

Python Algorithmic Trading
Cookbook

All the recipes you need to implement your own algorithmic
trading strategies in Python

Pushpak Dagade

BIRMINGHAM - MUMBAI

Python Algorithmic Trading Cookbook
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Ali Abidi
Content Development Editor: Athikho Sapuni Rishana
Senior Editor: Roshan Kumar
Technical Editor: Manikandan Kurup
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Vijay Kamble

First published: August 2020

Production reference: 1280820

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-935-4

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Pushpak Dagade has been working in the area of algorithmic trading for more than 3
years. He is the co-founder and CEO of AlgoBulls, an algorithmic trading platform. He is
also a long-time Pythonista with more than a decade of Python experience. He is a graduate
from the Indian Institute of Technology (Delhi) and holds engineering degrees in the fields
of computer science, electronics, and physics.

About the reviewers
Ratanlal Mahanta is currently working as a quantitative analyst at bittQsrv, a global
quantitative research company offering quant models for its investors. He has several years
of experience in the modeling and simulation of quantitative trading. Ratanlal holds a
master's degree in science in computational finance, and his research areas include quant
trading, optimal execution, and high-frequency trading. He has over 9 years' experience in
the finance industry and is gifted at solving difficult problems that lie at the intersection of
markets, technology, research, and design.

Akhil Jain has a master's degree in computer science from the University of Mumbai. He
started his IT career in 2007 in a multi-national company. He worked for 4 years as a
Technology Analyst and finally decided to pursue his passion for teaching. He joined his
UG alma mater as a lecturer in 2012 and has been teaching ever since. Akhil is using Python
in his teachings which spans across the fields of data structures, artificial intelligence, cloud
computing, and ethical hacking. He also uses Python extensively to perform stock market
analysis and code algorithmic trading strategies. Akhil has also written a book titled
Protecting Your Email ID in 2013.

Praxal Shah has a master's degree from IIT Delhi, one of the most reputable universities in
India. He has been actively associated with trading derivatives in the Indian stock market
for 4 years now and he has been developing a few of his own strategies for options trading,
with the help of algo-trading, as a hobby. Praxal believes that this book is a good reference
point for anyone who wants to start with algo-trading; this book can help you jump-start
your learning as it covers most of the practical aspects of algo-trading.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Handling and Manipulating Date, Time, and Time Series Data 8
Technical requirements 9
Creating datetime objects 9

How to do it… 10
How it works... 11
There's more 12

Creating timedelta objects 13
How to do it… 13
How it works... 14
There's more 15

Operations on datetime objects 16
How to do it… 16
How it works… 19
There's more 19

Modifying datetime objects 20
How to do it… 20
How it works... 21

Converting a datetime object to a string 22
How to do it… 22
How it works... 23

Creating a datetime object from a string 23
How to do it… 24
How it works... 24
There's more 25

The datetime object and time zones 26
How to do it… 26
How it works... 28
There's more 28

Creating a pandas.DataFrame object 29
How to do it... 29
How it works... 31
There's more 32

DataFrame manipulation—renaming, rearranging, reversing, and
slicing 32

Getting ready 32
How to do it… 33
How it works... 35

Table of Contents

[ii]

There's more 36
DataFrame manipulation—applying, sorting, iterating, and
concatenating 36

Getting ready 36
How to do it… 36
How it works... 40
There's more 41

Converting a DataFrame into other formats 43
Getting ready 43
How to do it… 43
How it works... 44

Creating a DataFrame from other formats 45
Getting ready 45
How to do it… 45
How it works... 47

Chapter 2: Stock Markets – Primer on Trading 49
Technical requirements 50
Setting up Python connectivity with the broker 50

How to do it… 50
How it works... 51

Querying a list of instruments 52
Getting ready 52
How to do it… 52
How it works… 53

Fetching an instrument 53
Getting ready 54
How to do it… 54
How it works… 54

Querying a list of exchanges 54
Getting ready 55
How to do it… 55
How it works… 55

Querying a list of segments 55
Getting ready 55
How to do it… 56
How it works… 56

Knowing other attributes supported by the broker 56
How to do it… 56
How it works… 57

Placing a simple REGULAR order 58
Getting ready 58
How to do it… 58
How it works… 59

Placing a simple BRACKET order 60

Table of Contents

[iii]

Getting ready 60
How to do it… 60
How it works… 62

Placing a simple DELIVERY order 63
Getting ready 63
How to do it… 63
How it works… 64

Placing a simple INTRADAY order 65
Getting ready 65
How to do it… 65
How it works… 66

Querying margins and funds 67
Getting ready 68
How to do it… 68
How it works… 69

Calculating the brokerage charged 70
How to do it… 70
How it works… 71

Calculating the government taxes charged 71
How to do it… 71
How it works… 72

Chapter 3: Fetching Financial Data 73
Technical requirements 74
Fetching the list of financial instruments 75

Getting ready 76
How to do it… 76
How it works… 76

Attributes of a financial instrument 77
Getting ready 77
How to do it… 77
How it works… 77

Expiry of financial instruments 78
Getting ready 78
How to do it… 78
How it works… 79

Circuit limits of a financial instrument 80
Getting ready 80
How to do it… 80
How it works… 80

The market depth of a financial instrument 81
Getting ready 81
How to do it… 81
How it works… 82

The total pending buy quantity of a financial instrument 82

Table of Contents

[iv]

Getting ready 82
How to do it… 83
How it works… 83

The total pending sell quantity of a financial instrument 83
Getting ready 83
How to do it… 84
How it works… 84

The total volume traded for the day of a financial instrument 84
Getting ready 84
How to do it… 85
How it works… 85

The last traded price of a financial instrument 85
Getting ready 85
How to do it… 85
How it works… 86

The last traded time of a financial instrument 86
Getting ready 86
How to do it… 86
How it works… 87

The last traded quantity of a financial instrument 87
Getting ready 87
How to do it… 87
How it works… 88

The recorded open price of the day of a financial instrument 88
Getting ready 88
How to do it… 88
How it works… 89

The recorded highest price of the day of a financial instrument 89
Getting ready 89
How to do it… 89
How it works… 90

The recorded lowest price of the day of a financial instrument 90
Getting ready 90
How to do it… 90
How it works… 91

The recorded close price of the last traded day of a financial
instrument 91

Getting ready 91
How to do it… 91
How it works… 92

Chapter 4: Computing Candlesticks and Historical Data 93
Technical requirements 94
Fetching historical data using the broker API 95

Getting ready 95

Table of Contents

[v]

How to do it… 96
How it works… 97

Fetching historical data using the Japanese (OHLC) candlestick
pattern 98

Getting ready 98
How to do it… 99
How it works… 104

Fetching the Japanese candlestick pattern with variations in candle
intervals 105

Getting ready 105
How to do it… 105
How it works… 113

Fetching historical data using the Line Break candlestick pattern 114
Getting ready 114
How to do it… 115
How it works… 126

Fetching historical data using the Renko candlestick pattern 127
Getting ready 128
How to do it… 129
How it works… 140

Fetching historical data using the Heikin-Ashi candlestick pattern 141
Getting ready 142
How to do it… 142
How it works… 154

Fetching historical data using Quandl 155
Getting ready 155
How to do it… 156
How it works… 161

Chapter 5: Computing and Plotting Technical Indicators 162
Technical requirements 165
Trend indicators – simple moving average 170

Getting started 170
How to do it… 171
How it works... 172

Trend indicators – exponential moving average 173
Getting started 174
How to do it… 174
How it works… 176

Trend indicators – moving average convergence divergence 177
Getting started 178
How to do it… 178
How it works… 180

Trend indicators – parabolic stop and reverse 181
Getting started 182

Table of Contents

[vi]

How to do it… 182
How it works… 184

Momentum indicators – relative strength index 185
Getting started 185
How to do it… 185
How it works… 187

Momentum indicators – stochastic oscillator 188
Getting started 189
How to do it… 189
How it works… 191

Volatility indicators – Bollinger Bands 192
Getting started 193
How to do it… 194
How it works… 196

Volatility indicators – average true range 197
Getting started 198
How to do it… 198
How it works… 200

Volume indicators – on balance volume 201
Getting started 201
How to do it… 202
How it works… 203

Volume indicators – volume-weighted average price 204
Getting started 205
How to do it… 205
How it works… 207

Chapter 6: Placing Regular Orders on the Exchange 209
Technical requirements 212
Placing a regular market order 213

Getting ready 215
How to do it… 215
How it works… 219

Placing a regular limit order 221
Getting ready 222
How to do it... 222
How it works... 230

Placing a regular stoploss-limit order 232
Getting ready... 234
How to do it… 234
How it works… 242

Placing a regular stoploss-market order 244
Getting ready 246
How to do it… 246
How it works… 254

Table of Contents

[vii]

Chapter 7: Placing Bracket and Cover Orders on the Exchange 257
Technical requirements 258
Placing a bracket limit order 260

Getting ready 263
How to do it… 263
How it works… 267
There's more… 269

Placing a bracket stoploss-limit order 272
Getting ready 272
How to do it… 273
How it works… 274

Placing a bracket limit order with trailing stoploss 277
Getting ready 278
How to do it… 278
How it works... 280

Placing a bracket stoploss-limit order with trailing stoploss 283
Getting ready 284
How to do it… 284
How it works... 286

Placing a cover market order 289
Getting ready 291
How to do it… 291
How it works... 295

Placing a cover limit order 296
Getting ready 297
How to do it… 297
How it works... 301

Chapter 8: Algorithmic Trading Strategies – Coding Step by Step 304
Technical requirements 307
EMA-Regular-Order strategy – coding the __init__, initialize, name,
and versions_supported methods 311

Getting ready 312
How to do it… 312
How it works… 312

EMA-Regular-Order strategy – coding the
strategy_select_instruments_for_entry method 313

Getting ready 314
How to do it… 314
How it works… 315

EMA-Regular-Order strategy – coding the strategy_enter_position
method 317

Getting ready 317
How to do it… 317
How it works… 318

Table of Contents

[viii]

EMA-Regular-Order strategy – coding the
strategy_select_instruments_for_exit method 319

Getting ready 319
How to do it… 319
How it works… 320

EMA-Regular-Order strategy – coding the strategy_exit_position
method 321

Getting ready 321
How to do it… 322
How it works… 322

EMA-Regular-Order strategy – uploading the strategy on the
AlgoBulls trading platform 323

Getting ready 323
How to do it… 323
How it works… 325
There's more… 326

MACD-Bracket-Order strategy – coding the __init__, initialize,
name, and versions_supported methods 326

Getting ready 327
How to do it… 327
How it works… 328

MACD-Bracket-Order strategy – coding the
strategy_select_instruments_for_entry method 329

Getting ready 329
How to do it… 330
How it works… 330

MACD-Bracket-Order strategy – coding the strategy_enter_position
method 333

Getting ready 333
How to do it… 333
How it works… 334

MACD-Bracket-Order strategy – coding the
strategy_select_instruments_for_exit method 335

Getting ready 336
How to do it… 336
How it works… 336

MACD-Bracket-Order strategy – coding the strategy_exit_position
method 337

Getting ready 338
How to do it… 338
How it works… 338

MACD-Bracket-Order strategy — uploading the strategy on the
AlgoBulls trading platform 340

Getting ready 340

Table of Contents

[ix]

How to do it… 340
How it works… 342
There's more… 343

Chapter 9: Algorithmic Trading - Backtesting 344
Technical requirements 346
EMA-Regular-Order strategy – fetching the strategy 347

How to do it… 347
How it works… 349

EMA-Regular-Order strategy – backtesting the strategy 350
Getting ready 352
How to do it… 352
How it works… 353
There's more… 355

EMA-Regular-Order strategy – fetching backtesting logs in real time 356
Getting ready 357
How to do it… 357
How it works… 358
There's more... 358

EMA-Regular-Order strategy – fetching a backtesting report – P&L
table 359

Getting ready 359
How to do it… 360
How it works… 361
There's more... 362

EMA-Regular-Order strategy — fetching a backtesting report –
statistics table 362

Getting ready 363
How to do it… 363
How it works… 364
There's more... 365

EMA-Regular-Order strategy – fetching a backtesting report – order
history 365

Getting ready 366
How to do it… 366
How it works… 367
There's more... 368

MACD-Bracket-Order strategy – fetching the strategy 369
How to do it… 369
How it works… 371

MACD-Bracket-Order strategy – backtesting the strategy 372
Getting ready 373
How to do it… 374
How it works… 375
There's more… 377

Table of Contents

[x]

MACD-Bracket-Order strategy – fetching backtesting logs in real
time 378

Getting ready 378
How to do it… 379
How it works… 380
There's more... 380

MACD-Bracket-Order strategy – fetching a backtesting report – P&L
table 380

Getting ready 381
How to do it… 381
How it works… 382
There's more... 383

MACD-Bracket-Order strategy – fetching a backtesting report –
statistics table 384

Getting ready 384
How to do it… 384
How it works… 385
There's more... 386

MACD-Bracket-Order strategy – fetching a backtesting report –
order history 387

Getting ready 387
How to do it… 388
How it works… 389
There's more... 390

Chapter 10: Algorithmic Trading – Paper Trading 391
Technical requirements 394
EMA-Regular-Order strategy – fetching the strategy 394

How to do it… 394
How it works… 396

EMA-Regular-Order strategy – paper trading the strategy 397
Getting ready 399
How to do it… 399
How it works… 401
There's more… 403

EMA-Regular-Order strategy – fetching paper trading logs in real
time 403

Getting ready 404
How to do it… 404
How it works… 405
There's more... 406

EMA-Regular-Order strategy – fetching a paper trading report – P&L
table 406

Getting ready 406
How to do it… 407

Table of Contents

[xi]

How it works… 407
There's more... 408

EMA-Regular-Order strategy – fetching a paper trading report –
statistics table 409

Getting ready 409
How to do it… 409
How it works… 410
There's more... 411

EMA-Regular-Order strategy – fetching a paper trading report –
order history 412

Getting ready 413
How to do it… 413
How it works… 414
There's more... 415

MACD-Bracket-Order strategy – fetching the strategy 416
How to do it… 416
How it works… 418

MACD-Bracket-Order strategy – paper trading the strategy 419
Getting ready 420
How to do it… 421
How it works… 422
There's more… 424

MACD-Bracket-Order strategy – fetching paper trading logs in real
time 425

Getting ready 425
How to do it… 426
How it works… 427
There's more... 427

MACD-Bracket-Order strategy – fetching a paper trading report –
P&L table 427

Getting ready 428
How to do it… 428
How it works… 429
There's more... 430

MACD-Bracket-Order strategy – fetching a paper trading report –
statistics table 430

Getting ready 431
How to do it… 431
How it works… 432
There's more... 433

MACD-Bracket-Order strategy – fetching a paper trading report –
order history 433

Getting ready 434
How to do it… 434
How it works… 435

Table of Contents

[xii]

There's more... 437

Chapter 11: Algorithmic Trading – Real Trading 438
Technical requirements 440
EMA–Regular–Order strategy – fetching the strategy 440

How to do it… 441
How it works… 443

EMA–Regular–Order strategy – real trading the strategy 444
Getting ready 445
How to do it… 446
How it works… 447
There's more… 449

EMA–Regular–Order strategy – fetching real trading logs in real
time 450

Getting ready 450
How to do it… 451
How it works… 452
There's more... 452

EMA–Regular–Order strategy – fetching a real trading report – P&L
table 452

Getting ready 453
How to do it… 453
How it works… 454
There's more... 455

EMA–Regular–Order strategy – fetching a real trading report –
statistics table 456

Getting ready 456
How to do it… 456
How it works… 457
There's more... 458

MACD–Bracket–Order strategy – fetching the strategy 459
How to do it… 459
How it works… 461

MACD–Bracket–Order strategy – real trading the strategy 462
Getting ready 463
How to do it… 463
How it works… 465
There's more… 467

MACD–Bracket–Order strategy – fetching real trading logs in real
time 467

Getting ready 468
How to do it… 468
How it works… 470
There's more... 470

Table of Contents

[xiii]

MACD–Bracket–Order strategy – fetching a real trading report –
P&L table 470

Getting ready 471
How to do it… 471
How it works… 472
There's more... 473

MACD–Bracket–Order strategy – fetching a real trading report –
statistics table 473

Getting ready 474
How to do it… 474
How it works… 475
There's more... 476

Appendix A: Appendix I 477
Setting up your Zerodha account 477

Opening a Zerodha account online 477
Logging in to the Zerodha trading platform website 478
Setting up your Zerodha Developer Options account 480
Logging in to the Zerodha Developer Options website 482
Purchasing and enabling the Zerodha Developer Options API 483
Testing API keys and authorizing the app by firing your first API call 489

Appendix B: Appendix II 493
Setting up your AlgoBulls account 493

Registering on the AlgoBulls platform 493
Logging in to the AlgoBulls website 496
Fetching your AlgoBulls Developer Options token 498
Setting up your AlgoBulls account 499

Appendix C: Appendix III 500
Developing and improving strategies 500

Strategy profitability is subject to seasons 500
Strategy profitability is subject to its parameter values 500
Backtesting alone does not ensure strategy profitability 501
Broker limitations 501
Staying connected with the community 501
Be prepared for technology failures during actual trading 502

Other Books You May Enjoy 503

Index 506

Preface
Python is a very popular language that is used to build and execute algorithmic trading
strategies. If you want to find out how you can build a solid foundation in algorithmic
trading using Python, this cookbook is here to help.

Starting by setting up the Python environment for trading and connectivity with brokers,
you'll then learn the important aspects of financial markets. As you progress through this
algorithmic trading book, you'll learn to fetch financial instruments, query and calculate
various types of candles and historical data, and finally, compute and plot technical
indicators. Next, you'll discover how to place various types of orders, such as regular,
bracket, and cover orders, and understand their state transitions. You'll also uncover
challenges faced while devising and executing powerful algorithmic trading strategies from
scratch. Later chapters will take you through backtesting, paper trading, and finally real
trading for the algorithmic strategies that you've created from the ground up. You'll even
understand how to automate trading and find the right strategy for making effective
decisions that would otherwise be impossible for human traders.

By the end of this book, you'll be able to use Python for algorithmic trading by
implementing Python libraries to conduct key tasks in the algorithmic trading ecosystem.

Who this book is for
If you are a financial analyst, financial trader, data analyst, algorithmic trader, trading
enthusiast or anyone who wants to learn algorithmic trading with Python and important
techniques to address the challenges faced in the realm of finance, this book is for you. A
basic working knowledge of the Python programming language is expected. Although
some fundamental knowledge of trade-related terminology will be helpful, it is not
mandatory.

What this book covers
Chapter 1, Handling and Manipulating Date, Time, and Time Series Data, explains everything
about the Python DateTime module and pandas DataFrames that are required to handle
time series data efficiently.

Preface

[2]

Chapter 2, Stock Markets – Primer on Trading, covers how to set up Python connectivity with
a broker, fetch financial instruments, and get a quick hands-on at placing simple orders.
You will also learn how to query margins and calculate brokerage and government taxes.

Chapter 3, Fetching Financial Data, covers financial instruments in-depth.

Chapter 4, Computing Candlesticks and Historical Data, explains how to fetch and understand
historical data, and also how to fetch, compute, and plot various candlestick patterns,
including Japanese (OHLC), Renko, Line Break, and Heikin-Ashi.

Chapter 5, Computing and Plotting of Technical Indicators, explains how to compute and plot
10 types of technical indicators, including trend indicators, momentum indicators, volatility
indicators, and volume indicators.

Chapter 6, Placing Regular Orders on the Exchange, explains how to place 16 types of regular
orders across two transaction types, two order codes, and four order varieties. You will
learn how to query the order status in real time, while also learning about the possible
order states supported by the broker and the order life cycle for regular orders.

Chapter 7, Placing Bracket and Cover Orders on the Exchange, explains how to place eight
types of bracket orders and four types of cover orders across two transaction types and
multiple order varieties and how to query the order status in real time. You will learn about
target, stoploss, and trailing stoploss, along with the possible order states supported by the
broker and the order life cycle for both bracket and cover orders.

Chapter 8, Algorithmic Trading Strategies – Code Step by Step, explains how to code your own
algorithmic trading strategy from scratch using two strategy coding examples involving
regular and bracket orders, respectively.

Chapter 9, Algorithmic Trading – Backtesting, covers how to backtest your own algorithmic
trading strategy using two strategy coding examples involving regular and bracket orders,
respectively. You will also learn how to fetch execution logs and various types of
backtesting reports, including profit and loss reports, statistics reports, and order history
logs for your strategy.

Chapter 10, Algorithmic Trading – Paper Trading, explains how to paper trade your own
algorithmic trading strategy in live markets using two strategy coding examples involving
regular and bracket orders, respectively. You will also learn how to fetch execution logs
and various types of paper trading reports, including profit and loss reports, statistics
reports, and order history logs, in real time for your strategy.

Preface

[3]

Chapter 11, Algorithmic Trading – Real Trading, explains how to real trade your own
algorithmic trading strategy in live markets and real money using two strategy coding
examples involving regular and bracket orders, respectively. You will also learn how to
fetch execution logs and various types of real trading reports, including profit and loss
reports and statistics reports, in real time for your strategy.

To get the most out of this book
This book is for anyone who is interested in the field of algorithmic trading. You are not
expected to have any background in finance or algorithmic trading. You are expected to
have a basic knowledge of the Python programming language. Each chapter introduces a
new concept in algorithmic trading and takes you step by step, from zero to hero. This book
can help you build a rock-solid foundation in algorithmic trading using Python.

You need to have the latest version of Python 3 installed on your computer. The recipes in
this book were tested on Python 3.8.2 and they should work on any future release of
Python as well.

You also need a broking account with Zerodha, a modern broker, to try out the recipes
covered in most of the chapters. Appendix I provides detailed, step-by-step information on
how to set up your Zerodha account in case you do not have one.

To execute trading strategies, you also need an account with AlgoBulls. Appendix II
provides detailed, step-by-step information on how to set up your AlgoBulls account in
case you do not have one.

Also, almost every chapter expects you to have additional Python packages installed, such
as pyalgotrading. You can install these using pip. This is explained in the technical
requirements section of every chapter.

All the recipes in this chapter are provided as Jupyter notebooks on our GitHub repository:
https:/​/​github.​com/ ​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook. You can
install Jupyter Notebook as well if you would like to try out the recipes directly without
typing any code. You can install this using pip: pip install notebook.

Software/hardware covered in the book OS requirements
Python 3.7+ (https:/ ​/​www. ​python. ​org/
downloads/​)

Any OS that supports Python 3.7+; Linux,
Windows, macOS X, and so on.

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

Preface

[4]

The requirements for each chapter are summarized in the following table:

Chapter number Zerodha account AlgoBulls account
1 No No

2 Yes No

3 Yes No

4 Yes No

5 Yes No

6 Yes No

7 Yes No

8 No Yes

9 No Yes

10 No Yes

11 No Yes

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Python- ​Algorithmic- ​Trading- ​Cookbook. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781838989354_​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The broker provides unique keys to each customer, typically as api-
key and api-secret key pairs."

A block of code is set as follows:

>>> plot_candlestick_chart(historical_data,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | 1st Jan, 2020 | '
 'Candle Interval: 1 Minute')

Any command-line input or output is written as follows:

$ pip install pyalgotrading

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838989354_ColorImages.pdf

Preface

[6]

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"A Japanese candle is green in color if its close price is above its open price."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

Preface

[7]

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Handling and Manipulating

Date, Time, and Time Series
Data

Time series data is ubiquitous when it comes to algorithmic trading. So, handling,
managing, and manipulating time series data is essential to performing algorithmic trading
successfully. This chapter has various recipes that demonstrate how algorithmic trading
can be done using the Python standard library and pandas, which is a Python data analysis
library.

For our context, time series data is a series of data consisting of equally spaced timestamps
and multiple data points describing trading data in that particular time frame.

When handling time series data, the first thing you should know is how to read, modify,
and create Python objects that understand date and time. The Python standard library
includes the datetime module, which provides the datetime and timedelta objects,
which can handle everything about the date and time. The first seven recipes in this chapter
talk about this module. The remainder of this chapter talks about handling time series data
using the pandas library, which is a very efficient library for data analysis. The
pandas.DataFrame class will be used in our recipes.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[9]

The following is a list of the recipes in this chapter:

Creating datetime objects
Creating timedelta objects
Operations on datetime objects
Modifying datetime objects
Converting a datetime to a string
Creating a datetime object from a string
The datetime object and time zones
Creating a pandas.DataFrame object
DataFrame manipulation—renaming, rearranging, reversing, and slicing
DataFrame manipulation—applying, sorting, iterating, and concatenating
Converting a DataFrame into other formats
Creating a DataFrame from other formats

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
Python package:

pandas ($ pip install pandas)

For all the recipes in this chapter, you will need the Jupyter notebook for this chapter,
found at https:/​/​github. ​com/ ​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/
tree/​master/​Chapter01.

You can also open a new Jupyter notebook and try the hands-on exercises directly as they
are shown in the recipes. Note that the output for some of these recipes might differ for you
as they depend on the date, time, and time zone information provided at the time.

Creating datetime objects
The datetime module provides a datetime class, which can be used to accurately capture
information relating to timestamps, dates, times, and time zones. In this recipe, you will
create datetime objects in multiple ways and introspect their attributes.

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter01

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[10]

How to do it…
Follow these steps to execute this recipe:

Import the necessary module from the Python standard library:1.

>>> from datetime import datetime

Create a datetime object holding the current timestamp using the now()2.
method and print it:

>>> dt1 = datetime.now()
>>> print(f'Approach #1: {dt1}')

We get the following output. Your output will differ:

Approach #1: 2020-08-12 20:55:39.680195

Print the attributes of dt1 related to date and time:3.

>>> print(f'Year: {dt1.year}')
>>> print(f'Month: {dt1.month}')
>>> print(f'Day: {dt1.day}')
>>> print(f'Hours: {dt1.hour}')
>>> print(f'Minutes: {dt1.minute}')
>>> print(f'Seconds: {dt1.second}')
>>> print(f'Microseconds: {dt1.microsecond}')
>>> print(f'Timezone: {dt1.tzinfo}')

We get the following output. Your output would differ:

Year: 2020
Month: 8
Day: 12
Hours: 20
Minutes: 55
Seconds: 39
Microseconds: 680195
Timezone: None

Create a datetime object holding the timestamp for 1st January 2021::4.

>>> dt2 = datetime(year=2021, month=1, day=1)
>>> print(f'Approach #2: {dt2}')

You will get the following output:

Approach #2: 2021-01-01 00:00:00

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[11]

Print the various attributes of dt2 related to date and time:5.

>>> print(f'Year: {dt.year}')
>>> print(f'Month: {dt.month}')
>>> print(f'Day: {dt.day}')
>>> print(f'Hours: {dt.hour}')
>>> print(f'Minutes: {dt.minute}')
>>> print(f'Seconds: {dt.second}')
>>> print(f'Microseconds: {dt.microsecond}')
>>> print(f'Timezone: {dt2.tzinfo}')

You will get the following output:

Year: 2021
Month: 1
Day: 1
Hours: 0
Minutes: 0
Seconds: 0
Microseconds: 0
Timezone: None

How it works...
In step 1, you import the datetime class from the datetime module. In step 2, you create
and print a datetime object using the now() method and assign it to dt1. This object holds
the current timestamp information.

A datetime object has the following attributes related to date, time, and time zone
information:

1 year An integer between 0 and 23, both inclusive
2 month An integer between 1 and 12, both inclusive
3 day An integer between 1 and 31, both inclusive
4 hour An integer between 0 and 23, both inclusive
5 minute An integer between 0 and 59, both inclusive
6 second An integer between 0 and 59, both inclusive
7 microsecond An integer between 0 and 999999, both inclusive

8 tzinfo
An object of class timezone. (More information on time zones in
The datetime object and time zones recipe).

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[12]

In step 3, these attributes are printed for dt1. You can see that they hold the current
timestamp information.

In step 4, you create and print another datetime object. This time you create a specific
timestamp, which is 1st Jan 2021, midnight. You call the constructor itself with the
parameters—year as 2021, month as 1, and day as 1. The other time related attributes
default to 0 and time zone defaults to None. In step 5, you print the attributes of dt2. You
can see that they hold exactly the same values as you had passed to the constructor in step
4.

There's more
You can use the date() and time() methods of the datetime objects to extract the date
and time information, as instances of datetime.date and datetime.time classes
respectively:

Use date() method to extract date from dt1. Note the type of the return value.1.

>>> print(f"Date: {dt1.date()}")
>>> print(f"Type: {type(dt1.date())}")

You will get the following output. Your output may differ::

Date: 2020-08-12
Type: <class 'datetime.date'>

Use time() method to extract date from dt1. Note the type of the return value.2.

>>> print(f"Time: {dt1.time()}")
>>> print(f"Type: {type(dt1.time())}")

We get the following output. Your output may differ:

Time: 20:55:39.680195
Type: <class 'datetime.time'>

Use date() method to extract date from dt2. Note the type of the return value.3.

>>> print(f"Date: {dt2.date()}")
>>> print(f"Type: {type(dt2.date())}")

We get the following output:

Date: 2021-01-01
Type: <class 'datetime.date'>

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[13]

Use time() method to extract date from dt2. Note the type of the return value.4.

>>> print(f"Time: {dt2.time()}")
>>> print(f"Type: {type(dt2.time())}")

We get the following output:

Time: 00:00:00
Type: <class 'datetime.time'>

Creating timedelta objects
The datetime module provides a timedelta class, which can be used to represent
information related to date and time differences. In this recipe, you will create timedelta
objects and perform operations on them.

How to do it…
Follow along with these steps to execute this recipe:

Import the necessary module from the Python standard library:1.

>>> from datetime import timedelta

Create a timedelta object with a duration of 5 days. Assign it to td1 and print2.
it:

>>> td1 = timedelta(days=5)
>>> print(f'Time difference: {td1}')

We get the following output:

Time difference: 5 days, 0:00:00

Create a timedelta object with a duration of 4 days. Assign it to td2 and print3.
it:

>>> td2 = timedelta(days=4)
>>> print(f'Time difference: {td2}')

We get the following output:

Time difference: 4 days, 0:00:00

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[14]

Add td1 and td2 and print the output:4.

>>> print(f'Addition: {td1} + {td2} = {td1 + td2}')

We get the following output:

Addition: 5 days, 0:00:00 + 4 days, 0:00:00 = 9 days, 0:00:00

Subtract td2 from td1 and print the output:5.

>>> print(f'Subtraction: {td1} - {td2} = {td1 - td2}')

We will get the following output:

Subtraction: 5 days, 0:00:00 - 4 days, 0:00:00 = 1 day, 0:00:00

Multiply td1 with a number (a float) :6.

>>> print(f'Multiplication: {td1} * 2.5 = {td1 * 2.5}')

We get the following output:

Multiplication: 5 days, 0:00:00 * 2.5 = 12 days, 12:00:00

How it works...
In step 1, you import the timedelta class from the datetime module. In step 2 you create a
timedelta object that holds a time difference value of 5 days and assign it to td1. You
call the constructor to create the object with a single attribute, days. You pass the value as 5
here. Similarly, in step 3, you create another timedelta object, which holds a time
difference value of 4 days and assign it to td2.

In the next steps, you perform operations on the timedelta objects. In step 4, you add td1
and td2. This returns another timedelta object which holds a time difference value of 9
days, which is the sum of the time difference values held by td1 and td2. In step 5, you
subtract td2 from td1. This returns another timedelta object that holds a time difference
value of 1 day, which is the difference of time difference values held by td1 and td2. In
step 6, you multiply td1 with 2.5, a float. This again returns a timedelta object that
holds a time difference value of twelve and a half days.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[15]

There's more
A timedelta object can be created using one or more optional arguments:

1 weeks An integer. Default value is 0.
2 days An integer. Default value is 0.
3 hours An integer. Default value is 0.
4 minutes An integer. Default value is 0.
5 seconds An integer. Default value is 0.
6 milliseconds An integer. Default value is 0.
7 microseconds An integer. Default value is 0.

In step 2 and step 3, we have used just the days argument. You can use other arguments as
well. Also, these attributes are normalized upon creation. This normalization of timedelta
objects is done to ensure that there is always a unique representation for every time
difference value which can be held. The following code demonstrates this:

Create a timedelta object with hours as 23, minutes as 59, and seconds as 60.1.
Assign it to td3 and print it. It will be normalized to a timedelta object with
days as 1 (and other date and time-related attributes as 0):

>>> td3 = timedelta(hours=23, minutes=59, seconds=60)
>>> print(f'Time difference: {td3}')

We get the following output:

Time difference: 1 day, 0:00:00

The timedelta objects have a convenience method, total_seconds(). This
method returns a float which represents the total seconds contained in the
duration held by the timedelta object.

Call the total_seconds() method on td3. You get 86400.0 as the output:2.

>>> print(f'Total seconds in 1 day: {td3.total_seconds()}')

We get the following output:

Total seconds in 1 day: 86400.0

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[16]

Operations on datetime objects
The datetime and timedelta classes support various mathematical operations to get
dates in the future or the past. Using these operations returns another datetime object. . In
this recipe, you would create datetime, date, time, and timedelta objects and perform
mathematical operations on them.

How to do it…
Follow along with these steps to execute this recipe:

Import the necessary modules from the Python standard library:1.

>>> from datetime import datetime, timedelta

Fetch today's date. Assign it to date_today and print it:2.

>>> date_today = date.today()
>>> print(f"Today's Date: {date_today}")

We get the following output. Your output may differ:

Today's Date: 2020-08-12

Add 5 days to today's date using a timedelta object. Assign it to3.
date_5days_later and print it:

>>> date_5days_later = date_today + timedelta(days=5)
>>> print(f"Date 5 days later: {date_5days_later}")

We get the following output. Your output may differ:

Date 5 days later: 2020-08-17

Subtract 5 days from today's date using a timedelta object. Assign it to4.
date_5days_ago and print it:

>>> date_5days_ago = date_today - timedelta(days=5)
>>> print(f"Date 5 days ago: {date_5days_ago}")

We get the following output. Your output may differ:

Date 5 days ago: 2020-08-07

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[17]

Compare date_5days_later with date_5days_ago using the > operator:5.

>>> date_5days_later > date_5days_ago

We get the following output:

True

Compare date_5days_later with date_5days_ago using the < operator:6.

>>> date_5days_later < date_5days_ago

We get the following output:

False

Compare date_5days_later, date_today and date_5days_ago together7.
using the > operator:

>>> date_5days_later > date_today > date_5days_ago

We get the following output:

True

Fetch the current timestamp. Assign it to current_timestamp:8.

>>> current_timestamp = datetime.now()

Fetch the current time. Assign it to time_now and print it:9.

>>> time_now = current_timestamp.time()
>>> print(f"Time now: {time_now}")

We get the following output. Your output may differ:

Time now: 20:55:45.239177

Add 5 minutes to the current time using a timedelta object. Assign it to10.
time_5minutes_later and print it:

>>> time_5minutes_later = (current_timestamp +
 timedelta(minutes=5)).time()
>>> print(f"Time 5 minutes later: {time_5minutes_later}")

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[18]

We get the following output. Your output may differ:

Time 5 minutes later: 21:00:45.239177

Subtract 5 minutes from the current time using a timedelta object. Assign it to11.
time_5minutes_ago and print it:

>>> time_5minutes_ago = (current_timestamp -
 timedelta(minutes=5)).time()
>>> print(f"Time 5 minutes ago: {time_5minutes_ago}")

We get the following output. Your output may differ:

Time 5 minutes ago: 20:50:45.239177

Compare time_5minutes_later with time_5minutes_ago using the <12.
operator:

>>> time_5minutes_later < time_5minutes_ago

We get the following output. Your output may differ:

False

Compare time_5minutes_later with time_5minutes_ago using the >13.
operator:

>>> time_5minutes_later > time_5minutes_ago

We get the following output. Your output may differ:

True

Compare time_5minutes_later, time_now and time_5minutes_ago14.
together using the > operator:

>> time_5minutes_later > time_now > time_5minutes_ago

We get the following output. Your output may differ:

True

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[19]

How it works…
In step 1, you import date, datetime, and timedelta classes from the datetime module.
In step 2, you fetch today's date using the today() classmethod provided by the class
date and assign it to a new attribute, date_today. (A classmethod allows you to call a
method directly on a class without creating an instance.) The return object is of type
datetime.date. In step 3, you create a date, 5 days ahead of today, by adding a
timedelta object, holding a duration of 5 days, to date_today. You assign this to a new
attribute, date_5days_later. Similarly, in step 4, you create a date, 5 days ago and assign
it to a new attribute date_5days_ago.

In step 5 and step 6, you compare date_5days_later and date_5days_ago using the >
and < operators, respectively. The > operator returns True if the first operand holds a date
ahead of that held by operand 2. Similarly, the < operator returns True if the second
operand holds a date ahead of that held by operand 1. In step 7, you compare together all
three date objects created so far. Note the outputs.

Step 8 to step 14 perform the same operations as step 2 to step 7, but this time on
datetime.time objects—fetching current time, fetching a time 5 minutes ahead of the
current time, fetching a time 5 minutes before the current time and comparing all the
datetime.time objects which are created. The timedelta objects cannot be added to
datetime.time objects directly to get time in the past or the future. To overcome this, you
can add timedelta objects to datetime objects and then extract time from them using the
time() method. You do this in step 10 and step 11.

There's more
The operations shown in this recipe on date and time objects can similarly be performed
on datetime objects. Besides +, -, < and >, you can also use the following operators on
datetime, date, and time objects:

>=
Return True only if the first operand holds a datetime/date/time ahead or
equal to that of the first operand

<=
Return True only if the first operand holds a datetime/date/time before or
equal to that of the first operand

==
Return True only if the first operand holds a datetime/date/time equal to
that of the first operand

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[20]

This is not an exhaustive list of permissible operators. Refer to the official documentation
on datetime module for more information: https:/ ​/ ​docs. ​python. ​org/ ​3.​8/ ​library/
datetime.​html.

Modifying datetime objects
Often, you may want to modify existing datetime objects to represent a different date and
time. This recipe includes code to demonstrate this.

How to do it…
Follow these steps to execute this recipe:

Import the necessary modules from the Python standard library:1.

>>> from datetime import datetime

Fetch the current timestamp. Assign it to dt1 and print it:2.

>>> dt1 = datetime.now()
>>> print(dt1)

We get the following output. Your output would differ:

2020-08-12 20:55:46.753899

Create a new datetime object by replacing the year, month, and day attributes3.
of dt1. Assign it to dt2 and print it :

>>> dt2 = dt1.replace(year=2021, month=1, day=1)
>>> print(f'A timestamp from 1st January 2021: {dt2}')

We get the following output. Your output would differ:

A timestamp from 1st January 2021: 2021-01-01 20:55:46.753899

https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html
https://docs.python.org/3.8/library/datetime.html

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[21]

Create a new datetime object by specifying all the attributes directly. Assign it4.
to dt3 and print it:

>>> dt3 = datetime(year=2021,
 month=1,
 day=1,
 hour=dt1.hour,
 minute=dt1.minute,
 second=dt1.second,
 microsecond=dt1.microsecond,
 tzinfo=dt1.tzinfo)
print(f'A timestamp from 1st January 2021: {dt3}')

We get the following output. Your output would differ:

A timestamp from 1st January 2021: 2021-01-01 20:55:46.753899

Compare dt2 and dt3:5.

>>> dt2 == dt3

We get the following output.

True

How it works...
In step 1, you import the datetime class from the datetime module. In step 2, you fetch
the current timestamp using the now() method of datetime and assign it to a new
attribute, dt1. To get a modified timestamp from an existing datetime object, you can use
the replace() method. In step 3, you create a new datetime object dt2, from dt1, by
calling the replace() method. You specify the attributes to be modified, which are year,
month, and day. The remaining attributes remain as it is, which are an hour, minute,
second, microsecond, and timezone. You can confirm this by comparing the outputs of
step 2 and step 3. In step 4, you create another datetime object, dt3. This time you call the
datetime constructor directly. You pass all the attributes to the constructor such that the
timestamp created is the same as dt2. In step 5, you confirm that dt2 and dt3 hold exactly
the same timestamp by using the == operator, which returns True.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[22]

Converting a datetime object to a string
This recipe demonstrates the conversion of the datetime objects into strings which finds
application in printing and logging. Also, this is helpful while sending timestamps as JSON
data over web APIs.

How to do it…
Execute the following steps for this recipe:

Import the necessary modules from the Python standard library:1.

>>> from datetime import datetime

Fetch the current timestamp along with time zone information. Assign it to now2.
and print it:

>>> now = datetime.now().astimezone()

Cast now to a string and print it::3.

>>> print(str(now))

We get the following output. Your output may differ:

2020-08-12 20:55:48.366130+05:30

Convert now to a string with a specific date-time format using strftime() and4.
print it:

>>> print(now.strftime("%d-%m-%Y %H:%M:%S %Z"))

We get the following output. Your output may differ:

12-08-2020 20:55:48 +0530

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[23]

How it works...
In step 1, you import the datetime class from the datetime module. In step 2, you fetch
the current timestamp with time zone and assign it to a new attribute, now. The now()
method of datetime fetches the current timestamp, but without time zone information.
Such objects are called time zone-native datetime objects. The astimezone() method
adds time zone information from the system local time on this time zone-naive object,
essentially converting it to a time zone-aware object. (More information in The datetime
object and time zones recipe). In step 3, you cast now to a string object and print it. Observe
that the output date format is fixed and may not be of your choice. The datetime module
has a strftime() method which can convert the object to a string in a specific format as
required. In step 4, you convert now to a string in the format DD-MM-YYYY HH:MM:SS +Z.
The directives used in step 4 are described as follows:

Directive Meaning
%d The day of the month as a zero-padded decimal number
%m The month as a zero-padded decimal number
%Y The year with the century as a decimal number
%H The hour (24-hour clock) as a zero-padded decimal number
%M The minute as a zero-padded decimal number
%S The second as a zero-padded decimal number
%Z The time zone name (empty string if the object is naive)

A complete list of the directives that can be given to .strptime() can be found at https:/
/​docs.​python.​org/ ​3. ​7/ ​library/ ​datetime. ​html#strftime- ​and-​strptime- ​behavior.

Creating a datetime object from a string
This recipe demonstrates the conversion of well-formatted strings into datetime objects.
This finds application in reading timestamps from a file. Also, this is helpful while
receiving timestamps as JSON data over web APIs.

https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[24]

How to do it…
Execute the following steps for this recipe:

Import the necessary modules from the Python standard library:1.

>>> from datetime import datetime

Create a string representation of timestamp with date, time, and time zone.2.
Assign it to now_str:

>>> now_str = '13-1-2021 15:53:39 +05:30'

Convert now_str to now, a datetime.datetime object. Print it:3.

>>> now = datetime.strptime(now_str, "%d-%m-%Y %H:%M:%S %z")
>>> print(now)

We get the following output:

2021-01-13 15:53:39+05:30

Confirm that now is of the datetime type:4.

>>> print(type(now))

We get the following output:

<class 'datetime.datetime'>

How it works...
In step 1, you import the datetime class from the datetime module. In step 2, you create a
string holding a valid timestamp and assign it to a new attribute, now_str. The datetime
module has a strptime() method which can convert a string holding a valid timestamp in
a specific format to a datetime object. In step 3, you convert now_str, a string in the
format DD-MM-YYYY HH:MM:SS +Z, to now. In step 4, you confirm that now is indeed an
object of the datetime type. The directives used in step 3 are the same as those described in
the Converting a datetime object to a string recipe.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[25]

There's more
When reading a string into a datetime object, the entire string should be consumed with
appropriate directives. Consuming a string partially will throw an exception, as shown in
the following code snippet. The error message shows what data was not converted and can
be used to fix the directives provided to the strptime() method.

Try to convert now_str to a datetime object using strptime() method. Pass a string
with directives for only the date part of the string. Note the error:

>>> now = datetime.strptime(now_str, "%d-%m-%Y")

The output is as follows:

Note: It's expected to have an error below

ValueError Traceback (most recent call last)
<ipython-input-96-dc92a0358ed8> in <module>
----> 1 now = datetime.strptime(now_str, "%d-%m-%Y")
 2 # Note: It's expected to get an error below

/usr/lib/python3.8/_strptime.py in _strptime_datetime(cls, data_string,
format)
 566 """Return a class cls instance based on the input string and the
 567 format string."""
--> 568 tt, fraction, gmtoff_fraction = _strptime(data_string, format)
 569 tzname, gmtoff = tt[-2:]
 570 args = tt[:6] + (fraction,)

/usr/lib/python3.8/_strptime.py in _strptime(data_string, format)
 350 (data_string, format))
 351 if len(data_string) != found.end():
--> 352 raise ValueError("unconverted data remains: %s" %
 353 data_string[found.end():])
 354

ValueError: unconverted data remains: 15:53:39 +05:30

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[26]

The datetime object and time zones
There are two types of datetime objects—time zone-naive and time zone-aware. Time
zone-naive objects do not hold time zone information and timezone-aware objects hold
time zone information. This recipe demonstrates multiple time zone related operations on
datetime objects: creating time zone-naive and time zone-aware objects, adding time zone
information to time zone-aware objects, removing time zone information from time zone-
naive objects, and comparing time zone-aware and time zone-naive objects.

How to do it…
Execute the following steps for this recipe:

Import the necessary modules from the Python standard library:1.

>>> from datetime import datetime

Create a time zone-naive datetime object. Assign it to now_tz_naive and print2.
it:

>>> now_tz_unaware = datetime.now()
>>> print(now_tz_unaware)

We get the following output. Your output may differ:

2020-08-12 20:55:50.598800

Print the time zone information of now_tz_naive. Note the output:3.

>>> print(now_tz_unaware.tzinfo)

We get the following output:

None

Create a time zone-aware datetime object. Assign it to now_tz_aware and print4.
it:

>>> now_tz_aware = datetime.now().astimezone()
>>> print(now_tz_aware)

We get the following output. Your output may differ:

2020-08-12 20:55:51.004671+05:30

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[27]

Print the time zone information of now_tz_aware. Note the output:5.

>>> print(now_tz_aware.tzinfo)

We get the following output. Your output may differ:

IST

Create a new timestamp by adding time zone information to now_tz_naive6.
from now_tz_aware. Assign it to new_tz_aware and print it:

>>> new_tz_aware = now_tz_naive.replace(tzinfo=now_tz_aware.tzinfo)
>>> print(new_tz_aware)

The output is as follows. Your output may differ:

2020-08-12 20:55:50.598800+05:30

Print the timezone information of new_tz_aware using the tzinfo attribute.7.
Note the output:

>>> print(new_tz_aware.tzinfo)

The output is as follows. Your output may differ:

IST

Create a new timestamp by removing timezone information from8.
new_tz_aware. Assign it to new_tz_naive and print it:

>>> new_tz_naive = new_tz_aware.replace(tzinfo=None)
>>> print(new_tz_naive)

The output is as follows. Your output may differ:

2020-08-12 20:55:50.598800

Print the timezone information of new_tz_naive using the tzinfo attribute.9.
Note the output:

>>> print(new_tz_naive.tzinfo)

The output is as follows:

None

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[28]

How it works...
In step 1, you import the datetime class from the datetime module. In step 2, you create a
time zone-naive datetime object using the now() method and assign it to a new attribute
now_tz_naive. In step 3, you print the time zone information held by now_tz_naive
using the tzinfo attribute. Observe that the output is None as this is a time zone-naive
object.

In step 4, you create a time zone-aware datetime object using the now() and
astimezone() methods and assign it to a new attribute now_tz_aware. In step 5, you
print the time zone information held by now_tz_aware using the tzinfo attribute.
Observe that the output is IST and not None; as this is a time zone-aware object.

In step 6, you create a new datetime object by adding time zone information to
now_tz_naive. The time zone information is taken from now_tz_aware. You do this using
the replace() method (Refer to Modifying datetime objects recipe for more information).
You assign this to a new variable, new_tz_aware. In step 7, you print the time zone
information held by new_tz_aware. Observe it is the same output as in step 5 as you have
taken time zone information from now_tz_aware. Similarly, in step 8 and step 9, you create
a new datetime object, new_tz_naive, but this time you remove the time zone
information.

There's more
You can use comparison operators only between time zone-naive or time zone-aware
datetime objects. You cannot compare a time zone-naive datetime object with a time
zone-aware datetime object. Doing so will throw an exception. This is demonstrated in the
following steps:

Compare 2 timezone-naive objects, new_tz_naive and now_tz_naive. Note the1.
output:

>>> new_tz_naive <= now_tz_naive

Compare 2-time zone-aware objects, new_tz_aware, and now_tz_aware. Note2.
the output:

>>> new_tz_aware <= now_tz_aware

We get the following output:

True

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[29]

Compare a time zone-aware object and a time zone-naive object, new_tz_aware,3.
and now_tz_naive. Note the error:

>>> new_tz_aware > now_tz_naive

We get the following output:

 TypeError Traceback (most recent call last)
<ipython-input-167-a9433bb51293> in <module>
----> 1 new_tz_aware > now_tz_naive
 2 # Note: It's expected to get an error below

TypeError: can't compare offset-naive and offset-aware datetimes

Creating a pandas.DataFrame object
Now that we are done with handling date and time, let's move on to handling time series
data. The pandas library has a pandas.DataFrame class, which is useful for handling and
manipulating such data. This recipe starts by creating these objects.

How to do it...
Execute the following steps for this recipe:

Import the necessary modules from the Python standard library:1.

>>> from datetime import datetime
>>> import pandas

Create a sample time-series data as a list of dictionary objects. Assign it to2.
time_series data:

>>> time_series_data = \
[{'date': datetime.datetime(2019, 11, 13, 9, 0),
 'open': 71.8075, 'high': 71.845, 'low': 71.7775,
 'close': 71.7925, 'volume': 219512},
{'date': datetime.datetime(2019, 11, 13, 9, 15),
 'open': 71.7925, 'high': 71.8, 'low': 71.78,
 'close': 71.7925, 'volume': 59252},
{'date': datetime.datetime(2019, 11, 13, 9, 30),
 'open': 71.7925, 'high': 71.8125, 'low': 71.76,
 'close': 71.7625, 'volume': 57187},
{'date': datetime.datetime(2019, 11, 13, 9, 45),

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[30]

 'open': 71.76, 'high': 71.765, 'low': 71.735,
 'close': 71.7425, 'volume': 43048},
{'date': datetime.datetime(2019, 11, 13, 10, 0),
 'open': 71.7425, 'high': 71.78, 'low': 71.7425,
 'close': 71.7775, 'volume': 45863},
{'date': datetime.datetime(2019, 11, 13, 10, 15),
 'open': 71.775, 'high': 71.8225, 'low': 71.77,
 'close': 71.815, 'volume': 42460},
{'date': datetime.datetime(2019, 11, 13, 10, 30),
 'open': 71.815, 'high': 71.83, 'low': 71.7775,
 'close': 71.78, 'volume': 62403},
{'date': datetime.datetime(2019, 11, 13, 10, 45),
 'open': 71.775, 'high': 71.7875, 'low': 71.7475,
 'close': 71.7525, 'volume': 34090},
{'date': datetime.datetime(2019, 11, 13, 11, 0),
 'open': 71.7525, 'high': 71.7825, 'low': 71.7475,
 'close': 71.7625, 'volume': 39320},
{'date': datetime.datetime(2019, 11, 13, 11, 15),
 'open': 71.7625, 'high': 71.7925, 'low': 71.76,
 'close': 71.7875, 'volume': 20190}]

Create a new DataFrame from time_series_data. Assign it to df and print it:3.

>>> df = pandas.DataFrame(time_series_data)
>>> df

We get the following output:

 date open high low close volume
0 2019-11-13 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
1 2019-11-13 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
2 2019-11-13 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
3 2019-11-13 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
4 2019-11-13 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
5 2019-11-13 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
6 2019-11-13 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
7 2019-11-13 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
8 2019-11-13 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
9 2019-11-13 11:15:00 71.7625 71.7925 71.7600 71.7875 20190

Get the list of columns in df:4.

>>> df.columns.tolist()

We get the following output:

['date', 'open', 'high', 'low', 'close', 'volume']

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[31]

Create a DataFrame object again using the time_series_data. This time,5.
specify the columns in the order you want:

>>> pandas.DataFrame(time_series_data,
 columns=['close','date', 'open', 'high', 'low', 'volume'])

We get the following output:

 close date open high low volume
0 71.7925 2019-11-13 09:00:00 71.8075 71.8450 71.7775 219512
1 71.7925 2019-11-13 09:15:00 71.7925 71.8000 71.7800 59252
2 71.7625 2019-11-13 09:30:00 71.7925 71.8125 71.7600 57187
3 71.7425 2019-11-13 09:45:00 71.7600 71.7650 71.7350 43048
4 71.7775 2019-11-13 10:00:00 71.7425 71.7800 71.7425 45863
5 71.8150 2019-11-13 10:15:00 71.7750 71.8225 71.7700 42460
6 71.7800 2019-11-13 10:30:00 71.8150 71.8300 71.7775 62403
7 71.7525 2019-11-13 10:45:00 71.7750 71.7875 71.7475 34090
8 71.7625 2019-11-13 11:00:00 71.7525 71.7825 71.7475 39320
9 71.7875 2019-11-13 11:15:00 71.7625 71.7925 71.7600 20190

How it works...
In step 1, you import the datetime class from the datetime module and the pandas
package. In step 2, you create a time-series data, which is typically returned by 3rd party
APIs for historical data. This data is a list of dictionaries, and each dictionary has the same
set of keys—date, open, high, low, close, and volume. Observe that the value for the
date key is a datetime object and for the other keys are float objects.

In step 3, you create a pandas DataFrame object by directly calling the constructor with
time_series_data as an argument and assign the return data to df. The keys of the
dictionaries become the column names of df and values become the data. In step 4, you
fetch the columns of df as a list using the columns attribute and the tolist() method.
You can verify that the column names are the same as the keys of the dictionaries in
time_series_data.

In step 5, you create a DataFrame with the columns in a specific order by passing a
columns argument to the constructor with the required order as a list of strings.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[32]

There's more
When a DataFrame object is created, an index is assigned to it automatically, which is an
address for all the rows. The leftmost column in the preceding example is the index
column. By default, the index starts from 0. A custom index can be set by passing an index
argument to the DataFrame constructor with the required indices as an iterator. This is
shown as follows:

Create a new DataFrame object from time_series_data, with a custom index:1.

>>> pandas.DataFrame(time_series_data, index=range(10, 20))

We get the following output:

 date open high low close volume
10 2019-11-13 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
11 2019-11-13 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
12 2019-11-13 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
13 2019-11-13 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
14 2019-11-13 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
15 2019-11-13 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
16 2019-11-13 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
17 2019-11-13 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
18 2019-11-13 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
19 2019-11-13 11:15:00 71.7625 71.7925 71.7600 71.7875 20190

Note the index in the output starts from 10 and goes up to 19. The default index values
would have ranged from 0 to 9.

DataFrame manipulation—renaming,
rearranging, reversing, and slicing
After creating a DataFrame object, you can perform various operations on it. This recipe
covers the following operations on DataFrame objects. Renaming a column, rearranging
columns, reversing the DataFrame, and slicing the DataFrame to extract a row, column,
and a subset of data.

Getting ready
Make sure the df object is available in your Python namespace. Refer to Creating a
pandas.DataFrame object recipe of this chapter to set up this object.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[33]

How to do it…
Execute the following steps for this recipe:

Rename the date column to timestamp for df. Print it:1.

>>> df.rename(columns={'date':'timestamp'}, inplace=True)
>>> df

We get the following output:

 timestamp open high low close volume
0 2019-11-13 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
1 2019-11-13 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
2 2019-11-13 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
3 2019-11-13 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
4 2019-11-13 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
5 2019-11-13 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
6 2019-11-13 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
7 2019-11-13 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
8 2019-11-13 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
9 2019-11-13 11:15:00 71.7625 71.7925 71.7600 71.7875 20190

Create a new DataFrame object by rearranging the columns in df:2.

>>> df.reindex(columns=[
 'volume',
 'close',
 'timestamp',
 'high',
 'open',
 'low'
])

We get the following output:

 volume close timestamp high open low
0 219512 71.7925 2019-11-13 09:00:00 71.8450 71.8075 71.7775
1 59252 71.7925 2019-11-13 09:15:00 71.8000 71.7925 71.7800
2 57187 71.7625 2019-11-13 09:30:00 71.8125 71.7925 71.7600
3 43048 71.7425 2019-11-13 09:45:00 71.7650 71.7600 71.7350
4 45863 71.7775 2019-11-13 10:00:00 71.7800 71.7425 71.7425
5 42460 71.8150 2019-11-13 10:15:00 71.8225 71.7750 71.7700
6 62403 71.7800 2019-11-13 10:30:00 71.8300 71.8150 71.7775
7 34090 71.7525 2019-11-13 10:45:00 71.7875 71.7750 71.7475
8 39320 71.7625 2019-11-13 11:00:00 71.7825 71.7525 71.7475
9 20190 71.7875 2019-11-13 11:15:00 71.7925 71.7625 71.7600

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[34]

Create a new DataFrame object by reversing the rows in df:3.

>>> df[::-1]

We get the following output:

 timestamp open high low close volume
9 2019-11-13 11:15:00 71.7625 71.7925 71.7600 71.7875 20190
8 2019-11-13 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
7 2019-11-13 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
6 2019-11-13 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
5 2019-11-13 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
4 2019-11-13 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
3 2019-11-13 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
2 2019-11-13 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
1 2019-11-13 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
0 2019-11-13 09:00:00 71.8075 71.8450 71.7775 71.7925 219512

Extract the close column from df:4.

>>> df['close']

We get the following output:

0 71.7925
1 71.7925
2 71.7625
3 71.7425
4 71.7775
5 71.8150
6 71.7800
7 71.7525
8 71.7625
9 71.7875
Name: close, dtype: float64

Extract the first row from df:5.

>>> df.iloc[0]

We get the following output:

timestamp 2019-11-13 09:00:00
open 71.8075
high 71.845
low 71.7775
close 71.7925
volume 219512
Name: 10, dtype: object

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[35]

Extract a 2 × 2 matrix with the first two rows and first two columns only:6.

>>> df.iloc[:2, :2]

We get the following output:

 timestamp open
0 2019-11-13 09:00:00 71.8075
1 2019-11-13 09:15:00 71.7925

How it works...
Renaming: In step 1, you rename the date column to timestamp using the rename()
method of pandas DataFrame. You pass the columns argument as a dictionary with the
existing names to be replaced as keys and their new names as the corresponding values.
You also pass the inplace argument as True so that df is modified directly. If it is not
passed, the default value is False, meaning a new DataFrame would be created instead of
modifying df.

Rearranging: In step 2, you use the reindex() method to create a new DataFrame from df
by rearranging its columns. You pass the columns argument with a list of column names as
strings in the required order.

Revering: In step 3, you create a new DataFrame from df with its rows reversed by using
the indexing operator in a special way - [::-1]. This is similar to the way we reverse
regular Python lists.

Slicing: In step 4, you extract the column close by using the indexing operator on df. You
pass the column name, close, as the index here. The return data is a pandas.Series
object. You can use the iloc property on DataFrame objects to extract a row, a column, or a
subset DataFrame object. In step 5, you extract the first-row using iloc with 0 as the index.
The return data is a pandas.Series object In step 6, you extract a 2x2 subset from df using
iloc with (:2, :2) as the index. This implies all data in rows until index 2 (which are 0
and 1) and columns until index 2 (which again are 0 and 1) would be extracted. The return
data is a pandas.DataFrame object.

For all the operations shown in this recipe where a new DataFrame object
is returned, the original DataFrame object remains unchanged.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[36]

There's more
The .iloc() property can also be used to extract a column from a DataFrame. This is
shown in the following code.

Extract the 4th column from df. Observe the output:

>>> df.iloc[:, 4]

We get the following output:

0 71.7925
1 71.7925
2 71.7625
3 71.7425
4 71.7775
5 71.8150
6 71.7800
7 71.7525
8 71.7625
9 71.7875
Name: close, dtype: float64

Note that this output and the output of step 4 are identical.

DataFrame manipulation—applying, sorting,
iterating, and concatenating
Adding to the previous recipe, this recipe demonstrates more operations that can be
performed on DataFrame objects: applying a function to all elements in a column, sorting
based on a column, iterating over the rows, and concatenating multiple DataFrame objects
vertically and horizontally.

Getting ready
Make sure you have followed the previous recipe before trying out this recipe. Ensure you
have df in your Python namespace from the previous recipe.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[37]

How to do it…
Execute the following steps for this recipe:

Import the necessary modules1.

>>> import random
>>> import pandas

Modify the values in the timestamp column of df with a different date and time2.
format DD-MM-YYYY HH:MM:SS:

>>> df['timestamp'] = df['timestamp'].apply(
 lambda x: x.strftime("%d-%m-%Y %H:%M:%S"))
>>> df

We get the following output:

 timestamp open high low close volume
0 13-11-2019 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
1 13-11-2019 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
2 13-11-2019 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
3 13-11-2019 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
4 13-11-2019 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
5 13-11-2019 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
6 13-11-2019 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
7 13-11-2019 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
8 13-11-2019 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
9 13-11-2019 11:15:00 71.7625 71.7925 71.7600 71.7875 20190

Create a new DataFrame object by sorting the close column in ascending order:3.

>>> df.sort_values(by='close', ascending=True)

We get the following output:

 timestamp open high low close volume
3 13-11-2019 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
7 13-11-2019 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
2 13-11-2019 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
8 13-11-2019 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
4 13-11-2019 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
6 13-11-2019 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
9 13-11-2019 11:15:00 71.7625 71.7925 71.7600 71.7875 20190
0 13-11-2019 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
1 13-11-2019 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
5 13-11-2019 10:15:00 71.7750 71.8225 71.7700 71.8150 42460

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[38]

Create a new DataFrame object by sorting the open column in descending order:4.

>>> df.sort_values(by='open', ascending=False)

We get the following output:

 timestamp open high low close volume
6 13-11-2019 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
0 13-11-2019 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
2 13-11-2019 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
1 13-11-2019 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
7 13-11-2019 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
5 13-11-2019 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
9 13-11-2019 11:15:00 71.7625 71.7925 71.7600 71.7875 20190
3 13-11-2019 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
8 13-11-2019 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
4 13-11-2019 10:00:00 71.7425 71.7800 71.7425 71.7775 45863

Iterate over df to find the average of open, close, high, and low values for each5.
row:

>>> for _, row in df.iterrows():
 avg = (row['open'] + row['close'] + row['high'] +
 row['low'])/4
 print(f"Index: {_} | Average: {avg}")

We get the following output:

Index: 0 | Average: 71.805625
Index: 1 | Average: 71.79124999999999
Index: 2 | Average: 71.781875
Index: 3 | Average: 71.750625
Index: 4 | Average: 71.760625
Index: 5 | Average: 71.795625
Index: 6 | Average: 71.800625
Index: 7 | Average: 71.765625
Index: 8 | Average: 71.76124999999999
Index: 9 | Average: 71.775625

Iterate column-wise over all the values of the first row of df:6.

>>> for value in df.iloc[0]:
 print(value)

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[39]

We get the following output:

13-11-2019 09:00:00
71.8075
71.845
71.7775
71.7925
219512

Create a sample time-series data as a list of dictionary objects. Assign it to7.
df_new:

>>> df_new = pandas. DataFrame([
 {'timestamp': datetime.datetime(2019, 11, 13, 11, 30),
 'open': 71.7875,
 'high': 71.8075,
 'low': 71.77,
 'close': 71.7925,
 'volume': 18655},
 {'timestamp': datetime.datetime(2019, 11, 13, 11, 45),
 'open': 71.7925,
 'high': 71.805,
 'low': 71.7625,
 'close': 71.7625,
 'volume': 25648},
 {'timestamp': datetime.datetime(2019, 11, 13, 12, 0),
 'open': 71.7625,
 'high': 71.805,
 'low': 71.75,
 'close': 71.785,
 'volume': 37300},
 {'timestamp': datetime.datetime(2019, 11, 13, 12, 15),
 'open': 71.785,
 'high': 71.7925,
 'low': 71.7575,
 'close': 71.7775,
 'volume': 15431},
 {'timestamp': datetime.datetime(2019, 11, 13, 12, 30),
 'open': 71.7775,
 'high': 71.795,
 'low': 71.7725,
 'close': 71.79,
 'volume': 5178}])
>>> df_new

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[40]

We get the following output:

 timestamp open high low close volume
0 2019-11-13 11:30:00 71.7875 71.8075 71.7700 71.7925 18655
1 2019-11-13 11:45:00 71.7925 71.8050 71.7625 71.7625 25648
2 2019-11-13 12:00:00 71.7625 71.8050 71.7500 71.7850 37300
3 2019-11-13 12:15:00 71.7850 71.7925 71.7575 71.7775 15431
4 2019-11-13 12:30:00 71.7775 71.7950 71.7725 71.7900 5178

Create a new DataFrame by concatenating df and df_new vertically:8.

>>> pandas.concat([df, df_new]).reset_index(drop=True)

We get the following output:

 timestamp open high low close volume
0 13-11-2019 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
1 13-11-2019 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
2 13-11-2019 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
3 13-11-2019 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
4 13-11-2019 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
5 13-11-2019 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
6 13-11-2019 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
7 13-11-2019 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
8 13-11-2019 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
9 13-11-2019 11:15:00 71.7625 71.7925 71.7600 71.7875 20190
10 2019-11-13 11:30:00 71.7875 71.8075 71.7700 71.7925 18655
11 2019-11-13 11:45:00 71.7925 71.8050 71.7625 71.7625 25648
12 2019-11-13 12:00:00 71.7625 71.8050 71.7500 71.7850 37300
13 2019-11-13 12:15:00 71.7850 71.7925 71.7575 71.7775 15431
14 2019-11-13 12:30:00 71.7775 71.7950 71.7725 71.7900 5178

How it works...
In step 1, you import the pandas package.

Applying: In step 2, you modify all the values in the timestamp column of df by using the
apply method. This method takes a function as an input to be applied. You pass a lambda
function here which expects a datetime object as a single input, and converts it to a string
in the required format using strftime(). (Refer to Converting a datetime object to a
string recipe for more details on strftime()). The apply method is called on the
timestamp column of df, which is a pandas.Series object. The lambda function is
applied to each value in the column. This call returns a new pandas.Series object, which
you assign back to the timestamp column of df. Note, after this, the timestamp column of
df holds timestamps as string objects, and not datetime objects as earlier.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[41]

Sorting: In step 3, you create a new DataFrame object by sorting the close column of df in
ascending order. You use the sort_values() method to perform the sorting. Similarly, in
step 4, you create a new DataFrame object by sorting the open column of df in descending
order.

Iterating: In step 5, you iterate over df using the iterrows() method to find and print the
average of open, close, high, and low values for each row. The iterrows() method
iterates over each row as an (index, pandas.Series) pair. In step 6, you iterate over all
the values of the first row of df using df.iloc[0]. You get the timestamp, open, high,
low, close, and volume column values for the first row as the output.

Concatenation: In step 6, you create a new DataFrame similar to the one created in step 2
of Creating a pandas.DataFrame object recipe, and assign it to df_new. You use the
pandas.concat() function to create a new DataFrame by vertically concatenating dt and
df_new. This implies that a new DataFrame would be created with the rows of df_new
appended below the rows of df. You pass a list containing df and df_new as an argument
to the pandas.concat() function. Also, to create a fresh index starting from 0, you use the
reset_index() method with the argument drop passed as True. If you don't use
reset_index(), the indices of the concatenated DataFrame would look something like
this—0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4. (Refer to Creating a
pandas.DataFrame object recipe to know more about the DataFrame index.)

There's more
You can also use the pandas.concat() function to concatenate two DataFrame objects
together horizontally, which is column-wise by, passing the axis argument a value of 1 to
the pandas.concat() method. This is shown in the following steps:

Import random module from the Python standard library:1.

>>> import random

Create a DataFrame object with a single column, open, and random values.2.
Assign it to df1 and print it:

>>> df1 = pandas.DataFrame([random.randint(1,100) for i in
 range(10)], columns=['open'])
>>> df1

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[42]

We get the following output. Your output may differ:

 open
0 99
1 73
2 16
3 53
4 47
5 74
6 21
7 22
8 2
9 30

Create another DataFrame object with a single column, close, and random3.
values. Assign it to df2 and print it:

>>> df2 = pandas.DataFrame([random.randint(1,100) for i in
 range(10)], columns=['close'])
>>> df2

We get the following output:

 close
0 63
1 84
2 44
3 56
4 25
5 1
6 41
7 55
8 93
9 82

Create a new DataFrame by concatenating df1 and df2 horizontally4.

>>> pandas.concat([df1, df2], axis=1)

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[43]

We get the following output. Your output may differ:

 open close
0 99 93
1 73 42
2 16 57
3 53 56
4 47 25
5 74 1
6 21 41
7 22 55
8 2 93
9 30 82

Converting a DataFrame into other formats
This recipe demonstrates the conversion of DataFrame objects into other formats, such as
.csv files, json objects, and pickle objects. Conversion into a .csv file makes it easier to
further work on the data using a spreadsheet application. The json format is useful for
transmitting DataFrame objects over web APIs. The pickle format is useful for
transmitting DataFrame objects created in one Python session to another Python session
over sockets without having to recreate them.

Getting ready
Make sure the object df is available in your Python namespace. Refer to Creating a
pandas.DataFrame object recipe of this chapter to set up this object.

How to do it…
Execute the following steps for this recipe:

Convert and save df as a CSV file:1.

>>> df.to_csv('dataframe.csv', index=False)

Convert df to a JSON string:2.

>>> df.to_json()

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[44]

We get the following output:

'{
 "timestamp":{
 "0":"13-11-2019 09:00:00","1":"13-11-2019 09:15:00",
 "2":"13-11-2019 09:30:00","3":"13-11-2019 09:45:00",
 "4":"13-11-2019 10:00:00","5":"13-11-2019 10:15:00",
 "6":"13-11-2019 10:30:00","7":"13-11-2019 10:45:00",
 "8":"13-11-2019 11:00:00","9":"13-11-2019 11:15:00"},
 "open":{
 "0":71.8075,"1":71.7925,"2":71.7925, "3":71.76,
 "4":71.7425,"5":71.775,"6":71.815, "7":71.775,
 "8":71.7525,"9":71.7625},
 "high"{
 "0":71.845,"1":71.8,"2":71.8125,"3":71.765,
 "4":71.78,"5":71.8225,"6":71.83,"7":71.7875,
 "8":71.7825,"9":71.7925},
 "low":{
 "0":71.7775,"1":71.78,"2":71.76,"3":71.735,
 "4":71.7425,"5":71.77,"6":71.7775,"7":71.7475,
 "8":71.7475,"9":71.76},
 "close":{
 "0":71.7925,"1":71.7925,"2":71.7625,"3":71.7425,
 "4":71.7775,"5":71.815,"6":71.78,"7":71.7525,
 "8":71.7625,"9":71.7875},
 "volume":{
 "0":219512,"1":59252,"2":57187,"3":43048,
 "4":45863,"5":42460,"6":62403,"7":34090,
 "8":39320,"9":20190}}'

Pickle df to a file:3.

>>> df.to_pickle('df.pickle')

How it works...
In step 1, you use the to_csv() method to save df as a .csv file. You pass
dataframe.csv, a file path where the .csv file should be generated, as the first argument
and index as False as the second argument. Passing index as False prevents the index
from being dumped to the .csv file. If you want to save the DataFrame along with its
index, you can pass the index as True to the to_csv() method.

In step 2, you use the to_json() method to convert df into a JSON string. You do not pass
any additional arguments to the to_json() method.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[45]

In step 3, you use the to_pickle() method to pickle (serialize) the object. Again you do
not pass any additional arguments to the to_pickle() method.

The methods to_csv(), to_json(), and to_pickle() can take more
optional arguments than the ones shown in this recipe. Refer to the official
docs for complete information on these methods:

to_csv(): https:/ ​/​pandas. ​pydata. ​org/ ​pandas- ​docs/ ​stable/
reference/ ​api/ ​pandas. ​DataFrame. ​to_​csv. ​html

to_json(): https:/ ​/​pandas. ​pydata. ​org/ ​pandas- ​docs/
stable/ ​reference/ ​api/ ​pandas. ​DataFrame. ​to_ ​json. ​html

to_pickle(): https:/ ​/​pandas. ​pydata. ​org/ ​pandas- ​docs/
stable/ ​reference/ ​api/ ​pandas. ​DataFrame. ​to_ ​pickle. ​html

Creating a DataFrame from other formats
In this recipe, you will create DataFrame objects from other formats, such as .csv files,
.json strings, and pickle files. A .csv file created using a spreadsheet application, valid
JSON data received over web APIs, or valid pickle objects received over sockets can all be
processed further using Python by converting them to DataFrame objects.

Loading pickled data received from untrusted sources can be unsafe.
Please use read_pickle() with caution. You can find more details here:
https:/ ​/​docs. ​python. ​org/ ​3/ ​library/ ​pickle. ​html. If you are using this
function on the pickle file created in the previous recipe, it is perfectly safe
to use read_pickle().

Getting ready
Make sure you have followed the previous recipe before starting this recipe.

How to do it…
Execute the following steps for this recipe:

Create a DataFrame object by reading a CSV file:1.

>>> pandas.read_csv('dataframe.csv')

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[46]

We get the following output:

 timestamp open high low close volume
0 2019-11-13 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
1 2019-11-13 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
2 2019-11-13 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
3 2019-11-13 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
4 2019-11-13 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
5 2019-11-13 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
6 2019-11-13 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
7 2019-11-13 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
8 2019-11-13 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
9 2019-11-13 11:15:00 71.7625 71.7925 71.7600 71.7875 20190

Create a DataFrame object by reading a JSON string:2.

