructs. asyncio’s synchronization
primitives can help us prevent bugs unique to a single-threaded concurrency model.

This chapter covers
 Single-threaded concurrency issues

 Using locks to protect critical sections

 Using semaphores to limit concurrency

 Using events to notify tasks

 Using conditions to notify tasks and acquire
a resource
267

268 CHAPTER 11 Synchronization
 Synchronization primitives are not limited to preventing concurrency bugs and have
other uses as well. As an example, we may be working with an API that lets us make only
a few requests concurrently as per a contract we have with a vendor, or there may be
an API we’re concerned about overloading with requests. We may also have a work-
flow with several workers that need to be notified when new data is available.

 In this chapter, we’ll look at a few examples where we can introduce race condi-
tions in our asyncio code and learn how to solve them with locks and other concur-
rency primitives. We’ll also learn how to use semaphores to limit concurrency and
control access to a shared resource, such as a database connection pool. Finally, we’ll
look at events and conditions that we can use to notify tasks when something occurs
and gain access to shared resources when that happens.

11.1 Understanding single-threaded concurrency bugs
In earlier chapters on multiprocessing and multithreading, recall that when we were
working with data that is shared among different processes and threads, we had to
worry about race conditions. This is because a thread or process could read data while
it is being modified by a different thread or process, leading to an inconsistent state
and therefore corruption of data.

 This corruption was in part due to some operations being non-atomic, meaning
that while they appear like one operation, they comprise multiple separate operations
under the hood. The example we gave in chapter 6 dealt with incrementing an inte-
ger variable; first, we read the current value, then we increment it, then we reassign it
back to the variable. This gives other threads and processes ample opportunities to get
data in an inconsistent state.

 In a single-threaded concurrency model, we avoid race conditions caused by non-
atomic operations. In asyncio’s single-threaded model, we only have one thread exe-
cuting one line of Python code at any given time. This means that even if an operation
is non-atomic, we’ll always run it to completion without other coroutines reading
inconsistent state information.

 To prove this to ourselves, let’s try and re-create the race condition we looked at in
chapter 7 with multiple threads trying to implement a shared counter. Instead of hav-
ing multiple threads modify the variable, we’ll have multiple tasks. We’ll repeat this
1,000 times and assert that we get the correct value back.

import asyncio

counter: int = 0

async def increment():
 global counter
 await asyncio.sleep(0.01)
 counter = counter + 1

Listing 11.1 Attempting to create a race condition

269Understanding single-threaded concurrency bugs
async def main():
 global counter
 for _ in range(1000):
 tasks = [asyncio.create_task(increment()) for _ in range(100)]
 await asyncio.gather(*tasks)
 print(f'Counter is {counter}')
 assert counter == 100
 counter = 0

asyncio.run(main())

In the preceding listing, we create an increment coroutine function that adds one to a
global counter, adding a 1-millisecond delay to simulate a slow operation. In our main
coroutine, we create 100 tasks to increment the counter and then run them all con-
currently with gather. We then assert that our counter is the expected value, which,
since we ran 100 increment tasks, should always be 100. Running this, you should see
that the value we get is always 100 even though incrementing an integer is non-atomic.
If we ran multiple threads instead of coroutines, we should see our assertion fail at
some point in execution.

 Does this mean that with a single-threaded concurrency model we’ve found a way to
completely avoid race conditions? Unfortunately, it’s not quite the case. While we avoid
race conditions where a single non-atomic operation can cause a bug, we still have the
problem where multiple operations executed in the wrong order can cause issues. To see
this in action, let’s make incrementing an integer in the eyes of asyncio non-atomic.

 To do this, we’ll replicate what happens under the hood when we increment a
global counter. We read the global value, increment it, then write it back. The basic
idea is if other code modifies state while our coroutine is suspended on an await,
once the await finishes we may be in an inconsistent state.

import asyncio

counter: int = 0

async def increment():
 global counter
 temp_counter = counter
 temp_counter = temp_counter + 1
 await asyncio.sleep(0.01)
 counter = temp_counter

async def main():
 global counter
 for _ in range(1000):
 tasks = [asyncio.create_task(increment()) for _ in range(100)]
 await asyncio.gather(*tasks)

Listing 11.2 A single-threaded race condition

270 CHAPTER 11 Synchronization
 print(f'Counter is {counter}')
 assert counter == 100
 counter = 0

asyncio.run(main())

Instead of our increment coroutine directly incrementing the counter, we first read it
into a temporary variable and then increment the temporary counter by one. We then
await asyncio.sleep to simulate a slow operation, suspending our coroutine, and
only then do we reassign it back to the global counter variable. Running this, you
should see this code fail with an assertion error instantly, and our counter only ever
gets set to 1! Each coroutine reads the counter value first, which is 0, stores it to a
temp value, then goes to sleep. Since we’re single-threaded, each read to a temporary
variable runs sequentially, meaning each coroutine stores the value of counter as 0
and increments this to 1. Then, once the sleep is finished, every coroutine sets the
value of the counter to 1, meaning despite running 100 coroutines to increment our
counter, our counter is only ever 1. Note that if you remove the await expression,
things will operate in the correct order because there is no opportunity to modify the
application state while we’re paused at an await point.

 This is admittedly a simplistic and somewhat unrealistic example. To better see when
this may occur, let’s create a slightly more complex race condition. Imagine we’re imple-
menting a server that sends messages to connected users. In this server, we keep a dictio-
nary of usernames to sockets we can use to send messages to these users. When a user
disconnects, a callback runs that will remove the user from the dictionary and close
their socket. Since we close the socket on disconnect, attempting to send any other mes-
sages will fail with an exception. What happens if a user disconnects while we’re in the
process of sending messages? Let’s assume the desired behavior is for all users to receive
a message if they were connected when we started to send messages.

 To test this out, let’s implement a mock socket. This mock socket will have a send
coroutine and a close method. Our send coroutine will simulate a message send over
a slow network. This coroutine will also check a flag to see if we’ve closed the socket,
and if we have it will throw an exception.

 We’ll then create a dictionary with a few connected users and create mock sockets
for each of them. We’ll send messages to each user and manually trigger a disconnect
for a single user while we’re sending messages to see what happens.

import asyncio

class MockSocket:
 def __init__(self):
 self.socket_closed = False

Listing 11.3 A race condition with dictionaries

271Understanding single-threaded concurrency bugs
 async def send(self, msg: str):
 if self.socket_closed:
 raise Exception('Socket is closed!')
 print(f'Sending: {msg}')
 await asyncio.sleep(1)
 print(f'Sent: {msg}')

 def close(self):
 self.socket_closed = True

user_names_to_sockets = {'John': MockSocket(),
 'Terry': MockSocket(),
 'Graham': MockSocket(),
 'Eric': MockSocket()}

async def user_disconnect(username: str):
 print(f'{username} disconnected!')
 socket = user_names_to_sockets.pop(username)
 socket.close()

async def message_all_users():
 print('Creating message tasks')
 messages = [socket.send(f'Hello {user}')
 for user, socket in
 user_names_to_sockets.items()]
 await asyncio.gather(*messages)

async def main():
 await asyncio.gather(message_all_users(), user_disconnect('Eric'))

asyncio.run(main())

If you run this code, you will see the application crash with the following output:

Creating message tasks
Eric disconnected!
Sending: Hello John
Sending: Hello Terry
Sending: Hello Graham
Traceback (most recent call last):
 File 'chapter_11/listing_11_3.py', line 45, in <module>
 asyncio.run(main())
 File "asyncio/runners.py", line 44, in run
 return loop.run_until_complete(main)
 File "python3.9/asyncio/base_events.py", line 642, in run_until_complete
 return future.result()
 File 'chapter_11/listing_11_3.py', line 42, in main
 await asyncio.gather(message_all_users(), user_disconnect('Eric'))
 File 'chapter_11/listing_11_3.py', line 37, in message_all_users
 await asyncio.gather(*messages)

Simulate a slow
send of a message
to a client.

Disconnect a user and
remove them from
application memory.

Send messages to all
users concurrently.

272 CHAPTER 11 Synchronization
 File 'chapter_11/listing_11_3.py', line 11, in send
 raise Exception('Socket is closed!')
Exception: Socket is closed!

In this example, we first create the message tasks, then we await, suspending our
message_all_users coroutine. This gives user_disconnect('Eric') a chance to run,
which will close Eric’s socket and remove it from the user_names_to_sockets dictio-
nary. Once this is finished, message_all_users resumes; and we start to send out mes-
sages. Since Eric’s socket was closed, we see an exception, and he won’t get the message
we intended to send. Note that we also modified the user_names_to_sockets dictio-
nary. If we somehow needed to use this dictionary and relied on Eric still being in there,
we could potentially have an exception or another bug.

 These are the types of bugs you tend to see in a single-threaded concurrency
model. You hit a suspension point with await, and another coroutine runs and modi-
fies some shared state, changing it for the first coroutine once it resumes in an unde-
sired way. The key difference between multithreaded concurrency bugs and single-
threaded concurrency bugs is that in a multithreaded application, race conditions are
possible anywhere you modify a mutable state. In a single-threaded concurrency model,
you need to modify the mutable state during an await point. Now that we understand
the types of concurrency bugs in a single-threaded model, let’s see how to avoid them
by using asyncio locks.

11.2 Locks
asyncio locks operate similarly to the locks in the multiprocessing and multithreading
modules. We acquire a lock, do work inside of a critical section, and when we’re done,
we release the lock, letting other interested parties acquire it. The main difference is
that asyncio locks are awaitable objects that suspend coroutine execution when they
are blocked. This means that when a coroutine is blocked waiting to acquire a lock,
other code can run. In addition, asyncio locks are also asynchronous context manag-
ers, and the preferred way to use them is with async with syntax.

 To get familiar with how locks work, let’s look at a simple example with one lock
shared between two coroutines. We’ll acquire the lock, which will prevent other
coroutines from running code in the critical section until someone releases it.

import asyncio
from asyncio import Lock
from util import delay

async def a(lock: Lock):
 print('Coroutine a waiting to acquire the lock')
 async with lock:
 print('Coroutine a is in the critical section')
 await delay(2)
 print('Coroutine a released the lock')

Listing 11.4 Using an asyncio lock

273Locks
async def b(lock: Lock):
 print('Coroutine b waiting to acquire the lock')
 async with lock:
 print('Coroutine b is in the critical section')
 await delay(2)
 print('Coroutine b released the lock')

async def main():
 lock = Lock()
 await asyncio.gather(a(lock), b(lock))

asyncio.run(main())

When we run the preceding listing, we will see that coroutine a acquires the lock first,
leaving coroutine b waiting until a releases the lock. Once a releases the lock, b can do
its work in the critical section, giving us the following output:

Coroutine a waiting to acquire the lock
Coroutine a is in the critical section
sleeping for 2 second(s)
Coroutine b waiting to acquire the lock
finished sleeping for 2 second(s)
Coroutine a released the lock
Coroutine b is in the critical section
sleeping for 2 second(s)
finished sleeping for 2 second(s)
Coroutine b released the lock

Here we used async with syntax. If we had wanted, we could use the acquire and
release methods on the lock like so:

await lock.acquire()
try:
 print('In critical section')
finally:
 lock.release()

That said, it is best practice to use async with syntax where possible.
 One important thing to note is that we created the lock inside of the main corou-

tine. Since the lock is shared globally amongst the coroutines we create, we may be
tempted to make it a global variable to avoid passing it in each time like so:

lock = Lock()

coroutine definitions

async def main():
 await asyncio.gather(a(), b())

274 CHAPTER 11 Synchronization
If we do this, we’ll quickly see a crash with an error reporting multiple event loops:

Task <Task pending name='Task-3' coro=<b()> got Future <Future pending>
attached to a different loop

Why is this happening when all we’ve done is move our lock definition? This is a confus-
ing quirk of the asyncio library and is not unique to just locks. Most objects in asyncio
provide an optional loop parameter that lets you specify the specific event loop to run
in. When this parameter is not provided, asyncio tries to get the currently running event
loop, but if there is none, it creates a new one. In the above case, creating a Lock creates
a new event loop, since when our script first runs we haven’t yet created one. Then,
asyncio.run(main()) creates a second event loop, and when we attempt to use our
lock we intermingle these two separate event loops, which causes a crash.

 This behavior is tricky enough that in Python 3.10, event loop parameters are
going to be removed, and this confusing behavior will go away, but until then you’ll
need to think through these cases when using global asyncio variables carefully.

 Now that we know the basics, let’s see how to use a lock to solve the bug we had in
listing 11.3, where we attempted to send a message to a user whose socket we closed
too early. The idea to solve this is to use a lock in two places: first, when a user discon-
nects and, second, when we send out messages to users. This way, if a disconnect hap-
pens while we’re sending out messages, we’ll wait until they all finish before finally
closing any sockets.

import asyncio
from asyncio import Lock

class MockSocket:
 def __init__(self):
 self.socket_closed = False

 async def send(self, msg: str):
 if self.socket_closed:
 raise Exception('Socket is closed!')
 print(f'Sending: {msg}')
 await asyncio.sleep(1)
 print(f'Sent: {msg}')

 def close(self):
 self.socket_closed = True

user_names_to_sockets = {'John': MockSocket(),
 'Terry': MockSocket(),
 'Graham': MockSocket(),
 'Eric': MockSocket()}

Listing 11.5 Using locks to avoid a race condition

275Locks
async def user_disconnect(username: str, user_lock: Lock):
 print(f'{username} disconnected!')
 async with user_lock:
 print(f'Removing {username} from dictionary')
 socket = user_names_to_sockets.pop(username)
 socket.close()

async def message_all_users(user_lock: Lock):
 print('Creating message tasks')
 async with user_lock:
 messages = [socket.send(f'Hello {user}')
 for user, socket in
 user_names_to_sockets.items()]
 await asyncio.gather(*messages)

async def main():
 user_lock = Lock()
 await asyncio.gather(message_all_users(user_lock),
 user_disconnect('Eric', user_lock))

asyncio.run(main())

When we run the following listing, we won’t see any more crashes, and we’ll get the
following output:

Creating message tasks
Eric disconnected!
Sending: Hello John
Sending: Hello Terry
Sending: Hello Graham
Sending: Hello Eric
Sent: Hello John
Sent: Hello Terry
Sent: Hello Graham
Sent: Hello Eric
Removing Eric from dictionary

We first acquire the lock and create the message tasks. While this is happening, Eric
disconnects, and the code in disconnect tries to acquire the lock. Since message_
all_users still holds the lock, we need to wait for it to finish before running the code
in disconnect. This lets all the messages finish sending out before closing out the
socket, preventing our bug.

 You likely won’t often need to use locks in asyncio code because many concur-
rency issues are avoided by its single-threaded nature. Even when race conditions
occur, sometimes you can refactor your code such that state isn’t modified while a
coroutine is suspended (by using immutable objects, for example). When you can’t
refactor in this way, locks can force modifications to happen in a desired synchro-
nized order. Now that we understand the concepts around avoiding concurrency

Acquire the lock before
removing a user and
closing the socket.

Acquire the lock
before sending.

276 CHAPTER 11 Synchronization
bugs with locks, let’s look at how to use synchronization to implement new function-
ality in our asyncio applications.

11.3 Limiting concurrency with semaphores
Resources that our applications need to use are often finite. We may have a limited
number of connections we can use concurrently with a database; we may have a limited
number of CPUs that we don’t want to overload; or we may be working with an API that
only allows a few concurrent requests, based on our current subscription pricing. We
could also be using our own internal API and may be concerned with overwhelming it
with load, effectively launching a distributed denial of service attack against ourselves.

 Semaphores are a construct that can help us out in these situations. A semaphore
acts much like a lock in that we can acquire it and we can release it, with the major dif-
ference being that we can acquire it multiple times up to a limit we specify. Internally,
a semaphore keeps track of this limit; each time we acquire the semaphore we decre-
ment the limit, and each time we release the semaphore we increment it. If the count
reaches zero, any further attempts to acquire the semaphore will block until someone
else calls release and increments the count. To draw parallels to what we just learned
with locks, you can think of a lock as a special case of a semaphore with a limit of one.

 To see semaphores in action, let’s build a simple example where we only want two
tasks running at the same time, but we have four tasks to run in total. To do this, we’ll
create a semaphore with a limit of two and acquire it in our coroutine.

import asyncio
from asyncio import Semaphore

async def operation(semaphore: Semaphore):
 print('Waiting to acquire semaphore...')
 async with semaphore:
 print('Semaphore acquired!')
 await asyncio.sleep(2)
 print('Semaphore released!')

async def main():
 semaphore = Semaphore(2)
 await asyncio.gather(*[operation(semaphore) for _ in range(4)])

asyncio.run(main())

In our main coroutine, we create a semaphore with a limit of two, indicating we can
acquire it twice before additional acquisition attempts start to block. We then create
four concurrent calls to operation—this coroutine acquires the semaphore with an
async with block and simulates some blocking work with sleep. When we run this,
we’ll see the following output:

Listing 11.6 Using semaphores

277Limiting concurrency with semaphores
Waiting to acquire semaphore...
Semaphore acquired!
Waiting to acquire semaphore...
Semaphore acquired!
Waiting to acquire semaphore...
Waiting to acquire semaphore...
Semaphore released!
Semaphore released!
Semaphore acquired!
Semaphore acquired!
Semaphore released!
Semaphore released!

Since our semaphore only allows two acquisitions before it blocks, our first two
tasks successfully acquire the lock while our other two tasks wait for the first two tasks
to release the semaphore. Once the work in the first two tasks finishes and we release
the semaphore, our other two tasks can acquire the semaphore and start doing
their work.

 Let’s take this pattern and apply it to a real-world use case. Let’s imagine you’re
working for a scrappy, cash-strapped startup, and you’ve just partnered with a third-
party REST API vendor. Their contracts are particularly expensive for unlimited que-
ries, but they offer a plan that allows for only 10 concurrent requests that is more
budget-friendly. If you make more than 10 requests concurrently, their API will return
a status code of 429 (too many requests). You could send a set of requests and retry if
you get a 429, but this is inefficient and places extra load on your vendor’s servers,
which probably won’t make their site reliability engineers happy. A better approach is
to create a semaphore with a limit of 10 and then acquire that whenever you make an
API request. Using a semaphore when making a request will ensure that you only ever
have 10 requests in flight at any given time.

 Let’s see how to do this with the aiohttp library. We’ll make 1,000 requests to an
example API but limit the total concurrent requests to 10 with a semaphore. Note that
aiohttp has connection limits we can tweak as well, and by default it only allows 100
connections at a time. It is possible achieve the same as below by tweaking this limit.

import asyncio
from asyncio import Semaphore
from aiohttp import ClientSession

async def get_url(url: str,
 session: ClientSession,
 semaphore: Semaphore):
 print('Waiting to acquire semaphore...')
 async with semaphore:
 print('Acquired semaphore, requesting...')
 response = await session.get(url)

Listing 11.7 Limiting API requests with semaphores

278 CHAPTER 11 Synchronization
 print('Finished requesting')
 return response.status

async def main():
 semaphore = Semaphore(10)
 async with ClientSession() as session:
 tasks = [get_url('https:/ / www .example .com', session, semaphore)
 for _ in range(1000)]
 await asyncio.gather(*tasks)

asyncio.run(main())

While output will be nondeterministic depending on external latency factors, you
should see output similar to the following:

Acquired semaphore, requesting...
Acquired semaphore, requesting...
Acquired semaphore, requesting...
Acquired semaphore, requesting...
Acquired semaphore, requesting...
Finished requesting
Finished requesting
Acquired semaphore, requesting...
Acquired semaphore, requesting...

Each time a request finishes, the semaphore is released, meaning a task that is blocked
waiting for the semaphore can begin. This means that we only ever have at most 10
requests running at a given time, and when one finishes, we can start a new one.

 This solves the issue of having too many requests running concurrently, but the
code above is bursty, meaning that it has the potential to burst 10 requests at the
same moment, creating a potential spike in traffic. This may not be desirable if we’re
concerned about spikes of load on the API we’re calling. If you need to only burst
up to a certain number of requests per some unit of time, you’ll need to use this
with an implementation of a traffic-shaping algorithm, such as the “leaky bucket” or
“token bucket.”

11.3.1 Bounded semaphores

One aspect of semaphores is that it is valid to call release more times than we call
acquire. If we always use semaphores with an async with block, this isn’t possible,
since each acquire is automatically paired with a release. However, if we’re in a situ-
ation where we need finer-grained control over our releasing and acquisition mecha-
nisms (for example, perhaps we have some branching code where one branch lets
us release earlier than another), we can run into issues. As an example, let’s see
what happens when we have a normal coroutine that acquires and releases a sema-
phore with an async with block, and while that coroutine is executing another
coroutine calls release.

279Limiting concurrency with semaphores
import asyncio
from asyncio import Semaphore

async def acquire(semaphore: Semaphore):
 print('Waiting to acquire')
 async with semaphore:
 print('Acquired')
 await asyncio.sleep(5)
 print('Releasing')

async def release(semaphore: Semaphore):
 print('Releasing as a one off!')
 semaphore.release()
 print('Released as a one off!')

async def main():
 semaphore = Semaphore(2)

 print("Acquiring twice, releasing three times...")
 await asyncio.gather(acquire(semaphore),
 acquire(semaphore),
 release(semaphore))

 print("Acquiring three times...")
 await asyncio.gather(acquire(semaphore),
 acquire(semaphore),
 acquire(semaphore))

asyncio.run(main())

In the preceding listing, we create a semaphore with two permits. We then run two
calls to acquire and one call to release, meaning we’ll call release three times. Our
first call to gather seems to run okay, giving us the following output:

Acquiring twice, releasing three times...
Waiting to acquire
Acquired
Waiting to acquire
Acquired
Releasing as a one off!
Released as a one off!
Releasing
Releasing

However, our second call where we acquire the semaphore three times runs into
issues, and we acquire the lock three times at once! We’ve inadvertently increased the
number of permits our semaphore has available:

Acquiring three times...
Waiting to acquire

Listing 11.8 Releasing more than we acquire

280 CHAPTER 11 Synchronization
Acquired
Waiting to acquire
Acquired
Waiting to acquire
Acquired
Releasing
Releasing
Releasing

To deal with these types of situations, asyncio provides a BoundedSemaphore. This
semaphore behaves exactly as the semaphore we’ve been using, with the key differ-
ence being that release will throw a ValueError: BoundedSemaphore released too
many times exception if we call release such that it would change the available per-
mits. Let’s look at a very simple example in the following listing.

import asyncio
from asyncio import BoundedSemaphore

async def main():
 semaphore = BoundedSemaphore(1)

 await semaphore.acquire()
 semaphore.release()
 semaphore.release()

asyncio.run(main())

When we run the preceding listing, our second call to release will throw a ValueError
indicating we’ve released the semaphore too many times. You’ll see similar results if
you change the code in listing 11.8 to use a BoundedSemaphore instead of a Semaphore.
If you’re manually calling acquire and release such that dynamically increasing the
number of permits your semaphore has available would be an error, it is wise to use a
BoundedSemaphore, so you’ll see an exception to warn you of the mistake.

