
Productive and
Efficient Data
Science with
Python

With Modularizing, Memory Profiles, and
Parallel/GPU Processing
—
Dr. Tirthajyoti Sarkar

Productive and Efficient
Data Science with Python
With Modularizing, Memory Profiles,

and Parallel/GPU Processing

Dr. Tirthajyoti Sarkar

Productive and Efficient Data Science with Python: With Modularizing, Memory
Profiles, and Parallel/GPU Processing

ISBN-13 (pbk): 978-1-4842-8120-8		 ISBN-13 (electronic): 978-1-4842-8121-5
https://doi.org/10.1007/978-1-4842-8121-5

Copyright © 2022 by Dr. Tirthajyoti Sarkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi
Copy Editor: Mary Behr

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub (https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-with-Python). For
more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Dr. Tirthajyoti Sarkar
Fremont, CA, USA

https://doi.org/10.1007/978-1-4842-8121-5

Dedicated to the memory of my loving parents, Jyotirindra Nath
Sarkar and Sarmistha Sarkar, who instilled in me the quest for

knowledge and taught me the most valuable lessons of life

v

Chapter 1: ��What Is Productive and Efficient Data Science?�������������������������������������� 1

A Typical Data Science Pipeline��� 1

Typical Examples of Inefficient Practices in Data Science��� 3

Iterating Over a pandas DataFrame�� 3

Scatterplot Everything in a Large Dataset�� 4

Writing Similar Plotting Code Multiple Times��� 6

Not Writing A Test Module��� 8

Some Pitfalls to Avoid�� 8

Don’t Live in Ignorance. Measure Efficiency.�� 8

Don’t Leave Your Code as Orphans. Modularize Them.�� 9

Don’t Be Limited by Hardware or Traditional Tools��� 10

Efficiency and Productivity Go Hand in Hand��� 12

Measuring Efficiency Goes a Long Way�� 12

Testing Reduces the Chance of Rework��� 13

Planning ML Model Development��� 13

Knowledge of GUI Programming/Web App Development Is Quite Helpful������������������������������ 14

Skills and Attitude for Practicing Productive Data Science�� 15

Summary��� 16

Table of Contents

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

vi

Chapter 2: ��Better Programming Principles for Efficient Data Science�������������������� 17

The Concept of Time and Space Complexities plus Big-O Notation��� 18

A Simple Example: Searching for an Element�� 18

The Big-O Notation��� 19

Complexities: Linear, Logarithmic, Quadratic, and More��� 20

Why Complexity Matters for Data Science��� 22

Image Data: Cubic-Complexity Algorithms��� 22

Best Regression Model: Exponential Complexity�� 23

Relative Growth Comparison�� 24

AI Is Intractable, but It Works�� 25

Inefficient Programming in Data Science�� 27

Canonical Examples��� 28

Lessons Learned from the Examples��� 35

Measuring Code Execution Timing��� 36

Python’s time Module Is Your Friend�� 37

Jupyter/IPython Magic Command�� 43

Summary��� 45

Chapter 3: ��How to Use Python Data Science Packages More Productively������������� 47

Why NumPy Is Faster Than Regular Python Code and By How Much�� 48

NumPy Arrays are Different�� 49

NumPy Array vs. Native Python Computation��� 50

Using NumPy Efficiently��� 53

Conversion First, Operation Later��� 53

Vectorize Logical Operations�� 54

Use the Built-In Vectorize Function�� 55

Avoid Using the .append Method�� 56

Utilizing NumPy Reading Utilities��� 57

Using pandas Productively��� 60

Setting Values in a New DataFrame��� 60

Specify Data Types Whenever Possible�� 62

Table of Contents

vii

Iterating Over a DataFrame�� 64

Using Modern, Optimized File Formats�� 65

Other Miscellaneous Ideas��� 71

Efficient EDA with Matplotlib and Seaborn�� 73

Embrace the Object-Oriented Nature of Matplotlib�� 73

Set and Control Image Quality�� 78

Tricks with Seaborn�� 81

Summary��� 83

Chapter 4: ��Writing Machine Learning Code More Productively������������������������������� 85