>>> pandas.read_json("""{
 "timestamp": {
 "0":"13-11-2019 09:00:00", "1":"13-11-2019 09:15:00",
 "2":"13-11-2019 09:30:00","3":"13-11-2019 09:45:00",
 "4":"13-11-2019 10:00:00","5":"13-11-2019 10:15:00",
 "6":"13-11-2019 10:30:00","7":"13-11-2019 10:45:00",
 "8":"13-11-2019 11:00:00","9":"13-11-2019 11:15:00"},

 "open":{
 "0":71.8075,"1":71.7925,"2":71.7925,"3":71.76,
 "4":71.7425,"5":71.775,"6":71.815,"7":71.775,
 "8":71.7525,"9":71.7625},

 "high":{
 "0":71.845,"1":71.8,"2":71.8125,"3":71.765,"4":71.78,
 "5":71.8225,"6":71.83,"7":71.7875,"8":71.7825,
 "9":71.7925},

 "low":{
 "0":71.7775,"1":71.78,"2":71.76,"3":71.735,"4":71.7425,
 "5":71.77,"6":71.7775,"7":71.7475,"8":71.7475,
 "9":71.76},

 "close":{
 "0":71.7925,"1":71.7925,"2":71.7625,"3":71.7425,
 "4":71.7775,"5":71.815,"6":71.78,"7":71.7525,
 "8":71.7625,"9":71.7875},

 "volume":{
 "0":219512,"1":59252,"2":57187,"3":43048,"4":45863,
 "5":42460,"6":62403,"7":34090,"8":39320,"9":20190}}
 """)

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[47]

We get the following output:

 timestamp open high low close volume
0 2019-11-13 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
1 2019-11-13 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
2 2019-11-13 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
3 2019-11-13 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
4 2019-11-13 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
5 2019-11-13 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
6 2019-11-13 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
7 2019-11-13 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
8 2019-11-13 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
9 2019-11-13 11:15:00 71.7625 71.7925 71.7600 71.7875 20190

Create a DataFrame object by unpickling the df.pickle file:3.

>>> pandas.read_pickle('df.pickle')

We get the following output:

 timestamp open high low close volume
0 2019-11-13 09:00:00 71.8075 71.8450 71.7775 71.7925 219512
1 2019-11-13 09:15:00 71.7925 71.8000 71.7800 71.7925 59252
2 2019-11-13 09:30:00 71.7925 71.8125 71.7600 71.7625 57187
3 2019-11-13 09:45:00 71.7600 71.7650 71.7350 71.7425 43048
4 2019-11-13 10:00:00 71.7425 71.7800 71.7425 71.7775 45863
5 2019-11-13 10:15:00 71.7750 71.8225 71.7700 71.8150 42460
6 2019-11-13 10:30:00 71.8150 71.8300 71.7775 71.7800 62403
7 2019-11-13 10:45:00 71.7750 71.7875 71.7475 71.7525 34090
8 2019-11-13 11:00:00 71.7525 71.7825 71.7475 71.7625 39320
9 2019-11-13 11:15:00 71.7625 71.7925 71.7600 71.7875 20190

How it works...
In step 1, you use the pandas.read_csv() function to create a DataFrame object from a
.csv file. You pass dataframe.csv, the file path from where the .csv file should be read,
as an argument. Recall, you have created dataframe.csv in step 1 of the previous recipe.

In step 2, you use the pandas.read_json() function to create a DataFrame object from a
valid JSON string. You pass the JSON string from the output of step 2 in the previous recipe
as an argument to this function.

Handling and Manipulating Date, Time, and Time Series Data Chapter 1

[48]

In step 3, you use the pandas.read_pickle() method to create a DataFrame object from a
pickle file. You pass df.pickle, the file path from where the pickle file should be read,
as an argument to this function. Recall, what you created df.pickle in step 3 of the
previous recipe.

If you have followed the previous recipe, the outputs for all the three steps would all be the
same DataFrame object. And this would be identical to df from the previous recipe.

The methods read_csv(), read_json(), and read_pickle() can take
more optional arguments than the ones shown in this recipe. Refer to the
official docs for complete information on these methods.

read_csv(): https:/ ​/​pandas. ​pydata. ​org/ ​pandas- ​docs/
stable/ ​reference/ ​api/ ​pandas. ​read_ ​csv. ​html#pandas. ​read_
csv

read_json(): https:/ ​/​pandas. ​pydata. ​org/ ​pandas- ​docs/
stable/ ​reference/ ​api/ ​pandas. ​read_ ​json. ​html#pandas. ​read_
json

read_pickle(): https:/ ​/​pandas. ​pydata. ​org/ ​pandas- ​docs/
stable/ ​reference/ ​api/ ​pandas. ​read_ ​pickle. ​html#pandas.
read_ ​pickle

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html#pandas.read_pickle

2
Stock Markets – Primer

on Trading
When building algorithmic trading systems, it is essential to have an account open with a
modern broker that provides APIs for placing and querying trades programmatically. This
allows us to control the broking account, which is conventionally operated manually using
the broker's website, using our Python script, which would be part of our larger algorithmic
trading system. This chapter demonstrates various essential recipes that introduce the
essential broker API calls needed for developing a complete algorithmic trading system.

This chapter covers the following recipes:

Setting up Python connectivity with the broker
Querying a list of instruments
Fetching an instrument
Querying a list of exchanges
Querying a list of segments
Knowing other attributes supported by the broker
Placing a simple REGULAR order
Placing a simple BRACKET order
Placing a simple DELIVERY order
Placing a simple INTRADAY order
Querying margins and funds
Calculating the brokerage charged
Calculating the government taxes charged

Let's get started!

Stock Markets – Primer on Trading Chapter 2

[50]

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
The Python pyalgotrading package ($ pip install pyalgotrading)

The latest Jupyter Notebook for this chapter can be found on GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/ ​tree/ ​master/ ​Chapter02.

This chapter demonstrates the APIs of a modern broker, ZERODHA, which is supported by
pyalgotrading. You may wish to choose other brokers supported by pyalgotrading as
well. The recipes in this chapter should be more or less the same for any other broker. The
pyalgotrading package abstracts broker APIs behind a unified interface, so you don't
need to worry about the underlying broker API calls.

To set up a broking account with ZERODHA, please refer to the detailed steps provided in
Appendix I.

Setting up Python connectivity with the
broker
The first thing you need to set up connectivity with the broker is API keys. The broker
provides unique keys to each customer, typically as an api-key and api-secret key pair.
These API keys are chargeable, usually on a monthly subscription basis. You need to get
your copies of api-key and api-secret from the broker's website before you start this
recipe. Please refer to Appendix I for more details.

How to do it…
We execute the following steps to complete this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.broker.broker_connection_zerodha import
BrokerConnectionZerodha

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter02

Stock Markets – Primer on Trading Chapter 2

[51]

Get the api_key and api_secret keys from the broker. These are unique to you2.
and will be used by the broker to identify your Demat account:

>>> api_key = "<your-api-key>"
>>> api_secret = "<your-api-secret>"
>>> broker_connection = BrokerConnectionZerodha(api_key,
api_secret)

You will get the following result:

Installing package kiteconnect via pip...
Please login to this link to generate your request token:
https://kite.trade/connect/login?api_key=<your-api-key>&v=3

Get the request token from the preceding URL:3.

>>> request_token = "<your-request-token>"
>>> broker_connection.set_access_token(request_token)

How it works...
In step 1, you import the BrokerConnectionZerodha class from pyalgotrading. The
BrokerConnectionZerodha class provides an abstraction around the broker-specific
APIs. For step 2, you need your API key and API secret from the broker. If you do not have
them, please refer to Appendix I for detailed instructions with screenshots on getting this
keys. In step 2, you assign your API key and API secret to the new api_key and
api_secret variables and use them to create broker_connection, an instance of the
BrokerConnectionZerodha class. If you are running this for the first time and
kiteconnect is not installed, pyalgotrading will automatically install it for you.
(kiteconnect is the official Python package that talks to the Zerodha
backend; BrokerConnectionZerodha is a wrapper on top of kiteconnect.) Step 2
generates a login URL. Here, you need to click on the link and log in with your Zerodha
credentials. If the authentication process is successful, you will see a link in your browser's
address bar that looks similar to the following:

https://127.0.0.1/?request_token=&action=login&status=success

For example, the full link would be as follows:

https://127.0.0.1/?request_token=H06I6Ydv95y23D2Dp7NbigFjKweGwRP7&action=lo
gin&status=success

Stock Markets – Primer on Trading Chapter 2

[52]

Copy the alphanumeric-token, H06I6Ydv95y23D2Dp7NbigFjKweGwRP7, and paste it
into request_token as part of step 3. The broker_connection instance is now ready to
perform API calls.

Querying a list of instruments
Once the broker_connection handle is ready, it can be used to query the list containing
all the financial instruments provided by the broker.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the previous recipe in this chapter to set up this object.

How to do it…
We execute the following steps to complete this recipe:

Display all the instruments:1.

>>> instruments = broker_connection.get_all_instruments()
>>> instruments

You will get an output similar to the following. The exact output may differ for
you:

 instrument_token exchange_token tradingsymbol name last_price
expiry strike tick_size lot_size instrument_type segment exchange
0 267556358 1045142 EURINR20AUGFUT EURINR 0.0 2020-08-27 0.0 0.0025
1 FUT BCD-FUT BCD
1 268660998 1049457 EURINR20DECFUT EURINR 0.0 2020-12-29 0.0 0.0025
1 FUT BCD-FUT BCD
2 266440966 1040785 EURINR20JULFUT EURINR 0.0 2020-07-29 0.0 0.0025
1 FUT BCD-FUT BCD
3 266073606 1039350 EURINR20JUNFUT EURINR 0.0 2020-06-26 0.0 0.0025
1 FUT BCD-FUT BCD
4 265780742 1038206 EURINR20MAYFUT EURINR 0.0 2020-05-27 0.0 0.0025
1 FUT BCD-FUT BCD
...
64738 978945 3824 ZODJRDMKJ ZODIAC JRD-MKJ 0.0 0.0 0.0500 1 EQ NSE
NSE

Stock Markets – Primer on Trading Chapter 2

[53]

64739 2916865 11394 ZOTA ZOTA HEALTH CARE 0.0 0.0 0.0500 1 EQ NSE
NSE
64740 7437825 29054 ZUARI-BE ZUARI AGRO CHEMICALS 0.0 0.0 0.0500 1
EQ NSE NSE
64741 979713 3827 ZUARIGLOB ZUARI GLOBAL 0.0 0.0 0.0500 1 EQ NSE
NSE
64742 4514561 17635 ZYDUSWELL ZYDUS WELLNESS 0.0 0.0 0.0500 1 EQ
NSE NSE

64743 rows × 12 columns

Print the total number of instruments:2.

>>> print(f'Total instruments: {len(instruments)}')

We get the following output (your output may differ):

Total instruments: 64743

How it works…
The first step fetches all the available financial instruments using the
get_all_instruments() method of broker_connection. This method returns a
pandas.DataFrame object. This object is assigned to a new variable, instruments, which
is shown in the output of step 1. This output may differ for you as new financial
instruments are frequently added and existing ones expire regularly. The final step shows
the total number of instruments provided by the broker.

An explanation of the data that was returned by the preceding API call
will be discussed in depth in Chapter 3, Analyzing Financial Data. For this
recipe, it suffices to know the method for fetching the list of instruments.

Fetching an instrument
Instruments, also known as financial instruments or securities, are assets that can be
traded in an exchange. In an exchange, there can easily be tens of thousands of instruments.
This recipe demonstrates how to fetch an instrument based on its exchange and trading
symbol.

Stock Markets – Primer on Trading Chapter 2

[54]

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the first recipe in this chapter to set up this object.

How to do it…
Fetch an instrument for a specific trading symbol and exchange:

>>> broker_connection.get_instrument(segment='NSE',
tradingsymbol='TATASTEEL')

You'll get the following output:

segment: NSE
exchange: NSE
tradingsymbol: TATASTEEL
broker_token: 895745
tick_size: 0.05
lot_size: 1
expiry:
strike_price: 0.0

How it works…
The broker_connection object provides a handy method, get_instrument, for fetching
any financial instrument. It takes segment and tradingsymbol as attributes before
returning an instrument. The return object is an instance of the Instrument class.

Querying a list of exchanges
An exchange is a marketplace where instruments are traded. Exchanges ensure that the
trading process is fair and happens in an orderly fashion at all times. Usually, a broker
supports multiple exchanges. This recipe demonstrates how to find the list of exchanges
supported by the broker.

Stock Markets – Primer on Trading Chapter 2

[55]

Getting ready
Make sure the instruments object is available in your Python namespace. Refer to the
second recipe of this chapter to learn how to set up this object.

How to do it…
Display the exchanges supported by the broker:

>>> exchanges = instruments.exchange.unique()
>>> print(exchanges)

You will get the following output:

['BCD' 'BSE' 'NSE' 'CDS' 'MCX' 'NFO']

How it works…
instruments.exchange returns a pandas.Series object. Its unique() method returns a
numpy.ndarray object consisting of unique exchanges supported by the broker.

Querying a list of segments
A segment is essentially a categorization of instruments based on their types. The various
types of segments that are commonly found at exchanges include cash/equities, futures,
options, commodities, and currency. Each segment may have a different operating time.
Usually, a broker supports multiple segments within multiple exchanges. This recipe
demonstrates how to find the list of segments supported by the broker.

Getting ready
Make sure the instruments object is available in your Python namespace. Refer to the
second recipe of this chapter to learn how to set up this object.

Stock Markets – Primer on Trading Chapter 2

[56]

How to do it…
Display the segments supported by the broker:

>>> segments = instruments.segment.unique()
>>> print(segments)

You will get the following output:

['BCD-FUT' 'BCD' 'BCD-OPT' 'BSE' 'INDICES' 'CDS-FUT' 'CDS-OPT' 'MCX-FUT'
'MCX-OPT' 'NFO-OPT' 'NFO-FUT' 'NSE']

How it works…
instruments.segment returns a pandas.Series object. Its unique method returns a
numpy.ndarray object consisting of unique segments supported by the broker.

Knowing other attributes supported by the
broker
For placing an order, the following attributes are needed: order transaction type, order
variety, order type, and order code. Different brokers may support different types of order
attributes. For example, some brokers may support just regular orders, while others may
support regular and bracket orders. The value for each of the attributes supported by the
broker can be queried using the broker specific constants provided by the pyalgotrading
package.

How to do it…
We execute the following steps to complete this recipe:

Import the necessary class from the pyalgotrading module:1.

>>> from pyalgotrading.broker.broker_connection_zerodha import
BrokerConnectionZerodha

List the order transaction types:2.

>>> list(BrokerConnectionZerodha.ORDER_TRANSACTION_TYPE_MAP.keys())

Stock Markets – Primer on Trading Chapter 2

[57]

We'll get the following output:

[<BrokerOrderTransactionTypeConstants.BUY: 'BUY'>,
 <BrokerOrderTransactionTypeConstants.SELL: 'SELL'>]

List the order varieties:3.

>>> list(BrokerConnectionZerodha.ORDER_VARIETY_MAP.keys())

We'll get the following output:

[<BrokerOrderVarietyConstants.MARKET: 'ORDER_VARIETY_MARKET'>,
 <BrokerOrderVarietyConstants.LIMIT: 'ORDER_VARIETY_LIMIT'>,
 <BrokerOrderVarietyConstants.STOPLOSS_LIMIT:
'ORDER_VARIETY_STOPLOSS_LIMIT'>,
 <BrokerOrderVarietyConstants.STOPLOSS_MARKET:
'ORDER_VARIETY_STOPLOSS_MARKET'>]

List the order types:4.

>>> list(BrokerConnectionZerodha.ORDER_TYPE_MAP.keys())

We'll get the following output:

[<BrokerOrderTypeConstants.REGULAR: 'ORDER_TYPE_REGULAR'>,
 <BrokerOrderTypeConstants.BRACKET: 'ORDER_TYPE_BRACKET'>,
 <BrokerOrderTypeConstants.COVER: 'ORDER_TYPE_COVER'>,
 <BrokerOrderTypeConstants.AMO: 'ORDER_TYPE_AFTER_MARKET_ORDER'>]

List the order codes:5.

>>> list(BrokerConnectionZerodha.ORDER_CODE_MAP.keys())

We'll get the following output:

[<BrokerOrderCodeConstants.INTRADAY: 'ORDER_CODE_INTRADAY'>,
 <BrokerOrderCodeConstants.DELIVERY: 'ORDER_CODE_DELIVERY_T0'>]

How it works…
In step 1, we import the BrokerConnectionZerodha class from pyalgotrading. This
class holds the order attributes mapping between pyalgotrading and broker specific
constants as dictionary objects. The next steps fetch and print these mappings. Step 2 shows
that your broker supports both BUY and SELL order transaction types.

Stock Markets – Primer on Trading Chapter 2

[58]

Step 3 shows that your broker supports MARKET, LIMIT, STOPLOSS_LIMIT, and
STOPLOSS_MARKET order varieties. Step 4 shows that your broker supports REGULAR,
BRACKET, COVER, and AFTER_MARKET order types. Step 5 shows that your broker supports
INTRADAY and DELIVERY order codes.

The outputs may differ from broker to broker, so consult your broker
documentation if you are using a different broker. A detailed explanation
of all these types of parameters will be covered in Chapter 6, Placing
Trading Orders on the Exchange. This recipe is to just give an overview of
the parameters, as they are needed in the subsequent recipes of this
chapter.

Placing a simple REGULAR order
This recipe demonstrates how to place a REGULAR order on the exchange via the broker.
REGULAR orders are the simplest types of orders. After trying out this recipe, check your
broking account by logging into the broker's website; you will find that an order has been
placed there. You can match the order ID with the one that's returned in the last code
snippet shown in this recipe.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the first recipe of this chapter to learn how to set up this object.

How to do it…
We execute the following steps to complete this recipe:

Import the necessary constants from pyalgotrading:1.

>>> from pyalgotrading.constants import *

Fetch an instrument for a specific trading symbol and exchange:2.

>>> instrument = broker_connection.get_instrument(segment='NSE',
 tradingsymbol='TATASTEEL')

Stock Markets – Primer on Trading Chapter 2

[59]

Place a simple regular order – a BUY, REGULAR, INTRADAY, MARKET order:3.

>>> order_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.MARKET,
 quantity=1)
>>> order_id

We'll get the following output:

191209000001676

How it works…
In step 1, you import constants from pyalgotrading. In step 2, you fetch the financial
instrument with segment = 'NSE' and tradingsymbol = 'TATASTEEL' using the
get_instrument() method of broker_connection. In step 3, you place a REGULAR order
using the place_order() method of broker_connection. The descriptions of the
parameters accepted by the place_order() method are as follows:

instrument: The financial instrument for which the order must be placed.
Should an instance of the Instrument class. You pass instrument here.
order_transaction_type: The order transaction type. Should be an enum of
type BrokerOrderTransactionTypeConstants. You
pass BrokerOrderTransactionTypeConstants.BUY here.
order_type: The order type. Should be an enum of type
BrokerOrderTypeConstants. You
pass BrokerOrderTypeConstants.REGULAR here.
order_code: The order code. Should be an enum of
type BrokerOrderCodeConstants. You
pass BrokerOrderCodeConstants.INTRADAY here.
order_variety: The order variety. Should be an enum of
type BrokerOrderVarietyConstants. You
pass BrokerOrderVarietyConstants.MARKET here.
quantity: The number of shares to be traded for the given instrument. Should
be a positive integer. We pass 1 here.

Stock Markets – Primer on Trading Chapter 2

[60]

If the order placement is successful, the method returns an order ID which you can use at
any point in time later on for querying the status of the order.

A detailed explanation of the different types of parameters will be covered
in Chapter 6, Placing Trading Orders on the Exchange. This recipe is
intended to give you an idea of how to place a REGULAR order, one of the
various types of possible orders.

Placing a simple BRACKET order
This recipe demonstrates how to place a BRACKET order on the exchange via the broker.
BRACKET orders are two-legged orders. Once the first order is executed, the broker
automatically places two new orders – a STOPLOSS order and a TARGET order. Only one of
them is executed at any time; the other is canceled when the first order is completed. After
trying out this recipe, check your broking account by logging into the broker's website; you
will find that an order has been placed there. You can match the order ID with the one
that's returned in the last code snippet shown in this recipe.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the first recipe of this chapter to learn how to set up this object.

How to do it…
We execute the following steps to complete this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.constants import *

Fetch an instrument for a specific trading symbol and exchange:2.

>>> instrument = broker_connection.get_instrument(segment='NSE',
 tradingsymbol='ICICIBANK')

Stock Markets – Primer on Trading Chapter 2

[61]

Fetch the last traded price of the instrument:3.

>>> ltp = broker_connection.get_ltp(instrument)

Place a simple BRACKET order – a BUY, BRACKET, INTRADAY, LIMIT order:4.

>>> order_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety=BrokerOrderVarietyConstants.LIMIT,
 quantity=1, price=ltp-1,
 stoploss=2, target=2)
>>> order_id

We'll get the following output:

191212001268839

If you get the following error while executing this code, it would mean
that Bracket orders are blocked by the broker due to high volatility in the
markets:

InputException: Due to expected higher volatility in the
markets, Bracket orders are blocked temporarily.

You should try the recipe later when the broker starts allowing Bracket
orders. You can check for updates on the Broker site from time to time to
know when Bracket orders would be allowed.

Stock Markets – Primer on Trading Chapter 2

[62]

How it works…
In step 1, you import the constants from pyalgotrading. In step 2, you fetch the financial
instrument with segment = 'NSE' and tradingsymbol = 'ICICBANK' using the
get_instrument() method of broker_connection. In step 3, you fetch the last traded
price or LTP of the instrument. (LTP will be explained in more detail in the Last traded price
of a financial instrument recipe of Chapter 3, Analyzing Financial Data.) In step 4, you place a
BRACKET order using the place_order() method of broker_connection. The
descriptions of the parameters accepted by the place_order() method are as follows:

instrument: The financial instrument for which the order must be placed.
Should be an instance of the Instrument class. You pass instrument here.
order_transaction_type: The order transaction type. Should be an enum of
type BrokerOrderTransactionTypeConstants. You
pass BrokerOrderTransactionTypeConstants.BUY here.
order_type: The order type. Should be an enum of type
BrokerOrderTypeConstants. You pass
BrokerOrderTypeConstants.BRACKET here.
order_code: The order code. Should be an enum of type
BrokerOrderCodeConstants. You pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: The order variety. Should be an enum of type
BrokerOrderVarietyConstants. You pass
BrokerOrderVarietyConstants.LIMIT here.
quantity: The number of shares to be traded for the given instrument. Should
be a positive integer. You pass 1 here.

price: The limit price at which the order should be placed. You pass ltp-1 here,
which means 1 unit price below the ltp value.
stoploss: The price difference from the initial order price, at which the stoploss
order should be placed. Should be a positive integer or float value. You pass 2
here.
target: The price difference from the initial price, at which the target order
should be placed. Should be a positive integer or float value. You pass 2 here.

Stock Markets – Primer on Trading Chapter 2

[63]

If the order placement is successful, the method returns an order ID which you can use at
any point in time later on for querying the status of the order.

A detailed explanation of the different types of parameters will be covered
in Chapter 6, Placing Trading Orders on the Exchange. This recipe is
intended to give you an idea of how to place a BRACKET order, one of the
various types of possible orders.

Placing a simple DELIVERY order
This recipe demonstrates how to place a DELIVERY order on the exchange via the broker.
A DELIVERY order is delivered to the user's Demat account and exists until it is explicitly
squared-off by the user. Positions created by delivery orders at the end of a trading session
are carried forwarded to the next trading session. They are not explicitly squared-off by the
broker. After trying out this recipe, check your broking account by logging into the broker's
website; you will find that an order has been placed there. You can match the order ID with
the one that's returned in the last code snippet shown in this recipe.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the first recipe of this chapter to learn how to set up this object.

How to do it…
We execute the following steps to complete this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.constants import *

Fetch an instrument for a specific trading symbol and exchange:2.

>>> instrument = broker_connection.get_instrument(segment='NSE',
 tradingsymbol='AXISBANK')

Place a simple DELIVERY order – a SELL, REGULAR, DELIVERY, MARKET order:3.

>>> order_id = broker_connection.place_order(
 instrument=instrument,

Stock Markets – Primer on Trading Chapter 2

[64]

 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.DELIVERY,
 order_variety= \
 BrokerOrderVarietyConstants.MARKET,
 quantity=1)
>>> order_id

We'll get the following output:

191212001268956

How it works…
In step 1, you import the constants from pyalgotrading. In step 2, you fetch the financial
instrument with segment = 'NSE' and tradingsymbol = 'AXISBANK' using the
get_instrument() method of broker_connection. In step 3, you place a DELIVERY
order using the place_order() method of broker_connection. This method accepts the
following arguments:

instrument: The financial instrument for which the order must be placed.
Should be an instance of the Instrument class. You pass instrument here.
order_transaction_type: The order transaction type. Should be an enum of
type BrokerOrderTransactionTypeConstants. You
pass BrokerOrderTransactionTypeConstants.SELL here.
order_type: The order type. Should be an enum of type
BrokerOrderTypeConstants. You pass
BrokerOrderTypeConstants.REGULAR here.
order_code: The order code. Should be an enum of type
BrokerOrderCodeConstants. You pass
BrokerOrderCodeConstants.DELIVERY here.
order_variety: The order variety. Should be an enum of type
BrokerOrderVarietyConstants. You pass
BrokerOrderVarietyConstants.MARKET here.
quantity: The number of shares to be traded for the given instrument. Should
be a positive integer. We pass 1 here.

If the order placement is successful, the method returns an order ID which you can use at
any point in time later on for querying the status of the order.

Stock Markets – Primer on Trading Chapter 2

[65]

A detailed explanation of the different types of parameters will be covered
in Chapter 6, Placing Trading Orders on the Exchange. This recipe is
intended to give you an idea of how to place a DELIVERY order, one of the
various types of possible orders.

Placing a simple INTRADAY order
This recipe demonstrates how to place an INTRADAY order via the broker API.
An INTRADAY order is not delivered to the user's Demat account. Positions created by
intraday orders have a lifetime of a single day. The positions are explicitly squared off by
the broker at the end of a trading session and are not carried forward to the next trading
session. After trying out this recipe, check your broking account by logging into the
broker's website; you will find that an order has been placed there. You can match the order
ID with the one that's returned in the last code snippet shown in this recipe.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the first recipe of this chapter to learn how to set up this object.

How to do it…
We execute the following steps to complete this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.constants import *

Fetch an instrument for a specific trading symbol and exchange:2.

>>> instrument = broker_connection.get_instrument(segment='NSE',
 tradingsymbol='HDFCBANK')

Fetch the last traded price of the instrument:3.

>>> ltp = broker_connection.get_ltp(instrument)

Stock Markets – Primer on Trading Chapter 2

[66]

Place a simple INTRADAY order – a SELL, BRACKET, INTRADAY, LIMIT order:4.

>>> order_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety=BrokerOrderVarietyConstants.LIMIT,
 quantity=1, price=ltp+1, stoploss=2, target=2)
>>> order_id

We'll get the following output:

191212001269042

If you get the following error while executing this code, it would mean
that Bracket orders are blocked by the broker due to high volatility in the
markets:

InputException: Due to expected higher volatility in the
markets, Bracket orders are blocked temporarily.

You should try the recipe later when the broker starts allowing Bracket
orders. You can check for updates on the Broker site from time to time to
know when Bracket orders would be allowed.

How it works…
In step 1, you import the constants from pyalgotrading. In step 2, you fetch the financial
instrument with segment = 'NSE' and tradingsymbol = 'HDFCBANK' using the
get_instrument() method of broker_connection. In step 3, you fetch the LTP of the
instrument. (LTP will be explained in detail in the Last traded price of a financial
instrument recipe of Chapter 3, Analyzing Financial Data.) In step 4, you place a BRACKET
order using the place_order() method of the broker_connection. The descriptions of
the parameters accepted by the place_order() method are as follows:

instrument: The financial instrument for which the order must be placed.
Should be an instance of the Instrument class. You pass instrument here.
order_transaction_type: The order transaction type. Should be an enum of
type BrokerOrderTransactionTypeConstants. You pass
BrokerOrderTransactionTypeConstants.SELL here.

Stock Markets – Primer on Trading Chapter 2

[67]

order_type: The order type. Should be an enum of type
BrokerOrderTypeConstants. You pass
BrokerOrderTypeConstants.BRACKET here.
order_code: The order code. Should be an enum of type
BrokerOrderCodeConstants. You pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: The order variety. Should be an enum of type
BrokerOrderVarietyConstants. You pass
BrokerOrderVarietyConstants.LIMIT here.
quantity: The number of shares to be traded for the given instrument. Should
be a positive integer. You pass 1 here.

price: The limit price at which the order should be placed. You pass ltp+1 here,
which means 1 unit price above the ltp value.
stoploss: The price difference from the initial order price, at which the stoploss
order should be placed. Should be a positive integer or float value. You pass 2
here.
target: The price difference from the initial order price, at which the target
order should be placed. Should be a positive integer or float value. You pass 2
here.

If the order placement is successful, the method returns an order ID which you can use at
any point in time later on for querying the status of the order.

A detailed explanation of the different types of parameters will be covered
in Chapter 6, Placing Trading Orders on the Exchange. This recipe is
intended to give you an idea of how to place an INTRADAY order, one of
the various types of possible orders.

Querying margins and funds
Before placing orders, it is important to ensure that you have enough margins and funds
available in your broking account to place the orders successfully. A lack of sufficient funds
would result in the rejection of any orders placed by the broker, which means the others
would never get placed on the exchange. This recipe shows you how to find the available
margins and funds in your broking account at any point in time.

Stock Markets – Primer on Trading Chapter 2

[68]

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the first recipe of this chapter to learn how to set it up.

How to do it…
We execute the following steps to complete this recipe:

Display the equity margins:1.

>>> equity_margins = broker_connection.get_margins('equity')
>>> equity_margins

We'll get the following output (your output may differ):

{'enabled': True,
 'net': 1623.67,
 'available': {'adhoc_margin': 0,
 'cash': 1623.67,
 'opening_balance': 1623.67,
 'live_balance': 1623.67,
 'collateral': 0,
 'intraday_payin': 0},
 'utilised': {'debits': 0,
 'exposure': 0,
 'm2m_realised': 0,
 'm2m_unrealised': 0,
 'option_premium': 0,
 'payout': 0,
 'span': 0,
 'holding_sales': 0,
 'turnover': 0,
 'liquid_collateral': 0,
 'stock_collateral': 0}}

Display the equity funds:2.

>>> equity_funds = broker_connection.get_funds('equity')
>>> equity_funds

We'll get the following output (your output may differ):

1623.67

Stock Markets – Primer on Trading Chapter 2

[69]

Display the commodity margins:3.

>>> commodity_margins = get_margins(commodity')
>>> commodity_margins

We'll get the following output (your output may differ):

{'enabled': True,
 'net': 16215.26,
 'available': {'adhoc_margin': 0,
 'cash': 16215.26,
 'opening_balance': 16215.26,
 'live_balance': 16215.26,
 'collateral': 0,
 'intraday_payin': 0},
 'utilised': {'debits': 0,
 'exposure': 0,
 'm2m_realised': 0,
 'm2m_unrealised': 0,
 'option_premium': 0,
 'payout': 0,
 'span': 0,
 'holding_sales': 0,
 'turnover': 0,
 'liquid_collateral': 0,
 'stock_collateral': 0}}

Display the commodity funds:4.

>>> commodity_funds = broker_connection.get_funds('commodity')
>>> commodity_funds

We'll get the following output (your output may differ):

0

How it works…
The broker_connection object provides methods for fetching the available margins and
funds for your broking account:

get_margins()

get_funds()

Stock Markets – Primer on Trading Chapter 2

[70]

The broker Zerodha keeps track of margins and funds separately for equity and
commodity products. If you are using a different broker supported by pyalgotrading, it
may or may not track the funds and margins separately for equity and commodity.

Step 1 shows how margins can be queried for the equity product using the
get_margins() method of the broker_connection object, with equity as an argument.
Step 2 shows how funds can be queried for the equity product using the get_funds()
method of the broker_connection object, with the equity string as an argument.

Steps 3 and 4 show how margins and funds can be queried for the commodity product in a
similar way with the commodity string as an argument.

Calculating the brokerage charged
For every order completed successfully, the broker may charge a certain fee, which is
usually a small fraction of the price at which the instrument was bought or sold. While the
amount may seem small, it is important to keep track of the brokerage as it may end up
eating a significant chunk of your profit at the end of the day.

The brokerage that's charged varies from broker to broker and also from segment to
segment. For the purpose of this recipe, we will consider a brokerage of 0.01%.

How to do it…
We execute the following steps to complete this recipe:

Calculate the brokerage that's charged per trade:1.

>>> entry_price = 1245
>>> brokerage = (0.01 * 1245)/100
>>> print(f'Brokerage charged per trade: {brokerage:.4f}')

We'll get the following output:

Brokerage charged per trade: 0.1245

Calculate the total brokerage that's charged for 10 trades:2.

>>> total_brokerage = 10 * (0.01 * 1245) / 100
>>> print(f'Total Brokerage charged for 10 trades: \
 {total_brokerage:.4f}')

Stock Markets – Primer on Trading Chapter 2

[71]

We'll get the following output:

Total Brokerage charged for 10 trades: 1.2450

How it works…
In step 1, we start with the price at which a trade was bought or sold, entry_price. For
this recipe, we have used 1245. Next, we calculate 0.01% of the price, which comes to
0.1245. Then, we calculate the total brokerage for 10 such trades, which comes out as 10 *
0.1245 = 1.245.

For every order, the brokerage is charged twice. The first time is when the
order has entered a position, while the second time is when it has exited
the position. To get the exact details of the brokerage that's been charged
for your trades, please refer to the list of charges offered by your broker.

Calculating the government taxes charged
For every order that's completed successfully, the government may charge a certain fee,
which is a fraction of the price at which the instrument was bought or sold. While the
amount may seem small, it is important to keep track of government taxes as they may end
up eating a significant chunk of your profit at the end of the day.

The government charge depends on the location of the exchange, and varies from segment
to segment. For the purpose of this recipe, we will consider government taxes at a rate of
0.1%.

How to do it…
We execute the following steps to complete this recipe:

Calculate the government taxes that are charged per trade:1.

>>> entry_price = 1245
>>> brokerage = (0.1 * 1245)/100
>>> print(f'Government taxes charged per trade: {brokerage:.4f}')

We'll get the following output:

Government taxes charged per trade: 1.2450

Stock Markets – Primer on Trading Chapter 2

[72]

Calculate the total government taxes that are charged for 10 trades:2.

>>> total_brokerage = 10 * (0.1 * 1245) / 100
>>> print(f'Total Government taxes charged for 10 trades: \
 {total_brokerage:.4f}')

We'll get the following output:

Total Government taxes charged for 10 trades: 12.4500

How it works…
In step 1, we start with the price at which a trade was bought or sold, entry_price. For
this recipe, we have used 1245. Next, we calculate 0.1% of the price, which comes to 1.245.
Then, we calculate the total brokerage for 10 such trades, which comes out as 10 * 1.245
= 12.245.

For every order, government taxes are charged twice. The first time is
when the order has entered a position, while the second time is when it
has exited the position. To get the exact details of the government taxes
that are charged for your trades, please refer to the list of government
taxes provided by your exchange.

3
Fetching Financial Data

Having financial data handy is essential for carrying out algorithmic trading. Financial data
can be both static and dynamic in nature. Static financial data is data that doesn't change
during trading hours. Static data consists of lists of financial instruments, the attributes of
financial instruments, the circuit limits of financial instruments, and the recorded close
price of the last trading day. Dynamic financial data is data that may change continuously
during trading hours. Dynamic data consists of market depth, the last traded prices, the
time and quantity of financial instruments, and the recorded high and low prices of the
day. This chapter includes recipes on fetching various types of financial data.

The following is a list of the recipes in this chapter:

Fetching the list of financial instruments
Attributes of a financial instrument
Expiry of financial instruments
Circuit limits of a financial instrument
The market depth of a financial instrument
The total pending buy quantity of a financial instrument
The total pending sell quantity of a financial instrument
The total volume traded for the day of a financial instrument
The last traded price of a financial instrument
The last traded time of a financial instrument
The last traded quantity of a financial instrument
The recorded open price of the day of a financial instrument
The recorded highest price of the day of a financial instrument
The recorded lowest price of the day of a financial instrument
The recorded close price of the last traded day of a financial instrument

Fetching Financial Data Chapter 3

[74]

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
The pyalgotrading Python package ($ pip install pyalgotrading)

The latest Jupyter notebook for this chapter can be found on GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook.

The following code will help you set up the broker connection with Zerodha, which will be
used in all the recipes in this chapter. Please make sure you have followed these steps
before trying out any recipes.

The first thing needed for setting up connectivity with the broker is getting the API keys.
The broker would provide unique keys to each customer, typically as an api-key and
api-secret key pair. These API keys are chargeable, usually on a monthly subscription
basis. You need to get your copy of api-key and api-secret from the broker website
before starting this. You can refer to Appendix I for more details.

Execute the following steps:

Import the necessary modules:1.

>>> from pyalgotrading.broker.broker_connection_zerodha import
BrokerConnectionZerodha

Get the api_key and api_secret keys from the broker. These are unique to you2.
and will be used by the broker to identify your Demat account:

>>> api_key = "<your-api-key>"
>>> api_secret = "<your-api-secret>"
>>> broker_connection = BrokerConnectionZerodha(api_key, \
 api_secret)

You will get the following output:

Installing package kiteconnect via pip...
Please login to this link to generate your request token:
https://kite.trade/connect/login?api_key=<your-api-key>&v=3

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook

Fetching Financial Data Chapter 3

[75]

If you are running this for the first time and kiteconnect is not installed,
pyalgotrading will automatically install it for you. The final output of step 2
will be a link. Click on the link and log in with your Zerodha credentials. If the
authentication is successful, you will see a link in your browser's address bar
similar to this:
https://127.0.0.1/?request_token=<alphanumeric-token>&action=lo

gin&status=success.

The following is an example:

https://127.0.0.1/?request_token=H06I6Ydv95y23D2Dp7NbigFjKweGwRP7&a
ction=login&status=success

Copy the alphanumeric-token and paste it in request_token:3.

>>> request_token = "<your-request-token>"
>>> broker_connection.set_access_token(request_token)

The broker_connection instance is now ready to perform API calls.

The pyalgotrading package supports multiple brokers and provides a
connection object class per broker, with the same methods. It abstracts
broker APIs behind a unified interface, so you need not worry about the
underlying broker API calls and you can use all the recipes in this chapter
as is. Only the procedure to set up the broker connection will vary from
broker to broker. You can refer to the pyalgotrading documentation for
setting up the broker connection if you are not using Zerodha as your
broker. For Zerodha users, the previous steps will suffice.

Fetching the list of financial instruments
Financial instruments, also known as securities, are assets that can be traded in an
exchange. In an exchange, there can be tens of thousands of financial instruments. The list
of financial instruments is static in nature, as it doesn't change during the live trading
hours. Financial instruments may change from time to time, but never within the same day.
Having this data handy is the first step for algorithmic trading. This recipe shows how to
fetch the list of financial instruments.

Fetching Financial Data Chapter 3

[76]

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the Technical requirements section of this chapter to set it up.

How to do it…
Fetch and display all the available financial instruments using broker_connection:

>>> instruments = broker_connection.get_all_instruments()
>>> instruments

We get the following output (your output may differ):

How it works…
This recipe fetches all the available financial instruments using the
get_all_instruments() method of broker_connection, which returns a
pandas.DataFrame object. This object is assigned to a new attribute, instruments, which
is displayed in the output. This output may differ for you as new financial instruments are
frequently added and existing ones expire regularly.

Fetching Financial Data Chapter 3

[77]

Attributes of a financial instrument
Financial instruments have various attributes that give more insight into the instrument,
such as the trading symbol, exchange, segment, tick size, and so on. Some of these
attributes are also needed while placing orders. This recipe lists and explains all the
attributes supported by the broker. All the attributes are static, meaning they don't change
during the live trading hours.

Getting ready
Make sure the instruments object is available in your Python namespace. Refer to the
Fetching the list of financial instruments recipe of this chapter to set it up.

How to do it…
List all the attributes of a financial instrument provided by the broker:

>>> list(instruments.columns)

We get the following output:

['instrument_token',
 'exchange_token',
 trading-symbol,
 'name',
 'last_price',
 'expiry',
 'strike',
 'tick_size',
 'lot_size',
 'instrument_type',
 'segment',
 exchange]

How it works…
The Fetching a list of financial instruments recipe fetches all the instruments as a
pandas.DataFrame object. Calling its columns attribute returns all the columns available.
Each column is an attribute for every financial instrument. You can find more details
at https:/​/​kite.​trade/ ​docs/ ​connect/ ​v3/​market- ​quotes/ ​#csv- ​response- ​columns.

https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns
https://kite.trade/docs/connect/v3/market-quotes/#csv-response-columns

Fetching Financial Data Chapter 3

[78]

Expiry of financial instruments
Financial instruments may or may not have a fixed expiry date. If they do, they are last
available for trading on their expiry date. Typically, instruments from a cash segment do
not expire, whereas derivative instruments (those from the futures and options segment)
have a short validity period, and expire on the given date. This recipe shows both types of
instruments and how their expiry date can be fetched. An expiry date is static data,
meaning it doesn't change during the live market hours.

Getting ready
Make sure the broker_connection and instruments objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the first recipe of this chapter to set up instruments.

How to do it…
We execute the following steps for this recipe:

Get an instrument object using broker_connection:1.

>>> instrument1 = broker_connection.get_instrument('NSE',
 'TATASTEEL')

Check and print whether instrument1 will expire:2.

>>> print(f'Instrument expires: {instrument1.will_expire()}')

We get the following output:

Instrument expires: False

Get another instrument object using broker_connection:3.

>>> instrument2 = broker_connection.get_instrument('NFO-FUT',
 TATASTEEL20AUGFUT)

You shouldn't get any output here. This implies you have successfully fetched the
instrument.

Fetching Financial Data Chapter 3

[79]

Please note that if you get the following output for this step, even after typing it
correctly, please try this step with the latest available NFO-FUT segment script by
referring to the table from the output in the Fetching the list of financial instruments
recipe of this chapter:

ERROR: Instrument not found. Either it is expired and hence not
available, or you have misspelled the "segment" and "tradingsymbol"
parameters.

This can happen because the instrument, with tradingsymbol
TATASTEEL20AUGFUT, was available at the time of writing this book, but has since
expired and so isn't available anymore.

Check and print whether instrument2 will expire:4.

>>> print(f'Instrument expires: {instrument2.will_expire()}')

We get the following output:

Instrument expires: True

Print the expiry date of instrument2:5.

>>> print(f'Expiry date: {instrument2.expiry}')

We get the following output (your output may differ):

Expiry date: 2020-08-27

How it works…
Step 1 uses the get_instrument() method of the BrokerConnectionZerodha class to
fetch an instrument and assign it to a new attribute, instrument1. This object is an
instance of the Instrument class. The two parameters needed to call get_instrument are
the exchange (NSE) and the trading symbol (TATASTEEL). In step 2, we check whether the
instrument will expire using the will_expire() method. The output of this step is False.
We repeat the same procedure in steps 3 and 4, this time for a different instrument, assigned
to a new attribute, instrument2, which gives an output of True for the will_expire()
method. This is shown in the output of step 4. Finally, in step 5, we fetch the expiry date of
instrument2 using the expiry attribute.

Fetching Financial Data Chapter 3

[80]

Circuit limits of a financial instrument
Each financial instrument has a well-defined price band. The instrument price is expected
to be within this price band for the day. During the market hours, if the instrument price
breaches the band on the upper or lower side, trading may be halted for the instrument by
the exchange for a certain time or the entire day. This is done to prevent the sudden rise or
fall in an instrument's price within a single day. The upper edge of the price band is known
as the upper circuit limit and the lower edge of the price band is known as the lower
circuit limit. This data is static, meaning it doesn't change during the day. However, it can
significantly change from one day to another. This recipe helps find the circuit limits for a
financial instrument.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

How to do it…
Fetch and print the lower and upper circuit limits of instrument1:

>>> lower_circuit_limit, upper_circuit_limit = \
 broker_connection.get_circuit_limits(instrument1)
>>> print(f'Lower circuit limit: {lower_circuit_limit}')
>>> print(f'Upper circuit limit: {upper_circuit_limit}')

We get the following output (your output may differ):

Lower circuit limit: 315.9
Upper circuit limit: 386

How it works…
The get_circuit_limits() method of the BrokerConnectionZerodha class fetches the
lower and upper circuit limits as a tuple for the given financial instrument. This method
takes an object of the Instrument type as a parameter. We use instrument1 as the
parameter here.

Fetching Financial Data Chapter 3

[81]

The market depth of a financial instrument
The market depth of a financial instrument is a chronological list of data on buyers and
sellers in the market. The buyers list is a list of prices and their respective quantities at
which the buyers are willing to buy the instrument for. Similarly, the sellers list is a list of
prices and their respective quantities at which the sellers are willing to sell the instrument
for. If you are new to the concept of market depth, the explanation in the How it works…
section of this recipe will give you more clarity.

Market depth helps in predicting where the price of an instrument is heading. It also helps
to understand whether an order with a large quantity can change the price significantly or
not. Market depth is dynamic in nature, meaning it changes constantly during the live
trading hours. This recipe helps find out the market depth of a financial instrument in real
time.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

How to do it…
Fetch and print the buy market depth and sell market depth of instrument1:

>>> buy_market_depth, sell_market_depth = \
 broker_connection.get_market_depth(instrument1)
>>> print(f'Buy Market Depth:\n{buy_market_depth}')
>>> print(f'Sell Market Depth:\n{sell_market_depth}')

We get the following output (your output may differ):

Buy Market Depth:
 orders price quantity
0 1 350.05 1
1 16 350.00 43294
2 5 349.95 1250
3 8 349.90 3134
4 5 349.85 1078

Sell Market Depth:

Fetching Financial Data Chapter 3

[82]

 orders price quantity
0 1 350.10 25
1 7 350.15 1367
2 13 350.20 4654
3 13 350.25 2977
4 21 350.30 5798

How it works…
The get_market_depth() method of the BrokerConnectionZerodha class fetches the
market depth for the given financial instrument. This method takes an object of
the Instrument type as a parameter. We use instrument1 as the parameter here. The
market depths are shown in separate tables for the buy side and the sell side.

The buy market depth is a table of five entries or bids, in descending order of price. Each
entry indicates an available buyer in the market at that point in time, with the price being
offered and the quantity available at that price.

The sell market depth is a table of five entries or bids, in ascending order of price. Each
entry indicates an existing seller in the market at that point in time, with the price being
offered and the quantity available at that price.

When a buyer and seller match, the order is executed at the exchange and the entries are
removed from the buy- and sell-side tables.

The total pending buy quantity of a financial
instrument
The total pending buy quantity for a financial instrument is the sum total of the quantity of
all the pending buy orders available at an instant. This data is dynamic in nature and may
change at any moment during the live trading hours.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

Fetching Financial Data Chapter 3

[83]

How to do it…
Fetch and print the total pending buy quantity of instrument1:

>>> total_pending_buy_quantity = \
 broker_connection.get_total_pending_buy_quantity(instrument1)
>>> print(f'Total pending BUY quantity: {total_pending_buy_quantity}')

We get the following output (your output may differ):

Total pending BUY quantity: 1319590

How it works…
The get_total_pending_buy_quantity() method of the BrokerConnectionZerodha
class fetches the total buy quantity for the given financial instrument at any given moment.
This method takes an object of the Instrument type as a parameter. We use instrument1
as the parameter here.

The total pending sell quantity of a financial
instrument
The total pending sell quantity for a financial instrument is the sum total of the quantity of
all pending sell orders available at an instant. This data is dynamic in nature and may
change at any moment during the live trading hours.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

Fetching Financial Data Chapter 3

[84]

How to do it…
Fetch and print the total pending sell quantity of instrument1:

>>> total_pending_sell_quantity = \
 broker_connection.get_total_pending_sell_quantity(instrument1)
>>> print(f'Total pending SELL quantity: {total_pending_sell_quantity}')

We get the following output (your output may differ):

Total pending SELL quantity: 968602

How it works…
The get_total_pending_sell_quantity() method of the BrokerConnectionZerodha
class fetches the total sell quantity of the given financial instrument at any given moment.
This method takes an object of the Instrument type as a parameter. We use instrument1
as the parameter here.

The total volume traded for the day of a
financial instrument
The total volume traded for a financial instrument is the sum total of all quantities that
were traded (bought and sold, but counted once) in the day. For example, if trader A buys
10 quantities of stock X from trader B, while trader C sells 20 quantities of the same stock X
to trader D, the total volume traded for X would be 10 + 20 = 30. It won't be 10 + 10 + 20 + 20
= 60 because the contribution of the trade to the total volume is considered only once. This
data is dynamic in nature and may increase at any moment during the live trading hours.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instruments recipe of this chapter
to set up instrument1.

Fetching Financial Data Chapter 3

[85]

How to do it…
Fetch and print the total traded volume for the day of an instrument:

>>> total_volume_day = broker_connection.get_total_volume_day(instrument1)
>>> print(f'Total Volume for the day so far: {total_volume_day}')

We get the following output (your output may differ):

Total Volume for the day so far: 24416975

How it works…
The get_total_volume_day() method of the BrokerConnectionZerodha class fetches
the total traded volume of the given financial instrument at any given moment since the
beginning of the day. This method takes an object of the Instrument type as a parameter.
We use instrument1 as the parameter here.

The last traded price of a financial
instrument
The last traded price (LTP) of a financial instrument is the latest price at which an order
was executed for that instrument. It is essentially an indicator of the current price at which
the instrument can be bought or sold (assuming the liquidity is good). As the description
suggests, this data is dynamic in nature and it may change continuously during the live
trading hours. This recipe shows how to fetch the LTP of a financial instrument.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

Fetching Financial Data Chapter 3

[86]

How to do it…
Fetch and print the LTP of instrument1:

>>> ltp = broker_connection.get_ltp(instrument1)
>>> print(f'Last traded price: {ltp}')

We get the following output (your output may differ):

Last traded price: 350.95

How it works…
The get_ltp() method of the BrokerConnectionZerodha class fetches the LTP of the
given financial instrument at any given moment. This method takes an object of
the Instrument type as a parameter. We use instrument1 as the parameter here. The
fetched data is of the float type.

The last traded time of a financial instrument
The last traded time (LTT) of a financial instrument is the latest time at which an order was
executed for that instrument. This data is dynamic in nature as it may change continuously
during the live trading hours. This recipe helps fetch the LTT of a financial instrument.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

How to do it…
Fetch and print the LTT of instrument1:

>>> ltt = broker_connection.get_ltt(instrument1)
>>> print(f'Last traded time: {ltt}')

Fetching Financial Data Chapter 3

[87]

We get the following output (your output may differ):

Last traded time: 2020-07-17 14:42:54

How it works…
The get_ltt() method of the BrokerConnectionZerodha class fetches the LTT of the
given financial instrument at any given moment. This method takes an object of
the Instrument type as a parameter. We use instrument1 as the parameter here. The
fetched data is an instance of the datetime.datetime class.

The last traded quantity of a financial
instrument
The last traded quantity (LTQ) of a financial instrument is the quantity that was traded the
last time an order was executed for that instrument. This data is dynamic in nature as it
may change continuously during the live trading hours. This recipe demonstrates how to
fetch the LTQ of a financial instrument.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

How to do it…
Fetch and print the LTQ of instrument1:

>>> ltq = broker_connection.get_ltq(instrument1)
>>> print(f'Last traded quantity: {ltq}')

We get the following output (your output may differ):

Last traded quantity: 19

Fetching Financial Data Chapter 3

[88]

How it works…
The get_ltq() method of the BrokerConnectionZerodha class fetches the LTQ of the
given financial instrument at any given moment. This method takes an object of
the Instrument type as a parameter. We use instrument1 as the parameter here. The
fetched data is of the int type.

The recorded open price of the day of a
financial instrument
Often, trading strategies use the current day opening price of a financial instrument as one
of the first qualifying conditions before making decisions to place new trades. Comparing
the current day's opening price with the previous day's close price may give a hint as to
whether the market price is bound to rise or fall for the current day for an instrument. If the
open price is significantly higher than the previous day's close price, the price may continue
to rise for the day. Similarly, if the open price is significantly lower than the previous day's
close price, the price may continue to fall for the day. The recorded open price data is static
in nature, meaning it does not change during the live trading hours. This recipe shows how
to fetch the current day's opening price of a financial instrument.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

How to do it…
Fetch and print the open price of the day of instrument1:

>>> open_price_day = broker_connection.get_open_price_day(instrument1)
>>> print(f'Open price today: {open_price_day}')

We get the following output (your output may differ):

Open price today: 346

Fetching Financial Data Chapter 3

[89]

How it works…
The get_open_price_day() method of the BrokerConnectionZerodha class fetches the
open price of the day for the given financial instrument. This method takes an object of
the Instrument type as a parameter. We use instrument1 as the parameter here. The
fetched data is of the float type.

The recorded highest price of the day of a
financial instrument
Often, trading strategies use the current day's highest price of a financial instrument as one
of the qualifying conditions before making decisions to place new trades. This data is
dynamic in nature as it may change continuously during the live trading hours. This recipe
shows how to fetch the current day's highest recorded price of a financial instrument.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

How to do it…
Fetch and print the recorded highest price of the day of instrument1:

>>> high_price_day = broker_connection.get_high_price_day(instrument1)
>>> print(f'Highest price today: {high_price_day}')

We get the following output. Your output may differ:

Highest price today: 356.8

Fetching Financial Data Chapter 3

[90]

How it works…
The get_high_price_day() method of the BrokerConnectionZerodha class fetches the
highest recorded price of the day for the given financial instrument. This method takes an
object of the Instrument type as a parameter. We use instrument1 as the parameter here.
The fetched data is of the float type.

The recorded lowest price of the day of a
financial instrument
Often, trading strategies use the current day's lowest price of a financial instrument as one
of the qualifying conditions before making decisions to place new trades. This data is
dynamic in nature as it may change continuously during the live trading hours. This recipe
demonstrates how to fetch the current day's lowest recorded price of a financial instrument.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

How to do it…
Fetch and print the recorded lowest price of the day of instrument1:

>>> low_price_day = broker_connection.get_low_price_day(instrument1)
>>> print(f'Lowest price today: {low_price_day}')

We get the following output (your output may differ):

Lowest price today: 345.15

Fetching Financial Data Chapter 3

[91]

How it works…
The get_low_price_day() method of the BrokerConnectionZerodha class fetches the
lowest recorded price of the day for the given financial instrument. This method takes an
object of the Instrument type as a parameter. We use instrument1 as the parameter here.
The fetched data is of the float type.

The recorded close price of the last traded
day of a financial instrument
Often, trading strategies use the previous day's closing price of a financial instrument as
one of the first qualifying conditions before making decisions to place trades. Comparing
the current day's opening price with the previous day’s close price may give a hint as to
whether the market price is bound to rise or fall for the current day for an instrument. If the
open price is significantly higher than the previous day's close price, the price may continue
to rise for the day. Similarly, if the open price is significantly lower than the previous day's
close price, the price may continue to fall for the day. The recorded close price data is static
in nature, meaning it does not change during the live trading hours. This recipe shows how
to fetch the previous day's close price of a financial instrument.

Getting ready
Make sure the broker_connection and instrument1 objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the Attributes of a financial instrument recipe of this chapter
to set up instrument1.

How to do it…
Fetch and print the recorded close price of the last trading day of instrument1:

>>> close_price_last_day = \
 broker_connection.get_close_price_last_day(instrument1)
>>> print(f'Close price of last trading day: {close_price_last_day}')

We get the following output (your output may differ):

Close price of last trading day: 341.65

Fetching Financial Data Chapter 3

[92]

How it works…
The get_close_price_day() method of the BrokerConnectionZerodha class fetches
the close price of the previous trading day for the given financial instrument. This method
takes an object of the Instrument type as a parameter. We use instrument1 as the
parameter here. The fetched data is of the float type.

4
Computing Candlesticks and

Historical Data
The historical data of a financial instrument is data about all the past prices at which a
financial instrument was brought or sold. An algorithmic trading strategy is always
vpot_candlestickirtually executed on historical data to evaluate its past performance before
it's deployed with real money. This process is called backtesting. Historical data is
quintessential for backtesting (covered in detail in Chapter 8, Backtesting Strategies). Also,
historical data is needed for computing technical indicators (covered in detail in Chapter 5,
Computing and Plotting Technical Indicators), which help in making buy-or-sell decisions in
real-time. Candlestick patterns are widely used tools for stock analysis. Various types of
candlestick patterns are commonly used by analysts. This chapter provides recipes that
show you how to fetch historical data using broker APIs, how to fetch and compute
multiple candlestick patterns – Japanese (open-high-low-close (OHLC)), Line Break,
Renko, and Heikin-Ashi – and how to fetch historical data using a third-party tool.

In this chapter, we will cover the following recipes:

Fetching historical data using the broker API
Fetching historical data with the Japanese (OHLC) candlestick pattern
Fetching the Japanese candlestick pattern with variations in candle intervals
Fetching historical data with the Line Break candlestick pattern
Fetching historical data with the Renko candlestick pattern
Fetching historical data with the Heikin-Ashi candlestick pattern
Fetching historical data using Quandl

Let's get started!

Computing Candlesticks and Historical Data Chapter 4

[94]

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
Python packages:

pyalgotrading ($ pip install pyalgotrading)
quandl ($pip install quandl) this is optional and only needed for the
last recipe

The latest Jupyter Notebook for this chapter can be found on GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/ ​tree/ ​master/ ​Chapter04.

The following code will help you set up the broker connection with Zerodha, which will be
used by all the recipes in this chapter. Please make sure you have followed these steps
before trying out any of the recipes provided.

The first thing you need to do to set connectivity with the broker is to gather the required
API keys. The broker provides unique keys to each customer, typically as api-key and
api-secret key pairs. These API keys are chargeable, usually on a monthly subscription
basis. You need to get your copies of api-key and api-secret from the broker website
before you start this chapter. You can refer to Appendix I for more details.

Execute the following steps:

Import the necessary modules:1.

>>> from pyalgotrading.broker.broker_connection_zerodha import
BrokerConnectionZerodha

Get the api_key and api_secret keys from the broker. These are unique to you2.
and will be used by the broker to identify your Demat account:

>>> api_key = "<your-api-key>"
>>> api_secret = "<your-api-secret>"
>>> broker_connection = BrokerConnectionZerodha(api_key,
 api_secret)

You will get the following URL:

Installing package kiteconnect via pip...
Please login to this link to generate your request token:
https://kite.trade/connect/login?api_key=<your-api-key>&v=3

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter04

Computing Candlesticks and Historical Data Chapter 4

[95]

If you are running this for the first time and kiteconnect is not installed,
pyalgotrading will automatically install it for you. The final output of step 2
will be a link. Click on the link and log in with your Zerodha credentials. If the
authentication is successful, you will see a link in your browser's address bar
similar
to https://127.0.0.1/?request_token=&action=login&status=success.

For example:

https://127.0.0.1/?request_token=H06I6Ydv95y23D2Dp7NbigFjKweGwRP7&a
ction=login&status=success

Copy the alphanumeric token and paste it into request_token:3.

>>> request_token = "<your-request-token>"
>>> broker_connection.set_access_token(request_token)

The broker_connection instance is now ready for performing API calls.

The pyalgotrading package supports multiple brokers and provides a
connection object class per broker, with the same methods. It abstracts
broker APIs behind a unified interface so that users don't need to worry
about the underlying broker API calls and use all the recipes in this
chapter as-is.

Only the procedure of setting up the broker connection will vary from
broker to broker. You can refer to the pyalgotrading documentation to
learn how to set up the broker connection if you are not using Zerodha as
your broker. For Zerodha users, the aforementioned steps will suffice.

Fetching historical data using the broker API
The historical data of a financial instrument is time-series data for the timestamps in the
past. It can be fetched using the Broker API for a given duration. This recipe demonstrates
how to set up a broker connection and how to fetch historical data for a financial
instrument for the duration of a single day.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the Technical requirements section of this chapter to learn how to set it up.

Computing Candlesticks and Historical Data Chapter 4

[96]

How to do it…
Execute the following steps to complete this recipe:

Fetch the historical data for an instrument:1.

>>> instrument = broker_connection.get_instrument('NSE',
 'TATASTEEL')
>>> historical_data = broker_connection.get_historical_data(
 instrument=instrument,
 candle_interval='minute',
 start_date='2020-01-01',
 end_date='2020-01-01')
>>> historical_data

You will get the following output:

Print the available columns of the historical_data DataFrame:2.

>>> historical_data.columns

Computing Candlesticks and Historical Data Chapter 4

[97]

You will get the following output:

>>> Index(['timestamp', 'open', 'high', 'low', 'close', 'volume'],
 dtype='object')

How it works…
In step 1, you use the get_instrument() method of broker_connection to fetch an
instrument and assign it to a new attribute, instrument. This object is an instance of the
Instrument class. The two parameters needed to call get_instrument() are the
exchange ('NSE') and the trading symbol ('TATASTEEL'). Next, you fetch the historical
data for instrument using the get_historical_data() method. This method takes four
arguments, which are described as follows:

instrument: The financial instrument for which the historical data must be
placed. Should be an instance of the Instrument class. You pass instrument
here.
candle_interval: A valid string that denotes the duration of each candlestick
in the historical data. You pass minute here. (Possible values can be minute,
3minute, 5minute, 10minute, 30minute, 60minute, and day.)
start_date: The date from which the historical data must be fetched. Should be
a string in the YYYY-MM-DD format. You pass 2020-01-01 here.
end_date: The date until which the historical data must be fetched, inclusive of
this date. Should be a string in the YYYY-MM-DD format. You pass 2020-01-01
here.

In step 2, you fetch and print the available columns of historical_data. You get the
columns as timestamp, open, high, low, close, and volume.

More information on candlesticks will be covered in the next recipe,
Fetching historical data using the Japanese (OHLC) candlestick pattern, and the
third recipe in this chapter, Fetching the Japanese candlestick pattern with
variations in candle intervals.

Computing Candlesticks and Historical Data Chapter 4

[98]

Fetching historical data using the Japanese
(OHLC) candlestick pattern
The historical data of a financial instrument is an array of candlesticks. Each entry in the
historical data is a single candlestick. There are various types of candlestick patterns.

This recipe demonstrates the most commonly used candlestick pattern – the Japanese
candlestick pattern. It is a type of candlestick pattern where each candlestick holds a
duration and indicates all the prices the instrument would have taken on during that
duration. This data is represented using four parameters – Open, High, Low, and Close.
These can be described as follows:

Open: The price of the financial instrument at the beginning of the candle's
duration
High: The highest recorded price of the financial instrument during the entire
duration of the candle
Low: The lowest recorded price of the financial instrument during the entire
duration of the candle
Close: The price of the financial instrument at the end of the candle's duration

The Japanese candlestick pattern is also known as the OHLC candlestick pattern based on
these parameters. All the timestamps in a Japanese candlestick pattern are equally spaced
(within market hours). For example, the timestamps on a trading day would look like 9:15
a.m., 9:16 a.m., 9:17 a.m., 9:18 a.m., and so on for a 1-minute candle interval, where each
timestamp is equally spaced at intervals of 1 minute.

Getting ready
Make sure the broker_connection and historical_data objects are available in your
Python namespace. Refer to the Technical requirements section of this chapter to set up
broker_connection. Refer to the previous recipe to set up historical_data.

Computing Candlesticks and Historical Data Chapter 4

[99]

How to do it…
We execute the following steps to for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.utils.func import plot_candlestick_chart,
PlotType

Create a green candle from one of the rows of historical_data:2.

>>> candle_green = historical_data.iloc[:1,:]
Only 1st ROW of historical data
>>> plot_candlestick_chart(candle_green,
 PlotType.JAPANESE,
 "A 'Green' Japanese Candle")

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[100]

Create a red candle from one of the rows of historical_data:3.

A 'Red' Japanese Candle
>>> candle_red = historical_data.iloc[1:2,:]
Only 2nd ROW of historical data
>>> plot_candlestick_chart(candle_red,
 PlotType.OHLC,
 "A 'Red' Japanese Candle")

This will give you the following output:

Computing Candlesticks and Historical Data Chapter 4

[101]

Plot a chart for the historical data of an instrument:4.

>>> plot_candlestick_chart(historical_data,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | 1st Jan, 2020 | '
 'Candle Interval: 1 Minute')

This will give you the following output:

Computing Candlesticks and Historical Data Chapter 4

[102]

Plot a chart for the historical data of another instrument:5.

>>> instrument2 = broker_connection.get_instrument('NSE', 'INFY')
>>> historical_data = \
 broker_connection.get_historical_data(instrument2,
 'minute',
 '2020-01-01',
 '2020-01-01')
>>> plot_candlestick_chart(historical_data,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:INFY | 1st Jan, 2020 | '
 'Candle Interval: 1 Minute')

This will give you the following output:

Computing Candlesticks and Historical Data Chapter 4

[103]

Plot a chart for the historical data of yet another instrument:6.

>>> instrument3 = broker_connection.get_instrument('NSE',
 'ICICIBANK')
>>> historical_data =
 broker_connection.get_historical_data(instrument3,
 'minute',
 '2020-01-01',
 '2020-01-01')
>>> plot_candlestick_chart(historical_data, PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:ICICIBANK | 1st Jan, 2020 | '
 'Candle Size: 1 Minute')

This will give you the following output:

Computing Candlesticks and Historical Data Chapter 4

[104]

How it works…
In step 1, you import plot_candlestick_chart, a quick utility function for plotting
candlestick pattern charts, and PlotType, an enum for various types of candlestick
patterns. The next two steps introduce two types of candlesticks, or simply candles – a
green candle and a red candle. As we mentioned earlier, each entry in historical data is a
candle. These two steps selectively extract a green and red candle from the data. (Please
note that the indices that are passed to historical_data.iloc will be different if you
choose a different duration for historical_data, as in the Fetching historical data using the
broker API recipe). A Japanese candle is green in color if its close price is above its open
price. A green candle is also called a bullish candle as it is indicative that the price was
bullish, meaning rising, during that duration. A Japanese candle is red in color if its close
price is below its open price. A red candle is also called a bearish candle as it is indicative
that the price was bearish, meaning falling, during that duration.

In step 4, you plot the complete historical data held by historical_data using the
plot_candlestick_chart() function. The chart is a combination of multiple
candlesticks, each with a different length. Hence, such a chart is called a candlestick
pattern chart. Note that the candle interval is 1 minute, meaning that the timestamps are
equally spaced in intervals of 1 minute. Steps 5 and 6 demonstrate similar 1-minute candle
interval candlestick pattern charts for the NSE:INFY and NSE:ICICIBANK instruments.

If you are new to candlestick pattern charts, I would recommend that you
interact with the charts that can be found in this chapter's Jupyter
Notebook at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Python-
Algorithmic- ​Trading- ​Cookbook/ ​blob/ ​master/ ​Chapter04/ ​CHAPTER%204.
ipynb. Try hovering over multiple candles to see their values and zoom
in/out or pan to various durations to see the candles more clearly. Try to
relate the color of these candles with their descriptions from this recipe. If
the charts in the Jupyter Notebook do not render automatically for you
due to some reason, you can download this html file, for the same Jupyter
Notebook, open it in your browser and interact with it: https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/ ​blob/
master/ ​Chapter04/ ​CHAPTER%204. ​ipynb.

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/blob/master/Chapter04/CHAPTER%204.ipynb

Computing Candlesticks and Historical Data Chapter 4

[105]

Fetching the Japanese candlestick pattern
with variations in candle intervals
The historical data of a financial instrument can be analyzed in the form of Japanese
candlesticks pattern with varying candle intervals. Brokers typically support candle
intervals of 1 minute, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, 1
day, and so on. A shorter candle interval hints at a localized price movement trend, while a
larger candle interval indicates an overall price movement trend. Depending on the
algorithmic trading strategy, you may need a shorter candle interval or a larger one. A
candle interval of 1 minute is often the smallest available candle interval. This recipe
demonstrates the historical data of a financial instrument for a duration of a day in various
candle intervals.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the Technical requirements section of this chapter to learn how to set up
broker_connection.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.utils.func import plot_candlestick_chart,
PlotType

Fetch an instrument:2.

>>> instrument = broker_connection.get_instrument('NSE',
 'TATASTEEL')

Plot a chart for the historical data of the instrument with a 1-minute candle3.
interval:

>>> historical_data_1minute = \
 broker_connection.get_historical_data(instrument,
 'minute',
 '2020-01-01',
 '2020-01-01')

Computing Candlesticks and Historical Data Chapter 4

[106]

>>> plot_candlestick_chart(historical_data_1minute,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute')

You will get the following output:

Plot a chart for the historical data of the instrument with a 3-minute candle4.
interval:

>>> historical_data_3minutes = \
 broker_connection.get_historical_data(instrument,
 '3minute',
 '2020-01-01',
 '2020-01-01')
>>> plot_candlestick_chart(historical_data_3minutes,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 3 Minutes')

Computing Candlesticks and Historical Data Chapter 4

[107]

You will get the following output:

Plot a chart for the historical data of the instrument with a 5-minute candle5.
interval:

>>> historical_data_5minutes = \
 broker_connection.get_historical_data(instrument,
 '5minute',
 '2020-01-01',
 '2020-01-01')
>>> plot_candlestick_chart(historical_data_5minutes,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 5 Minutes')

Computing Candlesticks and Historical Data Chapter 4

[108]

You will get the following output:

Plot a chart for the historical data of the instrument with a 10-minute candle6.
interval:

>>> historical_data_10minutes = \
 broker_connection.get_historical_data(instrument,
 '10minute',
 '2020-01-01',
 '2020-01-01')
>>> plot_candlestick_chart(historical_data_10minutes,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 10 Minutes')

Computing Candlesticks and Historical Data Chapter 4

[109]

You will get the following output:

Plot a chart for the historical data of the instrument with a 15-minute candle7.
interval:

>>> historical_data_15minutes = \
 broker_connection.get_historical_data(instrument,
 '15minute',
 '2020-01-01',
 '2020-01-01')
>>> plot_candlestick_chart(historical_data_15minutes,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 15 Minutes')

Computing Candlesticks and Historical Data Chapter 4

[110]

You will get the following output:

Plot a chart for the historical data of the instrument with a 30-minute candle8.
interval:

>>> historical_data_30minutes = \
 broker_connection.get_historical_data(instrument,
 '30minute',
 '2020-01-01',
 '2020-01-01')
>>> plot_candlestick_chart(historical_data_30minutes,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 30 Minutes')

Computing Candlesticks and Historical Data Chapter 4

[111]

You will get the following output:

Plot a chart for the historical data of the instrument with a 1-hour candle interval:9.

>>> historical_data_1hour = \
 broker_connection.get_historical_data(instrument,
 'hour',
 '2020-01-01',
 '2020-01-01')
>>> plot_candlestick_chart(historical_data_1hour,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Hour')

Computing Candlesticks and Historical Data Chapter 4

[112]

Plot a chart for the historical data of the instrument with a 1-day candle interval:10.

>>> historical_data_day = \
 broker_connection.get_historical_data(instrument,
 'day',
 '2020-01-01',
 '2020-01-01')
>>> plot_candlestick_chart(historical_data_day,
 PlotType.OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: Day')

You will get the following output, which is a single candle:

Computing Candlesticks and Historical Data Chapter 4

[113]

How it works…
In step 1, you import plot_candlestick_chart, a quick utility function for plotting
candlestick pattern charts, and PlotType, an enum for various types of candlestick
patterns. In step 2, the get_instrument() method of broker_connection to fetch an
instrument and assign it to a new attribute, instrument. This object is an instance of the
Instrument class. The two parameters needed to call get_instrument() are the
exchange ('NSE') and the trading symbol ('TATASTEEL'). Steps 3 and 4 fetch and plot the
historical data for the candle intervals; that is, 1 minute, 3 minutes, 5 minutes, 10 minutes,
15 minutes, 30 minutes, 1 hour, and 1 day. You use the get_historical_data() method
to fetch historical data for the same instruments and the same start and end dates, with only
a different candle interval. You use the plot_candlestick_chart() function to plot
Japanese candlestick pattern charts. You can observe the following differences between the
charts as the candle interval increases:

The total number of candlesticks decreases.
The spikes in the charts due to sudden price movement are minimized. Smaller
candle interval charts have more spikes as they focus on local trends, while larger
candle interval charts have fewer spikes and are smoother.
A long-term trend in the stock price becomes visible.
Decision-making may become slower because you have to wait longer to get new
candle data. Slower decisions may or may not be desirable, depending on the
strategy. For example, for confirming trends, using a combination of data with a
smaller candle interval, say 3 minutes, and data with a larger candle interval, say
15 minutes, would be desirable. On the other hand, for grabbing opportunities in
intraday trading, data with larger candle intervals, such as 1 hour or 1 day,
would not be desirable.
The price range (y-axis spread) of adjacent candles may or may not overlap.
All the timestamps are equally spaced in time (within market hours).