 We’ve now seen how to use semaphores to limit concurrency, which can be useful
in situations where we need to constrain concurrency within our applications. asyncio
synchronization primitives not only allow us to limit concurrency but also allow us to
notify tasks when something happens. Next, let’s see how to do this with the Event syn-
chronization primitive.

11.4 Notifying tasks with events
Sometimes, we may need to wait for some external event to happen before we can pro-
ceed. We might need to wait for a buffer to fill up before we can begin to process it, we
might need to wait for a device to connect to our application, or we may need to wait for
some initialization to happen. We may also have multiple tasks waiting to process data

Listing 11.9 Bounded semaphores

281Notifying tasks with events
that may not yet be available. Event objects provide a mechanism to help us out in situa-
tions where we want to idle while waiting for something specific to happen.

 Internally, the Event class keeps track of a flag that indicates whether the event has
happened yet. We can control this flag is with two methods, set and clear. The set
method sets this internal flag to True and notifies anyone waiting that the event hap-
pened. The clear method sets this internal flag to False, and anyone who is waiting
for the event will now block.

 With these two methods, we can manage internal state, but how do we block until an
event happens? The Event class has one coroutine method named wait. When we await
this coroutine, it will block until someone calls set on the event object. Once this occurs,
any additional calls to wait will not block and will return instantly. If we call clear once
we have called set, then calls to wait will start blocking again until we call set again.

 Let’s create a dummy example to see events in action. We’ll pretend we have two
tasks that are dependent on something happening. We’ll have these tasks wait and
idle until we trigger the event.

import asyncio
import functools
from asyncio import Event

def trigger_event(event: Event):
 event.set()

async def do_work_on_event(event: Event):
 print('Waiting for event...')
 await event.wait()
 print('Performing work!')
 await asyncio.sleep(1)
 print('Finished work!')
 event.clear()

async def main():
 event = asyncio.Event()
 asyncio.get_running_loop().call_later(5.0,

functools.partial(trigger_event, event))
 await asyncio.gather(do_work_on_event(event), do_work_on_event(event))

asyncio.run(main())

In the preceding listing, we create a coroutine method do_work_on_event, this corou-
tine takes in an event and first calls its wait coroutine. This will block until someone
calls the event’s set method to indicate the event has happened. We also create a simple
method trigger_event, which sets a given event. In our main coroutine, we create an

Listing 11.10 Event basics

Wait until the
event occurs.

Once the event occurs,
wait will no longer block,
and we can do work.

Reset the event, so future
calls to wait will block. Trigger the event

5 seconds in the
future.

282 CHAPTER 11 Synchronization
event object and use call_later to trigger the event 5 seconds in the future. We then
call do_work_on_event twice with gather, which will create two concurrent tasks for us.
We’ll see the two do_work_on_event tasks idle for 5 seconds until we trigger the event,
after which we’ll see them do their work, giving us the following output:

Waiting for event...
Waiting for event...
Triggering event!
Performing work!
Performing work!
Finished work!
Finished work!

This shows us the basics; waiting on an event will block one or more coroutines until
we trigger an event, after which they can proceed to do work. Next, let’s look at a
more real-world example. Imagine we’re building an API to accept file uploads from
clients. Due to network latency and buffering, a file upload may take some time to
complete. With this constraint, we want our API to have a coroutine to block until the
file is fully uploaded. Callers of this coroutine can then wait for all the data to come in
and do anything they want with it.

 We can use an event to accomplish this. We’ll have a coroutine that listens for data
from an upload and stores it in an internal buffer. Once we’ve reached the end of the
file, we’ll trigger an event indicating the upload is finished. We’ll then have a corou-
tine method to grab the file contents, which will wait for the event to be set. Once the
event is set, we can then return the fully formed uploaded data. Let’s create this API in
a class called FileUpload:.

import asyncio
from asyncio import StreamReader, StreamWriter

class FileUpload:
 def __init__(self,
 reader: StreamReader,
 writer: StreamWriter):
 self._reader = reader
 self._writer = writer
 self._finished_event = asyncio.Event()
 self._buffer = b''
 self._upload_task = None

 def listen_for_uploads(self):
 self._upload_task = asyncio.create_task(self._accept_upload())

 async def _accept_upload(self):
 while data := await self._reader.read(1024):
 self._buffer = self._buffer + data
 self._finished_event.set()

Listing 11.11 A file upload API

Create a task to listen
for the upload and

append it to a buffer.

283Notifying tasks with events
 self._writer.close()
 await self._writer.wait_closed()

 async def get_contents(self):
 await self._finished_event.wait()
 return self._buffer

Now let’s create a file upload server to test out this API. Let’s say that on every success-
ful upload we want to dump contents to standard out. When a client connects, we’ll
create a FileUpload object and call listen_for_uploads. Then, we’ll create a sepa-
rate task that awaits the results of get_contents.

import asyncio
from asyncio import StreamReader, StreamWriter
from chapter_11.listing_11_11 import FileUpload

class FileServer:

 def __init__(self, host: str, port: int):
 self.host = host
 self.port = port
 self.upload_event = asyncio.Event()

 async def start_server(self):
 server = await asyncio.start_server(self._client_connected,
 self.host,
 self.port)
 await server.serve_forever()

 async def dump_contents_on_complete(self, upload: FileUpload):
 file_contents = await upload.get_contents()
 print(file_contents)

 def _client_connected(self, reader: StreamReader, writer: StreamWriter):
 upload = FileUpload(reader, writer)
 upload.listen_for_uploads()
 asyncio.create_task(self.dump_contents_on_complete(upload))

async def main():
 server = FileServer('127.0.0.1', 9000)
 await server.start_server()

asyncio.run(main())

In the preceding listing, we create a FileServer class. Each time a client connects to
our server we create an instance of the FileUpload class that we created in the previ-
ous listing, which starts listening for an upload from a connected client. We also con-
currently create a task for the dump_contents_on_complete coroutine. This calls the

Listing 11.12 Using the API in a file upload server

Block until the finished
event is set, then return
the contents of the buffer.

284 CHAPTER 11 Synchronization
get_contents coroutine (which will only return once the upload is complete) on the
file upload and prints the file to standard out.

 We can test this server out by using netcat. Pick a file on your filesystem, and run
the following command, replacing file with the file of your choice:

cat file | nc localhost 9000

You should then see any file you upload printed to standard out once all the contents
have fully uploaded.

 One drawback to be aware of with events is that they may fire more frequently than
your coroutines can respond to them. Suppose we’re using a single event to wake up
multiple tasks in a type of producer–consumer workflow. If our all our worker tasks
are busy for a long time, the event could run while we’re doing work, and we’ll never
see it. Let’s create a dummy example to demonstrate this. We’ll create two worker
tasks each of which does 5 seconds of work. We’ll also create a task that fires an event
every second, outpacing the rate that our consumers can handle.

import asyncio
from asyncio import Event
from contextlib import suppress

async def trigger_event_periodically(event: Event):
 while True:
 print('Triggering event!')
 event.set()
 await asyncio.sleep(1)

async def do_work_on_event(event: Event):
 while True:
 print('Waiting for event...')
 await event.wait()
 event.clear()
 print('Performing work!')
 await asyncio.sleep(5)
 print('Finished work!')

async def main():
 event = asyncio.Event()
 trigger = asyncio.wait_for(trigger_event_periodically(event), 5.0)

 with suppress(asyncio.TimeoutError):
 await asyncio.gather(do_work_on_event(event),

do_work_on_event(event), trigger)

asyncio.run(main())

Listing 11.13 A worker falling behind an event

285Conditions

Wa

d
the
When we run the preceding listing, we’ll see our event fires and our two workers start
their work concurrently. In the meantime, we keep triggering our event. Since our
workers are busy, they won’t see that our event fired a second time until they finish
their work and call event.wait() a second time. If you care about responding every
time an event occurs, you’ll need to use a queueing mechanism, which we’ll learn
about in the next chapter.

 Events are useful for when we want to alert when a specific event happens, but
what happens if we need a combination of waiting for an event alongside exclusive
access to a shared resource, such as a database connection? Conditions can help us
solve these types of workflows.

11.5 Conditions
Events are good for simple notifications when something happens, but what about
more complex use cases? Imagine needing to gain access to a shared resource that
requires a lock on an event, waiting for a more complex set of facts to be true before
proceeding or waking up only a certain number of tasks instead of all of them. Condi-
tions can be useful in these types of situations. They are by far the most complex syn-
chronization primitives we’ve encountered so far, and as such, you likely won’t need to
use them all that often.

 A condition combines aspects of a lock and an event into one synchronization prim-
itive, effectively wrapping the behavior of both. We first acquire the condition’s lock,
giving our coroutine exclusive access to any shared resource, allowing us to safely
change any state we need. Then, we wait for a specific event to happen with the wait
or wait_for coroutine. These coroutines release the lock and block until the event
happens, and once it does it reacquires the lock giving us exclusive access.

 Since this is a bit confusing, let’s create a dummy example to understand how to
use conditions. We’ll create two worker tasks that each attempt to acquire the condi-
tion lock and then wait for an event notification. Then, after a few seconds, we’ll trig-
ger the condition, which will wake up the two worker tasks and allow them to do work.

import asyncio
from asyncio import Condition

async def do_work(condition: Condition):
 while True:
 print('Waiting for condition lock...')
 async with condition:
 print('Acquired lock, releasing and waiting for condition...')
 await condition.wait()
 print('Condition event fired, re-acquiring lock and doing

work...')
 await asyncio.sleep(1)
 print('Work finished, lock released.')

Listing 11.14 Condition basics

Wait to acquire the
condition lock; once
acquired, release the lock.

it for the event
to fire; once it
oes, reacquire
condition lock.

Once we exit the async
with block, release the
condition lock.

286 CHAPTER 11 Synchronization
async def fire_event(condition: Condition):
 while True:
 await asyncio.sleep(5)
 print('About to notify, acquiring condition lock...')
 async with condition:
 print('Lock acquired, notifying all workers.')
 condition.notify_all()
 print('Notification finished, releasing lock.')

async def main():
 condition = Condition()

 asyncio.create_task(fire_event(condition))
 await asyncio.gather(do_work(condition), do_work(condition))

asyncio.run(main())

In the preceding listing, we create two coroutine methods: do_work and fire_event.
The do_work method acquires the condition, which is analogous to acquiring a lock,
and then calls the condition’s wait coroutine method. The wait coroutine method
will block until someone calls the condition’s notify_all method.

 The fire_event coroutine method sleeps for a little bit and then acquires the con-
dition and calls the notify_all method, which will wake up any tasks that are currently
waiting on the condition. Then, in our main coroutine we create one fire_event task
and two do_work tasks and run them concurrently. When running this you’ll see the
following repeated if the application runs:

Worker 1: waiting for condition lock...
Worker 1: acquired lock, releasing and waiting for condition...
Worker 2: waiting for condition lock...
Worker 2: acquired lock, releasing and waiting for condition...
fire_event: about to notify, acquiring condition lock...
fire_event: Lock acquired, notifying all workers.
fire_event: Notification finished, releasing lock.
Worker 1: condition event fired, re-acquiring lock and doing work...
Worker 1: Work finished, lock released.
Worker 1: waiting for condition lock...
Worker 2: condition event fired, re-acquiring lock and doing work...
Worker 2: Work finished, lock released.
Worker 2: waiting for condition lock...
Worker 1: acquired lock, releasing and waiting for condition...
Worker 2: acquired lock, releasing and waiting for condition...

You’ll notice that the two workers start right away and block waiting for the fire_
event coroutine to call notify_all. Once fire_event calls notify_all, the worker
tasks wake up and then proceed to do their work.

 Conditions have an additional coroutine method called wait_for. Instead of block-
ing until someone notifies the condition, wait_for accepts a predicate (a no-argument

Notify all tasks
that the event
has happened.

287Conditions
function that returns a Boolean) and will block until that predicate returns True. This
proves useful when there is a shared resource with some coroutines dependent on cer-
tain states becoming true.

 As an example, let’s pretend we’re creating a class to wrap a database connection
and run queries. We first have an underlying connection that can’t run multiple que-
ries at the same time, and the database connection may not be initialized before some-
one tries to run a query. The combination of a shared resource and an event we need
to block gives us the right conditions to use a Condition. Let’s simulate this with a
mock database connection class. This class will run queries but will only do so once
we’ve properly initialized a connection. We’ll then use this mock connection class to
try to run two queries concurrently before we’ve finished initializing the connection.

import asyncio
from enum import Enum

class ConnectionState(Enum):
 WAIT_INIT = 0
 INITIALIZING = 1
 INITIALIZED = 2

class Connection:

 def __init__(self):
 self._state = ConnectionState.WAIT_INIT
 self._condition = asyncio.Condition()

 async def initialize(self):
 await self._change_state(ConnectionState.INITIALIZING)
 print('initialize: Initializing connection...')
 await asyncio.sleep(3) # simulate connection startup time
 print('initialize: Finished initializing connection')
 await self._change_state(ConnectionState.INITIALIZED)

 async def execute(self, query: str):
 async with self._condition:
 print('execute: Waiting for connection to initialize')
 await self._condition.wait_for(self._is_initialized)
 print(f'execute: Running {query}!!!')
 await asyncio.sleep(3) # simulate a long query

 async def _change_state(self, state: ConnectionState):
 async with self._condition:
 print(f'change_state: State changing from {self._state} to {state}')
 self._state = state
 self._condition.notify_all()

 def _is_initialized(self):
 if self._state is not ConnectionState.INITIALIZED:

Listing 11.15 Using conditions to wait for specific states

288 CHAPTER 11 Synchronization
 print(f'_is_initialized: Connection not finished initializing,
state is {self._state}')

 return False
 print(f'_is_initialized: Connection is initialized!')
 return True

async def main():
 connection = Connection()
 query_one = asyncio.create_task(connection.execute('select * from table'))
 query_two = asyncio.create_task(connection.execute('select * from

other_table'))
 asyncio.create_task(connection.initialize())
 await query_one
 await query_two

asyncio.run(main())

In the preceding listing, we create a connection class that contains a condition object
and keeps track of an internal state that we initialize to WAIT_INIT, indicating we’re wait-
ing for initialization to happen. We also create a few methods on the Connection class.
The first is initialize, which simulates creating a database connection. This method
calls the _change_state method to set the state to INITIALIZING when first called and
then once the connection is initialized, it sets the state to INITIALIZED. Inside the
_change_state method, we set the internal state and then call the conditions notify_
all method. This will wake up any tasks that are waiting for the condition.

 In our execute method, we acquire the condition object in an async with block and
then we call wait_for with a predicate that checks to see if the state is INITIALIZED. This
will block until our database connection is fully initialized, preventing us from accidently
issuing a query before the connection exists. Then, in our main coroutine, we create a
connection class and create two tasks to run queries, followed by one task to initialize the
connection. Running this code, you’ll see the following output, indicating that our que-
ries properly wait for the initialization task to finish before running the queries:

execute: Waiting for connection to initialize
_is_initialized: Connection not finished initializing, state is

ConnectionState.WAIT_INIT
execute: Waiting for connection to initialize
_is_initialized: Connection not finished initializing, state is

ConnectionState.WAIT_INIT
change_state: State changing from ConnectionState.WAIT_INIT to

ConnectionState.INITIALIZING
initialize: Initializing connection...
_is_initialized: Connection not finished initializing, state is

ConnectionState.INITIALIZING
_is_initialized: Connection not finished initializing, state is

ConnectionState.INITIALIZING
initialize: Finished initializing connection
change_state: State changing from ConnectionState.INITIALIZING to

ConnectionState.INITIALIZED

289Summary
_is_initialized: Connection is initialized!
execute: Running select * from table!!!
_is_initialized: Connection is initialized!
execute: Running select * from other_table!!!

Conditions are useful in scenarios in which we need access to a shared resource and
there are states that we need to be notified about before doing work. This is a some-
what complicated use case, and as such, you won’t likely come across or need condi-
tions in asyncio code.

Summary
 We’ve learned about single-threaded concurrency bugs and how they differ

from concurrency bugs in multithreading and multiprocessing.
 We know how to use asyncio locks to prevent concurrency bugs and synchronize

coroutines. This happens less often due to asyncio’s single-threaded nature, they
can sometimes be needed when shared state could change during an await.

 We’ve learned how to use semaphores to control access to finite resources and
limit concurrency, which can be useful in traffic-shaping.

 We know how to use events to trigger actions when something happens, such as
initialization or waking up worker tasks.

 We know how to use conditions to wait for an action and, because of an action,
gain access to a shared resource.

Asynchronous queues
When designing applications to process events or other types of data, we often
need a mechanism to store these events and distribute them to a set of workers.
These workers can then do whatever we need to do based on these events concur-
rently, yielding time savings as opposed to processing events sequentially. asyncio
provides an asynchronous queue implementation that lets us do this. We can add
pieces of data into a queue and have several workers running concurrently, pulling
data from the queue and processing it as it becomes available.

 These are commonly referred to as producer–consumer workflows. Something pro-
duces data or events that we need to handle; processing these work items could
take a long time. Queues can also help us transmit long-running tasks while keep-
ing a responsive user interface. We put an item on the queue for later processing
and inform the user that we’ve started this work in the background. Asynchronous

This chapter covers
 Asynchronous queues

 Using queues for producer–consumer workflows

 Using queues with web applications

 Asynchronous priority queues

 Asynchronous LIFO queues
290

291Asynchronous queue basics
queues also have an added benefit of providing a mechanism to limit concurrency,
as each queue generally permits a finite amount of worker tasks. This can be used in
cases in which we need to limit concurrency in a similar way to what we saw with
semaphores in chapter 11.

 In this chapter, we’ll learn how to use asyncio queues to handle producer–consumer
workflows. We’ll master the basics first by building an example grocery store queue
with cashiers as our consumers. We’ll then apply this to an order management web API,
demonstrating how to respond quickly to users while letting the queue process work in
the background. We’ll also learn how to process tasks in priority order, which is useful
when one task is more important to process first, despite being put in the queue later.
Finally, we’ll look at LIFO (last in, first out) queues and understand the drawbacks of
asynchronous queues.

12.1 Asynchronous queue basics
Queues are a type of FIFO data structure. In other words, the first element in a queue
is the first element to leave the queue when we ask for the next element. They’re not
much different from the queue you’re a part of when checking out in a grocery store.
You join the line at the end and wait for the cashier to check out anyone in front of
you. Once they’ve checked someone out, you move up in the queue while someone
who joins after you waits behind you. Then, when you’re first in the queue you check
out and leave the queue entirely.

 The checkout queue as we have described it is a synchronous workflow. One
cashier checks out one customer at a time. What if we reimagined the queue to better
take advantage of concurrency and perform more like a supermarket checkout?
Instead of one cashier, there would be multiple cashiers and a single queue. When-
ever a cashier is available, they can flag down the next person to the checkout counter.
This means there are multiple cashiers directing customers from the queue concur-
rently in addition to multiple cashiers concurrently checking out customers.

 This is the core of what asynchronous queues let us do. We add multiple work
items waiting to be processed into the queue. We then have multiple workers pull
items from the queue when they are available to perform a task.

 Let’s explore this by building our supermarket example. We’ll think of our
worker tasks as cashiers, and our “work items” will be customers to check out. We’ll
implement customers with individual lists of products that the cashier needs to
scan. Some items take longer than others to scan; for instance, bananas must be
weighed and have their SKU code entered. Alcoholic beverages require a manager
to check the customer’s ID.

 For our supermarket checkout scenario, we’ll implement a few data classes to
represent products with integers used to represent the time (in seconds) they take
for a cashier to check out. We’ll also build a customer class that has a random set of
products they’d like to buy. Then, we’ll put these customers in an asyncio queue to
represent our checkout line. We’ll also create several worker tasks to represent our

292 CHAPTER 12 Asynchronous queues

Ch
cashiers. These tasks will pull customers from the queue, looping through all their
products and sleeping for the time needed to check out their items to simulate the
checkout process.

import asyncio
from asyncio import Queue
from random import randrange
from typing import List

class Product:
 def __init__(self, name: str, checkout_time: float):
 self.name = name
 self.checkout_time = checkout_time

class Customer:
 def __init__(self, customer_id: int, products: List[Product]):
 self.customer_id = customer_id
 self.products = products

async def checkout_customer(queue: Queue, cashier_number: int):
 while not queue.empty():
 customer: Customer = queue.get_nowait()
 print(f'Cashier {cashier_number} '
 f'checking out customer '
 f'{customer.customer_id}')
 for product in customer.products:
 print(f"Cashier {cashier_number} "
 f"checking out customer "
 f"{customer.customer_id}'s {product.name}")
 await asyncio.sleep(product.checkout_time)
 print(f'Cashier {cashier_number} '
 f'finished checking out customer '
 f'{customer.customer_id}')
 queue.task_done()

async def main():
 customer_queue = Queue()

 all_products = [Product('beer', 2),
 Product('bananas', .5),
 Product('sausage', .2),
 Product('diapers', .2)]

 for i in range(10):
 products = [all_products[randrange(len(all_products))]
 for _ in range(randrange(10))]
 customer_queue.put_nowait(Customer(i, products))

Listing 12.1 A supermarket checkout queue

Keep checking
out customers if
there are any in
the queue.

eck out each
customer’s

product.