Why (and How) to Modularize Code for Machine Learning�� 86

Questions to Ask Yourself��� 86

Start Simple with a Standard Data Science Flow��� 87

A Scikit-learn Task Flow Example�� 88

The Monolithic Example��� 89

Little Boxes, Little Boxes...��� 90

How to Use the Modular Code�� 93

Systematic Evaluation of ML Algorithms in an Automated Fashion��� 96

List of Classifiers�� 96

Function to Automate Model Fitting��� 97

How Does Automation Help?�� 99

Decision Boundary Visualization�� 102

The Custom Function�� 103

Example Results��� 104

Parametric Experimentation��� 107

Other Scikit-learn Utilities and Techniques�� 108

Hyperparameter Search Utilities�� 108

Parallel Job Runner�� 109

Out-of-the-box Visualization Methods�� 110

Synthetic Data Generators�� 110

Summary��� 111

Table of Contents

viii

Chapter 5: ��Modular and Productive Deep Learning Code�������������������������������������� 113

Modular Code and Object-Oriented Style for Productive DL�� 114

Example of a Productive DL Task Flow��� 114

Wrappers, Builders, Callbacks�� 116

Modular Code for Fast Experimentation�� 117

Business/Data Science Question�� 118

Inherit from the Keras Callback�� 119

Model Builder and Compile/Train Functions��� 121

Visualization Function�� 122

Final Analytics Code, Compact and Simple��� 123

Turn the Scripts into a Utility Module��� 126

Summary of Good Practices��� 127

Streamline Image Classification Task Flow�� 128

The Dataset�� 129

Building the Data Generator Object�� 131

Building the Convolutional Neural Net Model��� 133

Training with the fit_generator Method�� 134

Encapsulate All of This in a Single Function��� 135

Testing the Utility Function��� 137

Does It Work (Readily) for Another Dataset?��� 138

Other Extensions�� 141

Activation Maps in a Few Lines of Code�� 141

Activation Maps�� 142

Activation Maps with a Few Lines of Code��� 143

How Is This Productive Data Science?��� 147

Hyperparameter Search with Scikit-learn��� 147

Scikit-learn Enmeshes with Keras��� 148

Data and (Preliminary) Keras Model��� 148

The KerasClassifier Class��� 149

Cross-Validation with the Scikit-learn API�� 150

Grid Search with a Updated Model��� 150

Summary��� 156

Table of Contents

ix

Chapter 6: ��Build Your Own ML Estimator/Package�� 157

Why Develop Your Own ML Package?�� 158

A Data Scientist’s Example�� 160

An Arithmetic Example��� 160

Data Scientists Use OOP All the Time��� 161

How Was It Made?�� 163

Linear Regression Estimator—with a Twist��� 164

How Do You Start Building This?�� 165

Base Class Definition�� 165

Adding Useful Methods�� 166

Adding Utility Methods��� 171

Do More in the OOP Style��� 175

Separate Plotting Classes��� 175

More Supporting Classes and Syntactic Sugar�� 179

Modularization: Importing the Class as a Module�� 180