Computing Candlesticks and Historical Data Chapter 4

[114]

Fetching historical data using the Line
Break candlestick pattern
The historical data of a financial instrument can be analyzed in the form of the Line Break
candlestick pattern, a candlestick pattern that focuses on price movement. This differs from
the Japanese candlestick pattern, which focuses on the time movement. Brokers typically do
not provide historical data for the Line Break candlestick pattern via APIs. Brokers usually
provide historical data using the Japanese candlestick pattern that needs to be converted
into the Line Break candlestick pattern. A shorter candle interval hints at a localized price
movement trend, while a larger candle interval indicates an overall price movement trend.
Depending on your algorithmic trading strategy, you may need the candle interval to be
small or large. A candle interval of 1 minute is often the smallest available candle interval.

The Line Break candlestick pattern works as follows:

Each candle has only open and close attributes.1.
The user defines a Number of Lines (n) setting, which is usually taken as 3.2.
At the end of each candle interval, a green candle is formed if the stock price goes3.
higher than the highest of the previous n Line Break candles.
At the end of each candle interval, a red candle is formed if the stock price goes4.
lower than the lowest of the previous n Line Break candles.
At the end of each candle interval, if neither point 3 nor point 4 are satisfied, no5.
candle is formed. Hence, the timestamps don't need to be equally spaced.

This recipe shows how we can fetch historical data using the Japanese candlestick pattern
using the broker API, convert the historical data into a Line Break candlestick pattern, and
plot it. This is done for multiple candle intervals.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the Technical requirements section of this chapter to learn how to set up
broker_connection.

Computing Candlesticks and Historical Data Chapter 4

[115]

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.utils.func import plot_candlestick_chart,
PlotType
>>> from pyalgotrading.utils.candlesticks.linebreak import
Linebreak

Fetch the historical data for an instrument and convert it into Line Break data:2.

>>> instrument = broker_connection.get_instrument('NSE',
 'TATASTEEL')
>>> historical_data_1minute = \
 broker_connection.get_historical_data(instrument,
 'minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_1minute_linebreak = \
 Linebreak(historical_data_1minute)
>>> historical_data_1minute_linebreak

You will get the following output:

 close open timestamp
0 424.00 424.95 2019-12-02 09:15:00+05:30
1 424.50 424.00 2019-12-02 09:16:00+05:30
2 425.75 424.80 2019-12-02 09:17:00+05:30
3 423.75 424.80 2019-12-02 09:19:00+05:30
4 421.70 423.75 2019-12-02 09:20:00+05:30
 … …
1058 474.90 474.55 2019-12-31 10:44:00+05:30
1059 471.60 474.55 2019-12-31 11:19:00+05:30
1060 471.50 471.60 2019-12-31 14:19:00+05:30
1061 471.35 471.50 2019-12-31 15:00:00+05:30
1062 471.00 471.35 2019-12-31 15:29:00+05:30

Computing Candlesticks and Historical Data Chapter 4

[116]

Create a green Line Break candle from one of the rows of historical_data:3.

>>> candle_green_linebreak =
historical_data_1minute_linebreak.iloc[1:2,:]
Only 2nd ROW of historical data
>>> plot_candlestick_chart(candle_green_linebreak,
 PlotType.LINEBREAK,
 "A 'Green' Line Break Candle")

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[117]

Create a red Line Break candle from one of the rows of historical_data:4.

>>> candle_red_linebreak =
historical_data_1minute_linebreak.iloc[:1,:]
Only 1st ROW of historical data
>>> plot_candlestick_chart(candle_red_linebreak,
 PlotType.LINEBREAK,
 "A 'Red' Line Break Candle")

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[118]

Plot a chart for the historical data of the instrument with a 1-minute candle5.
interval:

>>> plot_candlestick_chart(historical_data_1minute_linebreak,
 PlotType.LINEBREAK,
 'Historical Data | '
 'Line Break Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 1 Minute', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[119]

Plot a chart for the historical data of the instrument with a 3-minute candle6.
interval:

>>> historical_data_3minutes = \
 broker_connection.get_historical_data(instrument,
 '3minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_3minutes_linebreak = \
 Linebreak(historical_data_3minutes)
>>> plot_candlestick_chart(historical_data_3minutes_linebreak,
 PlotType.LINEBREAK,
 'Historical Data | '
 'Line Break Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 3 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[120]

Plot a chart for the historical data of the instrument with a 5-minute candle7.
interval:

>>> historical_data_5minutes = \
 broker_connection.get_historical_data(instrument,
 '5minute',
 '2019-12-01',
 '2020-01-10')
>>> historical_data_5minutes_linebreak = \
 Linebreak(historical_data_5minutes)
>>> plot_candlestick_chart(historical_data_5minutes_linebreak,
 PlotType.LINEBREAK,
 'Historical Data | '
 'Line Break Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 5 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[121]

Plot a chart for the historical data of the instrument with a 10-minute candle8.
interval:

>>> historical_data_10minutes = \
 broker_connection.get_historical_data(instrument,
 '10minute',
 '2019-12-01',
 '2020-01-10')
>>> historical_data_10minutes_linebreak = \
 Linebreak(historical_data_10minutes)
>>> plot_candlestick_chart(historical_data_10minutes_linebreak,
 PlotType.LINEBREAK,
 'Historical Data | '
 'Line Break Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 10 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[122]

Plot a chart for the historical data of the instrument with a 15-minute candle9.
interval:

>>> historical_data_15minutes = \
 broker_connection.get_historical_data(instrument,
 '15minute',
 '2019-12-01',
 '2020-01-10')
>>> historical_data_15minutes_linebreak = \
 Linebreak(historical_data_15minutes)
>>> plot_candlestick_chart(historical_data_15minutes_linebreak,
 PlotType.LINEBREAK,
 'Historical Data | '
 'Line Break Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 15 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[123]

Plot a chart for the historical data of the instrument with a 30-minute candle10.
interval:

>>> historical_data_30minutes = \
 broker_connection.get_historical_data(instrument,
 '30minute',
 '2019-12-01',
 '2020-01-10')
>>> historical_data_30minutes_linebreak = \
 Linebreak(historical_data_30minutes)
>>> plot_candlestick_chart(historical_data_30minutes_linebreak,
 PlotType.LINEBREAK,
 'Historical Data | '
 'Line Break Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 30 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[124]

Plot a chart for the historical data of the instrument with a 1-hour candle interval:11.

>>> historical_data_1hour = \
 broker_connection.get_historical_data(instrument,
 'hour',
 '2019-12-01',
 '2020-01-10')
>>> historical_data_1hour_linebreak = \
 Linebreak(historical_data_1hour)
>>> plot_candlestick_chart(historical_data_1hour_linebreak,
 PlotType.LINEBREAK,
 'Historical Data | '
 'Line Break Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 1 Hour', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[125]

Plot a chart for the historical data of the instrument with a 1-day candle interval:12.

>>> historical_data_day = \
 broker_connection.get_historical_data(instrument,
 'day',
 '2019-12-01',
 '2020-01-10')
>>> historical_data_day_linebreak = \
 Linebreak(historical_data_day)
>>> plot_candlestick_chart(historical_data_day_linebreak,
 PlotType.LINEBREAK,
 'Historical Data | '
 'Line Break Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 1 Day', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[126]

How it works…
In step 1, you import plot_candlestick_chart, a quick utility function for plotting
candlestick pattern charts, PlotType, an enum for various types of candlestick patterns,
and the Linebreak function, which can convert historical data from the Japanese
candlestick pattern in the Line Break candlestick pattern. In step 2, you use the
get_instrument() method of broker_connection to fetch an instrument and assign it
to a new attribute, instrument. This object is an instance of the Instrument class. The
two parameters needed to call get_instrument() are the exchange ('NSE') and the trading
symbol ('TATASTEEL'). Next, you use the get_historical_data() method of the
broker_connection object to fetch the historical data for the instrument for the duration
of December 2019, with a candle interval of 1 minute. The time-series data returned is in the
form of the Japanese candlestick pattern. The Linebreak() function converts this data into
a Line Break candlestick pattern, another pandas.DataFrame object. You assign it to
historical_data_1minute_linebreak. Observe that
historical_data_1minute_linebreak has only timestamp, open, and close columns.
Also, observe that the timestamps are not equidistant as the Line Break candles are based
on price movement and not time. In steps 3 and 4, you selectively extract a green and a red
candle from the data. (Please note, the indices passed to historical_data.iloc would
be different if you choose a different duration for historical_data fetched in the first
recipe of this chapter.) Observe that the candles have no shadows (lines extending on either
side of the main candle body) as the candles only have open and close attributes. In steps
5, you plot the complete historical data held by historical_data using the
plot_candlestick_chart() function.

In steps 6 until 12, you fetch the historical data using the Japanese candlestick pattern,
convert it into the Line Break candlestick pattern, and plot the converted data for candle
intervals of 3 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, and 1 day.
Observe the following differences and similarities among the charts as the candle interval
increases:

The total number of candlesticks decreases.
The spikes in the charts due to sudden price movement are minimized. Smaller
candle interval charts have more spikes as they focus on local trends, while larger
candle interval charts have fewer spikes and are smoother.
A long-term trend in the stock price becomes visible.

Computing Candlesticks and Historical Data Chapter 4

[127]

Decision-making may become slower because you have to wait longer to get new
candle data. Slower decisions may or may not be desirable, depending on the
strategy. For example, to confirm trends, using a combination of data with a
smaller candle interval, say 3 minutes, and data with a larger candle interval, say
15 minutes, would be desirable. On the other hand, to grab opportunities in
intraday trading, data with larger candle intervals, say 1 hour or 1 day, would
not be desirable.
The price ranges (y-axis spread) of two adjacent candles don't overlap with each
other. Adjacent candles always share one of their ends.
None of the timestamps need to be equally spaced in time (unlike the Japanese
candlestick pattern) as candles are formed based on price movement and not
time movement.

If you are interested in finding out about the Math and implementation of
Line Break candles, please refer to its source code in the pyalgotrading
package at https:/ ​/​github. ​com/ ​algobulls/ ​pyalgotrading/ ​blob/
master/ ​pyalgotrading/ ​utils/ ​candlesticks/ ​linebreak. ​py.

Fetching historical data using the Renko
candlestick pattern
The historical data of a financial instrument can be analyzed in the form of the Renko
candlestick pattern, a candlestick pattern that focuses on price movement. This differs from
the Japanese candlestick pattern, which focuses on time movement. Brokers typically do
not provide historical data as the Renko candlestick pattern via APIs. Brokers usually
provide historical data by using the Japanese candlestick pattern, which needs to be
converted into the Renko candlestick pattern. A shorter candle interval hints at a localized
price movement trend, while a larger candle interval indicates an overall price movement
trend. Depending on your algorithmic trading strategy, you may need the candle interval
to be small or large. A candle interval of 1 minute is often the smallest available candle
interval.

The Renko candlestick pattern works as follows:

Each candle only has open and close attributes.1.
You define a Brick Count (b) setting, which is usually set to 2.2.
Each candle is always fixed and is equal to Brick Count. Hence, a candle is also3.
called a brick here.

https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/linebreak.py

Computing Candlesticks and Historical Data Chapter 4

[128]

At the end of every candle interval, a green brick is formed if the stock price goes4.
b points higher than the highest of the previous brick. If the price goes much
higher than b points in a single candle interval, as many Renko bricks are formed
to account for the price change.
For example, say the price goes 21 points higher than the high of the previous
brick. If the brick size is 2, 10 Renko bricks would be formed with the same
timestamp to account for the 20-point change. For the remaining 1-point change
(21-20), no brick would be formed until the price goes at least 1 point higher.
At the end of every candle interval, a red candle is formed if the stock price goes5.
b points lower than the lowest of the previous Renko candle. If the price goes
much lower than b points in a single candle interval, as many Renko bricks are
formed to account for the price change.
For example, say the price goes 21 points lower than the highest previous brick.
If the brick size is 2, 10 Renko bricks would be formed with the same timestamp
to account for the 20-point change. For the remaining 1-point change (21-20), no
brick would be formed until the price goes at least 1 point lower.
No two adjacent candles overlap with each other. Adjacent candles always share6.
one of their ends.

None of the timestamps need to be equally spaced (unlike the Japanese7.
candlestick pattern) as candles are formed based on price movement and not
time movement. Also, unlike other patterns, there may be multiple candles with
the same timestamp.

This recipe shows how you can fetch historical data as the Japanese candlestick pattern
using the broker API, as well as how to convert and plot the historical data using the Renko
candlestick pattern for various candle intervals.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the Technical requirements section of this chapter to learn how to set up
broker_connection.

Computing Candlesticks and Historical Data Chapter 4

[129]

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.utils.func import plot_candlestick_chart,
PlotType
>>> from pyalgotrading.utils.candlesticks.renko import Renko

Fetch the historical data for an instrument and convert it into Renko data:2.

>>> instrument = broker_connection.get_instrument('NSE',
 'TATASTEEL')
>>> historical_data_1minute = \
 broker_connection.get_historical_data(instrument,
 'minute',
 '2019-12-01',
 '2020-01-10')
>>> historical_data_1minute_renko = Renko(historical_data_1minute)
>>> historical_data_1minute_renko

You will get the following output:

 close open timestamp
0 424.0 424.95 2019-12-02 09:15:00+05:30
1 422.0 424.00 2019-12-02 09:20:00+05:30
2 426.0 424.00 2019-12-02 10:00:00+05:30
3 422.0 424.00 2019-12-02 10:12:00+05:30
4 420.0 422.00 2019-12-02 15:28:00+05:30

186 490.0 488.00 2020-01-10 10:09:00+05:30
187 492.0 490.00 2020-01-10 11:41:00+05:30
188 488.0 490.00 2020-01-10 13:31:00+05:30
189 486.0 488.00 2020-01-10 13:36:00+05:30
190 484.0 486.00 2020-01-10 14:09:00+05:30

Computing Candlesticks and Historical Data Chapter 4

[130]

Create a green Renko candle from one of the rows of historical_data:3.

>>> candle_green_renko = historical_data_1minute_renko.iloc[2:3,:]
Only 3rd ROW of historical data
>>> plot_candlestick_chart(candle_green_renko,
 PlotType.RENKO,
 "A Green 'Renko' Candle")

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[131]

Create a red Renko candle from one of the rows of historical_data:4.

>>> plot_candlestick_chart(historical_data_1minute_renko,
 PlotType.RENKO,
 'Historical Data | '
 'Renko Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 1 Minute', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[132]

Plot a chart for the historical data of the instrument with a 1-minute candle5.
interval:

>>> historical_data_3minutes = \
 broker_connection.get_historical_data(instrument,
 '3minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_3minutes_renko = \
 Renko(historical_data_3minutes)
>>> plot_candlestick_chart(historical_data_3minutes_renko,
 PlotType.RENKO,
 'Historical Data | '
 'Renko Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 3 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[133]

Plot a chart for the historical data of the instrument with a 3-minute candle6.
interval:

>>> historical_data_5minutes = \
 broker_connection.get_historical_data(instrument,
 '5minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_5minutes_renko = \
 Renko(historical_data_5minutes)
>>> plot_candlestick_chart(historical_data_5minutes_renko,
 PlotType.RENKO,
 'Historical Data | '
 'Renko Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 5 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[134]

Plot a chart for the historical data of the instrument with a 5-minute candle7.
interval:

>>> historical_data_10minutes = \
 broker_connection.get_historical_data(instrument,
 '10minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_10minutes_renko = \
 Renko(historical_data_10minutes)
>>> plot_candlestick_chart(historical_data_10minutes_renko,
 PlotType.RENKO,
 'Historical Data | '
 'Renko Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 10 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[135]

Plot a chart for the historical data of the instrument with a 10-minute candle8.
interval:

>>> historical_data_15minutes = \
 broker_connection.get_historical_data(instrument,
 '15minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_15minutes_renko = \
 Renko(historical_data_15minutes)
>>> plot_candlestick_chart(historical_data_15minutes_renko,
 PlotType.RENKO,
 'Historical Data | '
 'Renko Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 15 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[136]

Plot a chart for the historical data of the instrument with a 15-minute candle9.
interval:

>>> historical_data_15minutes = \
 broker_connection.get_historical_data(instrument,
 '15minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_15minutes_renko = \
 Renko(historical_data_15minutes)
>>> plot_candlestick_chart(historical_data_15minutes_renko,
 PlotType.RENKO,
 'Historical Data | '
 'Renko Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 15 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[137]

Plot a chart for the historical data of the instrument with a 30-minute candle10.
interval:

>>> historical_data_30minutes = \
 broker_connection.get_historical_data(instrument,
 '30minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_30minutes_renko = \
 Renko(historical_data_30minutes)
>>> plot_candlestick_chart(historical_data_30minutes_renko,
 PlotType.RENKO,
 'Historical Data | '
 'Renko Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 30 Minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[138]

Plot a chart for the historical data of the instrument with a 1-hour candle interval:11.

>>> historical_data_1hour = \
 broker_connection.get_historical_data(instrument,
 'hour',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_1hour_renko = Renko(historical_data_1hour)
>>> plot_candlestick_chart(historical_data_1hour_renko,
 PlotType.RENKO,
 'Historical Data | '
 'Renko Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 1 Hour', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[139]

Plot a chart for the historical data of the instrument with a 1-day candle interval:12.

>>> historical_data_day = \
 broker_connection.get_historical_data(instrument,
 'day',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_day_renko = Renko(historical_data_day)
>>> plot_candlestick_chart(historical_data_day_renko,
 PlotType.RENKO,
 'Historical Data | '
 'Renko Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: Day', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[140]

How it works…
In step 1, you import plot_candlestick_chart, a quick utility function for plotting
candlestick pattern charts, PlotType, an enum for various types of candlestick patterns,
and the Renko function, which can convert historical data from the Japanese candlestick
pattern into the Renko candlestick pattern. In step 2, you use the get_instrument()
method of broker_connection to fetch an instrument and assign it to a new attribute,
instrument. This object is an instance of the Instrument class. The two parameters
needed to call get_instrument() are the exchange ('NSE') and the trading
symbol ('TATASTEEL'). Next, you use the get_historical_data() method of the
broker_connection object to fetch the historical data for the duration of December 2019,
with a candle interval of 1 minute. The time-series data returned is in the form of Japanese
candlestick pattern. The Renko() function converts this data into a Renko candlestick
pattern, another pandas.DataFrame object. You assign it to
historical_data_1minute_renko. Observe that historical_data_1minute_renko
has timestamp, open, and close columns. Also, observe that the timestamps are not
equidistant as the Renko candles are based on price movement and not time. In step 3 and 4,
you selectively extract a green and a red candle from the data (Please note, the indices
passed to historical_data.iloc fetched in the first recipe of this chapter.) Observe that
the candles have no shadows (lines extending on either side of the main candle body) as the
candles only have open and close attributes. In step 5, you plot the complete historical
data held by historical_data using the plot_candlestick_chart() function.

In steps 6 until 12, you fetch the historical data using the Japanese candlestick pattern,
convert it into the Renko candlestick pattern, and plot the converted data for candle
intervals of 3 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, and 1 day.
Observe the following differences and similarities among the charts as the candle interval
increases:

The total number of candlesticks decreases.
The spikes in the charts due to sudden price movement are minimized. Smaller
candle interval charts have more spikes as they focus on local trends, while larger
candle interval charts have fewer spikes and are smoother.
A long-term trend in the stock price becomes visible.

Computing Candlesticks and Historical Data Chapter 4

[141]

Decision-making may become slower because you have to wait longer to get new
candle data. Slower decisions may or may not be desirable, depending on the
strategy. For example, to confirm trends, using a combination of data with a
smaller candle interval, say 3 minutes, and data with a larger candle interval, say
15 minutes, would be desirable. On the other hand, to grab opportunities in
intraday trading, data with larger candle intervals, say 1 hour or 1 day, would
not be desirable.
The price ranges (y-axis spread) of two adjacent candles don't overlap with each
other. Adjacent candles always share one of their ends.
None of the timestamps need to be equally spaced in time (unlike in the Japanese
candlestick pattern) as candles are formed based on price movement and not
time movement.

If you are interested in finding out about the Math and implementation of
Renko candles, please refer to its source code in the pyalgotrading
package at https:/ ​/​github. ​com/ ​algobulls/ ​pyalgotrading/ ​blob/
master/ ​pyalgotrading/ ​utils/ ​candlesticks/ ​renko. ​py.

Fetching historical data using the Heikin-
Ashi candlestick pattern
The historical data of a financial instrument can be analyzed in the form of the Heikin-Ashi
candlestick pattern. Brokers typically do not provide historical data using the Heikin-Ashi
candlestick pattern via APIs. Brokers usually provide historical data using the Japanese
candlestick pattern, which needs to be converted to the Heikin-Ashi candlestick pattern. A
shorter candle interval hints at a localized price movement trend, while a larger candle
interval indicates an overall price movement trend. Based on your algorithmic trading
strategy, you may need the candle interval to be small or large. A candle interval of 1
minute is often the smallest available candle interval.

The Heikin-Ashi candlestick pattern works as follows:

Each candle has Close, Open, High, and Low attributes. For each candle, the
following occurs:

Close is calculated as the average of the Open, High, Low, and
Close attributes of the current Japanese candle.
Open is the average of the Open and Close attributes of the previous
Heikin-Ashi candle.

https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/renko.py

Computing Candlesticks and Historical Data Chapter 4

[142]

High is max of:
Open of current Heikin-Ashi candle
Close of current Heikin-Ashi candle
High of current Japanese candle

Low is the min of:
Open of current Heikin-Ashi candle
Close of current Heikin-Ashi candle
Low of current Japanese Candle

A green candle is formed when Close is higher than Open. (This is the same as
the green candle in the Japanese candlestick pattern.)
A red candle is formed when Close is lower than Open. (This is the same as the
red candle in the Japanese candlestick pattern.)
All the timestamps are equally spaced (within market hours).

This recipe shows you how to fetch historical data using Japanese candlestick pattern when
using the broker API, as well as how to convert and plot the historical data using the
Heikin-Ashi candlestick pattern for various candle intervals.

Getting ready
Make sure the broker_connection object is available in your Python namespace. Refer to
the Technical requirements section of this chapter to learn how to set up
broker_connection.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.utils.func import plot_candlestick_chart,
PlotType
>>> from pyalgotrading.utils.candlesticks.heikinashi import
HeikinAshi

Computing Candlesticks and Historical Data Chapter 4

[143]

Fetch the historical data for an instrument and convert it into Heikin-Ashi data:2.

>>> instrument = broker_connection.get_instrument('NSE',
 'TATASTEEL')
>>> historical_data_1minute = \
 broker_connection.get_historical_data(instrument,
 'minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_1minute_heikinashi = \
 HeikinAshi(historical_data_1minute)
>>> historical_data_1minute_heikinashi

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[144]

Create a green Heikin-Ashi candle for one row of data:3.

>>> candle_green_heikinashi = \
 historical_data_1minute_heikinashi.iloc[2:3,:]
Only 3rd ROW of historical data
>>> plot_candlestick_chart(candle_green_heikinashi,
 PlotType.HEIKINASHI,
 "A 'Green' HeikinAshi Candle")

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[145]

Create a red Heikin-Ashi candle for one row of data:4.

A 'Red' HeikinAshi Candle
>>> candle_red_heikinashi = \
 historical_data_1minute_heikinashi.iloc[4:5,:]
Only 1st ROW of historical data
>>> plot_candlestick_chart(candle_red_heikinashi,
 PlotType.HEIKINASHI,
 "A 'Red' HeikinAshi Candle")

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[146]

Plot a chart for the historical data of the instrument with a 1-minute candle5.
interval:

>>> plot_candlestick_chart(historical_data_1minute_heikinashi,
 PlotType.HEIKINASHI,
 'Historical Data | '
 'Heikin-Ashi Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 1 minute', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[147]

Plot a chart for the historical data of the instrument with a 3-minute candle6.
interval:

>>> historical_data_3minutes = \
 broker_connection.get_historical_data(instrument,
 '3minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_3minutes_heikinashi = \
 HeikinAshi(historical_data_3minutes)
>>> plot_candlestick_chart(historical_data_3minutes_heikinashi,
 PlotType.HEIKINASHI,
 'Historical Data | '
 'Heikin-Ashi Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 3 minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[148]

Plot a chart for the historical data of the instrument with a 5-minute candle7.
interval:

>>> historical_data_5minutes = \
 broker_connection.get_historical_data(instrument,
 '5minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_5minutes_heikinashi = \
 HeikinAshi(historical_data_5minutes)
>>> plot_candlestick_chart(historical_data_5minutes_heikinashi,
 PlotType.HEIKINASHI,
 'Historical Data | '
 'Heikin-Ashi Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 5 minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[149]

Plot a chart for the historical data of the instrument with a 10-minute candle8.
interval:

>>> historical_data_10minutes = \
 broker_connection.get_historical_data(instrument,
 '10minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_10minutes_heikinashi = \
 HeikinAshi(historical_data_10minutes)
>>> plot_candlestick_chart(historical_data_10minutes_heikinashi,
 PlotType.HEIKINASHI,
 'Historical Data | '
 'Heikin-Ashi Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 10 minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[150]

Plot a chart for the historical data of the instrument with a 15-minute candle9.
interval:

>>> historical_data_15minutes = \
 broker_connection.get_historical_data(instrument,
 '15minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_15minutes_heikinashi = \
 HeikinAshi(historical_data_15minutes)
>>> plot_candlestick_chart(historical_data_15minutes_heikinashi,
 PlotType.HEIKINASHI,
 'Historical Data | '
 'Heikin-Ashi Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 15 minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[151]

Plot a chart for the historical data of the instrument with a 30-minute candle10.
interval:

>>> historical_data_30minutes = \
 broker_connection.get_historical_data(instrument,
 '30minute',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_30minutes_heikinashi = \
 HeikinAshi(historical_data_30minutes)
>>> plot_candlestick_chart(historical_data_30minutes_heikinashi,
 PlotType.HEIKINASHI,
 'Historical Data | '
 'Heikin-Ashi Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 30 minutes', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[152]

Plot a chart for the historical data of the instrument with a 1-hour candle interval:11.

>>> historical_data_1hour =
 broker_connection.get_historical_data(instrument,
 'hour',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_1hour_heikinashi = \
 HeikinAshi(historical_data_1hour)
>>> plot_candlestick_chart(historical_data_1hour_heikinashi,
 PlotType.HEIKINASHI,
 'Historical Data | '
 'Heikin-Ashi Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: 1 Hour', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[153]

Plot a chart for the historical data of the instrument with a 1-day candle interval:12.

>>> historical_data_day = \
 broker_connection.get_historical_data(instrument,
 'day',
 '2019-12-01',
 '2019-12-31')
>>> historical_data_day_heikinashi = \
 HeikinAshi(historical_data_day)
>>> plot_candlestick_chart(historical_data_day_heikinashi,
 PlotType.HEIKINASHI,
 'Historical Data | '
 'Heikin-Ashi Candlesticks Pattern | '
 'NSE:TATASTEEL | '
 'Dec, 2019 | '
 'Candle Interval: Day', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[154]

How it works…
In step 1, you import plot_candlestick_chart, a quick utility function for plotting
candlestick pattern charts, PlotType, an enum for various types of candlestick patterns,
and the HeikinAshi function, which can convert historical data from the Japanese
candlestick pattern into data that's applicable to the Heikin-Ashi candlestick pattern. In step
2, you use the get_instrument() method of broker_connection to fetch an instrument
and assign it to a new attribute, instrument. This object is an instance of the Instrument
class. The two parameters needed to call get_instrument() are the exchange ('NSE') and
the trading symbol ('TATASTEEL'). Next, you use the get_historical_data() method
of the broker_connection object to fetch the historical data for the duration of December
2019, with a candle interval of 1 minute. The time-series data returned is in the form of
Japanese candlestick pattern. The HeikinAshi() function converts this data to Heikin-
Ashi candlestick pattern, another pandas.DataFrame object. You assign it to
historical_data_1minute_heikinashi. Observe that
historical_data_1minute_heikinashi has timestamp, close, open, high, and
low columns. Also, observe that the timestamps are equidistant as the Heikin-Ashi candles
are based on the average values of the Japanese candles. In steps 3 and 4, you selectively
extract a green and a red candle from the data. (Please note, this indices passed to
historical_data.iloc would be different if you choose a different duration for
historical_data fetched in the first recipe of this chapter.) Observe that the candles have
shadows (lines extending on either side of the main candle body) as the candle
have high and low attributes, along with the open and close attributes. In step 5, you plot
the complete historical data held by historical_data using the
plot_candlstick_charts() function.

In steps 6 until 12, you fetch the historical data using the Japanese candlestick pattern,
converts it into the Heikin-Ashi candlestick pattern, and plots the converted data for candle
intervals of 3 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, and 1 day,
respectively. Observe the following differences and similarities among the charts as the
candle interval increases:

The total number of candlesticks decreases.
The spikes in the charts due to sudden price movement are minimized. Smaller
candle interval charts have more spikes as they focus on local trends, while larger
candle interval charts have fewer spikes and are smoother.
A long-term trend in the stock price becomes visible.

Computing Candlesticks and Historical Data Chapter 4

[155]

Decision-making may become slower because you have to wait longer to get new
candle data. Slower decisions may or may not be desirable, depending on the
strategy. For example, to confirm trends, using a combination of data with a
smaller candle interval, say 3 minutes, and data with a larger candle interval, say
15 minutes, would be desirable. On the other hand, to grab opportunities in
intraday trading, data with larger candle intervals, say 1 hour or 1 day, would
not be desirable.
The price ranges (y-axis spread) of adjacent candles may or may not overlap.
All the timestamps are equally spaced in time (within market hours).

If you are interested in finding out about the Math and implementation of
Heikin-Ashi candles, please refer to the source code in the
pyalgotrading package at https:/ ​/ ​github. ​com/ ​algobulls/
pyalgotrading/ ​blob/ ​master/ ​pyalgotrading/ ​utils/ ​candlesticks/
heikinashi. ​py.

Fetching historical data using Quandl
So far, in all the recipes in this chapter, you have used the broker connection to fetch
historical data. In this recipe, you will fetch historical data using a third-party tool, Quandl
(https:/​/​www.​quandl. ​com/ ​tools/ ​python). It has a free to use Python version which can be
easily installed using pip. This recipe demonstrates the use of quandl to fetch historical
data of FAAMG stock prices (Facebook, Amazon, Apple, Microsoft, and Google).

Getting ready
Make sure you have installed the Python quandl package. If you haven't, you can install it
using the following pip command:

$ pip install quandl

https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://github.com/algobulls/pyalgotrading/blob/master/pyalgotrading/utils/candlesticks/heikinashi.py
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python
https://www.quandl.com/tools/python

Computing Candlesticks and Historical Data Chapter 4

[156]

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.utils.func import plot_candlestick_chart,
PlotType
>>> import quandl

Plot a chart for the historical data of Facebook with a 1-day candle interval:2.

>>> facebook = quandl.get('WIKI/FB',
 start_date='2015-1-1',
 end_date='2015-3-31')
>>> plot_candlestick_chart(facebook,
 PlotType.QUANDL_OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'FACEBOOK | '
 'Jan-March 2015 | '
 'Candle Interval: Day', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[157]

Plot a chart for the historical data of Amazon with a 1-day candle interval:3.

>>> amazon = quandl.get('WIKI/AMZN',
 start_date='2015-1-1',
 end_date='2015-3-31')
>>> plot_candlestick_chart(amazon,
 PlotType.QUANDL_OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'AMAZON | '
 'Jan-March 2015 | '
 'Candle Interval: Day', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[158]

Plot a chart for the historical data of Apple with a 1-day candle interval:4.

>>> apple = quandl.get('WIKI/AAPL',
 start_date='2015-1-1',
 end_date='2015-3-31')
>>> plot_candlestick_chart(apple,
 PlotType.QUANDL_OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'APPLE | '
 'Jan-March 2015 | '
 'Candle Interval: Day', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[159]

Plot a chart for the historical data of Microsoft with a 1-day candle interval:5.

>>> microsoft = quandl.get('WIKI/MSFT',
 start_date='2015-1-1',
 end_date='2015-3-31')
>>> plot_candlestick_chart(microsoft,
 PlotType.QUANDL_OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'MICROSOFT | '
 'Jan-March 2015 | '
 'Candle Interval: Day', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[160]

Plot a chart for the historical data of Google with a 1-day candle interval:6.

>>> google = quandl.get('WIKI/GOOGL',
 start_date='2015-1-1',
 end_date='2015-3-31')
>>> plot_candlestick_chart(google,
 PlotType.QUANDL_OHLC,
 'Historical Data | '
 'Japanese Candlesticks Pattern | '
 'GOOGLE | '
 'Jan-March 2015 | '
 'Candle Interval: Day', True)

You will get the following output:

Computing Candlesticks and Historical Data Chapter 4

[161]

How it works…
In step 1, you import plot_candlestick_chart, a quick utility function for plotting
candlestick pattern charts, PlotType, an enum for various types of candlestick patterns,
and the quandl module. In the remaining steps, historical data for the Facebook, Amazon,
Apple, Microsoft, and Google stocks are fetched using quandl.get() and plotted using
the plot_candlestick_chart() method. The data that's returned by the quandl is in the
OHLC (open, high, low, close) format.

The upside of such third-party modules is that they are free and you don't
need to set up a broker connection to fetch the historical data. The
downside is that this data from the free package has its limitations. For
example, the data cannot be fetched in real-time and the data cannot be
fetched for intraday trading (1-minute candle, 3-minute candle, and so
on).
So, whether you want to use this data depends on your requirements. It
may be good for testing or flow flushing the existing code base, but not
good enough for providing live data feeds, which are needed during real
trading sessions.

5
Computing and Plotting

Technical Indicators
Technical analysis is a discipline in trading that employs mathematical functions, called
technical indicators, to predict and find profitable opportunities in stock markets.
Technical indicators analyze data based on past and current prices and volumes of a
financial instrument and give out statistical information. This helps in predicting where the
future prices of a financial instrument may go (either up or down). With this knowledge,
you as a trader can make informed decisions when trading and hence increase your odds of
success.

Technical indicators do not take into account any of the fundamental aspects of the
business of the underlying financial instrument, such as revenue, earnings, profit, and so
on. However, they do take past and current prices and volumes into account, which helps
in predicting short-term price movements.

Most brokers provide technical indicator charts, superimposed on historical data plots, in
real time. This helps in visually predicting trends in price movements. However, there are a
few limitations to only doing visual analysis:

You can view and analyze only a handful of charts at a time, while there could
potentially be thousands of charts you may want to analyze to help search for a
profitable opportunity.
Analyzing multiple charts visually is tedious and subject to delay and human
error. Delays and errors are not viable when we want to instantly and accurately
grab a good trading opportunity.

Hence, it is best to let a computer analyze historical data for a large number of financial
instruments in real time. For this reason, it is important to learn to compute technical
indicators for a given financial instrument using its historical data. This chapter has recipes
that introduce code for computing various technical indicators using Python.

Computing and Plotting Technical Indicators Chapter 5

[163]

There may be scenarios where you would want to plot complex charts. However, it may
not be possible to do so with the tools provided by most brokers. For example, you may
want to plot a simple moving average (SMA) on the relative strength index (RSI) of the
close of historical data (mathematically, this is SMA(RSI(close, timeperiod=10), timeperiod=5))
and analyze it over a period of, say, 3 months, to aid in the development of your trading
strategy. On these occasions, it would help to know how to plot technical indicators for a
given financial instrument. The recipes of this chapter also include code to plot technical
indicators using Python.

Every technical indicator belongs to one of the following two mentioned categories:

Leading: This category of indicators gives trade signals when the trend is about
to start or a reversal is about to happen. In other words, they lead the trend. So,
these indicators are helpful in predicting the upcoming trend. (The trend can be
bullish if the prices are going up, or bearish if they are going down.)
Lagging: This category of indicators gives trade signals after a trend has started
or after a reversal has happened. So, these indicators are helpful in finding out
the current trend.

Technical indicators can also be broadly classified into four types, based on the insight they
give:

Trend indicators or oscillators: These indicators indicate the trend in the market,
if there is a trend. These indicators are also called oscillators as they often
oscillate between high and low values with time, like an oscillating wave. Such
indicators are usually lagging, but can sometimes be leading as well.
Momentum indicators: These indicators tell us how strong the current trend is
and also if a reversal in the current trend is likely to occur. These indicators are
usually leading indicators.
Volatility indicators: These indicators measure the rate of change of price
movement, irrespective of the direction (that is, bearish or bullish). These
indicators help us understand how fast or slow prices are changing. A very
volatile market might not be good for your trading strategy, as by the time you
query the market and place an order at a particular price, the price might have
moved significantly away from the specified price. These indicators are usually
lagging indicators.
Volume indicators: These are indicators that indicate how fast or slow the
volume is changing with time. The higher the volume, the stronger the current
trend would be, so these indicators help in finding the strength of the current
trend. These indicators can be both leading and lagging.

Computing and Plotting Technical Indicators Chapter 5

[164]

This chapter discusses 10 technical indicators across all the previously mentioned
categories and types. Each recipe does the following:

Introduces a new technical indicator1.
Shows how it can be computed on given historical data using Python2.
Shows how it can be plotted on a Japanese candlestick pattern chart using3.
Python
Explains the insight provided by the indicator from the plot4.

In this chapter, we will cover the following recipes:

Trend indicators – simple moving average
Trend indicators – exponential moving average
Trend indicators – moving average convergence divergence
Trend indicators – parabolic stop and reverse
Momentum indicators – relative strength index
Momentum indicators – stochastic oscillator
Volatility indicators – Bollinger Bands
Volatility indicators – average true range
Volume indicators – on balance volume
Volume indicators – volume-weighted average price

The main focus of this chapter is to demonstrate how the most commonly
used technical indicators can be computed and plotted. Although each
technical indicator is introduced at the beginning of every recipe,
understanding them in depth is beyond the scope of this book. If you are
interested in this, please refer to the work of renowned personalities, such
as Jack Schwager, Martin Pring, John Murphy, Steve Nison, and Thomas
Bulkowski, to name a few. You can also use widely accepted web
resources, such as https:/ ​/​www.​investopedia. ​com/ ​.

https://www.investopedia.com/
https://www.investopedia.com/
https://www.investopedia.com/
https://www.investopedia.com/
https://www.investopedia.com/
https://www.investopedia.com/
https://www.investopedia.com/
https://www.investopedia.com/
https://www.investopedia.com/
https://www.investopedia.com/

Computing and Plotting Technical Indicators Chapter 5

[165]

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
The following Python packages:

pyalgotrading ($ pip install pyalgotrading)
TA-Lib ($ pip install TA-Lib)

If you face errors while installing TA-Lib, it will mostly be due to missing dependencies.
You can follow these instructions to fix the issue:

For Mac OS X, use the following:

$ brew install ta-lib

For Windows, use the following instructions:

You can install the latest TA-Lib binary from https:/ ​/​www. ​lfd. ​uci.​edu/
~gohlke/ ​pythonlibs/ ​#ta- ​lib based on your Windows build (32 bit/64 bit) and
Python version. So, for example, this link on the
site TA_Lib‑0.4.18‑cp38‑cp38‑win_amd64.whl, is for TA-Lib version 0.4.18
(TA_Lib-0.4.18) and Python version 3.8 (cp38) and is Windows 64-bit-
compatible (win_amd64).

For Linux, take the following steps:

Download the gzip file from http:/ ​/​prdownloads. ​sourceforge. ​net/ ​ta- ​lib/​ta-
lib-​0. ​4. ​0-​src. ​tar. ​gz and run the following commands from your Linux
Terminal:

Extract the downloaded gzip file containing the source code for TA-Lib:1.

$ tar -xzf ta-lib-0.4.0-src.tar.gz

Change your current working directory to the extracted folder:2.

$ cd ta-lib/

Run the configure command to configure TA-Lib for your machine:3.

$./configure --prefix=/usr

https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz

Computing and Plotting Technical Indicators Chapter 5

[166]

Run the make command to build TA-Lib from the downloaded source code:4.

$ make

Run the install command to install built executables and libraries to5.
specific directories on your machine:

$ sudo make install

If this doesn't help and you still get errors, please refer to the official TA-Lib
GitHub page at https:/ ​/ ​github. ​com/ ​mrjbq7/ ​ta-​lib#dependencies.

The latest Jupyter notebook for this chapter can be found on GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/ ​tree/ ​master/ ​Chapter05.

It is recommended that you try out the recipes of this chapter in a Jupyter notebook. All of
the recipes have a plot as an output. You can interact with those plots conveniently in
Jupyter Notebook using its features such as select, pan, zoom, and so on.

The first thing needed for setting connectivity with the broker is getting the API keys. The
broker will provide unique keys to each customer, typically as an api-key and api-
secret key pair. These API keys are chargeable, usually on a monthly subscription basis.
You need to get your copy of api-key and api-secret from the broker website before
starting this. You can refer to Appendix I for more details.

The following steps will help you import the necessary modules, set up the broker
connection with Zerodha, and fetch and keep some historical data handy, which will be
used by all the recipes in this chapter. Please make sure you have followed these steps
before trying out any of the recipes:

Import the necessary modules:1.

>>> import pandas as pd
>>> import talib
>>> from pyalgotrading.broker.broker_connection_zerodha import
BrokerConnectionZerodha
>>> from pyalgotrading.utils.func import plot_candlesticks_chart,
PlotType

These modules will be needed throughout this chapter.

https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter05

Computing and Plotting Technical Indicators Chapter 5

[167]

The plot_candlesticks_chart function is used in every recipe. It takes the
following arguments:

data: The historical data to be plotted, which should be a
pandas.DataFrame object with timestamp, open, high, low, and
close columns.
plot_type: An instance of the pyalgotrading.plot_type enum class
specifying the type of candlesticks pattern chart.
indicators (optional): A list of dictionaries, specifying the indicator that
should also be plotted along with the candlesticks pattern chart. Each dict
should have the following key-value pairs:

name: The name of the plot for the legend
data: The pandas.Series object representing the indicator data to be
plotted
extra (optional): The dict of attributes, which will be passed to
the plotly.graph_objects.Scatter constructor (more information
on this class can be found at https:/ ​/ ​plot. ​ly/​python- ​api-​reference/
generated/ ​plotly. ​graph_ ​objects. ​Scatter. ​html)

plot_indicators_separately (optional): If False, indicators will be
plotted on the same plot as the historical data. If True, indicators will be
plotted separately. The default value is False.
caption (optional): Add a string caption to the plot.

Get the api_key and api_secret keys from the broker. These are unique to you2.
and will be used by the broker to identify your Demat account:

>>> api_key = "<your-api-key>"
>>> api_secret = "<your-api-secret>"
>>> broker_connection = BrokerConnectionZerodha(api_key,
 api_secret)

We get the following output:

Installing package kiteconnect via pip. This may take a while...
Please login to this link to generate your request token:
https://kite.trade/connect/login?api_key=<your-api-key>&v=3

https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html
https://plot.ly/python-api-reference/generated/plotly.graph_objects.Scatter.html

Computing and Plotting Technical Indicators Chapter 5

[168]

If you are running this for the first time and kiteconnect is not installed,
pyalgotrading will automatically install it for you. The final output of step 2
will be a link. Click on the link and log in with your Zerodha credentials. If the
authentication is successful, you will see a link in your browser's address bar
similar
to https://127.0.0.1/?request_token=<aplphanumeric-token>&action
=login&status=success—for
example, https://127.0.0.1/?request_token=H06I6Ydv95y23D2Dp7NbigF
jKweGwRP7&action=login&status=success.

Copy the alphanumeric token and paste it in request_token:3.

>>> request_token = "<your-request-token>"
>>> broker_connection.set_access_token(request_token)

Fetch and print the historical data for an instrument and assign it to4.
historical_data:

>>> instrument = broker_connection.get_instrument('NSE',
 'TATASTEEL')
>>> historical_data = \
 broker_connection.get_historical_data(
 instrument=instrument,
 candle_interval='minute',
 start_date='2020-01-01 12:00:00',
 end_date='2020-01-01 14:00:00')
>>> historical_data

We get the following output:

 timestamp open high low close volume
 0 2020-01-01 12:00:00+05:30 467.00 467.30 467.00 467.15 5694
 1 2020-01-01 12:01:00+05:30 467.15 467.50 467.10 467.35 10852
 2 2020-01-01 12:02:00+05:30 467.35 467.45 467.20 467.45 4171
 3 2020-01-01 12:03:00+05:30 467.50 467.50 467.35 467.45 2897
...
117 2020-01-01 13:57:00+05:30 469.70 469.70 469.55 469.60 9442
118 2020-01-01 13:58:00+05:30 469.60 469.70 469.50 469.60 7609
119 2020-01-01 13:59:00+05:30 469.60 469.60 469.50 469.50 8155
120 2020-01-01 14:00:00+05:30 469.50 469.60 469.45 469.60 6973

Computing and Plotting Technical Indicators Chapter 5

[169]

This step uses the get_instrument() method of the BrokerConnectionZerodha class to
fetch an instrument and assign it to a new attribute, instrument. This object is an instance
of the Instrument class. The two parameters needed to call get_instrument are the
exchange ('NSE') and the trading-symbol ('TATASTEEL'). Next, historical data is fetched
and printed for instrument using the get_historical_data() method. This method
takes four arguments, described as follows:

instrument (Instrument): The object returned by the get_instrument()
method of broker_connection.
candle_interval (str): A valid string that denotes the duration of each
candlestick in the historical data. Possible values can be 'minute', '3minute',
'5minute', '10minute', '15minute', '30minute', '60minute', and 'day'.
We pass 'minute' to this argument in step 4.
start_date (str): Historical data will be fetched starting from this timestamp.
We pass '2020-01-01 12:00:00' to this argument in step 4.
end_date (str): Historical data will be fetched up to this timestamp. We pass
'2020-01-01 14:00:00' to this argument in step 4.

The historical_data object will be needed throughout this chapter.

The pyalgotrading package supports multiple brokers and provides a
connection object class per broker, with the same methods. It abstracts
broker APIs behind a unified interface, so you need not worry about the
underlying broker API calls and can use all the recipes in this chapter as it
is. Only the procedure to set up the broker connection will vary from
broker to broker. You can refer to the pyalgotrading documentation for
information on setting up the broker connection if you are not using
Zerodha as your broker. For Zerodha users, the steps mentioned in the
preceding section will suffice.

Computing and Plotting Technical Indicators Chapter 5

[170]

Trend indicators – simple moving average
SMA is a lagging trend indicator. It is used to smooth the price data by eliminating noise
and thus identifying trends.

SMA is the simplest form of a moving average. Each output value is the average of the
previous n values of the historical data. You can define the value of n, which is also called
the time period. In SMA, each value in the time period carries the same weight, and values
outside the time period are not included. This makes it less responsive to recent changes
compared to previous changes in the data, and is thus useful for smoothing out the prices'
data. A consecutive rise in SMA indicates a clear bullish trend, while a consecutive fall
indicates a bearish trend. Thus, it is a trend indicator. Also, since it indicates the trend after
it has started, it is a lagging indicator.

SMA is widely used in technical analysis. It is also used for calculating other technical
indicators, either in combination with itself or other indicators, with the same or different
time periods.

The formula for calculating SMA is as follows:

(n >= 1), and here, n is the time period and has to be defined by the user.

Although it is a good idea to know the mathematics behind how this works, this recipe
does not require you to understand or remember the given formula. We use a third-party
Python package, talib, which provides a ready function for calculating SMA.

Getting started
Make sure your Python namespace has the following objects:

talib (package)1.
plot_candlesticks_chart (function)2.
PlotType (enum)3.
historical_data (a pandas DataFrame)4.

Refer to the Technical requirements section of this chapter to set up these objects.

Computing and Plotting Technical Indicators Chapter 5

[171]

How to do it…
We will execute the following steps for this recipe:

Calculate the SMA on historical_data. Assign it to sma_9 and print it:1.

>>> sma_9 = talib.SMA(historical_data['close'],
 timeperiod=9)
>>> sma_9

We get the following output:

0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 467.927778
9 468.100000
10 468.211111
11 468.400000
 ...
117 469.738889
118 469.744444
119 469.716667
120 469.716667

Plot sma_9 on historical_data:2.

>>> indicators = [
 {
 'name': 'SMA 9',
 'data': sma_9,
 'extra': {
 'mode': 'lines',
 'line': {
 'color': 'gray'
 }
 }
 }
]
>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,

Computing and Plotting Technical Indicators Chapter 5

[172]

 indicators=indicators,
 caption='Trend Indicator: '
 'Simple Moving Average | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute')

We get the following output:

The plotly Python package (https:/ ​/​github. ​com/​plotly/ ​plotly. ​py) is required for
plotting charts. The plot_candlesticks_chart function will install it for you if you don't
have it installed already.

How it works...
The talib package provides a ready-to-use talib.SMA function. We use this in step 1 to
compute SMA on historical_data and assign it to a new attribute, sma_9. Along with
the close series of historical_data, this function takes timeperiod as a parameter,
which should be an int value. We use 9 as the parameter here. The sma_9 object is a
pandas.Series object. This is printed in step 1. We plot sma_9 on historical_data in
step 2 using the plot_candlesticks_chart function.

https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py

Computing and Plotting Technical Indicators Chapter 5

[173]

Observe the following points regarding the SMA indicator values and chart:

The SMA plot is missing for the first eight timestamp values as the output values
are NaN (the index starts from 0, so indices 0 to 7 are the first eight values). This
is because the talib.SMA function requires at least a time period number of
entries to compute the SMA, which is 9 in our case. From the ninth row onward,
we can see the computed values of the Simple moving average (SMA) and the
corresponding timestamp of the historical_data object.
The SMA increases as the prices go up and decreases as the prices go down,
though not immediately in the next timestamp.
The rise or fall of the SMA plot follows the rise and fall in the corresponding
prices. Hence, it's a lagging indicator. In other words, it doesn't predict the trend
outcome in advance.
The SMA plot is smooth, without any sudden spikes, unlike the historical data
plot. Hence, SMA is often used to smoothen out the prices.

Trend indicators – exponential moving
average
EMA is a lagging trend indicator. It is used to smooth the price data by eliminating noise
and thus identifying trends, with more weightage to recent values.

The EMA technical indicator calculation is cumulative and includes all the data with
decreasing weights. Past values have a lower contribution to the average, while recent
values have a greater contribution. The further away the value, the smaller the contribution.
Thus, EMA is a moving average that is more responsive to recent changes in the data.

The EMA technical indicator is not like the SMA technical indicator, where each value in
the time period carries equal weight and values outside of the time period are not included
in the calculation.

EMA is widely used in technical analysis. It is also used for calculating other technical
indicators, either in combination with itself or other indicators, with the same or different
time periods.

A recursive formula for calculating EMA is as follows:

Computing and Plotting Technical Indicators Chapter 5

[174]

(n >= 1), and here, n is the time period and has to be defined by the user. K is sometimes
called the smoothing or weighting factor.

Although it is a good idea to know the mathematics of how this works, this recipe does not
require you to understand or remember the given formula. We use a third-party Python
package, talib, which provides a ready function for calculating EMA.

Getting started
Make sure your Python namespace has the following objects:

talib (package)1.
plot_candlesticks_chart (function)2.
PlotType (enum)3.
historical_data (a pandas DataFrame)4.

Refer to the Technical requirements section of this chapter to set up these objects.

How to do it…
We will execute the following steps for this recipe:

Calculate the EMA on historical_data. Assign it to ema_9 and print it: 1.

>>> ema_9 = talib.EMA(historical_data['close'],
 timeperiod=9)
>>> ema_9

We get the following output:

0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 467.927778
9 468.082222
10 468.135778
11 468.338622
 ...

Computing and Plotting Technical Indicators Chapter 5

[175]

117 469.728790
118 469.703032
119 469.662426
120 469.649941

Plot ema_9 on historical_data:2.

>>> indicators = [
 {
 'name': 'EMA 9',
 'data': ema_9,
 'extra': {
 'mode': 'lines',
 'line': {
 'color': 'gray'
 }
 }
 }
]
>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,
 indicators=indicators,
 caption='Trend Indicator: '
 'Exponential Moving Average | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute')

We get the following output:

Computing and Plotting Technical Indicators Chapter 5

[176]

How it works…
The talib package provides a ready-to-use talib.EMA function. We use this in step 1 to
compute the EMA on historical_data and assign it to a new attribute, ema_9. Along
with the close series of historical_data, this function takes timeperiod as a parameter,
which should be an int value. We use 9 as the parameter here. The ema_9 object is a
pandas.Series object. This is printed in step 1. We plot ema_9 on historical_data in
step 2 using the plot_candlesticks_chart function.

Observe the following points regarding the EMA indicator values and chart:

The EMA plot is missing for the first eight timestamp values as the output values
are NaN (the index starts from 0, so indices 0 to 7 are first eight values). This is
because the talib.EMA function requires at least a time period number of entries
to compute EMA, which is 9 in our case. From the ninth row onward, we can see
the EMA computed, each entry being the EMA for the corresponding timestamp
of the historical_data object.
The EMA increases as the prices go up and decreases as the prices go down,
closely following the prices. Hence, it's a trend indicator.
The rise or fall of the EMA plot follows the rise and fall in the corresponding
prices. Hence, it's a lagging indicator. In other words, it doesn't predict the trend
outcome in advance.
The EMA plot is smooth, without any sudden spikes, unlike the historical data
plot. Hence, EMA is used to smooth out the prices.
The EMA plot, when compared to the SMA plot from the Plotting trend indicator –
simple moving average recipe, shows that the EMA plot follows the price trend
more closely than the SMA plot. That is because EMA gives more weightage to
recent values, unlike SMA, where each bit of data used for computation has
equal weightage.

For more information on the usage of the plot_candlesticks_chart
function, please refer to the How it works… section of the Plotting trend
indicator – simple moving average recipe of this chapter.

Computing and Plotting Technical Indicators Chapter 5

[177]

Trend indicators – moving average
convergence divergence
Moving average convergence divergence (MACD) is a lagging trend indicator. MACD has
three components: the MACD line, MACD signal, and MACD histogram. The MACD line
helps in identifying trend changes as it signals the start of a new trend direction. Large
positive values of the MACD line indicate that the shorter EMA is much larger than the
longer EMA. This suggests that there is an overbought condition in the market, which means
prices will be going up. Similarly, large negative values of the MACD line indicate that the
shorter EMA is much smaller than the longer EMA. This suggests that there is an
oversold condition in the market, which means the prices will be going down. When the
MACD line crosses above the MACD signal and is positive, a buy signal is generated; and
the MACD line crosses below the MACD signal and becomes negative, a sell signal is
generated.

The formulae for computing the three components of MACD are given as follows:

The MACD line is the difference between two different time period EMAs—the
EMA of a shorter time period, m, and the EMA of a longer time period, n:

The MACD signal is the EMA of the MACD line, with time period p:

The MACD histogram is the difference between the MACD line and the MACD
signal:

The time periods for the MACD line are often given as 12 (m) and 26 (n) and the time
period for the MACD signal is often given as 9 (p).

Although it is a good idea to know the mathematics of how this works, this recipe does not
require you to understand or remember the given formula. We use a third-party Python
package, talib, which provides a ready function for calculating MACD.

Computing and Plotting Technical Indicators Chapter 5

[178]

Getting started
Make sure your Python namespace has the following objects:

talib (package)1.
pd (module)2.
plot_candlesticks_chart (function)3.
PlotType (enum)4.
historical_data (a pandas DataFrame)5.

Refer to the Technical requirements section of this chapter to set up these objects.

How to do it…
We will execute the following steps for this recipe:

Calculate MACD on historical_data. Assign it to macd_line, macd_signal,1.
and macd_historgram. Also, print it:

>>> macd_line, macd_signal, macd_histogram = \
 talib.MACD(historical_data['close'],
 fastperiod=12,
 slowperiod=26,
 signalperiod=9)
>>> pd.DataFrame({
 'Line': macd_line,
 'Signal': macd_signal,
 'Histogram': macd_histogram
})

We get the following output:

 Line Signal Histogram
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
...
116 0.075136 0.087038 -0.011901
117 0.057580 0.081146 -0.023566
118 0.043170 0.073551 -0.030381
119 0.023410 0.063523 -0.040113
120 0.015639 0.053946 -0.038307

Computing and Plotting Technical Indicators Chapter 5

[179]

Plot macd_line, macd_signal, and macd_histogram, along with2.
historical_data:

>>> indicators = [
 {
 'name': 'MACD Line',
 'data': macd_line,
 'extra': {
 'mode': 'lines',
 'line': {
 'width': 1
 }
 }
 },
 {
 'name': 'MACD Signal',
 'data': macd_signal,
 'extra': {
 'mode': 'lines',
 'line': {
 'width': 1
 }
 }
 },
 {
 'name': 'MACD Histogram',
 'data': macd_histogram,
 'extra': {
 'mode': 'lines',
 'line': {
 'dash': 'dot',
 'width': 2
 }
 }
 }
]

>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,
 indicators=indicators,
 plot_indicators_separately=True,
 caption='Trend Indicator: Moving '
 'Average Convergence/Divergence | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute',
 plot_height=700)

Computing and Plotting Technical Indicators Chapter 5

[180]

We get the following output:

How it works…
The talib package provides a ready-to-use talib.MACD function. We use this in step 1 to
compute MACD on historical_data. Along with the close series of historical_data,
this function takes fastperiod, slowperiod, and signalperiod as parameters, all of
which should be objects of the int type. We use 26, 12, and 9 as the respective parameters
here. The talib.MACD function returns three pandas.Series objects, which we assign to
new attributes: macd_line, macd_signal, and macd_histogram. These three objects are
concatenated into a pandas.DataFrame object and printed in step 1. We plot macd_line,
macd_signal, and macd_histogram along with historical_data in step 2 using the
plot_candlesticks_chart function.

Computing and Plotting Technical Indicators Chapter 5

[181]

Observe the following points regarding the MACD indicator values and chart:

The MACD plot is missing for the first 34 timestamp values and starts appearing
only at the 35th timestamp. This is because it takes 26 data points for the first long
EMA data to come (the short EMA data comes in the first 12 data points), and 9
of these points for the MACD signal to appear. So, 26 + 9 make it 35 data points.
The MACD line is negative when the prices are going up and is positive when
the prices are going down. Hence, it's a trend indicator.
The rise or fall of the MACD line plot follows the rise and fall in the
corresponding prices. Hence, it's a lagging indicator. In other words, it doesn't
predict the trend outcome in advance.
The MACD line plot is smooth, without any sudden spikes, unlike the historical
data plot. The MACD signal is even smoother, as it is an EMA of the MACD line.
When the MACD histogram is positive, the trend is bullish, which means prices
are going up. When the MACD histogram is negative, the trend is bearish, which
means the prices are going down.

For usage of the plot_candlesticks_chart function, please refer to the
How it works… section of the Plotting trend indicator – simple moving average
recipe of this chapter.

Trend indicators – parabolic stop and
reverse
Parabolic stop and reverse (SAR) is a leading trend indicator.

The parabolic SAR computes a trailing stop loss for every data point. As the data points are
stop-loss points, they are away from the prices when there is a trend and cross the price line
during a trend reversal. The parabolic SAR takes two parameters as input: the
acceleration factor and the maximum point.

Computing and Plotting Technical Indicators Chapter 5

[182]

The formula for computing the parabolic SAR is not straightforward and
is hence not mentioned here. If you are interested in the underlying math,
please refer to the official documentation of TA-Lib on parabolic SAR at
http:/ ​/ ​www. ​tadoc. ​org/ ​indicator/ ​SAR.​htm. Although it is a good idea to
know the mathematics of how this works, this recipe does not require you
to understand or remember the given formula. We use a third-party
Python package, talib, which provides a ready function for calculating
the parabolic SAR.

Getting started
Make sure your Python namespace has the following objects:

talib (package)1.
plot_candlesticks_chart (function)2.
PlotType (enum)3.
historical_data (a pandas DataFrame)4.

Refer to the Technical requirements section of this chapter to set up these objects.

How to do it…
We will execute the following steps for this recipe:

Calculate the parabolic SAR on historical_data. Assign it to psar and print1.
it:

>>> psar = talib.SAR(historical_data['high'],
 historical_data['low'],
 acceleration=0.02,
 maximum=0.2)
>>> psar

http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm
http://www.tadoc.org/indicator/SAR.htm

Computing and Plotting Technical Indicators Chapter 5

[183]

We get the following output:

0 NaN
1 467.000000
2 467.010000
3 467.019800
4 467.029404
 ...
116 469.175426
117 469.208409
118 469.240073
119 469.270470
120 469.299651

Plot psar on historical_data:2.

>>> indicators = [
 {
 'name': 'PSAR',
 'data': psar,
 'extra': {
 'mode': 'lines',
 'line': {
 'dash': 'dot',
 'width': 2,
 'color': 'purple'
 }
 }
 }
]

>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,
 indicators=indicators,
 caption='Trend Indicator: '
 'Parabolic Stop and Reverse | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute')

Computing and Plotting Technical Indicators Chapter 5

[184]

We get the following output:

How it works…
The talib package provides a ready-to-use talib.SAR function. We use this in step 1 to
compute the parabolic SAR on historical_data and assign it to a new attribute, psar.
Along with the high and low series of historical_data, this function takes
acceleration and maximum as parameters, both of which should be objects of
the float type. We use 0.02 and 0.2 as the respective parameters here. The psar object is
a pandas.Series object. This is printed in step 1. We plot psar, along with
historical_data, in step 2 using the plot_candlesticks_chart function.

Observe the following points regarding the parabolic SAR indicator values and chart:

The parabolic SAR is plotted as discrete points, as each point represents the stop
loss. The stop loss point changes every time. So, it is a trailing stop loss.
When the parabolic SAR plot is below the OHLC plot, the trend is bullish, and
when it is above the OHLC plot, the trend is bearish. Hence, it's a trend
indicator.

For more information on the usage of the plot_candlesticks_chart
function, please refer to the How it works… section of the Plotting trend
indicator – simple moving average recipe of this chapter.

Computing and Plotting Technical Indicators Chapter 5

[185]

Momentum indicators – relative strength
index
RSI is a leading momentum indicator. The RSI is a ratio of the recent upward price
movement to the absolute price movement. The RSI is always between 0 and 100. It can be
interpreted to indicate an overbought condition when the value is above 70 and an
oversold condition when the value is below 30. The RSI indicates a reversal when the prices
are making new highs or new lows.

The formula for computing the RSI is not straightforward and is hence not
mentioned here. If you are interested in the underlying math, please refer
to the official documentation of TA-Lib on RSI at http:/ ​/ ​www.​tadoc. ​org/
indicator/ ​RSI. ​htm. Although it is a good idea to know the mathematics
of how this works, this recipe does not require you to understand or
remember the given formula. We use a third-party Python package,
talib, which provides a ready function for calculating the RSI.

Getting started
Make sure your Python namespace has the following objects:

talib (package)1.
plot_candlesticks_chart (function)2.
PlotType (enum)3.
historical_data (a pandas DataFrame)4.

Refer to the Technical requirements section of this chapter to set up these objects.

How to do it…
We will execute the following steps for this recipe:

Calculate the RSI on historical_data. Assign it to rsi_14 and print it:1.

>>> rsi_14 = talib.RSI(historical_data['close'],
 timeperiod=14)
>>> rsi_14

http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm
http://www.tadoc.org/indicator/RSI.htm

Computing and Plotting Technical Indicators Chapter 5

[186]

We get the following output:

0 NaN
1 NaN
2 NaN
3 NaN
 ...
12 NaN
13 NaN
14 70.886076
15 69.932757
16 69.932757
17 64.873530
18 61.976413
 ...
116 48.449209
117 48.449209
118 48.449209
119 45.997672
120 48.788323

Plot rsi_14 along with historical_data:2.

>>> indicators = [
 {
 'name': 'RSI (14)',
 'data': rsi_14,
 'extra': {
 'mode': 'lines',
 'line': {
 'width': 2,
 'color': 'purple'
 }
 }
 }
]

>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,
 indicators=indicators,
 plot_indicators_separately=True,
 caption='Momentum Indicator: '
 'Relative Strength Index | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute')

Computing and Plotting Technical Indicators Chapter 5

[187]

We get the following output:

How it works…
The talib package provides a ready-to-use talib.RSI function. We use this in step 1 to
compute the RSI on historical_data and assign it to a new attribute, rsi_14. Along
with the close series of historical_data, this function takes timeperiod as a parameter,
which should be an int value. We use 14 as the parameter here. The rsi_14 object is a
pandas.Series object. This is printed in step 1. We plot rsi_14 on historical_data in
step 2 using the plot_candlesticks_chart function.

Observe the following points regarding the RSI indicator values and chart:

The first 13 values in the output are NaN (the index starts from 0, so indices 0 to
12 are the first 13 values) because the function requires at least a time period
number of entries to compute the RSI, which is 14 in our case. From the 14th row
onward, we can see the RSI computed, each entry being the RSI for the
corresponding timestamp of the historical_data object.

Computing and Plotting Technical Indicators Chapter 5

[188]

The RSI is always between 0 and 100.
For the given plot, the price peaks suddenly between 12:45 P.M. to 1:00 P.M., and
the RSI moves above 70. Thus, it correctly indicates an overbought condition.
Also, since it indicates the strength of the price movement, it is a momentum
indicator.

For more information on the usage of the plot_candlesticks_chart
function, please refer to the How it works… section of the Plotting trend
indicator – simple moving average recipe of this chapter.

Momentum indicators – stochastic oscillator
The stochastic oscillator is a leading momentum indicator. It is also called STOCH for
short. STOCH compares the latest close with the recent trading range. Fast K is a ratio and
has a value between 0 and 100. Fast K can have haphazard movement, and hence it is
smoothed using a moving average, which is the slow K. Slow K is further smoothed using
another moving average, which is the slow D. Values of slow K over 75 indicate an
overbought condition, while values below 25 indicate an oversold condition. When slow K
crosses above slow D, it is considered a buy signal. Similarly, when slow K crosses below
slow D, it is considered a sell signal.

The formula for computing STOCH is as follows:

MA stands for moving average, and can be either SMA or EMA. For this recipe, we have
used SMA. This formula needs three time periods: one of them is n and the other two are
the time periods of the MAs. The range over which we analyze data is defined by n.

Although it is a good idea to know the mathematics of how this works, this recipe does not
require you to understand or remember the given formula. We use a third-party Python
package, talib, which provides a ready function for calculating STOCH.

Computing and Plotting Technical Indicators Chapter 5

[189]

Getting started
Make sure your Python namespace has the following objects:

talib (package)1.
pd (module)2.
plot_candlesticks_chart (function)3.
PlotType (enum)4.
historical_data (a pandas DataFrame)5.

Refer to the Technical requirements section of this chapter to set up these objects.

How to do it…
We will execute the following steps for this recipe:

Calculate the stochastic oscillator on historical_data. Assign it to slowk1.
and slowd. Also, print it:

>>> slowk, slowd = talib.STOCH(historical_data['high'],
 historical_data['low'],
 historical_data['close'],
 fastk_period=5,
 slowk_period=3,
 slowk_matype=0,
 slowd_period=3,
 slowd_matype=0)
>>> pd.DataFrame({
 'Slow K': slowk,
 'Slow D': slowd
})

We get the following output:

 Slow K Slow D
 0 NaN NaN
 1 NaN NaN
 2 NaN NaN
 3 NaN NaN
 4 NaN NaN
 5 NaN NaN
 6 NaN NaN
 7 NaN NaN
 8 70.514283 69.296302

Computing and Plotting Technical Indicators Chapter 5

[190]

 9 71.113411 70.921500
 10 61.606578 67.744757
 11 67.613252 66.777747
 12 52.662272 60.627367
...
116 63.626374 77.374847
117 44.102564 64.420024
118 20.000000 42.576313
119 13.333333 25.811966
120 15.757576 16.363636

Plot slowk and slowd, along with historical_data:2.

>>> indicators = [
 {
 'name': 'Slow K',
 'data': slowk,
 'extra': {
 'mode':'lines',
 'line': {
 'width': 2
 }
 }
 },
 {
 'name': 'Slow D',
 'data': slowd,
 'extra': {
 'mode': 'lines',
 'line': {
 'width': 2
 }
 }
 }
]

>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,
 indicators=indicators,
 plot_indicators_separately=True,
 caption='Trend Indicator: '
 'Stochastic Oscillator (Slow) | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute',
 plot_height=700)

Computing and Plotting Technical Indicators Chapter 5

[191]

We get the following output:

How it works…
The talib package provides a ready-to-use talib.STOCH function. We use this in step 1 to
compute the stochastic oscillator on historical_data. Along with the high, low, and
close series of historical_data, this function takes the following parameters:

fastk_period (int): The range over which we analyze the data. Here, we took
the value as 5.

slowk_period (int): The time period for calculating the moving average on fast
K. Here, we took the value as 3.

slowk_matype (int): The moving average type. A value of 0 implies SMA and 1
implies EMA. Here, we took the value as 0.

Computing and Plotting Technical Indicators Chapter 5

[192]

slowd_period (int): The time period for calculating the moving average on
slow K. Here, we took the value as 3.

slowd_matype (int): The moving average type. A value of 0 implies SMA and 1
implies EMA. Here, we took the value as 0.

The talib.STOCH function returns two pandas.Series objects, which we assign to new
attributes: slowk and slowd. These two objects are concatenated into a
pandas.DataFrame object and printed in step 1. We plot slowk and slowd, along with
historical_data, in step 2 using the plot_candlesticks_chart function.

Observe the following points regarding the STOCH indicator values and chart:

The first eight values in the output are NaN (the index starts from 0, so indices 0
to 7 are the first 8 values). That's because it takes the first five values to get a fast
K, three fast Ks to get a slow K, and three slow Ks to get a slow D. So, that's 5 + (3 -
1) + (2 - 1) = 9. (We subtract 1 twice as the last value for previous computation is
the first value for the next computation, so that's already counted once.) From the
ninth row onward, we can see the computed values of slow K and slow D and the
corresponding timestamp of the historical_data object.
The slow K and slow D values are always between 0 and 100.

The rise or fall of the slow K and slow D plot is followed by the rise and fall in the
corresponding prices for most of the time, particularly evident in the plot after
12:45 P.M. Hence, it's a leading indicator. In other words, it predicts the trend
outcome in advance.
Since it's a leading indicator, it reacts to prices quickly. This often results in false
signals, as can be seen in the plot between 12:30 P.M. to 12:45P.M. (To safeguard
yourself from these scenarios, you can use more indicators in your strategy to get
additional confirmation of trends or reversals.)

Volatility indicators – Bollinger Bands
Bollinger Bands are a lagging volatility indicator. Bollinger Bands consist of three lines, or
bands—the middle band, the lower band, and the upper band. The gap between the bands
widens when the price volatility is high and reduces when the price volatility is low.

Computing and Plotting Technical Indicators Chapter 5

[193]

Bollinger Bands are an indicator of overbought or oversold conditions. When the price is
near the upper band or the lower band, this indicator predicts that a reversal will happen
soon. The middle band acts as a support or resistance level.

The upper band and lower band can also be interpreted as price targets. When the price
bounces off of the upper band and crosses the middle band, the lower band becomes the
price target, and vice versa.

The formulae for computing the Bollinger Bands are as follows.

Bollinger Bands define the typical price (TP) as the average of the high, low, and close of a
candle. The TP is used for computing the middle band, lower band, and upper band:

The middle band is the SMA of the TP:

The upper band and lower band are an integer (F) number of the standard deviation above
and below the middle band. The typical value of F is 2:

Although it is a good idea to know the mathematics of how this works, this recipe does not
require you to understand or remember the given formula. We use a third-party Python
package, talib, which provides a ready function for calculating the Bollinger Bands.

Getting started
Make sure your Python namespace has the following objects:

talib (package)1.
pd (module)2.
plot_candlesticks_chart (function)3.
PlotType (enum)4.
historical_data (a pandas DataFrame)5.

Refer to the Technical requirements section of this chapter to set up these objects.

Computing and Plotting Technical Indicators Chapter 5

[194]

How to do it…
We execute the following steps for this recipe:

Calculate the Bollinger Bands on historical_data. Assign it to upperband,1.
middleband, and lowerband. Also, print it:

>>> upperband, middleband, lowerband = talib.BBANDS(
 historical_data['close'],
 timeperiod=5,
 nbdevup=2,
 nbdevdn=2,
 matype=0)
>>> pd.DataFrame({
 'Upperband': upperband,
 'Middleband': middleband,
 'Lowerband': lowerband
})

We get the following output:

 Upperband Middleband Lowerband
 0 NaN NaN NaN
 1 NaN NaN NaN
 2 NaN NaN NaN
 3 NaN NaN NaN
 4 468.138749 467.50 466.861251
...
116 470.071661 469.83 469.588339
117 470.080666 469.78 469.479334
118 470.020666 469.72 469.419334
119 469.959839 469.65 469.340161
120 469.660000 469.58 469.500000

Computing and Plotting Technical Indicators Chapter 5

[195]

Plot upperband, middleband, and lowerband on historical_data:2.

>>> indicators = [
 {
 'name': 'Upperband',
 'data': upperband,
 'extra': {
 'mode': 'lines',
 'line': {
 'width': 1
 }
 }
 },
 {
 'name': 'Middleband',
 'data': middleband,
 'extra': {
 'mode':'lines',
 'line': {
 'width': 1
 }
 }
 },
 {
 'name': 'Lowerband',
 'data': lowerband,
 'extra': {
 'mode': 'lines',
 'line': {
 'width': 1
 }
 }
 }
]

>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,
 indicators=indicators,
 caption='Volatility Indicator: '
 'Bollinger Bands | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute')

Computing and Plotting Technical Indicators Chapter 5

[196]

We get the following output:

How it works…
The talib package provides a ready-to-use talib.BBANDS function. We use this in step 1
to compute the Bollinger Bands on historical_data. Along with the close series of
historical_data, this function takes the following parameters:

timeperiod (int): The time period for calculating the SMA on the TP. The TP is
the average of the high, low, and close prices. Here, we took the value as 5.

nbdevup (int): The number of unbiased standard deviations from the mean for
the upper band. Here, we took the value as 2.

nbdevdn (int): The number of unbiased standard deviations from the mean for
the lower band. Here, we took the value as 2.

matype (int): The moving average type. A value of 0 implies SMA and 1 implies
EMA. Here, we took the value as 0.