Create 10
customers with
random products.

293Asynchronous queue basics
 cashiers = [asyncio.create_task(checkout_customer(customer_queue, i))
 for i in range(3)]

 await asyncio.gather(customer_queue.join(), *cashiers)

asyncio.run(main())

In the preceding listing, we create two data classes: one for a product and one for a
supermarket customer. A product consists of a product name and the amount of time
(in seconds) it takes for a cashier to enter that item in the register. A customer has a
number of products they are bringing to the cashier to buy. We also define a checkout_
customer coroutine function, which does the work of checking out a customer. While
our queue has customers in it, it pulls a customer from the front of the queue with
queue.get_nowait() and simulates the time to scan a product with asyncio.sleep.
Once a customer is checked out, we call queue.task_done. This signals to the queue
that our worker has finished its current work item. Internally within the Queue class,
when we get an item from the queue a counter is incremented by one to track the
number of unfinished tasks remain. When we call task_done, we tell the queue that
we’ve finished, and it decrements this count by one (why we need to do this will make
sense shortly, when we talk about join).

 In our main coroutine function, we create a list of available products and generate
10 customers, each with random products. We also create three worker tasks for the
checkout_customer coroutine that are stored in a list called cashiers, which is analo-
gous to three human cashiers working at our imaginary supermarket. Finally, we wait
for the cashier checkout_customer tasks to finish alongside the customer_queue.join()
coroutine using gather. We use gather so that any exceptions from our cashier tasks
will rise up to our main coroutine function. The join coroutine blocks until the
queue is empty and all customers have been checked out. The queue is considered
empty when the internal counter of pending work items reaches zero. Therefore, it is
important to call task_done in your workers. If you don’t do this, the join coroutine
may receive an incorrect view of the queue and may never terminate.

 While the customer’s items are randomly generated, you should see output similar
to the following, showing that each worker task (cashier) is concurrently checking out
customers from the queue:

Cashier 0 checking out customer 0
Cashier 0 checking out customer 0's sausage
Cashier 1 checking out customer 1
Cashier 1 checking out customer 1's beer
Cashier 2 checking out customer 2
Cashier 2 checking out customer 2's bananas
Cashier 0 checking out customer 0's bananas
Cashier 2 checking out customer 2's sausage
Cashier 0 checking out customer 0's sausage
Cashier 2 checking out customer 2's bananas
Cashier 0 finished checking out customer 0
Cashier 0 checking out customer 3

Create three
“cashiers” or worker

tasks to check out customers.

294 CHAPTER 12 Asynchronous queues
Our three cashiers start checking out customers from the queue concurrently. Once
they’ve finished checking out one customer, they pull another from the queue until
the queue is empty.

 You may notice that our methods for putting items into the queue and retrieving
them are oddly named: get_nowait and put_nowait. Why is there a nowait at the end
of each of these methods? There are two ways of getting and retrieving an item from a
queue: one that is a coroutine and blocks, and one that is nonblocking and is a regular
method. The get_nowait and put_nowait variants instantly perform the non-blocking
method calls and return. Why would we need a blocking queue insertion or retrieval?

 The answer lies in how we want to handle the upper and lower bounds of our queue.
This describes happens when there are too many items in the queue (the upper bound)
and what happens when there are no items in the queue (the lower bound).

 Going back to our supermarket queue example, let’s address two things that aren’t
quite real-world about it, using the coroutine versions of get and put.

 It is unlikely we’ll just have one line of 10 customers who all show up at the
same time, and once the line is empty the cashiers stop working altogether.

 Our customer queue probably shouldn’t be unbounded; say, the latest desirable
gaming console just came out, and you’re the only store in town to carry it. Nat-
urally, mass hysteria has ensued, and your store is flooded with customers. We
probably couldn’t fit 5,000 customers in the store, so we need a way to turn
them away or make them wait outside.

For the first issue, let’s say we wanted to refactor our application so that we randomly
generate some customers every few seconds to simulate a realistic supermarket queue.
In our current implementation of checkout_customer, we loop while the queue is not
empty and grab a customer with get_nowait. Since our queue could be empty, we
can’t loop on not queue.empty, since our cashiers will be available even if no one is in
line, so we’ll need a while True in our worker coroutine. So what happens in this case
when we call get_nowait and the queue is empty? This is easy to test out in a few lines
of code; we just create an empty queue and call the method in question:

import asyncio
from asyncio import Queue

async def main():
 customer_queue = Queue()
 customer_queue.get_nowait()

asyncio.run(main())

Our method will throw an asyncio.queues.QueueEmpty exception. While we could
wrap this in a try catch and ignore this exception, this wouldn’t quite work, as when-
ever the queue is empty, we’ve made our worker task CPU-bound, spinning and catch-
ing exceptions. In this case, we can use the get coroutine method. This will block (in

295Asynchronous queue basics
a non-CPU-bound fashion) until an item is in the queue to process and won’t throw
an exception. This is the equivalent of the worker tasks idling, standing by for some
customer to come into the queue giving them work to do at the checkout counter.

 To address our second issue of thousands of customers trying to get in line concur-
rently, we need to think about the bounds of our queue. By default, queues are
unbounded, and they can grow to store an infinite amount of work items. In theory
this is acceptable, but in the real world, systems have memory constraints, so placing
an upper bound on our queue to prevent running out of memory is a good idea. In
this case, we need to think through what we want our behavior to be when our queue
is full. Let’s see what happens when we create a queue that can only hold one item
and try to add a second with put_nowait:

import asyncio
from asyncio import Queue

async def main():
 queue = Queue(maxsize=1)

 queue.put_nowait(1)
 queue.put_nowait(2)

asyncio.run(main())

In this case, much like get_nowait, put_nowait throws an exception of the type
asyncio.queues.QueueFull. Like get, there is also a coroutine method called put.
This method will block until there is room in the queue. With this in mind, let’s refac-
tor our customer example to use the coroutine variants of get and put.

import asyncio
from asyncio import Queue
from random import randrange

class Product:
 def __init__(self, name: str, checkout_time: float):
 self.name = name
 self.checkout_time = checkout_time

class Customer:
 def __init__(self, customer_id, products):
 self.customer_id = customer_id
 self.products = products

async def checkout_customer(queue: Queue, cashier_number: int):
 while True:

Listing 12.2 Using coroutine queue methods

296 CHAPTER 12 Asynchronous queues
 customer: Customer = await queue.get()
 print(f'Cashier {cashier_number} '
 f'checking out customer '
 f'{customer.customer_id}')
 for product in customer.products:
 print(f"Cashier {cashier_number} "
 f"checking out customer "
 f"{customer.customer_id}'s {product.name}")
 await asyncio.sleep(product.checkout_time)
 print(f'Cashier {cashier_number} '
 f'finished checking out customer '
 f'{customer.customer_id}')
 queue.task_done()

def generate_customer(customer_id: int) -> Customer:
 all_products = [Product('beer', 2),
 Product('bananas', .5),
 Product('sausage', .2),
 Product('diapers', .2)]
 products = [all_products[randrange(len(all_products))]
 for _ in range(randrange(10))]
 return Customer(customer_id, products)

async def customer_generator(queue: Queue):
 customer_count = 0

 while True:
 customers = [generate_customer(i)
 for i in range(customer_count,
 customer_count + randrange(5))]
 for customer in customers:
 print('Waiting to put customer in line...')
 await queue.put(customer)
 print('Customer put in line!')
 customer_count = customer_count + len(customers)
 await asyncio.sleep(1)

async def main():
 customer_queue = Queue(5)

 customer_producer = asyncio.create_task(customer_generator(customer_queue))

 cashiers = [asyncio.create_task(checkout_customer(customer_queue, i))
 for i in range(3)]

 await asyncio.gather(customer_producer, *cashiers)

asyncio.run(main())

In the preceding listing, we create a generate_customer coroutine that creates a cus-
tomer with a random list of products. Alongside this we create a customer_generator

Generate
a random
customer.

Generate several random
customers every second.

297Asynchronous queue basics
coroutine function that generates between one and five random customers every sec-
ond and adds them to the queue with put. Because we use the coroutine put, if our
queue is full, customer_generator will block until the queue has free spaces. Specifi-
cally, this means that if there are five customers in the queue and the producer tries to
add a sixth, the queue will block, allowing that customer into the queue until there is
a space freed up by a cashier checking someone out. We can think of customer_
generator as our producer, as it produces customers for our cashiers to check out.

 We also refactor checkout_customer to run forever, since our cashiers remain on
call when the queue is empty. We then refactor checkout_customer to use the queue
get coroutine, and the coroutine will block if the queue has no customers in it. Then,
in our main coroutine we create a queue that allows five customers in line at a time
and create three checkout_customer tasks running concurrently. We can think of the
cashiers as our consumers; they consume customers to check out from the queue.

 This code randomly generates customers, but at some point, the queue should fill
up such that the cashiers aren’t processing customers as fast as the producer is creat-
ing them. Thus, we’ll see output similar to the following where the producer waits to
add a customer into the line until a customer has finished checking out:

Waiting to put customer in line...
Cashier 1 checking out customer 7's sausage
Cashier 1 checking out customer 7's diapers
Cashier 1 checking out customer 7's diapers
Cashier 2 finished checking out customer 5
Cashier 2 checking out customer 9
Cashier 2 checking out customer 9's bananas
Customer put in line!

We now understand the basics of how asynchronous queues work, but since we’re usu-
ally not building supermarket simulations in our day jobs, let’s look at a few real-world
scenarios to see how we would apply this in applications we really might build.

12.1.1 Queues in web applications

Queues can be useful in web applications when we have a potentially time-consuming
operation that we can run in the background. If we ran this operation in the main
coroutine of the web request, we would block the response to the user until the opera-
tion finished, potentially leaving the end user with a slow, unresponsive page.

 Imagine we’re part of an e-commerce organization, and we’re operating with a slow
order management system. Processing an order can take several seconds, but we don’t
want to keep the user waiting for a response that their order has been placed. Further-
more, the order management system does not handle load well, so we’d like to limit
how many requests we make to it concurrently. In this circumstance a queue can solve
both problems. As we saw before, a queue can have a maximum number of elements
we allow before adding more either blocks or throws an exception. This means if we
have a queue with an upper limit, we’ll at most have however many consumer tasks we
create that are running concurrently. This provides a natural limit to concurrency.

298 CHAPTER 12 Asynchronous queues
 A queue also solves the issue of the user waiting too long for a response. Putting an
element on the queue happens instantly, meaning we can notify the user that their
order has been placed right away, providing a fast user experience. In the real world,
of course, this opens up the potential for the background task to fail without the user
being notified, so you’ll need some form of data persistence and logic to combat this.

 To try this out, let’s create a simple web application with aiohttp that employs a
queue to run background tasks. We’ll simulate interacting with a slow order man-
agement system by using asyncio.sleep. In a real world microservice architecture
you’d likely be communicating over REST with aiohttp or a similar library, but we’ll
use sleep for simplicity.

 We’ll create an aiohttp startup hook to create our queue as well as a set of worker
tasks that will interact with the slow service. We’ll also create a HTTP POST endpoint/
order that will place an order on the queue (here, we’ll just generate a random
number for our worker task to sleep to simulate the slow service). Once the order is
put on the queue, we’ll return a HTTP 200 and a message indicating the order has
been placed.

 We’ll also add some graceful shutdown logic in an aiohttp shutdown hook, since if
our application shuts down, we might still have some orders being processed. In the
shutdown hook, we’ll wait until any workers that are busy have finished.

import asyncio
from asyncio import Queue, Task
from typing import List
from random import randrange
from aiohttp import web
from aiohttp.web_app import Application
from aiohttp.web_request import Request
from aiohttp.web_response import Response

routes = web.RouteTableDef()

QUEUE_KEY = 'order_queue'
TASKS_KEY = 'order_tasks'

async def process_order_worker(worker_id: int, queue: Queue):
 while True:
 print(f'Worker {worker_id}: Waiting for an order...')
 order = await queue.get()
 print(f'Worker {worker_id}: Processing order {order}')
 await asyncio.sleep(order)
 print(f'Worker {worker_id}: Processed order {order}')
 queue.task_done()

@routes.post('/order')
async def place_order(request: Request) -> Response:

Listing 12.3 Queues with a web application

Grab an order from the
queue, and process it.

299Asynchronous queue basics
 order_queue = app[QUEUE_KEY]
 await order_queue.put(randrange(5))
 return Response(body='Order placed!')

async def create_order_queue(app: Application):
 print('Creating order queue and tasks.')
 queue: Queue = asyncio.Queue(10)
 app[QUEUE_KEY] = queue
 app[TASKS_KEY] = [asyncio.create_task(process_order_worker(i, queue))
 for i in range(5)]

async def destroy_queue(app: Application):
 order_tasks: List[Task] = app[TASKS_KEY]
 queue: Queue = app[QUEUE_KEY]
 print('Waiting for pending queue workers to finish....')
 try:
 await asyncio.wait_for(queue.join(), timeout=10)
 finally:
 print('Finished all pending items, canceling worker tasks...')
 [task.cancel() for task in order_tasks]

app = web.Application()
app.on_startup.append(create_order_queue)
app.on_shutdown.append(destroy_queue)

app.add_routes(routes)
web.run_app(app)

In the preceding listing, we first create a process_order_worker coroutine. This pulls
an item from the queue, in this case an integer, and sleeps for that amount of time to
simulate working with a slow order management system. This coroutine loops forever,
continually pulling items from the queue and processing them.

 We then create the coroutines to set up and tear down the queue, create_order_
queue and destroy_order_queue, respectively. Creating the queue is straightforward,
as we create an asyncio queue with a maximum of 10 elements and we create five
worker tasks, storing them in our Application instance.

 Destroying the queue is a bit more involved. We first wait for the queue to finish
processing all its elements with Queue.join. Since our application is shutting down, it
won’t be serving any more HTTP requests, so no other orders can go into our queue.
This means that anything already in the queue will be processed by a worker, and any-
thing a worker is currently processing will finish as well. We also wrap join in a wait_
for with a timeout of 10 seconds as well. This is a good idea because we don’t want a
runaway task taking a long time preventing our application from shutting down.

 Finally, we define our application route. We create a POST endpoint at /order.
This endpoint creates a random delay and adds it to the queue. Once we’ve added the
order to the queue, we respond to the user with a HTTP 200 status code and a short
message. Note that we used the coroutine variant of put, which means that if our

Put the order on the
queue, and respond to
the user immediately.

Create a queue with a
maximum of 10 elements,
and create 5 worker tasks.

Wait for any busy
tasks to finish.

300 CHAPTER 12 Asynchronous queues
queue is full the request will block until the message is on the queue, which could take
time. You may want to use the put_nowait variant and then respond with a HTTP 500
error or other error code asking the caller to try again later. Here, we’ve made a
tradeoff of a request potentially taking some time so that our order always goes on the
queue. Your application may require “fail fast” behavior, so responding with an error
when the queue is full may the correct behavior for your use case.

 Using this queue, our order endpoint will respond nearly instantly when our order
was placed so long as the queue isn’t full. This provides the end user with a quick and
smooth ordering experience—one that hopefully keeps them coming back to buy more.

 One thing to keep in mind when using asyncio queues in web applications is the
failure modes of queues. What if one of our API instances crashed for some reason,
such as running out of memory, or if we needed to restart the server for a redeploy of
our application? In this case, we would lose any unprocessed orders that are in the
queue, as they are only stored in memory. Sometimes, losing an item in a queue isn’t a
big deal, but in the case of a customer order, it probably is.

 asyncio queues provide no out-of-the-box concept of task persistence or queue dura-
bility. If we want tasks in our queue to be robust against these types of failures, we need
to introduce somewhere a method to save our tasks, such as a database. More correctly,
however, is using a separate queue outside of asyncio that supports task persistence. Cel-
ery and RabbitMQ are two examples of task queues that can persist to disk.

 Of course, using a separate architectural queue comes with added complexity. In
the case of durable queues with persistent tasks, it also comes with a performance
challenge of needing to persist to disk. To determine the best architecture for your
application, you’ll need to carefully weigh the tradeoffs of an in-memory-only asyncio
queue versus a separate architectural component.

12.1.2 A web crawler queue

Consumer tasks can also be producers if our consumer generates more work to put
in the queue. Take for instance a web crawler that visits all links on a particular
page. You can imagine one worker downloading and scanning a page for links.
Once the worker has found links it can add them to a queue. This lets other avail-
able workers pull links onto the queue and visit them concurrently, adding any links
they encounter back to the queue.

 Let’s build a crawler that does this. We’ll create an unbounded queue (you may
want to bound it if you’re concerned about memory overruns) that will hold URLs to
download. Then, our workers will pull URLs off the queue and use aiohttp to down-
load them. Once we’ve downloaded them, we’ll use a popular HTML parser, Beautiful
Soup, to extract links to put back into the queue.

 At least with this application, we don’t want to scan the entire internet, so we’ll
only scan a set number of pages away from the root page. We’ll call this our “maxi-
mum depth”; if our maximum depth is set to three, it means we’ll only follow links
three pages away from the root.

301Asynchronous queue basics
 To get started, let’s install Beautiful Soup version 4.9.3 with the following command:

pip install -Iv beautifulsoup4==4.9.3

We’ll assume some knowledge of Beautiful Soup. You can read more in the documen-
tation at https://www.crummy.com/software/BeautifulSoup/bs4/doc.

 Our plan will be to create a worker coroutine that will pull a page from the
queue and download it with aiohttp. Once we’ve done this, we’ll use Beautiful Soup
to get all the links of the form from the page, adding them back to
the queue.

import asyncio
import aiohttp
import logging
from asyncio import Queue
from aiohttp import ClientSession
from bs4 import BeautifulSoup

class WorkItem:
 def __init__(self, item_depth: int, url: str):
 self.item_depth = item_depth
 self.url = url

async def worker(worker_id: int, queue: Queue, session: ClientSession,
max_depth: int):

 print(f'Worker {worker_id}')
 while True:
 work_item: WorkItem = await queue.get()
 print(f'Worker {worker_id}: Processing {work_item.url}')
 await process_page(work_item, queue, session, max_depth)
 print(f'Worker {worker_id}: Finished {work_item.url}')
 queue.task_done()

async def process_page(work_item: WorkItem, queue: Queue, session:
ClientSession, max_depth: int):

 try:
 response = await asyncio.wait_for(session.get(work_item.url), timeout=3)
 if work_item.item_depth == max_depth:
 print(f'Max depth reached, '
 f'for {work_item.url}')
 else:
 body = await response.text()
 soup = BeautifulSoup(body, 'html.parser')
 links = soup.find_all('a', href=True)
 for link in links:
 queue.put_nowait(WorkItem(work_item.item_depth + 1,
 link['href']))

Listing 12.4 A queue-based crawler

Grab a URL
from the queue
to process and
then begin to
download it.

Download the
URL contents,
and parse all
links from the
page, putting
them back on
the queue.

https://www.crummy.com/software/BeautifulSoup/bs4/doc

302 CHAPTER 12 Asynchronous queues
 except Exception as e:
 logging.exception(f'Error processing url {work_item.url}')

async def main():
 start_url = 'http:/ /example.com'
 url_queue = Queue()
 url_queue.put_nowait(WorkItem(0, start_url))
 async with aiohttp.ClientSession() as session:
 workers = [asyncio.create_task(worker(i, url_queue, session, 3))
 for i in range(100)]
 await url_queue.join()
 [w.cancel() for w in workers]

asyncio.run(main())

In the preceding listing, we first define a WorkItem class. This is a simple data class to
hold a URL and the depth of that URL. We then define our worker, which pulls a
WorkItem from the queue and calls process_page. The process_page coroutine func-
tion downloads the contents of the URL if it can do so (a timeout or exception could
occur, which we just log and ignore). It then uses Beautiful Soup to get all the links
and adds them back to the queue for other workers to process.

 In our main coroutine, we create the queue and bootstrap it with our first Work-
Item. In this example we hardcode example.com, and since it is our root page, its
depth is 0. We then create an aiohttp session and create 100 workers, meaning we can
download 100 URLs concurrently, and we set its max depth to 3. We then wait for the
queue to empty and all workers to finish with Queue.join. Once the queue is finished
processing, we cancel all our worker tasks. When you run this code, you should see
100 worker tasks fire up and start looking for links from each URL it downloads, giv-
ing you output like the following:

Found 1 links from http:/ / example .com
Worker 0: Finished http:/ / example .com
Worker 0: Processing https:/ /www .iana.org/domains/example
Found 68 links from https:/ /www .iana.org/domains/example
Worker 0: Finished https:/ /www .iana.org/domains/example
Worker 0: Processing /
Worker 2: Processing /domains
Worker 3: Processing /numbers
Worker 4: Processing /protocols
Worker 5: Processing /about
Worker 6: Processing /go/rfc2606
Worker 7: Processing /go/rfc6761
Worker 8: Processing http:/ /www .icann.org/topics/idn/
Worker 9: Processing http:/ /www .icann.org/

The workers will continue to download pages and process links, adding them to the
queue until we reach the maximum depth we’ve specified.

Create a queue and
100 worker tasks
to process URLs.

303Priority queues
 We’ve now seen the basics of asynchronous queues by building a fake supermarket
checkout line as well as by building an order management API and a web crawler. So
far, our workers have given equal weight to each element in the queue, and they just
pull whoever is at the front of the line out to work on. What if we wanted some tasks to
happen sooner even if they’re toward the back of the queue? Let’s take a look at prior-
ity queues to see how to do this.