Publishing It as a Python Package��� 181

Special Instructions for PyPI Hosting��� 181

GitHub Integration�� 182

Summary��� 183

Chapter 7: ��Some Cool Utility Packages��� 185

Build Pipelines Using pdpipe��� 186

The Dataset�� 186

Start Laying Pipes�� 188

scikit-learn and NLTK Stages��� 191

All Together��� 194

Speeding Up NumPy and pandas��� 194

What Is This Library?�� 194

Speeding It Up�� 195

The pandas eval Method�� 199

How It Works, Supported Operators��� 201

Table of Contents

x

Discover Best-Fitting Distributions Quickly�� 202

Simple Fitting Example��� 203

Plot and Summary�� 204

Be Careful with Small Datasets�� 206

Other Things You Can Do�� 208

Summary��� 209

Chapter 8: ��Memory and Timing Profile�� 211

Why Profile Memory Usage?�� 212

A Common Scenario��� 212

It’s Not the Model Size (or Compression)��� 213

Scalene: A Neat Little Memory Profiler�� 214

Basic Usage�� 214

Features��� 215

A Concrete Machine Learning Example�� 216

Key Approaches and Advice��� 220

Timing Profile with cProfile�� 223

Basic Usage�� 223

With a Function as an Argument�� 224

Using the Profiler Class�� 226

Data Science Workflow Profiling�� 227

Summary��� 228

Chapter 9: ��Scalable Data Science�� 229

Common Problems for Scalability�� 230

Out-of-Core (a.k.a. Out of Memory)�� 230

Python Single Threading��� 232

What Options Are Out There?��� 233

Cloud Instances�� 233

Google Colab��� 234

pandas-Specific Tricks��� 236

Libraries for Parallel Processing��� 239

Table of Contents

xi

Libraries for Handling Out-of-Core Datasets�� 240

A Note About the Preferred OS��� 240

Hands-On Example with Vaex�� 240

Features at a Glance��� 241

Basic Usage Example��� 241

No Unnecessary Memory Copying�� 243

Expressions and Virtual Columns��� 244

Computation on a Multidimensional Grid��� 245

Dynamic Visualizations Using Widgets and Other Plotting Libraries������������������������������������ 247

Vaex Preferred HDF5 Format�� 248

Hands-On Examples with Modin�� 250

Single CPU Core to Multi-Core�� 250

Out-of-Core Processing�� 251

Other Features of Modin��� 254

Summary��� 255

Chapter 10: ��Parallelized Data Science��� 257

Parallel Computing for Data Science��� 258

Single Core to Multi-Core CPUs�� 259

What Is Parallel in Data Science?��� 261

Parallel Data Science with Dask�� 263

How Dask Works Under the Hood��� 264

Basic Usage Examples��� 268

Dask Distributed Client��� 279

Dask Machine Learning Module��� 285

Parallel Computing with Ray�� 288

Features and Ecosystem of Ray��� 288

Simple Parallelization Example�� 290

Ray Dataset for Distributed Loading and Compute��� 293

Summary��� 298

Table of Contents

xii

Chapter 11: ��GPU-Based Data Science for High Productivity���������������������������������� 299