The talib.BBANDS function returns three pandas.Series objects, which we assign to
new attributes: upperband, middleband, and lowerband. These three objects are
concatenated into a pandas.DataFrame object and printed in step 1. We plot upperband,
middleband, and lowerband on historical_data in step 2 using the
plot_candlesticks_chart function.

Computing and Plotting Technical Indicators Chapter 5

[197]

Observe the following points regarding the Bollinger Bands indicator values and chart:

The first four values in the output are NaN (the index starts from 0, so indices 0 to
3 are the first four values) because the talib.BBANDS function requires at least a
time period number of entries to compute the Bollinger Bands, which is 5 in our
case. From the fifth row onward, we can see all the computed values of all three
bands and the corresponding timestamp of the historical_data object.
The rise or fall of the bands follow the rise and fall in the corresponding prices.
Hence, Bollinger Bands are a lagging indicator. In other words, they don't predict
the trend outcome in advance.
Around 12:45 P.M. in the plot, we see that the bands have become narrow. This is
because of low volatility (slow rate of price change) around that time.
Just before 1 P.M. in the plot, we see that the gap between the bands has widened
drastically. This is because of high volatility (rapid rate of price change) around
that time.
Most of the time, when the price touches the upper band, it starts moving
downward (the opposite direction). You can use these instances as sell signals
for your strategy.
Most of the time, when the price touches the lower band, it starts moving
upward (the opposite direction). You can use these instances as buy signals for
your strategy.

Volatility indicators – average true range
Average true range (ATR) is a lagging volatility indicator. ATR is a measure of volatility.
High ATR values indicate high volatility, and low values indicate low volatility.

The formula for computing ATR is not straightforward and is hence not
mentioned here. If you are interested in the underlying math, please refer
to the official documentation of TA-Lib on ATR at http:/ ​/​www. ​tadoc.
org/​indicator/ ​ATR. ​htm. Although it is a good idea to know the
mathematics of how this works, this recipe does not require you to
understand or remember the given formula. We use a third-party Python
package, talib, which provides a ready function for calculating ATR.

http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm
http://www.tadoc.org/indicator/ATR.htm

Computing and Plotting Technical Indicators Chapter 5

[198]

Getting started
Make sure your Python namespace has the following objects:

talib (package)1.
pd (module)2.
plot_candlesticks_chart (function)3.
PlotType (enum)4.
historical_data (a pandas DataFrame)5.

Refer to the Technical requirements section of this chapter to set up these objects.

How to do it…
We will execute the following steps for this recipe:

Calculate the ATR on historical_data. Assign it to atr_14 and print it:1.

>>> atr_14 = talib.ATR(historical_data['high'],
 historical_data['low'],
 historical_data['close'],
 timeperiod=14)
>>> atr_14

We get the following output:

0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 NaN
9 NaN
10 NaN
11 NaN
12 NaN
13 NaN
14 0.575000
15 0.555357
16 0.562117
17 0.550538

Computing and Plotting Technical Indicators Chapter 5

[199]

18 0.529071
 ...
116 0.375902
117 0.359766
118 0.348354
119 0.330614
120 0.317713

Plot atr_14, along with historical_data:2.

>>> indicators = [
 {
 'name': 'ATR (14)',
 'data': atr_14,
 'extra': {
 'mode': 'lines',
 'line': {
 'width': 2,
 'color': 'purple'
 }
 }
 }
]

>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,
 indicators=indicators,
 plot_indicators_separately=True,
 caption='Volatility Indicator: '
 'Average True Range | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute',
 plot_height=700)

Computing and Plotting Technical Indicators Chapter 5

[200]

We get the following output:

How it works…
The talib package provides a ready-to-use talib.ATR function. We use this in step 1 to
compute the ATR on historical_data and assign it to a new attribute, atr_14. Along
with the high, low, and close series of historical_data, this function takes timeperiod
as a parameter, which should be an int value. We use 14 as the parameter here. The
rsi_14 object is a pandas.Series object. This is printed in step 1. We plot atr_14 on
historical_data in step 2 using the plot_candlesticks_chart function.

Observe the following points regarding the ATR indicator values and chart:

The first 14 values in the output are NaN (the index starts from 0, so indices 0 to
13 are the first 14 values) because the talib.ATR function requires at least one
more than the time period number of entries to compute the ATR, which is 14 in
our case. From the 15th row onward, we can see all the computed values of the
ATR and the corresponding timestamp of the historical_data object.

Computing and Plotting Technical Indicators Chapter 5

[201]

When there is high volatility (rapid rate of price change), the ATR starts
increasing. This can be seen in the chart around 1 P.M.
When there is low volatility (slow rate of price change), the ATR starts
decreasing. This can be seen around the end of the chart.

Volume indicators – on balance volume
On balance volume (OBV) is a leading volume indicator. The OBV is a cumulative total of
the up and down volume. When the close is higher than the previous close, the volume is
added to the running total, and when the close is lower than the previous close, the volume
is subtracted from the running total.

To interpret the OBV, you can observe the movement of the OBV and the price. If the price
moves before the OBV, then it is a non-confirmed move. A series of rising peaks, or falling
troughs, in the OBV indicates a strong trend. If the OBV is flat, then the market is not
trending.

The formulae for computing the OBV are as follows:

If close > close-1, then OBV = OBV-1 + volume
If close < close-1, then OBV = OBV-1 - volume
If close = close-1, then OBV = OBV-1

Although it is a good idea to know the mathematics of how this works, this recipe does not
require you to understand or remember the given formula. We use a third-party Python
package, talib, which provides a ready function for calculating the OBV.

Getting started
Make sure your Python namespace has the following objects:

talib (package)1.
pd (module)2.
plot_candlesticks_chart (function)3.
PlotType (enum)4.
historical_data (a pandas DataFrame)5.

Refer to the Technical requirements section of this chapter to set up these objects.

Computing and Plotting Technical Indicators Chapter 5

[202]

How to do it…
We will execute the following steps for this recipe:

Calculate the OBV on historical_data. Assign it to obv and print it:1.

>>> obv = talib.OBV(historical_data['close'],
 historical_data['volume'])
>>> obv

We get the following output:

0 5694.0
1 16546.0
2 20717.0
3 20717.0
4 211302.0
 ...
116 406508.0
117 406508.0
118 406508.0
119 398353.0
120 405326.0

Plot obv, along with historical_data:2.

>>> indicators = [
 {
 'name': 'On Balance Volume',
 'data': obv,
 'extra': {
 'mode': 'lines',
 'line': {
 'width': 2,
 'color': 'purple'
 }
 }
 }
]

>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,
 indicators=indicators,
 plot_indicators_separately=True,
 caption='Volume Indicator: '
 'On Balance Volume | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '

Computing and Plotting Technical Indicators Chapter 5

[203]

 'Candle Interval: 1 Minute',
 plot_height=700)

We get the following output:

How it works…
The talib package provides a ready-to-use talib.OBV function. We use this in step 1 to
compute the OBV on historical_data and assign it to a new attribute, obv. This function
takes the close and volume series of historical_data as parameters. The obv object is a
pandas.Series object. This is printed in step 1. We plot obv, along with
historical_data, in step 2 using the plot_candlesticks_chart function.

Computing and Plotting Technical Indicators Chapter 5

[204]

Observe the following points regarding the OBV indicator values and chart:

There are no NaN outputs in the table. From the first row itself, we can see all the
computed values of the OBV and the corresponding timestamp of the
historical_data object. One single data point is sufficient to calculate the
OBV.
The values are always positive.
The rise or fall of the OBV plot is closely followed by the rise and fall of the
corresponding prices for most of the time. Hence, it's a leading indicator. In other
words, it predicts the trend outcome in advance. (Since it's a leading indicator, it
reacts to prices quickly. This often results in false signals. To safeguard yourself
from these scenarios, you can use more indicators in your strategy to get
additional confirmation of trends or reversals.)

Volume indicators – volume-weighted
average price
Volume-weighted average price (VWAP) is a lagging volume indicator. The VWAP is a
weighted moving average that uses the volume as the weighting factor so that higher
volume days have more weight. It is a non-cumulative moving average, so only data within
the time period is used in the calculation.

Although this function is available in talib, we will show you how to compute an
indicator manually here by creating its formula. This will help you create your own
indicators at times when you may use customer technical indicators or not-so-popular
indicators that are missing from talib.

The formula for calculating VWAP is as follows:

Here, n is the time period and has to be defined by the user.

Computing and Plotting Technical Indicators Chapter 5

[205]

Getting started
Make sure your Python namespace has the following objects:

pd (module)1.
plot_candlesticks_chart (function)2.
PlotType (enum)3.
historical_data (a pandas DataFrame)4.

Refer to the Technical requirements section of this chapter to set up these objects.

How to do it…
We will execute the following steps for this recipe:

Define a function for computing VWAP:1.

>>> def VWAP(hist_data_df):
 """
 Returns VWAP computed over the given historical data
 hist_data_df: A pandas DataFrame of historical data with
 columns
 'timestamp', 'high', 'low', 'close' and 'volume'
 """
 hist_data_df['date'] = \
 hist_data_df['timestamp'].apply(lambda x: x.date())
 unique_dates = sorted(set(hist_data_df['date']))
 vwap = []

 """
 Compute vwap for each day's data and append it to vwap
 variable
 """
 for i, date in enumerate(unique_dates):
 day_df = hist_data_df.loc[hist_data_df['date'] == date]
 typical_price_day_df = (day_df.high + day_df.low +
 day_df.close)/3
 vwap_day = list(((typical_price_day_df *
 day_df.volume).cumsum()) /
 day_df.volume.cumsum())
 vwap += vwap_day

 return pd.Series(vwap)

Computing and Plotting Technical Indicators Chapter 5

[206]

Calculate VWAP on historical_data. Assign it to vwap and print it:2.

>>> vwap = VWAP(historical_data)
>>> vwap

We get the following output:

0 467.150000
1 467.259311
2 467.280925
3 467.299623
4 468.085910
 ...
116 468.965162
117 468.967599
118 468.969499
119 468.971309
120 468.972893

Plot vwap along with historical_data:3.

>>> indicators = [
 {
 'name': 'VWAP',
 'data': vwap,
 'extra': {
 'mode': 'lines',
 'line': {
 'width': 2,
 'color': 'purple'
 }
 }
 }
]

>>> plot_candlesticks_chart(data=historical_data,
 plot_type=PlotType.JAPANESE,
 indicators=indicators,
 plot_indicators_separately=True,
 caption='Volume Indicator: '
 'Volume Weighted Average Price | '
 'NSE:TATASTEEL | '
 '1st Jan, 2020 | '
 'Candle Interval: 1 Minute',
 plot_height=700)

Computing and Plotting Technical Indicators Chapter 5

[207]

We get the following output:

How it works…
We define a function that calculates VWAP in step 1 for the given historical data as a
pandas.DataFrame object. It works as follows:

Finds all the unique dates in the historical data1.
Iterates over all the unique dates:2.

Extracts day_df, a pandas.DataFrame object with entries from
historical_data that fall on the unique date
Calculates typical_price_day_df, the typical price, which is the average
of the high, low, and close prices for the day
Calculates vwap_day, which is a list of the typical price-weighted averages
of the volumes for all the entries in day_df

Returns all the vwap_day values appended together as a pandas.Series object3.

Computing and Plotting Technical Indicators Chapter 5

[208]

We compute VWAP in step 2 on historical_data using the VWAP function and assign it to a
new attribute, vwap. The vwap object is a pandas.Series object. We plot vwap along with
historical_data in step 3 using the plot_candlesticks_chart function.

Observe the following points regarding the VWAP indicator values and chart:

There are no NaN outputs in the table. From the first row itself, we can see all the
computed values of VWAP and the corresponding timestamp of the
historical_data object. One single data point is sufficient to calculate VWAP.
The values are always positive.
The rise or fall of the VWAP plot follows the rise and fall in the corresponding
prices. Hence, it's a lagging indicator. In other words, it doesn't predict the trend
outcome in advance.

6
Placing Regular Orders on the

Exchange
This chapter introduces various types of regular orders that can be placed on exchanges via
the broker APIs. The recipes include code on placing 16 types of orders, querying their
statuses, and exiting completed orders. These recipes will be a fundamental part of your
algorithmic trading strategies. Understanding all of the types of orders and knowing which
one to place for the given requirement is crucial for building a successful trading strategy.

Every order has multiple attributes, as described in the following list:

Order transaction type: This attribute simply defines whether the order is a BUY
transaction or a SELL transaction. Possible values, obviously, can be one of BUY
or SELL.
Order type: This attribute defines the type of the order, which would imply the
high-level behavior of the order. Commonly used order types are REGULAR order,
BRACKET order, COVER order, and so on. Your broker may define many more
types of orders. This chapter includes recipes on REGULAR orders.

Placing Regular Orders on the Exchange Chapter 6

[210]

Order code: This attribute defines whether the order would be squared-off (that
is, exited) at the end of the trading hours for the day or be carried to the next
trading day. Possible values can be one of INTRADAY or DELIVERY. An INTRADAY
order, as the name suggests, has a lifespan of only one day and would be exited
at the end of the day by the broker, if it's not exited before. A DELIVERY order, on
the other hand, is delivered to the user's Demat account and exists until it is
explicitly squared-off by the user. A DELIVERY order may go through multiple
states before getting finally delivered to the user's Demat account, as in this
example:

DELIVERY T+0 (on the day of placing the order)
DELIVERY T+1 (on the next trading day of placing the order)
DELIVERY T+2 (on and after the second trading day of placing the order)

This depends on the underlying segment. For example, a DELIVERY order for an
equity segment instrument would go through these states. A DELIVERY order for
a futures and options segment instrument would not go through these states.

Order variety: This attribute is related to the pricing and activation of the order.
Possible values can be one of the following:

MARKET: The order is placed immediately at the best available market price.
The user need not specify the price while placing the order.
LIMIT: The order is placed at a specified price, which is either below the
Last Traded Price (LTP) (for BUY orders) or above the LTP (for SELL orders).
The user should specify a limit price when placing the order. The limit price
would be the price at which the user intends to buy/sell the instrument.
STOPLOSS_LIMIT: The order is placed at a specified price, which is either
above the LTP (for BUY orders) or below the LTP (for SELL orders). The user
should specify the trigger price and the limit price. When the LTP crosses the
trigger price, the order is activated and places an order at the specified limit
price.
STOPLOSS_MARKET: The order is placed at a specified price, which is either
above the LTP (for BUY orders) or below the LTP (for SELL orders). The user
should specify the trigger price. When the LTP crosses the trigger price, the
order is activated and places an order at the market price.

Placing Regular Orders on the Exchange Chapter 6

[211]

All of these attributes together define a complete order. To place an order, all four attributes
should be known precisely.

The aforementioned attributes, namely, the order transaction type, order
type, order code, and order variety, are defined by the pyalgotrading
package. The same attribute may be named differently by the broker of
your choice. The pyalgotrading package handles such translations
internally.

Every order placed on the exchange goes through various states during its lifetime. The
broker used in this chapter supports the following states for every order:

PUT ORDER REQ RECEIVED

VALIDATION PENDING

OPEN PENDING

TRIGGER PENDING

CANCEL PENDING

COMPLETE

CANCELLED

OPEN

REJECTED

The recipes in this chapter provide detailed state machine diagrams for the state transitions
of every variety of a regular order.

If you are using a different broker, the broker might support different
order states or name the order states differently. You can consult the
broker API documentation to understand the meaning of each of the
states.

In this chapter, we will cover the following recipes:

Placing a regular market order
Placing a regular limit order
Placing a regular stoploss-limit order
Placing a regular stoploss-market order

Placing Regular Orders on the Exchange Chapter 6

[212]

Please make sure you try all of these recipes during live market hours
with sufficient balance in your broking account. If these recipes are tried
outside of market hours or with insufficient balance, your orders would
be rejected by the broker. This means the orders would never reach the
exchange and you would not get the expected response.

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
Python packages: pyalgotrading ($ pip install pyalgotrading)

The latest Jupyter notebook for this chapter can be found on GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/ ​tree/ ​master/ ​Chapter06.

The first thing needed for setting connectivity with the broker is getting the API keys. The
broker would provide each customer with unique keys, typically as an api-key and api-
secret key pair. These API keys are chargeable, usually on a monthly subscription basis.
You need to get your copy of api-key and api-secret from the broker website before
starting this. You can refer to Appendix I for more details.

The following steps will help you to set up the broker connection with Zerodha, which will
be used by all of the recipes in this chapter. Please make sure you have followed these steps
before trying out any recipe:

Import the necessary modules:1.

>>> from pyalgotrading.broker.broker_connection_zerodha import
BrokerConnectionZerodha
>>> from pyalgotrading.constants import *

All pyalgotrading constants are now available in your Python namespace.

Get the api_key and api_secret keys from the broker. These are unique to you2.
and will be used by the broker to identify your Demat account:

>>> api_key = "<your-api-key>"
>>> api_secret = "<your-api-secret>"
>>> broker_connection = BrokerConnectionZerodha(api_key,
 api_secret)

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter06

Placing Regular Orders on the Exchange Chapter 6

[213]

We get the following output:

Installing package kiteconnect via pip. This may take a while...
Please login to this link to generate your request token:
https://kite.trade/connect/login?api_key=<your-api-key>&v=3

If you are running this for the first time and kiteconnect is not installed,
pyalgotrading will automatically install it for you. The final output of step 2
will be a link. Click on the link and log in with your Zerodha credentials. If the
authentication is successful, you will see a link in your browser's address bar
similar
to https://127.0.0.1/?request_token=<alphanimeric-toke>&action=l
ogin&status=success.

We have the following example:

https://127.0.0.1/?request_token=H06I6Ydv95y23D2Dp7NbigFjKweGwRP7&a
ction=login&status=success

Copy the alphanumeric-token and paste it in request_token:3.

>>> request_token = "<your-request-token>"
>>> broker_connection.set_access_token(request_token)

The broker_connection instance is now ready for performing API calls.

The pyalgotrading package supports multiple brokers and provides a
connection object class per broker, with the same methods. It abstracts
broker APIs behind a unified interface so users need not worry about the
underlying broker API calls and can use all of the recipes in this chapter as
is. Only the procedure to set up the broker connection would vary from
broker to broker. You can refer to the pyalgotrading documentation for
setting up the broker connection if you are not using Zerodha as your
broker. For Zerodha users, the steps mentioned in the preceding section
would suffice.

Placing a regular market order
A regular market order is the simplest type of order. This order type is used for placing a
single order immediately at the best available market price. The market price is equivalent
to the LTP (as explained in the Last traded price of a financial instrument recipe of Chapter 3,
Fetching Financial Data).

Placing Regular Orders on the Exchange Chapter 6

[214]

On placing a regular market order, it goes through various intermediate states before
finally reaching an end state (COMPLETE or REJECTED). A regular market order
immediately moves to the end state without waiting on any intermediate states. The
following state machine diagram demonstrates the various states of a regular market order
during its lifetime:

Placing Regular Orders on the Exchange Chapter 6

[215]

This recipe demonstrates placing of the following regular market orders and querying their
status:

BUY, REGULAR, INTRADAY, MARKET order
SELL, REGULAR, INTRADAY, MARKET order
BUY, REGULAR, DELIVERY, MARKET order
SELL, REGULAR, DELIVERY, MARKET order

Getting ready
Make sure the broker_connection object and constants from the pyalgotrading
package are available in your Python namespace. Refer to the Technical requirements section
of this chapter to set up this object.

How to do it…
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE',
 'HDFCBANK')

Place a BUY, REGULAR, INTRADAY, MARKET order and display the order ID:2.

>>> order1_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety=BrokerOrderVarietyConstants.MARKET,
 quantity=1)
>>> order1_id

We get the following output (your output may differ):

'200304002243710'

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

Placing Regular Orders on the Exchange Chapter 6

[216]

We get the following output:

'COMPLETE'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Place a SELL, REGULAR, INTRADAY, MARKET order and display the order ID:4.

>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety=BrokerOrderVarietyConstants.MARKET,
 quantity=1)
>>> order2_id

We get the following output (your output would differ):

'200304002244044'

Fetch and display the order status:5.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[217]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Place a BUY, REGULAR, DELIVERY, MARKET order and display the order ID:6.

>>> order3_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.DELIVERY,
 order_variety=BrokerOrderVarietyConstants.MARKET,
 quantity=1)
>>> order3_id

We get the following output (your output may differ):

'200304002244263'

Fetch and display the order status:7.

>>> broker_connection.get_order_status(order3_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[218]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Place a SELL, REGULAR, DELIVERY, MARKET order and display the order ID:8.

>>> order4_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.DELIVERY,
 order_variety=BrokerOrderVarietyConstants.MARKET,
 quantity=1)
>>> order4_id

We get the following output (your output may differ):

'200304002244333'

Fetch and display the order status:9.

>>> broker_connection.get_order_status(order4_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[219]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

How it works…
In step 1, you use the get_instrument() method of the BrokerConnectionZerodha
class to fetch an instrument and assign it to a new attribute, instrument. This object is an
instance of the Instrument class. The two parameters needed to call get_instrument are
the exchange ('NSE') and the trading-symbol ('HDFCBANK').

In step 2, you use the place_order method of the broker_connection object to place a
BUY, REGULAR, INTRADAY, MARKET order on the exchange. The place_order method is a
wrapper on the broker specific place order API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the BrokerOrderTransactionTypeConstants type. We
pass BrokerOrderTransactionTypeConstants.BUY here.
order_type: This is the order type and should be an enum of
the BrokerOrderTypeConstants type. We
pass BrokerOrderTypeConstants.REGULAR here.

Placing Regular Orders on the Exchange Chapter 6

[220]

order_code: This is the order code and should be an enum of
the BrokerOrderCodeConstants type. We pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: This is the order variety and should be an enum of
the BrokerOrderVarietyConstants type. We pass
BrokerOrderVarietyConstants.MARKET here.
quantity: This is the number of shares to be traded for the given instrument and
it should be a positive integer. We pass 1 here.

(The attributes passed to the place_order method are broker-agnostic constants, imported
earlier from the pyalgotrading.constants module.)

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string type. If the order placement
is not successful for some reason, you may not get an order ID. In step 3, you fetch the
status of the placed order using the get_order_status() method of the
broker_connection object. You pass order1_id as the parameter to
the get_order_status() method. You get the order status as 'COMPLETE', a string
type. You can use order1_id to fetch the status of the placed order at any later point of
time as well.

You can also verify the successful placement of your order by logging in to the broker
website and checking the orders section there. You should see data similar to the screenshot
shown in the output of step 3.

The other steps in this recipe follow the same pattern of placing an order and getting its
status, for a different combination of attributes:

Steps 4 and 5: SELL, REGULAR, INTRADAY, MARKET order
Steps 6 and 7: BUY, REGULAR, DELIVERY, MARKET order
Steps 8 and 9: SELL, REGULAR, DELIVERY, MARKET order

The order ID returned by the broker for an order is unique across all its
clients. You will never get the same order ID again and you will never get
an order ID that was assigned to an order placed by someone else.

Placing Regular Orders on the Exchange Chapter 6

[221]

Placing a regular limit order
A regular limit order is a type of order where a single order is placed at a specific price.
Unlike the regular market order, this is not the market price. To place this order, a specific
parameter called the limit price is needed. This parameter should satisfy the following
conditions:

The limit price should be below the market price for a BUY order.
The limit price should be above the market price for a SELL order.

If these conditions are not satisfied, the order may either get placed at the market price,
essentially converting it into a regular market order, or it may be rejected by the broker as
an invalid order.

On placing a regular limit order, it goes through various intermediate states before finally
reaching an end state (COMPLETE, CANCELLED, or REJECTED). A regular limit order could
stay in the OPEN state for a while until favorable market conditions are achieved, before
moving to the COMPLETE state. The following state machine diagram demonstrates the
various states of a regular limit order during its lifetime:

Placing Regular Orders on the Exchange Chapter 6

[222]

This recipe demonstrates placing the following regular limit orders and querying their
statuses:

BUY, REGULAR, INTRADAY, LIMIT order
SELL, REGULAR, INTRADAY, LIMIT order
BUY, REGULAR, DELIVERY, LIMIT order
SELL, REGULAR, DELIVERY, LIMIT order

Getting ready
Make sure the broker_connection object and constants from the pyalgotrading
package are available in your Python namespace. Refer to the Technical requirements section
of this chapter to set up this object.

How to do it...
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE',
 'ICICIBANK')

Fetch the LTP. Place a BUY, REGULAR, INTRADAY, LIMIT order and display the2.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order1_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety=BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp-1)
>>> order1_id

We get the following output (your output may differ):

'200303003518407'

Placing Regular Orders on the Exchange Chapter 6

[223]

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

We get the following output (your output may differ):

'OPEN'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:4.

>>> broker_connection.get_order_status(order1_id)

We get the following output (your output may differ):

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[224]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch the LTP. Place a SELL, REGULAR, INTRADAY, LIMIT order and display the5.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety=BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp+1)
>>> order2_id

We get the following output (your output may differ):

'200303003243352'

Fetch and display the order status:6.

>>> broker_connection.get_order_status(order2_id)

Placing Regular Orders on the Exchange Chapter 6

[225]

We get the following result:

'OPEN'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:7.

>>> broker_connection.get_order_status(order2_id)

We get the following output (your output may differ):

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[226]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch the LTP. Place a BUY, REGULAR, DELIVERY, LIMIT order and display the8.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order3_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.DELIVERY,
 order_variety=BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp-1)
>>> order3_id

We get the following output (your output may differ):

'200303003266560'

Fetch and display the order status:9.

>>> broker_connection.get_order_status(order3_id)

Placing Regular Orders on the Exchange Chapter 6

[227]

We get the following output:

'OPEN'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:10.

>>> broker_connection.get_order_status(order3_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[228]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch the LTP. Place a SELL, REGULAR, DELIVERY, LIMIT order and display the11.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order4_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.DELIVERY,
 order_variety=BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp+1)
>>> order4_id

We get the following output (your output may differ):

'200303003280699'

Placing Regular Orders on the Exchange Chapter 6

[229]

Fetch and display the order status:12.

>>> broker_connection.get_order_status(order4_id)

We get the following output:

'OPEN'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:13.

>>> broker_connection.get_order_status(order4_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[230]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

How it works...
In step 1, you use the get_instrument() method of the BrokerConnectionZerodha
class to fetch an instrument and assign it to a new attribute, instrument. This object is an
instance of the Instrument class. The two parameters needed to call get_instrument are
the exchange ('NSE') and the trading-symbol ('ICICIBANK').

In step 2, you fetch the LTP of the instrument using the get_ltp() method of
the BrokerConnectionZerodha class and assign it to a new attribute, ltp. The
instrument object is passed as the parameter here. Next, you use the place_order
method of the broker_connection object to place a BUY, REGULAR,
INTRADAY, LIMIT order on the exchange. The place_order method is a wrapper on the
broker specific place order API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the BrokerOrderTransactionTypeConstants type. We
pass BrokerOrderTransactionTypeConstants.BUY here.

Placing Regular Orders on the Exchange Chapter 6

[231]

order_type: This is the order type and should be an enum of
the BrokerOrderTypeConstants type. We pass
BrokerOrderTypeConstants.REGULAR here.
order_code: This is the order code and should be an enum of
the BrokerOrderCodeConstants type. We pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: This is the order variety and should be an enum of
the BrokerOrderVarietyConstants type. We pass
BrokerOrderVarietyConstants.LIMIT here.
quantity: The number of shares to be traded for the given instrument and
should be a positive integer. We pass 1 here.
price: This is the limit price at which the order should be placed. We pass
ltp-1 here, which means 1 unit price below ltp.

(The attributes passed to the place_order method are broker-agnostic constants, imported
earlier from the pyalgotrading.constants module.)

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string. If the order placement is not
successful for some reason, you may not get an order ID. Observe that the price parameter
is passed a value of ltp-1. This means the order is placed below the market price, which is
a necessary condition for placing BUY LIMIT orders.

In step 3, you fetch the status of the placed order using
the get_order_status() method of the broker_connection object.
You pass order1_id as the parameter to the get_order_status()
method. You get the order status as 'OPEN', a string. You can use
order1_id to fetch the status of the placed order at any later point of time
as well. In step 4, you fetch the order status again, and if the order is
completed, you get the order status as 'COMPLETE'.

You can also verify the successful placement of your order by logging in to the broker
website and checking the orders section there. You should see data similar to the screenshot
shown in the outputs of step 3 and step 4.

Placing Regular Orders on the Exchange Chapter 6

[232]

In step 3, if you see the status as 'COMPLETE' instead of 'OPEN', this could be due to high
volatility. If you want the order to stay in the 'OPEN' state for a while, try placing the order
further away from the market price.

The other steps in this recipe follow the same pattern of placing an order and getting its
status, for a different combination of attributes:

Steps 5, 6, and 7: SELL, REGULAR, INTRADAY, LIMIT order
Steps 8, 9, and 10: BUY, REGULAR, DELIVERY, LIMIT order
Steps 11, 12, and 13: SELL, REGULAR, DELIVERY, LIMIT order

Placing a regular stoploss-limit order
A regular stoploss-limit order is a type of order where a single order is placed at a specific
price. Unlike the regular market order, this is not the market price. To place this order, two
specific parameters are needed, the trigger price and the limit price. These parameters should
satisfy the following conditions:

For a BUY order, we need to observe the following:
The trigger price and limit price should be above the market price.
The limit price should be greater than the trigger price.

For a SELL order, the following should be observed:
The trigger price and limit price should be below the market price.
The limit price should be lower than the trigger price.

If these conditions are not satisfied, the order may either get placed at the market price,
essentially converting it into a regular market order, or may be rejected by the broker as an
invalid order.

Placing Regular Orders on the Exchange Chapter 6

[233]

On placing a regular stoploss-limit order, it goes through various intermediate states before
finally reaching an end state (COMPLETE, CANCELLED, or REJECTED). A regular stoploss-
limit order could stay in the TRIGGER_PENDING state for a while until favorable market
conditions are achieved, before moving to the COMPLETE state. The following state machine
diagram demonstrates the various states of a regular stoploss-limit order during its lifetime:

Placing Regular Orders on the Exchange Chapter 6

[234]

After the order is placed, it stays in the TRIGGER_PENDING state until the market price
breaches the trigger price but not the limit price. That is when this order gets activated and is
sent to the exchange. The order then gets executed at the best available market price, which
is between the trigger price and the limit price. The order state transitions from
TRIGGER_PENDING to OPEN to the COMPLETE state. If the market is too volatile and the
market price breaches both trigger price and limit price, the order remains in the
TRIGGER_PENDING state.

This recipe demonstrates placing the following regular stoploss-limit orders and querying
their statuses:

BUY, REGULAR, INTRADAY, STOPLOSS_LIMIT order
SELL, REGULAR, INTRADAY, STOPLOSS_LIMIT order
BUY, REGULAR, DELIVERY, STOPLOSS_LIMIT order
SELL, REGULAR, DELIVERY, STOPLOSS_LIMIT order

Getting ready...
Make sure the broker_connection object and constants from the pyalgotrading
package are available in your Python namespace. Refer to the Technical requirements section
of this chapter to set up this object.

How to do it…
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE',
 'AXISBANK')

Fetch the LTP. Place a BUY, REGULAR, INTRADAY, STOPLOSS_LIMIT order and2.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order1_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.INTRADAY,

Placing Regular Orders on the Exchange Chapter 6

[235]

 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_LIMIT,
 quantity=1,
 price=ltp+1,
 trigger_price=ltp+1)
>>> order1_id

We get the following output (your output may differ):

'200303003296676'

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'TRIGGER PENDING'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Placing Regular Orders on the Exchange Chapter 6

[236]

Fetch and display the order status again after some time:4.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'COMPLETE'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch the LTP. Place a SELL, REGULAR, INTRADAY, STOPLOSS_LIMIT order and5.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_LIMIT,
 quantity=1,
 price=ltp-1,
 trigger_price=ltp-1)
>>> order2_id

Placing Regular Orders on the Exchange Chapter 6

[237]

We get the following output (your output may differ):

'200303003576828'

Fetch and display the order status:6.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'TRIGGER PENDING'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:7.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[238]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch the LTP. Place a BUY, REGULAR, DELIVERY, STOPLOSS_LIMIT order and8.
display the order id:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order3_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.DELIVERY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_LIMIT,
 quantity=1,
 price=ltp+1,
 trigger_price=ltp+1)
>>> order3_id

We get the following output (your output may differ):

'200303003308116'

Placing Regular Orders on the Exchange Chapter 6

[239]

Fetch and display the order status:9.

>>> broker_connection.get_order_status(order3_id)

We get the following output:

'TRIGGER PENDING'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:10.

>>> broker_connection.get_order_status(order3_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[240]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch the LTP. Place a SELL, REGULAR, DELIVERY, STOPLOSS_LIMIT order and11.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order4_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.DELIVERY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_LIMIT,
 quantity=1,
 price=ltp-1,
 trigger_price=ltp-1)
>>> order4_id

We get the following output (your output may differ):

'200303003312976'

Placing Regular Orders on the Exchange Chapter 6

[241]

Fetch and display the order status:12.

>>> broker_connection.get_order_status(order4_id)

We get the following output:

'TRIGGER PENDING'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:13.

>>> broker_connection.get_order_status(order4_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[242]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

How it works…
In step 1, you use the get_instrument() method of the BrokerConnectionZerodha
class to fetch an instrument and assign it to a new attribute, instrument. This object is an
instance of the Instrument class. The two parameters needed to call get_instrument are
the exchange ('NSE') and the trading-symbol ('AXISBANK').

In step 2, you fetch the LTP of the instrument using the get_ltp() method of the
BrokerConnectionZerodha class and assign it to a new attribute, ltp. The instrument
object is passed as the parameter here. Next, you use the place_order method of the
broker_connection object to place a BUY, REGULAR, INTRADAY, STOPLOSS_LIMIT order
on the exchange. The place_order method is a wrapper on the broker specific place order
API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the type, BrokerOrderTransactionTypeConstants. We pass
BrokerOrderTransactionTypeConstants.BUY here.

Placing Regular Orders on the Exchange Chapter 6

[243]

order_type: This is the order type and should be an enum of the
type BrokerOrderTypeConstants. We
pass BrokerOrderTypeConstants.REGULAR here.

order_code: This is the order code and should be an enum of the
type BrokerOrderCodeConstants. We pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: This is the order variety and should be an enum of the type
BrokerOrderVarietyConstants. We pass
BrokerOrderVarietyConstants.STOPLOSS_LIMIT here.
quantity: This is the number of shares to be traded for the given instrument and
should be a positive integer. We pass 1 here.
price: This is the limit price at which the order should be placed. We pass
ltp+1 here, which means 1 unit price above ltp.
trigger_price: This is the trigger price at which the order should be
placed. We pass ltp+1 here, which means 1 unit price above ltp.

(The attributes passed to the place_order method are broker-agnostic constants, imported
earlier from the pyalgotrading.constants module.)

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string. If the order placement is not
successful for some reason, you may not get an order ID. Observe that the price and
trigger_price parameters are passed a value of ltp+1. This means the order is placed
above the market price, which is a necessary condition for placing BUY
STOPLOSS_LIMIT orders.

In step 3, you fetch the status of the placed order using the get_order_status() method
of the broker_connection object. You pass order1_id as the parameter to
the get_order_status() method. You get the order status as 'TRIGGER PENDING', a
string. You can use order1_id to fetch the status of the placed order at any later point of
time as well. In step 4, you fetch the order status again, and if the order is completed, you
get the order status as 'COMPLETE'.

Placing Regular Orders on the Exchange Chapter 6

[244]

You can also verify the successful placement of your order by logging in to the broker
website and checking the orders section there. You should see data similar to the
screenshots shown in the outputs of step 3 and step 4.

In step 3, if you see the status as 'COMPLETE' instead of 'TRIGGER
PENDING', this could be due to high volatility. If you want the order to
stay in the 'OPEN' state for a while, try placing the order further away
from the market price.

The other steps in this recipe follow the same pattern of placing an order and getting its
status, for a different combination of attributes:

Steps 5, 6, and 7: SELL, REGULAR, INTRADAY, STOPLOSS_LIMIT order
Steps 8, 9, and 10: BUY, REGULAR, DELIVERY, STOPLOSS_LIMIT order
Steps 11, 12, and 13: SELL, REGULAR, DELIVERY, STOPLOSS_LIMIT order

Placing a regular stoploss-market order
A regular stoploss-market order is a type of order where a single order is placed at a
specific price. Unlike the regular market order, this is not the market price. To place this
order, a specific parameter called the trigger price is needed. This parameter should satisfy
the following conditions:

The trigger price should be above the market price for a BUY order.
The trigger price should be below the market price for a SELL order.

If these conditions are not satisfied, the order may either get placed at the market price,
essentially converting it into a regular market order, or may be rejected by the broker as an
invalid order.

On placing a regular stoploss-market order, it goes through various intermediate states
before finally reaching an end state (COMPLETE, CANCELLED, or REJECTED). A regular
stoploss-market order could stay in the TRIGGER_PEDNING state for a while until favorable
market conditions are achieved, before moving to the COMPLETE state.

Placing Regular Orders on the Exchange Chapter 6

[245]

The following state machine diagram demonstrates the various states of a regular stoploss-
market order during its lifetime:

Placing Regular Orders on the Exchange Chapter 6

[246]

After the order is placed, it stays in the TRIGGER_PENDING state until the market price
breaches the trigger price. That is when this order is activated and sent to the exchange. The
order is then executed at the best available market price. The order state transitions from
TRIGGER_PENDING to OPEN to the COMPLETE state.

A regular stoploss-market order behaves similarly to a regular stoploss-
limit order (see the Placing a regular stoploss-Limit Order recipe), except for
one difference—the stoploss-market order requires only the trigger
price and not the limit price, whereas the stoploss-limit order requires both
parameters. You can consider a stoploss-market order as a stoploss-limit
order with an unbounded limit price.

This recipe demonstrates placing of the following regular stoploss-market orders and
querying their statuses:

BUY, REGULAR, INTRADAY, STOPLOSS_MARKET order
SELL, REGULAR, INTRADAY, STOPLOSS_MARKET order
BUY, REGULAR, DELIVERY, STOPLOSS_MARKET order
SELL, REGULAR, DELIVERY, STOPLOSS_MARKET order

Getting ready
Make sure the broker_connection object and constants from pyalgotrading package
are available in your Python namespace. Refer to the Technical requirements section of this
chapter to set up this object.

How to do it…
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE',
 'KOTAKBANK')

Fetch the LTP. Place a BUY, REGULAR, INTRADAY, STOPLOSS_MARKET order and2.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order1_id = broker_connection.place_order(
 instrument=instrument,

Placing Regular Orders on the Exchange Chapter 6

[247]

 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_MARKET,
 quantity=1,
 trigger_price=ltp+1)
>>> order1_id

We get the following output (your output may differ):

'200727003362763'

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'TRIGGER PENDING'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Placing Regular Orders on the Exchange Chapter 6

[248]

Fetch and display the order status again after some time:4.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'COMPLETE'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch the LTP. Place a SELL, REGULAR, INTRADAY, STOPLOSS_MARKET order and5.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_MARKET,
 quantity=1,
 trigger_price=ltp-1)
>>> order2_id

Placing Regular Orders on the Exchange Chapter 6

[249]

We get the following output (your output may differ):

'200303003345436'

Fetch and display the order status:6.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'TRIGGER PENDING'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:7.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[250]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch the LTP. Place a BUY, REGULAR, DELIVERY, STOPLOSS_MARKET order and8.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order3_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.DELIVERY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_MARKET,
 quantity=1,
 trigger_price=ltp+1)
>>> order3_id

We get the following output (your output may differ):

'200727003580657'

Placing Regular Orders on the Exchange Chapter 6

[251]

Fetch and display the order status:9.

>>> broker_connection.get_order_status(order3_id)

We get the following output:

'TRIGGER PENDING'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:10.

>>> broker_connection.get_order_status(order3_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[252]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch the LTP. Place a SELL, REGULAR, DELIVERY, STOPLOSS_MARKET order and11.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument.segment)
>>> order4_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.REGULAR,
 order_code=BrokerOrderCodeConstants.DELIVERY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_MARKET,
 quantity=1,
 trigger_price=ltp-1)
>>> order4_id

We get the following output (your output may differ):

'200727003635594'

Placing Regular Orders on the Exchange Chapter 6

[253]

Fetch and display the order status:12.

>>> broker_connection.get_order_status(order4_id)

We get the following output:

'TRIGGER PENDING'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:13.

>>> broker_connection.get_order_status(order4_id)

We get the following output:

'COMPLETE'

Placing Regular Orders on the Exchange Chapter 6

[254]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

How it works…
In step 1, you use the get_instrument() method of the BrokerConnectionZerodha
class to fetch an instrument and assign it to a new attribute, instrument. This object is an
instance of the Instrument class. The two parameters needed to call get_instrument are
the exchange ('NSE') and the trading-symbol ('KOTAKBANK').

In step 2, you fetch the LTP of the instrument using the get_ltp() method of
the BrokerConnectionZerodha class and assign it to a new attribute, ltp. The
instrument object is passed as the parameter here. Next, you use the place_order
method of the broker_connection object to place a BUY, REGULAR, INTRADAY,
STOPLOSS_MARKET order on the exchange. The place_order method is a wrapper on the
broker specific place order API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the BrokerOrderTransactionTypeConstants type. We pass
BrokerOrderTransactionTypeConstants.BUY here.

Placing Regular Orders on the Exchange Chapter 6

[255]

order_type: This is the order type and should be an enum of the
BrokerOrderTypeConstants type. We
pass BrokerOrderTypeConstants.REGULAR here.
order_code: This is the order code and should be an enum of the
BrokerOrderCodeConstants type. We pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: This is the order variety and should be an enum of the
BrokerOrderVarietyConstants type. We pass
BrokerOrderVarietyConstants.STOPLOSS_MARKET here.
quantity: This is the number of shares to be traded for the given instrument and
should be a positive integer. We pass 1 here.
trigger_price: This is the trigger price at which the order should be placed.
We pass ltp+1 here, which means 1 unit price above ltp.

(The attributes passed to the place_order method are broker-agnostic constants, imported
earlier from the pyalgotrading.constants module.)

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string. If the order placement is not
successful for some reason, you may not get an order ID. Observe that the trigger_price
parameter is passed a value of ltp+1. This means the order is placed above the market
price, which is a necessary condition for placing BUY STOPLOSS_MARKET orders.

In step 3, you fetch the status of the placed order using get_order_status() method of
the broker_connection object. You pass order1_id as the parameter to the
get_order_status() method. You get the order status as 'TRIGGER PENDING', a string.
You can use order1_id to fetch the status of the placed order at any later point of time as
well. In step 4, you fetch the order status again, and if the order is completed, you get the
order status as 'COMPLETE'.

You can also verify the successful placement of your order by logging in to the broker
website and checking the orders section there. You should see data similar to the screenshot
shown in the outputs of step 3 and step 4.

In step 3, if you see the status as 'COMPLETE' instead of 'TRIGGER
PENDING', this could be due to high volatility. If you want the order to
stay in the 'OPEN' state for a while, try placing the order further away
from the market price.

Placing Regular Orders on the Exchange Chapter 6

[256]

The other steps in this recipe follow the same pattern of placing an order and getting its
status, for a different combination of attributes:

Steps 5, 6, and 7: SELL, REGULAR, INTRADAY, STOPLOSS_MARKET order
Steps 8, 9, and 10: BUY, REGULAR, DELIVERY, STOPLOSS_MARKET order
Steps 11, 12, and 13: SELL, REGULAR, DELIVERY, STOPLOSS_MARKET order

7
Placing Bracket and Cover

Orders on the Exchange
This chapter introduces various types of bracket and cover orders that can be placed on
exchanges via the broker APIs. The recipes include code for placing 12 types of orders and
querying their statuses, canceling open orders, and exiting completed orders. These recipes
will be a fundamental part of your algorithmic trading strategies. Understanding all of the
types of orders and knowing which one to place for the given requirement is crucial for
building a successful trading strategy.

Each order has four attributes that together define the order completely:

Order transaction type
Order type
Order code
Order variety

For placing an order, all four attributes should be known precisely. To know more about
these attributes, refer to the introduction to Chapter 6, Placing Regular Orders on the
Exchange.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[258]

The recipes in this chapter provide detailed flowcharts for each order type. Every order
placed on the exchange goes through various states during its lifetime. To know more
about the order states supported by the broker used in this chapter, refer to the
introduction to Chapter 6, Placing Regular Orders on the Exchange.

In this chapter, we will cover the following recipes:

Placing a bracket limit order
Placing a bracket stoploss-limit order
Placing a bracket limit order with a trailing stoploss
Placing a bracket stoploss-limit order with a trailing stoploss
Placing a cover market order
Placing a cover limit order

Please make sure you try all of these recipes during live market hours
with sufficient balance in your broking account. If these recipes are tried
outside of market hours or with insufficient balance, your orders will be
rejected by the broker. This means the orders would never reach the
exchange and you would not get the expected response.

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
Python packages: pyalgotrading ($ pip install pyalgotrading)

The latest Jupyter notebook for this chapter can be found on GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/ ​tree/ ​master/ ​Chapter07.

The first thing needed for setting connectivity with the broker is getting the API keys. The
broker will provide each customer with unique keys, typically as an api-key and api-
secret key pair. These API keys are chargeable, usually on a monthly subscription basis.
You need to get your copy of api-key and api-secret from the broker website before
starting this. You can refer to Appendix I for more details.

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter07

Placing Bracket and Cover Orders on the Exchange Chapter 7

[259]

The following steps will help you to set up the broker connection with Zerodha, which will
be used by all of the recipes in this chapter. Please make sure you have followed these steps
before trying out any recipe:

Import the necessary modules:1.

>>> from pyalgotrading.broker.broker_connection_zerodha import
BrokerConnectionZerodha
>>> from pyalgotrading.constants import *

All pyalgotrading constants are now available in your Python namespace.

Get the api_key and api_secret keys from the broker. These are unique to you2.
and will be used by the broker to identify your Demat account:

>>> api_key = "<your-api-key>"
>>> api_secret = "<your-api-secret>"
>>> broker_connection = BrokerConnectionZerodha(api_key,
 api_secret)

We get the following output:

Installing package kiteconnect via pip. This may take a while...
Please login to this link to generate your request token:
https://kite.trade/connect/login?api_key=<your-api-key>&v=3

If you are running this for the first time and kiteconnect is not installed,
pyalgotrading will automatically install it for you. The final output of step
2 will be a link. Click on the link and log in with your Zerodha credentials. If the
authentication is successful, you will see a link in your browser's address bar
similar
to https://127.0.0.1/?request_token=<alphanumeric-token>&action=
login&status=success.

We have the following example:

https://127.0.0.1/?request_token=H06I6Ydv95y23D2Dp7NbigFjKweGwRP7&a
ction=login&status=success

Placing Bracket and Cover Orders on the Exchange Chapter 7

[260]

Copy the alphanumeric-token and paste it in request_token:3.

>>> request_token = "<your-request-token>"
>>> broker_connection.set_access_token(request_token)

The broker_connection instance is now ready for performing API calls.

The pyalgotrading package supports multiple brokers and provides a
connection object class per broker, with the same methods. It abstracts
broker APIs behind a unified interface so users need not worry about the
underlying broker API calls and can use all of the recipes in this chapter as
is. Only the procedure to set up the broker connection would vary from
broker to broker. You can refer to the pyalgotrading documentation for
setting up the broker connection if you are not using Zerodha as your
broker. For Zerodha users, the steps mentioned in the preceding section
would suffice.

Placing a bracket limit order
Bracket orders are complex orders that are meant to help to make a profit when trade
becomes favorable, or limit the loss when it becomes unfavorable, with predefined values.
A bracket order is essentially a combination of three regular orders together—an initial
order, a target order, and a stoploss order—which act together to help to achieve the
specified profit or limit the loss. Along with the regular order parameters, a bracket order
takes additional parameters—target, stoploss, and trailing stoploss (optional).
The three regular orders are described as follows:

Initial order: This order is equivalent to a regular limit order or regular stoploss-
limit order. Once placed, it remains in the 'OPEN' state until the market price
reaches its trigger price value. Once the market crosses the trigger price value,
this order moves from the 'OPEN' to 'COMPLETE' state and the target and
stoploss orders are placed, which are described next.
Target order: This order is equivalent to a regular limit order, with its trigger
price as the specified target value and transaction type opposite to that of the
initial order. For a buy initial order, the target order is placed at a higher price
than the initial order. This would be vice versa for a sell initial order. The
quantity matches that of the initial order. So, if this order executes, it exits the
position created by the initial order.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[261]

Stoploss order: This order is equivalent to a regular stoploss-limit order, with the
specified stoploss value as its trigger price and transaction type opposite to
that of the initial order. For a buy initial order, the stoploss order is placed at a
lower price than the initial order. This would be vice versa for a sell initial order.
The quantity matches that of the initial order. So, if this order executes, it exits
the position created by the initial order. If a trailing stoploss parameter is
specified, every time the initial order price moves in the direction of the target
order price, the stoploss order is modified in the direction of the initial order
price by as many points as the value of trailing stoploss. This helps to
further reduce the loss in case the price movement direction of the initial
order changes.

Since a target order and a stoploss order are placed on opposite sides of an initial order,
they form a bracket around the initial order, and hence this order is called a bracket order.
Also, as the target and stoploss orders are on opposite sides, only one of them would get
executed (which means its status would go from 'OPEN' to 'COMPLETE') at a given time,
and when it does, the order (either the stoploss order or the target order) is automatically
canceled. The target and stoploss orders are also collectively called child orders of
the initial order, and the latter is called the parent order of the former.

A bracket order is usually meant for intraday trading unless otherwise supported by the
broker. If the initial order or the child orders are not completed by the end of the trading
session, they are automatically canceled or exited by the broker.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[262]

The following flowchart explains the workings of a bracket order:

The following are references to the state machine diagrams for a bracket
limit order:

Initial order: Refer to the state machine diagram from
the Placing a regular limit order recipe in the previous chapter.
Target order: Refer to the state machine diagram from
the Placing a regular limit order recipe in the previous chapter.
Stoploss order: Refer to the state machine diagram from
the Placing a regular stoploss-limit order recipe in the previous
chapter.

You can use the bracket limit order when a buy bracket order has to be placed below the
market price or a sell bracket order has to be placed above the market price.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[263]

This recipe demonstrates the placing of the following bracket limit orders and querying
their statuses:

The BUY, BRACKET, INTRADAY, LIMIT order (without trailing stoploss)
The SELL, BRACKET, INTRADAY, LIMIT order (without trailing stoploss)

Getting ready
Make sure the broker_connection object and constants from
the pyalgotrading package are available in your Python namespace. Refer to the Technical
requirements section of this chapter to set up this object.

How to do it…
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE', 'SBIN')

Fetch the LTP. Place a BUY, BRACKET, INTRADAY, LIMIT order and display the2.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order1_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp-1,
 stoploss=2,
 target=2)
>>> order1_id

We get the following output (your output may differ):

'2003030003491923'

Placing Bracket and Cover Orders on the Exchange Chapter 7

[264]

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'OPEN'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Fetch and display the order status again after some time:4.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'COMPLETE'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Placing Bracket and Cover Orders on the Exchange Chapter 7

[265]

Fetch the LTP. Place a SELL, BRACKET, INTRADAY, LIMIT order and display the5.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp+1,
 stoploss=2,
 target=2)
>>> order2_id

We get the following output (your output may differ):

'200303003639902'

Fetch and display the order status:6.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'OPEN'

Placing Bracket and Cover Orders on the Exchange Chapter 7

[266]

If you log in to the broker site with your credentials and go to the orders section, you
can find your order details as shown in the following screenshot (some data may differ
for you):

Fetch and display the order status again after some time:7.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'COMPLETE'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshot (some data
may differ for you):

Placing Bracket and Cover Orders on the Exchange Chapter 7

[267]

How it works…
In step 1, you use the get_instrument() method of
the BrokerConnectionZerodha class to fetch an instrument and assign it to a new
attribute, instrument. This object is an instance of the Instrument class. The two
parameters needed to call get_instrument are the exchange ('NSE') and the trading-
symbol ('SBI').

In step 2, you fetch the LTP of the instrument using the get_ltp() method of the
BrokerConnectionZerodha class and assign it to a new attribute, ltp.
The instrument object is passed as the parameter here. Next, you use
the place_order() method of the broker_connection object to place a BUY, BRACKET,
INTRADAY, LIMIT order on the exchange. The place_order() method is a wrapper on the
broker-specific place order API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the type, BrokerOrderTransactionTypeConstants. We pass
BrokerOrderTransactionTypeConstants.BUY here.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[268]

order_type: This is the order type and should be an enum of the type,
BrokerOrderTypeConstants. We pass
BrokerOrderTypeConstants.BRACKET here.
order_code: This is the order code and should be an enum of the type,
BrokerOrderCodeConstants. We pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: This is the order variety and should be an enum of the type,
BrokerOrderVarietyConstants. We pass
BrokerOrderVarietyConstants.LIMIT here.
quantity: This is the number of shares to be traded for the given instrument and
should be a positive integer. We pass 1 here.
price: This is the limit price at which the order should be placed. We pass
ltp-1 here, which means 1 unit price below ltp.
stoploss: This is the price difference from the initial order price, at which the
stoploss order should be placed. It should be a positive int or float value. We
pass 2 here.
target: This is the price difference from the initial order price, at which the
target order should be placed. It should be a positive int or float value. We
pass 2 here.

(The attributes passed to the place_order() method are broker-agnostic constants,
imported earlier from the pyalgotrading.constants module.)

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string. If the order placement is not
successful for some reason, you may not get an order ID. Observe that the price parameter
is passed a value of ltp-1. This means the order is placed below the market price, which is
a necessary condition for placing buy limit orders. The stoploss parameter is specified
as 2. This means the stoploss order would be placed at the price, which is two price units
lower than the execution price of the initial order. Similarly, the target parameter is
specified as 2. This means the target order would be placed at the price that is two price
units higher than the execution price of the initial order.

In step 3, you fetch the status of the placed order using the get_order_status() method
of the broker_connection object. You pass order1_id as a parameter to the
get_order_status() method. You get the order status as 'OPEN', a string. You can use
order1_id to fetch the status of the placed order at any later point of time as well.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[269]

In step 4, you fetch the order status again, and if the order is completed, you get the order
status as 'COMPLETE'. Immediately after this, the target and stoploss orders are placed, at
the prices mentioned earlier. The target order executes as a regular limit order. The stoploss
order executes as a regular stoploss-limit order. When one of them gets executed and
reaches the 'COMPLETE' state, the other order is automatically canceled by the broker, so it
moves to the 'CANCELLED' state. Recall, both target and stoploss orders are on opposite
sides of the initial order, so both target and stoploss orders cannot execute at the same time.

You can also verify the successful placement of your order by logging in to the broking
website and checking the orders section there. You should see data similar to the screenshot
shown in the outputs of step 3 and step 4.

In step 3, if you see the status as 'COMPLETE' instead of 'OPEN'; this
could be due to high volatility. If you want the order to stay in
the 'OPEN' state for a while, try placing the order further away from the
market price.
The following are references for more details on the execution of the initial
order, target order, and stoploss order:

Initial order: Refer to the Placing a regular limit order recipe in
the previous chapter.
Target order: Refer to the Placing a regular limit order recipe in
the previous chapter.
Stoploss order: Refer to the Placing a regular stoploss-limit
order recipe in the previous chapter.

The other steps in this recipe follow the same pattern of placing an order and getting its
status for different combinations of attributes:

Steps 5, 6, and 7: The SELL, BRACKET, INTRADAY, LIMIT order

There's more…
You can exit a bracket order by exiting one of its child orders. The child order that you exit
is executed at market price and moves to the COMPLETE state. The other child moves to
the CANCELLED state.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[270]

For example, let's consider the case if you exit the stoploss order. In this case, the target
order will be canceled and it will transition to the CANCELLED state. The stoploss order will
be executed at market price and it will transition to the COMPLETE state. If you log in to the
broker site with your credentials and go to the orders section, you can find the child order
details as shown in the following screenshot. Some data may differ for you.

The following is the target order, for the initial order placed in step 2, before exiting the
bracket order:

The following is the target order after exiting the bracket order:

This screenshot shows the stoploss order, for the initial order placed in step 2, before
exiting:

Placing Bracket and Cover Orders on the Exchange Chapter 7

[271]

The following screenshot shows the stoploss order after exiting:

Placing Bracket and Cover Orders on the Exchange Chapter 7

[272]

Placing a bracket stoploss-limit order
Bracket orders are complex orders that are meant to help to make a profit when trade
becomes favorable, or limit the loss when it becomes unfavorable, with predefined values.
A bracket order is essentially a combination of three regular orders together —an initial
order, a target order, and a stoploss order, which act together to help to achieve the
specified profit or limit the loss. Along with the regular order parameters, a bracket order
takes additional parameters—target, stoploss, and trailing stoploss (optional).

Please refer to the introduction of the Placing a bracket limit order recipe for an in-depth
understanding of the working of bracket orders. You can use a bracket stoploss-limit order
if you want to place a buy bracket order above the market price or a sell bracket order
below the market price.

This recipe demonstrates the placing of the following bracket stoploss-limit orders and
querying their statuses:

The BUY, BRACKET, INTRADAY, STOPLOSS_LIMIT order (without trailing
stoploss)
The SELL, BRACKET, INTRADAY, STOPLOSS_LIMIT order (without trailing
stoploss)

The following are references to the state machine diagrams for a bracket
stoploss-limit order:

Initial order: Refer to the state machine diagram from
the Placing a regular stoploss-limit order recipe in the previous
chapter.
Target order: Refer to the state machine diagram from
the Placing a regular limit order recipe in the previous chapter.
Stoploss order: Refer to the state machine diagram from
the Placing a regular stoploss-limit order recipe in the previous
chapter.

Getting ready
Make sure the broker_connection object and constants from
the pyalgotrading package are available in your Python namespace. Refer to the Technical
requirements section of this chapter to set up this object.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[273]

How to do it…
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE',
 'INDUSINDBK')

Fetch the LTP. Place a BUY, BRACKET, INTRADAY, STOPLOSS_LIMIT order and2.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument.segment)
>>> order1_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type=\
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_LIMIT,
 quantity=1,
 price=ltp+1,
 trigger_price=ltp+1,
 stoploss=2,
 target=2)
>>> order1_id

We get the following output (your output may differ):

'200226003619998'

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'TRIGGER PENDING'

Fetch and display the order status again after some time:4.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'COMPLETE'

Placing Bracket and Cover Orders on the Exchange Chapter 7

[274]

Fetch the LTP. Place a SELL, BRACKET, INTRADAY, STOPLOSS_LIMIT order and5.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_LIMIT,
 quantity=1,
 price=ltp-1,
 trigger_price=ltp-1,
 stoploss=2,
 target=2)
>>> order2_id

We get the following output (your output may differ):

'200226003620002'

Fetch and display the order status:6.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'TRIGGER PENDING'

Fetch and display the order status again after some time:7.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'COMPLETE'

How it works…
In step 1, you use the get_instrument() method of the
BrokerConnectionZerodha class to fetch an instrument and assign it to a new
attribute, instrument. This object is an instance of the Instrument class. The two
parameters needed to call get_instrument are the exchange ('NSE') and the trading-
symbol ('INDUSINDBK').

Placing Bracket and Cover Orders on the Exchange Chapter 7

[275]

In step 2, you fetch the LTP of the instrument using the get_ltp() method of the
BrokerConnectionZerodha class and assign it to a new attribute, ltp.
The instrument object is passed as the parameter here. Next, you use
the place_order() method of the broker_connection object to place a BUY, BRACKET,
INTRADAY, STOPLOSS_LIMIT order on the exchange. The place_order() method is a
wrapper on the broker-specific place order API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the type, BrokerOrderTransactionTypeConstants. We pass
BrokerOrderTransactionTypeConstants.BUY here.
order_type: This is the order type and should be an enum of the type,
BrokerOrderTypeConstants. We pass
BrokerOrderTypeConstants.BRACKET here.
order_code: This is the order code and should be an enum of the type,
BrokerOrderCodeConstants. We
pass BrokerOrderCodeConstants.INTRADAY here.
order_variety: This is the order variety and should be an enum of the type,
BrokerOrderVarietyConstants. We pass
BrokerOrderVarietyConstants.STOPLOSS_LIMIT here.
quantity: This is the number of shares to be traded for the given instrument and
should be a positive integer. We pass 1 here.
price: This is the limit price at which the order should be placed. We
pass ltp+1 here, which means 1 unit price above ltp.
trigger_price: This is the trigger price at which the order should be placed.
We pass ltp+1 here, which means 1 unit price above ltp.
stoploss: This is the price difference from the Initial Order price, at which the
stoploss order should be placed. It should be a positive int or float value. We
pass 2 here.
target: This is the price difference from the Initial Order price, at which the
target order should be placed. It should be a positive int or float value. We
pass 2 here.

(The attributes passed to the place_order() method are broker-agnostic constants,
imported earlier from the pyalgotrading.constants module.)

Placing Bracket and Cover Orders on the Exchange Chapter 7

[276]

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string. If the order placement is not
successful for some reason, you may not get an order ID. Observe that
the price and trigger_price parameters are passed a value of ltp+1. This means the
order is placed above the market price, which is a necessary condition for placing buy
stoploss-limit orders. The stoploss parameter is specified as 2. This means the stoploss
order would be placed at the price that is 2 price units lower than the execution price of the
initial order. Similarly, the target parameter is specified as 2. This means the target order
would be placed at the price that is 2 price units higher than the execution price of the
Initial Order.

In step 3, you fetch the status of the placed order using the get_order_status() method
of the broker_connection object. You pass order1_id as a parameter to the
get_order_status() method. You get the order status as 'TRIGGER PENDING', a string.
You can use order1_id to fetch the status of the placed order at any later point of time as
well. In step 4, you fetch the order status again, and if the order is completed, you get the
order status as 'COMPLETE'. Immediately after this, the target and stoploss orders are
placed, at the prices mentioned earlier. The target order executes as a regular limit order.
The stoploss order executes as a regular stoploss-limit order. When one of them gets
executed and reaches the 'COMPLETE' state, the other order is automatically canceled by
the broker, so it moves to the 'CANCELLED' state. Recall, both target and stoploss orders
are on opposite sides of the initial order, so both target and stoploss orders cannot execute
at the same time.

In step 3, if you see the status as 'COMPLETE' instead of 'TRIGGER
PENDING', this could be due to high volatility. If you want the order to
stay in the 'OPEN' state for a while, try placing the order further away
from the market price.
The following are references to more details on the execution of the initial
order, target order, and stoploss order:

Initial order: Refer to the Placing a regular stoploss-limit
order recipe in the previous chapter.
Target order: Refer to the Placing a regular limit order recipe in
the previous chapter.
Stoploss order: Refer to the Placing a regular stoploss-limit
order recipe in the previous chapter.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[277]

You can verify the successful placement of your order by logging in to the broking website
and checking the orders section there. You should see data similar to the screenshots shown
in the Placing bracket limit orders on the exchange recipe.

The other steps in this recipe follow the same pattern of placing an order and getting its
status for a different combination of attributes:

Steps 5, 6, and 7: The SELL, BRACKET, INTRADAY, STOPLOSS_LIMIT order

Placing a bracket limit order with trailing
stoploss
Bracket orders are complex orders that are meant to help to make a profit when trade
becomes favorable, or limit the loss when it becomes unfavorable, with predefined values.
A bracket order is essentially a combination of three regular orders together—an initial
order, a target order, and a stoploss order, which act together to help to achieve the
specified profit or limit the loss. Along with the regular order parameters, a bracket order
takes additional parameters—target, stoploss, and trailing stoploss (optional).

Please refer to the introduction of the Placing a bracket limit order recipe for an in-depth
understanding of the working of bracket orders.

You can use a bracket limit order if you want to place a buy bracket order below the market
price or a sell bracket order above the market price. The trailing stoploss feature improvises
the positioning of the stoploss order by modifying its price in the direction of the initial
order price by as many points as the value of trailing stoploss. This happens every
time the initial order price moves in the direction of the target order price. This helps to
further reduce the loss in case the price movement direction of the initial order changes.

This recipe demonstrates the placing of the following bracket limit orders with a trailing
stoploss and querying their statuses:

The BUY, BRACKET, INTRADAY, LIMIT order with trailing stoploss
The SELL, BRACKET, INTRADAY, LIMIT order with trailing stoploss

Placing Bracket and Cover Orders on the Exchange Chapter 7

[278]

The following are references to the state machine diagrams for a bracket
limit order:

Initial order: Refer to the state machine diagram from
the Placing a regular limit order recipe in the previous chapter.
Target order: Refer to the state machine diagram from
the Placing a regular limit order recipe in the previous chapter.
Stoploss order: Refer to the state machine diagram from
the Placing a regular stoploss-limit order recipe in the previous
chapter.

Getting ready
Make sure the broker_connection object and constants
from the pyalgotrading package are available in your Python namespace. Refer to
the Technical requirements section of this chapter to set up this object.

How to do it…
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE',
'FEDERALBNK')

Fetch the LTP. Place a BUY, BRACKET, INTRADAY, LIMIT order and display the2.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order1_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp-1,
 trigger_price=ltp-1,

Placing Bracket and Cover Orders on the Exchange Chapter 7

[279]

 stoploss=2,
 target=2,
 trailing_stoploss=1)
>>> order1_id

We get the following output (your output may differ):

'200226003620004'

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'OPEN'

Fetch and display the order status again after some time:4.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'COMPLETE'

Fetch the LTP. Place a SELL, BRACKET, INTRADAY, LIMIT order and display the5.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp+1,
 trigger_price=ltp+1,
 stoploss=2,
 target=2,
 trailing_stoploss=1)
>>> order1_id

We get the following output (your output may differ):

'200226003620009'

Placing Bracket and Cover Orders on the Exchange Chapter 7

[280]

Fetch and display the order status:6.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'OPEN'

Fetch and display the order status again after some time:7.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'COMPLETE'

How it works...
In step 1, you use the get_instrument() method of the
BrokerConnectionZerodha class to fetch an instrument and assign it to a new
attribute, instrument. This object is an instance of the Instrument class. The two
parameters needed to call get_instrument are the exchange ('NSE') and the trading-
symbol ('FEDERALBNK').

In step 2, you fetch the LTP of the instrument using the get_ltp() method of the
BrokerConnectionZerodha class and assign it to a new attribute, ltp.
The instrument object is passed as the parameter here. Next, you use
the place_order() method of the broker_connection object to place a BUY, BRACKET,
INTRADAY, LIMIT order on the exchange. The place_order() method is a wrapper on the
broker-specific place order API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the type, BrokerOrderTransactionTypeConstants. We pass
BrokerOrderTransactionTypeConstants.BUY here.
order_type: This is the order type and should be an enum of the type,
BrokerOrderTypeConstants. We
pass BrokerOrderTypeConstants.BRACKET here.
order_code: This is the order code and should be an enum of the type,
BrokerOrderCodeConstants. We
pass BrokerOrderCodeConstants.INTRADAY here.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[281]

order_variety: This is the order variety and should be an enum of the type,
BrokerOrderVarietyConstants. We
pass BrokerOrderVarietyConstants.LIMIT here.
quantity: This is the number of shares to be traded for the given instrument and
should be a positive integer. We pass 1 here.
price: This is the limit price at which the order should be placed. We
pass ltp-1 here, which means 1 unit price below ltp.
stoploss: This is the price difference from the Initial Order price, at which the
Stoploss Order should be placed. It should be a positive int or float value. We
pass 2 here.
target: This is the price difference from the Initial Order price, at which the
Target Order should be placed. It should be a positive int or float value. We
pass 2 here.
trailing_stoploss: This is the price difference by which the stoploss order
should be modified every time the market price moves in the direction of the
target order. We pass 1 here.

(The attributes passed to the place_order() method are broker-agnostic constants,
imported earlier from the pyalgotrading.constants module.)

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string. If the order placement is not
successful for some reason, you may not get an order ID. Observe that the price parameter
is passed a value of ltp-1. This means the order is placed below the market price, which is
a necessary condition for placing buy limit orders. The stoploss parameter is specified
as 2. This means the stoploss order would be placed at the price that is two price units
lower than the execution price of the initial order. Similarly, the target parameter is
specified as 2. This means the target order would be placed at the price that is two price
units higher than the execution price of the initial order. Finally, the trailing_stoploss
parameter is specified as 1. This means, after the stoploss order is placed, the stoploss order
would be modified and placed at a price higher than the previous price by one unit, every
time the market price increases in multiples of one unit from the price of the initial order.

So, for example, let's say the market price for the instrument was 100 at the time of placing
this order, and so the target and stoploss orders would be placed at 102 and 98,
respectively. Suppose the market price reaches 101, which is one unit higher than 100, then
the stoploss order would be modified and placed at 99, which is again one unit higher than
its previous price. By doing so, you have reduced your maximum loss from 2 to 1.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[282]

In step 3, you fetch the status of the placed order using the get_order_status() method
of the broker_connection object. You pass order1_id as a parameter to the
get_order_status() method. You get the order status as 'OPEN', a string. You can
use order1_id to fetch the status of the placed order at any later point in time as well.
In step 4, you fetch the order status again, and if the order is completed, you get the order
status as 'COMPLETE'. Immediately after this, the target and stoploss orders are placed, at
the prices mentioned earlier. The target order executes as a regular limit order. The stoploss
order executes as a regular stoploss-limit order. When one of them gets executed and
reaches the COMPLETE state, the other order is automatically canceled by the broker, so it
moves to the CANCELLED state. Recall, both target and stoploss orders are on opposite sides
of the initial order, so both target and stoploss orders cannot execute at the same time. The
stoploss order may be modified by one price unit, as mentioned earlier.

In step 3, if you see the status as `COMPLETE` instead of `OPEN`, this
could be due to high volatility. If you want the order to stay in
the `OPEN` state for a while, try placing the order further away from the
market price.
The following are references for more details on the execution of the initial
order, target order, and stoploss order:

Initial order: Refer to the Placing a regular limit order recipe in
the previous chapter.
Target order: Refer to the Placing a regular limit order recipe in
the previous chapter.
Stoploss order: Refer to the Placing a regular stoploss-limit
order recipe in the previous chapter.

You can verify the successful placement of your order by logging in to the broking website
and checking the orders section there. You should see data similar to the screenshots shown
in the Placing bracket limit orders on the exchange recipe.

The other steps in this recipe follow the same pattern of placing an order and getting its
status for a different combination of attributes:

Steps 5, 6, and 7: The SELL, BRACKET, INTRADAY, LIMIT order with trailing
stoploss

Placing Bracket and Cover Orders on the Exchange Chapter 7

[283]

Placing a bracket stoploss-limit order with
trailing stoploss
Bracket orders are complex orders that are meant to help to make a profit when trade
becomes favorable, or limit the loss when it becomes unfavorable, with predefined values.
A bracket order is essentially a combination of three regular orders together—an initial
order, a target order, and a stoploss order, which act together to help to achieve the
specified profit or limit the loss. Along with the regular order parameters, a bracket order
takes additional parameters—target, stoploss, and trailing stoploss (optional).

Please refer to the introduction of the Placing a bracket limit order recipe for an in-depth
understanding of the working of bracket orders.

You can use a bracket stoploss-limit order if you want to place a buy bracket order above
the market price or a sell bracket order below the market price. The trailing stoploss
improvises the positioning of the stoploss order by modifying its price in the direction of
the initial order price by as many points as the value of trailing stoploss, every time
the initial order price moves in the direction of the target order price. This helps to further
reduce the loss, in case the direction of the price movement of the initial order changes.

This recipe demonstrates the placing of the following bracket stoploss-limit orders with
trailing stoploss and querying their statuses:

The BUY, BRACKET, INTRADAY, STOPLOSS_LIMIT order with trailing stoploss
The SELL, BRACKET, INTRADAY, STOPLOSS_LIMIT order with trailing stoploss

The following are references to the state machine diagrams for a bracket
stoploss-limit order:

Initial order: Refer to the state machine diagram from
the Placing a regular stoploss-limit order recipe in the previous
chapter.
Target order: Refer to the state machine diagram from
the Placing a regular limit order recipe in the previous chapter.
Stoploss order: Refer to the state machine diagram from
the Placing a regular stoploss-limit order recipe in the previous
chapter.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[284]

Getting ready
Make sure the broker_connection object and constants from the pyalgotrading
package are available in your Python namespace. Refer to the Technical requirements section
of this chapter to set up this object.

How to do it…
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE', 'RBLBANK')

Fetch the LTP. Place a BUY, BRACKET, INTRADAY, STOPLOSS_LIMIT order and2.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order1_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_LIMIT,
 quantity=1,
 price=ltp+1,
 trigger_price=ltp+1,
 stoploss=2,
 target=2,
 trailing_stoploss=1)
>>> order1_id

We get the following output (your output may differ):

'200226003620011'

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'TRIGGER PENDING'

Placing Bracket and Cover Orders on the Exchange Chapter 7

[285]

Fetch and display the order status again after some time:4.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'COMPLETE'

Fetch the LTP. Place a SELL, BRACKET, INTRADAY, STOPLOSS_LIMIT order and5.
display the order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.BRACKET,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.STOPLOSS_LIMIT,
 quantity=1,
 price=ltp-1,
 trigger_price=ltp-1,
 stoploss=2,
 target=2,
 trailing_stoploss=1)
>>> order2_id

We get the following output (your output may differ):

'200226003620023'

Fetch and display the order status:6.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'TRIGGER PENDING'

Fetch and display the order status again after some time:7.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'COMPLETE'

Placing Bracket and Cover Orders on the Exchange Chapter 7

[286]

How it works...
In step 1, you use the get_instrument() method of the BrokerConnectionZerodha
class to fetch an instrument and assign it to a new attribute, instrument. This object is an
instance of the Instrument class. The two parameters needed to call get_instrument are
the exchange ('NSE') and the trading-symbol ('RBLBANK').