12.2 Priority queues
Our previous examples of queues processed items in FIFO, or first-in, first-out, order-
ing. Whoever was first in line gets processed first. This works well in many cases, both
in software engineering and in life.

 In certain applications, however, having all tasks be considered equal is not always
desirable. Imagine we’re building a data processing pipeline where each task is a long-
running query that can take several minutes. Let’s say two tasks come in at roughly the
same time. The first task is a low priority data query, but the second is a mission-critical
data update that should be processed as soon as possible. With simple queues, the first
task will be processed, leaving the second, more important task waiting for the first
one to finish. Imagine the first task takes hours, or if all our workers are busy, our sec-
ond task could be waiting for a long time.

 We can use a priority queue to solve this problem and make our workers work on
our most important tasks first. Internally, priority queues are backed by heaps (using
the heapq module) instead of Python lists like simple queues. To create an asyncio pri-
ority queue, we create an instance of asyncio.PriorityQueue.

 We won’t get too much into data structure specifics here, but a heap is a binary
tree with the property that every parent node has a value less than all its children (see
figure 12.1). This is unlike binary search trees typically used in sorting and searching
problems where the only property is that a node’s left-hand child is smaller than its
parent and the node’s right-hand child is larger. The property of heaps we take advan-
tage of is that the topmost node is always the smallest element in the tree. If we always
make the smallest node our highest priority one, then the high priority node will
always be the first in the queue.

1

2 3

4 5 6 7

4

3 6

1 5 2 7

Figure 12.1 On the left, a binary tree that satisfies the heap property; on the
right, a binary search tree that does not satisfy the heap property

304 CHAPTER 12 Asynchronous queues
It is unlikely the work items we put in our queue will be plain integers, so we’ll need
some way to construct a work item with a sensible priority rule. One way to do this is with
a tuple, where the first element is an integer representing the priority and the second
is any task data. The default queue implementation looks to the first value of the tuple
to decide priority with the lowest numbers having the highest priority. Let’s look at an
example with tuples as work items to see the basics of how a priority queue works.

import asyncio
from asyncio import Queue, PriorityQueue
from typing import Tuple

async def worker(queue: Queue):
 while not queue.empty():
 work_item: Tuple[int, str] = await queue.get()
 print(f'Processing work item {work_item}')
 queue.task_done()

async def main():
 priority_queue = PriorityQueue()

 work_items = [(3, 'Lowest priority'),
 (2, 'Medium priority'),
 (1, 'High priority')]

 worker_task = asyncio.create_task(worker(priority_queue))

 for work in work_items:
 priority_queue.put_nowait(work)

 await asyncio.gather(priority_queue.join(), worker_task)

asyncio.run(main())

In the preceding listing, we create three work items: one with high priority, one with
medium priority, and one with low priority. We then add them in the priority queue in
reverse priority order, meaning we insert the lowest priority item first and the highest
last. In a normal queue, this would mean we’d process the lowest priority item first,
but if we run this code, we’ll see the following output:

Processing work item (1, 'High priority')
Processing work item (2, 'Medium priority')
Processing work item (3, 'Lowest priority')

This indicates that we processed the work items in the order of their priority, not how
they were inserted into the queue. Tuples work for simple cases, but if we have a lot of
data in our work items, a tuple could get messy and confusing. Is there a way for us to

Listing 12.5 Priority queues with tuples

305Priority queues
create a class of some sort that will work the way we want with heaps? We can, in fact, and
the tersest way to do this is by using a data class (we could also implement the proper
dunder methods __lt__, __le__, __gt__, and __ge__ if data classes aren’t an option).

import asyncio
from asyncio import Queue, PriorityQueue
from dataclasses import dataclass, field

@dataclass(order=True)
class WorkItem:
 priority: int
 data: str = field(compare=False)

async def worker(queue: Queue):
 while not queue.empty():
 work_item: WorkItem = await queue.get()
 print(f'Processing work item {work_item}')
 queue.task_done()

async def main():
 priority_queue = PriorityQueue()

 work_items = [WorkItem(3, 'Lowest priority'),
 WorkItem(2, 'Medium priority'),
 WorkItem(1, 'High priority')]

 worker_task = asyncio.create_task(worker(priority_queue))

 for work in work_items:
 priority_queue.put_nowait(work)

 await asyncio.gather(priority_queue.join(), worker_task)

asyncio.run(main())

In the preceding listing, we create a dataclass with ordered set to True. We then add a
priority integer and a string data field, excluding this from the comparison. This means
that when we add these work items to the queue, they’ll only be sorted by the priority
field. Running the code above, we can see that this is processed in the proper order:

Processing work item WorkItem(priority=1, data='High priority')
Processing work item WorkItem(priority=2, data='Medium priority')
Processing work item WorkItem(priority=3, data='Lowest priority')

Now that we know the basics of priority queues, let’s translate this back into the earlier
example of our order management API. Imagine we have some “power user” customers

Listing 12.6 Priority queues with data classes

306 CHAPTER 12 Asynchronous queues
who spend a lot of money on our e-commerce site. We want to ensure that their orders
always get processed first to ensure the best experience for them. Let’s adapt our ear-
lier example to use a priority queue for these users.

import asyncio
from asyncio import Queue, Task
from dataclasses import field, dataclass
from enum import IntEnum
from typing import List
from random import randrange
from aiohttp import web
from aiohttp.web_app import Application
from aiohttp.web_request import Request
from aiohttp.web_response import Response

routes = web.RouteTableDef()

QUEUE_KEY = 'order_queue'
TASKS_KEY = 'order_tasks'

class UserType(IntEnum):
 POWER_USER = 1
 NORMAL_USER = 2

@dataclass(order=True)
class Order:
 user_type: UserType
 order_delay: int = field(compare=False)

async def process_order_worker(worker_id: int, queue: Queue):
 while True:
 print(f'Worker {worker_id}: Waiting for an order...')
 order = await queue.get()
 print(f'Worker {worker_id}: Processing order {order}')
 await asyncio.sleep(order.order_delay)
 print(f'Worker {worker_id}: Processed order {order}')
 queue.task_done()

@routes.post('/order')
async def place_order(request: Request) -> Response:
 body = await request.json()
 user_type = UserType.POWER_USER if body['power_user'] == 'True' else

UserType.NORMAL_USER
 order_queue = app[QUEUE_KEY]
 await order_queue.put(Order(user_type, randrange(5)))
 return Response(body='Order placed!')

async def create_order_queue(app: Application):
 print('Creating order queue and tasks.')

Listing 12.7 A priority queue in a web application

An order class to represent
our work item with a priority
based on user type.

Parse the
request into
an order.

307Priority queues
 queue: Queue = asyncio.PriorityQueue(10)
 app[QUEUE_KEY] = queue
 app[TASKS_KEY] = [asyncio.create_task(process_order_worker(i, queue))
 for i in range(5)]

async def destroy_queue(app: Application):
 order_tasks: List[Task] = app[TASKS_KEY]
 queue: Queue = app[QUEUE_KEY]
 print('Waiting for pending queue workers to finish....')
 try:
 await asyncio.wait_for(queue.join(), timeout=10)
 finally:
 print('Finished all pending items, canceling worker tasks...')
 [task.cancel() for task in order_tasks]

app = web.Application()
app.on_startup.append(create_order_queue)
app.on_shutdown.append(destroy_queue)

app.add_routes(routes)
web.run_app(app)

The preceding listing looks very similar to our initial API to interact with a slow order
management system with the difference being that we use a priority queue and create
an Order class to represent an incoming order. When we get an incoming order, we
now expect it to have a payload with a “power user” flag set to True for VIP users and
False for other users. We can hit this endpoint with cURL like so

curl -X POST -d '{"power_user":"False"}' localhost:8080/order

passing in the desired power user value. If a user is a power user, their orders will
always be processed by any available workers ahead of regular users.

 One interesting corner case that can come up with priority queues is what happens
when you add two work items with the same priority right after one another. Do they
get processed by workers in the order they were inserted? Let’s make a simple exam-
ple to test this out.

import asyncio
from asyncio import Queue, PriorityQueue
from dataclasses import dataclass, field

@dataclass(order=True)
class WorkItem:
 priority: int
 data: str = field(compare=False)

Listing 12.8 A work item priority tie

308 CHAPTER 12 Asynchronous queues
async def worker(queue: Queue):
 while not queue.empty():
 work_item: WorkItem = await queue.get()
 print(f'Processing work item {work_item}')
 queue.task_done()

async def main():
 priority_queue = PriorityQueue()

 work_items = [WorkItem(3, 'Lowest priority'),
 WorkItem(3, 'Lowest priority second'),
 WorkItem(3, 'Lowest priority third'),
 WorkItem(2, 'Medium priority'),
 WorkItem(1, 'High priority')]

 worker_task = asyncio.create_task(worker(priority_queue))

 for work in work_items:
 priority_queue.put_nowait(work)

 await asyncio.gather(priority_queue.join(), worker_task)

asyncio.run(main())

In the preceding listing, we put three low-priority tasks in the queue first. We might
expect these to be processed in order of insertion, but we don’t exactly get that behav-
ior when we run this:

Processing work item WorkItem(priority=1, data='High priority')
Processing work item WorkItem(priority=2, data='Medium priority')
Processing work item WorkItem(priority=3, data='Lowest priority third')
Processing work item WorkItem(priority=3, data='Lowest priority second')
Processing work item WorkItem(priority=3, data='Lowest priority')

It turns out that we process the low-priority items in the reverse order we inserted
them. This is happening because the underlying heapsort algorithm is not a stable
sort algorithm, as equal items are not guaranteed to be in the same order of insertion.
Order when there are ties in priority may not be an issue, but if you care about it,
you’ll need to add a tie-breaker key that gives you the ordering you want. One simple
way to do this and preserve insertion order is to add an item count to the work item,
though there are many ways you could do this.

import asyncio
from asyncio import Queue, PriorityQueue
from dataclasses import dataclass, field

Listing 12.9 Breaking ties in a priority queue

309LIFO queues
@dataclass(order=True)
class WorkItem:
 priority: int
 order: int
 data: str = field(compare=False)

async def worker(queue: Queue):
 while not queue.empty():
 work_item: WorkItem = await queue.get()
 print(f'Processing work item {work_item}')
 queue.task_done()

async def main():
 priority_queue = PriorityQueue()

 work_items = [WorkItem(3, 1, 'Lowest priority'),
 WorkItem(3, 2, 'Lowest priority second'),
 WorkItem(3, 3, 'Lowest priority third'),
 WorkItem(2, 4, 'Medium priority'),
 WorkItem(1, 5, 'High priority')]

 worker_task = asyncio.create_task(worker(priority_queue))

 for work in work_items:
 priority_queue.put_nowait(work)

 await asyncio.gather(priority_queue.join(), worker_task)

asyncio.run(main())

In the previous listing, we add an order field to our WorkItem class. Then, when we
insert work items, we add an integer representing the order we insert it into the
queue. When there is a tie in priority, this will be the field that we order on. In our
case, this gives us the desired ordering of insertion for the low priority items:

Processing work item WorkItem(priority=1, order=5, data='High priority')
Processing work item WorkItem(priority=2, order=4, data='Medium priority')
Processing work item WorkItem(priority=3, order=1, data='Lowest priority')
Processing work item WorkItem(priority=3, order=2, data='Lowest priority second')
Processing work item WorkItem(priority=3, order=3, data='Lowest priority third')

We’ve now seen how to process work items in a FIFO queue order and in a priority
queue order. What if we want to process the most recently added work items first?
Next, let’s see how to do this with a LIFO queue.

12.3 LIFO queues
LIFO queues are more commonly referred to stacks in the computer science world.
We can imagine these like a stack of poker chips: As you place bets, you take chips
from the top of your stack (or “pop” them), and as you hopefully win hands, you put

310 CHAPTER 12 Asynchronous queues
chips back on the top of the stack (or “push” them). These are useful for when we
want our workers to process the most recently added items first.

 We won’t build much more than a simple example to demonstrate the order
that workers process elements. As for when to use a LIFO queue, it depends on the
order your application needs to process items in the queue. Do you need to process
the most recently inserted item in the queue first? In this case, you’ll want to use a
LIFO queue.

import asyncio
from asyncio import Queue, LifoQueue
from dataclasses import dataclass, field

@dataclass(order=True)
class WorkItem:
 priority: int
 order: int
 data: str = field(compare=False)

async def worker(queue: Queue):
 while not queue.empty():
 work_item: WorkItem = await queue.get()
 print(f'Processing work item {work_item}')
 queue.task_done()

async def main():
 lifo_queue = LifoQueue()

 work_items = [WorkItem(3, 1, 'Lowest priority first'),
 WorkItem(3, 2, 'Lowest priority second'),
 WorkItem(3, 3, 'Lowest priority third'),
 WorkItem(2, 4, 'Medium priority'),
 WorkItem(1, 5, 'High priority')]

 worker_task = asyncio.create_task(worker(lifo_queue))

 for work in work_items:
 lifo_queue.put_nowait(work)

 await asyncio.gather(lifo_queue.join(), worker_task)

asyncio.run(main())

In the preceding listing, we create a LIFO queue and a set of work items. We then
insert them one after another into the queue, pulling them out and processing them.
Running this, you’ll see the following output:

Listing 12.10 A LIFO queue

Get an item from the
queue, or “pop” it,
from the stack.

Put an item into the queue,
or “push” it, onto the stack.

311Summary
Processing work item WorkItem(priority=1, order=5, data='High priority')
Processing work item WorkItem(priority=2, order=4, data='Medium priority')
Processing work item WorkItem(priority=3, order=3, data='Lowest priority third')
Processing work item WorkItem(priority=3, order=2, data='Lowest priority second')
Processing work item WorkItem(priority=3, order=1, data='Lowest priority first')

Notice that we process items in the queue in the reverse order that we inserted them
into the queue. As this is a stack, this makes sense, since we’re processing the most
recently added work item to our queue first.

 We’ve now seen all the flavors of queue that the asyncio queue library has to offer.
Are there any pitfalls to using these queues? Can we just use them whenever we need a
queue in our application? We’ll address this in chapter 13.

Summary
 asyncio queues are task queues that are useful in workflows in which we have

coroutines that produce data and coroutines responsible for processing that data.
 Queues decouple data generation from data processing, as we can have a pro-

ducer put items into a queue that multiple workers can then process inde-
pendently and concurrently.

 We can use priority queues to give certain tasks priority over one another. This
is useful for instances in which certain work is of higher importance than others
and should always be handled first.

 asyncio queues are not distributed, not persistent, and not durable. If you need
any of these qualities, you’ll need to look towards a separate architectural com-
ponent, such as Celery or RabbitMQ.

Managing subprocesses
Many applications will never need to leave the world of Python. We’ll call code
from other Python libraries and modules or use multiprocessing or multithreading
to run Python code concurrently. However, not everything we’ll want to interact
with is written in Python. We may have an already built application that is written in
C++, Go, Rust, or some other language that provides better runtime characteristics
or is simply already there for us to use without reimplementing. We may also want
to use OS provided command-line utilities, such as GREP for searching through
large files, cURL for making HTTP requests, or any of the numbers of applications
we have at our disposal.

 In standard Python, we can use the subprocess module to run different applica-
tions in separate processes. Like most other Python modules, the standard subprocess

This chapter covers
 Running multiple subprocesses asynchronously

 Handling standard output from subprocesses

 Communicating with subprocesses using
standard input

 Avoiding deadlocks and other pitfalls with
subprocesses
312

313Creating a subprocess
API is blocking, making it incompatible with asyncio without multithreading or multi-
processing. asyncio provides a module modeled on the subprocess module to create
and manage subprocesses asynchronously with coroutines.

 In this chapter, we’ll learn the basics of creating and managing subprocesses with
asyncio by running an application written in a different language. We’ll also learn how
to handle input and output, reading standard output, and sending input from our
application to our subprocesses.

13.1 Creating a subprocess
Suppose you’d like to extend the functionality of an existing Python web API. Another
team within your organization has already built the functionality you’d like in a
command-line application for a batch processing mechanism they have, but there is a
major problem in that the application is written in Rust. Given the application already
exists, you don’t want to reinvent the wheel by reimplementing it in Python. Is there a
way we can still use this application’s functionality within our existing Python API?

 Since this application has a command-line interface, we can use subprocesses to reuse
this application. We’ll call the application via its command-line interface and run it in a
separate subprocess. We can then read the results of the application and use it within our
existing API as needed, saving us the trouble of having to reimplement the application.

 So how do we create a subprocess and execute it? asyncio provides two coroutine
functions out of the box to create subprocesses: asyncio.create_subprocess_shell
and asyncio.create_subprocess_exec. Each of these coroutine functions returns an
instance of a Process, which has methods to let us wait for the process to finish and
terminate the process as well as a few others. Why are there two coroutines to accom-
plish seemingly the same task? When would we want to use one over the other? The
create_subprocess_shell coroutine function creates a subprocess within a shell
installed on the system it runs on such as zsh or bash. Generally speaking, you’ll want
to use create_subprocess_exec unless you need to use functionality from the shell.
Using the shell can have pitfalls, such as different machines having different shells or
the same shell configured differently. This can make it hard to guarantee your appli-
cation will behave the same on different machines.

 To learn the basics of how to create a subprocess, let’s write an asyncio application to
run a simple command-line program. We’ll start with the ls program, which lists the con-
tents of the current directory to test things out, although we wouldn’t likely do this in the
real world. If you’re running on a Windows machine, replace ls -l with cmd /c dir.

import asyncio
from asyncio.subprocess import Process

async def main():
 process: Process = await asyncio.create_subprocess_exec('ls', '-l')

Listing 13.1 Running a simple command in a subprocess

314 CHAPTER 13 Managing subprocesses
 print(f'Process pid is: {process.pid}')
 status_code = await process.wait()
 print(f'Status code: {status_code}')

asyncio.run(main())

In the preceding listing, we create a Process instance to run the ls command with
create_subprocess_exec. We can also specify other arguments to pass to the pro-
gram by adding them after. Here we pass in -l, which adds some extra information
around who created the files in the directory. Once we’ve created the process, we
print out the process ID and then call the wait coroutine. This coroutine will wait
until the process finishes, and once it does it will return the subprocesses status
code; in this case it should be zero. By default, standard output from our subprocess
will be piped to standard output of our own application, so when you run this you
should see something like the following, differing based in what you have in your
directory:

Process pid is: 54438
total 8
drwxr-xr-x 4 matthewfowler staff 128 Dec 23 15:20 .
drwxr-xr-x 25 matthewfowler staff 800 Dec 23 14:52 ..
-rw-r--r-- 1 matthewfowler staff 0 Dec 23 14:52 __init__.py
-rw-r--r-- 1 matthewfowler staff 293 Dec 23 15:20 basics.py
Status code: 0

Note that the wait coroutine will block until the application terminates, and there are
no guarantees as to how long a process will take to terminate, let alone if it will termi-
nate at all. If you’re concerned about a runaway process, you’ll need to introduce a
timeout with asyncio.wait_for. There is a caveat to this, however. Recall that wait_
for will terminate the coroutine that it is running if it times out. You may assume that
this will terminate the process, but it does not. It only terminates the task that is wait-
ing for the process to finish, and not the underlying process.

 We’ll need a better way to shut down the process when it times out. Luckily,
Process has two methods that can help us out in this situation: terminate and kill.
The terminate method will send the SIGTERM signal to the subprocess, and kill will send
the SIGKILL signal. Note that both these methods are not coroutines and are also non-
blocking. They just send the signal. If you want to try and get the return code once
you’ve terminated the subprocess or you want to wait for any cleanup, you’ll need to call
wait again.

 Let’s test out terminating a long-running application with the sleep command
line application (for Windows users, replace 'sleep', '3' with the more complicated
'cmd', 'start', '/wait', 'timeout', '3'). We’ll create a subprocess that sleeps for
a few seconds and try to terminate it before it has a chance to finish.

315Creating a subprocess
import asyncio
from asyncio.subprocess import Process

async def main():
 process: Process = await asyncio.create_subprocess_exec('sleep', '3')
 print(f'Process pid is: {process.pid}')
 try:
 status_code = await asyncio.wait_for(process.wait(), timeout=1.0)
 print(status_code)
 except asyncio.TimeoutError:
 print('Timed out waiting to finish, terminating...')
 process.terminate()
 status_code = await process.wait()
 print(status_code)

asyncio.run(main())

In the preceding listing, we create a subprocess that will take 3 seconds to complete
but wrap it in a wait_for with a 1-second timeout. After 1 second, wait_for will throw
a TimeoutError, and in the except block we terminate the process and wait for it to
finish, printing out its status code. This should give us output similar to the following:

Process pid is: 54709
Timed out waiting to finish, terminating...
-15

One thing to watch out for when writing your own code is the wait inside of the
except block still has a chance of taking a long time, and you may want to wrap this in
a wait_for if this is a concern.

13.1.1 Controlling standard output

In the previous examples, the standard output of our subprocess went directly to our
application’s standard output. What if we don’t want this behavior? Perhaps we want to
do additional processing on the output, or maybe the output is inconsequential, and we
can safely ignore it. The create_subprocess_exec coroutine has a stdout parameter
that let us specify where we want standard output to go. This parameter takes in an enum
that lets us specify if we want to redirect the subprocess’s output to our own standard out-
put, pipe it to a StreamReader, or ignore it entirely by redirecting it to /dev/null.

 Let’s say we’re planning to run multiple subprocesses concurrently and echo their
output. We’d like to know which subprocess generated the output to avoid confusion.
To make this output easier to read, we’ll add some extra data about which subprocess
generated the output before writing it to our application’s standard output. We’ll pre-
pend the command that generated the output before printing it out.