In step 2, you fetch the LTP of the instrument using the get_ltp() method of the
BrokerConnectionZerodha class and assign it to a new attribute, ltp.
The instrument object is passed as the parameter here. Next, you use
the place_order() method of the broker_connection object to place a BUY, REGULAR,
INTRADAY, STOPLOSS_LIMIT order on the exchange. The place_order() method is a
wrapper on the broker-specific place order API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the type, BrokerOrderTransactionTypeConstants. We pass
BrokerOrderTransactionTypeConstants.BUY here.
order_type: This is the order type and should be an enum of the type,
BrokerOrderTypeConstants. We pass
BrokerOrderTypeConstants.BRACKET here.
order_code: This is the order code and should be an enum of the type,
BrokerOrderCodeConstants. We pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: This is the order variety and should be an enum of the type,
BrokerOrderVarietyConstants. We pass
BrokerOrderVarietyConstants.STOPLOSS_LIMIT here.
quantity: This is the number of shares to be traded for the given instrument and
should be a positive integer. We pass 1 here.
price: This is the limit price at which the order should be placed. We
pass ltp+1 here, which means 1 unit price above ltp.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[287]

trigger_price: This is the trigger price at which the order should be placed.
We pass ltp+1 here, which means 1 unit price above ltp.
stoploss: This is the price difference from the initial order price, at which the
stoploss order should be placed. It should be a positive int or float value. We
pass 2 here.
target: This is the price difference from the Initial Order price, at which the
Target Order should be placed. It should be a positive int or float value. We
pass 2 here.
trailing_stoploss: This is the price difference by which the stoploss order
should be modified every time the market price moves in the direction of the
target order. We pass 1 here.

(The attributes passed to the place_order() method are broker-agnostic constants,
imported earlier from the pyalgotrading.constants module.)

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string. If the order placement is not
successful for some reason, you may not get an order ID. Observe that
the price and trigger_price parameters are passed a value of ltp+1. This means the
order is placed above the market price, which is a necessary condition for placing buy
stoploss-limit orders. The stoploss parameter is specified as 2. This means the stoploss
order would be placed at the price that is two price units lower than the execution price of
the initial order. Similarly, the target parameter is specified as 2. This means the target
order would be placed at the price that is two price units higher than the execution price of
the initial order. Finally, the trailing_stoploss parameter is specified as 1. This means,
after the stoploss order is placed, the stoploss order would be modified and placed at a
price higher than the previous price by one unit, every time the market price increases in
multiples of one unit from the price of the initial order.

So, for example, let's say the market price for the instrument was 100 at the time of placing
this order, and so the target and stoploss orders would be placed at 102 and 98 respectively.
Suppose the market price reaches 101, which is one unit higher than 100, then the stoploss
order would be modified and placed at 99, which is again one unit higher than its previous
price. By doing so, you have reduced your maximum loss from 2 to 1.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[288]

In step 3, you fetch the status of the placed order using the get_order_status() method
of the broker_connection object. You pass order1_id as a parameter to the
get_order_status() method. You get the order status as 'TRIGGER PENDING', a string.
You can use order1_id to fetch the status of the placed order at any later point of time as
well. In step 4, you fetch the order status again, and if the order is completed, you get the
order status as 'COMPLETE'. Immediately after this, the target and stoploss orders are
placed, at the prices mentioned earlier. The target order executes as a regular limit order.
The stoploss order executes as a regular stoploss-limit order. When one of them gets
executed and reaches the 'COMPLETE' state, the other order is automatically canceled by
the broker, so it moves to the 'CANCELLED' state. Recall, both target and stoploss orders
are on opposite sides of the initial order, so both target and stoploss orders cannot execute
at the same time. The stoploss order may be modified by one price unit, as mentioned
earlier.

In step 3, if you see the status as 'COMPLETE' instead of 'TRIGGER
PENDING', this could be due to high volatility. If you want the order to
stay in the 'TRIGGER PENDING' state for a while, try placing the order
further away from the market price.
The following are references to more details on the execution of the target
order and stoploss order:

Initial order: Refer to the Placing a regular stoploss-limit
order recipe in the previous chapter.
Target order: Refer to the Placing a regular limit order recipe in
the previous chapter.
Stoploss order: Refer to the Placing a regular stoploss-limit
order recipe chapter in the previous chapter.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[289]

You can verify the successful placement of your order by logging in to the broking website
and checking the orders section there. You should see data similar to the screenshots shown
in the Placing bracket limit orders on the exchange recipe.

The other steps in this recipe follow the same pattern of placing an order and getting its
status for a different combination of attributes:

Steps 5, 6, and 7: The SELL, BRACKET, INTRADAY, STOPLOSS_LIMIT order

Placing a cover market order
Cover orders are complex orders that are meant to help to limit the loss within predefined
values if trade becomes unfavorable. A cover order is essentially a combination of two
regular orders together—an initial order and a stoploss order:

Initial order: This order can be equivalent to a regular market order or regular
limit order, depending on whether you are placing a cover market order or cover
limit order. Once the order moves to the 'COMPLETE' state, the stoploss order is
placed, which is described next.
Stoploss order: This order is equivalent to a regular stoploss-market order (the
Placing a regular stoploss-market order recipe in the previous chapter), with the
specified trigger price value as its trigger price and a transaction type
opposite to that of the initial order. For a buy initial order, the stoploss order is
placed at a lower price than the initial order. This would be vice versa for a sell
initial order. The quantity matches that of the initial order. So, if this order
executes, it exits the position created by the initial order.

Since the stoploss order is placed to cover the initial order from making unexpected losses,
this order is called a cover order. Usually, the broker won't allow canceling the stoploss
order once it is placed. It can only be exited via completion.

A cover order is usually meant for intraday trading unless otherwise supported by the
broker. If the initial order or the stoploss order is not completed by the end of the trading
session, they are automatically canceled or exited by the broker.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[290]

The following flowchart summarizes the preceding points and explains the working of a
cover order:

You can use the cover market order when a cover order has to be placed at the market
price.

This recipe demonstrates placing the following cover market orders and querying their
statuses:

The BUY, COVER, INTRADAY, MARKET order
The SELL, COVER, INTRADAY, MARKET order

Placing Bracket and Cover Orders on the Exchange Chapter 7

[291]

The following are references to the state machine diagrams for a cover
market order:

Initial order: Refer to the state machine diagram from
the Placing a regular market order recipe in the previous chapter.
Stoploss order: Refer to the state machine diagram from
the Placing a regular stoploss-market order recipe in the previous
chapter.

Getting ready
Make sure the broker_connection object and constants
from the pyalgotrading package are available in your Python namespace. Refer to
the Technical requirements section of this chapter to set up this object.

How to do it…
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE',
 'BANKBARODA')

Fetch the LTP. Place a BUY, COVER, INTRADAY, MARKET order and display the2.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order1_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type=\
 BrokerOrderTransactionTypeConstants.BUY,
 order_type=BrokerOrderTypeConstants.COVER,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.MARKET,
 quantity=1,
 trigger_price=ltp-1)
>>> order1_id

Placing Bracket and Cover Orders on the Exchange Chapter 7

[292]

We get the following output (your output may differ):

'200303003717532'

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'COMPLETE'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshots (some data
may differ for you):

The following screenshot shows the initial order:

The following screenshot shows the stoploss order:

Placing Bracket and Cover Orders on the Exchange Chapter 7

[293]

Fetch the LTP. Place a SELL, COVER, INTRADAY, MARKET order and display the4.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.COVER,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.MARKET,
 quantity=1,
 trigger_price=ltp+1)
>>> order2_id

We get the following output (your output may differ):

'200303003732941'

Fetch and display the order status:5.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'TRIGGER PENDING'

Placing Bracket and Cover Orders on the Exchange Chapter 7

[294]

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshots (some data
may differ for you):

The following screenshot shows the initial order:

The following screenshot shows the stoploss order:

Placing Bracket and Cover Orders on the Exchange Chapter 7

[295]

How it works...
In step 1, you use the get_instrument() method of the
BrokerConnectionZerodha class to fetch an instrument and assign it to a new
attribute, instrument. This object is an instance of the Instrument class. The two
parameters needed to call get_instrument are the exchange ('NSE') and the trading-
symbol ('BANKBARODA').

In step 2, you fetch the LTP of the instrument using the get_ltp() method of the
BrokerConnectionZerodha class and assign it to a new attribute, ltp.
The instrument object is passed as the parameter here. Next, you use
the place_order() method of the broker_connection object to place a BUY, COVER,
INTRADAY, MARKET order on the exchange. The place_order() method is a wrapper on
the broker-specific place order API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the type, BrokerOrderTransactionTypeConstants. We pass
BrokerOrderTransactionTypeConstants.BUY here.
order_type: This is the order type and should be an enum of the type,
BrokerOrderTypeConstants. We pass
BrokerOrderTypeConstants.COVER here.
order_code: This is the order code and should be an enum of the type,
BrokerOrderCodeConstants. We pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: This is the order variety and should be an enum of the type,
BrokerOrderVarietyConstants. We pass
BrokerOrderVarietyConstants.MARKET here.
quantity: This is the number of shares to be traded for the given instrument and
should be a positive integer. We pass 1 here.
trigger_price: This is the trigger price for the Stoploss Order. We pass
ltp-1 here, which means one unit price below ltp.

(The attributes passed to the place_order() method are broker-agnostic constants,
imported earlier from the pyalgotrading.constants module.)

Placing Bracket and Cover Orders on the Exchange Chapter 7

[296]

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string. If the order placement is not
successful for some reason, you may not get an order ID. Observe that the
trigger_price parameter is passed a value of ltp-1. This means the stoploss order is
placed below the market price, which is a necessary condition for placing sell stoploss-
market orders.

In step 3, you fetch the status of the placed order using the get_order_status() method
of the broker_connection object. You pass order1_id as a parameter
to the get_order_status() method. You get the order status as 'COMPLETE', a string.
Immediately after this, the stoploss order is placed, at the price mentioned earlier. This
order is then executed as a regular stoploss-market order.

If the stoploss order is executed at any point in time, it would mean your trade has incurred
a loss, but has safe-guarded you from making more losses. The stoploss order transitions to
the 'COMPLETE' state and the position created by the cover order is exited. You can also
verify the successful placement of your order by logging in to the broking website and
checking the orders section there. You should see data similar to the screenshot shown in
the output of step 3.

The following are references to more details on the execution of stoploss
orders:

Initial order: Refer to the Placing a regular market order recipe in
the previous chapter.
Stoploss order: Refer to the Placing a regular stoploss-market
order recipe in the previous chapter.

The other steps in this recipe follow the same pattern of placing an order and getting its
status for a different combination of attributes:

Steps 4 and 5: The SELL, COVER, INTRADAY, MARKET order

Placing a cover limit order
Cover orders are complex orders that are meant to help to limit the loss within predefined
values if trade becomes unfavorable. A cover order is essentially a combination of two
regular orders—an initial order and a stoploss order, which act together to help to limit the
loss in case trade becomes unfavorable.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[297]

Please refer to the introduction of the Placing a cover market order recipe for an in-depth
understanding of the working of cover orders. You can use a cover limit order if you want
to place a buy cover order below the market price or a sell cover order above the market
price. This recipe demonstrates the placing of the following cover limit orders and querying
their statuses:

The BUY, COVER, INTRADAY, LIMIT order
The SELL, COVER, INTRADAY, LIMIT order

The following are references to the state machine diagrams for a cover
limit order:

Initial order: Refer to the state machine diagram from
the Placing a regular limit order recipe in the previous chapter.
Stoploss order: Refer to the state machine diagram from
the Placing a regular stoploss-market order recipe in the previous
chapter.

Getting ready
Make sure the broker_connection object and constants from
the pyalgotrading package are available in your Python namespace. Refer to the Technical
requirements section of this chapter to set up this object.

How to do it…
We execute the following steps for this recipe:

Fetch a financial instrument and assign it to instrument:1.

>>> instrument = broker_connection.get_instrument('NSE', 'YESBANK')

Fetch the LTP. Place a BUY, COVER, INTRADAY, LIMIT order and display the order2.
ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order1_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type= \
 BrokerOrderTransactionTypeConstants.BUY,

Placing Bracket and Cover Orders on the Exchange Chapter 7

[298]

 order_type=BrokerOrderTypeConstants.COVER,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp-0.5,
 trigger_price=ltp-1)
>>> order1_id

We get the following output:

'200303003749622’

Fetch and display the order status:3.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'OPEN'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshots (some data
may differ for you):

The following screenshot shows the initial order:

Placing Bracket and Cover Orders on the Exchange Chapter 7

[299]

The following screenshot shows the stoploss order:

Fetch and display the order status again after some time:4.

>>> broker_connection.get_order_status(order1_id)

We get the following output:

'COMPLETE'

Fetch the LTP. Place a SELL, COVER, INTRADAY, LIMIT order and display the5.
order ID:

>>> ltp = broker_connection.get_ltp(instrument)
>>> order2_id = broker_connection.place_order(
 instrument=instrument,
 order_transaction_type=\
 BrokerOrderTransactionTypeConstants.SELL,
 order_type=BrokerOrderTypeConstants.COVER,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety= \
 BrokerOrderVarietyConstants.LIMIT,
 quantity=1,
 price=ltp+0.5,
 trigger_price=ltp+1)
>>> order2_id

Placing Bracket and Cover Orders on the Exchange Chapter 7

[300]

We get the following output (your output may differ):

'200303003751757'

Fetch and display the order status:6.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'OPEN'

If you log in to the broker site with your credentials and go to the orders section,
you can find your order details as shown in the following screenshots (some data
may differ for you):

The following screenshot shows the initial order:

The following screenshot shows the stoploss order:

Placing Bracket and Cover Orders on the Exchange Chapter 7

[301]

Fetch and display the order status:7.

>>> broker_connection.get_order_status(order2_id)

We get the following output:

'COMPLETE'

How it works...
In step 1, you use the get_instrument() method of the
BrokerConnectionZerodha class to fetch an instrument and assign it to a new
attribute, instrument. This object is an instance of the Instrument class. The two
parameters needed to call get_instrument are the exchange ('NSE') and the trading-
symbol ('YESBANK').

Placing Bracket and Cover Orders on the Exchange Chapter 7

[302]

In step 2, you fetch the LTP of the instrument using the get_ltp() method of the
BrokerConnectionZerodha class and assign it to a new attribute, ltp.
The instrument object is passed as the parameter here. Next, you use
the place_order() method of the broker_connection object to place a BUY, COVER,
INTRADAY, LIMIT order on the exchange. The place_order() method is a wrapper on the
broker-specific place order API. It takes the following attributes:

instrument: This is the financial instrument for which the order must be placed
and should be an instance of the Instrument class. We pass instrument here.
order_transaction_type: This is the order transaction type and should be an
enum of the type, BrokerOrderTransactionTypeConstants. We pass
BrokerOrderTransactionTypeConstants.BUY here.
order_type: This is the order type and should be an enum of the type,
BrokerOrderTypeConstants. We pass
BrokerOrderTypeConstants.COVER here.
order_code: This is the order code and should be an enum of the type,
BrokerOrderCodeConstants. We pass
BrokerOrderCodeConstants.INTRADAY here.
order_variety: This is the order variety and should be an enum of the type,
BrokerOrderVarietyConstants. We pass
BrokerOrderVarietyConstants.LIMIT here.
quantity: This is the number of shares to be traded for the given instrument and
should be a positive integer. We pass 1 here.
price: This is the limit price for the Initial Order. We pass ltp-0.5 here, which
means 0.5 unit of a price below ltp.
trigger_price: This is the trigger price for the Stoploss Order. We pass
ltp-1 here, which means one unit price below ltp.

(The attributes passed to the place_order() method are broker-agnostic constants,
imported earlier from the pyalgotrading.constants module.)

On placing the order in step 2, you get an order ID from the broker, which you assign to a
new attribute, order1_id. The order1_id object is a string. If the order placement is not
successful for some reason, you may not get an order ID. Observe that the price parameter
is passed a value of ltp-0.5. This means the initial order is placed below the market price,
which is a necessary condition for placing buy limit orders. Also, observe that
the trigger_price parameter is passed a value of ltp-1. This means the stoploss order is
placed below price (which will be the market price at the time of placing the stoploss
order), which is a necessary condition for placing sell stoploss-market orders.

Placing Bracket and Cover Orders on the Exchange Chapter 7

[303]

In step 3, you fetch the status of the placed order using the get_order_status() method
of the broker_connection object. You pass order1_id as a parameter
to the get_order_status() method. You get the order status as 'OPEN', a string. You can
use order1_id to fetch the status of the placed order at any later point of time as well.
In step 4, you fetch the order status again, and if the order is completed, you get the order
status as 'COMPLETE'. Immediately after this, the stoploss order is placed, at the price
mentioned earlier. This order is then executed as a regular stoploss-market order.

If the stoploss order is executed at any point in time, it would mean your trade has incurred
a loss, but has safe-guarded you from making more losses. The stoploss order transitions to
the 'COMPLETE' state and the position created by the cover order is exited. You can also
verify the successful placement of your order by logging in to the broking website and
checking the orders section there. You should see data similar to the screenshot shown in
the output of step 3.

The following are references to more details on the execution of the initial
order and stoploss order:

Initial order: Refer to the Placing a regular limit order recipe in
the previous chapter.
Stoploss order: Refer to the Placing a regular stoploss-market
order recipe in the previous chapter.

The other steps in this recipe follow the same pattern of placing an order and getting its
status for a different combination of attributes:

Steps 4 and 5: The SELL, COVER, INTRADAY, LIMIT order

8
Algorithmic Trading Strategies

– Coding Step by Step
It is a complex task to build your own algorithmic trading strategies. A trading platform
with numerous components is required to test and run your strategy. Some of these
components are the compute engine, real-time data feeds, broker connectivity, blotter, fund
manager, clocks, a virtual order-management system, and so on.

In this chapter, you will be using the services provided by AlgoBulls, an algorithmic
trading platform (https:/ ​/​algobulls. ​com). This platform provides a Python package
called pyalgotrading (https:/ ​/​github. ​com/​algobulls/ ​pyalgotrading). You will code
your strategy as a Python class by subclassing the StrategyBase abstract class provided in
the package. The abstract class acts as a template for developing and validating new
strategies quickly with minimal effort. You can use the AlgoBulls platform to perform
backtesting, paper trading, and real trading on your strategy. The pyalgotrading package
helps us focus on developing the strategy and takes care of talking to the AlgoBulls
platform for execution purposes.

This chapter introduces two strategies:

EMA-Regular-Order strategy: This strategy is based on the technical indicator
exponential moving average. It uses regular orders.
MACD-Bracket-Order strategy: This strategy is based on the technical indicator
moving average convergence divergence. It uses bracket orders.

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[305]

Initially, you may find strategy coding a daunting task. Therefore, the coding part is
divided into five recipes. Each recipe demonstrates one or more methods enforced by the
StrategyBase class. The sixth recipe demonstrates how to upload the strategy to the
AlgoBulls platform.

The skeleton for a strategy looks as shown:

class MyCustomStrategy(StrategyBase):
 def __init__(self, *args, **kwargs): # [Recipes 1, 7]
 ...
 def name(): # [Recipes 1, 7]
 …
 def versions_supported(): # [Recipes 1, 7]
 ...
 def initialize(self): # [Recipes 1, 7]
 ...
 def strategy_select_instruments_for_entry(self, candle,
 instruments_bucket):
 … # [Recipes 2, 8]
 def strategy_enter_position(self, candle, instrument, sideband_info):
 … # [Recipes 3, 9]
 def strategy_select_instruments_for_exit(self, candle,
 instruments_bucket):
 … # [Recipes 4, 10]
 def strategy_exit_position(self, candle, instrument, sideband_info):
 … # [Recipes 5, 11]

The AlgoBulls core engine is the trading engine powering the AlgoBulls platform. It is
responsible for reading your strategies and executing them for backtesting, paper trading,
and real trading. The AlgoBulls core engine uses the following flowchart for executing your
strategy successfully:

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[306]

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[307]

In this chapter, we will cover the following recipes:

EMA-Regular-Order strategy – coding the __init__, initialize, name, and
versions_supported methods
EMA-Regular-Order strategy – coding the strategy_select_instruments_for_entry
method
EMA-Regular-Order strategy – coding the strategy_enter_position method
EMA-Regular-Order strategy – coding the strategy_select_instruments_for_exit
method
EMA-Regular-Order strategy – coding the strategy_exit_position method
EMA-Regular-Order strategy – uploading the strategy onto the AlgoBulls trading
platform
MACD-Bracket-Order strategy – coding the __init__, initialize, name, and
versions_supported methods
MACD-Bracket-Order strategy – coding the
strategy_select_instruments_for_entry method
MACD-Bracket-Order strategy – coding the strategy_enter_position method
MACD-Bracket-Order strategy – coding the strategy_select_instruments_for_exit
method
MACD-Bracket-Order strategy – coding the strategy_exit_position method
MACD-Bracket-Order strategy – uploading the strategy onto AlgoBulls trading
platform

Technical requirements
You will need the following to execute the recipes in this chapter:

Python 3.7+
Python packages:

pyalgotrading ($ pip install pyalgotrading)
pyalgostrategypool ($ pip install pyalgostrategypool)
TA-Lib ($ pip install TA-Lib)

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[308]

If you face errors while installing TA-Lib, it will mostly be due to missing dependencies.
You can follow these instructions to fix the issue:

For Mac OS X, use the following:

$ brew install ta-lib

For Windows, use the following instructions:

You can install the latest TA-Lib binary from https:/ ​/​www. ​lfd. ​uci.​edu/
~gohlke/ ​pythonlibs/ ​#ta- ​lib based on your Windows build (32 bit/64 bit) and
Python version. So, for example, this link on the
site, TA_Lib‑0.4.18‑cp38‑cp38‑win_amd64.whl, is for TA-Lib version 0.4.18
(TA_Lib-0.4.18) and Python version 3.8 (cp38), and is Windows 64-bit-
compatible (win_amd64).

For Linux, take the following steps:

Download this gzip file—http:/ ​/​prdownloads. ​sourceforge. ​net/ ​ta-​lib/ ​ta-
lib-​0. ​4. ​0-​src. ​tar. ​gz—and run the following commands from your Linux
Terminal:

Extract the downloaded gzip file containing the source code for TA-Lib:1.

$ tar -xzf ta-lib-0.4.0-src.tar.gz

Change your current working directory to the extracted folder:2.

$ cd ta-lib/

Run the configure command to configure TA-Lib for your machine:3.

$./configure --prefix=/usr

Run the make command to build TA-Lib from the downloaded source code:4.

$ make

Run the install command to install built executables and libraries to5.
specific directories on your machine:

$ sudo make install

https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
https://download.lfd.uci.edu/pythonlibs/w3jqiv8s/TA_Lib-0.4.18-cp39-cp39-win_amd64.whl
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[309]

If this doesn't help and you still get errors, please refer to the official TA-Lib GitHub page
at https:/​/​github. ​com/ ​mrjbq7/ ​ta- ​lib#dependencies. The latest Jupyter notebook for this
chapter can be found on GitHub at https:/ ​/​github. ​com/​PacktPublishing/ ​Python-
Algorithmic-​Trading- ​Cookbook/ ​tree/ ​master/ ​Chapter08.

The following code will help you import the necessary modules that are used by all the
recipes in this chapter. Please make sure you have followed this step before trying out any
of the recipes:

>>> from pyalgotrading.strategy.strategy_base import StrategyBase
>>> from pyalgotrading.constants import *

In the first five recipes, you will create a complete algorithmic trading strategy based on the
EMA technical indicator. This strategy is called the EMA-Regular-Order strategy and is
described as follows:

Technical indicators:
EMA(timeperiod=4) or EMA4
EMA(timeperiod=9) or EMA9

While the typical values of the time periods are 4 and 9, both of the time periods
are taken as parameters, so they can be changed at runtime without having to
recreate the strategy again. This is discussed more in the first recipe of this
chapter.

Order attributes:
Order transaction type: BUY and SELL
Order type: Regular
Order code: INTRADAY
Order variety: Market

Strategy algorithm:
Whenever EMA4 crosses EMA9 upward, note the following:

The previous SHORT position, if present, should be exited.
A BUY signal is generated by the strategy and a new LONG position
should be entered.

Whenever EMA4 crosses EMA9 downward, note the following:
The previous LONG position, if present, should be exited.
A SELL signal is generated by the strategy and a new SHORT position
should be entered.

https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/mrjbq7/ta-lib#dependencies
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter08

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[310]

You will code the entire logic as a single Python class called StrategyEMARegularOrder.
This class will be a subclass of StrategyBase from the pyalgotrading package. After
uploading StrategyEMARegularOrder on the AlgoBulls platform, you can backtest (refer
to the first six recipes of Chapter 9, Backtesting Strategies), paper trade (refer to the first five
recipes of Chapter 10, Paper Trading), and real trade (refer to the first five recipes of
Chapter 11, Real Trading) on this strategy.

In the seventh to eleventh recipes, you will create a complete algorithmic trading strategy
based on the MACD technical indicator. This strategy is called as the MACD-Bracket-
Order strategy and is described as follows:

Technical indicators:
MACD: This technical indicator has three components: the MACD line,
MACD signal, and MACD histogram. We are concerned only with the
MACD line and MACD signal components for this strategy.

Order attributes:
Order transaction type: BUY and SELL
Order type: Bracket
Order code: INTRADAY
Order variety: Limit

Strategy algorithm:
Whenever the MACD line crosses the MACD signal upward, note the
following:

The previous SHORT position, if present, should be exited.
A BUY signal is generated by the strategy and a new LONG position
should be entered.

Whenever the MACD line crosses the MACD signal downward, note the
following:

The previous LONG position, if present, should be exited.
A SELL signal is generated by the strategy and a new SHORT position
should be entered.

You will code the entire logic as a single Python class, called
StrategyMACDBracketOrder. This class will be a subclass of StrategyBase from the
pyalgotrading package. After uploading StrategyMACDBracketOrder onto the
AlgoBulls platform, you can backtest (refer to the seventh to twelfth recipes of Chapter 9,
Algorithmic Trading – Backtesting), paper trade (refer to the seventh to twelfth recipes
of Chapter 10, Algorithmic Trading – Paper Trading), and real trade (refer to the seventh to
eleventh recipes of Chapter 11, Algorithmic Trading – Real Trading) on this strategy.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[311]

For more information on these topics, please refer to the following
corresponding chapters:

Technical indicators: Chapter 5, Computing and Plotting
Technical Indicators
Order attributes: Chapter 6, Placing Regular Orders on the
Exchange and Chapter 7, Placing Bracket and Cover Orders on the
Exchange.

You need to set up your account on the AlgoBulls platform (https:/ ​/
algobulls. ​com) to get your API token. Setting up an account is free. Using
its services might incur charges depending on your usage. You can start
with free packages on the site. Refer to Appendix II for more details.

EMA-Regular-Order strategy – coding the
__init__, initialize, name, and
versions_supported methods
This recipe demonstrates the initial coding of the StrategyEMARegularOrder class. The
complete class will be coded by the end of the EMA-Regular-Order strategy – coding the
strategy_exit_position method recipe of this chapter. In this recipe, you will code the following
methods:

__init__()

initialize()

name()

versions_supported()

To learn more about the EMA technical indicator, please refer to the Trend indicator –
exponential moving average recipe of Chapter 5, Computing and Plotting Technical Indicators.

Please refer to the flowchart in the introduction of this chapter to
understand how the AlgoBulls core engine calls the __init__() and
initialize() methods during strategy execution.

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[312]

Getting ready
Make sure you have the StrategyBase and pyalgotrading constants in your Python
namespace. Refer to the Technical requirements section of this chapter to set it up.

How to do it…
Create a new class named StrategyEMARegularOrder, which will be a subclass from
StrategyBase and then define the required four methods:

class StrategyEMARegularOrder(StrategyBase):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.timeperiod1 = self.strategy_parameters['timeperiod1']
 self.timeperiod2 = self.strategy_parameters['timeperiod2']
 self.main_order = None
 def initialize(self):
 self.main_order = {}
 @staticmethod
 def name():
 return 'EMA Regular Order Strategy'
 @staticmethod
 def versions_supported():
 return AlgoBullsEngineVersion.VERSION_3_2_0

How it works…
In this recipe, we create the StrategyEMARegularOrder class, subclassed from
StrategyBase. We define four methods for this class and describe them as follows:

The __init__() method: This is the first thing to do when you create a new
strategy. First, you create this method and call the parent class __init__()
method using super(). This helps the AlgoBulls core engine create the
necessary data structures needed for further development of the strategy. Next,
you create two new attributes from
self.strategy_parameters—self.timeperiod1 and self.timeperiod2.
self.strategy_parameters is a dictionary object available for every strategy
subclassed from StrategyBase. (The second recipe of Chapter 8, Backtesting
Strategies, discusses how these values are passed at runtime to
self.strategy_parameters.) You will use these parameters as time periods of
both the EMAs in the next recipe.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[313]

Lastly, you create a new attribute, self.main_order, which is an empty
dictionary. We will use this to save the handles to all the open orders placed
during the execution of this strategy.

The initialize() method: This method is called at the beginning of every
market day to initialize any internal variables to their default state. For real
trading and paper trading, this method is called once. For multi-day backtesting,
this method is called multiple times, once at the beginning of every new trading
day. In this method, you initialize self.main_order to an empty dictionary.
The name() method: This is a static method, which returns the name of this
strategy. This is used while availing backtesting, paper trading, and real trading
services on this strategy. In this method, you simply return a string,
Exponential Moving Average Regular Order. You can return any string of
your choice.
The versions_supported() method: This static method is used for returning
the AlgoBulls core engine version for which this strategy has been created. Often,
as new upgrades come to the AlgoBulls core engine, some backward-
incompatible changes may get introduced. This method helps to ensure this
strategy is run on the correct version of the AlgoBulls core engine at all times. In
this method, you return the highest available version from the constants module,
which at the time of writing this chapter is VERSION_3_2_0.

These four methods are mandatory; they are enforced by the StrategyBase base class and
cannot be skipped.

EMA-Regular-Order strategy – coding the
strategy_select_instruments_for_entry
method
In this recipe, you continue coding the StrategyEMARegularOrder class. Here, you code
the strategy_select_instruments_for_entry() method, a mandatory method
enforced by the StrategyBase base class. This method is called by the AlgoBulls core
engine on every new candle for backtesting, paper trading, and real trading services.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[314]

Please refer to the flowchart in the introduction of this chapter to
understand how the AlgoBulls core engine calls the
strategy_select_instruments_for_entry() method during
strategy execution.

Getting ready
Make sure you have followed the preceding recipe to create the
StrategyEMARegularOrder class before starting this recipe.

How to do it…
Continue coding the StrategyEMARegularOrder class. We need to define two new
methods—a method for getting the crossover value between the MACD line and MACD
history signals and a method for selecting instruments from instruments_bucket for
entering a new position based on the computed crossover value:

class StrategyEMARegularOrder(StrategyBase):
 # Previous methods not shown
 def get_crossover_value(self, instrument):
 hist_data = self.get_historical_data(instrument)
 ema_x = talib.EMA(hist_data['close'], timeperiod=self.timeperiod1)
 ema_y = talib.EMA(hist_data['close'], timeperiod=self.timeperiod2)
 crossover_value = self.utils.crossover(ema_x, ema_y)
 return crossover_value
 def strategy_select_instruments_for_entry(self, candle,
 instruments_bucket):
 selected_instruments_bucket = []
 sideband_info_bucket = []
 for instrument in instruments_bucket:
 crossover_value = self.get_crossover_value(instrument)
 if crossover_value == 1:
 selected_instruments_bucket.append(instrument)
 sideband_info_bucket.append({'action': 'BUY'})
 elif crossover_value == -1:
 if self.strategy_mode is StrategyMode.INTRADAY:
 selected_instruments_bucket.append(instrument)
 sideband_info_bucket.append({'action': 'SELL'})
 return selected_instruments_bucket, sideband_info_bucket

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[315]

How it works…
In this recipe, we continue coding the StrategyEMARegularOrder class. We define two
new methods for this class, described as follows:

The get_crossover_value() method: This method takes instrument as an
argument (along with self). This is the financial instrument for which the
crossover value has to be computed. You fetch the latest historical data using the
self.get_historical_data() method and assign it to a new
attribute, hist_data. We pass instrument as the argument to this method. The
hist_data attribute is a pandas.DataFrame object with timestamp, open,
high, low, close, and volume columns. The default duration of the fetched
historical data is the last 15 days.

You compute EMA on the close of hist_data using the talib.EMA function, for
a time period of self.timeperiod1, and assign it to ema_x. This data is a
pandas.Series object. (Refer to the second recipe of Chapter 5, Computing and
Plotting of Technical Indicators, for more details on the computation of EMA.)
Similarly, you compute EMA on the close of hist_data for a time period of
self.timeperiod2 and assign it to ema_y. This return data is again a
pandas.Series object.

You compute the crossover value between ema_x and ema_y using
self.utils.crossover(ema_x, ema_y) and assign it to a new attribute,
crossover_value. The crossover() function call works as follows:

It takes two iterables as input. We pass ema_x and ema_y here.
If ema_x crosses ema_y upward, the crossover function returns 1.
If ema_x crosses ema_y downward, the crossover function returns -1.
If there is no crossover between ema_x and ema_y, then the crossover
function returns 0.

Finally, you return crossover_value.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[316]

The strategy_select_instruments_for_entry() method: This method
takes two arguments, other than self—candle, an object of
the CandleTime type that contains the timestamp of the current candle, and
instruments_bucket, an object of the SetInstruments type that contains all
the financial instruments available for creating a new position. We pass this data
at the time of strategy execution. You create two empty lists,
selected_instruments_bucket and sideband_info_bucket. Then you run
a for loop over instruments_bucket, and for each instrument, you call
self.get_crossover_value() and save its value to a new attribute,
crossover_value. Based on the value of crossover_value, you make a
decision, as follows:

If crossover_value is 1, it means the strategy is giving a BUY signal. You
do the following:

Append instrument to selected_instruments_bucket.
Append an {'action': 'BUY'} dictionary to the
sideband_info_bucket attribute.

If crossover_value is -1, it means the strategy is giving a SELL signal.
You do the following:

Append instrument to selected_instruments_bucket.
Append an {'action': 'SELL'} dictionary to the
sideband_info_bucket attribute.

If crossover_value is neither 1 nor -1, it means the strategy is not giving
any signals. You do nothing here.

Finally, you return both the attributes: selected_instruments_bucket and
sideband_info_bucket. These attributes may have been populated or may
remain as empty lists.

Recall that the strategy_select_instruments_for_entry() method is called for every
candle, so the preceding steps are repeated for every new candle. In the appropriate candle,
you would get a BUY or a SELL signal, and in the others, you won't get any signal. Based on
the signal, you can place the appropriate order, which is discussed in the next recipe.

The strategy_select_instruments_for_entry() method is enforced
by the StrategyBase base class and has to be defined for every strategy.
The get_crossover_value() method is a helper method, meaning it is
not enforced by the StrategyBase base class. You may choose not to
define this or to define multiple of these helper functions.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[317]

EMA-Regular-Order strategy – coding the
strategy_enter_position method
In this recipe, you continue with the coding of the StrategyEMARegularOrder class.
Here, you code the strategy_enter_position() method, a mandatory method enforced
by the StrategyBase base class. This method is called by the AlgoBulls core engine every
time the strategy_select_instruments_for_entry method returns non-empty data.
This method may not be called for every new candle for backtesting, paper trading, and
real trading services.

Please refer to the flowchart in the introduction of this chapter to
understand how the AlgoBulls core engine calls the
strategy_enter_position() method during strategy execution.

Getting ready
Make sure you have followed the preceding recipe before starting this recipe.

How to do it…
Continue coding the StrategyEMARegularOrder class. We need to define a method to
punch new orders for a given instrument and enter a new position:

class StrategyEMARegularOrder(StrategyBase):
 # Previous methods not shown
 def strategy_enter_position(self, candle, instrument, sideband_info):
 if sideband_info['action'] == 'BUY':
 qty = self.number_of_lots * instrument.lot_size
 self.main_order[instrument] = \
 self.broker.BuyOrderRegular(instrument=instrument,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety=BrokerOrderVarietyConstants.MARKET,
 quantity=qty)
 elif sideband_info['action'] == 'SELL':
 qty = self.number_of_lots * instrument.lot_size
 self.main_order[instrument] = \
 self.broker.SellOrderRegular(instrument=instrument,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety=BrokerOrderVarietyConstants.MARKET,
 quantity=qty)

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[318]

 else:
 raise SystemExit(f'Got invalid sideband_info value:
 {sideband_info}')
 return self.main_order[instrument]

How it works…
In this recipe, we continue coding the StrategyEMARegularOrder class. We define a new
method for this class, strategy_enter_position(), described as follows:

This method takes three arguments, other than self:
candle: An object of the CandleTime type that contains the timestamp of
the current candle.
instrument: An object of the Instrument type that represents a financial
instrument.
sideband_info: A dictionary object that holds information on trades to be
placed for the instrument attribute. This object looks like {'action':
[action_value]}, where [action_value] can be either 'BUY' or
'SELL'.

You calculate the quantity for order to be placed by multiplying
self.number_of_lots with instrument.lot_size and assign it to a new
attribute qty. The self.number_of_lots attribute holds information on the
number of lots to trade, which you can pass while executing this strategy. The
instrument.lot_size attribute holds lot_size for instrument, which is a
positive integer. For example, if number of lots is passed as 2 and lot size for
instrument is 10, then the quantity for the order would be 2 * 10 = 20.
If sideband_info is {'action': 'BUY'}, you place a Regular order of the
BUY transaction type by creating an instance of the
self.broker.BuyOrderRegular class (the first recipe of Chapter 6, Placing
Regular Orders on the Exchange) and assigning its value to
self.main_order[instrument].
If sideband_info is {'action': 'SELL'}, you place a Regular order of
the SELL transaction type by creating an instance of the
self.broker.SellOrderRegular class (the first recipe of Chapter 6, Placing
Regular Orders on the Exchange) and assigning its value to
self.main_order[instrument].

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[319]

In both cases, the self.main_order dictionary object holds the instrument and
order instances as a key-value pair. This will be useful later (in the EMA-Regular-Order
strategy – coding the strategy_exit_position method recipe) for exiting positions created by this
method.

The self.broker attribute is replaced by the appropriate broker instance at runtime by
the AlgoBulls core engine. So, the same code can work across all the brokers supported by
the AlgoBulls platform.

EMA-Regular-Order strategy – coding the
strategy_select_instruments_for_exit
method
In this recipe, you continue with the coding of the StrategyEMARegularOrder class.
Here, you code the strategy_select_instruments_for_exit() method, a mandatory
method enforced by the StrategyBase base class. This method is called by the AlgoBulls
core engine for every new candle for backtesting, paper trading, and real trading services if
there are any open positions.

Please refer to the flowchart in the introduction of this chapter to
understand how the AlgoBulls core engine calls the
strategy_select_instruments_for_exit() method during strategy
execution.

Getting ready
Make sure you have followed the preceding recipe before starting this recipe.

How to do it…
Continue coding the StrategyEMARegularOrder class. We need to define a new method
for selecting instruments from instruments_bucket for exiting an existing position based
on the computation of the crossover value:

class StrategyEMARegularOrder(StrategyBase):
 # Previous methods not shown
 def strategy_select_instruments_for_exit(self, candle,

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[320]

 instruments_bucket):
 selected_instruments_bucket = []
 sideband_info_bucket = []
 for instrument in instruments_bucket:
 if self.main_order.get(instrument) is not None:
 crossover_value = self.get_crossover_value(instrument)
 if crossover_value in [1, -1]:
 selected_instruments_bucket.append(instrument)
 sideband_info_bucket.append({'action': 'EXIT'})
 return selected_instruments_bucket, sideband_info_bucket

How it works…
In this recipe, we continue coding the StrategyEMARegularOrder class. We define a new
method for this class, strategy_select_instruments_for_exit(), described as
follows:

This method takes two arguments, other than self:
candle: An object of the CandleTime type that contains the timestamp of
the current candle.
instruments_bucket: An object of the SetInstruments type. This object
holds financial instruments that have been entered into a position earlier by
the strategy_enter_position() method.

You create two empty lists, selected_instruments_bucket and
sideband_info_bucket.
You run a for loop over instruments_bucket. For each instrument, you check
whether there is a position entered for the given instrument using the 'if
self.main_order.get(instrument) is not None:' line. You proceed only
if a position exists already.
You call self.get_crossover_value() and save its value to a new attribute,
crossover_value. Based on the value of crossover_value, you make a
decision, as follows:

If crossover_value is either 1 or -1, it means there has been a crossover.
You do the following:

Append the instrument attribute to
selected_instruments_bucket.
Append an {'action': 'EXIT'} dictionary to the
sideband_info_bucket attribute.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[321]

If crossover_value is neither 1 nor -1, it means the strategy is not giving
any signal. You do nothing here.

Finally, you return both the attributes: selected_instruments_bucket and
sideband_info_bucket. These attributes may have gotten populated or may
remain as empty lists.

Recall that the strategy_select_instruments_for_exit() method is called for every
candle, so the preceding steps are repeated for every new candle. In the appropriate candle,
if there is a position, you may get an EXIT signal, and in the others, you won't get any
signal. Based on the signal, you can exit the position by placing an appropriate order, which
is discussed in the next recipe.

EMA-Regular-Order strategy – coding the
strategy_exit_position method
In this recipe, you will continue with the coding of the StrategyEMARegularOrder class.
Here, you will code the strategy_exit_position() method, the last mandatory method
enforced by the StrategyBase base class. This method is called by the AlgoBulls core
engine every time the strategy_select_instruments_for_exit method returns non-
empty data. By the end of this recipe, you will have completed coding the
StrategyEMARegularOrder class.

Please refer to the flowchart in the introduction of this chapter to
understand how AlgoBulls core engine calls the
strategy_select_instruments_for_exit() method during strategy
execution.

Getting ready
Make sure you have followed the previous recipe before starting this recipe.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[322]

How to do it…
Continue coding the StrategyEMARegularOrder class. Define a method to the exit
position for a given instrument based on sideband_info:

class StrategyEMARegularOrder(StrategyBase):
 # Previous methods not shown
 def strategy_exit_position(self, candle, instrument, sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True
 return False

How it works…
In this recipe, we continue coding the StrategyEMARegularOrder class. We define a new
method for this class, strategy_exit_position(), described as follows:

This method takes three arguments, other than self:
candle: An object of CandleTime type that contains the timestamp of the
current candle.
instrument: An object of Instrument type that represents a financial
instrument.
sideband_info: A dictionary object that holds information on trades to be
placed for the instrument attribute. This object looks like {'action':
'EXIT'}.

If sideband_info is {'action': 'EXIT'}, do the following:
You fetch the order using self.main_order[instrument] (recall
that self.main_order is a dictionary that holds instruments and
corresponding order instances as key-value pairs.)
You exit the position for this order by calling its exit_position()
method.
You reset the value corresponding to the key instrument in
self.main_order as None. This indicates that there is no longer a position
open corresponding to instrument.
You return True, signaling to the AlgoBulls core engine that a position has
been exited for instrument in this call.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[323]

If sideband_info is not {'action': 'EXIT'}, you return False, signaling to
the AlgoBulls core engine that no position was not exited for instrument in this
call.

The self.broker attribute is replaced by the appropriate broker instance at runtime by
the AlgoBulls core engine. So, the same code can work across all the brokers supported by
the AlgoBulls platform.

You have now completed the coding for the StrategyEMARegularOrder class.

EMA-Regular-Order strategy – uploading the
strategy on the AlgoBulls trading platform
In this recipe, you will upload the strategy class, StrategyEMARegularOrder, which you
created in the preceding recipes, on the AlgoBulls trading platform. Once it is uploaded,
you can perform backtesting, paper trading, and real trading on the same code base.

Getting ready
Make sure you have set up your account on the AlgoBulls platform (https:/ ​/​algobulls.
com) to get your API token. Setting up an account is free. Using its services might incur
charges depending on your usage. You can start with free packages on the site. Refer to
Appendix II for more details.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> import inspect
>>> from pyalgotrading.algobulls import AlgoBullsConnection
>>> from pyalgostrategypool.strategy_ema_regular_order import
StrategyEMARegularOrder

Create a new AlgoBulls connection object:2.

>>> algobulls_connection = AlgoBullsConnection()

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[324]

Fetch the authorization URL:3.

>>> algobulls_connection.get_authorization_url()

We get the following output:

Please login to this URL with your AlgoBulls credentials and get
your developer access token: https://app.algobulls.com/user/login
'https://app.algobulls.com/user/login'

Log in to the preceding link with your AlgoBulls credentials, fetch your token,4.
and set it here (refer to Appendix II for more details):

>>>
algobulls_connection.set_access_token('80b7a69b168c5b3f15d56688841a
8f2da5e2ab2c')

Before uploading your strategy, you can inspect your strategy code to ensure you5.
are uploading the right strategy:

>>> print(inspect.getsource(StrategyEMARegularOrder))

We get the following output:

class StrategyEMARegularOrder(StrategyBase):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.timeperiod1 = self.strategy_parameters['timeperiod1']
 self.timeperiod2 = self.strategy_parameters['timeperiod2']

 self.main_order = None

 def initialize(self):
 self.main_order = {}

 @staticmethod
 def name():
 return 'EMA Regular Order Strategy'
 ...
 def strategy_exit_position(self, candle, instrument,
 sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True
 return False

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[325]

The complete output is not shown here. Please visit the following link to
read the complete output:

https:/ ​/​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​strategy_ ​ema_ ​regular_ ​order. ​py.

Upload StrategyEMARegularOrder onto the AlgoBulls platform. This creates a6.
new strategy for your AlgoBulls account:

>>> algobulls_connection.create_strategy(StrategyEMARegularOrder)

We get the following output (your output may differ):

Validating Strategy...
{'details': `'strategy_code': '49287246f9704bbcbad76ade9e2091d9'}

How it works…
We import the necessary modules in step 1. In step 2, an instance of the
AlgoBullsConnection class is created, named algobulls_connection. In step 3, you
get the authorization URL using the get_authorization_url() method of the
algobulls_connection object. You should visit this URL from your web browser to sign
in to the AlgoBulls platform and fetch your developer access token. (You can find more
details with screenshots in Appendix II on fetching the developer access token from the
AlgoBulls platform.) You copy the access token and set it in step 4 using the
set_access_token() method of algobulls_connection. If the token is accepted, a
successful connection is set up with the AlgoBulls platform.

The StrategyEMARegularOrder strategy class that we coded in steps 1 to 5 is also
available in the pyalgostrategypool package. We import this class in step 1.
Alternatively, you can also save your strategy class in a separate Python module and
import it in step 1 instead of importing it from pyalgostrategypool.

You upload the StrategyEMARegularOrder strategy class using the
upload_strategy() method of algobulls_connection by passing it as a parameter. If
the upload is successful, you will get a success message with strategy_code, which is a
unique string. strategy_code can be used later to do everything related to the
strategy—for example, editing the strategy, performing backtesting (Chapter 9, Algorithmic
Trading – Backtesting), performing paper trading (Chapter 10, Algorithmic Trading – Paper
Trading), and performing real trading (Chapter 11, Algorithmic Trading – Real Trading).

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[326]

There's more…
If there are changes done to a strategy after uploading, you can update the strategy on the
AlgoBulls platform using the upload_strategy() method of algobulls_connection
with the updated class and overwrite=True as arguments. If the changes are uploaded
successfully, you will get a success message.

Modify an already-uploaded strategy:

>>> algobulls_connection.create_strategy(StrategyEMARegularOrder,
 overwrite=True)

We get the following output:

Validating Strategy…
{'details': 'success'}

Multiple strategies with the same name (returned by the name() method) are not allowed
by the AlgoBulls platform. The overwrite=True parameter updates an existing strategy
with the same name if present. If overwrite=True is not passed to
the create_strategy() method, the default value is False, which means it tries to create
a new strategy on the AlgoBulls platform.

MACD-Bracket-Order strategy – coding the
__init__, initialize, name, and
versions_supported methods
This recipe demonstrates the initial coding of the StrategyMACDBracketOrder class. The
complete class will be coded by the end of the eleventh recipe of this chapter. In this recipe,
you will code the following methods:

__init__()

initialize()

name()

versions_supported()

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[327]

To learn more about the MACD technical indicator, please refer to the Trend indicator –
moving average convergence divergence recipe of Chapter 5, Computing and Plotting Technical
Indicators.

Please refer to the flowchart in the introduction of this chapter to
understand how the AlgoBulls core engine calls the __init__() and
initialize() methods during strategy execution.

Getting ready
Make sure you have the StrategyBase and pyalgotrading constants in your Python
namespace. Refer to the Technical requirements section of this chapter to set it up.

How to do it…
Create a new class named StrategyMACDBracketOrder. Subclass it from StrategyBase.
Define the required four methods:

class StrategyMACDBracketOrder(StrategyBase):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.fastMA_period = self.strategy_parameters['fastma_period']
 self.slowMA_period = self.strategy_parameters['slowma_period']
 self.signal_period = self.strategy_parameters['signal_period']
 self.stoploss = self.strategy_parameters['stoploss_trigger']
 self.target = self.strategy_parameters['target_trigger']
 self.trailing_stoploss = \
 self.strategy_parameters['trailing_stoploss_trigger']

 self.main_order = None

 def initialize(self):
 self.main_order = {}

 @staticmethod
 def name():
 return 'MACD Bracket Order Strategy'
 @staticmethod
 def versions_supported():
 return VERSION_3_2_0

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[328]

How it works…
In this recipe, we will create the StrategyEMARegularOrder class, subclassed from
StrategyBase. We will define four methods for this class, described as follows:

The __init__() method: This is the first thing you do when you create a new
strategy. First, you create this method and call the parent class __init__()
method using super(). This helps the AlgoBulls core engine create the
necessary data structures needed for the further development of the
strategy. Next, you create six attributes from self.strategy_parameters:

self.fastMA_period

self.slowMA_period

self.signal_period

self.stoploss

self.target

self.trailing_stoploss

self.strategy_parameters is a dictionary object available for every strategy
subclassed from StrategyBase. (The seventh recipe of Chapter 9, Algorithmic
Trading – Backtesting, discusses how these values are passed at runtime to
self.strategy_parameters.) These parameters will be used in the next recipe
of this chapter as parameters to the MACD technical indicator. Lastly, you create
a new attribute, self.main_order, an empty dictionary. We will use this for
saving the handles to all the open orders placed during the execution of this
strategy.

The initialize() method: This method is called at the beginning of every
market day to initialize any internal variables to their default state. For real
trading and paper trading, this method is called once. For multi-day backtesting,
this method is called multiple times, once at the beginning of every new trading
day. In this method, you initialize self.main_order to an empty dictionary.
The name() method: This is a static method that returns the name of this
strategy. This is used while utilizing backtesting, paper trading, and real trading
services on this strategy. In this method, you simply return a string, MACD
Bracket Order. You can return any string of your choice in this method.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[329]

The versions_supported() method: This static method is used for returning
the AlgoBulls core engine version for which this strategy has been created. Often,
as new upgrades come to the AlgoBulls core engine, some backward-
incompatible changes may get introduced. This method helps to ensure this
strategy is run on the correct version of the AlgoBulls core engine at all times. In
this method, you return the highest available version from the constants module,
which at the time of writing this chapter is VERSION_3_2_0.

These four methods are mandatory; they are enforced by the StrategyBase base class and
cannot be skipped.

MACD-Bracket-Order strategy – coding the
strategy_select_instruments_for_entry
method
In this recipe, you will continue coding the StrategyMACDBracketOrder class. Here, you
will code the strategy_select_instruments_for_entry() method, a mandatory
method enforced by the StrategyBase base class. This method is called by the AlgoBulls
core engine on every new candle for backtesting, paper trading, and real trading services.

Please refer to the flowchart in the introduction of this chapter to
understand how the AlgoBulls core engine calls the
strategy_select_instruments_for_entry() method during
strategy execution.

Getting ready
Make sure you have followed the previous recipe to create the
StrategyMACDBracketOrder class before starting this recipe.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[330]

How to do it…
Continue coding the StrategyMACDBracketOrder class. Define two new
methods—a method for getting the crossover value between the MACD line and MACD
history signals and a method for selecting instruments from instruments_bucket for
entering a new position based on the computed crossover value:

class StrategyMACDBracketOrder(StrategyBase):
 # Note: Some methods are not shown here
 def get_crossover_value(self, instrument):
 hist_data = self.get_historical_data(instrument)
 macdline, macdsignal, _ = talib.MACD(hist_data['close'],
 fastperiod=self.fastMA_period,
 slowperiod=self.slowMA_period,
 signalperiod=self.signal_period)
 crossover_value = self.utils.crossover(macdline, macdsignal)
 return crossover_value
 def strategy_select_instruments_for_entry(self, candle,
 instruments_bucket):
 selected_instruments_bucket = []
 sideband_info_bucket = []
 for instrument in instruments_bucket:
 crossover_value = self.get_crossover_value(instrument)
 if crossover_value == 1:
 selected_instruments_bucket.append(instrument)
 sideband_info_bucket.append({'action': 'BUY'})
 elif crossover_value == -1:
 if self.strategy_mode is StrategyMode.INTRADAY:
 selected_instruments_bucket.append(instrument)
 sideband_info_bucket.append({'action': 'SELL'})
 return selected_instruments_bucket, sideband_info_bucket

How it works…
In this recipe, we continue coding the StrategyMACDBracketOrder class. We define two
new methods for this class, described as follows:

The get_crossover_value() method: This is a helper method. It takes
instrument as an argument (along with self). This is the financial instrument
for which the crossover value has to be computed. You fetch the latest historical
data using the self.get_historical_data() method and assign it to a new
attribute, hist_data. We pass instrument as the argument to this method. The
hist_data attribute is a pandas.DataFrame object with timestamp, open,
high, low, close, and volume columns.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[331]

The default duration of the fetched historical data is the last 15 days. You
compute MACD on the close of hist_data using the talib.MACD function. It
takes the following additional arguments:

fastperiod: We pass self.fastMA_period here.
slowperiod: We pass self.slowMA_period here.
signalperiod: We pass self.signal_period here.

This computed MACD data is a tuple of the pandas.Series object, which you
assign to macdline, macdsignal, and _ (the last object in the tuple is assigned to
_ because it is not required). (Refer to the third recipe in Chapter 5, Computing
and Plotting Technical Indicators, for more details on computation of MACD.) You
compute the crossover value between macdline and macdsignal using
self.utils.crossover(macdline, macdsignal) and assign it to a new
attribute, crossover_value. The crossover() function call works as follows:

It takes two iterables as input. We pass macdline and macdsignal here.
If macdline crosses macdsignal upward, the crossover function returns 1.

If macdline crosses the macdsignal downward, the crossover function
returns -1.
If there is no crossover between macdline and macdsignal, then the
crossover function returns 0.

Finally, you return crossover_value.

strategy_select_instruments_for_entry() method: This method takes
two arguments, other than self:

candle: An object of the CandleTime type that contains the timestamp of
the current candle.
instruments_bucket: An object of the SetInstruments type that
contains all the financial instruments available for creating a new position.
We pass this data at the time of strategy execution (the second recipe of
Chapter 8, Backtesting Strategies).

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[332]

You create two empty lists, selected_instruments_bucket and
sideband_info_bucket. You run a for loop over instruments_bucket. For
each instrument, you call self.get_crossover_value() and save its value to a
new attribute, crossover_value. Based on the value of crossover_value, you
make a decision, as follows:

If crossover_value is 1, it means the strategy is giving a BUY signal. You
do the following:

Append instrument to selected_instruments_bucket.
Append an {'action': 'BUY'} dictionary to the
sideband_info_bucket attribute.

If crossover_value is -1, it means the strategy is giving a SELL signal.
You do the following:

Append instrument to selected_instruments_bucket.
Append an {'action': 'SELL'} dictionary to the
sideband_info_bucket attribute.

If crossover_value is neither 1 nor -1, it means the strategy is not giving
a signal. You do nothing here.
Finally, you return both the attributes: selected_instruments_bucket
and sideband_info_bucket. These attributes may have been populated or
may remain as empty lists.

Recall that the strategy_select_instruments_for_entry() method is called for every
candle, so the preceding steps are repeated for every new candle. In the appropriate candle,
you will get a BUY or SELL signal, and in the others, you won't get any signal. Based on the
signal, you can place the appropriate order, which is discussed in the next recipe.

The strategy_select_instruments_for_entry() method is enforced
by the StrategyBase base class and has to be defined for every strategy.
The get_crossover_value() method is a helper method, meaning it is
not enforced by the StrategyBase base class. You may choose not to
define this or to define multiple of these helper functions.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[333]

MACD-Bracket-Order strategy – coding the
strategy_enter_position method
In this recipe, you will continue with the coding of the StrategyMACDBracketOrder class.
Here, you will code the strategy_enter_position() method, a mandatory method
enforced by the StrategyBase base class. This method is called by the AlgoBulls core
engine every time the strategy_select_instruments_for_entry() method returns
non-empty data. This method may not be called for every new candle for backtesting,
paper trading, and real trading services.

Please refer to the flowchart in the introduction of this chapter to
understand how the AlgoBulls core engine calls the
strategy_enter_position() method during strategy execution.

Getting ready
Make sure you have followed the previous recipe before starting this recipe.

How to do it…
Continue coding the StrategyMACDBracketOrder class. Define a method to punch new
orders for a given instrument and enter a new position:

class StrategyMACDBracketOrder(StrategyBase):
 # Note: Some methods are not shown here
 def strategy_enter_position(self, candle, instrument, sideband_info):
 if sideband_info['action'] == 'BUY':
 qty = self.number_of_lots * instrument.lot_size
 ltp = self.broker.get_ltp(instrument)
 self.main_order[instrument] = \
 self.broker.BuyOrderBracket(
 instrument=instrument,
 order_code= BrokerOrderCodeConstants.INTRADAY,
 order_variety= BrokerOrderVarietyConstants.LIMIT,
 quantity=qty,
 price=ltp,
 stoploss_trigger=ltp - (ltp * self.stoploss),
 target_trigger=ltp + (ltp * self.target),
 trailing_stoploss_trigger=ltp * self.trailing_stoploss)
 elif sideband_info['action'] == 'SELL':

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[334]

 qty = self.number_of_lots * instrument.lot_size
 ltp = self.broker.get_ltp(instrument)
 self.main_order[instrument] = \
 self.broker.SellOrderBracket(
 instrument=instrument,
 order_code=BrokerOrderCodeConstants.INTRADAY,
 order_variety=BrokerOrderVarietyConstants.LIMIT,
 quantity=qty,
 price=ltp,
 stoploss_trigger=ltp + (ltp * self.stoploss),
 target_trigger=ltp - (ltp * self.target),
 trailing_stoploss_trigger=ltp * self.trailing_stoploss)
 else:
 raise SystemExit(f'Got invalid sideband_info value:
 {sideband_info}')
 return self.main_order[instrument]

How it works…
In this recipe, we continue coding the StrategyMACDBracketOrder class. We define a
new method for this class, strategy_enter_position(), described as follows:

This method takes three arguments, other than self:
candle: An object of the CandleTime type that contains the timestamp of
the current candle.
instrument: An object of the Instrument type that represents a financial
instrument.

sideband_info: A dictionary object that holds information on trades to be
placed for the instrument attribute. This object looks like {'action':
[action_value]}, where [action_value] can be either 'BUY' or
'SELL'.

You calculate the quantity for order to be placed by multiplying
self.number_of_lots with instrument.lot_size and assign it to a new
attribute qty. The self.number_of_lots attribute holds information on the
number of lots to trade, which you can pass while executing this strategy. The
instrument.lot_size attribute holds lot_size for instrument, which is a
positive integer. For example, if number of lots is passed as 2 and lot size for
instrument is 10, then the quantity for the order would be 2 * 10 = 20.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[335]

If sideband_info is {'action': 'BUY'}, you place a Bracket order of
the BUY transaction type by creating an instance of the
self.broker.BuyOrderBracket class (refer to the first recipe of Chapter 7,
Placing Bracket and Cover Orders on the Exchange) and assigning its value to
self.main_order[instrument].
Similarly, if sideband_info is {'action': 'SELL'}, you place a
Bracket order of the BUY transaction type by creating an instance of the
self.broker.SellOrderBracket class (refer to the first recipe of Chapter
7, Placing Bracket and Cover Orders on the Exchange) and assigning its value to
self.main_order[instrument].

In both cases, the self.main_order dictionary object holds the instrument and order
instances as a key-value pair. This will be useful later (in the MACD-Bracket-Order strategy –
coding the strategy_exit_position method recipe) for exiting positions created by this method.

The self.broker attribute is replaced by the appropriate broker instance at runtime by
the AlgoBulls core engine. So, the same code can work across all the brokers supported by
the AlgoBulls platform.

MACD-Bracket-Order strategy – coding the
strategy_select_instruments_for_exit
method
In this recipe, you will continue with the coding of the StrategyMACDBracketOrder class.
Here, you will code the strategy_select_instruments_for_exit() method, a
mandatory method enforced by the StrategyBase base class. This method is called by the
AlgoBulls core engine for every new candle for backtesting, paper trading, and real trading
services.

Please refer to the flowchart in the introduction of this chapter to
understand how the AlgoBulls core engine calls the
strategy_select_instruments_for_exit() method during strategy
execution.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[336]

Getting ready
Make sure you have followed the previous recipe before starting this recipe.

How to do it…
Continue coding the StrategyMACDBracketOrder class. Define a new method for
selecting instruments from instruments_bucket for exiting an existing position based on
the computation of the crossover value:

class StrategyMACDBracketOrder(StrategyBase):
 # Note: Some methods are not shown here
 def strategy_select_instruments_for_exit(self, candle,
 instruments_bucket):
 selected_instruments_bucket = []
 sideband_info_bucket = []
 for instrument in instruments_bucket:
 if self.main_order.get(instrument) is not None:
 crossover_value = self.get_crossover_value(instrument)
 if crossover_value in [1, -1]:
 selected_instruments_bucket.append(instrument)
 sideband_info_bucket.append({'action': 'EXIT'})
 return selected_instruments_bucket, sideband_info_bucket

How it works…
In this recipe, we continue coding the StrategyMACDBracketOrder class. We define a
new method for this class, strategy_select_instruments_for_exit(), described as
follows:

This method takes two arguments, other than self:
candle: An object of CandleTime type that contains the timestamp of the
current candle.
instruments_bucket: An object of SetInstruments type. This object
holds financial instruments that have been entered into a position earlier by
the strategy_enter_position() method.

You create two empty lists, selected_instruments_bucket and
sideband_info_bucket.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[337]

You run a for loop over instruments_bucket. For each instrument, you check
whether there is a position entered for the given instrument using the 'if
self.main_order.get(instrument) is not None:' line. You proceed only
if a position exists already.
You call self.get_crossover_value() and save its value to a new attribute,
crossover_value. Based on the value of crossover_value, you make a
decision, as follows:

If crossover_value is either 1 or -1, it means there has been a crossover.
You do the following:

Append the instrument attribute to
selected_instruments_bucket.
Append a {'action': 'EXIT'} dictionary to the
sideband_info_bucket attribute.

If crossover_value is neither 1 nor -1, it means the strategy is not giving
a signal. You do nothing here.

Finally, you return both the attributes, selected_instruments_bucket and
sideband_info_bucket. These attributes may have been populated or may
remain as empty lists.

Recall that the strategy_select_instruments_for_exit() method is called for every
candle, so the preceding steps are repeated for every new candle. In the appropriate candle,
if there is a position, you may get an EXIT signal, and in the others, you won't get any
signal. Based on the signal, you can exit the position by placing an appropriate order, which
is discussed in the next recipe.

MACD-Bracket-Order strategy – coding the
strategy_exit_position method
In this recipe, you will continue with the coding of the StrategyMACDBracketOrder class.
Here, you will code the strategy_exit_position() method, the last mandatory method
enforced by the StrategyBase base class. This method is called by the AlgoBulls core
engine every time the strategy_select_instruments_for_exit method returns non-
empty data. By the end of this recipe, you will have completed coding the
StrategyMACDBracketOrder class.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[338]

Please refer to the flowchart in the introduction of this chapter to
understand how the AlgoBulls core engine calls the
strategy_select_instruments_for_exit() method during strategy
execution.

Getting ready
Make sure you have followed the previous recipe before starting this recipe.

How to do it…
Continue coding the StrategyMACDBracketOrder class. Define a method to the exit
position for a given instrument based on sideband_info:

class StrategyMACDBracketOrder(StrategyBase):
 # Note: Some methods are not shown here
 def strategy_exit_position(self, candle, instrument,
 sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True
 return False

How it works…
In this recipe, we continue coding the StrategyMACDBracketOrder class. We define a
new method for this class, strategy_exit_position(), described as follows:

This method takes three arguments, other than self:
candle: An object of the CandleTime type that contains the timestamp of
the current candle.
instrument: An object of the Instrument type that represents a financial
instrument.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[339]

sideband_info: A dictionary object that holds information on trades to be
placed for the instrument attribute. This object looks like {'action':
`EXIT`}.

If sideband_info is {'action': 'EXIT'}, do the following:
You fetch the order using self.main_order[instrument]. (Recall
that self.main_order is a dictionary that holds instruments and
corresponding order instances as key-value pairs.)
You exit the position for this order by calling its exit_position()
method.

Since it's a Bracket order strategy, there is the possibility for the
target or stoploss order to hit and the position to exit without our
strategy knowing it. You can still use the exit_position() method to
handle these scenarios. The exit_position() method works for both
of the following exit scenarios:

The position is open and you want to exit it yourself.
The position is already exited by the broker due to the completion
of either the stoploss order or the target order and there is
nothing to be done.

You reset the value corresponding to the key instrument in
self.main_order as None. This indicates there is no longer a position
open corresponding to instrument.
You return True, signaling to the AlgoBulls core engine that a position
has been exited for instrument in this call.

If sideband_info is not {'action': 'EXIT'}, you return False, signaling to
the AlgoBulls core engine that no position was exited for instrument in this call.

The self.broker attribute is replaced by the appropriate broker instance at runtime by
the AlgoBulls core engine. So, the same code can work across all the brokers supported by
the AlgoBulls platform.

You have now completed the coding for the StrategyMACDBracketOrder class.

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[340]

MACD-Bracket-Order strategy — uploading
the strategy on the AlgoBulls trading
platform
In this recipe, you will upload the strategy class, StrategyMACDBracketOrder, which you
created in the preceding five recipes, on the AlgoBulls trading platform. Once it is
uploaded, you can perform backtesting, paper trading, and real trading on the same code
base.

Getting ready
Make sure you have set up your account on the AlgoBulls platform (https:/ ​/​algobulls.
com) to get your API token. Setting up an account is free. Using its services might incur
charges depending on your usage. You can start with the free packages on the site. Refer to
Appendix II for more details.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> import inspect
>>> from pyalgostrategypool.strategy_macd_bracket_order import
StrategyMACDBracketOrder
>>> from pyalgotrading.algobulls import AlgoBullsConnection

Create a new AlgoBulls connection object:2.

>>> algobulls_connection = AlgoBullsConnection()

Fetch the authorization URL:3.

>>> algobulls_connection.get_authorization_url()

We get the following output:

Please login to this URL with your AlgoBulls credentials and get
your developer access token: https://app.algobulls.com/user/login
'https://app.algobulls.com/user/login'

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[341]

Log in to the preceding link with your AlgoBulls credentials, fetch your token,4.
and set it here (refer to Appendix II for more details):

>>>
algobulls_connection.set_access_token('80b7a69b168c5b3f15d56688841a
8f2da5e2ab2c')

Before uploading your strategy, you can inspect your strategy code to ensure you5.
are uploading the right strategy:

>>> print(inspect.getsource(StrategyMACDBracketOrder))

We get the following output:

class StrategyMACDBracketOrder(StrategyBase):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.fastMA_period = \
 self.strategy_parameters['fastma_period']
 self.slowMA_period = \
 self.strategy_parameters['slowma_period']
 self.signal_period = \
 self.strategy_parameters['signal_period']
 self.stoploss =
 self.strategy_parameters['stoploss_trigger']
 self.target =
 self.strategy_parameters['target_trigger']
 self.trailing_stoploss =
 self.strategy_parameters['trailing_stoploss_trigger']

 self.main_order = None

 def initialize(self):
 self.main_order = {}

 @staticmethod
 def name():
 return 'MACD Bracket Order Strategy'
 ...
 def strategy_exit_position(self, candle, instrument,
 sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True
 return False

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[342]

The complete output is not shown here. Please visit the following link to
read the complete output:

https:/ ​/​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​strategy_ ​macd_ ​bracket_ ​order. ​py.

Upload StrategyMACDBracketOrder onto the AlgoBulls platform. This creates6.
a new strategy for your AlgoBulls account:

>>> algobulls_connection.create_strategy(StrategyMACDBracketOrder)

We get the following output (your output may differ):

Validating Strategy...
{'details': 'success', 'strategy_code':
'4faf514fe096432b8e9f80f5951bd2ea'}

How it works…
We import the necessary modules in step 1. In step 2, an instance of the
AlgoBullsConnection class is created, named algobulls_connection. In step 3, you
get the authorization URL using the get_authorization_url() method of
the algobulls_connection object. You should visit this URL from your web browser to
sign in to the AlgoBulls platform and fetch your developer access token. (You can find
more details with screenshots in Appendix II on fetching the developer access token from
the AlgoBulls platform.) You copy the access token and set it in step 4 using the
set_access_token() method of algobulls_connection. If the token is accepted, a
successful connection is set up with the AlgoBulls platform.
The StrategyMACDBracketOrder strategy class, which we coded in step 5, is also
available in the pyalgostrategypool package. We import this class in step 1.
Alternatively, you can also save your strategy class in a separate Python module and
import it in step 1 instead of importing it from pyalgostrategypool.

You upload the StrategyMACDBracketOrder strategy class using the
upload_strategy() method of algobulls_connection by passing it as a parameter. If
the upload is successful, you will get a success message with strategy_code, which is a
unique string. strategy_code can be used in later chapters to do everything related to the
strategy—for example, editing the strategy, performing backtesting, performing paper
trading, and performing real trading.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py

Algorithmic Trading Strategies – Coding Step by Step Chapter 8

[343]

There's more…
If there are changes made to a strategy after uploading, you can update the strategy on the
AlgoBulls platform using the upload_strategy() method of algobulls_connection
with the updated class and overwrite=True as arguments. If the changes are uploaded
successfully, you will get a success message.

You can modify an already-uploaded strategy as follows:

>>> algobulls_connection.create_strategy(StrategyMACDBracketOrder,
 overwrite=True)

We get the following output:

Validating Strategy…
{'details': 'success'}

Multiple strategies with the same name (returned by the name() method) are not allowed
by the AlgoBulls platform. The overwrite=True parameter updates an existing strategy
with the same name if present. If overwrite=True is not passed to
the create_strategy() method, the default value is False, which means it tries to create
a new strategy on the AlgoBulls platform.

9
Algorithmic Trading -

Backtesting
After building algorithmic trading strategies, as we did in the previous chapter, the first
step is to backtest them over a given duration of time for a given strategy configuration.

Backtesting is a method of evaluating the performance of a trading strategy by virtually
executing it over past data and analyzing its risk and return metrics. Real money is not
used here. Typical backtesting metrics include Profit and Loss (P&L), maximum
drawdown, count of total trades, winning trades, losing trades, long trades and short
trades, average profit per winning and losing trade, and more. Until these metrics meet the
necessary requirements, the entire process should be repeated with incremental changes
being made to strategy parameters and/or strategy implementation.

If a strategy performs well on past data, it is likely to perform well on live data also.
Similarly, if a strategy is performing poorly on past data, it is likely to perform poorly on
live data. This is the underlying premise of backtesting. You can keep changing the strategy
configuration or implementation until the backtesting yields results as intended.

Backtesting also helps validate the strategy behavior before we use the strategy for real
money. This means it helps to ensure that the strategy behaves as expected for various
marketing scenarios from the past.

For backtesting, a strategy configuration is required. It consists of multiple parameters,
some of which are as follows:

Start and end timestamps: The time duration for which backtesting should be
run.
Financial instrument(s): One or more financial instruments for which
backtesting should be performed.
Candle interval: One of many possible candle intervals; for example, 1 minute,
15 minutes, 1 hour, or 1 day.

Algorithmic Trading - Backtesting Chapter 9

[345]

Strategy-specific parameters: Values for custom parameters defined in the
strategy.
Strategy mode: One of intraday or delivery. Intraday strategies punch intraday
orders, which are squared off at the end of the day. Delivery strategies punch
delivery orders. These don't square off at the end of the day and get carried
forward to the next trading day.

A backtesting engine is required to perform backtesting on a given strategy. In this chapter,
you will use the backtesting engine provided by AlgoBulls (https:/ ​/​algobulls. ​com), an
algorithmic trading platform that makes its services available via its developer options. It
provides a Python package called pyalgotrading (https:/ ​/​github. ​com/ ​algobulls/
pyalgotrading) to make these services available.

You coded two algorithmic trading strategies in Chapter 8, Algorithmic Trading Strategies –
Coding Step by Step. Recall that the strategy descriptions are as follows:

EMA-Regular-Order strategy: This strategy is based on the technical indicator
EMA and regular orders. (The first six recipes of Chapter 8, Algorithmic Trading
Strategies – Coding Step by Step.)
MACD-Bracket-Order strategy: This strategy is based on the technical indicator
MACD and bracket orders. (The remaining six recipes of Chapter 8, Algorithmic
Trading Strategies – Coding Step by Step.)

These strategies are also available as part of a Python package
called pyalgostrategypool. You can install it using pip using the $ pip
install pyalgostrategypool command. You can also check them out
on GitHub (https:/ ​/​github. ​com/ ​algobulls/ ​pyalgostrategypool).

In the previous chapter, you uploaded these two strategies to your AlgoBulls account. In
this chapter, you will fetch these strategies from your AlgoBulls account and perform
backtesting on them. After backtesting, you will gather the strategy execution logs and
various reports, namely, the P&L report, the statistics report, and the order history. These
logs and reports help validate the strategy's performance and prepare it for the next level,
which is paper trading, before we finally go and do real trading. By using pyalgotrading,
you ensure that you focus on developing and validating the strategy via backtesting,
without worrying about the ecosystem needed for the strategy execution.

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool

Algorithmic Trading - Backtesting Chapter 9

[346]

This chapter includes step-by-step recipes for the aforementioned strategies, from setting
up connections with the AlgoBulls platform, fetching the strategy, and running backtesting
jobs, to fetching the execution logs and various types of reports.

In this chapter, we will cover the following recipes:

EMA-Regular-Order strategy – fetching the strategy
EMA-Regular-Order strategy – backtesting the strategy
EMA-Regular-Order strategy – fetching backtesting logs in real time
EMA-Regular-Order strategy – fetching a backtesting report – P&L table
EMA-Regular-Order strategy – fetching a backtesting report – statistics table
EMA-Regular-Order strategy – fetching a backtesting report – order history
MACD-Bracket-Order strategy – fetching the strategy
MACD-Bracket-Order strategy – backtesting the strategy
MACD-Bracket-Order strategy – fetching backtesting logs in real time
MACD-Bracket-Order strategy – fetching a backtesting report – P&L table
MACD-Bracket-Order strategy – fetching a backtesting report – statistics table
MACD-Bracket-Order strategy – fetching a backtesting report – order history

Let's get started!

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
Python packages:

pyalgotrading ($ pip install pyalgotrading)

The latest Jupyter notebook for this chapter can be found on GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/ ​tree/ ​master/ ​Chapter09.

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter09

Algorithmic Trading - Backtesting Chapter 9

[347]

EMA-Regular-Order strategy – fetching the
strategy
In this recipe, you will fetch the StrategyEMARegularOrder strategy class from your
account on the AlgoBulls platform, which you uploaded while going through the EMA-
Regular-Order strategy – uploading the strategy recipe in Chapter 8, Algorithmic Trading
Strategies – Coding Step by Step, on the AlgoBulls trading platform. This recipe starts with
setting up a connection to the AlgoBulls platform, querying all available strategies in your
account, and fetching the details of the required strategy class,
StrategyEMARegularOrder.

Make sure you have gone through the first six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyEMARegularOrder.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.algobulls import AlgoBullsConnection

Create a new AlgoBulls connection object:2.

>>> algobulls_connection = AlgoBullsConnection()

Fetch the authorization URL:3.

>>> algobulls_connection.get_authorization_url()

We got the following output:

Please login to this URL with your AlgoBulls credentials and get
your developer access token: https://app.algobulls.com/user/login
'https://app.algobulls.com/user/login'

Log into the preceding link with your AlgoBulls credentials, fetch your token,4.
and set it here (refer to Appendix II for more details):

>>> algobulls_connection.set_access_token('
 80b7a69b168c5b3f15d56688841a8f2da5e2ab2c')

Algorithmic Trading - Backtesting Chapter 9

[348]

Fetch and display all the strategies you have created and uploaded so far:5.

>>> all_strategies = algobulls_connection.get_all_strategies()
>>> all_strategies

We got the following output. Your output may differ (make sure you have
followed the recipes from Chapter 8, Algorithmic Trading Strategies – Coding Step
by Step, to get a similar output):

Fetch and display the strategy code of the first strategy:6.

>>> strategy_code1 = all_strategies.iloc[0]['strategyCode']
>>> strategy_code1

We got the following output (your output may differ):

'49287246f9704bbcbad76ade9e2091d9'

Before backtesting your strategy, you can inspect your strategy to ensure you7.
have the right strategy:

>>> strategy_details1 = \
 algobulls_connection.get_strategy_details(strategy_code1)
>>> print(strategy_details1)

We got the following output:

class StrategyEMARegularOrder(StrategyBase):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.timeperiod1 = self.strategy_parameters['timeperiod1']
 self.timeperiod2 = self.strategy_parameters['timeperiod2']

 self.main_order = None

 def initialize(self):
 self.main_order = {}

 @staticmethod

Algorithmic Trading - Backtesting Chapter 9

[349]

 def name():
 return 'EMA Regular Order Strategy'
 ….
 def strategy_exit_position(self, candle, instrument,
 sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True

 return False

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​strategy_ ​ema_ ​regular_ ​order. ​py.

How it works…
In step 1, you import the necessary modules. In step 2, an instance of the
AlgoBullsConnection class is created, named algobulls_connection. In step 3, you
get the authorization URL using the get_authorization_url() method of the
algobulls_connection object. This prints the authorization URL. You should visit this
URL from your web browser to sign into the AlgoBulls platform and fetch your developer
access token. (You can find more details, along with screenshots, in Appendix II in regard to
fetching developer access tokens from the AlgoBulls platform.) You copy the access token
and set it in step 4 using the set_access_token() method of algobulls_connection. If
the token is accepted, a successful connection is set up with the AlgoBulls platform.

In step 5, you fetch all the strategies you have created and uploaded to the AlgoBulls
platform so far. You use the get_all_strategies() method for this step and assign it to
a new variable, all_strategies. This variable is a pandas.DataFrame object that
has strategyCode and strategyName columns. This table holds information on the
strategy codes and the strategy names you uploaded previously. If you followed the EMA-
Regular-Order strategy – uploading the strategy on AlgoBulls trading platform recipe from
Chapter 8, Algorithmic Trading Strategies – Coding Step by Step, you will find a strategy
called EMA-Regular-Order strategy. In step 6, you assign the strategy code of the strategy,
EMA-Regular-Order strategy, to a new variable called strategy_code1. The strategy
code is shown in the output of this step. This strategy code is unique for every strategy on
the AlgoBulls platform.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py

Algorithmic Trading - Backtesting Chapter 9

[350]

Finally, in step 7, you ensure that the strategy being referred to by strategy_code1 is
indeed the one you uploaded earlier (in the EMA-Regular-Order strategy – uploading the
strategy on AlgoBulls trading platform recipe of Chapter 8, Algorithmic Trading Strategies –
Coding Step by Step). You use the get_strategy_details() method of the
algobulls_connection object to inspect the strategy. This method takes the strategy code
as an argument. You pass strategy_code1 here. This method returns the entire class code
as a string. You assign it to a new variable, strategy_details1, and display it.

If you would like to change the class code being referred to by
strategy_code1, as shown in step 7, please refer to the There's more…
section of the EMA-Regular-Order strategy – uploading the strategy on
AlgoBulls trading platform recipe, in Chapter 8, Algorithmic Trading
Strategies – Coding Step by Step.

EMA-Regular-Order strategy – backtesting
the strategy
In this recipe, you will perform backtesting on the EMA-Regular-Order strategy. You must
have fetched this strategy from your account in the AlgoBulls platform in the preceding
recipe. You will leverage the backtesting functionality facilitated by pyalgotrading for
this recipe, which, in turn, submits a backtesting job on the AlgoBulls platform.

Once submitted, backtesting will be run by the AlgoBulls backtesting engine. You can
query the status anytime to find the state of the backtesting job. The job goes through the
following states, in the given order:

STARTING (intermediate state)
STARTED (stable state)
STOPPING (intermediate state)
STOPPED (stable state)

On submitting a job, it starts with an intermediate state, STARTING. In this state, the
AlgoBulls backtesting engine fetches the strategy and get the execution environment ready,
which may take a couple of minutes. Once done, the job moves to the STARTED state.
Strategy backtesting happens in this stage. Here, it stays as long as it takes for backtesting
to complete. Once done, the job moves to an intermediate state, STOPPING. In this state, the
AlgoBulls backtesting engine cleans up the resources that have been allocated to this job,
which usually takes less than a minute. Finally, the job moves to the STOPPED state.

Algorithmic Trading - Backtesting Chapter 9

[351]

If you have already submitted a strategy backtesting job, you cannot submit another job for
the same strategy until the first job completes. This means you have to wait for the first job
to move to the STOPPED state. If the first job is long-running and you would like to stop it
immediately, you can submit a stop job request via pyalgotrading. You need to ensure
the job is in the STARTED state before submitting the request.

The following state machine diagram demonstrates the various states and transitions of a
backtesting job during its lifetime on the AlgoBulls platform:

After submitting a backtesting job, you can fetch logs and reports for the strategy execution,
in real time. The logs and reports help validate the strategy's performance and debug any
potential issues.

Make sure you have gone through the first six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyEMARegularORder.

Algorithmic Trading - Backtesting Chapter 9

[352]

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the previous recipe to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from datetime import datetime as dt
>>> from pyalgotrading.constants import *

Search for an instrument by using its trading symbol as a keyword. Assign the2.
returned object to instruments:

>>> instruments = algobulls_connection.search_instrument('SBIN')
>>> instruments

We get the following output (your output may differ):

[{'id': 7, 'value': 'NSE:SBIN'}]

Get value for the instrument of choice from instruments:3.

>>> instrument = instruments[0]['value']
>>> instrument

We get the following output:

'NSE:SBIN'

Submit a backtesting job for strategy_code1:4.

>>> algobulls_connection.backtest(strategy_code=strategy_code1,
 start_timestamp=dt(year=2020, month=7, day=1, hour=9,
 minute=15),
 end_timestamp=dt(year=2020, month=7, day=7, hour=15,
 minute=30),
 instrument=instrument,
 lots=1,
 strategy_parameters={
 'timeperiod1': 5,
 'timeperiod2': 12

Algorithmic Trading - Backtesting Chapter 9

[353]

 },
 candle_interval=CandleInterval.MINUTES_15)

We get the following output:

Setting Strategy Config... Success.
Submitting BACKTESTING job... Success.

Check the status of the submitted job backtesting job:5.

>>> algobulls_connection.get_backtesting_job_status(strategy_code1)

We get the following output:

{'data': 'STARTING'}

After some time, check the status of the submitted job once more:6.

>>> algobulls_connection.get_backtesting_job_status(strategy_code1)

We get the following output:

{'data': 'STARTED'}

How it works…
In step 1, you import the datetime class from the datetime module and all the constants
from the pyalgotrading.constants module. In step 2, you fetch the instrument that
would like to backtest the strategy for, EMA-Regular-Order strategy, using the
search_instrument() method of the algobulls_connection object. The
search_instrument() method accepts a search string as an argument, which should be
the trading symbol, in part or complete, of the instrument you are interested in. You pass
'SBIN' here. This function returns a list with details of instruments that match the search
string. There could be multiple instruments that could have the search string in their
trading symbols. In step 3, you fetch the value of the first matched instrument and assign it
to a new variable, instrument.

Algorithmic Trading - Backtesting Chapter 9

[354]

In step 4, you submit a backtesting job using the backtest() method of the
algobulls_connection() object. It takes the following arguments:

strategy_code: Strategy code of the strategy for which backtesting has to be
performed. This should be a string. You pass strategy_code1 here.
start_timestamp: Timestamp of the past from which backtesting should be
started. This should be a datetime.datetime object. Here, you pass an object
holding the value 1st July 2020 9:15 hours – dt(year=2020, month=7, day=1,
hour=9, minute=15). Refer to the Creating datetime objects recipe in Chapter
1, Handling and Manipulating Date, Time, and Time Series Data, for details on
creating a datetime object.

end_timestamp: The timestamp of the past when backtesting should be
performed. This object should hold a timestamp value ahead of the timestamp
value held by start_timestamp. This should be a datetime.datetime
instance. Here, you pass an object holding the value 7th July 2020 15:30 hours –
dt(year=2020, month=7, day=7, hour=15, minute=30).
instrument: Financial instrument for which backtesting should be run.
Historical data would be fetched for this instrument. This should be a string. You
pass instrument here.
lots: Number of lots for which backtesting should be performed. This should be
an integer. The quantity is calculated by the strategy as number of lots × lot size of
the financial instrument. (See the EMA-Regular-Order strategy – coding the
strategy_enter_position method recipe in the previous chapter). You pass 1 here.
strategy_parameters: Parameter names and values expected by the strategy.
This should be a dictionary, with parameter-name and parameter-value as
key-value pairs. You pass the following parameters here:

timeperiod1: 5

timeperiod2: 12

(Recall that the parameters for the EMA-Regular-Order strategy were defined in
its __init__() method, as shown in the first recipe of the previous chapter).

candle_interval: The candle interval for the historical data fetched for
backtesting. This should be an enum of the CandleInterval type. You pass
CandleInterval.MINUTES_15 here. (The CandleInterval enum provides
various enums for candle intervals, some of which are MINUTE_1, MINUTES_3 ,
MINUTES_5, MINUTES_10, MINUTES_15, MINUTES_30, HOUR, and DAY.)

Algorithmic Trading - Backtesting Chapter 9

[355]

If the job submission is successful, you will see Success message printed by the
backtest() function.

Once a job is submitted, it takes a while to start. After starting, it may take some time to
finish, depending on the complexity of the strategy and the duration of backtesting
specified using the start_timestamp and end_timestamp arguments. A few days of
backtesting may finish in seconds, while a few months of backtesting may take minutes.

In step 5, you fetch the job status using the get_backtesting_job_status() method of
the algobulls_connection object. You pass strategy_code1 as the argument here.
This method returns a dictionary with a single key-value pair – the data and the job status. If
you query the status immediately after placing the job, you get 'STARTING' as the status.
In step 6, you query the status again after some time, and if the job has started, you
get 'STARTED' as the status.

A successful submission implies that the minimum inputs needed to
backtest a strategy have been passed in the required format. However,
this does not ensure that the strategy will run without errors. The
strategy's execution may still run into errors during backtesting. To debug
execution issues, you would need to fetch the output logs, which is
explained in the MACD-Bracket-Order strategy – fetching backtesting logs in
real time recipe. Possible reasons for errors could be either bugs in the
strategy class Python code or an incomplete strategy_parameters
dictionary being passed to the backtest() function.

There's more…
If a job is running for a long time and you would like to stop it before its completion, you
can use the stop_backtesting_job() method of the algobulls_connection object.
This method accepts strategy code as an argument. You pass strategy_code1 here. This
method submits a stop request to the AlgoBulls backtesting engine. If the request is
accepted, you will see a Success message here:

>>> algobulls_connection.stop_backtesting_job(strategy_code1)
 Stopping BACKTESTING job... Success.

If you query the status after submitting the stop request, you'll get the status as
'STOPPING`:

>>> algobulls_connection.get_backtesting_job_status(strategy_code1)
{'data': 'STOPPING'}

Algorithmic Trading - Backtesting Chapter 9

[356]

If you query the status again after some time, and if the job has stopped, you'll get the
status as 'STOPPED':

>>> algobulls_connection.get_backtesting_job_status(strategy_code1)
{'data': 'STOPPED'}

EMA-Regular-Order strategy – fetching
backtesting logs in real time
After submitting a backtesting job on the AlgoBulls platform, the AlgoBulls backtesting
engine starts executing the strategy. During the execution, every event that occurs and
every decision taken by the AlgoBulls backtesting engine are recorded with exact
timestamps in the form of textual logs. Examples of recorded activities include the given
strategy config, every new candle generated at regular intervals, trades punched by your
strategy, the entry and exit of positions created by these trades, waits for new candles, and
so on. These logs are quintessential in validating the strategy behavior and debugging
behavior or performance issues that are frequently encountered while developing a
strategy.

In this recipe, you will fetch the backtesting logs for your strategy. The logs start coming up
as soon as your submitted backtesting job reaches the 'STARTED' state (refer to the
previous recipe for more information on the states of a backtesting job). The AlgoBulls
platform allows you to fetch logs in real time, even while the backtesting job is still going
on. You can get insights into the strategy's execution without having to wait for the
backtesting job to complete, which is helpful when jobs are long-running. The
pyalgotrading package provides a simple method that can be used to fetch the execution
logs for a given strategy.

Make sure you have gone through the first six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyEMARegularOrder.

Algorithmic Trading - Backtesting Chapter 9

[357]

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
We execute the following steps for this recipe:

Fetch the backtesting execution logs for strategy_code1:1.

>>> logs = algobulls_connection.get_backtesting_logs(
 strategy_code1)
>>> print(logs)

We get the following output (your output may differ):

[2020-07-30 17:25:18] Logs not available yet. Please retry in
sometime.

Fetch the backtesting execution logs for strategy_code1 again after some time:2.

>>> logs = algobulls_connection.get_backtesting_logs(
 strategy_code1)
>>> print(logs)

We get the following output (your output may differ):

...
##
 INITIALIZING ALGOBULLS CORE (v3.2.0 SECURE MODE)...
##
[2020-07-30 11:56:29] Welcome ALGOBULLS VIRTUAL USER!
[2020-07-30 11:56:29] Reading strategy…
...
 [BT] [2020-07-01 09:15:00] [INFO] [tls] STARTING ALGOBULLS CORE...
...
[BT] [2020-07-01 09:45:00] [CRITICAL] [order] [PLACING NEW ORDER]
[2020-07-01 09:45:00] [2333198611b744aeb287300d371c8eb5] [BUY]
[NSE:SBIN] [QTY:1] [QTY PENDING: 1] [ENTRY PRICE: 180.25]
[PRICE:None] [TRIGGER PRICE:None] [ORDER_TYPE_REGULAR]
[ORDER_CODE_INTRADAY] [ORDER_VARIETY_MARKET] [ORDER_POSITION_ENTER]
...
 [BT] [2020-07-07 15:30:00] [INFO] [clock] Candle generation has
been stopped...

Algorithmic Trading - Backtesting Chapter 9

[358]

[BT] [2020-07-07 15:30:00] [INFO] [tls] Received event END OF
MARKET. Stopping Trading Core Engine…
[BT] [2020-07-07 15:30:00] [INFO] [tls] Exiting all open positions
with order code: ORDER_CODE_INTRADAY (if any)...
[BT] [2020-07-07 15:30:00] [CRITICAL] [tls] [User: ALGOBULLS
VIRTUAL USER] Trading session completed
 ...

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​sample/ ​backtesting/ ​strategy_ ​ema_​regular_ ​order/ ​logs. ​txt.

How it works…
In step 1, you use the get_backtesting_logs() method of the algobulls_connection
object to fetch the strategy backtesting logs in real time. This method accepts the strategy
code as an argument. You pass strategy_code1 here. The return data is a string. If you
try this step immediately after submitting the job, you get a string, which says the logs are
not ready yet ([2020-07-30 17:27:25] Logs not available yet. Please retry
in sometime.). This happens if the backtesting job is in the 'STARTING' state.

In step 2, you fetch the logs again after some time. If the job is out of the 'STARTING' state,
you start getting your strategy execution logs. You get the entire backtesting logs every
time you call the get_backtesting_logs() function.

There's more...
Once the backtesting job moves to the 'STOPPED' state, no new logs are generated. You can
fetch the complete logs any time before you submit the next backtesting job for the same
strategy. If a new backtesting job is submitted (for the same strategy), these logs will no
longer be accessible via the get_backtesting_logs() method. You can save the fetched
logs to a file if you'd like to refer to it at a later date.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/logs.txt

Algorithmic Trading - Backtesting Chapter 9

[359]

EMA-Regular-Order strategy – fetching a
backtesting report – P&L table
After submitting a backtesting job on the AlgoBulls platform, the AlgoBulls backtesting
engine starts executing the strategy. During its execution, along with the logs, the AlgoBulls
backtesting engine also generates a P&L table in real time. This table holds information on
every trade that's been punched by the strategy. It also contains details on the mappings
between entry and exit orders, the trade P&L, and the cumulative P&L, sorted
chronologically, with the latest order first. This table gives us an insight into the overall
strategy's performance with the help of individual and cumulative P&L numbers. The
entry-exit order mapping also helps validate the strategy behavior.

In this recipe, you will fetch the P&L table report for your strategy. This report is available
as soon as the first trade is punched in by your strategy after you submit a backtesting job.
The AlgoBulls platform allows you to fetch the P&L table in real time, even while the
backtesting job is still going on. You can get insights into the strategy performance without
having to wait for the backtesting job to complete, which is helpful when jobs are long-
running. The pyalgotrading package provides a simple method that's used to fetch the
P&L table for a given strategy.

Make sure you have gone through the first six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyEMARegularOrder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

Algorithmic Trading - Backtesting Chapter 9

[360]

How to do it…
Fetch the backtesting P&L report for strategy_code1:

>>> algobulls_connection.get_backtesting_report_pnl_table(strategy_code1)

We got the following output. Your output may differ (note that the following output has
been split into multiple tables for representation purposes. You will see a single wide table
in your Jupyter Notebook):

Algorithmic Trading - Backtesting Chapter 9

[361]

How it works…
In this recipe, you use the get_backtesting_report_pnl_table() method of the
algobulls_connection object to fetch the backtesting P&L table in real time. This
method accepts strategy code as an argument. You pass strategy_code1 here. The return
data is a pandas.DataFrame object with multiple columns, described as follows:

instrument: Financial instrument for which the trade was entered.
entry_timestamp: The timestamp at which the entry order was placed. (Note
that it may remain in the 'OPEN' state for a while before it goes to
the 'COMPLETE' state. The time for this state transition can be found using the
order history table, as explained in the sixth recipe of this chapter.)
entry_transaction_type: Entry order transaction type (either BUY or SELL).
entry_quantity: Entry order quantity.

entry_price: The price at which the entry order gets executed and goes to
the 'COMPLETE' state.
exit_timestamp: The timestamp at which the exit order was placed. (Note that
it may remain in the 'OPEN' state for a while before it goes to the 'COMPLETE'
state.)
exit_transaction_type: Exit order transaction type (either BUY or SELL).
exit_quantity: Exit order quantity.
exit_price: The price at which the exit order gets executed and goes to
the 'COMPLETE' state.
pnl_absolute: Difference between the exit order execution price and the entry
order execution price. Mathematically, this is (exit_price -
entry_price)*exit_quantity for a long trade and (entry_price - exit_price)*exit_quantity
for a short trade. A positive value would imply that the trade is a profit-making
trade. A negative value would imply that the trade is a loss-making trade.
pnl_percentage: The percentage of profit or loss with respect to the entry price.
Mathematically, this is pnl_absolute / entry_price / exit_quantity × 100.
pnl_cumulative_absolute: Cumulative profit or loss. Mathematically, this is
the sum of all the pnl_absolute values of the previous trades. This number
gives us direct insight into the strategy performance against the simulation time.
pnl_cumulative_percentage: The percentage of cumulative profit or loss
with respect to the entry price. Mathematically, this is pnl_cumulative /
entry_price / exit quantity × 100.

Algorithmic Trading - Backtesting Chapter 9

[362]

There's more...
Once the backtesting job moves to the 'STOPPED' state, the P&L table report will not
update anymore. You can fetch the complete P&L report any time before you submit the
next backtesting job for the same strategy. If a new backtesting job is submitted (for the
same strategy), this report will no longer be accessible via the
get_backtesting_report_pnl_table() method. You can save the fetched report as a
.csv file if you'd like to refer to it at a later date.

EMA-Regular-Order strategy — fetching a
backtesting report – statistics table
After submitting a backtesting job on the AlgoBulls platform, the AlgoBulls backtesting
engine starts executing the strategy. During its execution, along with the logs and P&L
table, the AlgoBulls backtesting engine also generates a summary from the P&L table in
real time. This summary is a table of statistics containing various statistical numbers such
as Net P&L (absolute and percentage), Max Drawdown (absolute and percentage), count of
total trades, winning trades, losing trades, long trades and short trades, maximum gain and
minimum gain (or maximum loss), and average profit per winning and losing trade. This
table gives an instant overview of the overall strategy's performance.

In this recipe, you will fetch the statistics table report for your strategy. This report is
available as soon as the first trade is punched in by your strategy after you submit a
backtesting job. The AlgoBulls platform allows you to fetch the statistics table in real time,
even while the backtesting job is still going on. You can get insights into the strategy
performance without having to wait for the backtesting job to complete, which is helpful
when jobs are long-running. The pyalgotrading package provides a simple method that's
used to fetch the statistics table for a given strategy.

Make sure you have gone through the first six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyEMARegularOrder.

Algorithmic Trading - Backtesting Chapter 9

[363]

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
Fetch the backtesting statistics report for strategy_code1:

>>> algobulls_connection.get_backtesting_report_statistics(strategy_code1)

We got the following output (your output may differ):

Algorithmic Trading - Backtesting Chapter 9

[364]

How it works…
In this recipe, you use the get_backtesting_report_statistics() method of the
algobulls_connection object to fetch the backtesting statistics table in real time. This
method accepts the strategy code as an argument. You pass strategy_code1 here. The
return data is a pandas.DataFrame object with two columns – highlight_type and
highlight_value – and multiple rows. The rows are described as follows:

Net PnL: The cumulative backtesting P&L. This is also the
pnl_cumulative_absolute value of the first entry in the P&L table.
Net PnL %: The cumulative backtesting P&L percentage. This is also the
pnl_cumulative_percentage value of the first entry in the P&L table.

Max Drawdown: The lowest value in the pnl_cumulative column of the P&L
table. This indicates the maximum loss your strategy has encountered during the
execution.
Max Drawdown %: Mathematically, this is (Max Drawdown) / (corresponding
entry_price) / exit_quantity × 100.
Number of Trades: Total trades (entry and exit counted as one) during the
session.
Number of Wins: Count of trades where the trade P&L was non-negative.
Number of Losses: Count of trades where the trade P&L was negative.
Number of Long Trades: Count of trades where the entry transaction type was
'BUY'.
Number of Short Trades: Count of trades where the entry transaction type
was 'SELL'.
Max Gain: P&L of the trade with the maximum P&L value among all trades.
Min Gain: P&L of the trade with the minimum P&L value among all trades.
Avg. Profit per winning trade: Mathematically, this is (Total P&L of
winning trades) / (Count of winning trades).
Avg. Profit per losing trade: Mathematically, this is (Total P&L of losing
trades) / (Count of losing trades).

Algorithmic Trading - Backtesting Chapter 9

[365]

There's more...
If the statistics table is fetched while the backtesting job is still running, the aforementioned
numbers would be intermediate numbers, based on the trades completed up until that
time. The numbers may change as more trades are punched in, until the backtesting job
completes.

Once the backtesting job moves to the 'STOPPED' state, the statistics table will not change
anymore. You can fetch the complete statistics table any time before you submit the next
backtesting job for the same strategy. If a new backtesting job is submitted (for the same
strategy), this table will no longer be accessible via the
get_backtesting_report_statistics() method. You can save the fetched report table
to a .csv file if you'd like to refer to it at a later date.

EMA-Regular-Order strategy – fetching a
backtesting report – order history
After submitting a backtesting job on the AlgoBulls platform, the AlgoBulls backtesting
engine starts executing the strategy. During its execution, along with the logs, the P&L table
and the statistics table of the AlgoBulls backtesting engine generate an order history log in
real time. This log contains state transitions of every order, along with the timestamps and
additional information (if any) for each order state. The order history log is crucial for
understanding how long it has taken for a trade to go from an 'OPEN' state to 'COMPLETE'
or 'CANCELLED'. For example, the MARKET orders would immediately go from 'OPEN' to
'COMPLETE' but the LIMIT orders may take a while, based on the market conditions, to go
from 'OPEN' to 'COMPLETE' – they may even get to 'CANCELLED'. All this information is
available in the order history log. (Refer to the state machine diagrams in Chapter 6,
Placing Regular Orders on the Exchange, for more information on order state transitions.)

In this recipe, you will fetch the order history log for your strategy. This log is available as
soon as the first trade is punched in by your strategy, after you submit a backtesting job.
The AlgoBulls platform allows you to fetch the order history log in real time, even while the
backtesting job is still going on. This helps us get details for orders in their end states,
without having to wait for the backtesting job to complete. The pyalgotrading package
provides a simple method we can use to fetch the order history log for a given strategy.

Algorithmic Trading - Backtesting Chapter 9

[366]

Make sure you have gone through the first six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyEMARegularOrder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
Fetch the backtesting order history report for strategy_code1:

>>> order_history = \
 algobulls_connection.get_backtesting_report_order_history(
 strategy_code1)
>>> print(order_history)

We got the following output (your output may differ):

+-------------+---------------------+----------------------------------+---
---+
| INST | TIME | ID | TT
|
-------------+---------------------+----------------------------------+---
NSE_EQ:SBIN
BUY
+-------------+---------------------+----------------------------------+---
---+
+----+---------------------+------------------------+-------+
----+---------------------+------------------------+-------
0
1
2
3
4
+----+---------------------+------------------------+-------+
+-------------+---------------------+----------------------------------+---
---+
INST

Algorithmic Trading - Backtesting Chapter 9

[367]

|
-------------+---------------------+----------------------------------+---
NSE_EQ:SBIN
SELL
+-------------+---------------------+----------------------------------+---
---+
+----+---------------------+------------------------+-------+
----+---------------------+------------------------+-------
0
1
2
3
4
+----+---------------------+------------------------+-------+
...

The complete output is not shown here. Please visit this link to read the complete output:
https:/​/​github.​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/ ​pyalgostrategypool/
sample/​backtesting/ ​strategy_ ​ema_ ​regular_ ​order/ ​oms_ ​order_ ​history. ​log.

How it works…
In this recipe, you use the get_backtesting_report_order_history() method of the
algobulls_connection object to fetch order history logs in real time. This method
accepts strategy code as an argument. You pass strategy_code1 here. The return data is a
string, described as follows:

For every order, the log contains the following information:

A descriptive table of the order, with the following mentioned columns:
INST: Financial instrument of the order
TIME: Time at which the order was placed
ID: The unique ID of the order
TT: The order transaction type (BUY or SELL)

An example of this table is shown here:

+-------------+---------------------+------------------------------
----+------+
| INST | TIME | ID
| TT |
|-------------+---------------------+------------------------------

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_ema_regular_order/oms_order_history.log

Algorithmic Trading - Backtesting Chapter 9

[368]

----+------|
| NSE_EQ:SBIN | 2020-07-01 09:45:00 |
2333198611b744aeb287300d371c8eb5 | BUY |
+-------------+---------------------+------------------------------
----+------+

This information will help you find this exact order in the strategy execution log.

An order state transition table, with the following columns:
TIME: Timestamp at which the order enters the state represented by the
'STATE' column.
STATE: The order enters this 'STATE' at the timestamp mentioned in the
'TIME' column.
MSG: An additional message from the Order Management System (OMS)
for any unexpected state transitions. For example, orders that go to the
REJECTED state have a message from the OMS stating the reason for their
rejection. This column is usually empty.

An example of this table is shown here:

+----+---------------------+------------------------+-------+
| | TIME | STATE | MSG |
|----+---------------------+------------------------+-------|
0	2020-07-01 09:45:00	PUT ORDER REQ RECEIVED	
1	2020-07-01 09:45:00	VALIDATION PENDING	
2	2020-07-01 09:45:00	OPEN PENDING	
3	2020-07-01 09:45:00	OPEN	
4	2020-07-01 09:45:00	COMPLETE	
+----+---------------------+------------------------+-------+

From this table, you can see that, upon placing the order at 9:45 a.m., it transitions to
the 'COMPLETE' state immediately. This is expected as the order is a regular market order.

There's more...
Once the backtesting job moves to the 'STOPPED' state, no new order history logs are
generated. You can fetch the complete order history logs any time before you submit the
next backtesting job for the same strategy. If a new backtesting job is submitted (for the
same strategy), these logs will no longer be accessible via the
get_backtesting_report_order_history() method. You can save the fetched logs to
a file if you'd like to refer to them at a later date.

Algorithmic Trading - Backtesting Chapter 9

[369]

MACD-Bracket-Order strategy – fetching the
strategy
In this recipe, you will fetch the StrategyMACDBracketOrder strategy class from your
account on the AlgoBulls platform, which you uploaded while going through the last recipe
in the previous chapter. This recipe starts with setting up a connection to the AlgoBulls
platform, querying all available strategies in your account, and fetching details of the
required strategy class, StrategyMACDBracketOrder.

Make sure you have gone through the last six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyMACDBracketOrder.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.algobulls import AlgoBullsConnection

Create a new AlgoBulls connection object:2.

>>> algobulls_connection = AlgoBullsConnection()

Fetch the authorization URL:3.

>>> algobulls_connection.get_authorization_url()

We get the following output:

Please login to this URL with your AlgoBulls credentials and get
your developer access token: https://app.algobulls.com/user/login
'https://app.algobulls.com/user/login'

Log into the preceding link with your AlgoBulls credentials, fetch your token,4.
and set it here (refer to Appendix II for more details):

>>> algobulls_connection.set_access_token('
 80b7a69b168c5b3f15d56688841a8f2da5e2ab2c')

Algorithmic Trading - Backtesting Chapter 9

[370]

Fetch and display all the strategies you have created and uploaded so far:5.

>>> all_strategies = algobulls_connection.get_all_strategies()
>>> all_strategies

We get the following output. Your output may differ (make sure you have
followed the recipes in the previous chapter to get a similar output):

Fetch and display the strategy code of the second strategy, MACD-Bracket-6.
Order strategy:

>>> strategy_code2 = all_strategies.iloc[1]['strategyCode']
>>> strategy_code2

We get the following output (your output may differ):

'49287246f9704bbcbad76ade9e2091d9'

Before backtesting your strategy, you can inspect your strategy to ensure you7.
have the right strategy:

>>> strategy_details2 = \
 algobulls_connection.get_strategy_details(strategy_code2)
>>> print(strategy_details2)

We get the following output:

class StrategyMACDBracketOrder(StrategyBase):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.fastMA_period = \
 self.strategy_parameters['fastma_period']
 self.slowMA_period = \
 self.strategy_parameters['slowma_period']
 self.signal_period = \
 self.strategy_parameters['signal_period']
 self.stoploss = \
 self.strategy_parameters['stoploss_trigger']
 self.target = self.strategy_parameters['target_trigger']
 self.trailing_stoploss = \

Algorithmic Trading - Backtesting Chapter 9

[371]

 self.strategy_parameters['trailing_stoploss_trigger']

 self.main_order = None

 def initialize(self):
 self.main_order = {}

 @staticmethod
 def name():
 return 'MACD Bracket Order Strategy'
 ….
 def strategy_exit_position(self, candle, instrument,
 sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True

 return False

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​strategy_ ​macd_ ​bracket_ ​order. ​py.

How it works…
You import the necessary modules in step 1. In step 2, you create an instance of the
AlgoBullsConnection class, named algobulls_connection. In step 3, you get the
authorization URL using the get_authorization_url() method of the
algobulls_connection object. This prints the authorization URL. You should visit this
URL from your web browser to sign into the AlgoBulls platform and fetch your developer
access token. (You can find more details, along with screenshots, in Appendix II on fetching
developer access token from the AlgoBulls platform.) You copy the access token and set it
in step 4 using the set_access_token() method of algobulls_connection. If the token
is accepted, a successful connection is set up with the AlgoBulls platform.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py

Algorithmic Trading - Backtesting Chapter 9

[372]

In step 5, you fetch all the strategies you have created and uploaded on the AlgoBulls
platform so far. You use the get_all_strategies() method for this step and assign it to
a new variable, all_strategies. This variable is a pandas.DataFrame object with
strategyCode and strategyName columns. This table holds information about the
strategy codes and the strategy names you have uploaded previously. If you followed the
MACD-Bracket-Order strategy – uploading the strategy on AlgoBulls Trading Platform recipe
from Chapter 8, Algorithmic Trading Strategies – Coding Step by Step, you will find a strategy
called MACD-Regular-Order strategy. In step 6, you assign the strategy code of the
strategy, MACD-Regular-Order strategy, to a new variable called strategy_code2. The
strategy code is shown in the output of this step. This strategy code is unique to every
strategy on the AlgoBulls platform.

Finally, in step 7, you ensure that the strategy being referred to by strategy_code2 is
indeed the one you uploaded earlier (in the last recipe of the previous chapter). You use the
get_strategy_details() method of the algobulls_connection object to inspect the
strategy. This method takes strategy code as an argument. You pass strategy_code2 here.
This method returns the entire class code as a string. You assign it to a new variable,
strategy_details2, and display it.

If you would like to change the class code being referred to by
strategy_code2, as shown in step 7, please refer to the There's more…
section of the last recipe in Chapter 8, Algorithmic Trading Strategies –
Coding Step by Step.

MACD-Bracket-Order strategy – backtesting
the strategy
In this recipe, you will perform backtesting on the MACD-Bracket-Order strategy. You
must have fetched this strategy from your account on the AlgoBulls platform in the
previous recipe of this chapter. You will leverage the backtesting functionality facilitated by
pyalgotrading for this recipe, which, in turn, submits a backtesting job on the AlgoBulls
platform.

Once submitted, backtesting will be run by the AlgoBulls backtesting engine. You can
query the status at any time to find out the state of the backtesting job. The job goes through
the following states, in the given order:

STARTING (Intermediate state)
STARTED (Stable state)

Algorithmic Trading - Backtesting Chapter 9

[373]

STOPPING (Intermediate state)
STOPPED (Stable state)

On submitting a job, it starts with an intermediate state, 'STARTING'. In this state, the
AlgoBulls backtesting engine fetches the strategy and get the execution environment ready,
which may take a couple of minutes. Once done, the job moves to the 'STARTED' state.
Strategy backtesting happens at this stage. Here, it stays as long as it takes for backtesting
to complete. Once done, the job moves to an intermediate state, 'STOPPING'. In this state,
the AlgoBulls backtesting engine cleans up the resources that have been allocated to this
job, which usually takes less than a minute. Finally, the job moves to the 'STOPPED' state.

If you have already submitted a backtesting job for a strategy, you cannot submit another
job for the same strategy until the first job completes. This means you have to wait for the
first job to move to the 'STOPPED' state. If the first job is long-running and you would like
to stop it immediately, you can submit a stop job request via pyalgotrading. You need to
ensure the job is in the 'STARTED' state before submitting the request.

After submitting a backtesting job, you can fetch logs and reports for the strategy execution
in real time. The logs and reports help validate the strategy's performance and debug any
potential issues.

You can refer to the second recipe of this chapter to see the state machine diagram of a
backtesting job. It demonstrates the various states and transitions of a backtesting job
during its lifetime on the AlgoBulls platform.

Make sure you have gone through the last six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the preceding recipe of this chapter to set up the
algobulls_connection and strategy_code2 object.

Algorithmic Trading - Backtesting Chapter 9

[374]

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from datetime import datetime as dt
>>> from pyalgotrading.constants import *

Search for an instrument using its trading symbol as a keyword. Assign the2.
returned object to instruments:

>>> instrument = algobulls_connection.search_instrument(
 'TATASTEEL')
>>> instrument

We get the following output (your output may differ):

[{'id': 1, 'value': 'NSE:TATASTEEL'}]

Get value for the instrument of choice from instruments:3.

>>> instrument = instrument[0]['value']
>>> instrument

We get the following output:

'NSE:TATASTEEL'

Submit a backtesting job for strategy_code2:4.

>>> algobulls_connection.backtest(
 strategy_code=strategy_code2,
 start_timestamp=dt(year=2020, month=7, day=1, hour=9,
 minute=15),
 end_timestamp=dt(year=2020, month=7, day=7, hour=15,
 minute=30),
 instrument=instrument,
 lots=1,
 strategy_parameters={
 'fastma_period': 26,
 'slowma_period': 6,
 'signal_period': 9,
 'target_trigger': 0.01,
 'stoploss_trigger': 0.01,
 'trailing_stoploss_trigger': 1
 },
 candle_interval=CandleInterval.MINUTES_15)

Algorithmic Trading - Backtesting Chapter 9

[375]

We get the following output:

Setting Strategy Config... Success.
Submitting BACKTESTING job... Success.

Check the status of the submitted backtesting job:5.

>>> algobulls_connection.get_backtesting_job_status(strategy_code2)
{'data': 'STARTING'}

Check the status of the submitted backtesting job again after some time:6.

>>> algobulls_connection.get_backtesting_job_status(strategy_code2)
{'data': 'STARTED'}

How it works…
In step 1, you import the datetime class from the datetime module and all the required
constants from the pyalgotrading.constants module. In step 2, you fetch the
instrument that you would like to backtest the strategy for, the MACD-Bracket-Order
strategy, using the search_instrument() method of the algobulls_connection object.
The search_instrument() method accepts a search string as an argument, which should
be the trading symbol, in part or complete, of the instrument you are interested in. You
pass 'TATASTEEL' here. This function returns a list with details of the instruments that
match the search string. There could be multiple instruments that have the search string in
their trading symbols. In step 3, you fetch the value of the first matched instrument and
assign it to a new variable, instrument.

In step 4, you submit a backtesting job using the backtest() method of the
algobulls_connection() object. It takes the following arguments:

strategy_code: Strategy code of the strategy for which backtesting has to be
performed. This should be a string. You pass strategy_code2 here.
start_timestamp: Timestamp of the past from which backtesting should be
started. This should be a datetime.datetime object. Here, you pass an object
holding the value 1st July 2020 9:15 hours – dt(year=2020, month=7, day=1,
hour=9, minute=15). Refer to the first recipe of Chapter 1, Handling and
Manipulating Date, Time, and Time Series Data, for details on creating a datetime
object.

Algorithmic Trading - Backtesting Chapter 9

[376]

end_timestamp: Timestamp of the past for when backtesting should be
performed. This object should hold a timestamp value ahead of the timestamp
value held by start_timestamp. This should be a datetime.datetime
instance. Here, you pass an object holding the value 7th July 2020 15:30 hours -
dt(year=2020, month=7, day=7, hour=15, minute=30).
instrument: A financial instrument for which backtesting should be run.
Historical data will be fetched for this instrument. This should be a string. You
pass instrument here.
lots: Number of lots for which backtesting should be performed. This should be
an integer. The quantity is calculated by the strategy as number of lots × lot size of
the financial instrument. (See the MACD-Bracket-Order strategy – coding the
strategy_select_instruments_for_entry method recipe in Chapter 8, Algorithmic
Trading Strategies - Coding Step by Step.) You pass 1 here.
strategy_parameters: Parameter names and values expected by the strategy.
This should be a dictionary, with parameter-name and parameter-value as
key-value pairs. You pass the following parameters here:

fastma_period: 26

slowma_period: 6

signal_period: 9

target_trigger: 0.01

stoploss_trigger: 0.01

trailing_stoploss_trigger: 1

(Recall that the parameters for the MACD-Bracket-Order strategy were defined in
its __init__() method in the first recipe of the previous chapter).

candle_interval: The candle interval for the historical data fetched for
backtesting. This should be an enum of the CandleInterval type. You pass
CandleInterval.MINUTES_15 here. (The CandleInterval enum provides
various enums for candle intervals, some of which are MINUTE_1, MINUTES_3 ,
MINUTES_5, MINUTES_10, MINUTES_15, MINUTES_30, HOUR, and DAY.)

If the job submission is successful, you will see Success messages being printed by the
backtest() function.

Once a job has been submitted, it takes a while to start. After starting, it may take some time
to finish, depending on the complexity of the strategy and duration of backtesting specified
using the start_timestamp and end_timestamp arguments. A few days of backtesting
may finish in seconds, while a few months of backtesting may take minutes.

Algorithmic Trading - Backtesting Chapter 9

[377]

In step 5, you fetch the job status using the get_backtesting_job_status() method of
the algobulls_connection object. You pass strategy_code2 as the argument here.
This method returns a dictionary with a single key-value pair – the data and the job status.
If you query the status immediately after placing the job, you get 'STARTING' as the status.
In step 6, you query the status again after some time, and if the job starts, you get a status
of 'STARTED'.

A successful submission implies that the minimum inputs needed to
backtest a strategy have been passed in the required format. However,
this does not ensure that the strategy will run without errors. The
strategy's execution may still run into errors during backtesting. To debug
execution issues, you will need to fetch the output logs, which will be
explained in the next recipe. Possible reasons for errors could be bugs in
the strategy class' Python code or an incomplete strategy_parameters
dictionary being passed to the backtest() function.

There's more…
If a job is running for a long time and you would like to stop it before its completion, you
can use the stop_backtesting_job() method of the algobulls_connection object.
This method accepts strategy code as an argument. You pass strategy_code2 here. This
method submits a stop request to the AlgoBulls backtesting engine. If the request is
accepted, you will see a Success message here:

>>> algobulls_connection.stop_backtesting_job(strategy_code2)
 Stopping BACKTESTING job... Success.

If you query the status after submitting the stop request, you will get a status
of 'STOPPING`:

>>> algobulls_connection.get_backtesting_job_status(strategy_code2)
{'data': 'STOPPING'}

If you query the status again after some time, and if the job has stopped, you will get a
status of 'STOPPED':

>>> algobulls_connection.get_backtesting_job_status(strategy_code2)
{'data': 'STOPPED'}

Algorithmic Trading - Backtesting Chapter 9

[378]

MACD-Bracket-Order strategy – fetching
backtesting logs in real time
After submitting a backtesting job on the AlgoBulls platform, the AlgoBulls backtesting
engine starts executing the strategy. During its execution, every event that occurs and the
decisions that have been made by the AlgoBulls backtesting engine are recorded with exact
timestamps in the form of textual logs. Examples of recorded activities include the given
strategy config, every new candle generated at regular intervals, trades punched in by your
strategy, the entry and exit of positions created by these trades, waits for new candles, and
so on. These logs are quintessential for validating the strategy's behavior and debugging
behavioral or performance issues that are frequently encountered while developing a
strategy.

In this recipe, you will fetch backtesting logs for your strategy. The logs start coming up as
soon as your submitted backtesting job reaches the 'STARTED' state. The AlgoBulls
platform allows you to fetch logs in real time, even while the backtesting job is still going
on. You can get insights into the strategy execution without having to wait for the
backtesting job to complete, which is helpful when jobs are long-running. The
pyalgotrading package provides a simple method for fetching the execution logs for a
given strategy.

Make sure you have gone through the last six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

Algorithmic Trading - Backtesting Chapter 9

[379]

How to do it…
We execute the following steps for this recipe:

Fetch the backtesting execution logs for strategy_code2:1.

>>> logs = algobulls_connection.get_backtesting_logs(
 strategy_code2)
>>> print(logs)

We get the following output (your output may differ):

[2020-07-30 17:27:25] Logs not available yet. Please retry in
sometime.

Fetch the backtesting execution logs for strategy_code2 again after some time:2.

>>> logs = algobulls_connection.get_backtesting_logs(
 strategy_code2)
>>> print(logs)

We get the following output (your output may differ):

...
##
 INITIALIZING ALGOBULLS CORE (v3.2.0 SECURE MODE)...
##
...
[BT] [2020-07-01 09:15:00] [INFO] [tls] STARTING ALGOBULLS CORE...
...
[BT] [2020-07-01 12:30:00] [CRITICAL] [order] [PLACING NEW ORDER]
[2020-07-01 12:30:00] [1cbefcf395c344c88a228a1b01c32ef6] [BUY]
[NSE:TATASTEEL] [QTY:1] [QTY PENDING: 1] [ENTRY PRICE: 322.6]
[PRICE:322.6] [TRIGGER PRICE:None] [ORDER_TYPE_BRACKET]
[ORDER_CODE_INTRADAY] [ORDER_VARIETY_LIMIT] [ORDER_POSITION_ENTER]
[STOPLOSS TRIGGER:319.374] [TARGET TRIGGER:325.826] [TRAILING
STOPLOSS TRIGGER:322.6]
...
[BT] [2020-07-07 15:30:00] [INFO] [clock] Candle generation has
been stopped...
[BT] [2020-07-07 15:30:00] [INFO] [tls] Received event END OF
MARKET. Stopping Trading Core Engine...
[BT] [2020-07-07 15:30:00] [CRITICAL] [tls] [User: ALGOBULLS
VIRTUAL USER] Trading session completed
...

Algorithmic Trading - Backtesting Chapter 9

[380]

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​sample/ ​backtesting/ ​strategy_ ​macd_ ​bracket_ ​order/ ​logs. ​txt.

How it works…
In step 1, you use the get_backtesting_logs() method of the algobulls_connection
object to fetch the strategy backtesting logs in real time. This method accepts strategy code
as an argument. You pass strategy_code2 here. The return data is a string. If you try this
step immediately after submitting the job, you'll get a string that states that the logs are not
ready yet ([2020-07-30 17:27:25] Logs not available yet. Please retry in
sometime.). This happens if the backtesting job is in the 'STARTING' state.

In step 2, you fetch the logs again after some time. If the job is out of the 'STARTING' state,
you start getting your strategy execution logs. You get the entire backtesting log every time
you call the get_backtesting_logs() function.

There's more...
Once the backtesting job moves to the 'STOPPED' state, no new logs are generated. You can
fetch the complete logs at any time before you submit the next backtesting job for the same
strategy. If a new backtesting job is submitted (for the same strategy), these logs will no
longer be accessible via the get_backtesting_logs() method. You can save the fetched
logs to a file if you'd like to refer to it at a later date.

MACD-Bracket-Order strategy – fetching a
backtesting report – P&L table
After submitting a backtesting job on the AlgoBulls platform, the AlgoBulls backtesting
engine starts executing the strategy. During its execution, along with the logs, the AlgoBulls
backtesting engine also generates a P&L table in real time. This table holds information on
every trade that's been punched in by the strategy. It also contains details on the mappings
between entry and exit orders, the trade P&L, and the cumulative P&L, sorted
chronologically, with the latest order first.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/logs.txt

Algorithmic Trading - Backtesting Chapter 9

[381]

This table gives us insights into the strategy's overall performance with the help of
individual and cumulative P&L numbers. The entry-exit order mapping also helps validate
the strategy's behavior.

In this recipe, you will fetch the P&L table report for your strategy. This report is available
as soon as the first trade is punched in by your strategy after you submit a backtesting job.
The AlgoBulls platform allows you to fetch the P&L table in real time, even while the
backtesting job is still going on. You can get insights into the strategy's performance
without having to wait for the backtesting job to complete, which is helpful when jobs are
long-running. The pyalgotrading package provides a simple method you can use to fetch
the P&L table for a given strategy.

Make sure you have gone through the last six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

How to do it…
Fetch the backtesting P&L report for strategy_code2:

>>> algobulls_connection.get_backtesting_report_pnl_table(strategy_code2)

Algorithmic Trading - Backtesting Chapter 9

[382]

We got the following output. Your output may differ (note that the following output has
been split into multiple tables for representation purposes. You will see a single wide table
in your Jupyter Notebook):

How it works…
In this recipe, you use the get_backtesting_report_pnl_table() method of the
algobulls_connection object to fetch the backtesting P&L table in real time. This
method accepts strategy code as an argument. You pass strategy_code2 here. The return
data is a pandas.DataFrame object with multiple columns, described as follows:

instrument: Financial instrument for which the trade was entered.
entry_timestamp: The timestamp at which the entry order was placed. (Note
that it may remain in the 'OPEN' state for a while before it goes to 'COMPLETE'
state. The time for this state transition can be found using the order history table,
as explained in the last recipe of this chapter.)

Algorithmic Trading - Backtesting Chapter 9

[383]

entry_transaction_type: Entry order transaction type (either BUY or SELL).
entry_quantity: Entry order quantity.
entry_price: Price at which the entry order gets executed and goes to
the 'COMPLETE' state.
exit_timestamp: The timestamp at which the exit order was placed. (Note that
it may remain in the 'OPEN' state for a while before it goes to the 'COMPLETE'
state.)
exit_transaction_type: Exit order transaction type (either BUY or SELL).
exit_quantity: Exit order quantity.
exit_price: Price at which the exit order gets executed and goes to
the 'COMPLETE' state.
pnl_absolute: Difference between the exit order execution price and the entry
order execution price. Mathematically, this can be represented as (exit_price -
entry_price)*exit_quantity for a long trade and (entry_price - exit_price)*exit_quantity
for a short trade. A positive value would imply that the trade is a profit-making
trade. A negative value would imply that the trade is a loss-making trade.
pnl_percentage: Percentage of profit or loss with respect to the entry price.
Mathematically, this is pnl_absolute / entry_price / exit_quantity × 100.
pnl_cumulative_absolute: Cumulative profit or loss. Mathematically, this is
the sum of all the pnl_absolute values of the previous trades. This number
gives us direct insight into the strategy's performance against the simulation
time.
pnl_cumulative_percentage: Percentage of cumulative profit or loss with
respect to the entry price. Mathematically, this is pnl_cumulative / entry_price /
exit_quantity × 100.

There's more...
Once the backtesting job moves to the 'STOPPED' state, the P&L table report won't update
anymore. You can fetch the complete P&L report any time before you submit the next
backtesting job for the same strategy. If a new backtesting job is submitted (for the same
strategy), this report will no longer be accessible via the
get_backtesting_report_pnl_table() method. You can save the fetched report as a
.csv file if you'd like to refer to it at a later date.

Algorithmic Trading - Backtesting Chapter 9

[384]

MACD-Bracket-Order strategy – fetching a
backtesting report – statistics table
After submitting a backtesting job on the AlgoBulls platform, the AlgoBulls backtesting
engine starts executing the strategy. During its execution, along with the logs and P&L
table, the AlgoBulls backtesting engine also generates a summary from the P&L table in
real time. This summary is a table of statistics containing various statistical numbers such
as Net P&L (absolute and percentage), Max Drawdown (absolute and percentage), count of
total trades, winning trades, losing trades, long trades and short trades, maximum gain and
minimum gain (or maximum loss), and the average profit per winning and losing trade.
This table gives us an instant overview of the strategy's overall performance.

In this recipe, you will fetch the statistics table report for your strategy. This report is
available as soon as the first trade is punched in by your strategy after you submit a
backtesting job. The AlgoBulls platform allows you to fetch the statistics table in real time,
even while the backtesting job is still going on. You can get insights into the strategy
performance without having to wait for the backtesting job to complete, which is helpful
when jobs are long-running. The pyalgotrading package provides a simple method we
can use to fetch the statistics table for a given strategy.

Make sure you have gone through the last six recipes of the previous
chapter to get a complete picture of the strategy class we will be using;
that is, StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

How to do it…
Fetch the backtesting statistics report for strategy_code2:

>>> algobulls_connection.get_backtesting_report_statistics(strategy_code2)

Algorithmic Trading - Backtesting Chapter 9

[385]

We get the following output (your output may differ):

How it works…
In this recipe, you use the get_backtesting_report_statistics() method of the
algobulls_connection object to fetch the backtesting statistics table in real time. This
method accepts strategy code as an argument. You pass strategy_code2 here. The return
data is a pandas.DataFrame object with two columns – Highlight and Value – and
multiple rows. The rows are described as follows:

Net PnL: The cumulative backtesting P&L. This is also the
pnl_cumulative_absolute value of the first entry in the P&L table.
Net PnL %: The cumulative backtesting P&L percentage. This is also the
pnl_cumulative_percentage value of the first entry in the P&L table.

Algorithmic Trading - Backtesting Chapter 9

[386]

Max Drawdown: The lowest value in the pnl_cumulative column of the P&L
table. This indicates the maximum loss your strategy has encountered during the
execution.
Max Drawdown %: Mathematically, this is (Max Drawdown) / (corresponding
entry_price) / exit_quantity × 100.
Number of Trades: Total trades (entry and exit counted as one) during the
session.
Number of Wins: Count of trades where the trade P&L was non-negative.
Number of Losses: Count of trades where the trade P&L was negative.
Number of Long Trades: Count of trades where the entry transaction type was
'BUY'.
Number of Short Trades: Count of trades where the entry transaction type
was 'SELL'.
Max Gain: P&L of the trade with the maximum P&L value among all trades.
Min Gain: P&L of the trade with the minimum P&L value among all trades.
Avg. Profit per winning trade: Mathematically, this is (Total P&L of
winning trades) / (Count of winning trades).
Avg. Profit per losing trade: Mathematically, this is (Total P&L of losing
trades) / (Count of losing trades).

There's more...
If the statistics table is fetched while the backtesting job is still running, the aforementioned
numbers will be intermediate numbers, based on the trades that had been completed up
until that time. The numbers may change as more trades are punched in, until the
backtesting job completes.

Once the backtesting job moves to the 'STOPPED' state, the statistics table will not change
anymore. You can fetch the complete statistics table any time before you submit the next
backtesting job for the same strategy. If a new backtesting job is submitted (for the same
strategy), this table will no longer be accessible via the
get_backtesting_report_statistics() method. You can save the fetched report as a
.csv file if you'd like to refer to it at a later date.

Algorithmic Trading - Backtesting Chapter 9

[387]

MACD-Bracket-Order strategy – fetching a
backtesting report – order history
After submitting a backtesting job on the AlgoBulls platform, the AlgoBulls backtesting
engine starts executing the strategy. During its execution, along with the logs, the P&L
table, and the statistics table, the AlgoBulls backtesting engine also generates an order
history log in real time. This log contains the state transitions of every order, along with the
timestamps and additional information (if any) for each order state. The order history log is
crucial in understanding how long it has taken for a trade to go from an 'OPEN' to
'COMPLETE' or 'CANCELLED' state. For example, MARKET orders would immediately go
from 'OPEN' to 'COMPLETE' but LIMIT orders may take a while, based on the market
conditions, to go from 'OPEN' to 'COMPLETE' – they may even get 'CANCELLED'. All this
information is available in the order history log. (Refer to the state machine diagrams in
Chapter 6, Placing Regular Orders on the Exchange, for more information on order state
transitions.)

In this recipe, you will fetch the order history log for your strategy. This log is available as
soon as the first trade is punched in by your strategy after you submit a backtesting job. The
AlgoBulls platform allows you to fetch the order history log in real time, even while the
backtesting job is still going on. This helps us get details for orders in the end states,
without having to wait for the backtesting job to complete. The pyalgotrading package
provides a simple method we can use to fetch the order history log for a given strategy.

Make sure you have gone through the last recipes of the previous chapter
to get a complete picture of the strategy class we will be using; that is,
StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

Algorithmic Trading - Backtesting Chapter 9

[388]

How to do it…
Fetch the backtesting order history report for strategy_code2:

>>> order_history =
algobulls_connection.get_backtesting_report_order_history(strategy_code2)
>>> print(order_history)

We get the following output (your output may differ):

...
+------------------+---------------------+---------------------------------
-+------+
| INST | TIME | ID
| TT |
|------------------+---------------------+---------------------------------
-+------|
| NSE_EQ:TATASTEEL | 2020-07-03 10:00:00 | 03436b72ad8a47a8b29bb727876b0b95
| BUY |
+------------------+---------------------+---------------------------------
-+------+
+----+---------------------+------------------------+-------+
| | TIME | STATE | MSG |
|----+---------------------+------------------------+-------|
0	2020-07-03 10:00:00	PUT ORDER REQ RECEIVED	
1	2020-07-03 10:00:00	VALIDATION PENDING	
2	2020-07-03 10:00:00	OPEN PENDING	
3	2020-07-03 10:00:00	TRIGGER PENDING	
4	2020-07-03 12:30:00	OPEN	
5	2020-07-03 12:30:00	COMPLETE	
+----+---------------------+------------------------+-------+			
+------------------+---------------------+---------------------------------			
-+------+			
INST	TIME	ID	
TT			
------------------+---------------------+---------------------------------			
-+------			
NSE_EQ:TATASTEEL	2020-07-03 10:00:00	62458cf47d5f4a12b6c31c490451fdb0	
BUY			
+------------------+---------------------+---------------------------------
-+-----
+
+----+---------------------+------------------------+-------+
| | TIME | STATE | MSG |
|----+---------------------+------------------------+-------|
0	2020-07-03 10:00:00	PUT ORDER REQ RECEIVED	
1	2020-07-03 10:00:00	VALIDATION PENDING	
2	2020-07-03 10:00:00	OPEN PENDING	

Algorithmic Trading - Backtesting Chapter 9

[389]

3	2020-07-03 10:00:00	OPEN	
4	2020-07-03 12:30:00	CANCEL PENDING	
5	2020-07-03 12:30:00	CANCELLED	
+----+---------------------+------------------------+-------+
...

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​sample/ ​backtesting/ ​strategy_ ​macd_ ​bracket_ ​order/ ​oms_ ​order_
history.​log.

How it works…
In this recipe, you use the get_backtesting_report_order_history() method of the
algobulls_connection object to fetch order history logs in real time. This method
accepts strategy code as an argument. You pass strategy_code2 here. The return data is a
string, described as follows:

For every order, the log contains the following information:

A descriptive table of the order, with the following mentioned columns:
INST: Financial instrument of the order
TIME: Time at which the order was placed
ID: The unique ID of the order
TT: The order transaction type (BUY or SELL)

An example of the table is shown as follows:

+------------------+---------------------+-------------------------
---------+------+
| INST | TIME | ID
| TT |
|------------------+---------------------+-------------------------
---------+------|
| NSE_EQ:TATASTEEL | 2020-07-03 10:00:00 |
03436b72ad8a47a8b29bb727876b0b95 | BUY |
+------------------+---------------------+-------------------------
---------+------+

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/backtesting/strategy_macd_bracket_order/oms_order_history.log

Algorithmic Trading - Backtesting Chapter 9

[390]

This information will help you find this exact order in the strategy execution log.

An order state transition table, with the following columns:
TIME: Timestamp at which the order enters the state represented by the
'STATE' column.
STATE: The order enters this 'STATE' column at the timestamp mentioned
in the 'TIME' column.
MSG: Additional message from OMS for any unexpected state transitions; for
example, orders that go to the REJECTED state have a message from the
OMS stating the reason for their rejection. This column is usually empty.

An example of the table is shown as follows:

+----+---------------------+------------------------+-------+
| | TIME | STATE | MSG |
|----+---------------------+------------------------+-------|
0	2020-07-03 10:00:00	PUT ORDER REQ RECEIVED	
1	2020-07-03 10:00:00	VALIDATION PENDING	
2	2020-07-03 10:00:00	OPEN PENDING	
3	2020-07-03 10:00:00	TRIGGER PENDING	
4	2020-07-03 12:30:00	OPEN	
5	2020-07-03 12:30:00	COMPLETE	
+----+---------------------+------------------------+-------+

From this table, you can see that upon placing the order at 10:00 a.m., it transitions to the
'OPEN PENDING' state. It stays there for 2.5 hours before transitioning to the 'COMPLETE'
state. This is expected as the order is a bracket limit order.

There's more...
Once the backtesting job moves to the 'STOPPED' state, no new order history logs are
generated. You can fetch the complete order history logs any time before you submit the
next backtesting job for the same strategy. If a new backtesting job is submitted (for the
same strategy), these logs will no longer be accessible via the
get_backtesting_report_order_history() method. You can save the fetched logs to
a file if you'd like to refer to them at a later date.

10
Algorithmic Trading – Paper

Trading
After building algorithmic trading strategies in Chapter 8, Algorithmic Trading Strategies –
Coding Step by Step, and successfully backtesting them with satisfactory results in the
previous chapter, the next step is to paper trade the strategies in live markets.

Paper trading is the method of executing a trading strategy in the live market hours by
simply recording trades coming from the strategy execution in real time. The trades are not
executed with real money via a broker. Earlier, this recording of trades was done on paper,
hence the name paper trading. These virtual trades can be used for analyzing the risk and
return metrics. Typical paper trading metrics include profit and loss (P&L), maximum
drawdown, the count of total trades, winning trades, losing trades, long trades and short
trades, average profit per winning and losing trade, and more. Paper trading should be
performed for at least a few trading days and until these metrics meet the necessary
requirements, the entire process should be repeated, which consists of updating the
strategy parameters and/or strategy implementation, followed by backtesting and paper
trading.

The underlying idea behind paper trading is that the trading strategy can be executed in the
live market, in a fashion almost similar to real trading, but without risking real money.
Paper trading helps to ensure that the market scenarios from the past, for which backtesting
was run, are still valid. If the market scenarios from the past do not prevail currently, even
if backtesting results are profitable, paper trading results may turn out to be otherwise. This
would suggest that the strategy parameters and/or strategy implementation needs more
work before executing the strategy on real money.

Algorithmic Trading – Paper Trading Chapter 10

[392]

For paper trading, a strategy configuration is required. It consists of multiple parameters,
some of which are as follows:

Start and end times: The time duration within the current day for which paper
trading should be run.
Financial instrument(s): One or more financial instruments for which paper
trading should be performed.
Candle interval: One of the various possible candle intervals – for example, 1
minute, 15 minutes, hour, or day.
Strategy specific parameters: Values for custom parameters defined in the
strategy.
Strategy mode: Either intraday or delivery. Intraday strategies punch intraday
orders, which are squared-off at the end of the day. Delivery strategies punch
delivery orders, which don't square-off at the end of the day and get carried
forward to the next trading day.

A paper trading engine is required to perform paper trading on a given strategy. In this
chapter, you will use the paper trading engine provided by AlgoBulls (https:/ ​/ ​algobulls.
com), an algorithmic trading platform that makes its services available via its developer
options. It provides a Python package called pyalgotrading (https:/ ​/​github. ​com/
algobulls/​pyalgotrading) to make use of these services.

You have already coded two algorithmic trading strategies in Chapter 8, Algorithmic
Trading Strategies – Coding Step by Step. Recall that the strategy descriptions are as follows:

EMA-Regular-Order strategy: A strategy based on the technical indicator EMA
and regular orders. (The first six recipes of Chapter 8, Algorithmic Trading
Strategies – Coding Step by Step.)
MACD-Bracket-Order strategy: A strategy based on the technical indicator of
MACD and bracket orders. (The latter six recipes of Chapter 8, Algorithmic
Trading Strategies – Coding Step by Step.)

These strategies are also available as part of a Python package,
pyalgostrategypool. You can install it using pip, as follows: $ pip
install pyalgostrategypool.

You can also check them out on GitHub (https:/ ​/ ​github. ​com/
algobulls/ ​pyalgostrategypool).

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool

Algorithmic Trading – Paper Trading Chapter 10

[393]

As you have followed Chapter 8, Algorithmic Trading Strategies – Coding Step by Step, you
have uploaded these two strategies to your AlgoBulls account. In this chapter, you will
fetch these strategies from your AlgoBulls account and perform paper trading on them.
After paper trading, you will get strategy execution logs and various reports – namely, a
P&L report, a statistics report, and an order history. These logs and reports help validate
the strategy performance and prepare it for real trading. By using pyalgotrading, you
ensure that you focus on developing and validating the strategy via paper trading without
worrying about the ecosystem needed for the strategy execution.

This chapter includes step-by-step recipes for both the previously mentioned strategies,
from setting up a connection with the AlgoBulls platform, fetching the strategy, and
running paper trading jobs to fetching the execution logs and fetching various types of
reports.

In this chapter, you will cover the following recipes:

EMA-Regular-Order strategy – fetching the strategy
EMA-Regular-Order strategy – paper trading the strategy
EMA-Regular-Order strategy – fetching paper trading logs in real time
EMA-Regular-Order strategy – fetching a paper trading report – P&L table
EMA-Regular-Order strategy – fetching a paper trading report – statistics table
EMA-Regular-Order strategy – fetching a paper trading report – order history
MACD-Bracket-Order strategy – fetching the strategy
MACD-Bracket-Order strategy – paper trading the strategy
MACD-Bracket-Order strategy – fetching paper trading logs in real time
MACD-Bracket-Order strategy – fetching a paper trading report – P&L table
MACD-Bracket-Order strategy – fetching a paper trading report – statistics table
MACD-Bracket-Order strategy – fetching a paper trading report - order history

Paper trading is meaningful only if run during the live market hours, unlike backtesting,
which can be run at any time. Please make sure you try out the recipes of this chapter
during the live market hours.

Algorithmic Trading – Paper Trading Chapter 10

[394]

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
Python package:

pyalgotrading ($ pip install pyalgotrading)

The latest Jupyter notebook for this chapter can be found on GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/ ​tree/ ​master/ ​Chapter10.

EMA-Regular-Order strategy – fetching the
strategy
In this recipe, you will fetch the strategy class, StrategyEMARegularOrder, from your
account on the AlgoBulls platform, which you will have uploaded while going through the
EMA-Regular-Order strategy – uploading the strategy on the AlgoBulls trading platform recipe
in Chapter 8, Algorithmic Trading Strategies – Coding Step by Step. This recipe starts by
setting up a connection to the AlgoBulls platform, querying all the available strategies in
your account, and fetching details of the required strategy class,
StrategyEMARegularOrder.

Make sure you have gone through the first six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyEMARegularOrder.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.algobulls import AlgoBullsConnection

Create a new AlgoBulls connection object:2.

>>> algobulls_connection = AlgoBullsConnection()

https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter10

Algorithmic Trading – Paper Trading Chapter 10

[395]

Fetch the authorization URL:3.

>>> algobulls_connection.get_authorization_url()

We get the following output:

Please login to this URL with your AlgoBulls credentials and get
your developer access token: https://app.algobulls.com/user/login
'https://app.algobulls.com/user/login'

Log in to the preceding link with your AlgoBulls credentials, fetch your token,4.
and set it here (refer to Appendix II for more details):

>>> algobulls_connection.set_access_token(
 '80b7a69b168c5b3f15d56688841a8f2da5e2ab2c')

Fetch and display all strategies you have created and uploaded so far:5.

>>> all_strategies = algobulls_connection.get_all_strategies()
>>> all_strategies

We get the following output. Your output may differ (make sure you have
followed the recipes in Chapter 8, Algorithmic Trading Strategies – Coding Step by
Step, to get a similar output):

Fetch and display the strategy code for the first strategy:6.

>>> strategy_code1 = all_strategies.iloc[0]['strategyCode']
>>> strategy_code1

We get the following output (your output may differ):

'49287246f9704bbcbad76ade9e2091d9'

Before paper trading your strategy, you can inspect it to ensure you have the7.
right strategy:

>>> strategy_details1 = \
 algobulls_connection.get_strategy_details(strategy_code1)
>>> print(strategy_details1)

Algorithmic Trading – Paper Trading Chapter 10

[396]

We get the following output:

class StrategyEMARegularOrder(StrategyBase):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.timeperiod1 = self.strategy_parameters['timeperiod1']
 self.timeperiod2 = self.strategy_parameters['timeperiod2']

 self.main_order = None

 def initialize(self):
 self.main_order = {}

 @staticmethod
 def name():
 return 'EMA Regular Order Strategy'
 ….
 def strategy_exit_position(self, candle, instrument,
 sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True

 return False

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​strategy_ ​ema_ ​regular_ ​order. ​py

How it works…
You import the necessary modules in step 1. In step 2, an instance of the
AlgoBullsConnection class is created, named algobulls_connection. In step 3, you
get the authorization URL using the get_authorization_url() method of the
algobulls_connection object. This prints the authorization URL. You should visit this
URL from your web browser to sign in to the AlgoBulls platform and fetch your developer
access token. (You can find more details with screenshots in Appendix II on fetching
developer access tokens from the AlgoBulls platform.) You copy the access token and set it
in step 4 using the set_access_token() method of algobulls_connection. If the token
is accepted, a successful connection is set up with the AlgoBulls platform.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py

Algorithmic Trading – Paper Trading Chapter 10

[397]

In step 5, you fetch all strategies you have created and uploaded on the AlgoBulls platform
so far. You use the get_all_strategies() method for this step and assign it to a new
variable, all_strategies. This variable is a pandas.DataFrame object with
the strategyCode and strategyName columns. This table holds information on the
strategy codes and strategy names you have uploaded previously. If you have followed the
EMA-Regular-Order strategy – uploading the strategy on the AlgoBulls trading platform recipe
from Chapter 8, Algorithmic Trading Strategies – Coding Step by Step, you will find a strategy
with the name EMA-Regular-Order strategy. In step 6, you assign the strategy code of
the EMA-Regular-Order strategy strategy to a new variable, strategy_code1. The
strategy code is shown in the output of this step. This strategy code is unique for every
strategy on the AlgoBulls platform.

Finally, in step 7, you ensure that the strategy referred by strategy_code1 is indeed the
one you have uploaded earlier (in the EMA-Regular-Order strategy – uploading the strategy on
the AlgoBulls trading platform recipe in Chapter 8, Algorithmic Trading Strategies – Coding Step
by Step). You use the get_strategy_details() method of the algobulls_connection
object to inspect the strategy. This method takes strategy code as an argument. You pass
strategy_code1 here. This method returns the entire class code as a string. You assign it
to a new variable, strategy_details1, and display it.

If you would like to change the class code referred to by
strategy_code1, as shown in step 7, please refer to the There's more…
section of the EMA-Regular-Order strategy – uploading the strategy on the
AlgoBulls trading platform recipe in Chapter 8, Algorithmic Trading
Strategies – Coding Step by Step.

EMA-Regular-Order strategy – paper trading
the strategy
In this recipe, you will perform paper trading on the EMA-Regular-Order strategy. You
must have fetched this strategy from your account on the AlgoBulls platform in the
previous recipe. You will leverage the paper trading functionality facilitated by
pyalgotrading for this recipe, which in turn submits a paper trading job on the AlgoBulls
platform.