Listing 13.2 Terminating a subprocess

316 CHAPTER 13 Managing subprocesses
 To do this, the first thing we’ll need to do is set the stdout parameter to asyncio
.subprocess.PIPE. This tells the subprocess to create a new StreamReader instance
we can use to read output from the process. We can then access this stream reader
with the Proccess.stdout field. Let’s try this with our ls -la command.

import asyncio
from asyncio import StreamReader
from asyncio.subprocess import Process

async def write_output(prefix: str, stdout: StreamReader):
 while line := await stdout.readline():
 print(f'[{prefix}]: {line.rstrip().decode()}')

async def main():
 program = ['ls', '-la']
 process: Process = await asyncio.create_subprocess_exec(*program,
 stdout=asyncio

 .subprocess.PIPE)
 print(f'Process pid is: {process.pid}')
 stdout_task = asyncio.create_task(write_output(' '.join(program),

process.stdout))

 return_code, _ = await asyncio.gather(process.wait(), stdout_task)
 print(f'Process returned: {return_code}')

asyncio.run(main())

In the preceding listing, we first create a coroutine write_output to prepend a prefix to
output from a stream reader line by line. Then, in our main coroutine, we create a sub-
process specifying we want to pipe stdout. We also create a task to run write_output,
passing in the process’s standard output stream reader, and run this concurrently with
wait. When running this, you’ll see the output prepended with the command:

Process pid is: 56925
[ls -la]: total 32
[ls -la]: drwxr-xr-x 7 matthewfowler staff 224 Dec 23 09:07 .
[ls -la]: drwxr-xr-x 25 matthewfowler staff 800 Dec 23 14:52 ..
[ls -la]: -rw-r--r-- 1 matthewfowler staff 0 Dec 23 14:52 __init__.py
Process returned: 0

One crucial aspect of using pipes, and dealing with subprocesses input and output in
general, is that they are susceptible to deadlocks. The wait coroutine is especially sus-
ceptible to this if our subprocess generates a lot of output, and we don’t properly con-
sume it. To demonstrate this, let’s look at a simple example by generating a Python
application that writes a lot of data to standard output and flushes it all at once.

Listing 13.3 Using the standard output stream reader

317Creating a subprocess
import sys

[sys.stdout.buffer.write(b'Hello there!!\n') for _ in range(1000000)]

sys.stdout.flush()

The preceding listing writes Hello there!! to the standard output buffer 1,000,000
times and flushes it all at once. Let’s see what happens if we use a pipe with this appli-
cation but don’t consume the data.

import asyncio
from asyncio.subprocess import Process

async def main():
 program = ['python3', 'listing_13_4.py']
 process: Process = await asyncio.create_subprocess_exec(*program,
 stdout=asyncio

 .subprocess.PIPE)
 print(f'Process pid is: {process.pid}')

 return_code = await process.wait()
 print(f'Process returned: {return_code}')

asyncio.run(main())

If you run the preceding listing, you’ll see the process pid printed out and then noth-
ing more. The application will hang forever, and you’ll need to forcefully terminate it.
If this does not happen on your system, simply increase the number of times we out-
put data in the output application, and you’ll eventually run into the problem.

 Our application seems simple enough, so why are we running into this deadlock?
The issue lies in how the stream reader’s buffer works. When the stream reader’s buf-
fer fills up, any more calls to write into it block until more space in the buffer becomes
available. While our stream reader buffer is blocked because its buffer is full, our pro-
cess is still trying to finish writing its large output to the stream reader. This makes our
process dependent on the stream reader becoming unblocked, but the stream reader
will never become unblocked because we never free up any space in the buffer. This is
a circular dependency and therefore a deadlock.

 Previously, we avoided this issue entirely by reading from the standard output
stream reader concurrently as we were waiting for the process to finish. This meant
that even if the buffer filled, we would drain it such that the process wouldn’t block
indefinitely waiting to write additional data. When dealing with pipes, you’ll need to
be careful about consuming stream data, so you don’t run into deadlocks.

Listing 13.4 Generating a lot of output

Listing 13.5 A deadlock with pipes

318 CHAPTER 13 Managing subprocesses
 You can also address this issue by avoiding use of the wait coroutine. In addition,
the Process class has another coroutine method called communicate that avoids
deadlocks entirely. This coroutine blocks until the subprocess completes and concur-
rently consumes standard output and standard error, returning the output complete
once the application finishes. Let’s adapt our previous example to use communicate
to fix the issue.

import asyncio
from asyncio.subprocess import Process

async def main():
 program = ['python3', 'listing_13_4.py']
 process: Process = await asyncio.create_subprocess_exec(*program,
 stdout=asyncio

 .subprocess.PIPE)
 print(f'Process pid is: {process.pid}')

 stdout, stderr = await process.communicate()
 print(stdout)
 print(stderr)
 print(f'Process returned: {process.returncode}')

asyncio.run(main())

When you run the preceding listing, you’ll see all the application’s output printed to
the console all at once (and None printed once, since we didn’t write anything to stan-
dard output). Internally, communicate creates a few tasks that constantly read output
from standard output and standard error into an internal buffer, thus, avoiding any
deadlock issues. While we avoid potential deadlocks, we have a serious drawback in
that we can’t interactively process output from standard output. If you’re in a situa-
tion in which you need to react to output from an application (perhaps you need to
terminate when you encounter a certain message or spawn another task), you’ll
need to use wait, but be careful to read output from your stream reader appropri-
ately to avoid deadlocks.

 An additional drawback is that communicate buffers all the data from standard
output and standard input in memory. If you’re working with a subprocess that could
produce a large amount of data, you run the risk of running out of memory. We’ll see
how to address these shortcomings in the next section.

13.1.2 Running subprocesses concurrently

Now that we know the basics of creating, terminating, and reading output from sub-
processes, it is added with our existing knowledge to run multiple applications con-
currently. Let’s imagine we need to encrypt multiple pieces of text that we have in

Listing 13.6 Using communicate

319Creating a subprocess
memory, and for security purposes we’d like to use the Twofish cipher algorithm. This
algorithm isn’t supported by the hashlib module, so we’ll need an alternative. We can
use the gpg (short for GNU Privacy Guard, which is a free software replacement of
PGP [pretty good privacy]) command-line application. You can download gpg at
https://gnupg.org/download/.

 First, let’s define the command we’ll want to use for our encryption. We can use
gpg by defining a passcode and setting an algorithm with command line parameters.
Then, it is a matter of echoing text to the application. For example, to encrypt the
text “encrypt this!”, we can run the following:

echo 'encrypt this!' | gpg -c --batch --passphrase 3ncryptm3 --cipher-algo TWOFISH

This should produce encrypted output to standard output similar to the following:

?
Q+??/??*??C??H`??`)R??u??7þ_{f{R;n?FE .?b5??(?i??????o\k?b<????`%

This will work on our command line, but it won’t work if we’re using create_
subprocess_exec, since we won’t have the | pipe operator available (create_
subprocess_shell will work if you truly need a pipe). So how can we pass in the text
we want to encrypt? In addition to allowing us to pipe standard output and standard
error, communicate and wait let us pipe in standard input as well. The communicate
coroutine also lets us specify input bytes when we start the application. If we’ve piped
standard input when we created our process, these bytes will get sent to the applica-
tion. This will work nicely for us; we’ll simply pass the string we want to encrypt with
the communicate coroutine.

 Let’s try this out by generating random pieces of text and encrypting them concur-
rently. We’ll create a list of 100 random text strings with 1,000 characters each and run
gpg on each of them concurrently.

import asyncio
import random
import string
import time
from asyncio.subprocess import Process

async def encrypt(text: str) -> bytes:
 program = ['gpg', '-c', '--batch', '--passphrase', '3ncryptm3',
 '--cipher-algo', 'TWOFISH']

 process: Process = await asyncio.create_subprocess_exec(*program,
 stdout=asyncio

 .subprocess.PIPE,
 stdin=asyncio

 .subprocess.PIPE)

Listing 13.7 Encrypting text concurrently

https://gnupg.org/download/

320 CHAPTER 13 Managing subprocesses
 stdout, stderr = await process.communicate(text.encode())
 return stdout

async def main():
 text_list = [''.join(random.choice(string.ascii_letters) for _ in

range(1000)) for _ in range(100)]

 s = time.time()
 tasks = [asyncio.create_task(encrypt(text)) for text in text_list]
 encrypted_text = await asyncio.gather(*tasks)
 e = time.time()

 print(f'Total time: {e - s}')
 print(encrypted_text)

asyncio.run(main())

In the preceding listing, we define a coroutine called encrypt that creates a gpg pro-
cess and sends in the text we want to encrypt with communicate. For simplicity, we just
return the standard output result and don’t do any error handling; in a real-world
application you’d likely want to be more robust here. Then, in our main coroutine we
create a list of random text and create an encrypt task for each piece of text. We then
run them all concurrently with gather and print out the total runtime and encrypted
bits of text. You can compare the concurrent runtime with the synchronous runtime
by putting await in front of asyncio.create_task and removing the gather, and you
should see a reasonable speedup.

 In this listing, we only had 100 pieces of text. What if we had thousands or more?
Our current code takes 100 pieces of text and tries to encrypt them all concurrently;
this means that we create 100 processes at the same time. This poses a challenge
because our machines are resource constrained, and one process could eat up a lot of
memory. In addition, spinning up hundreds or thousands of processes creates non-
trivial context-switching overhead.

 In our case we have another wrinkle caused by gpg, since it relies on shared state to
encrypt data. If you take the code in listing 13.7 and increase the number of pieces of
text into the thousands, you’ll likely start to see the following printed to standard error:

gpg: waiting for lock on `/Users/matthewfowler/.gnupg/random_seed'...

So not only have we created a lot of processes and all the overhead associated with
that, but we’ve also created processes that are actually blocked on shared state that
gpg needs. So how can we limit the number of processes running to circumvent this
issue? This is a perfect example of when a semaphore comes in handy. Since our work
is CPU-bound, adding a semaphore to limit the number of processes to the number of
CPU cores we have available makes sense. Let’s try this out by using a semaphore that

321Creating a subprocess
is limited to the number of CPU cores on our system and encrypting 1,000 pieces of
text to see if this can improve our performance.

import asyncio
import random
import string
import time
import os
from asyncio import Semaphore
from asyncio.subprocess import Process

async def encrypt(sem: Semaphore, text: str) -> bytes:
 program = ['gpg', '-c', '--batch', '--passphrase', '3ncryptm3',

'--cipher-algo', 'TWOFISH']

 async with sem:
 process: Process = await asyncio.create_subprocess_exec(*program,
 stdout=asyncio

 .subprocess.PIPE,
 stdin=asyncio

 .subprocess.PIPE)
 stdout, stderr = await process.communicate(text.encode())
 return stdout

async def main():
 text_list = [''.join(random.choice(string.ascii_letters) for _ in

range(1000)) for _ in range(1000)]
 semaphore = Semaphore(os.cpu_count())
 s = time.time()
 tasks = [asyncio.create_task(encrypt(semaphore, text)) for text in text_list]
 encrypted_text = await asyncio.gather(*tasks)
 e = time.time()

 print(f'Total time: {e - s}')

asyncio.run(main())

Comparing this with the runtime of 1,000 pieces of text with an unbounded set of
subprocesses you should see some performance improvement, alongside a reduc-
tion in memory usage. You might think this is similar to what we saw in chapter 6
with a ProcessPoolExecutor’s concept of maximum workers, and you’d be correct.
Internally, a ProcessPoolExecutor uses a semaphore to manage how many pro-
cesses run concurrently.

 We’ve now seen the basics around creating, terminating, and running multiple
subprocesses concurrently. Next, we’ll take a look at how to communicate with sub-
processes in a more interactive manner.

Listing 13.8 Subprocesses with a semaphore

322 CHAPTER 13 Managing subprocesses
13.2 Communicating with subprocesses
Up to this point, we’ve been using one-way, noninteractive communication with pro-
cesses. But what if we’re working with an application that may require user input? For
example, we may be asked for a passphrase, username, or any other number of inputs.

 In the case in which we know we only have one piece of input to deal with, using
communicate is ideal. We saw this previously using gpg to send in text to encrypt, but
let’s try it when the subprocess explicitly asks for input. We’ll first create a simple
Python program to ask for a username and echo it to standard output.

username = input('Please enter a username: ')
print(f'Your username is {username}')

Now, we can use communicate to input the username.

import asyncio
from asyncio.subprocess import Process

async def main():
 program = ['python3', 'listing_13_9.py']
 process: Process = await asyncio.create_subprocess_exec(*program,
 stdout=asyncio

 .subprocess.PIPE,
 stdin=asyncio

 .subprocess.PIPE)

 stdout, stderr = await process.communicate(b'Zoot')
 print(stdout)
 print(stderr)

asyncio.run(main())

When we run this code, we’ll see b'Please enter a username: Your username is Zoot\n'
printed to the console, as our application terminates right after our first user input. This
won’t work if we have a more interactive application. For example, take this application,
which repeatedly asks for user input and echoes it until the user types quit.

user_input = ''

while user_input != 'quit':
 user_input = input('Enter text to echo: ')
 print(user_input)

Listing 13.9 Echoing user input

Listing 13.10 Using communicate with standard input

Listing 13.11 An echo application

323Communicating with subprocesses
Since communicate waits until the process terminates, we’ll need to use wait and pro-
cess standard output and standard input concurrently. The Process class exposes
StreamWriter in a stdin field we can use when we’ve set standard input to PIPE. We
can use this concurrently with the standard output StreamReader to handle these
types of applications. Let’s see how to do this with the following listing, where we’ll
create an application to write a few pieces of text to our subprocess.

import asyncio
from asyncio import StreamWriter, StreamReader
from asyncio.subprocess import Process

async def consume_and_send(text_list, stdout: StreamReader, stdin:
StreamWriter):

 for text in text_list:
 line = await stdout.read(2048)
 print(line)
 stdin.write(text.encode())
 await stdin.drain()

async def main():
 program = ['python3', 'listing_13_11.py']
 process: Process = await asyncio.create_subprocess_exec(*program,
 stdout=asyncio

 .subprocess.PIPE,
 stdin=asyncio

 .subprocess.PIPE)

 text_input = ['one\n', 'two\n', 'three\n', 'four\n', 'quit\n']

 await asyncio.gather(consume_and_send(text_input, process.stdout,
process.stdin), process.wait())

asyncio.run(main())

In the preceding listing, we define a consume_and_send coroutine that reads standard
output until we receive the expected message for a user to specify input. Once we’ve
received this message, we dump the data to our own application’s standard output
and write the strings in 'text_list' to standard input. We repeat this until we’ve sent
all data into our subprocess. When we run this, we should see all of our output was
sent to our subprocess and properly echoed:

b'Enter text to echo: '
b'one\nEnter text to echo: '
b'two\nEnter text to echo: '
b'three\nEnter text to echo: '
b'four\nEnter text to echo: '

Listing 13.12 Using the echo application with subprocesses

324 CHAPTER 13 Managing subprocesses
The application we’re currently running has the luxury of producing deterministic
output and stopping at deterministic points to ask for input. This makes managing
standard output and standard input relatively straightforward. What if the application
we’re running in a subprocess only asks for input sometimes or could write a lot of
data before asking for input? Let’s adapt our sample echo program to be a bit more
complicated. We’ll have it echo user input between 1 and 10 times randomly, and we’ll
sleep for a half second between each echo.

from random import randrange
import time

user_input = ''

while user_input != 'quit':
 user_input = input('Enter text to echo: ')
 for i in range(randrange(10)):
 time.sleep(.5)
 print(user_input)

If we run this application as a subprocess with a similar approach to listing 13.12, it
will work because we’re still deterministic in that we eventually ask for input with a
known piece of text. However, the drawback of using this approach is that our code to
read from standard output and write to standard input is strongly coupled. This com-
bined with increasing complexity of our input/output logic can make the code hard
to follow and maintain.

 We can address this by decoupling reading standard output from writing data to
standard input, thus, separating the concerns of reading standard output and writ-
ing to standard input. We’ll create one coroutine to read standard output and one
coroutine to write text to standard input. Our coroutine that reads standard output
will set an event once it has received the input prompt we expect. Our coroutine
that writes to standard input will wait for that event to be set, then once it is, it will
write the specified text. We’ll then take these two coroutines and run them concur-
rently with gather.

import asyncio
from asyncio import StreamWriter, StreamReader, Event
from asyncio.subprocess import Process

async def output_consumer(input_ready_event: Event, stdout: StreamReader):
 while (data := await stdout.read(1024)) != b'':
 print(data)
 if data.decode().endswith("Enter text to echo: "):
 input_ready_event.set()

Listing 13.13 A more complex echo application

Listing 13.14 Decoupling output reading from input writing

325Summary
async def input_writer(text_data, input_ready_event: Event, stdin:
StreamWriter):

 for text in text_data:
 await input_ready_event.wait()
 stdin.write(text.encode())
 await stdin.drain()
 input_ready_event.clear()

async def main():
 program = ['python3', 'interactive_echo_random.py']
 process: Process = await asyncio.create_subprocess_exec(*program,
 stdout=asyncio

 .subprocess.PIPE,
 stdin=asyncio

 .subprocess.PIPE)

 input_ready_event = asyncio.Event()

 text_input = ['one\n', 'two\n', 'three\n', 'four\n', 'quit\n']

 await asyncio.gather(output_consumer(input_ready_event, process.stdout),
 input_writer(text_input, input_ready_event,

 process.stdin),
 process.wait())

asyncio.run(main())

In the preceding listing, we first define an output_consumer coroutine function. This
function takes in an input_ready event as well as a StreamReader that will reference
standard output and reads from standard output until we encounter the text Enter
text to echo:. Once we see this text, we know that the standard input of our subpro-
cess is ready to accept input, so we set the input_ready event.

 Our input_writer coroutine function iterates over our input list and waits on our
event for standard input to become ready. Once standard input is ready, we write out our
input and clear the event so that on the next iteration of our for loop we’ll block until
standard input becomes ready again. With this implementation we now have two corou-
tine functions, each with one clear responsibility: one to write to standard input and one
to read to standard output, increasing the readability and maintainability of our code.

Summary
 We can use asyncio’s subprocess module to launch subprocesses asynchro-

nously with create_subprocess_shell and create_subprocess_exec. When-
ever possible, prefer create_subprocess_exec, as it ensures consistent behavior
across machines.

 By default, output from subprocesses will go to our own application’s standard out-
put. If we need to read and interact with standard input and standard output, we’ll
need to configure them to pipe to StreamReader and StreamWriter instances.

326 CHAPTER 13 Managing subprocesses
 When we pipe standard output or standard error, we need to be careful to con-
sume output. If we don’t, we could deadlock our application.

 When we have a large amount of subprocesses to run concurrently, semaphores
can make sense to avoid abusing system resources and creating unneeded
contention.

 We can use the communicate coroutine method to send input to standard input
on a subprocess.

Advanced asyncio
We’ve learned the vast majority of what asyncio has to offer. Using the modules of
asyncio covered in previous chapters, you should be able to complete almost any
task you need. That said, there are still a few lesser-known techniques that you may
need to use, especially if you’re designing your own asyncio APIs.

 In this chapter, we’ll learn a smorgasbord of more advanced techniques avail-
able in asyncio. We’ll learn how to design APIs that can handle both coroutines and
regular Python functions, how to force iterations of the event loop, and how to pass
state between tasks without ever passing arguments. We’ll also dig into more details
on how exactly asyncio uses generators to fully understand what is happening

This chapter covers
 Designing APIs for both coroutines and functions

 Coroutine context locals

 Yielding to the event loop

 Using different event loop implementations

 The relationship between coroutines and
generators

 Creating your own event loop with custom
awaitables
327

328 CHAPTER 14 Advanced asyncio
under the hood. We’ll do this by implementing our own custom awaitables and using
them to build our own simple implementation of an event loop that can run multiple
coroutines concurrently.

 You’re not likely to need a lot of what is covered in this chapter in your day-to-day
development tasks unless you’re building new APIs or frameworks that rely on the
internals of asynchronous programming. These techniques are primarily for these
applications and for the curious who’d like a deeper understanding of the internals of
asynchronous Python.

14.1 APIs with coroutines and functions
If we’re building an API on our own, we may not want to assume that our users are
using our library in their own asynchronous application. They may not have migrated
yet, or they may not get any benefits from an async stack and will never migrate. How
can we design an API that accepts both coroutines and plain old Python functions to
accommodate these types of users?

 asyncio provides a couple of convenience functions to help us do this: asyncio
.iscoroutine and asyncio.iscoroutinefunction. These functions let us test if a
callable object is a coroutine or not, letting us apply different logic based on this.
These functions are the basis of how Django can handle both synchronous and asyn-
chronous views seamlessly, as we saw in chapter 9.

 To see this, let’s build a sample task runner class that accepts both functions and
coroutines. This class will let users add functions to an internal list that we’ll then run
concurrently (if they are coroutines) or serially (if they are normal functions) when
the user calls a start method on our task runner.

import asyncio

class TaskRunner:

 def __init__(self):
 self.loop = asyncio.new_event_loop()
 self.tasks = []

 def add_task(self, func):
 self.tasks.append(func)

 async def _run_all(self):
 awaitable_tasks = []

 for task in self.tasks:
 if asyncio.iscoroutinefunction(task):
 awaitable_tasks.append(asyncio.create_task(task()))
 elif asyncio.iscoroutine(task):
 awaitable_tasks.append(asyncio.create_task(task))

Listing 14.1 A task runner class

329APIs with coroutines and functions
 else:
 self.loop.call_soon(task)

 await asyncio.gather(*awaitable_tasks)

 def run(self):
 self.loop.run_until_complete(self._run_all())

if __name__ == "__main__":

 def regular_function():
 print('Hello from a regular function!')

 async def coroutine_function():
 print('Running coroutine, sleeping!')
 await asyncio.sleep(1)
 print('Finished sleeping!')

 runner = TaskRunner()
 runner.add_task(coroutine_function)
 runner.add_task(coroutine_function())
 runner.add_task(regular_function)

 runner.run()

In the preceding listing, our task runner creates a new event loop and an empty task
list. We then define an add method which just adds a function (or coroutine) to the
pending task list. Then, once a user calls run(), we kick off the _run_all method in
the event loop. Our _run_all method iterates through our task list and checks to see
if the function in question is a coroutine. If it is a coroutine, we create a task; other-
wise, we use the event loops call_soon method to schedule our plain function to run
on the next iteration of the event loop. Then once we’ve created all the tasks we need
to, we call gather on them and wait for them all to finish.