Algorithmic Trading – Paper Trading Chapter 10

[398]

Once submitted, paper trading will be run by the AlgoBulls paper trading engine. You can
query the status any time to know the state of the paper trading job. The job goes through
the following states, in the following given order:

'STARTING' (intermediate state)
'STARTED' (stable state)
'STOPPING' (intermediate state)
'STOPPED' (stable state)

On submitting a job, it starts with an intermediate state, 'STARTING'. In this state, the
AlgoBulls paper trading engine will fetch the strategy and get the execution environment
ready, which may take a couple of minutes. Once done, the job moves to the 'STARTED'
state. The paper trading strategy happens in this stage. Here, it stays as long as it takes for
paper trading to complete. Once done, the job moves to an intermediate state, 'STOPPING'.
In this state, the AlgoBulls paper trading engine cleans up the resources allocated for this
job, which usually takes less than a minute. Finally, the job moves to the 'STOPPED' state.

If you have already submitted a strategy paper trading job, you cannot submit another job
for the same strategy until the first job completes. This means you have to wait for the first
job to move to the 'STOPPED' state. If the first job is long-running and you would like to
stop it immediately, you can submit a stop job request via pyalgotrading. You need to
ensure the job is in the 'STARTED' state before submitting the request.

The following state machine diagram demonstrates the various states and transitions of a
paper trading job during its lifetime on the AlgoBulls platform:

Algorithmic Trading – Paper Trading Chapter 10

[399]

After submitting a paper trading job, you can fetch logs and reports for the strategy
execution in real time. The logs and reports help validate the strategy performance and
debug any potential issues.

Make sure you have gone through the first six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step to get a complete
picture of the strategy class used, StrategyEMARegularORder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from datetime import time
>>> from pyalgotrading.constants import *

Search for an instrument using its trading symbol as a keyword. Assign the2.
returned object to instruments:

>>> instruments = algobulls_connection.search_instrument('SBIN')
>>> instruments

We get the following output (your output may differ):

[{'id': 7, 'value': 'NSE:SBIN'}]

Get value for the instrument of choice from instruments:3.

>>> instrument = instruments[0]['value']
>>> instrument

Algorithmic Trading – Paper Trading Chapter 10

[400]

We get the following output:

'NSE:SBIN'

Submit a paper trading job for strategy_code1:4.

>>> algobulls_connection.papertrade(strategy_code=strategy_code1,
 start_time=time(hour=9, minute=15),
 end_time=time(hour=15, minute=30),
 instrument=instrument,
 lots=1,
 strategy_parameters={
 'timeperiod1': 5,
 'timeperiod2': 12
 },
 candle_interval=CandleInterval.MINUTES_15)

We get the following output:

Setting Strategy Config... Success.
Submitting PAPERTRADING job... Success.

Check the status of the submitted paper trading job:5.

>>> algobulls_connection.get_papertrading_job_status(
 strategy_code1)

We get the following output:

{'data': 'STARTING'}

Check the status of the submitted job again after some time:6.

>>> algobulls_connection.get_papertrading_job_status(
 strategy_code1)

We get the following output:

{'data': 'STARTED'}

Algorithmic Trading – Paper Trading Chapter 10

[401]

How it works…
In step 1, you import the time class from the datetime module and all the constants from
the pyalgotrading.constants module. In step 2, you fetch the instrument for which you
would like to paper trade the strategy, EMA-Regular-Order strategy, using the
search_instrument() method of the algobulls_connection object. The
search_instrument() method accepts a search string as an argument, which should be
the trading symbol, in part or complete, of the instrument you are interested in. You pass
'SBIN' here. This function returns a list with details of instruments that match the search
string. There could be multiple instruments that could have the search string in their
trading symbols. In step 3, you fetch the value of the first matched instrument and assign it
to a new variable, instrument.

In step 4, you submit a paper trading job using the papertrade() method of the
algobulls_connection() object. It takes the following arguments:

strategy_code: The strategy code of the strategy for which paper trading has to
be performed. This should be a string. You pass strategy_code1 here.
start_time: Today's time from when paper trading should be started. Should
be a datetime.time object. Here, you pass an object holding the value 9 hours
15 – time(hour=9, minute=15). Refer to the first recipe of this book for details
on creating a time object.

end_time: Today's time until when paper trading should be performed. This
object should hold a time value ahead of the value held by start_time. Should
be a datetime.time instance. Here, you pass an object holding the value 15
hours 30 – time(hour=15, minute=30).
instrument: The financial instrument for which paper trading should be run.
Historical data will be fetched for this instrument. Should be a string. You pass
instrument here.
lots: The number of lots for which paper trading should be performed. This
should be an integer. The quantity is calculated by the strategy as number of lots ×
lot size of the financial instrument. You pass 1 here.
strategy_parameters: The parameter names and values expected by the
strategy. This should be a dictionary, with parameter-name and parameter-
value as key-value pairs. You pass the following parameters here:

timeperiod1: 5

timeperiod2: 12

Algorithmic Trading – Paper Trading Chapter 10

[402]

(Recall that parameters for EMA-Regular-Order strategy have been defined in its
__init__() method, as shown in the first recipe of Chapter 8, Algorithmic
Trading Strategies – Coding Step by Step).

candle_interval: The candle interval for the historical data fetched for paper
trading. This should be an enum of the type CandleInterval. You pass
CandleInterval.MINUTES_15 here. (The CandleInterval enum provides
various enums for candle intervals, some of which are MINUTE_1, MINUTES_3 ,
MINUTES_5, MINUTES_10, MINUTES_15, MINUTES_30, HOUR, and DAY.)

If the job submission is successful, you will see Success messages printed by the
papertrade() function.

Once a job is submitted, it takes a while to start. After starting, it may take some time to
finish depending on the duration of paper trading specified using the start_time and
end_time arguments. Usually, paper trading is run for the entire trading day, which
means the job would be running for 6–8 hours.

In step 5, you fetch the job status using the get_papertrading_job_status() method of
the algobulls_connection object. You pass strategy_code1 as the argument here.
This method returns a dictionary with a single key-value pair, the data and the job status. If
you query the status immediately after placing the job, you get 'STARTING' as the status.
In step 6, you query the status again after some time, and if the job has started, you get the
status as 'STARTED'.

A successful submission implies that the minimum inputs needed to paper trade a strategy
have been passed in the required format. It, however, does not ensure that the strategy will
run without errors. The strategy execution may still run into errors during paper trading.
To debug execution issues, you would need to fetch the output logs, which is explained in
the next recipe. Possible reasons for errors could be either bugs in the strategy class Python
code or an incomplete strategy_parameters dictionary passed to the papertrade()
function.

Algorithmic Trading – Paper Trading Chapter 10

[403]

There's more…
If a job is running for a long time and you would like to stop it before its completion, you
can use the stop_papertrading_job() method of the algobulls_connection object.
This method accepts strategy code as an argument. You pass strategy_code1 here. This
method submits a stop request to the AlgoBulls paper trading engine. If the request is
accepted, you see a Success message here:

>>> algobulls_connection.stop_papertrading_job(strategy_code1)
 Stopping PAPERTRADING job... Success.

If you query the status after submitting the stop request, you get the status as 'STOPPING':

>>> algobulls_connection.get_papertrading_job_status(strategy_code1)
{'data': 'STOPPING'}

If you query the status again after some time, and if the job has stopped, you get the status
as 'STOPPED':

>>> algobulls_connection.get_papertrading_job_status(strategy_code1)
{'data': 'STOPPED'}

EMA-Regular-Order strategy – fetching
paper trading logs in real time
After submitting a paper trading job on the AlgoBulls platform, the AlgoBulls paper
trading engine starts executing the strategy. During the execution, every event that occurs
and decisions taken by the AlgoBulls paper trading engine are recorded with exact
timestamps in the form of textual logs. Some examples of recorded activities include the
given strategy config, every new candle generated at regular intervals, trades punched by
your strategy, the entry and exit of the positions created by these trades, waits for new
candles, and so on. These logs are quintessential in validating the strategy behavior and
debugging behavioral or performance issues that are frequently encountered while
developing a strategy.

Algorithmic Trading – Paper Trading Chapter 10

[404]

In this recipe, you will fetch paper trading logs for your strategy. The logs start coming up
as soon as your submitted paper trading job reaches the 'STARTED' state (refer to the
preceding recipe for more information on the states of a paper trading job). The AlgoBulls
platform allows you to fetch logs in real time, even while the paper trading job is still going
on. You can get insights into the strategy execution without having to wait for the paper
trading job to complete. This is helpful as paper trading jobs are usually long-running. The
pyalgotrading package provides a simple method to fetch the execution logs for a given
strategy.

Make sure you have gone through the first six recipes of Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyEMARegularOrder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
We execute the following steps for this recipe:

Fetch the paper trading execution logs for strategy_code1:1.

>>> logs = algobulls_connection.get_papertrading_logs(
 strategy_code1)
>>> print(logs)

We get the following output (your output may differ):

[2020-07-09 09:12:18] Logs not available yet. Please retry in
sometime.

Fetch the paper trading execution logs for strategy_code1 again after some2.
time:

>>> logs = algobulls_connection.get_papertrading_logs(
 strategy_code1)
>>> print(logs)

Algorithmic Trading – Paper Trading Chapter 10

[405]

We get the following output (your output may differ):

...
##
 INITIALIZING ALGOBULLS CORE (v3.2.0 SECURE MODE)...
##
[2020-07-09 09:12:31] Welcome ALGOBULLS VIRTUAL USER!
[2020-07-09 09:12:31] Reading strategy…
…
[PT] [2020-07-09 09:15:00] [INFO] [tls] STARTING ALGOBULLS CORE…
...
[PT] [2020-07-09 10:30:00] [CRITICAL] [order] [PLACING NEW ORDER]
[2020-07-09 10:30:00] [96c24ca4b3e448f381fc5c2bc52f7a29] [BUY]
[NSE:SBIN] [QTY:1] [QTY PENDING: 1] [ENTRY PRICE: 194.7]
[PRICE:None] [TRIGGER PRICE:None] [ORDER_TYPE_REGULAR]
[ORDER_CODE_INTRADAY] [ORDER_VARIETY_MARKET] [ORDER_POSITION_ENTER]
…
[PT] [2020-07-09 15:30:00] [INFO] [clock] Candle generation has
been stopped...
[PT] [2020-07-09 15:30:00] [INFO] [tls] Received event END OF
MARKET. Stopping Trading Core Engine...
[PT] [2020-07-09 15:30:00] [INFO] [tls] Exiting all open positions
with order code: ORDER_CODE_INTRADAY (if any)...
[PT] [2020-07-09 15:30:00] [CRITICAL] [tls] [User: ALGOBULLS
VIRTUAL USER] Trading session completed
...

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​sample/ ​papertrading/ ​strategy_ ​ema_ ​regular_ ​order/ ​logs. ​txt

How it works…
In step 1, you use the get_papertrading_logs() method of the
algobulls_connection object to fetch the strategy paper trading logs in real time. This
method accepts strategy code as an argument. You pass strategy_code1 here. The return
data is a string. If you try this step immediately after submitting the job, you get a string
that says the logs are not ready yet ([2020-07-09 09:14:18] Logs not available
yet. Please retry in sometime.). This happens if the paper trading job is in the
'STARTING' state.

In step 2, you fetch the logs again after some time. If the job is out of the 'STARTING' state,
you start getting your strategy execution logs. You get the entire paper trading logs every
time you call the get_papertrading_logs() function.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/logs.txt

Algorithmic Trading – Paper Trading Chapter 10

[406]

There's more...
Once the paper trading job moves to the 'STOPPED' state, no new logs are generated. You
can fetch the complete logs any time before you submit the next paper trading job for the
same strategy. If a new paper trading job is submitted (for the same strategy), these logs
will no longer be accessible via the get_papertrading_logs() method. You can save the
fetched logs to a file if you'd like to refer to it at a later point in time.

EMA-Regular-Order strategy – fetching a
paper trading report – P&L table
After submitting a paper trading job on the AlgoBulls platform, the AlgoBulls paper
trading engine starts executing the strategy. During the execution, along with the logs, the
AlgoBulls paper trading engine also generates a P&L table in real time. This table holds
information on every trade punched by the strategy. It also has details on the mapping
between entry and exit orders and the trade P&L and cumulative P&L, sorted
chronologically, with the latest order first. This table gives an insight into the overall
strategy performance with the help of individual and cumulative P&L numbers. The entry-
exit order mapping also helps validate the strategy behavior.

In this recipe, you will fetch the P&L table report for your strategy. This report is available
as soon as the first trade is punched by your strategy after you submit a paper trading job.
The AlgoBulls platform allows you to fetch the P&L table in real time, even while the paper
trading job is still going on. You can get insights into the strategy performance without
having to wait for the paper trading job to complete. This is helpful as paper trading jobs
are usually long-running. The pyalgotrading package provides a simple method to fetch
the P&L table for a given strategy.

Make sure you have gone through the first six recipes of Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyEMARegularOrder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

Algorithmic Trading – Paper Trading Chapter 10

[407]

How to do it…
Fetch the paper trading P&L report for strategy_code1:

>>> algobulls_connection.get_papertrading_report_pnl_table(strategy_code1)

We get the following output. Your output may differ (note that the following output has
been split into multiple tables for representation purposes. You will see a single wide table
in your Jupyter notebook):

How it works…
In this recipe, you use the get_papertrading_report_pnl_table() method of the
algobulls_connection object to fetch the paper trading P&L table in real time. This
method accepts strategy code as an argument. You pass strategy_code1 here. The return
data is a pandas.DataFrame object with multiple columns, described as follows:

instrument: Financial instrument for which trade was entered.
entry_timestamp: The timestamp at which the entry order was placed. (Note
that it may remain in the 'OPEN' state for a while before it goes to
the 'COMPLETE' state. The time for this state transition can be found using the
order history table, explained in the sixth recipe of this chapter.)

Algorithmic Trading – Paper Trading Chapter 10

[408]

entry_transaction_type: The entry order transaction type (either BUY or
SELL).
entry_quantity: The entry order quantity.

entry_price: The price at which the entry order gets executed and goes to
the 'COMPLETE' state.
exit_timestamp: The timestamp at which the exit order was placed. (Note that
it may remain in the 'OPEN' state for a while before it goes to 'COMPLETE'
state.)

exit_transaction_type: The exit order transaction type (either BUY or SELL).
exit_quantity: The exit order quantity.
exit_price: The price at which the exit order gets executed and goes to
the 'COMPLETE' state.
pnl_absolute: The difference between the exit order execution price and entry
order execution price. Mathematically, this is (exit_price -
entry_price)*exit_quantity for a long trade and (entry_price -
exit_price)*exit_quantity for a short trade. A positive value would imply that the
trade is a profit-making trade. A negative value would imply that the trade is a
loss-making trade.
pnl_percentage: The percentage of profit or loss with respect to the entry price.
Mathematically, this is pnl_absolute / entry_price / exit_quantity x 100.
pnl_cumulative_absolute: Cumulative profit or loss. Mathematically, this is
the sum of all the pnl_absolute values of the previous trades. This number
gives a direct insight into the strategy performance against the simulation time.
pnl_cumulative_percentage: The percentage of cumulative profit or loss
with respect to the entry price. Mathematically, this is pnl_cumulative / entry_price
/ exit_quantity x 100.

There's more...
Once the paper trading job moves to the 'STOPPED' state, the P&L table report will not
update anymore. You can fetch the complete P&L report any time before you submit the
next paper trading job for the same strategy. If a new paper trading job is submitted (for the
same strategy), this report will no longer be accessible via the
get_papertrading_report_pnl_table() method. You can save the fetched report to a
.csv file if you'd like to refer to it at a later point in time.

Algorithmic Trading – Paper Trading Chapter 10

[409]

EMA-Regular-Order strategy – fetching a
paper trading report – statistics table
After submitting a paper trading job on the AlgoBulls platform, the AlgoBulls paper
trading engine starts executing the strategy. During the execution, along with the logs and
the P&L table, the AlgoBulls paper trading engine also generates a summary from the P&L
table in real time. This summary is a table of statistics containing various statistical
numbers, such as Net P&L (absolute and percentage), Max Drawdown (absolute and
percentage), the count of total trades, winning trades, losing trades, long trades, and short
trades, maximum gain and minimum gain (or maximum loss), and the average profit per
winning and losing trade. This table gives an instant overview of the overall strategy
performance.

In this recipe, you will fetch the statistics table report for your strategy. This report is
available as soon as the first trade is punched by your strategy after you submit a paper
trading job. The AlgoBulls platform allows you to fetch the statistics table in real time, even
while the paper trading job is still going on. You can get insights into the strategy
performance without having to wait for the paper trading job to complete. This is helpful as
paper trading jobs are usually long-running. The pyalgotrading package provides a
simple method to fetch the statistics table for a given strategy.

Make sure you have gone through the first six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyEMARegularOrder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
Fetch the paper trading statistics report for strategy_code1:

>>> algobulls_connection.get_papertrading_report_statistics(strategy_code1)

Algorithmic Trading – Paper Trading Chapter 10

[410]

We get the following output (your output may differ):

How it works…
In this recipe, you use the get_papertrading_report_statistics() method of the
algobulls_connection object to fetch the paper trading statistics table in real time. This
method accepts strategy code as an argument. You pass strategy_code1 here. The return
data is a pandas.DataFrame object with two columns—highlight_type and
highlight_value—and multiple rows. The rows are described as follows:

Net PnL: The cumulative paper trading P&L. This is also the
pnl_cumulative_absolute value of the first entry in the P&L table.
Net PnL %: The cumulative paper trading P&L percentage. This is also the
pnl_cumulative_percentage value of the first entry in the P&L table.
Max Drawdown: The lowest value in the pnl_cumulative column of the P&L
table. This indicates the maximum loss your strategy has encountered during the
execution.

Algorithmic Trading – Paper Trading Chapter 10

[411]

Max Drawdown %: Mathematically, this is (Max Drawdown) / (corresponding
entry_price/exit_quantity x 100).
Number of Trades: Total trades (entry and exit counted as one) during the
session.
Number of Wins: The count of trades where the trade P&L was non-negative.
Number of Losses: The count of trades where the trade P&L was negative.
Number of Long Trades: The count of trades where the entry transaction type
was 'BUY'.
Number of Short Trades: The count of trades where the entry transaction
type was 'SELL'.
Max Gain: The P&L of the trade with the maximum P&L value among all trades.
Min Gain: The P&L of the trade with the minimum P&L value among all trades.
Avg. Profit per winning trade: Mathematically, this is (Total P&L of
winning trades) / (Count of winning trades).
Avg. Profit per losing trade: Mathematically, this is (Total P&L of losing
trades) / (Count of losing trades).

There's more...
If the statistics table is fetched while the paper trading job is still running, the previously
mentioned numbers will be intermediate numbers, based on the trades completed until that
time. The numbers may change as more trades are punched until the paper trading job
completes.

Once the paper trading job moves to the 'STOPPED' state, the statistics table will not
change anymore. You can fetch the complete statistics table any time before you submit the
next paper trading job for the same strategy. If a new paper trading job is submitted (for the
same strategy), this table will no longer be accessible via the
get_papertrading_report_statistics() method. You can save the fetched report
table to a .csv file if you'd like to refer to it at a later point in time.

Algorithmic Trading – Paper Trading Chapter 10

[412]

EMA-Regular-Order strategy – fetching a
paper trading report – order history
After submitting a paper trading job on the AlgoBulls platform, the AlgoBulls paper
trading engine starts executing the strategy. During the execution, along with the logs, the
P&L table, and statistics table, the AlgoBulls paper trading engine also generates an order
history log in real time. This log contains state transitions of every order, along with the
timestamps and additional information (if any) for each order state. The order history log is
crucial in understanding how long it has taken for a trade to go from 'OPEN' to
'COMPLETE' or to the 'CANCELLED' state. For example, the MARKET orders would
immediately go from an 'OPEN' to 'COMPLETE' state but the LIMIT orders may take a
while, based on the market conditions, to go from an 'OPEN' to 'COMPLETE' state, or they
may even get to 'CANCELLED'. All this information is available in the order history log.
(Refer to the state machine diagrams in Chapter 6, Placing Orders on the Exchange, for more
information on order state transitions.)

In this recipe, you will fetch the order history log for your strategy. This log is available as
soon as the first trade is punched by your strategy after you submit a paper trading job. The
AlgoBulls platform allows you to fetch the order history log in real time, even while the
paper trading job is still going on. This helps us get details for orders in the end states
without having to wait for the paper trading job to complete. The pyalgotrading package
provides a simple method to fetch the order history log for a given strategy.

Make sure you have gone through the first six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyEMARegularOrder.

Algorithmic Trading – Paper Trading Chapter 10

[413]

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
Fetch the paper trading order history report for strategy_code1:

>>> order_history = \
 algobulls_connection.get_papertrading_report_order_history(
 strategy_code1)

We get the following output. Your output may differ:

+-------------+---------------------+----------------------------------+---
---+
| INST | TIME | ID | TT
|
-------------+---------------------+----------------------------------+---
NSE_EQ:SBIN
BUY
+-------------+---------------------+----------------------------------+---
---+
+----+---------------------+------------------------+-------+
----+---------------------+------------------------+-------
0
1
2
3
4
+----+---------------------+------------------------+-------+
+-------------+---------------------+----------------------------------+---
---+
INST
-------------+---------------------+----------------------------------+---

NSE_EQ:SBIN
SELL |
+-------------+---------------------+----------------------------------+---
---+
+----+---------------------+------------------------+-------+

Algorithmic Trading – Paper Trading Chapter 10

[414]

| | TIME | STATE | MSG |
|----+---------------------+------------------------+-------|
0	2020-07-09 10:45:00	PUT ORDER REQ RECEIVED	
1	2020-07-09 10:45:00	VALIDATION PENDING	
2	2020-07-09 10:45:00	OPEN PENDING	
3	2020-07-09 10:45:00	OPEN	
4	2020-07-09 10:45:00	COMPLETE	
+----+---------------------+------------------------+-------+
...

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​sample/ ​papertrading/ ​strategy_ ​ema_ ​regular_ ​order/ ​oms_ ​order_
history.​log

How it works…
In this recipe, you use the get_papertrading_report_order_history() method of the
algobulls_connection object to fetch order history logs in real time. This method
accepts strategy code as an argument. You pass strategy_code1 here. The return data is a
string, described as follows:

For every order, the log has the following information:

A descriptive table on the order, with the following columns:
INST: The financial instrument of the order
TIME: The time at which the order was placed
ID: The unique ID of the order
TT: The order transaction type (BUY or SELL)

A sample of the table is shown as follows:

+-------------+---------------------+------------------------------
----+------+
| INST | TIME | ID
| TT |
|-------------+---------------------+------------------------------
----+------|
| NSE_EQ:SBIN | 2020-07-09 10:30:00 |
96c24ca4b3e448f381fc5c2bc52f7a29 | BUY |
+-------------+---------------------+------------------------------
----+------+

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_ema_regular_order/oms_order_history.log

Algorithmic Trading – Paper Trading Chapter 10

[415]

This information will help you find this exact order in the strategy execution log.

An order state transition table, with the following columns:
TIME: The time at which the order is present in the state represented by the
'STATE' column.

STATE: The order enters into this state at the time mentioned in the 'TIME'
column.

MSG: Additional message from the OMS for any unexpected state transitions.
For example, orders that go to the REJECTED state have a message from the
OMS stating the reason for their rejection. This column is usually empty.

A sample of the table is shown as follows:

+----+---------------------+------------------------+-------+
| | TIME | STATE | MSG |
|----+---------------------+------------------------+-------|
0	2020-07-09 10:30:00	PUT ORDER REQ RECEIVED	
1	2020-07-09 10:30:00	VALIDATION PENDING	
2	2020-07-09 10:30:00	OPEN PENDING	
3	2020-07-09 10:30:00	OPEN	
4	2020-07-09 10:30:00	COMPLETE	
+----+---------------------+------------------------+-------+

From this table, you can see that upon placing the order at 10:30 AM, it transitions to the
'COMPLETE' state immediately. This is expected as the order is a regular market order.
(Refer to the first recipe of Chapter 6, Placing Regular Orders on the Exchange, for more
details on regular market orders.)

There's more...
Once the paper trading job moves to the 'STOPPED' state, no new order history logs are
generated. You can fetch the complete order history logs any time before you submit the
next paper trading job for the same strategy. If a new paper trading job is submitted (for the
same strategy), these logs will no longer be accessible via the
get_papertrading_report_order_history() method. You can save the fetched logs to
a file if you'd like to refer to it at a later point in time.

Algorithmic Trading – Paper Trading Chapter 10

[416]

MACD-Bracket-Order strategy – fetching the
strategy
In this recipe, you will fetch the strategy class, StrategyMACDBracketOrder, from your
account on the AlgoBulls platform, which you must have uploaded while going through
the last recipe of Chapter 8, Algorithmic Trading Strategies – Coding Step by Step. This recipe
starts with setting up a connection to the AlgoBulls platform, querying all available
strategies in your account and fetching details of the required strategy class,
StrategyMACDBracketOrder.

Make sure you have gone through the last six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyMACDBracketOrder.

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.algobulls import AlgoBullsConnection

Create a new AlgoBulls connection object:2.

>>> algobulls_connection = AlgoBullsConnection()

Fetch the authorization URL:3.

>>> algobulls_connection.get_authorization_url()

We get the following output:

Please login to this URL with your AlgoBulls credentials and get
your developer access token: https://app.algobulls.com/user/login
'https://app.algobulls.com/user/login'

Log in to the preceding link with your AlgoBulls credentials, fetch your token,4.
and set it here (refer to Appendix II for more details):

>>> algobulls_connection.set_access_token(
 '80b7a69b168c5b3f15d56688841a8f2da5e2ab2c')

https://cdp.packtpub.com/python_algorithmic_trading_cookbook/wp-admin/post.php?post=32&action=edit#post_30
https://cdp.packtpub.com/python_algorithmic_trading_cookbook/wp-admin/post.php?post=32&action=edit#post_30
https://cdp.packtpub.com/python_algorithmic_trading_cookbook/wp-admin/post.php?post=32&action=edit#post_30

Algorithmic Trading – Paper Trading Chapter 10

[417]

Fetch and display all strategies you have created and uploaded so far:5.

>>> all_strategies = algobulls_connection.get_all_strategies()
>>> all_strategies

We get the following output. Your output may differ (make sure you have
followed the recipes in Chapter 8, Algorithmic Trading Strategies – Coding Step by
Step, to get a similar output):

Fetch and display the strategy code of the second strategy, the MACD-Bracket-6.
Order strategy:

>>> strategy_code2 = all_strategies.iloc[1]['strategyCode']
>>> strategy_code2

We get the following output (your output may differ):

'49287246f9704bbcbad76ade9e2091d9'

Before paper trading your strategy, you can inspect your strategy to ensure you7.
have the right strategy:

>>> strategy_details2 = \
 algobulls_connection.get_strategy_details(strategy_code2)
>>> print(strategy_details2)

We get the following output:

class StrategyMACDBracketOrder(StrategyBase):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.fastMA_period = \
 self.strategy_parameters['fastma_period']
 self.slowMA_period = \
 self.strategy_parameters['slowma_period']
 self.signal_period = \
 self.strategy_parameters['signal_period']
 self.stoploss = \
 self.strategy_parameters['stoploss_trigger']

https://cdp.packtpub.com/python_algorithmic_trading_cookbook/wp-admin/post.php?post=32&action=edit#post_30

Algorithmic Trading – Paper Trading Chapter 10

[418]

 self.target = self.strategy_parameters['target_trigger']
 self.trailing_stoploss = \
 self.strategy_parameters['trailing_stoploss_trigger']

 self.main_order = None

 def initialize(self):
 self.main_order = {}

 @staticmethod
 def name():
 return 'MACD Bracket Order Strategy'
 ….
 def strategy_exit_position(self, candle, instrument,
 sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True

 return False

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​strategy_ ​macd_ ​bracket_ ​order. ​py

How it works…
You import the necessary modules in step 1. In step 2, you create an instance of the
AlgoBullsConnection class, named algobulls_connection. In step 3, you get the
authorization URL using the get_authorization_url() method of the
algobulls_connection object. This prints the authorization URL. You should visit this
URL from your web browser to sign in to the AlgoBulls platform and fetch your developer
access token. (You can find more details with screenshots in Appendix II on fetching
developer access token from the AlgoBulls platform.) You copy the access token and set it
in step 4 using the set_access_token() method of algobulls_connection. If the token
is accepted, a successful connection is set up with the AlgoBulls platform.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py

Algorithmic Trading – Paper Trading Chapter 10

[419]

In step 5, you fetch all strategies you have created and uploaded on the AlgoBulls platform
so far. You use the get_all_strategies() method for this step and assign it to a new
variable, all_strategies. This variable is a pandas.DataFrame object with
the strategyCode and strategyName columns. This table holds information on the
strategy codes and strategy names you have uploaded previously. If you have followed the
MACD-Bracket-Order strategy – uploading the strategy on the AlgoBulls trading
platform recipe from Chapter 8, Algorithmic Trading Strategies – Coding Step by Step, you will
find a strategy with the name MACD-Regular-Order strategy. In step 6, you assign the
strategy code of the MACD-Regular-Order strategy strategy, to a new
variable, strategy_code2. The strategy code is shown in the output of this step. This
strategy code is unique for every strategy on the AlgoBulls platform.

Finally, in step 7, you ensure that the strategy referred by strategy_code2 is indeed the
one you uploaded earlier (in the last recipe of Chapter 8, Algorithmic Trading Strategies –
Coding Step by Step). You use the get_strategy_details() method of the
algobulls_connection object to inspect the strategy. This method takes strategy code as
an argument. You pass strategy_code2 here. This method returns the entire class code as
a string. You assign it to a new variable, strategy_details2, and display it.

If you would like to change the class code referred by strategy_code2,
as shown in step 7, please refer to There's more… section of the last recipe in
Chapter 8, Algorithmic Trading Strategies – Coding Step by Step.

MACD-Bracket-Order strategy – paper
trading the strategy
In this recipe, you will perform paper trading on the MACD-Bracket-Order
strategy strategy. You must have fetched this strategy from your account on the
AlgoBulls platform in the preceding recipe of this chapter. You will leverage the paper
trading functionality facilitated by pyalgotrading for this recipe, which in turn submits a
paper trading job on the AlgoBulls platform.

Once submitted, paper trading will be run by the AlgoBulls paper trading engine. You can
query the status any time to know the state of the paper trading job. The job goes through
the following states, in the following given order:

'STARTING' (intermediate state)
'STARTED' (stable state)

Algorithmic Trading – Paper Trading Chapter 10

[420]

'STOPPING' (intermediate state)
'STOPPED' (stable state)

On submitting a job, it starts with an intermediate state, 'STARTING'. In this state, the
AlgoBulls paper trading engine will fetch the strategy and get the execution environment
ready, which may take a couple of minutes. Once done, the job moves to the
'STARTED' state. The paper trading strategy happens in this stage. Here, it stays as long as
it takes for paper trading to complete. Once done, the job moves to an intermediate state,
'STOPPING'. In this state, the AlgoBulls paper trading engine cleans up the resources
allocated for this job, which usually takes less than a minute. Finally, the job moves to the
'STOPPED' state.

If you have already submitted a paper trading job for a strategy, you cannot submit another
job for the same strategy until the first job completes. This means you have to wait for the
first job to move to the 'STOPPED' state. If the first job is long-running and you would like
to stop it immediately, you can submit a stop job request via pyalgotrading. You need to
ensure the job is in the 'STARTED' state before submitting the request.

After submitting a paper trading job, you can fetch logs and reports for the strategy
execution in real time. The logs and reports help validate the strategy performance and
debug any potential issues.

You can refer to the second recipe of this chapter for the state machine diagram of a paper
trading job. It demonstrates the various states and transitions of a paper trading job during
its lifetime on the AlgoBulls platform.

Make sure you have gone through the last six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

Algorithmic Trading – Paper Trading Chapter 10

[421]

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from datetime import time
>>> from pyalgotrading.constants import *

Search for an instrument using its trading symbol as a keyword. Assign the2.
returned object to instruments:

>>> instrument = algobulls_connection.search_instrument(
 'TATASTEEL')
>>> instrument

We get the following output (your output may differ):

[{'id': 1, 'value': 'NSE:TATASTEEL'}]

Get value for the instrument of choice from instruments:3.

>>> instrument = instrument[0]['value']
>>> instrument

We get the following output:

'NSE:TATASTEEL'

Submit a paper trading job for strategy_code2:4.

>>> algobulls_connection.papertrade(
 strategy_code=strategy_code2,
 start_time=time(hour=9, minute=15),
 end_time=time(hour=15, minute=30),
 instrument=instrument,
 lots=1,
 strategy_parameters={
 'fastma_period': 26,
 'slowma_period': 6,
 'signal_period': 9,
 'target_trigger': 0.01,
 'stoploss_trigger': 0.01,
 'trailing_stoploss_trigger': 1
 },
 candle_interval=CandleInterval.MINUTES_15)

Algorithmic Trading – Paper Trading Chapter 10

[422]

We get the following output:

Setting Strategy Config... Success.
Submitting PAPERTRADING job... Success.

Check the status of the submitted paper trading job:5.

>>> algobulls_connection.get_papertrading_job_status(
 strategy_code2)
{'data': 'STARTING'}

Check the status of the submitted paper trading job again after some time:6.

>>> algobulls_connection.get_papertrading_job_status(
 strategy_code2)
{'data': 'STARTED'}

How it works…
In step 1, you import the time class from the datetime module and all constants from
the pyalgotrading.constants module. In step 2, you fetch the instrument for which you
would like to paper trade the strategy, MACD-Bracket-Order strategy, using the
search_instrument() method of the algobulls_connection object. The
search_instrument() method accepts a search string as an argument, which should be
the trading symbol, in part or complete, of the instrument you are interested in. You pass
'TATASTEEL' here. This function returns a list with details of instruments that match the
search string. There could be multiple instruments that could have the search string in their
trading symbols. In step 3, you fetch the value of the first matched instrument and assign it
to a new variable, instrument.

In step 4, you submit a paper trading job using the papertrade() method of the
algobulls_connection() object. It takes the following arguments:

strategy_code: The strategy code of the strategy for which paper trading has to
be performed. Should be a string. You pass strategy_code2 here.
start_time: Today's time from when paper trading should be started. Should
be a datetime.time object. Here, you pass an object holding the value 9 hours
15 – time(hour=9, minute=15). Refer to the first recipe of this book for details
on creating a time object.

Algorithmic Trading – Paper Trading Chapter 10

[423]

end_time: Today's time until when paper trading should be performed. This
object should hold a time value ahead of the value held by start_time. Should
be a datetime.time instance. Here, you pass an object holding the value 15:30
hours – time(hour=15, minute=30).
instrument: The financial instrument for which paper trading should be run.
Historical data will be fetched for this instrument. Should be a string. You pass
instrument here.
lots: The number of lots for which paper trading should be performed. Should
be an integer. The quantity is calculated by the strategy as number of lots × lot size
of the financial instrument. You pass 1 here.
strategy_parameters: The parameter names and values expected by the
strategy. Should be a dictionary, with parameter-name and parameter-value
as key-value pairs. You pass the following parameters here:

fastma_period: 26

slowma_period: 6

signal_period: 9

target_trigger: 0.01

stoploss_trigger: 0.01

trailing_stoploss_trigger: 1

(Recall that the parameters for MACD-Bracket-Order strategy have been defined
in its __init__() method, as shown in the first recipe of Chapter 8, Algorithmic
Trading Strategies – Coding Step by Step).

candle_interval: The candle interval for the historical data fetched for paper
trading. Should be an enum of the type CandleInterval. You pass
CandleInterval.MINUTES_15 here. (The CandleInterval enum provides
various enums for candle intervals, some of which are MINUTE_1, MINUTES_3 ,
MINUTES_5, MINUTES_10, MINUTES_15, MINUTES_30, HOUR, and DAY.)

If the job submission is successful, you will see Success messages printed by the
papertrade() function.

Once a job is submitted, it takes a while to start. After starting, it may take some time to
finish depending on the duration of paper trading specified using the start_time and
end_time arguments. Usually, paper trading is run for the entire trading day, which
means the job would be running for 6–8 hours.

Algorithmic Trading – Paper Trading Chapter 10

[424]

In step 5, you fetch the job status using the get_papertrading_job_status() method of
the algobulls_connection object. You pass strategy_code2 as the argument here.
This method returns a dictionary with a single key-value pair, the data and the job status. If
you query the status immediately after placing the job, you get 'STARTING' as the status.
In step 6, you query the status again after some time, and if the job has started, you get the
status as 'STARTED'.

A successful submission implies that the minimum inputs needed to
paper trade a strategy have been passed in the required format. It,
however, does not ensure that the strategy will run without errors. The
strategy execution may still run into errors during paper trading. To
debug execution issues, you would need to fetch the output logs, which is
explained in the next recipe. Possible reasons for errors could be either
bugs in the strategy class Python code or an incomplete
strategy_parameters dictionary passed to the papertrade()
function.

There's more…
If a job is running for a long time and you would like to stop it before its completion, you
can use the stop_papertrading_job() method of the algobulls_connection object.
This method accepts strategy code as an argument. You pass strategy_code2 here. This
method submits a stop request to the AlgoBulls paper trading engine. If the request is
accepted, you see a Success message here:

>>> algobulls_connection.stop_papertrading_job(strategy_code2)
 Stopping PAPERTRADING job... Success.

If you query the status after submitting the stop request, you get the status as 'STOPPING':

>>> algobulls_connection.get_papertrading_job_status(strategy_code2)
{'data': 'STOPPING'}

If you query the status again after some time, and if the job has stopped, you get the status
as 'STOPPED':

>>> algobulls_connection.get_papertrading_job_status(strategy_code2)
{'data': 'STOPPED'}

Algorithmic Trading – Paper Trading Chapter 10

[425]

MACD-Bracket-Order strategy – fetching
paper trading logs in real time
After submitting a paper trading job on the AlgoBulls platform, the AlgoBulls paper
trading engine starts executing the strategy. During the execution, every event that occurs
and decisions taken by the AlgoBulls paper trading engine are recorded with exact
timestamps in the form of textual logs. Examples of recorded activities include the given
strategy config, every new candle generated at regular intervals, trades punched by your
strategy, the entry and exit of positions created by these trades, waits for new candles, and
so on. These logs are quintessential in validating the strategy behavior and debugging
behavioral or performance issues that are frequently encountered while developing a
strategy.

In this recipe, you will fetch paper trading logs for your strategy. The logs start coming up
as soon as your submitted paper trading job reaches the 'STARTED' state (refer to the
preceding recipe for more information on states of a paper trading job). The AlgoBulls
platform allows you to fetch logs in real time, even while the paper trading job is still going
on. You can get insights into the strategy execution without having to wait for the paper
trading job to complete, which is helpful when jobs are long-running. The
pyalgotrading package provides a simple method to fetch the execution logs for a given
strategy.

Make sure you have gone through the last six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

Algorithmic Trading – Paper Trading Chapter 10

[426]

How to do it…
We execute the following steps for this recipe:

Fetch the paper trading execution logs for strategy_code2:1.

>>> logs = algobulls_connection.get_papertrading_logs(
 strategy_code2)
>>> print(logs)

We get the following output (your output may differ):

[2020-07-09 09:14:12] Logs not available yet. Please retry in
sometime.

Fetch the paper trading execution logs for strategy_code2 again after some2.
time:

>>> logs = algobulls_connection.get_papertrading_logs(
 strategy_code2)
>>> print(logs)

We get the following output (your output may differ):

...
##
 INITIALIZING ALGOBULLS CORE (v3.2.0)...
##
…
[PT] [2020-07-09 09:15:00] [INFO] [tls] STARTING ALGOBULLS CORE…
…
[PT] [2020-07-09 09:45:00] [CRITICAL] [order] [PLACING NEW ORDER]
[2020-07-09 09:45:00] [a310755e3d8b4a1ab4667882bf25751d] [BUY]
[NSE:TATASTEEL] [QTY:1] [QTY PENDING: 1] [ENTRY PRICE: 345.0]
[PRICE:345.0] [TRIGGER PRICE:None] [ORDER_TYPE_BRACKET]
[ORDER_CODE_INTRADAY] [ORDER_VARIETY_LIMIT] [ORDER_POSITION_ENTER]
[STOPLOSS TRIGGER:341.55] [TARGET TRIGGER:348.45] [TRAILING
STOPLOSS TRIGGER:345.0]
...
[PT] [2020-07-09 15:30:00] [INFO] [clock] Candle generation has
been stopped...
[PT] [2020-07-09 15:30:00] [INFO] [tls] Received event END OF
MARKET. Stopping Trading Core Engine...
[PT] [2020-07-09 15:30:00] [INFO] [tls] Exiting all open positions
with order code: ORDER_CODE_INTRADAY (if any)...
[PT] [2020-07-09 15:30:00] [CRITICAL] [tls] [User: ALGOBULLS
VIRTUAL USER] Trading session completed
…

Algorithmic Trading – Paper Trading Chapter 10

[427]

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​sample/ ​papertrading/ ​strategy_ ​macd_ ​bracket_ ​order/ ​logs. ​txt

How it works…
In step 1, you use the get_papertrading_logs() method of the
algobulls_connection object to fetch the strategy paper trading logs in real time. This
method accepts strategy code as an argument. You pass strategy_code2 here. The return
data is a string. If you try this step immediately after submitting the job, you get a string
that says the logs are not ready yet ([2020-07-09 09:14:12] Logs not available
yet. Please retry in sometime.). This happens if the paper trading job is in the
'STARTING' state.

In step 2, you fetch the logs again after some time. If the job is out of the 'STARTING' state,
you start getting your strategy execution logs. You get the entire paper trading logs every
time you call the get_papertrading_logs() function.

There's more...
Once the paper trading job moves to the 'STOPPED' state, no new logs are generated. You
can fetch the complete logs any time before you submit the next paper trading job for the
same strategy. If a new paper trading job is submitted (for the same strategy), these logs
will no longer be accessible via the get_papertrading_logs() method. You can save the
fetched logs to a file if you'd like to refer to it at a later point in time.

MACD-Bracket-Order strategy – fetching a
paper trading report – P&L table
After submitting a paper trading job on the AlgoBulls platform, the AlgoBulls paper
trading engine starts executing the strategy. During the execution, along with the logs, the
AlgoBulls paper trading engine also generates a P&L table in real time. This table holds
information on every trade punched by the strategy. It also has details on the mapping
between entry and exit orders and the trade P&L and cumulative P&L, sorted
chronologically, with the latest order first. This table gives an insight into the overall
strategy performance with the help of individual and cumulative P&L numbers. The entry-
exit order mapping also helps validate the strategy behavior.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/logs.txt

Algorithmic Trading – Paper Trading Chapter 10

[428]

In this recipe, you will fetch the P&L table report for your strategy. This report is available
as soon as the first trade is punched by your strategy after you submit a paper trading job.
The AlgoBulls platform allows you to fetch the P&L table in real time, even while the paper
trading job is still going on. You can get insights into the strategy performance without
having to wait for the paper trading job to complete. This is helpful as paper trading jobs
are usually long-running. The pyalgotrading package provides a simple method to fetch
the P&L table for a given strategy.

Make sure you have gone through the last six recipes of Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

How to do it…
Fetch the paper trading P&L report for strategy_code2:

>>> algobulls_connection.get_papertrading_report_pnl_table(strategy_code2)

We get the following output. Your output may differ (note that the following output has
been split into multiple tables for representation purposes. You will see a single wide table
in your Jupyter notebook):

Algorithmic Trading – Paper Trading Chapter 10

[429]

How it works…
In this recipe, you use the get_papertrading_report_pnl_table() method of the
algobulls_connection object to fetch the paper trading P&L table in real time. This
method accepts strategy code as an argument. You pass strategy_code2 here. The return
data is a pandas.DataFrame object with multiple columns, described as follows:

instrument: The financial instrument for which trade was entered.
entry_timestamp: The timestamp at which the entry order was placed. (Note
that it may remain in the 'OPEN' state for a while before it goes to
the 'COMPLETE' state. The time for this state transition can be found using the
order history table, explained in the EMA-Regular-Order strategy – fetching the
paper trading report – order history recipe of this chapter.)
entry_transaction_type: The entry order transaction type (either BUY or
SELL).
entry_quantity: The entry order quantity.
entry_price: The price at which the entry order gets executed and goes to
the 'COMPLETE' state.
exit_timestamp: The timestamp at which the exit order was placed. (Note that
it may remain in the 'OPEN' state for a while before it goes to the 'COMPLETE'
state.)
exit_transaction_type: The exit order transaction type (either BUY or SELL).
exit_quantity: The exit order quantity.
exit_price: The price at which the exit order gets executed and goes to
the 'COMPLETE' state.
pnl_absolute: The difference between the exit order execution price and entry
order execution price. Mathematically, this is (exit_price -
entry_price)*exit_quantity for a long trade and (entry_price -
exit_price)*exit_quantity for a short trade. A positive value would imply that the
trade is a profit-making trade. A negative value would imply that the trade is a
loss-making trade.
pnl_percentage: The percentage of profit or loss with respect to the entry price.
Mathematically, this is pnl_absolute / entry_price / exit_quantity x 100.

Algorithmic Trading – Paper Trading Chapter 10

[430]

pnl_cumulative_absolute: The cumulative profit or loss. Mathematically, this
is the sum of all the pnl_absolute values of the previous trades. This number
gives a direct insight into the strategy performance against the simulation time.
pnl_cumulative_percentage: The percentage of cumulative profit or loss
with respect to the entry price. Mathematically, this is pnl_cumulative / entry_price
/ exit_quantity x 100.

There's more...
Once the paper trading job moves to the 'STOPPED' state, the P&L table report will not
update anymore. You can fetch the complete P&L report any time before you submit the
next paper trading job for the same strategy. If a new paper trading job is submitted (for the
same strategy), this report will no longer be accessible via the
get_papertrading_report_pnl_table() method. You can save the fetched report to a
.csv file if you'd like to refer to it at a later point in time.

MACD-Bracket-Order strategy – fetching a
paper trading report – statistics table
After submitting a paper trading job on the AlgoBulls platform, the AlgoBulls paper
trading engine starts executing the strategy. During the execution, along with the logs and
P&L table, the AlgoBulls paper trading engine also generates a summary from the P&L
table in real time. This summary is a table of statistics containing various statistical
numbers, such as Net P&L (absolute and percentage), Max Drawdown (absolute and
percentage), the count of total trades, winning trades, losing trades, long trades, and short
trades, maximum gain and minimum gain (or maximum loss), and the average profit per
winning and losing trade. This table gives an instant overview of the overall strategy
performance.

In this recipe, you will fetch the statistics table report for your strategy. This report is
available as soon as the first trade is punched by your strategy after you submit a paper
trading job. The AlgoBulls platform allows you to fetch the statistics table in real time, even
while the paper trading job is still going on. You can get insights into the strategy
performance without having to wait for the paper trading job to complete. This is helpful as
paper trading jobs are usually long-running. The pyalgotrading package provides a
simple method to fetch the statistics table for a given strategy.

Algorithmic Trading – Paper Trading Chapter 10

[431]

Make sure you have gone through the last six recipes of Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

How to do it…
Fetch the paper trading statistics report for strategy_code2:

>>> algobulls_connection.get_papertrading_report_statistics(strategy_code2)

We get the following output (your output may differ):

Algorithmic Trading – Paper Trading Chapter 10

[432]

How it works…
In this recipe, you use the get_papertradig_report_statistics() method of the
algobulls_connection object to fetch the paper trading statistics table in real time. This
method accepts strategy code as an argument. You pass strategy_code2 here. The return
data is a pandas.DataFrame object with two columns—highlight_type and
highlight_value—and multiple rows. The rows are described as follows:

Net PnL: The cumulative paper trading P&L. This is also the
pnl_cumulative_absolute value of the first entry in the P&L table.
Net PnL %: The cumulative paper trading P&L percentage. This is also the
pnl_cumulative_percentage value of the first entry in the P&L table.
Max Drawdown: The lowest value in the pnl_cumulative column of the P&L
table. This indicates the maximum loss your strategy has encountered during the
execution.
Max Drawdown %: Mathematically, this is (Max Drawdown) / (corresponding
entry_price)/ exit_quantity × 100.

Number of Trades: Total trades (entry and exit counted as one) during the
session.
Number of Wins: The count of trades where the trade P&L was non-negative.
Number of Losses: The count of trades where the trade P&L was negative.
Number of Long Trades: The count of trades where the entry transaction type
was 'BUY'.
Number of Short Trades: The count of trades where the entry transaction
type was 'SELL'.
Max Gain: The P&L of the trade with maximum P&L value among all trades.
Min Gain: The P&L of the trade with the minimum P&L value among all trades.
Avg. Profit per winning trade: Mathematically, this is (Total P&L of
winning trades) / (Count of winning trades).
Avg. Profit per losing trade: Mathematically, this is (Total P&L of losing
trades) / (Count of losing trades).

Algorithmic Trading – Paper Trading Chapter 10

[433]

There's more...
If the statistics table is fetched while the paper trading job is still running, the previously
mentioned numbers would be intermediate numbers, based on the trades completed until
that time. The numbers may change as more trades are punched until the paper trading job
completes.

Once the paper trading job moves to the 'STOPPED' state, the statistics table will not
change anymore. You can fetch the complete statistics table any time before you submit the
next paper trading job for the same strategy. If a new paper trading job is submitted (for the
same strategy), this table will no longer be accessible via the
get_papertrading_report_statistics() method. You can save the fetched report to a
.csv file if you'd like to refer to it at a later point in time.

MACD-Bracket-Order strategy – fetching a
paper trading report – order history
After submitting a paper trading job on the AlgoBulls platform, the AlgoBulls paper
trading engine starts executing the strategy. During the execution, along with the logs, P&L
table, and statistics table, the AlgoBulls paper trading engine also generates an order
history log in real time. This log contains state transitions of every order, along with the
timestamps and additional information (if any) for each order state. The order history log is
crucial in understanding how long it has taken for a trade to go from 'OPEN' to
'COMPLETE' or to the 'CANCELLED' state. For example, the MARKET orders would
immediately go from an 'OPEN' to 'COMPLETE' state but the LIMIT orders may take a
while, based on the market conditions, to go from an 'OPEN' to 'COMPLETE' state, or they
may even get to the 'CANCELLED' state. All this information is available in the order
history log. (Refer to the state machine diagrams in Chapter 6, Placing Regular Orders on the
Exchange, for more information on order state transitions.)

In this recipe, you will fetch the order history log for your strategy. This log is available as
soon as the first trade is punched by your strategy after you submit a paper trading job. The
AlgoBulls platform allows you to fetch the order history log in real time, even while the
paper trading job is still going on. This helps us get details for orders in the end states
without having to wait for the paper trading job to complete. The pyalgotrading package
provides a simple method to fetch the order history log for a given strategy.

Algorithmic Trading – Paper Trading Chapter 10

[434]

Make sure you have gone through the last six recipes of Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class used, StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

How to do it…
Fetch the paper trading order history report for strategy_code2:

>>> order_history = \
 algobulls_connection.get_papertrading_report_order_history(
 strategy_code2)
>>> print(order_history)

We get the following output (your output may differ):

…
+------------------+---------------------+---------------------------------
-+------+
| INST | TIME | ID
| TT |
|------------------+---------------------+---------------------------------
-+------|
| NSE_EQ:TATASTEEL | 2020-07-09 10:00:00 | 56970bffe8be4650a71857bc4472e6c8
| SELL |
+------------------+---------------------+---------------------------------
-+------+
+----+---------------------+------------------------+-------+
| | TIME | STATE | MSG |
|----+---------------------+------------------------+-------|
0	2020-07-09 10:00:00	PUT ORDER REQ RECEIVED	
1	2020-07-09 10:00:00	VALIDATION PENDING	
2	2020-07-09 10:00:00	OPEN PENDING	
3	2020-07-09 10:00:00	OPEN	
4	2020-07-09 10:15:00	COMPLETE	
+----+---------------------+------------------------+-------+
+------------------+---------------------+---------------------------------
-+------+

Algorithmic Trading – Paper Trading Chapter 10

[435]

| INST | TIME | ID
| TT |
|------------------+---------------------+---------------------------------
-+------|
| NSE_EQ:TATASTEEL | 2020-07-09 10:00:00 | 0a06e41aac0744adb45bb4d3d2e19728
| SELL |
+------------------+---------------------+---------------------------------
-+------+
+----+---------------------+------------------------+-------+
| | TIME | STATE | MSG |
|----+---------------------+------------------------+-------|
0	2020-07-09 10:00:00	PUT ORDER REQ RECEIVED	
1	2020-07-09 10:00:00	VALIDATION PENDING	
2	2020-07-09 10:00:00	OPEN PENDING	
3	2020-07-09 10:00:00	TRIGGER PENDING	
4	2020-07-09 10:15:00	CANCEL PENDING	
5	2020-07-09 10:15:00	CANCELLED	
+----+---------------------+------------------------+-------+
...

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​sample/ ​papertrading/ ​strategy_ ​macd_ ​bracket_ ​order/ ​oms_​order_
history.​log

How it works…
In this recipe, you use the get_papertrading_report_order_history() method of the
algobulls_connection object to fetch order history logs in real time. This method
accepts strategy code as an argument. You pass strategy_code2 here. The return data is a
string, described as follows:

For every order, the log has the following information:

A descriptive table on the order, with the following mentioned columns:
INST: The financial instrument of the order
TIME: The time at which the order was placed
ID: The unique ID of the order
TT: The order transaction type (BUY or SELL)

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/papertrading/strategy_macd_bracket_order/oms_order_history.log

Algorithmic Trading – Paper Trading Chapter 10

[436]

A sample of the table is shown as follows:

+------------------+---------------------+-------------------------
---------+------+
| INST | TIME | ID
| TT |
|------------------+---------------------+-------------------------
---------+------|
| NSE_EQ:TATASTEEL | 2020-07-09 10:00:00 |
0a06e41aac0744adb45bb4d3d2e19728 | SELL |
+------------------+---------------------+-------------------------
---------+------+

This information will help you find this exact order in the strategy execution log.

An order state transition table, with the following mentioned columns:
TIME: The timestamp at which the order enters into the state represented by
the STATE column.
STATE: The order enters into this state at the timestamp mentioned in the
TIME column.
MSG: Additional message from OMS for any unexpected state transitions.
For example, orders that go to the REJECTED state have a message from the
OMS stating the reason for their rejection. This column is usually empty.

A sample of the table is shown as follows:

+----+---------------------+------------------------+-------+
| | TIME | STATE | MSG |
|----+---------------------+------------------------+-------|
0	2020-07-09 10:00:00	PUT ORDER REQ RECEIVED	
1	2020-07-09 10:00:00	VALIDATION PENDING	
2	2020-07-09 10:00:00	OPEN PENDING	
3	2020-07-09 10:00:00	TRIGGER PENDING	
4	2020-07-09 10:15:00	CANCEL PENDING	
5	2020-07-09 10:15:00	CANCELLED	
+----+---------------------+------------------------+-------+

From this table, you can see that upon placing the order at 10:00 AM, it transitions to the
TRIGGER PENDING state. It stays there for 15 minutes before transitioning to the
CANCELLED state. This is expected as the order is a bracket limit order.

Algorithmic Trading – Paper Trading Chapter 10

[437]

There's more...
Once the paper trading job moves to the STOPPED state, no new order history logs are
generated. You can fetch the complete order history logs any time before you submit the
next paper trading job for the same strategy. If a new paper trading job is submitted (for the
same strategy), these logs will no longer be accessible via the
get_papertrading_report_order_history() method. You can save the fetched logs to
a file if you'd like to refer to it at a later point in time.

11
Algorithmic Trading – Real

Trading
Now that we've built various algorithmic trading strategies and successfully backtested
them with satisfactory results and paper traded them in live markets, it is finally time for
real trading.

Real trading is where we execute a trading strategy in the live market hours with real
money. If your strategy has performed well in backtesting and paper trading, you can
expect similar results with real money. Please note that your strategy may not perform as
expected in the real market, despite giving good backtesting and paper trading results.
Profitable backtesting and paper trading results are prerequisites for a profitable real
trading experience but are not sufficient to guarantee a profit for every session.

For real trading, a strategy configuration is required. It consists of multiple parameters,
some of which are as follows:

Start and end times: The time duration within the current day for which paper
trading should be run.
Financial instrument(s): One or more financial instruments for which paper
trading should be performed.
Candle interval: One of various possible candle intervals; for example, 1
minute, 15 minutes, hour, or day.
Strategy specific parameters: Values for custom parameters defined in the
strategy.
Strategy mode: One of intraday or delivery. Intraday strategies punch intraday
orders, which are squared-off at the end of the day. Delivery strategies punch
delivery orders, which don't square-off at the end of the day and get carried
forward to the next trading day.

Algorithmic Trading – Real Trading Chapter 11

[439]

A real trading engine is required to perform real trading on a given strategy. In this
chapter, you will use the real trading engine provided by AlgoBulls (https:/ ​/​algobulls.
com), an algorithmic trading platform that makes its services available via its developer
options. It provides a Python package called pyalgotrading (https:/ ​/​github. ​com/
algobulls/​pyalgotrading) to make these services available.

You coded two algorithmic trading strategies in Chapter 8, Algorithmic Trading Strategies –
Coding Step by Step. Recall that the strategy descriptions are as follows:

EMA-Regular-Order strategy: A strategy based on the technical indicator EMA
and regular orders. (The first six recipes of Chapter 7, Placing Bracket and Cover
Orders on the Exchange)
MACD-Bracket-Order strategy: A strategy based on the technical indicator
MACD and bracket orders. (The remaining six recipes of Chapter 7, Placing
Bracket and Cover Orders on the Exchange)

These strategies are also available as part of a Python package,
pyalgostrategypool. You can install it using pip with the $ pip
install pyalgostrategypool command. You can also check them out
on GitHub (https:/ ​/​github. ​com/ ​algobulls/ ​pyalgostrategypool).

When following Chapter 8, Algorithmic Trading Strategies – Coding Step by Step, you
uploaded these two strategies to your AlgoBulls account. In this chapter, you will fetch
these strategies from your AlgoBulls account and perform real trading on them. Real
trading is fully automated and requires no involvement from your end while the trading
session is going on. Upon real trading, you would gather strategy execution logs and
various reports – namely, the profit and loss report and the statistics report. By using
pyalgotrading, you ensure that you're focusing on developing and executing real trading
strategies without worrying about the ecosystem needed for the strategy's execution.

This chapter includes step-by-step recipes for the previously mentioned strategies, from
setting up a connection to the AlgoBulls platform, fetching the strategy, and running real
trading jobs to fetching the execution logs and fetching various types of reports.

In this chapter, you will cover the following recipes:

EMA-Regular-Order strategy – fetching the strategy
EMA-Regular-Order strategy – real trading the strategy
EMA-Regular-Order strategy – fetching real trading logs in real time
EMA-Regular-Order strategy – fetching a real trading report – P&L table
EMA-Regular-Order strategy – fetching a real trading report – statistics table

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgotrading
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool

Algorithmic Trading – Real Trading Chapter 11

[440]

MACD-Bracket-Order strategy – fetching the strategy
MACD-Bracket-Order strategy – real trading the strategy
MACD-Bracket-Order strategy – fetching real trading logs in real time
MACD-Bracket-Order strategy – fetching a real trading report – P&L table
MACD-Bracket-Order strategy – fetching a real trading report – statistics table

Real trading is only meaningful if run during the live market hours, unlike backtesting,
which can be run at any time. Please make sure you try out the recipes of this chapter in
live market hours.

Technical requirements
You will need the following to successfully execute the recipes in this chapter:

Python 3.7+
Python package:

pyalgotrading ($ pip install pyalgotrading)

Ensure you have added and bound your broking details on https:/ ​/​algobulls. ​com. Refer
to Appendix II for more details. You can use any broker supported by the AlgoBulls
platform for this chapter.

The latest Jupyter notebook for this chapter can be found on GitHub at https:/ ​/​github.
com/​PacktPublishing/ ​Python- ​Algorithmic- ​Trading- ​Cookbook/ ​tree/ ​master/ ​Chapter11.

EMA–Regular–Order strategy – fetching the
strategy
In this recipe, you will fetch the StrategyEMARegularOrder strategy class from your
account on the AlgoBulls platform. This recipe starts with setting up a connection to the
AlgoBulls platform, querying all available strategies in your account, and fetching details of
the required strategy class; that is, StrategyEMARegularOrder.

Make sure you have gone through the first six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyEMARegularOrder.

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Algorithmic-Trading-Cookbook/tree/master/Chapter11

Algorithmic Trading – Real Trading Chapter 11

[441]

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.algobulls import AlgoBullsConnection

Create a new AlgoBulls connection object:2.

>>> algobulls_connection = AlgoBullsConnection()

Fetch the authorization URL:3.

>>> algobulls_connection.get_authorization_url()

We get the following output:

Please login to this URL with your AlgoBulls credentials and get
your developer access token: https://app.algobulls.com/user/login
'https://app.algobulls.com/user/login'

Log into the preceding link with your AlgoBulls credentials, fetch your token,4.
and set it here (refer to Appendix II for more details):

>>> algobulls_connection.set_access_token(
 '80b7a69b168c5b3f15d56688841a8f2da5e2ab2c')

Fetch and display all the strategies you have created and uploaded so far:5.

>>> all_strategies = algobulls_connection.get_all_strategies()
>>> all_strategies

We get the following output. Your output may differ (make sure you have
followed the recipes in Chapter 8, Algorithmic Trading Strategies – Coding Step by
Step, to get a similar output):

Algorithmic Trading – Real Trading Chapter 11

[442]

Fetch and display the strategy code of the first strategy:6.

>>> strategy_code1 = all_strategies.iloc[0]['strategyCode']
>>> strategy_code1

We get the following output (your output may differ):

'49287246f9704bbcbad76ade9e2091d9'

Before real trading your strategy, you can inspect your strategy to ensure you7.
have the right strategy:

>>> strategy_details1 = \
 algobulls_connection.get_strategy_details(strategy_code1)
>>> print(strategy_details1)

We got the following output:

class StrategyEMARegularOrder(StrategyBase):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.timeperiod1 = self.strategy_parameters['timeperiod1']
 self.timeperiod2 = self.strategy_parameters['timeperiod2']

 self.main_order = None

 def initialize(self):
 self.main_order = {}

 @staticmethod
 def name():
 return 'EMA Regular Order Strategy'

 def strategy_exit_position(self, candle, instrument,
 sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True

 return False

The complete output is not shown here. Please visit the following link to read the complete
output, at https:/ ​/​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​strategy_ ​ema_ ​regular_ ​order. ​py.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_ema_regular_order.py

Algorithmic Trading – Real Trading Chapter 11

[443]

How it works…
You import the necessary modules in step 1. In step 2, an instance of the
AlgoBullsConnection class is created, named algobulls_connection. In step 3, you
get the authorization URL using the get_authorization_url() method of the
algobulls_connection object. This prints the authorization URL. You should visit this
URL from your web browser to sign into the AlgoBulls platform and fetch your developer
access token. (You can find more details, along with screenshots, in Appendix II on fetching
developer access tokens from the AlgoBulls platform.) You copy the access token and set it
in step 4 using the set_access_token() method of algobulls_connection. If the token
is accepted, a successful connection is set up with the AlgoBulls platform.

In step 5, you fetch all the strategies you have created and uploaded on the AlgoBulls
platform so far. You use the get_all_strategies() method for this step and assign it to
a new variable, all_strategies. This variable is a pandas.DataFrame object with
strategyCode and strategyName columns. This table holds information on the strategy
code and strategy names you have uploaded previously. If you followed the EMA-Regular-
Order strategy – uploading the strategy on the AlgoBulls trading platform recipe from Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, you will find a strategy called EMA
regular order strategy. In step 6, you assign the strategy code of the strategy, EMA regular
order strategy, to a new variable called strategy_code1. The strategy code is shown in
the output of this step. This strategy code is unique for every strategy on the AlgoBulls
platform.

Finally, in step 7, you ensure that the strategy being referred to by strategy_code1 is
indeed the one you uploaded earlier (in the EMA-Regular-Order strategy – uploading the
strategy on the AlgoBulls trading platform recipe in Chapter 8, Algorithmic Trading Strategies –
Coding Step by Step). You use the get_strategy_details() method of the
algobulls_connection object to inspect the strategy. This method takes strategy code as
an argument. You pass strategy_code1 here. This method returns the entire class code as
a string. You assign it to a new variable, strategy_details1, and display it.

If, you would like to change the class code being referred to by
strategy_code1, as shown in step 7, please refer to There's more… section
of the EMA-Regular-Order strategy – uploading the strategy on the AlgoBulls
trading platform recipe in Chapter 8, Algorithmic Trading Strategies – Coding
Step by Step.

Algorithmic Trading – Real Trading Chapter 11

[444]

EMA–Regular–Order strategy – real trading
the strategy
In this recipe, you will perform real trading on the EMA-Regular-Order strategy. You must
have fetched this strategy from your account on the AlgoBulls platform in the preceding
recipe of this chapter. You will leverage the real trading functionality facilitated by
pyalgotrading for this recipe, which, in turn, submits a real trading job on the AlgoBulls
platform.

Once submitted, real trading will be run by the AlgoBulls real trading engine. You can
query its status any time to find out about the state of the real trading job. The job goes
through the following states, in the given order:

STARTING (intermediate state)
STARTED (stable state)
STOPPING (intermediate state)
STOPPED (stable state)

On submitting a job, it starts with an intermediate state, STARTING. In this state, the
AlgoBulls real trading engine fetches the strategy and gets the execution environment
ready, which may take a couple of minutes. Once done, the job moves to the STARTED state.
The real trading strategy is implemented in this stage. Here, it stays as long as it takes for
real trading to complete. Once done, the job moves to an intermediate state, STOPPING. In
this state, the AlgoBulls real trading engine cleans up the resources that have been allocated
for this job, which usually takes less than a minute. Finally, the job moves to the
STOPPED state.

If you have already submitted a strategy real trading job, you cannot submit another job for
the same strategy until the first job completes. This means you have to wait for the first job
to move to the STOPPED state. If the first job is long-running and you would like to stop it
immediately, you can submit a stop job request via pyalgotrading. You need to ensure
the job is in the STARTED state before submitting the request.

Algorithmic Trading – Real Trading Chapter 11

[445]

The following state machine diagram demonstrates the various states and transitions of a
real trading job during its lifetime on the AlgoBulls platform:

After submitting a real trading job, you can fetch logs and reports for the strategy's
execution in real time. The logs and reports help validate the strategy's performance and
debug any potential issues.

Make sure you have gone through the first six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyEMARegularORder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the preceding recipe to set up the
algobulls_connection and strategy_code1 objects.

Algorithmic Trading – Real Trading Chapter 11

[446]

How to do it…
We execute the following steps for this recipe:

Import the necessary modules:1.

>>> from datetime import time
>>> from pyalgotrading.constants import *

Search for an instrument by using its trading symbol as a keyword. Assign the2.
returned object to instruments:

>>> instruments = algobulls_connection.search_instrument('SBIN')
>>> instruments

We got the following output (your output may differ):

[{'id': 7, 'value': 'NSE:SBIN'}]

Get value for the instrument of choice from instruments:3.

>>> instrument = instruments[0]['value']
>>> instrument

We got the following output:

'NSE:SBIN'

Submit a real trading job for strategy_code1:4.

>>> algobulls_connection.realtrade(
 strategy_code=strategy_code1,
 start_time=time(hour=9, minute=15),
 end_time=time(hour=15, minute=30),
 instrument=instrument,
 lots=1,
 strategy_parameters={
 'timeperiod1': 5,
 'timeperiod2': 12
 },
 candle_interval=CandleInterval.MINUTES_15)

We got the following output:

Setting Strategy Config... Success.
Submitting REALTRADING job... Success.

Algorithmic Trading – Real Trading Chapter 11

[447]

Check the status of the submitted real trading job:5.

>>> algobulls_connection.get_realtrading_job_status(strategy_code1)

We got the following output:

{'data': 'STARTING'}

Check the status of the submitted job again after some time:6.

>>> algobulls_connection.get_realtrading_job_status(strategy_code1)

We got the following output:

{'data': 'STARTED'}

How it works…
In step 1, you import the time class from the datetime module and all the constants from
the pyalgotrading.constants module. In step 2, you fetch the instrument that you
would like to real trade the strategy for, EMA-Regular-Order strategy, using the
search_instrument() method of the algobulls_connection object. The
search_instrument() method accepts a search string as an argument, which should be
the trading symbol, in part or complete, of the instrument you are interested in. You pass
'SBIN' here. This function returns a list containing details of the instruments that match
the search string. There could be multiple instruments that have the search string in their
trading symbols. In step 3, you fetch the value of the first matched instrument and assign it
to a new variable, instrument.

In step 4, you submit a real trading job using the realtrade() method of the
algobulls_connection() object. It takes the following arguments:

strategy_code: Strategy code of the strategy for which real trading has to be
performed. This should be a string. You pass strategy_code1 here.
start_time: Today's time when real trading should be started. This should be a
datetime.time object. Here, you pass an object holding the value for 9:15
hours – time(hour=9, minute=15). Refer to the first recipe of this book for
details on creating a time object.
end_time: Today's time when real trading should be performed. This object
should hold a time value ahead of the value held by start_time. This should be
a datetime.time instance. Here, you pass an object holding the value 15:30
hours – time(hour=15, minute=30).

Algorithmic Trading – Real Trading Chapter 11

[448]

instrument: A financial instrument for which real trading should be run.
Historical data will be fetched for this instrument. This should be a string. You
pass instrument here.
lots: Number of lots for which real trading should be performed. This should be
an integer. The quantity is calculated by the strategy as number of lots × lot size of
the financial instrument. You pass 1 here.
strategy_parameters: Parameter names and values expected by the strategy.
This should be a dictionary, with parameter-name and parameter-value as
key-value pairs. You pass the following parameters here:

timeperiod1: 5

timeperiod2: 12

(Recall that the parameters for the EMA-Regular-Order strategy have been
defined in its __init__() method, as shown in the first recipe of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step).

candle_interval: The candle interval for the historical data being fetched for
real trading. This should be an enum of the CandleInterval type. You pass
CandleInterval.MINUTES_15 here. (The CandleInterval enum provides
various enums for candle intervals, some of which are MINUTE_1, MINUTES_3 ,
MINUTES_5, MINUTES_10, MINUTES_15, MINUTES_30, HOUR, and DAY.)

If the job submission is successful, you will see Success messages printed by the
realtrade() function.

Once a job has been submitted, it takes a while to start. After starting, it may take some time
to finish, depending on the duration of real trading, as specified using the start_time and
end_time arguments. Usually, real trading is run for the entire trading day, which means
the job would be running for 6-8 hours.

In step 5, you fetch the job's status using the get_realtrading_job_status() method of
the algobulls_connection object. You pass strategy_code1 as the argument here.
This method returns a dictionary with a single key-value pair – the data and the job status. If
you query the status immediately after placing the job, you get 'STARTING' as the status.
In step 6, you query the status again after some time, and if the job starts, you get a status
of 'STARTED'.

Algorithmic Trading – Real Trading Chapter 11

[449]

A successful submission implies that the minimum inputs needed to real
trade a strategy have been passed in the required format. However, this
does not ensure that the strategy will run without errors. The strategy's
execution may still run into errors during real trading. To debug
execution issues, you would need to fetch the output logs, which will be
explained in the next recipe. Possible reasons for errors could be either
bugs in the strategy class' Python code or that an incomplete
strategy_parameters dictionary has been passed to the realtrade()
function.

There's more…
If a job is running for a long time and you would like to stop it before its completion, you
can use the stop_realtrading_job() method of the algobulls_connection object.
This method accepts strategy code as an argument. You pass strategy_code1 here. This
method submits a stop request to the AlgoBulls real trading engine. If the request is
accepted, you will see a Success message here:

>>> algobulls_connection.stop_realtrading_job(strategy_code1)
 Stopping REALTRADING job... Success.

If you query the status after submitting the stop request, you'll get 'STOPPING' as the
status:

>>> algobulls_connection.get_realtrading_job_status(strategy_code1)
{'data': 'STOPPING'}

If you query the status again after some time, and if the job has stopped, you'll
get 'STOPPED' as the status:

>>> algobulls_connection.get_realtrading_job_status(strategy_code1)
{'data': 'STOPPED'}

Algorithmic Trading – Real Trading Chapter 11

[450]

EMA–Regular–Order strategy – fetching real
trading logs in real time
After submitting a real trading job on the AlgoBulls platform, the AlgoBulls real trading
engine starts executing the strategy. During its execution, every event that occurs and the
decisions that are made by the AlgoBulls real trading engine are recorded with exact
timestamps in the form of textual logs.

Examples of recorded activities include the given strategy config, every new candle
generated at regular intervals, trades punched by your strategy, the entry and exit of
positions created by these trades, waits for new candles, and so on. These logs are
quintessential when validating the strategy and debugging behavior or performance issues
that are frequently encountered while developing a strategy.

In this recipe, you will fetch real trading logs for your strategy. The logs start coming up as
soon as your submitted real trading job reaches the 'STARTED' state (refer to the preceding
recipe for more information on the states of a real trading job). The AlgoBulls platform
allows you to fetch logs in real time, even while the real trading job is still going on. You
can get insights into the strategy's execution without having to wait for the real trading job
to complete. This is helpful as real trading jobs are usually long-running. The
pyalgotrading package provides a simple method we can use to fetch the execution logs
for a given strategy.