 We then define two functions: a normal Python function aptly named regular_
function and a coroutine named coroutine_function. We create an instance of
TaskRunner and add three tasks, calling coroutine_function twice to demonstrate
the two different ways we can reference a coroutine in our API. This gives us the fol-
lowing output:

Running coroutine, sleeping!
Running coroutine, sleeping!
Hello from a regular function!
Finished sleeping!
Finished sleeping!

This demonstrates that we’ve successfully run both coroutines and normal Python
functions. We’ve now built an API which can handle both coroutines as well as normal

330 CHAPTER 14 Advanced asyncio
Python functions, increasing the ways available for our end users to consume our API.
Next, we’ll look at context variables, which let us store a state that is local to a task
without having to explicitly pass it around as a function argument.

14.2 Context variables
Imagine we’re using a REST API built with thread-per-request web server. When a
request to the web server comes in, we may have common data about the user making
the request we need to keep track of, such as a user ID, access token, or other informa-
tion. We may be tempted to store this data globally across all threads in the web serv-
ers, but this has drawbacks. Chief among the drawbacks is that we need to handle the
mapping from a thread to its data as well as any locking to prevent race conditions. We
can resolve this by using a concept called thread locals. Thread locals are global state
that are specific to one thread. This data we set in a thread local will be seen by the
thread that set it and only by that thread, avoiding any thread to data mapping as
well as race conditions. While we won’t go into to details of thread locals, you can
read more about them in the documentation for the threading module available at
https://docs.python.org/3/library/threading.html#thread-local-data.

 Of course, in asyncio applications we usually have only one thread, so anything we
store as a thread local is available anywhere in our application. In PEP-567 (https://
www.python.org/dev/peps/pep-0567) the concept of context variables was introduced
to handle the concept of a thread local within a single-threaded concurrency model.
Context variables are similar to thread locals with the difference being that they are
local to a particular task instead of to a thread. This means that if a task creates a con-
text variable, any inner coroutine or task within that initial task will have access to that
variable. No other tasks outside of that chain will be able to see or modify the variable.
This lets us keep track of a state specific to one task without ever having to pass it as an
explicit argument.

 To see an example of this, we’ll create a simple server that listens for data from
connected clients. We’ll create a context variable to keep track of a connected user’s
address, and when a user sends a message, we’ll print out their address along with the
message they sent.

import asyncio
from asyncio import StreamReader, StreamWriter
from contextvars import ContextVar

class Server:
 user_address = ContextVar('user_address')

 def __init__(self, host: str, port: int):
 self.host = host
 self.port = port

Listing 14.2 A server with a context variables

Create a context
variable with the name
'user_address'.

https://www.python.org/dev/peps/pep-0567
https://www.python.org/dev/peps/pep-0567
https://www.python.org/dev/peps/pep-0567
https://docs.python.org/3/library/threading.html#thread-local-data

331Forcing an event loop iteration
 async def start_server(self):
 server = await asyncio.start_server(self._client_connected,
 self.host, self.port)
 await server.serve_forever()

 def _client_connected(self, reader: StreamReader, writer: StreamWriter):
 self.user_address.set(writer.get_extra_info('peername'))
 asyncio.create_task(self.listen_for_messages(reader))

 async def listen_for_messages(self, reader: StreamReader):
 while data := await reader.readline():
 print(f'Got message {data} from {self.user_address.get()}')

async def main():
 server = Server('127.0.0.1', 9000)
 await server.start_server()

asyncio.run(main())

In the preceding listing, we first create an instance of a ContextVar to hold our user’s
address information. Context variables require us to provide a string name, so here we
give it a descriptive name of user_address, primarily for debugging purposes. Then
in our _client_connected callback, we set the data of the context variable to the cli-
ent’s address. This will allow any tasks spawned from this parent task to have access
to the information we set; in this instance, this will be tasks that listen for messages
from the clients.

 In our listen_for_messages coroutine method we listen for data from our cli-
ents, and when we get it, we print it out alongside the address that we stored in our
context variable. When you run this application and connect with multiple clients and
send some messages, you should see output like the following:

Got message b'Hello!\r\n' from ('127.0.0.1', 50036)
Got message b'Okay!\r\n' from ('127.0.0.1', 50038)

Note that the port number of the address is different, indicating we got the message
from two separate clients on localhost. Even though we created only one context vari-
able, we’re still able to access unique data specific to each individual client. This gives
us a clean way to pass data among tasks without having to explicitly pass data into tasks
or other method calls within that task.

14.3 Forcing an event loop iteration
How the event loop operates internally is mostly outside of our control. It decides
when and how to execute coroutines and tasks. That said, there is a way to trigger an
event loop iteration if we need to do so. This can come in handy for long-running
tasks to avoid blocking the event loop (though you should also consider threads in
this case) or ensuring that a task starts instantly.

When a client connects,
store the client’s address

in the context variable.

Display the user’s message
alongside their address from

the context variable.

332 CHAPTER 14 Advanced asyncio
 Recall that if we’re creating several tasks, none of them will start to run until we hit
an await, which will trigger the event loop to schedule and start to run them. What if
we wanted each task to start running right away?

 asyncio provides an optimized idiom to suspend the current coroutine and force an
iteration of the event loop by passing in zero to asyncio.sleep. Let’s see how to use this
to start running tasks as soon as we create them. We’ll create two functions: one that
does not use sleep and one which does to compare the order in which things run.

import asyncio
from util import delay

async def create_tasks_no_sleep():
 task1 = asyncio.create_task(delay(1))
 task2 = asyncio.create_task(delay(2))
 print('Gathering tasks:')
 await asyncio.gather(task1, task2)

async def create_tasks_sleep():
 task1 = asyncio.create_task(delay(1))
 await asyncio.sleep(0)
 task2 = asyncio.create_task(delay(2))
 await asyncio.sleep(0)
 print('Gathering tasks:')
 await asyncio.gather(task1, task2)

async def main():
 print('--- Testing without asyncio.sleep(0) ---')
 await create_tasks_no_sleep()
 print('--- Testing with asyncio.sleep(0) ---')
 await create_tasks_sleep()

asyncio.run(main())

When we run the preceding listing, we’ll see the following output:

--- Testing without asyncio.sleep(0) ---
Gathering tasks:
sleeping for 1 second(s)
sleeping for 2 second(s)
finished sleeping for 1 second(s)
finished sleeping for 2 second(s)
--- Testing with asyncio.sleep(0) ---
sleeping for 1 second(s)
sleeping for 2 second(s)
Gathering tasks:
finished sleeping for 1 second(s)
finished sleeping for 2 second(s)

Listing 14.3 Forcing an event loop iteration

333Using different event loop implementations
We first create two tasks and then gather them without using asyncio.sleep(0), and
this runs as we would normally expect with our two delay coroutines not running
until our gather statement. Next, we insert an asyncio.sleep(0) after we create each
task. In the output, you’ll notice that the messages from the delay coroutine print
immediately before we call gather on the tasks. Using the sleep forces an event loop
iteration, which causes the code in our tasks to execute immediately.

 We’ve been almost exclusively using the asyncio implementation of an event loop.
However, other implementations exist that we can swap in if we have a need. Next,
let’s look at how to use different event loops.

14.4 Using different event loop implementations
asyncio provides a default implementation of an event loop that we have been using
up until this point, but it is entirely possible to use a different implementation that
may have different characteristics. There are a few ways to use a different implementa-
tion. One is to subclass the AbstractEventLoop class and implement its methods, cre-
ate an instance of this, then set it as the event loop with the asyncio.set_event_loop
function. If we’re building our own custom implementation this makes sense, but
there are off-the-shelf event loops we can use. Let’s look at one such implementation
called uvloop.

 So, what is uvloop, and why would you want to use it? uvloop is an implementation
of an event loop that heavily relies on the libuv library (https://libuv.org), which is
the backbone of the node.js runtime. Since libuv is implemented in C, it has better
performance than pure interpreted Python code. As a result, uvloop can be faster
than the default asyncio event loop. It tends to perform particularly well when writing
socket and stream-based applications. You can read more about benchmarks on the
project’s github site at https://github.com/magicstack/uvloop. Note that at the time
of writing, uvloop is only available on *Nix platforms.

 To get started, let’s first install the latest version of uvloop with the following
command:

pip -Iv uvloop==0.16.0

Once we’ve installed libuv, we’re ready to use it. We’ll make a simple echo server and
will use the uvloop implementation of the event loop.

import asyncio
from asyncio import StreamReader, StreamWriter
import uvloop

async def connected(reader: StreamReader, writer: StreamWriter):
 line = await reader.readline()
 writer.write(line)
 await writer.drain()

Listing 14.4 Using uvloop as an event loop

https://libuv.org
https://github.com/magicstack/uvloop

334 CHAPTER 14 Advanced asyncio
 writer.close()
 await writer.wait_closed()

async def main():
 server = await asyncio.start_server(connected, port=9000)
 await server.serve_forever()

uvloop.install()
asyncio.run(main())

In the preceding listing, we call uvloop.install(), which will switch out the event
loop for us. We can do this manually with the following code instead of calling install
if we’d like:

loop = uvloop.new_event_loop()
asyncio.set_event_loop(loop)

The important part is to call this before calling asyncio.run(main()). Internally,
asyncio.run calls get_event_loop that will create an event loop if one does not exist.
If we do this before properly installing uvloop, we’ll get a typical asyncio event loop,
and installation after the fact will have no effect.

 You may want to complete an exercise to benchmark if an event loop such as
uvloop helps performance characteristics of your application. The uvloop project on
Github has code that will run benchmarking both in terms of throughput and
requests per second.

 We’ve now seen how to use an existing event loop implementation instead of the
default event loop implementation. Next, we’ll see how to create our own event loop
completely outside of the confines of asyncio. This will let us gain a deeper under-
standing of how the asyncio event loop, as well as coroutines, tasks, and futures, work
under the hood.

14.5 Creating a custom event loop
One potentially non-obvious aspect of asyncio is that it is conceptually distinct from
async/await syntax and coroutines. The coroutine class definition isn’t even in the
asyncio library module!

 Coroutines and async/await syntax are concepts that are independent of the abil-
ity to execute them. Python comes with a default event loop implementation, asyncio,
which is what we have been using to run them until now, but we could use any event
loop implementation, even our own. In the previous section, we saw how we could
swap out the asyncio event loop with different implementations with potentially better
(or at least, different) runtime performance. Now, let’s see how to build our own sim-
ple event loop implementation that can handle non-blocking sockets.

Install the uvloop
event loop.

335Creating a custom event loop
14.5.1 Coroutines and generators

Before async and await syntax were introduced in Python 3.5, the relationship between
coroutines and generators was obvious. Let’s build a simple coroutine which sleeps for
1 second with the old syntax using decorators and generators to understand this.

import asyncio

@asyncio.coroutine
def coroutine():
 print('Sleeping!')
 yield from asyncio.sleep(1)
 print('Finished!')

asyncio.run(coroutine())

Instead of the async keyword, we apply the @asyncio.coroutine decorator to specify
the function is a coroutine function and instead of the await keyword we use the
yield from syntax we’re familiar with in generators. Currently, the async and await
keywords are just syntactic sugar around this construct.

14.5.2 Generator-based coroutines are deprecated

Note that generator based coroutines are currently scheduled to be removed entirely
in Python version 3.10. You may run into them in legacy codebases, but you should
not write new async code in this style anymore.

 So why do generators make sense at all for a single-threaded concurrency model?
Recall that a coroutine needs to suspend execution when it runs into a blocking opera-
tion to allow other coroutines to run. Generators suspend execution when they hit a
yield point, effectively pausing them midstream. This means if we have two generators,
we can interleave their execution. We let the first generator run until it hits a yield point
(or, in coroutine language, an await point), then we let the second generator run until
it hits its yield point, and we repeat this until both generators are exhausted. To see this
in action, let’s build a very simple example that interleaves two generators, using some
background methods we’ll need to use to build our event loop.

from typing import Generator

def generator(start: int, end: int):
 for i in range(start, end):
 yield i

Listing 14.5 Generator-based coroutines

Listing 14.6 Interleaving generator execution

336 CHAPTER 14 Advanced asyncio
one_to_five = generator(1, 5)
five_to_ten = generator(5, 10)

def run_generator_step(gen: Generator[int, None, None]):
 try:
 return gen.send(None)
 except StopIteration as si:
 return si.value

while True:
 one_to_five_result = run_generator_step(one_to_five)
 five_to_ten_result = run_generator_step(five_to_ten)
 print(one_to_five_result)
 print(five_to_ten_result)

 if one_to_five_result is None and five_to_ten_result is None:
 break

In the preceding listing, we create a simple generator that counts from a start integer
to an end integer, yielding values along the way. We then create two instances of that
generator: one that counts from one to four and one that counts from five to nine.

 We also create a convenience method, run_generator_step, to handle running
one step of the generator. The generator class has a send method, which advances the
generator to the next yield statement, running all code up to that point. After we call
send, we can consider the generator paused until we call send again, letting us run
code in other generators. The send method takes in a parameter for any values we
want to send as arguments to the generator. Here we don’t have any, so we just pass in
None. Once a generator reaches its end, it raises a StopIteration exception. This
exception contains any return value from the generator, and here we return it. Finally,
we create a loop and run each generator step by step. This has the effect of interleav-
ing the two generators at the same time, giving us the following output:

1
5
2
6
3
7
4
8
None
9
None
None

Imagine instead of yielding numbers, we yielded to some slow operation. Once the
slow operation was complete, we could resume the generator, picking up where we
left off, while other generators that aren’t paused can run other code. This is the core

Run one
step of the
generator.

Interleave
execution of both
generators.

337Creating a custom event loop
of how the event loop works. We keep track of generators that have paused their exe-
cution on a slow operation. Then, any other generators can run while that other gen-
erator is paused. Once the slow operation is finished, we can wake up the previous
generator by calling send on it again, advancing to its next yield point.

 As mentioned, async and await are just syntactical sugar around generators. We
can demonstrate this by creating a coroutine instance and calling send on it. Let’s
make an example with two coroutines that just print simple messages and a third
coroutine, which calls the other two with await statements. We’ll then use the genera-
tor’s send method to see how to call our coroutines.

async def say_hello():
 print('Hello!')

async def say_goodbye():
 print('Goodbye!')

async def meet_and_greet():
 await say_hello()
 await say_goodbye()

coro = meet_and_greet()

coro.send(None)

When we run the code in the preceding listing, we’ll see the following output:

Hello!
Goodbye!
Traceback (most recent call last):
 File "chapter_14/listing_14_7.py", line 16, in <module>
 coro.send(None)
StopIteration

Calling send on our coroutine runs all our coroutines in meet_and_greet. Since there
is nothing that we actually “pause” on waiting for a result, as all code is run right away,
even in our await statements.

 So how do we get a coroutine to pause and wake up on a slow operation? To do
this, let’s define how to make a custom awaitable, so we can use await syntax instead
of generator-style syntax.

14.5.3 Custom awaitables

How do we define awaitables, and how do they work under the hood? We can define
an awaitable by implementing the __await__ method on a class, but how do we imple-
ment this method? What should it even return?

Listing 14.7 Using coroutines with send

338 CHAPTER 14 Advanced asyncio
 The only requirement of the __await__ method is that it returns an iterator, and
by itself this requirement isn’t very helpful. Can we make the concept of an iterator
make sense in the context of an event loop? To understand how this works, we’ll
implement our own version of an asyncio Future we’ll call CustomFuture, which
we’ll then use in our own event loop implementation.

 Recall that a Future is a wrapper around a value that may be there at some point in
the future, having two states: complete and incomplete. Imagine we’re in an infinite
event loop, and we want to check if a future is done with an iterator. If the operation is
finished, we can just return the result and the iterator is done. If it isn’t done, we need
some way of saying “I’m not finished; check me again later,” and in this case, the itera-
tor can just yield itself!

 This is how we’ll implement our __await__ method for our CustomFuture class. If
the result is not there yet, our iterator just returns the CustomFuture itself; if the result
is there, we return the result, and the iterator is complete. If it isn’t done, we just yield
self. If the result isn’t there, the next time we attempt to advance the iterator we run
the code inside of the __await__ again. In this implementation, we’ll also implement
a method to add a callback to our future that runs when the value is set. We’ll need
this later when implementing our event loop.

class CustomFuture:

 def __init__(self):
 self._result = None
 self._is_finished = False
 self._done_callback = None

 def result(self):
 return self._result

 def is_finished(self):
 return self._is_finished

 def set_result(self, result):
 self._result = result
 self._is_finished = True
 if self._done_callback:
 self._done_callback(result)

 def add_done_callback(self, fn):
 self._done_callback = fn

 def __await__(self):
 if not self._is_finished:
 yield self
 return self.result()

In the preceding listing, we define our CustomFuture class with __await__ defined
alongside methods to set the result, get the result, and add a callback. Our __await__

Listing 14.8 A custom future implementation

339Creating a custom event loop
method checks to see if the future is finished. If it is, we just return the result, and the
iterator is done. If it is not finished, we return self, meaning our iterator will con-
tinue to infinitely return itself until the value is set. In terms of generators, this means
we can keep calling __await__ forever until someone sets the value for us.

 Let’s look at a small example of this to get a sense for how the flow might look in
an event loop. We’ll create a custom future and set the value of it after a few iterations,
calling __await__ at each iteration.

from listing_14_8 import CustomFuture

future = CustomFuture()

i = 0

while True:
 try:
 print('Checking future...')
 gen = future.__await__()
 gen.send(None)
 print('Future is not done...')
 if i == 1:
 print('Setting future value...')
 future.set_result('Finished!')
 i = i + 1
 except StopIteration as si:
 print(f'Value is: {si.value}')
 break

In the preceding listing, we create a custom future and a loop that calls the await
method and then attempts to advance the iterator. If the future is done, a StopIteration
exception gets thrown with the result of the future. Otherwise, our iterator will just
return the future, and we move on to the next iteration of the loop. In our example,
we set the value after a couple of iterations, giving us the following output:

Checking future...
Future is not done...
Checking future...
Future is not done...
Setting future value...
Checking future...
Value is: Finished!

This example is just to reinforce the way to think about awaitables, we wouldn’t write
code like this in real life, as we’d normally want something else to set the result of our
future. Next, let’s extend this to do something more useful with sockets and the selec-
tor module.

Listing 14.9 The custom future in a loop

340 CHAPTER 14 Advanced asyncio
14.5.4 Using sockets with futures

In chapter 3, we learned a bit about the selector module, which lets us register call-
backs to be run when a socket event, such as a new connection or data being ready to
read, occurs. Now we’ll expand on this knowledge by using our custom future class
to interact with selectors, setting results on futures when socket events occur.

 Recall that selectors let us register callbacks to run when an event, such as a read or
write, occurs on a socket. This concept nicely fits in with the future we’ve built. We can
register the set_result method as a callback when a read happens on a socket. When
we want to asynchronously wait for a result from a socket, we create a new future, reg-
ister that future’s set_result method with the selector module for that socket, and
return the future. We can then await it, and we’ll get the result when the selector calls
the callback for us.

 To see this in action, let’s build an application that listens for a connection from a
non-blocking socket. Once we get a connection, we’ll just return it and let the applica-
tion terminate.

import functools
import selectors
import socket
from listing_14_8 import CustomFuture
from selectors import BaseSelector

def accept_connection(future: CustomFuture, connection: socket):
 print(f'We got a connection from {connection}!')
 future.set_result(connection)

async def sock_accept(sel: BaseSelector, sock) -> socket:
 print('Registering socket to listen for connections')
 future = CustomFuture()
 sel.register(sock, selectors.EVENT_READ,

functools.partial(accept_connection, future))
 print('Pausing to listen for connections...')
 connection: socket = await future
 return connection

async def main(sel: BaseSelector):
 sock = socket.socket()
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 sock.bind(('127.0.0.1', 8000))
 sock.listen()
 sock.setblocking(False)

 print('Waiting for socket connection!')
 connection = await sock_accept(sel, sock)
 print(f'Got a connection {connection}!')

Listing 14.10 Sockets with custom futures

Set the connection socket
on the future when a

client connects.

Register the
accept_connection

function with the selector
and pause to wait for a

client connection.

Wait for
the client to
connect.

341Creating a custom event loop
selector = selectors.DefaultSelector()

coro = main(selector)

while True:
 try:
 state = coro.send(None)

 events = selector.select()

 for key, mask in events:
 print('Processing selector events...')
 callback = key.data
 callback(key.fileobj)
 except StopIteration as si:
 print('Application finished!')
 break

In the preceding listing, we first define an accept_connection function. This func-
tion takes in a CustomFuture as well as a client socket. We print a message that we have
a socket and then set that socket as the result of the future. We then define sock_
accept; this function takes a server socket as well as a selector and registers accept_
connection (bound to a CustomFuture) as a callback on read events from the server
socket. We then await the future, pausing until we have a connection, and then
return it.

 We then define a main coroutine function. In this function, we create a server
socket and then await the sock_accept coroutine until we receive a connection, log-
ging a message and terminating once we do so. With this we can build a minimally via-
ble event loop. We create an instance of our main coroutine function, passing in a
selector and then loop forever. In our loop, we first call send to advance our main
coroutine to its first await statement, then we call selector.select, which will
block until a client connects. Then we call any registered callbacks; in our case, this
will always be accept_connection. Once someone connects, we’ll call send a second
time, which will advance all coroutines again and will let our application finish. If
you run the following code and connect over Telnet, you should see output similar
to the following:

Waiting for socket connection!
Registering socket to listen for connections
Pausing to listen for connections...
Processing selector events...
We got a connection from <socket.socket fd=4, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 8000)>!
Got a connection <socket.socket fd=4, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 8000)>!
Application finished!

We’ve now built a basic asynchronous application using only the async and await key-
words without any asyncio! Our while loop at the end is a simplistic event loop and

Loop forever, calling send on
the main coroutine. Each time
a selector event occurs, run
the registered callback.

342 CHAPTER 14 Advanced asyncio
demonstrates the key concept of how the asyncio event loop works. Of course, we
can’t do too much concurrently without the ability to create tasks.

14.5.5 A task implementation

Tasks are a combination of a future and a coroutine. A task’s future is complete when
the coroutine it wraps finishes. With inheritance, we can wrap a coroutine in a future
by subclassing our CustomFuture class and writing a constructor that takes a corou-
tine, but we still need a way to run that coroutine. We can do this by building a
method we’ll call step that will call the coroutine’s send method and keep track of the
result, effectively running one step of our coroutine per call.

 One thing we’ll need to keep in mind as we implement this method is that send
may also return other futures. To handle this, we’ll need to use the add_done_callback
method of any futures that send returns. We’ll register a callback that will call send on
the task’s coroutine with the resulting value when the future is finished.

from chapter_14.listing_14_8 import CustomFuture

class CustomTask(CustomFuture):

 def __init__(self, coro, loop):
 super(CustomTask, self).__init__()
 self._coro = coro
 self._loop = loop
 self._current_result = None
 self._task_state = None
 loop.register_task(self)

 def step(self):
 try:
 if self._task_state is None:
 self._task_state = self._coro.send(None)
 if isinstance(self._task_state, CustomFuture):
 self._task_state.add_done_callback(self._future_done)
 except StopIteration as si:
 self.set_result(si.value)

 def _future_done(self, result):
 self._current_result = result
 try:
 self._task_state = self._coro.send(self._current_result)
 except StopIteration as si:
 self.set_result(si.value)

In the preceding listing, we subclass CustomFuture and create a constructor that
accepts a coroutine and an event loop, registering the task with the loop by calling
loop.register_task. Then, in our step method, we call send on the coroutine, and

Listing 14.11 A task implementation

Register the
task with the
event loop.

Run one step of
the coroutines. If the coroutine

yields a future,
add a done
callback.

Once the future is
done, send the result
to the coroutine.

343Creating a custom event loop
if the coroutine yields a CustomFuture, we add a done callback. In this case, our done
callback will take the result of the future and send it to the coroutine we wrap, advanc-
ing it when the future is complete.

14.5.6 Implementing an event loop

We now know how to run coroutines and have created implementations of both
futures and tasks, giving us all the building blocks we need to build an event loop.
What does our event API need to look like to build an asynchronous socket applica-
tion? We’ll need a few methods with different purposes:

 We’ll need a method to accept a main entry coroutine, much like asyncio.run.
 We’ll need methods to accept connections, receive data, and close a socket.

These methods will register and deregister sockets with a selector.
 We’ll need a method to register a CustomTask; this is just an implementation of

the method we used in the CustomTask constructor previously.

First, let’s talk about our main entry point; we’ll call this method run. This is the pow-
erhouse of our event loop. This method will take a main entrypoint coroutine and call
send on it, keeping track of the result of the generator in an infinite loop. If the main
coroutine produces a future, we’ll add a done callback to keep track of the result of
the future once it is complete. Once we do this, we’ll run the step method of any reg-
istered tasks and then call the selector waiting for any socket events to fire. Once they
run, we’ll run the associated callbacks and trigger another iteration of the loop. If at
any point our main coroutine throws a StopIteration exception, we know our appli-
cation is finished, and we can exit returning the value inside the exception.

 Next, we’ll need coroutine methods to accept socket connections and receive data
from a client socket. Our strategy here will be to create a CustomFuture instance that a
callback will set the result of, registering this callback with the selector to fire on read
events. We’ll then await this future.

 Finally, we’ll need a method to register tasks with the event loop. This method will
simply take a task and add it to a list. Then, on each iteration of the event loop we’ll
call step on any tasks we’ve registered with the event loop, advancing them if they are
ready. Implementing all of this will yield a minimum viable event loop.

import functools
import selectors
from typing import List
from chapter_14.listing_14_11 import CustomTask
from chapter_14.listing_14_8 import CustomFuture

class EventLoop:
 _tasks_to_run: List[CustomTask] = []

Listing 14.12 An event loop implementation

344 CHAPTER 14 Advanced asyncio
 def __init__(self):
 self.selector = selectors.DefaultSelector()
 self.current_result = None

 def _register_socket_to_read(self, sock, callback):
 future = CustomFuture()
 try:
 self.selector.get_key(sock)
 except KeyError:
 sock.setblocking(False)
 self.selector.register(sock, selectors.EVENT_READ,

functools.partial(callback, future))
 else:
 self.selector.modify(sock, selectors.EVENT_READ,

functools.partial(callback, future))
 return future

 def _set_current_result(self, result):
 self.current_result = result

 async def sock_recv(self, sock):
 print('Registering socket to listen for data...')
 return await self._register_socket_to_read(sock, self.recieved_data)

 async def sock_accept(self, sock):
 print('Registering socket to accept connections...')
 return await self._register_socket_to_read(sock,

self.accept_connection)

 def sock_close(self, sock):
 self.selector.unregister(sock)
 sock.close()

 def register_task(self, task):
 self._tasks_to_run.append(task)

 def recieved_data(self, future, sock):
 data = sock.recv(1024)
 future.set_result(data)

 def accept_connection(self, future, sock):
 result = sock.accept()
 future.set_result(result)

 def run(self, coro):
 self.current_result = coro.send(None)

 while True:
 try:
 if isinstance(self.current_result, CustomFuture):
 self.current_result.add_done_callback(

self._set_current_result)
 if self.current_result.result() is not None:
 self.current_result =

coro.send(self.current_result.result())

Register a socket
with the selector
for read events.

Register a socket
to receive data
from a client.

Register a
socket to accept
connections
from a client.

Register a task
with the event
loop.

Run a main coroutine until
it finishes, executing any
pending tasks at each
iteration.

345Creating a custom event loop
 else:
 self.current_result = coro.send(self.current_result)
 except StopIteration as si:
 return si.value

 for task in self._tasks_to_run:
 task.step()

 self._tasks_to_run = [task for task in self._tasks_to_run if not
task.is_finished()]

 events = self.selector.select()
 print('Selector has an event, processing...')
 for key, mask in events:
 callback = key.data
 callback(key.fileobj)

We first define a _register_socket_to_read convenience method. This method
takes in a socket and a callback and registers them with the selector if the socket isn’t
already registered. If the socket is registered, we replace the callback. The first argu-
ment to our callback needs to be a future, and in this method we create a new one and
partially apply it to the callback. Finally, we return the future bound to the callback,
meaning callers of our method can now await it and suspend execution until the call-
back is complete.

 We then define coroutine methods to receive socket data and accept new client
connections, sock_recv, and sock_accept, respectively. These methods call the
_register_socket_to_read convenience method we just defined, passing in call-
backs that handle data and new connections when they are available (these methods
just set this data on a future).

 Finally, we build our run method. This method accepts our main entry point
coroutine and calls send on it, advancing it to its first suspension point and storing the
result from send. We then kick off an infinite loop, first checking to see if the current
result from the main coroutine is a CustomFuture; if it is, we register a callback to
store the result, which we can then send back to the main coroutine if needed. If the
result is not a CustomFuture, we just send it to the coroutine. Once we’ve controlled
the flow of our main coroutine, we run any tasks that are registered with our event
loop by calling step on them. Once we’ve run our tasks, we remove any that are fin-
ished from our task list.

 Finally, we call selector.select, blocking until there are any events fired on the
sockets we’ve registered. Once we have a socket event, or set of events, we loop
through them, calling the callback we registered for that socket back in _register_
socket_to_read. In our implementation, any socket event will trigger an iteration of
the event loop. We’ve now implemented our EventLoop class, and we’re ready to cre-
ate our first asynchronous application without asyncio!

346 CHAPTER 14 Advanced asyncio
14.5.7 Implementing a server with a custom event loop

Now that we have an event loop, we’ll build a very simple server application to log
messages we receive from connected clients. We’ll create a server socket and write a
coroutine function to listen for connections in an infinite loop. Once we have a con-
nection, we’ll create a task to read data from that client until they disconnect. This will
look very similar to what we built in chapter 3, with the main difference being that
here we use our own event loop instead of asyncio’s.

import socket

from chapter_14.listing_14_11 import CustomTask
from chapter_14.listing_14_12 import EventLoop

async def read_from_client(conn, loop: EventLoop):
 print(f'Reading data from client {conn}')
 try:
 while data := await loop.sock_recv(conn):
 print(f'Got {data} from client!')
 finally:
 loop.sock_close(conn)

async def listen_for_connections(sock, loop: EventLoop):
 while True:
 print('Waiting for connection...')
 conn, addr = await loop.sock_accept(sock)
 CustomTask(read_from_client(conn, loop), loop)
 print(f'I got a new connection from {sock}!')

async def main(loop: EventLoop):
 server_socket = socket.socket()
 server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 server_socket.bind(('127.0.0.1', 8000))
 server_socket.listen()
 server_socket.setblocking(False)

 await listen_for_connections(server_socket, loop)

event_loop = EventLoop()
event_loop.run(main(event_loop))

In the preceding listing, we first define a coroutine function to read data from a client
in a loop, printing the results as we get them. We also define a coroutine function to
listen for client connections from a server socket in an infinite loop, creating a
CustomTask to concurrently listen for data from that client. In our main coroutine, we

Listing 14.13 Implementing a server

Read data from
the client, and
log it.

Listen for client connections,
creating a task to read data

when a client connects.

Create an event loop instance,
and run the main coroutines.

347Creating a custom event loop
create a server socket and call our listen_for_connections coroutine function. Then,
we create an instance of our event loop implementation, passing in the main corou-
tine to the run method.

 Running this code, you should be able to connect with multiple clients concur-
rently over Telnet and send messages to the server. For example, two clients connect-
ing and sending a few test messages may look something like the following:

Waiting for connection...
Registering socket to accept connections...
Selector has an event, processing...
I got a new connection from <socket.socket fd=4, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 8000)>!
Waiting for connection...
Registering socket to accept connections...
Reading data from client <socket.socket fd=7, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 8000),
raddr=('127.0.0.1', 58641)>

Registering socket to listen for data...
Selector has an event, processing...
Got b'test from client one!\r\n' from client!
Registering socket to listen for data...
Selector has an event, processing...
I got a new connection from <socket.socket fd=4, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 8000)>!
Waiting for connection...
Registering socket to accept connections...
Reading data from client <socket.socket fd=8, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 8000),
raddr=('127.0.0.1', 58645)>

Registering socket to listen for data...
Selector has an event, processing...
Got b'test from client two!\r\n' from client!
Registering socket to listen for data...

In the above output, one client connects, triggering the selector to resume listen_
for_connections from its suspension point on loop.sock_accept. This also registers
the client connection with the selector when we create a task for read_from_client.
The first client sends the message "test from client one!", which again triggers the
selector to fire any callbacks. In this case we advance the read_from_client task, out-
putting our client’s message to the console. Then, a second client connects, and the
same process happens again.

 While this isn’t a production-worthy event loop by any stretch of the imagination
(we don’t really handle exceptions properly, and we only allow socket events to trig-
ger event loop iteration, among other shortcomings), this should give you an idea as
to how the inner workings of the event loop and asynchronous programming in
Python work. An exercise would be to take the concepts here and build a production-
ready event loop. Perhaps you can create the next-generation asynchronous Python
framework.

348 CHAPTER 14 Advanced asyncio
Summary
 We can check if a callable argument is a coroutine to create APIs that handle

both coroutines and regular functions.
 Use context locals when you have state that you need to pass between corou-

tines, but you want this state independent from your parameters.
 asyncio’s sleep coroutine can be used to force an iteration of the event loop.

This is useful when we need to trigger the event loop to do something but don’t
have a natural await point.

 asyncio is merely Python’s standard implementation of an event loop. Other
implementations exist, such as uvloop, and we can change them as we wish and
still use async and await syntax. We can also create our own event loop if we’d
like to design something with different characteristics to better suit our needs.

index
A

AbstractEventLoop class 333
AbstractServer object 209
accept_connection

function 341
accept method 57
acquire method 170, 273
add_done_callback method 342
add method 329
add_one function 25
add_signal_handler method 69
_add_user function 213
after method 183
aiohttp

making web request with
79–80

overview 76
REST (representational

state transfer) API
with 218–228

aiohttp server basics 219–220
comparing aiohttp with

Flask 226–228
connecting to database

and returning results
220–226

defined 218
setting timeouts with 81–82

aio-libs project 76
aiomysql library 103
ALL_COMPLETED option 93
APIs

blocking 44–45
REST (representational state

transfer) API 218–228

aiohttp server basics
219–220

comparing aiohttp with
Flask 226–228

connecting to database
and returning results
220–226

defined 218
endpoint with Starlette

230–231
with coroutines and

functions 328–330
Application class 221
apply_async method 132
apply method 132
Array object 151
arrays 146
as_completed function 90–91
ASGI (asynchronous server gate-

way interface) 228–230
with Starlette 230–234

REST endpoint 230–231
WebSockets 231–234

WSGI (web server gateway
interface) compared
to 228–230

async
code in synchronous

views 242
keywork, creating coroutines

with 24–26
async for loops 126
asynchronous context

managers 77–82, 115
making web request with

aiohttp 79–80

setting timeouts with
aiohttp 81–82

asynchronous generators
122–127

overview 123–124
with streaming cursor

124–127
asynchronous queues 290–311

in web applications 297–300
LIFO (last in, first out)

queues 309–311
priority queues 303–309
web crawler queues 300–303

asynchronous results 132–133
asynchronous view 240–242
asyncio 1–49

advanced techniques
327–348

APIs with coroutines and
functions 328–330

context variables 330–331
creating custom event

loop 334–347
forcing event loop

iteration 331–333
using different event loop

implementations
333–334

application 50–74
blocking sockets 51–53
connecting to server with

Telnet 53–57
echo server on asyncio

event loop 64–69
non-blocking sockets 57–61
shutting down 69–73
349

INDEX350
asyncio (continued)
using selectors module to

build socket event
loop 61–64

awaitables 37–39
futures 37–38
relationship between

futures, tasks, and
coroutines 39

building responsive UI
with 178–185

canceling tasks 34–35
concurrency 4–5
coroutines 24–27

creating with async
keyword 24–26

pausing execution with
await keyword 26–27

pitfalls of tasks and 42–45
debug mode 47–49

using asyncio.run 47
using command line

arguments 47
using environment

variables 48–49
event loop 45–47

accessing 46–47
creating manually 46

global interpreter lock
(GIL) 12–17

input/output (I/O)-bound
and CPU-bound 3–4

long-running coroutines with
sleep 27–29

MapReduce using 136–144
Google Books Ngram

dataset 139–140
mapping and reducing with

asyncio 140–144
simple MapReduce

example 137–139
measuring coroutine execu-

tion time with
decorators 40–42

microservices and 246
multitasking 7

cooperative multitasking
7–8

preemptive multitasking 7
overview 2–3
parallelism 5–7
processes 8
process pool executors

with 133–136
defined 133–134

partial function application
135–136

with asyncio event
loop 134–135

running concurrently with
tasks 30–33

creating tasks 30–31
running multiple tasks

concurrently 31–33
setting timeout and canceling

with wait_for 35–37
single-threaded

concurrency 17–21
threads with 164–169

default executors 168–169
overview 8–11
requests library 164–165
thread pool executors

165–167
@asyncio.coroutine

decorator 335
asyncio.create_task function 30
asyncio.get_event_loop

function 46
asyncio.get_running_loop

function 46
asyncio.iscoroutine

function 328
asyncio.new_event_loop

method 46
asyncio.queues.QueueEmpty

exception 294
asyncio.run 47
asyncio.run_coroutine_thread-

safe function 179
asyncio.set_event_loop

function 333
asyncio.shield function 36
asyncio.sleep function 27
async keyword 24, 335
asyncpg

executing queries with
107–109

overview 103
transactions with 118–122

manually managing
transactions 120–122

nested transactions
119–120

asyncpg.connect function 104
asyncpg Record object 109
async with block 80, 116, 276
awaitables 37–39

custom 337–339
futures 37–38

relationship between futures,
tasks, and coroutines 39

await keyword 26–27, 335
__await__ method 39, 338
AWS (Amazon Web

Servers) 140

B

backend-for-frontend pattern
implementing 253–258
overview 246–247

BaseSelector class 61
base services 249–253
blocking APIs 44–45
blocking sockets 51–53, 56–57
blocking work 240–242
bounded semaphores 278–280
brew install telnet command 53
bugs, single-threaded

concurrency 268–272
bursty code 278

C

call_soon method 329
canceling tasks

overview 34–35
with wait_for 35–37

cancel method 96, 162
cbreak mode 202
_change_state method 288
channels library 235
chat clients 211–216
chat servers 211–216
ChatServerState class 211
checkout_customer function 293
circuit breaker pattern 261–265
clear method 281
ClientEchoThread class 163
close method 163, 270
code complexity 245
command line

debug mode 47
non-blocking command line

input 198–208
communicating with

subprocesses 322–325
completable futures 38
concurrency

difference between parallel-
ism and 6–7

overview 4–5
single-threaded concurrency

bugs 268–272

INDEX 351
concurrent.futures library 165
concurrent.futures module 133,

179
concurrent web requests 75–101

aiohttp 76
asynchronous context

managers 77–82
making web request with

aiohttp 79–80
setting timeouts with

aiohttp 81–82
processing requests as they

complete 88–91
running requests concurrently

with gather 84–88
running tasks

concurrently 82–84
wait function 92–101

handling timeouts 99–100
processing results as they

complete 96–98
waiting for tasks to

complete 92–94
watching for

exceptions 94–96
wrapping in task 100–101

conditions 285–289
CONNECT command 211
connect function 115
Connection class 124, 288
connection_lost method 198
connection pooling 79
connections

multiple 56–57
pools 109–117

creating to run queries
concurrently 113–117

inserting random SKUs
into product database
110–113

context switches 7
context variables 330–331
cooperative multitasking

benefits of 7–8
defined 7

coroutine_function
function 329

coroutine object 25
coroutines 17, 37–39

creating custom event
loop 335

creating with async
keyword 24–26

deprecated, generator-
based 335–337

futures 37–38
long-running coroutines with

sleep 27–29
measuring execution time

with decorators 40–42
pausing execution with await

keyword 26–27
pitfalls of 42–45

running blocking APIs
44–45

running CPU-bound
code 42–44

relationship between futures,
tasks, and 39

running concurrently with
tasks 30–33

creating tasks 30–31
running multiple tasks

concurrently 31–33
counter variable 170
count function 134
CPU-bound code 42–44
CPU-bound work 128–158

MapReduce using
asyncio 136–144

Google Books Ngram
dataset 139–140

mapping and reducing with
asyncio 140–144

simple MapReduce
example 137–139

multiprocessing and multiple
event loops 154–158

multiprocessing library
129–131

overview 3–4
process pools 131–133

executors with
asyncio 133–136

using asynchronous
results 132–133

sharing data 145–154
race conditions and

146–148
synchronizing with

locks 149–151
with process pools 151–154

threads for 185–190
multithreading with

hashlib 185–187
multithreading with

NumPy 188–190
create statement 107
create_subprocess_shell

function 313

CREATE TABLE statement 108
critical section 149
cursor method 124
cursors 122, 201
customer_generator

function 296
CustomFuture class 338

D

daemon threads 161
database, connecting to

220–226
database drivers, non-

blocking 102–127
asynchronous generators

122–127
overview 123–124
with streaming cursor

124–127
asyncpg

executing queries
with 107–109

overview 103
connecting to Postgres

database 103–104
database schema 104–107
executing queries concur-

rently with connection
pools 109–117

creating connection
pool to run queries
concurrently 113–117

inserting random SKUs
into product database
110–113

transactions with
asyncpg 118–122

manually managing
transactions 120–122

nested transactions
119–120

database schema 104–107
deadlocks 173–175
debug mode 47–49

using asyncio.run 47
using command line

arguments 47
using environment

variables 48–49
decorators 40–42
default executors 168–169
DefaultSelector class 61
def keyword 24
delay function 28

INDEX352
delay parameter 89
deprecated coroutines 335–337
Design Patterns: Elements of Reus-

able Object-Oriented
Software 123

Django asynchronous
views 235–242

running blocking work
in 240–242

using async code in synchro-
nous views 242

DOMContentLoaded event 234
done method 34
do_work method 286
drain method 197

E

echo function 161
echo server on asyncio event

loop 64–69
designing asyncio echo

server 65–67
event loop coroutines for

sockets 64–65
handling errors in tasks

67–69
echo task 66
encrypt task 320
environment variables 48–49
eof_recieved method 194
errors, in tasks 67–69
escape codes 203
Event class 281
EventLoop class 345
event loops 20, 45–47

accessing 46–47
asyncio 134–135
creating custom 334–347

coroutines and
generators 335

custom awaitables
337–339

generator-based coroutines
are deprecated
335–337

implementing event
loop 343–345

implementing server with
custom event loop
346–347

task implementation
342–343

using sockets with futures
340–342

creating manually 46
echo server on 64–69

designing asyncio echo
server 65–67

event loop coroutines for
sockets 64–65

handling errors in
tasks 67–69

forcing event loop
iteration 331–333

in separate threads
175–185

building responsive UI with
asyncio and threads
178–185

Tkinter 176–178
multiple 154–158
selectors module building

socket 61–64
using different event loop

implementations
333–334

Event object 281
except block 36, 122, 315
exceptions

watching for 94–96
with gather 86–88

execute method 288
Executor abstract class 133,

165
executor parameter 168
executors, process pool

133–136
defined 133–134
partial function

application 135–136
with asyncio event loop

134–135

F

failed requests 258–260
fetch_status function 89
FileServer class 283
FileUpload class 282
FileUpload object 283
find_and_replace method 173
fire_event method 286
FIRST_COMPLETED option 96
FIRST_EXCEPTION option 95
Flask 226–228
for loop 82, 108, 137, 325
functools module 135
functools.reduce function 138
future class 179, 340

futures
overview 37–38
relationship between tasks

and coroutines 39
using sockets with 340–342

G

gather function 84–88
generators

asynchronous 122–127
overview 123–124
with streaming cursor

124–127
creating custom event

loop 335
deprecated generator-based

coroutines 335–337
get_inventory function 265
get method 132
get_products_with_inventory

helper function 257
get_response_item_count

helper method 257
get_status_code function 167
GIL (global interpreter lock) 2,

12–17
asyncio and 17
releasing 15–17

Goldilocks approach 141
Google Books Ngram

dataset 139–140
grid method 183
gunicorn command 239

H

hashlib 185–187
heapsort algorithm 308
hello world application 176
hello_world_message

function 29
HTTPGetClientProtocol

class 195

I

I/O (input/output)-bound
operations 3–4

id function 239
id parameter 223
import statement 172
initargs parameter 152
init function 152
initializer parameter 152