Make sure you have gone through the first six recipes of Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyEMARegularOrder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

Algorithmic Trading – Real Trading Chapter 11

[451]

How to do it…
Execute the following steps to complete this recipe:

Fetch the real trading execution logs for strategy_code1:1.

>>> logs = algobulls_connection.get_realtrading_logs(
 strategy_code1)
>>> print(logs)

We got the following output (your output may differ):

[2020-07-09 09:12:25] Logs not available yet. Please retry in
sometime.

Fetch the real trading execution logs for strategy_code1 again after some time:2.

>>> logs = algobulls_connection.get_realtrading_logs(
 strategy_code1)
>>> print(logs)

We got the following output (your output may differ):

…
##
 INITIALIZING ALGOBULLS CORE (v3.2.0)...
##
[2020-07-09 09:13:05] Welcome PUSHPAK MAHAVIR DAGADE!
[2020-07-09 09:13:05] Reading strategy...
[2020-07-09 09:13:05] STARTING ALGOBULLS CORE...
...
[2020-07-09 10:30:00] [CRITICAL] [order] [PLACING NEW ORDER]
[2020-07-09 10:30:00] [2b079bc873f64f53a33f91b6ceec707b] [BUY]
[NSE:SBIN] [QTY:1] [QTY PENDING: 1] [ENTRY PRICE: 194.7]
[PRICE:None] [TRIGGER PRICE:None] [ORDER_TYPE_REGULAR]
[ORDER_CODE_INTRADAY] [ORDER_VARIETY_MARKET] [ORDER_POSITION_ENTER]
...
[2020-07-09 15:30:00] [INFO] [clock] Candle generation has been
stopped...
[2020-07-09 15:30:00] [INFO] [tls] Received event END OF MARKET.
Stopping Trading Core Engine...
[2020-07-09 15:30:00] [INFO] [tls] Exiting all open positions with
order code: ORDER_CODE_INTRADAY (if any)...
[2020-07-09 15:30:00] [CRITICAL] [tls] [User: PUSHPAK MAHAVIR
DAGADE] Trading session completed
...

Algorithmic Trading – Real Trading Chapter 11

[452]

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​sample/ ​realtrading/ ​strategy_ ​ema_​regular_ ​order/ ​logs. ​txt.

How it works…
In step 1, you use the get_realtrading_logs() method of the algobulls_connection
object to fetch the strategy real trading logs in real time. This method accepts strategy code
as an argument. You pass strategy_code1 here. The return data is a string. If you try this
step immediately after submitting the job, you get a string, which says the logs are not
ready yet ([2020-07-09 09:12:25] Logs not available yet. Please retry in
sometime.). This happens if the real trading job is in the 'STARTING' state.

In step 2, you fetch the logs again after some time. If the job is out of the 'STARTING' state,
you start getting your strategy execution logs. You get all the real trading logs every time
you call the get_realtrading_logs() function.

There's more...
Once the real trading job moves to the 'STOPPED' state, no new logs are generated. You
can fetch the complete logs any time before you submit the next real trading job for the
same strategy. If a new real trading job is submitted (for the same strategy), these logs will
no longer be accessible via the get_realtrading_logs() method. You can save the
fetched logs to a file if you'd like to refer to them at a later date.

EMA–Regular–Order strategy – fetching a
real trading report – P&L table
After submitting a real trading job on the AlgoBulls Platform, the AlgoBulls real trading
engine starts executing the strategy. During its execution, along with the logs, the AlgoBulls
real trading engine also generates a P&L table in real time. This table holds information on
every trade punched in by the strategy. It also contains details on the mappings between
entry and exit orders, the trade P&L, and the cumulative P&L, sorted chronologically, with
the latest order first. This table gives us insight into the strategy's overall performance with
the help of individual and cumulative P&L numbers. The entry-exit order mapping also
helps validate the strategy's behavior.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_ema_regular_order/logs.txt

Algorithmic Trading – Real Trading Chapter 11

[453]

In this recipe, you will fetch the P&L table report for your strategy. This report is available
as soon as the first trade is punched in by your strategy after you submit a real trading job.
The AlgoBulls platform allows you to fetch the P&L table in real time, even while the real
trading job is still going on. You can get insights into the strategy's performance without
having to wait for the real trading job to complete. This is helpful as real trading jobs are
usually long-running. The pyalgotrading package provides a simple method we can use
to fetch the P&L table for a given strategy.

Make sure you have gone through the first six recipes of Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyEMARegularOrder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
Fetch the real trading P&L report for strategy_code1:

>>> algobulls_connection.get_realtrading_report_pnl_table(strategy_code1)

We get the following output. Your output may differ (note that the following output has
been split into multiple tables for representation purposes. You will see a single wide table
in your Jupyter Notebook):

Algorithmic Trading – Real Trading Chapter 11

[454]

How it works…
In this recipe, you use the get_realtrading_report_pnl_table() method of the
algobulls_connection object to fetch the real trading P&L table in real time. This
method accepts strategy code as an argument. You pass strategy_code1 here. The return
data is a pandas.DataFrame object with multiple columns, described as follows:

instrument: Financial instrument for which the trade was entered.
entry_timestamp: The timestamp at which the entry order was placed. (Note
that it may remain in the 'OPEN' state for a while before it goes to
the 'COMPLETE' state.)
entry_transaction_type: Entry order transaction type (either BUY or SELL).
entry_quantity: Entry order quantity.
entry_price: Price at which the entry order gets executed and goes to
the 'COMPLETE' state.

Algorithmic Trading – Real Trading Chapter 11

[455]

exit_timestamp: The timestamp at which the exit order was placed. (Note that
it may remain in the 'OPEN' state for a while before it goes to the 'COMPLETE'
state.)
exit_transaction_type: Exit order transaction type (either BUY or SELL).
exit_quantity: Exit order quantity.
exit_price: Price at which the exit order gets executed and goes to
the 'COMPLETE' state.

pnl_absolute: Difference between the exit order execution price and the entry
order execution price. Mathematically, this is (exit_price -
entry_price)*exit_quantity for a long trade and (entry_price -
exit_price)*exit_quantity for a short trade. A positive value would imply that the
trade is a profit-making trade. A negative value would imply that the trade is a
loss-making trade.
pnl_percentage: Percentage of profit or loss with respect to the entry price.
Mathematically, this is pnl_absolute / entry_price / exit_quantity x 100.
pnl_cumulative_absolute: Cumulative profit or loss. Mathematically, this is
the sum of all the pnl_absolute values of the previous trades. This number
gives us direct insight into the strategy's performance against the simulation
time.
pnl_cumulative_percentage: Percentage of cumulative profit or loss with
respect to the entry price. Mathematically, this is pnl_cumulative / entry_price /
exit_quantity × 100.

There's more...
Once the real trading job moves to the 'STOPPED' state, the P&L table report will not
update anymore. You can fetch the complete P&L report any time before you submit the
next real trading job for the same strategy. If a new real trading job is submitted (for the
same strategy), this report will no longer be accessible via the
get_realtrading_report_pnl_table() method. You can save the fetched report to a
.csv file if you'd like to refer to it at a later date.

Algorithmic Trading – Real Trading Chapter 11

[456]

EMA–Regular–Order strategy – fetching a
real trading report – statistics table
After submitting a real trading job on the AlgoBulls platform, the AlgoBulls real trading
engine starts executing the strategy. During its execution, along with the logs and P&L
table, the AlgoBulls real trading engine also generates a summary from the P&L table in
real time. This summary is a table of statistics containing various statistical numbers, such
as Net P&L (absolute and percentage), Max Drawdown (absolute and percentage), count of
total trades, winning trades, losing trades, long trades and short trades, the maximum gain
and minimum gain (or maximum loss), and the average profit per winning and losing
trade. This table gives an instant overview of the strategy's overall performance.

In this recipe, you will fetch the statistics table report for your strategy. This report is
available as soon as the first trade is punched in by your strategy after you submit a real
trading job. The AlgoBulls platform allows you to fetch the statistics table in real time, even
while the real trading job is still going on. You can get insights into the strategy's
performance without having to wait for the real trading job to complete. This is helpful as
real trading jobs are usually long-running. The pyalgotrading package provides a simple
method we can use to fetch the statistics table for a given strategy.

Make sure you have gone through the first six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyEMARegularOrder.

Getting ready
Make sure the algobulls_connection and strategy_code1 objects are available in
your Python namespace. Refer to the first recipe of this chapter to set up the
algobulls_connection and strategy_code1 objects.

How to do it…
Fetch the real trading statistics report for strategy_code1:

>>> algobulls_connection.get_realtrading_report_statistics(strategy_code1)

Algorithmic Trading – Real Trading Chapter 11

[457]

We got the following output (your output may differ):

How it works…
In this recipe, you use the get_realtrading_report_statistics() method of the
algobulls_connection object to fetch the real trading statistics table in real time. This
method accepts strategy code as an argument. You pass strategy_code1 here. The return
data is a pandas.DataFrame object with two columns – highlight_type and
highlight_value – and multiple rows. The rows are described as follows:

Net PnL: The cumulative real trading P&L. This is also the
pnl_cumulative_absolute value of the first entry in the P&L table.
Net PnL %: The cumulative real trading P&L percentage. This is also the
pnl_cumulative_percentage value of the first entry in the P&L table.
Max Drawdown: The lowest value in the pnl_cumulative column of the P&L
table. This indicates the maximum loss your strategy has encountered during the
execution.

Algorithmic Trading – Real Trading Chapter 11

[458]

Max Drawdown %: Mathematically, this is (Max Drawdown) / (corresponding
entry_price) / exit_quantity × 100.
Number of Trades: Total trades (entry and exit counted as one) during the
session.
Number of Wins: Count of trades where the trade P&L was non-negative.
Number of Losses: Count of trades where the trade P&L was negative.
Number of Long Trades: Count of trades where the entry transaction type was
'BUY'.
Number of Short Trades: Count of trades where the entry transaction type
was 'SELL'.
Max Gain: P&L of the trade with the maximum P&L value among all trades.
Min Gain: P&L of the trade with the minimum P&L value among all trades.
Avg. Profit per winning trade: Mathematically, this is (Total P&L of
winning trades) / (Count of winning trades).
Avg. Profit per losing trade: Mathematically, this is (Total P&L of losing
trades) / (Count of losing trades).

There's more...
If the statistics table is fetched while the real trading job is still running, the aforementioned
numbers will be intermediate numbers, based on the trades completed until that time. The
numbers may change as more trades are punched in, until the real trading job completes.

Once the real trading job moves to the 'STOPPED' state, the statistics table will not change
anymore. You can fetch the complete statistics table any time before you submit the next
real trading job for the same strategy. If a new real trading job is submitted (for the same
strategy), this table will no longer be accessible via the
get_realtrading_report_statistics() method. You can save the fetched report table
to a .csv file if you'd like to refer to it at a later date.

Algorithmic Trading – Real Trading Chapter 11

[459]

MACD–Bracket–Order strategy – fetching the
strategy
In this recipe, you will fetch the StrategyMACDBracketOrder strategy class from your
account on the AlgoBulls platform, which you must have uploaded while going through
the last recipe in Chapter 8, Algorithmic Trading Strategies – Coding Step by Step. This recipe
starts with setting up a connection to the AlgoBulls platform, querying all available
strategies in your account, and fetching details about the required strategy class; that
is, StrategyMACDBracketOrder.

Make sure you have gone through the last six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyMACDBracketOrder.

How to do it…
Execute the following steps to complete this recipe:

Import the necessary modules:1.

>>> from pyalgotrading.algobulls import AlgoBullsConnection

Create a new AlgoBulls connection object:2.

>>> algobulls_connection = AlgoBullsConnection()

Fetch the authorization URL:3.

>>> algobulls_connection.get_authorization_url()

We got the following output:

Please login to this URL with your AlgoBulls credentials and get
your developer access token: https://app.algobulls.com/user/login
'https://app.algobulls.com/user/login'

Log into the preceding link with your AlgoBulls credentials, fetch your token,4.
and set it here (refer to Appendix II for more details):

>>> algobulls_connection.set_access_token('
 80b7a69b168c5b3f15d56688841a8f2da5e2ab2c')

Algorithmic Trading – Real Trading Chapter 11

[460]

Fetch and display all the strategies you have created and uploaded so far:5.

>>> all_strategies = algobulls_connection.get_all_strategies()
>>> all_strategies

We got the following output. Your output may differ (make sure you've followed
the recipes in Chapter 8, Algorithmic Trading Strategies – Coding Step by Step, to get
a similar output):

Fetch and display the strategy code of the second strategy; that is, the MACD-6.
Bracket-Order strategy:

>>> strategy_code2 = all_strategies.iloc[1]['strategyCode']
>>> strategy_code2

We got the following output (your output may differ):

'49287246f9704bbcbad76ade9e2091d9'

Before real trading your strategy, you can inspect your strategy to ensure you7.
have the right strategy:

>>> strategy_details2 = \
 algobulls_connection.get_strategy_details(strategy_code2)
>>> print(strategy_details2)

We got the following output:

class StrategyMACDBracketOrder(StrategyBase):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.fastMA_period = \
 self.strategy_parameters['fastma_period']
 self.slowMA_period = \
 self.strategy_parameters['slowma_period']
 self.signal_period = \
 self.strategy_parameters['signal_period']
 self.stoploss = \
 self.strategy_parameters['stoploss_trigger']

Algorithmic Trading – Real Trading Chapter 11

[461]

 self.target = self.strategy_parameters['target_trigger']
 self.trailing_stoploss = \
 self.strategy_parameters['trailing_stoploss_trigger']

 self.main_order = None

 def initialize(self):
 self.main_order = {}

 @staticmethod
 def name():
 return 'MACD Bracket Order Strategy'

 def strategy_exit_position(self, candle, instrument, \
 sideband_info):
 if sideband_info['action'] == 'EXIT':
 self.main_order[instrument].exit_position()
 self.main_order[instrument] = None
 return True

 return False

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​strategy_ ​macd_ ​bracket_ ​order. ​py.

How it works…
You import the necessary modules in step 1. In step 2, you create an instance of the
AlgoBullsConnection class, named algobulls_connection. In step 3, you get the
authorization URL using the get_authorization_url() method of the
algobulls_connection object. This prints the authorization URL. You should visit this
URL from your web browser to sign into the AlgoBulls platform and fetch your developer
access token. (You can find more details, along with screenshots, in Appendix II on fetching
a developer access token from the AlgoBulls platform.) You copy the access token and set it
in step 4 using the set_access_token() method of algobulls_connection. If the token
is accepted, a successful connection is set up with the AlgoBulls platform.

In step 5, you fetch all the strategies you have created and uploaded on the AlgoBulls
platform so far. You use the get_all_strategies() method for this step and assign it to
a new variable, all_strategies. This variable is a pandas.DataFrame object with
strategyCode and strategyName columns. This table holds information on the strategy
codes and the strategy names you have uploaded previously.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/strategy_macd_bracket_order.py

Algorithmic Trading – Real Trading Chapter 11

[462]

If you followed the MACD-Bracket-Order Strategy – uploading the strategy on the AlgoBulls
trading platform recipe from Chapter 8, Algorithmic Trading Strategies – Coding Step by Step,
you will find a strategy called MACD-Regular-Order strategy. In step 6, you assign the
strategy code of the MACD-Regular-Order strategy to a new variable
called strategy_code2. The strategy code is shown in the output of this step. This
strategy code is unique for every strategy on the AlgoBulls platform.

Finally, in step 7, you ensure that the strategy being referred to by strategy_code2 is
indeed the one you uploaded earlier (in the last recipe of Chapter 8, Algorithmic Trading
Strategies – Coding Step by Step). You use the get_strategy_details() method of the
algobulls_connection object to inspect the strategy. This method takes strategy code as
an argument. You pass strategy_code2 here. This method returns the entire class code as
a string. You assign it to a new variable, strategy_details2, and display it.

If, you'd like to change the class code being referred to by
strategy_code2, as shown in step 7, please refer to the There's more…
section of the last recipe in Chapter 8, Algorithmic Trading Strategies –
Coding Step by Step.

MACD–Bracket–Order strategy – real trading
the strategy
In this recipe, you will perform real trading on the MACD-Bracket-Order strategy. You
must have fetched this strategy from your account on the AlgoBulls platform in the
preceding recipe of this chapter. You will leverage the real trading functionality facilitated
by pyalgotrading for this recipe, which, in turn, submits a real trading job on the
AlgoBulls platform.

Once submitted, real trading will be run by the AlgoBulls real trading engine. You can
query the status anytime to find out the state of the real trading job. The job goes through
the following states, in the given order:

STARTING (intermediate state)
STARTED (stable state)
STOPPING (intermediate state)
STOPPED (stable state)

Algorithmic Trading – Real Trading Chapter 11

[463]

On submitting a job, it starts with an intermediate state, 'STARTING'. In this state, the
AlgoBulls real trading engine fetches the strategy and get the execution environment ready,
which may take a couple of minutes. Once done, the job moves to the 'STARTED' state.
Strategy real trading happens in this stage. Here, it stays as long as it takes for real trading
to complete. Once done, the job moves to an intermediate state, 'STOPPING'. In this state,
the AlgoBulls real trading engine cleans up the resources allocated for this job, which
usually takes less than a minute. Finally, the job moves to the 'STOPPED' state.

If you have already submitted a real trading job for a strategy, you cannot submit another
job for the same strategy until the first job completes. This means you have to wait for the
first job to move to the 'STOPPED' state. If the first job is long-running and you would like
to stop it immediately, you can submit a stop job request via pyalgotrading. You need to
ensure the job is in the 'STARTED' state before submitting the request.

After submitting a real trading job, you can fetch logs and reports for the strategy execution
in real time. These logs and reports help validate the strategy's performance and debug any
potential issues.

You can refer to the second recipe of this chapter for the state machine diagram of a real
trading job. It demonstrates the various states and transitions of a real trading job during its
lifetime on the AlgoBulls platform.

Make sure you have gone through the last six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the preceding recipe of this chapter to set up the
algobulls_connection and strategy_code2 objects.

How to do it…
Execute the following steps to complete this recipe:

Import the necessary modules:1.

>>> from datetime import time
>>> from pyalgotrading.constants import *

Algorithmic Trading – Real Trading Chapter 11

[464]

Search for an instrument and use its trading symbol as a keyword. Assign the2.
returned object to instruments:

>>> instrument = algobulls_connection.search_instrument('
 TATASTEEL')
>>> instrument

We got the following output (your output may differ):

[{'id': 1, 'value': 'NSE:TATASTEEL'}]

Get value for the instrument of choice from instruments:3.

>>> instrument = instrument[0]['value']
>>> instrument

We got the following output:

'NSE:TATASTEEL'

Submit a real trading job for strategy_code2:4.

>>> algobulls_connection.realtrade(
 strategy_code=strategy_code2,
 start_time=time(hour=9, minute=15),
 end_time=time(hour=15, minute=30),
 instrument=instrument,
 lots=1,
 strategy_parameters={
 'fastma_period': 26,
 'slowma_period': 6,
 'signal_period': 9,
 'target_trigger': 0.01,
 'stoploss_trigger': 0.01,
 'trailing_stoploss_trigger': 1
 },
 candle_interval=CandleInterval.MINUTES_15)

We got the following output:

Setting Strategy Config... Success.
Submitting REALTRADING job... Success.

Check the status of the submitted real trading job:5.

>>> algobulls_connection.get_realtrading_job_status(strategy_code2)
{'data': 'STARTING'}

Algorithmic Trading – Real Trading Chapter 11

[465]

Check the status of the submitted real trading job again after some time:6.

>>> algobulls_connection.get_realtrading_job_status(strategy_code2)
{'data': 'STARTED'}

How it works…
In step 1, you import the time class from the datetime module and all the constants from
the pyalgotrading.constants module. In step 2, you fetch the instrument that you
would like to real trade the strategy for, the MACD-Bracket-Order strategy, using the
search_instrument() method of the algobulls_connection object. The
search_instrument() method accepts a search string as an argument, which should be
the trading symbol, in part or complete, of the instrument you are interested in. You pass
'TATASTEEL' here. This function returns a list with details of instruments that match the
search string. There could be multiple instruments that could have the search string in their
trading symbols. In step 3, you fetch the value of the first matched instrument and assign it
to a new variable, instrument.

In step 4, you submit a real trading job using the realtrade() method of the
algobulls_connection() object. It takes the following arguments:

strategy_code: Strategy code of the strategy for which real trading has to be
performed. This should be a string. You pass strategy_code2 here.
start_time: Today's time when real trading should be started. This should be a
datetime.time object. Here, you pass an object holding the value 9:15 hours –
time(hour=9, minute=15). Refer to the first recipe of this book for details on
creating a datetime object.
end_time: Today's time when real trading should be performed. This object
should hold a time value ahead of the value held by start_time. This should be
a datetime.time instance. Here, you pass an object holding the value 15:30
hours – time(hour=15, minute=30).
instrument: Financial instrument for which real trading should be run.
Historical data will be fetched for this instrument. This should be a string. You
pass instrument here.
lots: Number of lots for which real trading should be performed. This should be
an integer. The quantity is calculated by the strategy as number of lots × lot size of
the financial instrument. You pass 1 here.

Algorithmic Trading – Real Trading Chapter 11

[466]

strategy_parameters: Parameter names and values expected by the strategy.
This should be a dictionary, with parameter-name and parameter-value as
key-value pairs. You pass the following parameters here:

fastma_period: 26

slowma_period: 6

signal_period: 9

target_trigger: 0.01

stoploss_trigger: 0.01

trailing_stoploss_trigger: 1

(Recall that the parameters for the MACD-Bracket-Order strategy have been
defined in its __init__() method, as shown in the first recipe of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step).

candle_interval: The candle interval for the historical data fetched for real
trading. This should be an enum of the CandleInterval type. You pass
CandleInterval.MINUTES_15 here. (The CandleInterval enum provides
various enums for candle intervals, some of which are MINUTE_1, MINUTES_3 ,
MINUTES_5, MINUTES_10, MINUTES_15, MINUTES_30, HOUR, and DAY.)

If the job submission is successful, you will see Success messages being printed by the
realtrade() function.

Once a job has been submitted, it takes a while to start. After starting, it may take some time
to finish, depending on the duration of real trading specified using the start_time and
end_time arguments. Usually, real trading is run for the entire trading day, which means
the job would be running for 6-8 hours.

In step 5, you fetch the job's status using the get_realtrading_job_status() method of
the algobulls_connection object. You pass strategy_code2 as the argument here.
This method returns a dictionary with a single key-value pair – the data and the job status. If
you query the status immediately after placing the job, you get 'STARTING' as the status.
In step 6, you query the status again after some time, and if the job has started, you get a
status of 'STARTED'.

Algorithmic Trading – Real Trading Chapter 11

[467]

A successful submission implies that the minimum inputs needed to real
trade a strategy have been passed in the required format. However, this
does not ensure that the strategy will run without errors. The strategy's
execution may still run into errors during real trading. To debug
execution issues, you will need to fetch the output logs, which will be
explained in the next recipe. Possible reasons for errors could be either
bugs in the strategy class' Python code or that an incomplete
strategy_parameters dictionary has been passed to the realtrade()
function.

There's more…
If a job is running for a long time and you would like to stop it before its completion, you
can use the stop_realtrading_job() method of the algobulls_connection object.
This method accepts strategy code as an argument. You pass strategy_code2 here. This
method submits a stop request to the AlgoBulls real trading engine. If the request is
accepted, you will see a Success message here:

>>> algobulls_connection.stop_realtrading_job(strategy_code2)
 Stopping REALTRADING job... Success.

If you query the status after submitting the stop request, you'll get 'STOPPING' as the
status:

>>> algobulls_connection.get_realtrading_job_status(strategy_code2)
{'data': 'STOPPING'}

If you query the status again after some time, and if the job has stopped, you'll
get 'STOPPED' as the status:

>>> algobulls_connection.get_realtrading_job_status(strategy_code2)
{'data': 'STOPPED'}

MACD–Bracket–Order strategy – fetching
real trading logs in real time
After submitting a real trading job on the AlgoBulls platform, the AlgoBulls real trading
engine starts executing the strategy. During its execution, every event that occurs and every
decision that's been made by the AlgoBulls real trading engine is recorded with exact
timestamps in the form of textual logs.

Algorithmic Trading – Real Trading Chapter 11

[468]

Examples of recorded activities include the given strategy config, every new candle
generated at regular intervals, trades punched in by your strategy, the entry and exit of
positions created by these trades, waits for new candles, and so on. These logs are
quintessential for validating the strategy and debugging behavior or performance issues
that are frequently encountered while developing a strategy.

In this recipe, you will fetch real trading logs for your strategy. The logs start coming up as
soon as your submitted real trading job reaches the 'STARTED' state (refer to the preceding
recipe for more information on the states of a real trading job). The AlgoBulls platform
allows you to fetch logs in real time, even while the real trading job is still going on. You
can get insights into the strategy's execution without having to wait for the real trading job
to complete. This is helpful as real trading jobs are usually long-running. The
pyalgotrading package provides a simple method we can use to fetch the execution logs
for a given strategy.

Make sure you have gone through the last six recipes of Chapter
8, Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

How to do it…
Execute the following steps to complete this recipe:

Fetch the real trading execution logs for strategy_code2:1.

>>> logs = algobulls_connection.get_realtrading_logs(
 strategy_code2)
>>> print(logs)

We got the following output (your output may differ):

[2020-07-09 09:13:45] Logs not available yet. Please retry in
sometime.

https://cdp.packtpub.com/python_algorithmic_trading_cookbook/wp-admin/post.php?post=33&action=edit#post_30
https://cdp.packtpub.com/python_algorithmic_trading_cookbook/wp-admin/post.php?post=33&action=edit#post_30

Algorithmic Trading – Real Trading Chapter 11

[469]

Fetch the real trading execution logs for strategy_code2 again after some time:2.

>>> logs = algobulls_connection.get_realtrading_logs(
 strategy_code2)
>>> print(logs)

We got the following output (your output may differ):

...
##
 INITIALIZING ALGOBULLS CORE (v3.2.0)...
##
[2020-07-09 09:14:09] Welcome PUSHPAK MAHAVIR DAGADE!
[2020-07-09 09:14:09] Reading strategy...
[2020-07-09 09:14:09] STARTING ALGOBULLS CORE...
...
[2020-07-09 09:45:00] [CRITICAL] [order] [PLACING NEW ORDER]
[2020-07-09 09:45:00][577e6b4cb646463282ae98ec1c0e6c25] [BUY]
[NSE:TATASTEEL] [QTY:1] [QTY PENDING: 1] [ENTRY PRICE: 345.0]
[PRICE:345.0] [TRIGGER PRICE:None] [ORDER_TYPE_BRACKET]
[ORDER_CODE_INTRADAY] [ORDER_VARIETY_LIMIT] [ORDER_POSITION_ENTER]
[STOPLOSS TRIGGER:341.55] [TARGET TRIGGER:348.45] [TRAILING
STOPLOSS TRIGGER:345.0]
...
[2020-07-09 15:30:00] [INFO] [clock] Candle generation has been
stopped...
[2020-07-09 15:30:00] [INFO] [tls] Received event END OF MARKET.
Stopping Trading Core Engine...
[2020-07-09 15:30:00] [INFO] [tls] Exiting all open positions with
order code: ORDER_CODE_INTRADAY (if any)...
[2020-07-09 15:30:00] [CRITICAL] [tls] [User: PUSHPAK MAHAVIR
DAGADE] Trading session completed
...

The complete output is not shown here. Please visit the following link to read the complete
output: https:/​/ ​github. ​com/ ​algobulls/ ​pyalgostrategypool/ ​blob/ ​master/
pyalgostrategypool/ ​sample/ ​realtrading/ ​strategy_ ​macd_ ​bracket_ ​order/ ​logs. ​txt.

https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt
https://github.com/algobulls/pyalgostrategypool/blob/master/pyalgostrategypool/sample/realtrading/strategy_macd_bracket_order/logs.txt

Algorithmic Trading – Real Trading Chapter 11

[470]

How it works…
In step 1, you use the get_realtrading_logs() method of the algobulls_connection
object to fetch the strategy real trading logs in real time. This method accepts strategy code
as an argument. You pass strategy_code2 here. The return data is a string. If you try this
step immediately after submitting the job, you get a string, which says the logs are not
ready yet ([2020-07-09 09:13:45] Logs not available yet. Please retry in
sometime..) This happens if the real trading job is in the 'STARTING' state.

In step 2, you fetch the logs again after some time. If the job is out of the 'STARTING' state,
you start getting your strategy execution logs. You get all the real trading logs every time
you call the get_realtrading_logs() function.

There's more...
Once the real trading job moves to the 'STOPPED' state, no new logs are generated. You
can fetch the complete logs any time before you submit the next real trading job for the
same strategy. If a new real trading job is submitted (for the same strategy), these logs will
no longer be accessible via the get_realtrading_logs() method. You can save the
fetched logs to a file if you'd like to refer to them at a later date.

MACD–Bracket–Order strategy – fetching a
real trading report – P&L table
After submitting a real trading job on the AlgoBulls platform, the AlgoBulls real trading
engine starts executing the strategy. During its execution, along with the logs, the AlgoBulls
real trading engine also generates a P&L table in real time. This table holds information on
every trade punched in by the strategy. It also contains details on the mappings between
entry and exit orders, the trade P&L, and the cumulative P&L, sorted chronologically, with
the latest order first. This table gives us insight into the strategy's overall performance with
the help of individual and cumulative P&L numbers. The entry-exit order mapping also
helps validate the strategy's behavior.

Algorithmic Trading – Real Trading Chapter 11

[471]

In this recipe, you will fetch the P&L table report for your strategy. This report is available
as soon as the first trade is punched in by your strategy after you submit a real trading job.
The AlgoBulls platform allows you to fetch the P&L table in real time, even while the real
trading job is still going on. You can get insights into the strategy's performance without
having to wait for the real trading job to complete. This is helpful as real trading jobs are
usually long-running. The pyalgotrading package provides a simple method we can use
to fetch the P&L table for a given strategy.

Make sure you have gone through the last six recipes of Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyMACDBracketOrder.

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

How to do it…
Fetch the real trading P&L report for strategy_code2:

>>> algobulls_connection.get_realtrading_report_pnl_table(strategy_code2)

We got the following output. Your output may differ (note that the following output has
been split into multiple tables for representation purposes. You will see a single wide table
in your Jupyter Notebook):

Algorithmic Trading – Real Trading Chapter 11

[472]

How it works…
In this recipe, you use the get_realtrading_report_pnl_table() method of the
algobulls_connection object to fetch the real trading P&L table in real time. This
method accepts strategy code as an argument. You pass strategy_code2 here. The return
data is a pandas.DataFrame object with multiple columns, described as follows:

instrument: Financial instrument for which trade was entered.
entry_timestamp: The timestamp at which the entry order was placed. (Note
that it may remain in the 'OPEN' state for a while before it goes to
the 'COMPLETE' state.)
entry_transaction_type: Entry order transaction type (either BUY or SELL).
entry_quantity: Entry order quantity.
entry_price: Price at which the entry order gets executed and goes to
the 'COMPLETE' state.
exit_timestamp: The timestamp at which the exit order was placed. (Note that
it may remain in the 'OPEN' state for a while before it goes to the 'COMPLETE'
state.)
exit_transaction_type: Exit order transaction type (either BUY or SELL).
exit_quantity: Exit order quantity.
exit_price: Price at which the exit order gets executed and goes to
the 'COMPLETE' state.
pnl_absolute: Difference between the exit order execution price and the entry
order execution price. Mathematically, this is (exit_price -
entry_price)*exit_quantity for a long trade and (entry_price -
exit_price)*exit_quantity for a short trade. A positive value would imply that the
trade is a profit-making trade. A negative value would imply that the trade is a
loss-making trade.
pnl_percentage: Percentage of profit or loss with respect to the entry price.
Mathematically, this is pnl_absolute / entry_price / exit_quantity x 100.
pnl_cumulative_absolute: Cumulative profit or loss. Mathematically, this is
the sum of all the pnl_absolute values of the previous trades. This number
gives us direct insight into the strategy's performance against the simulation
time.
pnl_cumulative_percentage: Percentage of cumulative profit or loss with
respect to the entry price. Mathematically, this is pnl_cumulative / entry_price /
exit_quantity x 100.

Algorithmic Trading – Real Trading Chapter 11

[473]

There's more...
Once the real trading job moves to the 'STOPPED' state, the P&L table report will not
update anymore. You can fetch the complete P&L report any time before you submit the
next real trading job for the same strategy. If a new real trading job is submitted (for the
same strategy), this report will no longer be accessible via the
get_realtrading_report_pnl_table() method. You can save the fetched report to a
.csv file if you'd like to refer to it at a later date.

MACD–Bracket–Order strategy – fetching a
real trading report – statistics table
After submitting a real trading job on the AlgoBulls platform, the AlgoBulls real trading
engine starts executing the strategy. During its execution, along with the logs and P&L
table, the AlgoBulls real trading engine also generates a summary from the P&L table in
real time. This summary is a table of statistics containing various statistical numbers, such
as Net P&L (absolute and percentage), Max Drawdown (absolute and percentage), count of
total trades, winning trades, losing trades, long trades and short trades, the maximum gain
and minimum gain (or maximum loss), and average profit per winning and losing trade.
This table gives us an instant overview of the strategy's overall performance.

In this recipe, you will fetch the statistics table report for your strategy. This report is
available as soon as the first trade is punched in by your strategy after you submit a real
trading job. The AlgoBulls platform allows you to fetch the statistics table in real time, even
while the real trading job is still going on. You can get insights into the strategy's
performance without having to wait for the real trading job to complete. This is helpful as
real trading jobs are usually long-running. The pyalgotrading package provides a simple
method we can use to fetch the statistics table for a given strategy.

Make sure you have gone through the last six recipes of Chapter 8,
Algorithmic Trading Strategies – Coding Step by Step, to get a complete
picture of the strategy class we will be using; that is,
StrategyMACDBracketOrder.

Algorithmic Trading – Real Trading Chapter 11

[474]

Getting ready
Make sure the algobulls_connection and strategy_code2 objects are available in
your Python namespace. Refer to the MACD-Bracket-Order strategy – fetching the strategy
recipe of this chapter to set up the algobulls_connection and strategy_code2 objects.

How to do it…
Fetch the real trading statistics report for strategy_code2:

>>> algobulls_connection.get_realtrading_report_statistics(strategy_code2)

We got the following output (your output may differ):

Algorithmic Trading – Real Trading Chapter 11

[475]

How it works…
In this recipe, you use the get_realtrading_report_statistics() method of the
algobulls_connection object to fetch the real trading statistics table in real time. This
method accepts strategy code as an argument. You pass strategy_code2 here. The return
data is a pandas.DataFrame object with two columns – highlight_type and
highlight_value – and multiple rows. The rows are described as follows:

Net PnL: The cumulative real trading P&L. This is also the
pnl_cumulative_absolute value of the first entry in the P&L table.
Net PnL %: The cumulative real trading P&L percentage. This is also the
pnl_cumulative_percentage value of the first entry in the P&L table.
Max Drawdown: The lowest value in the pnl_cumulative column of the P&L
table. This indicates the maximum loss your strategy has encountered during its
execution.
Max Drawdown %: Mathematically, this is (Max Drawdown) / (corresponding
entry_price) / exit_quantity x 100.
Number of Trades: Total trades (entry and exit are counted as one) during the
session.
Number of Wins: Count of trades where the trade P&L was non-negative.
Number of Losses: Count of trades where the trade P&L was negative.
Number of Long Trades: Count of trades where the entry transaction type was
'BUY'.
Number of Short Trades: Count of trades where the entry transaction type
was 'SELL'.
Max Gain: P&L of the trade with the maximum P&L value among all trades.
Min Gain: P&L of the trade with the minimum P&L value among all trades.
Avg. Profit per winning trade: Mathematically, this is (Total P&L of
winning trades) / (Count of winning trades).
Avg. Profit per losing trade: Mathematically, this is (Total P&L of losing
trades) / (Count of losing trades).

Algorithmic Trading – Real Trading Chapter 11

[476]

There's more...
If the statistics table is fetched while the real trading job is still running, the aforementioned
numbers will be intermediate numbers, based on the trades completed until that time. The
numbers may change as more trades are punched in, until the real trading job completes.

Once the real trading job moves to the 'STOPPED' state, the statistics table will not change
anymore. You can fetch the complete statistics table any time before you submit the next
real trading job for the same strategy. If a new real trading job is submitted (for the same
strategy), this table will no longer be accessible via the
get_realtrading_report_statistics() method. You can save the fetched report to a
.csv file if you'd like to refer to it at a later date.

Appendix I

Setting up your Zerodha account
This appendix will help you set up your broking account with Zerodha (https:/ ​/​zerodha.
com).

The following sections are explained in this appendix:

Opening a Zerodha account online
Logging in to the Zerodha trading platform website
Setting up your Zerodha Developer Options account
Logging in to the Zerodha Developer Options website
Purchasing and enabling the Zerodha Developer Options API
Testing API keys and authorizing the app by firing your first API call

Opening a Zerodha account online
You can open your Zerodha account online by following the procedure explained in this
YouTube video: https:/ ​/ ​www. ​youtube. ​com/ ​watch? ​v=​dcOIc8YZ9pc.

https://zerodha.com
https://zerodha.com
https://zerodha.com
https://zerodha.com
https://zerodha.com
https://zerodha.com
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc
https://www.youtube.com/watch?v=dcOIc8YZ9pc

Appendix I

[478]

If you have the necessary documents handy, as mentioned in the video, account setup can
be completed in under 30 minutes. Once it's done, your account opening process is initiated
and you have to wait for a response from Zerodha's account opening team. It usually takes
up to a week for Zerodha to get back to you with your account credentials.

You can also visit the Zerodha Support link if you need any help in opening your account
(https:/​/​support. ​zerodha. ​com/ ​category/ ​account- ​opening/ ​online- ​account- ​opening/
articles/​how-​do- ​i- ​open- ​an- ​account- ​online).

Logging in to the Zerodha trading platform
website
After successfully opening your account with Zerodha, you can log in to their trading
platform, called Kite, with the credentials you have received. Visit https:/ ​/​kite. ​zerodha.
com.

Upon visiting the website, you can log in to the website in five steps:

Enter your user ID.1.
Enter your password.2.
Click the Login button:3.

https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://support.zerodha.com/category/account-opening/online-account-opening/articles/how-do-i-open-an-account-online
https://kite.zerodha.com
https://kite.zerodha.com
https://kite.zerodha.com
https://kite.zerodha.com
https://kite.zerodha.com
https://kite.zerodha.com
https://kite.zerodha.com
https://kite.zerodha.com

Appendix I

[479]

Enter your PIN:4.

Click the Continue button.5.

Once you have logged in successfully, you should see the dashboard as shown in the
following screenshot:

Appendix I

[480]

Setting up your Zerodha Developer Options
account
Once you have got your Zerodha broking account credentials, we can now move on to
setting up a Developer Options account with Zerodha.

Please proceed to https:/ ​/ ​kite. ​trade and click on Signup:

You can register a new account in eight steps:

Enter your E-mail ID.1.
Enter your name.2.
Enter your password.3.
Verify your password.4.
Enter your phone number.5.
Select your state of residence.6.
Read and check the I AGREE TO THE ABOVE TERMS checkbox.7.

https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade

Appendix I

[481]

Click the Signup button:8.

Appendix I

[482]

Logging in to the Zerodha Developer Options
website
After successfully signing up with Kite Connect, you can log in with the credentials you
have set. Visit https:/ ​/​kite. ​trade.

You can log in to the website in three steps:

Enter your registered E-mail ID.1.
Enter your password (the one used for signing up).2.
Click the Login button:3.

https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade

Appendix I

[483]

After logging in for the first time, you should land on a page like this:

Purchasing and enabling the Zerodha Developer
Options API
There are two types of API available:

Connect API: This API allows orders to be placed over APIs,
positions/holdings/orders to be fetched, profiles to be fetched, and so on. This
API is required for real trading, but is not necessary for backtesting or paper
trading.
Historical Data API: This API allows the fetching of historical data. This API
may be needed if you are implementing your own algo-trading systems. You can
also take historical data from a separate vendor.

The documentation for both these APIs can be found here: https:/ ​/​kite. ​trade/ ​docs/
connect.

https://kite.trade/docs/connect
https://kite.trade/docs/connect
https://kite.trade/docs/connect
https://kite.trade/docs/connect
https://kite.trade/docs/connect
https://kite.trade/docs/connect
https://kite.trade/docs/connect
https://kite.trade/docs/connect
https://kite.trade/docs/connect
https://kite.trade/docs/connect

Appendix I

[484]

If you are going to use the AlgoBulls trading platform (https:/ ​/​algobulls. ​com) for real
trading, then you only need to purchase and enable the Connect API for your broking
account. You don't need to purchase any APIs for backtesting or paper trading. The
AlgoBulls platform provides historical data for all services.

You can purchase credits for the required APIs after logging in to https:/ ​/ ​kite. ​trade in
two steps:

Click on Billing in the top menu. This will load a new page:1.

Enter the required amount and click the Add credits button. Complete the2.
payment through the payment gateway window that pops up:

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade
https://kite.trade

Appendix I

[485]

If you want to enable both the APIs, the required amount should be 4000. If you want to
enable just the Connect API, the required amount should be 2000. Log in to https:/ ​/
developers.​kite. ​trade/ ​create to know more about the exact amounts required to
purchase the APIs.

Next, to enable the required APIs, the following steps should be executed from the landing
page:

Click on Create new app. This will load a new page:1.

Ensure Type: Connect is selected.2.
Enter your app name.3.
Enter your Zerodha client ID.4.
Enter http://127.0.0.1 as your Redirect URL. (If you are hosting a server5.
locally on port 80, you can enter a URL with a different port that is not in use,
say, http://127.0.0.1:8000).
Enter a description for your app.6.

https://developers.kite.trade/create
https://developers.kite.trade/create
https://developers.kite.trade/create
https://developers.kite.trade/create
https://developers.kite.trade/create
https://developers.kite.trade/create
https://developers.kite.trade/create
https://developers.kite.trade/create
https://developers.kite.trade/create
https://developers.kite.trade/create

Appendix I

[486]

Click the Create button:7.

Read the confirmation message and type I UNDERSTAND.8.

Appendix I

[487]

Click the OK button:9.

This completes the creation of your first app. You should now see your app on the landing
page:

Appendix I

[488]

Click the app to check your details and also get the API key and API secret. Optionally, if
you like to activate the Historical Data API, please click on Subscribe in the Addons section
and confirm the subscription. This will cost 2,000 credits:

The keys can be obtained as shown in the following screenshot (API key and API secret).
Click the Show API secret button to reveal it:

Appendix I

[489]

Testing API keys and authorizing the app by
firing your first API call
You can test your API keys using a simple Python program. Perform the following steps:

Import the Zerodha broker connection class from pyalgotrading:1.

>>> from pyalgotrading.broker.broker_connection_zerodha import
BrokerConnectionZerodha

Create the broker connection using your API key and API secret:2.

>>> api_key = "<your-api-key>"
>>> api_secret = "<your-api-secret>"
>>> broker_connection = BrokerConnectionZerodha(api_key,
api_secret)

You will get the following result:

https://kite.trade/connect/login?api_key=

You need to log in to Zerodha by clicking on the link generated and following
these steps:

Enter your user ID.1.
Enter your password (for the trading platform).2.
Click the Login button:3.

Appendix I

[490]

Enter your PIN.4.
Click the Continue button:5.

Click the Authorize button:6.

This step happens only once for a new Zerodha Developer Options app.

Appendix I

[491]

If your credentials are correct, you will be redirected to 127.0.0.1. Ignore7.
any error messages that may be displayed. Just copy the token from the
address bar of your tab. The token is the string between
the request_token= and & characters, both excluded. A new random token
is generated each time you follow these steps. For example, if the redirect
URL is
https://127.0.0.1/?request_token=iHCKrv8oAM9X2oPRURMNRdZdG4

uxhfJq&action=login&status=success, then the token is
iHCKrv8oAM9X2oPRURMNRdZdG4uxhfJq:

Set the token received by the URL given in the previous output:8.

>>> request_token = "<your-request-token>"
>>> broker_connection.set_access_token(request_token)

You can check whether the connection was successful by fetching your profile9.
detail:

>>> broker_connection.get_profile()

Appendix I

[492]

This produces the following output:

{'user_id': <your-user-id>,
 'user_type': 'individual',
 'email': '<your-email-id>',
 'user_name': <your-user-name>',
 'user_shortname': <your-user-shortname>',
 'broker': 'ZERODHA',
 'exchanges': ['CDS', 'MF', 'NFO', 'NSE', 'BSE'],
 'products': ['CNC', 'NRML', 'MIS', 'BO', 'CO'],
 'order_types': ['MARKET', 'LIMIT', 'SL', 'SL-M'],
 'avatar_url': '',
 'meta': {'demat_consent': 'physical'}}

This successfully verifies that the API keys are working.

Appendix II

Setting up your AlgoBulls account
This appendix will help you set up your account with AlgoBulls (https:/ ​/ ​algobulls. ​com).

The following sections are explained in this appendix:

Registering on the AlgoBulls platform
Logging in to the AlgoBulls website
Fetching your AlgoBulls Developer Options token
Setting up your broking account for real trading

Registering on the AlgoBulls platform
You can register on the AlgoBulls platform by proceeding to the official website, https:/ ​/
algobulls.​com, and clicking on SIGNUP, as illustrated in the following screenshot:

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com

Appendix II

[494]

You can register on the site in nine steps, as follows:

Enter your name.1.
Enter your email ID.2.
Enter your phone number. Make sure this phone number is accessible for3.
receiving a one-time password (OTP).
Click on the I'm not a robot checkbox.4.
Click the Get OTP button, as illustrated in the following screenshot:5.

Wait until you receive the OTP on your phone. Enter the OTP once you receive it.6.
Enter your password.7.
Confirm your password.8.

Appendix II

[495]

Click the Register button, as illustrated in the following screenshot:7.

You are now registered on the site. Click the Go to Login button to log in to the site, as
illustrated in the following screenshot:

Appendix II

[496]

Logging in to the AlgoBulls website
You can log in to the AlgoBulls platform by proceeding to the official website, https:/ ​/
algobulls.​com, and clicking on LOGIN, as illustrated in the following screenshot:

https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com
https://algobulls.com

Appendix II

[497]

You can log in to the website in three steps, as follows:

Enter your registered phone number.1.
Enter your password.2.
Click the Login button, as illustrated in the following screenshot:3.

Appendix II

[498]

Fetching your AlgoBulls Developer Options token
After you have logged in, you can fetch your Developer Options token by navigating to
the Developer Options page from the sidebar—Settings | General | Developer Options |
API Token. You can click on the view button (the eye icon on the right) to view and copy
the application programming interface (API) token, as illustrated in the following
screenshot:

For example, the API token shown in the preceding screenshot is
b042fdd8b8cc996abe6773edb4c8ead28acc1c47.

Appendix II

[499]

Setting up your AlgoBulls account
You need to do the following to avail algorithmic trading services from the AlgoBulls
platform:

Subscribe to a Plan: The services – backtesting, paper trading and real trading –
are chargeable. You need to subscribe to a plan before you can avail these
services. There are free plans available to use these services for a limited
duration. You can subscribe to these plans to test all the recipes in this chapter.
Later, you can subscribe to paid plans to avail the services on a monthly basis.
For real trading (Chapter 11, Algorithmic Trading – Real Trading), you need to
additionally setup the following:

Risk Management Settings: These settings help you limit your losses when
dealing with real money.
Add a Broker: You need to connect your broking account with AlgoBulls.
You can choose any broker supported by AlgoBulls.

You can find step-by-step information with screenshots for setting up these details
at https:/​/​help.​algobulls. ​com/ ​developers/ ​. Any additional setup instructions, which
may come up with time, would be available on that link. You can also contact
developers@algobulls.com for any additional requirement.

https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
https://help.algobulls.com/developers/
mailto:developers@algobulls.com

Appendix III

Developing and improving strategies
In this appendix, we will cover a number of key points regarding algorithmic trading
strategies that ought to be considered while executing them.

Strategy profitability is subject to seasons
Strategies may not return good results all year round. They can be seasonal, meaning they
may perform well at certain times of the year and not so well at other times. So, it is
essential to identify the right time or the right season for a strategy and to use it only at
those times.

Strategy profitability is subject to its parameter
values
A strategy depends on various parameters. The same strategy may perform differently for
different instruments and for different values of the technical indicators. For example, an
exponential moving average (EMA) strategy with parameters (time periods) 4 and 9 may
perform well for STOCK X, but the same strategy with different parameter values, say 5
and 13, may not perform well for STOCK X, or even the same strategy with the same
parameter values may not perform well for STOCK Y. Hence, finding the right instrument
and parameters can make your strategies successful.

You can use optimization algorithms to find the right combination of parameters that make
your strategy profitable. The cost function can be your backtesting profit and loss (to be
maximized) and drawdown (to be minimized). The variables can be instruments and
strategy parameter values.

Appendix III

[501]

Backtesting alone does not ensure strategy
profitability
A profitable backtesting report is one of the prerequisites for profitable trading, but not the
only prerequisite. This increases the chances of a strategy performing well during actual
trading, but does not guarantee it. There are many other factors that can affect the actual
strategy performance besides historical results. Risk management conditions should be well
placed in your strategy to minimize the adverse effects in case of any such unforeseen
circumstances. One of the ways of ensuring this is through the use of bracket or cover
orders, where a compulsory stop loss is placed at all times.

Broker limitations
Not all brokers provide APIs for algorithmic trading. Also, if APIs are provided, the broker
may not provide support for all types of orders, such as bracket or cover orders that have
in-built risk management. Check and verify all support and services offered by a particular
broker before availing yourself of their services. Choosing the right broker may minimize
strategy coding at your end.

Staying connected with the community
You can get support for coding your own strategy by posing your questions to the
community on the forum. You can also get insights and pointers in relation to proven and
well-tested strategy coding guidelines. Moreover, you can learn more from books on
technical analysis and other forums for algorithmic trading. Keep an eye on GitHub
repositories providing free strategies along with their Python code (for example, https:/ ​/
github.​com/​algobulls/ ​pyalgostrategypool).

https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool
https://github.com/algobulls/pyalgostrategypool

Appendix III

[502]

Be prepared for technology failures during actual
trading
No matter how robust your strategy is, strategy execution may not happen as planned
during actual trading. This could happen for a variety of reasons:

Broker APIs may experience a timeout failure due to the overloading of their
servers. This frequently happens during market opening hours, where a large
number of traders place orders at nearly the same time to grab market opening
opportunities.
A broker technology stack may depend on multiple vendors, besides its own
proprietary technology, which means that even if just one of them fails, you can
fall victim to it as your order placements might not go through.
If you are using an algorithmic trading platform, it may fail for the same reasons
as mentioned in the first point above.
Your strategy might fail as it may have encountered a new condition that was not
covered in testing. For example, if you place an order involving a very large
quantity during actual trading, the order may split into multiple smaller orders
that are executed individually. If your strategy hasn't accounted for this, it may
fail. Moreover, such scenarios cannot be caught during backtesting as this is
virtual trading and orders never split there, so providing a solution for this may
be tricky.
Historical data feeds may go out the window. There can either be stale data or no
data, both of which can result in incorrect decisions being taken in relation to
your strategy.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn Algorithmic Trading
Sebastien Donadio, Sourav Ghosh

ISBN: 978-1-78934-834-7

Understand the components of modern algorithmic trading systems and
strategies
Apply machine learning in algorithmic trading signals and strategies using
Python
Build, visualize and analyze trading strategies based on mean reversion, trend,
economic releases and more
Quantify and build a risk management system for Python trading strategies
Build a backtester to run simulated trading strategies for improving the
performance of your trading bot
Deploy and incorporate trading strategies in the live market to maintain and
improve profitability

https://www.packtpub.com/in/data/learn-algorithmic-trading-fundamentals-of-algorithmic-trading

Other Books You May Enjoy

[504]

Mastering Python for Finance - Second Edition
James Ma Weiming

ISBN: 978-1-78934-646-6

Solve linear and nonlinear models representing various financial problems
Perform principal component analysis on the DOW index and its components
Analyze, predict, and forecast stationary and non-stationary time series processes
Create an event-driven backtesting tool and measure your strategies
Build a high-frequency algorithmic trading platform with Python
Replicate the CBOT VIX index with SPX options for studying VIX-based
strategies
Perform regression-based and classification-based machine learning tasks for
prediction
Use TensorFlow and Keras in deep learning neural network architecture

https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-python-finance-second-edition

Other Books You May Enjoy

[505]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
AlgoBulls trading platform
 EMA-Regular-Order strategy, uploading on 323,

324, 325, 326
 MACD-Bracket-Order strategy, uploading on

340, 341, 342, 343
 URL 323
AlgoBulls
 URL 304
average true range (ATR)
 volatility indicators, plotting 197, 198, 200, 201

B
backtesting 93
bearish 104
Bollinger Bands
 volatility indicators, plotting 192, 193, 194, 196,

197

bracket limit order
 placing 260, 261, 262, 263, 264, 265, 266,

267, 268, 269, 270
 placing, with trailing stoploss 277, 278, 279,

280, 281, 282
BRACKET order
 about 261
 placing 60, 61, 63
 workings 262
bracket stoploss-limit order
 placing 272, 273, 274, 275, 276, 277
 placing, with trailing stoploss 283, 284, 285,

286, 287, 288, 289
brick 127
broker API
 used, for fetching historical data 95, 96, 97
brokerage charged
 calculating 70, 71

bullish 104

C
candlesticks pattern chart 104
child orders 261
cover limit order
 placing 296, 297, 298, 299, 300, 301, 302, 303
cover market order
 placing 289, 290, 291, 292, 293, 294, 295, 296
cover order 289

D
DataFrame manipulation
 applying 36, 37, 38, 39, 40, 41
 concatenating 36, 37, 38, 39, 40, 41
 iterating 36, 37, 38, 39, 40, 41
 rearranging 32, 33, 34, 35
 renaming 32, 33, 34, 35
 reversing 32, 33, 34, 35
 slicing 32, 33, 34, 35
 sorting 36, 37, 38, 39, 40, 41
DataFrame
 converting, into other formats 43, 44, 45
 creating, from formats 45, 46, 47, 48
datetime objects
 about 26, 27, 28, 29
 converting, to string 22
 creating 9, 10, 11, 12
 creating, from string 23, 24, 25
 modifying 20, 21
 operations on 16, 17, 18, 19
 reference link 20
DELIVERY order
 placing 63, 64

[507]

E
EMA-Regular-Order strategy, backtesting
 order history log, fetching 365, 366, 367, 368
 P&L table report, fetching 359, 360, 361, 362
 statistics table report, fetching 362, 363, 364,

365

EMA-Regular-Order strategy, paper trading
 order history log, fetching 412, 413, 414, 415
 P&L table report, fetching 406, 407, 408
 statistics table report, fetching 409, 410, 411
EMA-Regular-Order strategy, real trading
 P&L table report, fetching 452, 453, 454, 455
 statistics table report, fetching 456, 457, 458
EMA-Regular-Order strategy
 __init__ methods, coding 311, 312, 313
 about 304, 349
 backtesting 350, 351, 352, 353, 355
 backtesting logs, fetching in real time 356, 357,

358

 fetching 347, 348, 349, 350, 394, 395, 396,
397, 440, 441, 442, 443

 initialize methods, coding 311, 312, 313
 name methods, coding 311, 312, 313
 paper trading 397, 398, 399, 400, 401, 402,

403

 paper trading logs, fetching in real time 403,
404, 405, 406

 real trading 444, 445, 446, 447, 448, 449
 real trading logs, fetching on real time 450, 452
 strategy_enter_position method, coding 317,

318, 319
 strategy_exit_position method, coding 321, 322,

323

 strategy_select_instruments_for_entry method,
coding 313, 314, 315, 316

 strategy_select_instruments_for_exit method,
coding 319, 320, 321

 uploading, on AlgoBulls trading platform 323,
324, 325, 326

 versions_supported methods, coding 311, 312,
313

exchanges
 list, querying 54, 55
exponential moving average (EMA)
 trend indicators, plotting 173, 174, 175, 176

F
financial instrument
 attributes 77
 circuit limits 80
 expiring 78, 79
 fetching 53, 54
 last traded price (LTP) of 85
 last traded quantity (LTQ) of 87, 88
 last traded time (LTT) of 86, 87
 list, fetching 75, 76
 list, querying 52, 53
 market depth of 81, 82
 recorded close price of 91, 92
 recorded highest price of 89, 90
 recorded lowest price of 90, 91
 recorded open price of 88, 89
 total pending buy quantity for 82, 83
 total pending sell quantity for 83, 84
 total volume traded for 84, 85

G
government taxes charged
 calculating 71, 72

H
Heikin-Ashi candlesticks pattern
 used, for fetching historical data 141, 142, 143,

144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155

historical data
 fetching, with broker API 95, 96, 97
 fetching, with Heikin-Ashi candlesticks pattern

141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155

 fetching, with Japanese (OHLC) candlesticks
pattern 98, 99, 100, 101, 102, 103, 104

 fetching, with Line Break candlesticks pattern
114, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127

 fetching, with Quandl 155, 156, 157, 158, 159,
160, 161

 fetching, with Renko candlesticks pattern 127,
128, 129, 131, 132, 133, 134, 135, 136, 137,
138, 139, 140, 141

[508]

I
initial order 260, 289
INTRADAY order
 placing 65, 66, 67

J
Japanese (OHLC) candlesticks pattern
 used, for fetching historical data 98, 99, 100,

101, 102, 103, 104
Japanese candlesticks pattern
 fetching, with variations in candle intervals 105,

106, 107, 108, 109, 110, 111, 112, 113

L
lagging indicator 170
last traded price (LTP)
 about 62, 210
 of financial instrument 85
last traded quantity (LTQ)
 of financial instrument 87, 88
last traded time (LTT)
 of financial instrument 86, 87
Line Break candlesticks pattern
 used, for fetching historical data 114, 115, 116,

117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 127

lower circuit limit 80

M
MACD-Bracket-Order strategy, backtesting
 order history log, fetching 387, 389, 390
 P&L table report, fetching 380, 381, 382, 383
 statistics table report, fetching 384, 385, 386
MACD-Bracket-Order strategy, paper trading
 order history log, fetching 433, 434, 435, 436,

437

 P&L table report, fetching 427, 428, 429, 430
 statistics table report, fetching 430, 431, 432,

433

MACD-Bracket-Order strategy, real trading
 P&L table report, fetching 470, 471, 472, 473
 statistics table report, fetching 473, 474, 475,

476

MACD-Bracket-Order strategy

 __init__ methods, coding 326, 327, 328, 329
 about 304, 372
 backtesting 372, 373, 374, 375, 376, 377
 backtesting logs, fetching in real time 378, 379,

380

 fetching 369, 370, 372, 416, 417, 418, 419,
459, 460, 461, 462

 initialize methods, coding 326, 327, 328, 329
 name methods, coding 326, 327, 328, 329
 paper trading 419, 420, 421, 422, 423, 424
 paper trading logs, fetching in real time 425, 427
 real trading 462, 463, 464, 465, 466, 467
 real trading logs, fetching in real time 467, 468,

469, 470
 reference link 371, 380
 strategy_enter_position method, coding 333,

334, 335
 strategy_exit_position method, coding 337, 338,

339

 strategy_select_instruments_for_entry method,
coding 329, 330, 331, 332

 strategy_select_instruments_for_exit method,
coding 335, 336, 337

 uploading, on AlgoBulls trading platform 340,
341, 342, 343

 versions_supported methods, coding 326, 327,
328, 329

margins and funds
 querying 67, 68, 69, 70
market depth 81
moving average (MA) 188
moving average convergence divergence (MACD)
 trend indicators, plotting 177, 178, 180, 181

O
OHLC candlesticks pattern 98
on balance volume (OBV)
 volume indicators, plotting 201, 202, 203, 204
open-high-low-close (OHLC) 93
Order Management System (OMS) 368
order types 56, 57, 58
oscillators 163

P
pandas.concat() function
 using 41, 42, 43
pandas.DataFrame object
 creating 29, 30, 31, 32
paper trading 391
parabolic stop and reverse (SAR) 183
 trend indicators, plotting 181, 182, 184
parent order 261
product types 56
profit and loss (P&L) 391
pyalgotrading package
 reference link 141
pyalgotrading
 reference link 304
Python connectivity
 setting up, with broker 50, 51, 52

Q
Quandl
 reference link 155
 used, for fetching historical data 155, 156, 157,

158, 159, 160, 161

R
regular limit order
 placing 221, 222, 223, 224, 225, 226, 227,

228, 229, 230, 231, 232
regular market order
 placing 213, 214, 215, 216, 217, 218, 219, 220
REGULAR order
 placing 58, 59
regular stoploss-limit order
 placing 232, 234, 235, 236, 237, 238, 239,

240, 241, 242, 243, 244
regular stoploss-market order
 placing 244, 246, 247, 248, 249, 250, 251,

252, 253, 254, 255, 256
relative strength index (RSI)
 about 163
 momentum indicators, plotting 185, 187, 188
 reference link 185
Renko candlesticks pattern

 used, for fetching historical data 127, 128, 129,
131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141

S
securities 53, 75
segments
 lists, querying 55, 56
simple moving average (SMA)
 about 163, 173
 trend indicators, plotting 170, 171, 172, 173
smoothing 174
stochastic oscillator (STOCH)
 momentum indicators, plotting 188, 189, 190,

191, 192
stop and reverse (SAR) 181
stoploss order 261, 289

T
target order 260
technical indicator
 about 162
 categories 163
time period 170
time zones 26, 27, 28, 29
timedelta objects
 attributes, modifying 14
 converting, to string 23
 creating 13, 15
trend indicator 170
typical price (TP) 193

U
upper circuit limit 80

V
variety type 56, 57, 58
volume weighted average price (VWAP)
 volume indicators, plotting 204, 205, 206, 207,

208

W
weighting factor 174

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Handling and Manipulating Date, Time, and Time Series Data
	Technical requirements
	Creating datetime objects
	How to do it…
	How it works...
	There's more

	Creating timedelta objects
	How to do it…
	How it works...
	There's more

	Operations on datetime objects
	How to do it…
	How it works…
	There's more

	Modifying datetime objects
	How to do it…
	How it works...

	Converting a datetime object to a string
	How to do it…
	How it works...

	Creating a datetime object from a string
	How to do it…
	How it works...
	There's more

	The datetime object and time zones
	How to do it…
	How it works...
	There's more

	Creating a pandas.DataFrame object
	How to do it...
	How it works...
	There's more

	DataFrame manipulation—renaming, rearranging, reversing, and slicing
	Getting ready
	How to do it…
	How it works...
	There's more

	DataFrame manipulation—applying, sorting, iterating, and concatenating
	Getting ready
	How to do it…
	How it works...
	There's more

	Converting a DataFrame into other formats
	Getting ready
	How to do it…
	How it works...

	Creating a DataFrame from other formats
	Getting ready
	How to do it…
	How it works...

	Chapter 2: Stock Markets – Primer on Trading
	Technical requirements
	Setting up Python connectivity with the broker
	How to do it…
	How it works...

	Querying a list of instruments
	Getting ready
	How to do it…
	How it works…

	Fetching an instrument
	Getting ready
	How to do it…
	How it works…

	Querying a list of exchanges
	Getting ready
	How to do it…
	How it works…

	Querying a list of segments
	Getting ready
	How to do it…
	How it works…

	Knowing other attributes supported by the broker
	How to do it…
	How it works…

	Placing a simple REGULAR order
	Getting ready
	How to do it…
	How it works…

	Placing a simple BRACKET order
	Getting ready
	How to do it…
	How it works…

	Placing a simple DELIVERY order
	Getting ready
	How to do it…
	How it works…

	Placing a simple INTRADAY order
	Getting ready
	How to do it…
	How it works…

	Querying margins and funds
	Getting ready
	How to do it…
	How it works…

	Calculating the brokerage charged
	How to do it…
	How it works…

	Calculating the government taxes charged
	How to do it…
	How it works…

	Chapter 3: Fetching Financial Data
	Technical requirements
	Fetching the list of financial instruments
	Getting ready
	How to do it…
	How it works…

	Attributes of a financial instrument
	Getting ready
	How to do it…
	How it works…

	Expiry of financial instruments
	Getting ready
	How to do it…
	How it works…

	Circuit limits of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The market depth of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The total pending buy quantity of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The total pending sell quantity of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The total volume traded for the day of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The last traded price of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The last traded time of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The last traded quantity of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The recorded open price of the day of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The recorded highest price of the day of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The recorded lowest price of the day of a financial instrument
	Getting ready
	How to do it…
	How it works…

	The recorded close price of the last traded day of a financial instrument
	Getting ready
	How to do it…
	How it works…

	Chapter 4: Computing Candlesticks and Historical Data
	Technical requirements
	Fetching historical data using the broker API
	Getting ready
	How to do it…
	How it works…

	Fetching historical data using the Japanese (OHLC) candlestick pattern
	Getting ready
	How to do it…
	How it works…

	Fetching the Japanese candlestick pattern with variations in candle intervals
	Getting ready
	How to do it…
	How it works…

	Fetching historical data using the Line Break candlestick pattern
	Getting ready
	How to do it…
	How it works…

	Fetching historical data using the Renko candlestick pattern
	Getting ready
	How to do it…
	How it works…

	Fetching historical data using the Heikin-Ashi candlestick pattern
	Getting ready
	How to do it…
	How it works…

	Fetching historical data using Quandl
	Getting ready
	How to do it…
	How it works…

	Chapter 5: Computing and Plotting Technical Indicators
	Technical requirements
	Trend indicators – simple moving average
	Getting started
	How to do it…
	How it works...

	Trend indicators – exponential moving average
	Getting started
	How to do it…
	How it works…

	Trend indicators – moving average convergence divergence
	Getting started
	How to do it…
	How it works…

	Trend indicators – parabolic stop and reverse
	Getting started
	How to do it…
	How it works…

	Momentum indicators – relative strength index
	Getting started
	How to do it…
	How it works…

	Momentum indicators – stochastic oscillator
	Getting started
	How to do it…
	How it works…

	Volatility indicators – Bollinger Bands
	Getting started
	How to do it…
	How it works…

	Volatility indicators – average true range
	Getting started
	How to do it…
	How it works…

	Volume indicators – on balance volume
	Getting started
	How to do it…
	How it works…

	Volume indicators – volume-weighted average price
	Getting started
	How to do it…
	How it works…

	Chapter 6: Placing Regular Orders on the Exchange
	Technical requirements
	Placing a regular market order
	Getting ready
	How to do it…
	How it works…

	Placing a regular limit order
	Getting ready
	How to do it...
	How it works...

	Placing a regular stoploss-limit order
	Getting ready...
	How to do it…
	How it works…

	Placing a regular stoploss-market order
	Getting ready
	How to do it…
	How it works…

	Chapter 7: Placing Bracket and Cover Orders on the Exchange
	Technical requirements
	Placing a bracket limit order
	Getting ready
	How to do it…
	How it works…
	There's more…

	Placing a bracket stoploss-limit order
	Getting ready
	How to do it…
	How it works…

	Placing a bracket limit order with trailing stoploss
	Getting ready
	How to do it…
	How it works...

	Placing a bracket stoploss-limit order with trailing stoploss
	Getting ready
	How to do it…
	How it works...

	Placing a cover market order
	Getting ready
	How to do it…
	How it works...

	Placing a cover limit order
	Getting ready
	How to do it…
	How it works...

	Chapter 8: Algorithmic Trading Strategies – Coding Step by Step
	Technical requirements
	EMA-Regular-Order strategy – coding the __init__, initialize, name, and versions_supported methods
	Getting ready
	How to do it…
	How it works…

	EMA-Regular-Order strategy – coding the strategy_select_instruments_for_entry method
	Getting ready
	How to do it…
	How it works…

	EMA-Regular-Order strategy – coding the strategy_enter_position method
	Getting ready
	How to do it…
	How it works…

	EMA-Regular-Order strategy – coding the strategy_select_instruments_for_exit method
	Getting ready
	How to do it…
	How it works…

	EMA-Regular-Order strategy – coding the strategy_exit_position method
	Getting ready
	How to do it…
	How it works…

	EMA-Regular-Order strategy – uploading the strategy on the AlgoBulls trading platform
	Getting ready
	How to do it…
	How it works…
	There's more…

	MACD-Bracket-Order strategy – coding the __init__, initialize, name, and versions_supported methods
	Getting ready
	How to do it…
	How it works…

	MACD-Bracket-Order strategy – coding the strategy_select_instruments_for_entry method
	Getting ready
	How to do it…
	How it works…

	MACD-Bracket-Order strategy – coding the strategy_enter_position method
	Getting ready
	How to do it…
	How it works…

	MACD-Bracket-Order strategy – coding the strategy_select_instruments_for_exit method
	Getting ready
	How to do it…
	How it works…

	MACD-Bracket-Order strategy – coding the strategy_exit_position method
	Getting ready
	How to do it…
	How it works…

	MACD-Bracket-Order strategy — uploading the strategy on the AlgoBulls trading platform
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 9: Algorithmic Trading - Backtesting
	Technical requirements
	EMA-Regular-Order strategy – fetching the strategy
	How to do it…
	How it works…

	EMA-Regular-Order strategy – backtesting the strategy
	Getting ready
	How to do it…
	How it works…
	There's more…

	EMA-Regular-Order strategy – fetching backtesting logs in real time
	Getting ready
	How to do it…
	How it works…
	There's more...

	EMA-Regular-Order strategy – fetching a backtesting report – P&L table
	Getting ready
	How to do it…
	How it works…
	There's more...

	EMA-Regular-Order strategy — fetching a backtesting report – statistics table
	Getting ready
	How to do it…
	How it works…
	There's more...

	EMA-Regular-Order strategy – fetching a backtesting report – order history
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD-Bracket-Order strategy – fetching the strategy
	How to do it…
	How it works…

	MACD-Bracket-Order strategy – backtesting the strategy
	Getting ready
	How to do it…
	How it works…
	There's more…

	MACD-Bracket-Order strategy – fetching backtesting logs in real time
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD-Bracket-Order strategy – fetching a backtesting report – P&L table
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD-Bracket-Order strategy – fetching a backtesting report – statistics table
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD-Bracket-Order strategy – fetching a backtesting report – order history
	Getting ready
	How to do it…
	How it works…
	There's more...

	Chapter 10: Algorithmic Trading – Paper Trading
	Technical requirements
	EMA-Regular-Order strategy – fetching the strategy
	How to do it…
	How it works…

	EMA-Regular-Order strategy – paper trading the strategy
	Getting ready
	How to do it…
	How it works…
	There's more…

	EMA-Regular-Order strategy – fetching paper trading logs in real time
	Getting ready
	How to do it…
	How it works…
	There's more...

	EMA-Regular-Order strategy – fetching a paper trading report – P&L table
	Getting ready
	How to do it…
	How it works…
	There's more...

	EMA-Regular-Order strategy – fetching a paper trading report – statistics table
	Getting ready
	How to do it…
	How it works…
	There's more...

	EMA-Regular-Order strategy – fetching a paper trading report – order history
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD-Bracket-Order strategy – fetching the strategy
	How to do it…
	How it works…

	MACD-Bracket-Order strategy – paper trading the strategy
	Getting ready
	How to do it…
	How it works…
	There's more…

	MACD-Bracket-Order strategy – fetching paper trading logs in real time
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD-Bracket-Order strategy – fetching a paper trading report – P&L table
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD-Bracket-Order strategy – fetching a paper trading report – statistics table
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD-Bracket-Order strategy – fetching a paper trading report – order history
	Getting ready
	How to do it…
	How it works…
	There's more...

	Chapter 11: Algorithmic Trading – Real Trading
	Technical requirements
	EMA–Regular–Order strategy – fetching the strategy
	How to do it…
	How it works…

	EMA–Regular–Order strategy – real trading the strategy
	Getting ready
	How to do it…
	How it works…
	There's more…

	EMA–Regular–Order strategy – fetching real trading logs in real time
	Getting ready
	How to do it…
	How it works…
	There's more...

	EMA–Regular–Order strategy – fetching a real trading report – P&L table
	Getting ready
	How to do it…
	How it works…
	There's more...

	EMA–Regular–Order strategy – fetching a real trading report – statistics table
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD–Bracket–Order strategy – fetching the strategy
	How to do it…
	How it works…

	MACD–Bracket–Order strategy – real trading the strategy
	Getting ready
	How to do it…
	How it works…
	There's more…

	MACD–Bracket–Order strategy – fetching real trading logs in real time
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD–Bracket–Order strategy – fetching a real trading report – P&L table
	Getting ready
	How to do it…
	How it works…
	There's more...

	MACD–Bracket–Order strategy – fetching a real trading report – statistics table
	Getting ready
	How to do it…
	How it works…
	There's more...

	Appendix I
	Setting up your Zerodha account
	Opening a Zerodha account online
	Logging in to the Zerodha trading platform website
	Setting up your Zerodha Developer Options account
	Logging in to the Zerodha Developer Options website
	Purchasing and enabling the Zerodha Developer Options API
	Testing API keys and authorizing the app by firing your first API call

	Appendix II
	Setting up your AlgoBulls account
	Registering on the AlgoBulls platform
	Logging in to the AlgoBulls website
	Fetching your AlgoBulls Developer Options token
	Setting up your AlgoBulls account

	Appendix III
	Developing and improving strategies
	Strategy profitability is subject to seasons
	Strategy profitability is subject to its parameter values
	Backtesting alone does not ensure strategy profitability
	Broker limitations
	Staying connected with the community
	Be prepared for technology failures during actual trading

	Other Books You May Enjoy
	Index