INDEX 353
input function 198
input_ready event 325
input_writer function 325
INSERT statement 108

J

join method 10, 130

K

KeyboardInterrupt
exception 69

kill command 69
kill method 314

L

libuv library 333
LIFO (last in, first out)

queues 309–311
LIMIT statement 122
listen_for_connections

function 347
listen_for_messages

method 331
LoadTester application 184
locks

synchronization 149–151,
272–276

with threads 169–175
deadlocks 173–175
reentrant locks 171–173

long-running coroutines 27–29
loop.set_default_executor

method 168
ls -la command 316

M

mainloop method 184
main thread 44
make_request function 38
make_request method 196
_make_requests method 180
map_frequencies function 143
map method 136
map operation 138
MapReduce 136–144

Google Books Ngram
dataset 139–140

mapping and reducing with
asyncio 140–144

simple example 137–139
match_info dictionary 223

max_failure parameter 263
max_size parameter 115
mean_for_row function 189
mean function 188
microservices 244–266

backend-for-frontend
pattern 246–247

product listing API 248–265
circuit breaker

pattern 261–265
implementing backend-for-

frontend 253–258
implementing base

services 249–253
retrying failed requests

258–260
user favorite service 248

reasons for 245–246
asyncio and 246
complexity of code 245
scalability 246
team and stack indepen-

dence 246
min_size parameter 115
monoliths 244
multiprocessing 154–158
multiprocessing.cpu_count()

function 132
multiprocessing library 129–131
multitasking 7

cooperative multitasking
benefits of 7–8
defined 7

preemptive multitasking 7
multithreading

with hashlib 185–187
with NumPy 188–190

mutex (mutual exclusion) 149

N

nested transactions 119–120
new_event_loop method 184
next function 124
Ngram dataset, Google

Books 139–140
non-blocking command line

input 198–208
non-blocking database

drivers 102–127
asynchronous

generators 122–127
overview 123–124
with streaming cursor

124–127

asyncpg
executing queries with

107–109
overview 103

connecting to Postgres
database 103–104

database schema 104–107
executing queries concur-

rently with connection
pools 109–117

creating connection
pool to run queries
concurrently 113–117

inserting random SKUs
into product database
110–113

transactions with asyncpg
118–122

manually managing
transactions 120–122

nested transactions
119–120

non-blocking sockets 57–61
notify_all method 286
NumPy 188–190
numpy function 188
Nygard, Michael 261

O

on_cleanup handler 222
onmessage callback 234
on_startup handler 221
open_connection function 196
Order class 307
output, controlling

standard 315–318
output_consumer function 325

P

parallelism
difference between concur-

rency and 6–7
overview 5–6

partial function application
135–136

paused array 63
pausing execution 26–27
pending task set 99
PEP-333 (Python enhancement

proposal) 229
pip command 164
pipes 199
_poll_queue method 183

INDEX354
Pool.apply_async method 133
Postgres database 103–104
postgres database 104
preemptive multitasking 7
prefetch parameter 125
priority queues 303–309
Proccess.stdout field 316
Process class 130, 318
processes 8
process_page function 302
process pool initializers 151
process pools 44, 131–133

executors with asyncio 133–136
partial function applica-

tion 135–136
process pool executors

defined 133–134
with asyncio event loop

134–135
using asynchronous results

132–133
with sharing data 151–154

producer–consumer
workflows 290

product listing API 248–265
circuit breaker pattern

261–265
implementing backend-for-

frontend 253–258
implementing base

services 249–253
retrying failed requests

258–260
user favorite service 248

protocol factories 195
protocols 192–196
protocol variable 196
put method 295
PYTHONASYNCIODEBUG

variable 48

Q

queries
executing concurrently

with connection
pools 109–117

creating connection
pool to run queries
concurrently 113–117

inserting random SKUs
into product database
110–113

executing with asyncpg
107–109

queue module 181
queues, asynchronous 290–311

in web applications 297–300
last in, first out (LIFO)

queues 309–311
priority queues 303–309
web crawler queues 300–303

_queue_update method 183

R

race conditions 12, 146–148
read coroutine 202–208
readers, stream 196–198
read_from_client task 347
recv method 54
reduce function 143
reduce operation 144
reentrant locks 171–173
reference counting 12
_register_socket_to_read

method 345
regular_function function 329
Release It (Nygard) 261
release method 170, 273
releasing GIL (global inter-

preter lock) 15–17
REPL (read eval print loop) 8
Request class 221
request method 263
requests endpoint 242
requests library 44, 164–165
resources 218
REST (representational state

transfer) API 218–228
aiohttp server basics 219–220
comparing aiohttp with

Flask 226–228
connecting to database

and returning results
220–226

defined 218
endpoint with Starlette

230–231
result method 37, 94
results variable 109
return statement 123
return_when parameter 96
return_when string 92
RLock class 172
route object 230
RouteTableDef decorator 219
_run_all method 329
run_forever method 184
run_in_executor method 168

run_in_new_loop function 157
run method 162, 343

S

salt 186
SAVEPOINT command 119
say_hello function 132, 177
scalability 246
scrypt function 185
select module 160
selector module 340
selectors module 61–64
select statement 119
semaphores 276–280
sendall method 54
send method 336
servers

chat server and client 211–216
connecting to with Telnet

53–57
multiple connections and

blocking 56–57
reading and writing data to

and from socket 54–56
creating 209–211
implementing with custom

event loop 346–347
sessions 79
setcbreak function 202
set method 281
set_result method 37, 340
shared memory objects 145
sharing data 145–154

locks and 169–175
race conditions and 146–148
synchronizing with locks

149–151
with process pools 151–154

shutdown method 162
shutting down 69–73

listening for signals 69–70
waiting for pending tasks to

finish 70–73
SIGKILL signal 314
signals 69–70
signal.signal function 70
SIGTERM signal 314
single-threaded concurrency

17–21, 268–272
single-threaded event loop 3
SKUs 110–113
sleep, long-running coroutines

with 27–29
sleep command 314

INDEX 355
sleep function 50
sock_accept function 341
socket.accept method 64
socket function 52
socket list 234
socket method 64
sockets 17–19

blocking 51–53, 56–57
event loops

coroutines for 64–65
selectors module

building 61–64
non-blocking 57–61
reading and writing data to

and from 54–56
using with futures 340–342

stack independence 246
Starlette, ASGI with 230–234

REST endpoint 230–231
WebSockets 231–234

Starlette class 230
_start method 183
start method 10, 121, 130, 180
stdin field 323
stdout parameter 315
step method 343
StopIteration exception 336
streaming cursor 124–127
StreamReader method 196
streams 191–216

creating chat server and
client 211–216

creating servers 209–211
non-blocking command line

input 198–208
overview 192
stream readers and stream

writers 196–198
transports and protocols

192–196
StressTest object 183
submit method 167
subprocesses 312–326

communicating with
322–325

creating 313–321
controlling standard

output 315–318
running subprocesses

concurrently 318–321
synchronization 267–289

conditions 285–289
limiting concurrency with

semaphores 276–280
locks 149–151, 272–276

notifying tasks with
events 280–285

single-threaded concurrency
bugs 268–272

synchronous views 242
sync_to_async function 240

T

target function 10, 163
task.exception() method 93
Task object 93
task.result() method 93
tasks 37–39

canceling
overview 34–35
setting timeout and cancel-

ing with wait_for 35–37
futures 37–38
handling errors in 67–69
implementing 342–343
notifying with events

280–285
pitfalls of 42–45

running blocking APIs
44–45

running CPU-bound
code 42–44

relationship between futures,
and coroutines 39

running concurrently 82–84
running coroutines concur-

rently with 30–33
creating tasks 30–31
running multiple tasks

31–33
shutting down and 70–73
waiting for completion 92–94
wrapping in 100–101

team independence 246
Telnet 53–57

multiple connections and
blocking 56–57

reading and writing data to
and from socket 54–56

terminal raw mode 202–208
terminate method 314
Thread class 160
threading module 160–163
thread locals 330
thread-per-connection

model 160
thread pool executors 45

overview 165–167
with asyncio 167

threads 8–11, 159–190
event loops in separate

threads 175–185
building responsive UI

with asyncio and
threads 178–185

Tkinter 176–178
for CPU-bound work

185–190
multithreading with

hashlib 185–187
multithreading with

NumPy 188–190
locks with 169–175

deadlocks 173–175
reentrant locks 171–173

threading module 160–163
with asyncio 164–169

default executors 168–169
requests library 164–165
thread pool executors

165–167
thread_sensitive url

parameter 242
timeout parameter 99
timeouts

setting 35–37
wait function 99–100
with aiohttp 81–82
with as_completed 90–91

time slicing 8
Tkapp_Call function 182
TK class 181
Tkinter 176–178
TooManyRetries exception 259
transactions with asyncpg

118–122
manually managing 120–122
nested transactions 119–120

transports 192–196
try/catch statement 68
try/finally block 77
try block 36
try catch block 88, 163
tty module 202

U

UDP (user datagram
protocol) 52

UI, building with asyncio
178–185

_update_bar method 183
user_cart table 252
user favorite service 248

INDEX356
user_names_to_sockets
dictionary 272

_username_to_writer
dictionary 214

util module 42

V

Value object 151
values 146

W

wait_for function 35–37
wait_for method 286
wait_for statement 35
wait function 92–101

handling timeouts 99–100
processing results as they

complete 96–98
waiting for tasks to

complete 92–94
watching for exceptions 94–96
wrapping in task 100–101

web applications 217–243
ASGI (asynchronous server

gateway interface)
228–230

REST endpoint with
Starlette 230–231

WebSockets with
Starlette 231–234

WSGI (web server gateway
interface) compared
to 228–230

Django asynchronous views
235–242

running blocking work in
asynchronous view
240–242

using async code in synchro-
nous views 242

queues in 297–300
REST (representational state

transfer) API with
Aiohttp 218–228

aiohttp server basics
219–220

comparing aiohttp with
Flask 226–228

connecting to database
and returning results
220–226

REST defined 218
web crawler queues 300–303
web module 219
web requests, concurrent 75–101

aiohttp 76
asynchronous context

managers 77–82

making web request with
aiohttp 79–80

setting timeouts with
aiohttp 81–82

processing requests as they
complete 88–91

running requests concurrently
with gather 84–88

running tasks
concurrently 82–84

wait function 92–101
handling timeouts

99–100
processing results as they

complete 96–98
waiting for tasks to

complete 92–94
watching for exceptions

94–96
wrapping in task 100–101

WebSockets 231–234
while loop 34, 61, 162, 205
with block 80, 151, 172
WorkItem class 302
wrapped 41
wrapping in tasks 100–101
write method 197
writers, stream 196–198
WSGI (web server gateway

interface) 228–230

Continued from inside front cover

I want to . . . How? Chapter(s)

Offload work to a queue for later processing Put the work on an asyncio queue 12

Build a producer–consumer workflow Put items into a queue and process the queue 12

Build a concurrent web crawler Use queues with a producer-consumer workflow 12

Run existing command-line programs concurrently Use the asyncio subprocesses API 13

Build APIs that can handle coroutines and functions Use core asyncio APIs 14

Share state across multiple tasks Use context variables 14

Use a different event loop Install a different event loop with asyncio
API functions

14

Learn the inner workings of how the asyncio event
loop works

Build your own event loop to learn the concepts 14

Matthew Fowler

ISBN: 978-1-61729-866-0

I
t’s easy to overload standard Python and watch your pro-
grams slow to a crawl. Th e asyncio library was built to solve
these problems by making it easy to divide and schedule

tasks. It seamlessly handles multiple operations concurrently,
leading to apps that are lightning fast and scalable.

Python Concurrency with asyncio introduces asynchronous,
parallel, and concurrent programming through hands-on
Python examples. Hard-to-grok concurrency topics are broken
down into simple fl owcharts that make it easy to see how your
tasks are running. You’ll learn how to overcome the limitations
of Python using asyncio to speed up slow web servers and
microservices. You’ll even combine asyncio with traditional
multiprocessing techniques for huge improvements to perfor-
mance.

What’s Inside
● Build web APIs and make concurrency web requests
 with aiohttp
● Run thousands of SQL queries concurrently
● Create a map-reduce job that can process gigabytes of
 data concurrently
● Use threading with asyncio to mix blocking code with
 asyncio code

For intermediate Python programmers. No previous experi-
ence of concurrency required.

Matthew Fowler has over 15 years of software engineering
experience in roles from architect to engineering director.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Python Concurrency with asyncio

PYTHON/CONCURRENCY

M A N N I N G

“A clear and practical guide
to using asyncio to solve
real-world concurrency

 problems.”—Didier Garcia, Software Sushi

“Well organized and
written…eff ectively guides
the reader through a variety
of impactful concurrency

 techniques.”—Dan Sheikh
BCG Digital Ventures

“If you want to effi ciently
take your Python skills to the

next level, look no further.
 Th is is the book for you.”

—Eli Mayost, IBM

“Provides a lot of insights
into one of the trickier aspects

of Python programming,
 namely asyncio.”

—Peter White
Charles Sturt University

See first page

	Python Concurrency with asyncio
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	1 Getting to know asyncio
	1.1 What is asyncio?
	1.2 What is I/O-bound and what is CPU-bound?
	1.3 Understanding concurrency, parallelism, and multitasking
	1.3.1 Concurrency
	1.3.2 Parallelism
	1.3.3 The difference between concurrency and parallelism
	1.3.4 What is multitasking?
	1.3.5 The benefits of cooperative multitasking

	1.4 Understanding processes, threads, multithreading, and multiprocessing
	1.4.1 Process
	1.4.2 Thread

	1.5 Understanding the global interpreter lock
	1.5.1 Is the GIL ever released?
	1.5.2 asyncio and the GIL

	1.6 How single-threaded concurrency works
	1.6.1 What is a socket?

	1.7 How an event loop works
	Summary

	2 asyncio basics
	2.1 Introducing coroutines
	2.1.1 Creating coroutines with the async keyword
	2.1.2 Pausing execution with the await keyword

	2.2 Introducing long-running coroutines with sleep
	2.3 Running concurrently with tasks
	2.3.1 The basics of creating tasks
	2.3.2 Running multiple tasks concurrently

	2.4 Canceling tasks and setting timeouts
	2.4.1 Canceling tasks
	2.4.2 Setting a timeout and canceling with wait_for

	2.5 Tasks, coroutines, futures, and awaitables
	2.5.1 Introducing futures
	2.5.2 The relationship between futures, tasks, and coroutines

	2.6 Measuring coroutine execution time with decorators
	2.7 The pitfalls of coroutines and tasks
	2.7.1 Running CPU-bound code
	2.7.2 Running blocking APIs

	2.8 Accessing and manually managing the event loop
	2.8.1 Creating an event loop manually
	2.8.2 Accessing the event loop

	2.9 Using debug mode
	2.9.1 Using asyncio.run
	2.9.2 Using command-line arguments
	2.9.3 Using environment variables

	Summary

	3 A first asyncio application
	3.1 Working with blocking sockets
	3.2 Connecting to a server with Telnet
	3.2.1 Reading and writing data to and from a socket
	3.2.2 Allowing multiple connections and the dangers of blocking

	3.3 Working with non-blocking sockets
	3.4 Using the selectors module to build a socket event loop
	3.5 An echo server on the asyncio event loop
	3.5.1 Event loop coroutines for sockets
	3.5.2 Designing an asyncio echo server
	3.5.3 Handling errors in tasks

	3.6 Shutting down gracefully
	3.6.1 Listening for signals
	3.6.2 Waiting for pending tasks to finish

	Summary

	4 Concurrent web requests
	4.1 Introducing aiohttp
	4.2 Asynchronous context managers
	4.2.1 Making a web request with aiohttp
	4.2.2 Setting timeouts with aiohttp

	4.3 Running tasks concurrently, revisited
	4.4 Running requests concurrently with gather
	4.4.1 Handling exceptions with gather

	4.5 Processing requests as they complete
	4.5.1 Timeouts with as_completed

	4.6 Finer-grained control with wait
	4.6.1 Waiting for all tasks to complete
	4.6.2 Watching for exceptions
	4.6.3 Processing results as they complete
	4.6.4 Handling timeouts
	4.6.5 Why wrap everything in a task?

	Summary

	5 Non-blocking database drivers
	5.1 Introducing asyncpg
	5.2 Connecting to a Postgres database
	5.3 Defining a database schema
	5.4 Executing queries with asyncpg
	5.5 Executing queries concurrently with connection pools
	5.5.1 Inserting random SKUs into the product database
	5.5.2 Creating a connection pool to run queries concurrently

	5.6 Managing transactions with asyncpg
	5.6.1 Nested transactions
	5.6.2 Manually managing transactions

	5.7 Asynchronous generators and streaming result sets
	5.7.1 Introducing asynchronous generators
	5.7.2 Using asynchronous generators with a streaming cursor

	Summary

	6 Handling CPU-bound work
	6.1 Introducing the multiprocessing library
	6.2 Using process pools
	6.2.1 Using asynchronous results

	6.3 Using process pool executors with asyncio
	6.3.1 Introducing process pool executors
	6.3.2 Process pool executors with the asyncio event loop

	6.4 Solving a problem with MapReduce using asyncio
	6.4.1 A simple MapReduce example
	6.4.2 The Google Books Ngram dataset
	6.4.3 Mapping and reducing with asyncio

	6.5 Shared data and locks
	6.5.1 Sharing data and race conditions
	6.5.2 Synchronizing with locks
	6.5.3 Sharing data with process pools

	6.6 Multiple processes, multiple event loops
	Summary

	7 Handling blocking work with threads
	7.1 Introducing the threading module
	7.2 Using threads with asyncio
	7.2.1 Introducing the requests library
	7.2.2 Introducing thread pool executors
	7.2.3 Thread pool executors with asyncio
	7.2.4 Default executors

	7.3 Locks, shared data, and deadlocks
	7.3.1 Reentrant locks
	7.3.2 Deadlocks

	7.4 Event loops in separate threads
	7.4.1 Introducing Tkinter
	7.4.2 Building a responsive UI with asyncio and threads

	7.5 Using threads for CPU-bound work
	7.5.1 Multithreading with hashlib
	7.5.2 Multithreading with NumPy

	Summary

	8 Streams
	8.1 Introducing streams
	8.2 Transports and protocols
	8.3 Stream readers and stream writers
	8.4 Non-blocking command-line input
	8.4.1 Terminal raw mode and the read coroutine

	8.5 Creating servers
	8.6 Creating a chat server and client
	Summary

	9 Web applications
	9.1 Creating a REST API with aiohttp
	9.1.1 What is REST?
	9.1.2 aiohttp server basics
	9.1.3 Connecting to a database and returning results
	9.1.4 Comparing aiohttp with Flask

	9.2 The asynchronous server gateway interface
	9.2.1 How does ASGI compare to WSGI?

	9.3 ASGI with Starlette
	9.3.1 A REST endpoint with Starlette
	9.3.2 WebSockets with Starlette

	9.4 Django asynchronous views
	9.4.1 Running blocking work in an asynchronous view
	9.4.2 Using async code in synchronous views

	Summary

	10 Microservices
	10.1 Why microservices?
	10.1.1 Complexity of code
	10.1.2 Scalability
	10.1.3 Team and stack independence
	10.1.4 How can asyncio help?

	10.2 Introducing the backend-for-frontend pattern
	10.3 Implementing the product listing API
	10.3.1 User favorite service
	10.3.2 Implementing the base services
	10.3.3 Implementing the backend-for-frontend service
	10.3.4 Retrying failed requests
	10.3.5 The circuit breaker pattern

	Summary

	11 Synchronization
	11.1 Understanding single-threaded concurrency bugs
	11.2 Locks
	11.3 Limiting concurrency with semaphores
	11.3.1 Bounded semaphores

	11.4 Notifying tasks with events
	11.5 Conditions
	Summary

	12 Asynchronous queues
	12.1 Asynchronous queue basics
	12.1.1 Queues in web applications
	12.1.2 A web crawler queue

	12.2 Priority queues
	12.3 LIFO queues
	Summary

	13 Managing subprocesses
	13.1 Creating a subprocess
	13.1.1 Controlling standard output
	13.1.2 Running subprocesses concurrently

	13.2 Communicating with subprocesses
	Summary

	14 Advanced asyncio
	14.1 APIs with coroutines and functions
	14.2 Context variables
	14.3 Forcing an event loop iteration
	14.4 Using different event loop implementations
	14.5 Creating a custom event loop
	14.5.1 Coroutines and generators
	14.5.2 Generator-based coroutines are deprecated
	14.5.3 Custom awaitables
	14.5.4 Using sockets with futures
	14.5.5 A task implementation
	14.5.6 Implementing an event loop
	14.5.7 Implementing a server with a custom event loop

	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