The RAPIDS Ecosystem�� 301

CuPy��� 302

CuDF��� 303

CuML�� 304

CuGraph�� 304

Hardware Story��� 305

Choice of Environment and Setup�� 306

CuPy vs. NumPy��� 310

Looks and Works Just Like NumPy��� 310

Much Faster Than NumPy�� 311

Data (Array) Size Matters��� 311

CuDF vs. pandas�� 314

Data Reading from an URL��� 314

Indexing, Filtering, and Grouping�� 315

NumPy Array Conversion�� 317

Simple Benchmarking of Speed��� 318

Dask Integration, User-Defined Functions, and Other Features�� 320

CuML vs. scikit-learn��� 320

Classification with Random Forest��� 320

K-Means Clustering�� 324

Summary��� 326

Chapter 12: ��Other Useful Skills to Master��� 327

Understanding the Basics of Web Technologies�� 328

A Consumer-Facing Layer�� 328

All Useful Data Science Is Delivered Through Web Apps�� 329

What Are Some Pathways to Learn?�� 331

Building Simple Web Apps for Data Science�� 332

Hands-On Example with Flask�� 332

Hands-On Example with PyWebIO�� 339

Other Options and GUI-Building Tools��� 344

Table of Contents

xiii

Going from Local to the Cloud�� 345

Many Types of Cloud Services for Data Science��� 346

Bringing Cloud Power to a Local Environment��� 347

Low-Code Libraries for Productive Data Science��� 349

What Are These Low-Code Libraries?��� 349

Example with PyCaret�� 349

Summary��� 354

Chapter 13: ��Wrapping It Up��� 357

Chapter 1��� 357

Chapter 2��� 357

Chapter 3��� 358

Chapter 4��� 358

Chapter 5��� 359

Chapter 6��� 360

Chapter 7��� 360

Chapter 8��� 361

Chapter 9��� 361

Chapter 10��� 362

Chapter 11��� 362

Chapter 12��� 363

What Was Not Discussed in This Book��� 364

MLOps and DataOps��� 364

Container Technologies�� 365

Database Technologies��� 365

General Advice for Upcoming Data Scientists�� 366

Ask Questions and Learn Constantly�� 367

Distinguish Yourself at a Job Interview�� 370

Some Useful Resources�� 371

Begin a New Journey��� 375

Index�� 377

Table of Contents

xv

About the Author

Dr. Tirthajyoti Sarkar lives and works in the San Francisco

Bay area, California. He currently serves as the Senior

Director, AI/ML Platform at Rhombus Power Inc. where he

builds solutions for problems of vital national and global

importance using AI, data, and mathematics. 

Most recently, he worked as a Data Science Manager

at a startup developing an edge-computing platform

for the semiconductor manufacturing industry. Before

that, he spent more than a decade in the semiconductor

and electronics industries where he developed power

semiconductor technology and applied artificial intelligence and machine learning

techniques for design automation and product innovation. Dr. Sarkar regularly publishes

AI and data science articles on top online platforms and teaches machine learning in

various workshops and forums. He has published 30+ papers in IEEE and holds multiple

US patents. He has authored two data science books. Dr. Sarkar is a Senior Member

of IEEE, a former Chair of the Semiconductor Committee of the PSMA (the world's

largest power supply organization consortium), and an Industry Advisory Member for

ValleyML, a non-profit AI/ML organization. He holds a Ph.D. in Electrical Engineering

from the University of Illinois at Chicago and an MS in Data Analytics from Georgia Tech.

xvii

About the Technical Reviewer

Joos Korstanje is a data scientist with over five years of industry experience in developing

machine learning tools, a large part of which are forecasting models. He currently works

at Disneyland Paris where he develops machine learning for a variety of tools.

xix

Acknowledgments

This book has been a great journey for me, and it will not be complete without

acknowledging some of the people who helped me in this quest.

First, I would like to thank my editor, Aditee Mirashi, who guided me patiently on the

authoring process and its specifics as this is my first collaboration with Apress. She has

been unfailingly helpful and understanding while I navigated through the chapters and

technical reviews.

I would like to acknowledge some of the open-source developers and data science

communicators whose work I have cited or used in various chapters, with their kind

permissions. Khyuen Tran has contributed greatly to the community by publishing

efficient data science tricks (with Python) and I have had the pleasure of discussing

these ideas with her. Her work is cited in Chapter 13. Moez Ali, the creator of the low-

code AutoML library PyCaret, has graciously allowed me to use some portions of his

documentation when I cite low-code libraries in Chapter 12. I have also interacted

with Helin Cao, the maintainer and chief evangelist for the wonderful PyWebIO library

that I demonstrate in Chapter 7, for many illuminating discussions. The folks at Saturn

Cloud kindly offered me quick help and support when I used their amazing service in a

RAPIDS-based demonstration in Chapter 11.

My wife, Chitrita Chakravarti, an accomplished DataOps Solutions Architect herself,

has provided support both professionally and personally while I was working on this

book. She deserves my sincere gratitude.

Lastly, I am eternally grateful to all my friends and professional connections,

especially on LinkedIn, who always had kind and encouraging words for me when I

described the painstaking process of working through this project. Their support and

words have been a primary source of motivation.

xxi

Introduction

Data science and machine learning can be practiced with various degrees of efficiency

and productivity. This book focuses specifically on Python-based tools and techniques

to help data scientists, beginners and seasoned professionals alike, become highly

productive at all aspects of typical data science tasks.

This book is specifically intended for those who wish to leapfrog beyond the

standard way of performing data science and machine learning tasks, and utilize the full

spectrum of the Python data science ecosystem for a much higher level of productivity.

You will be taught how to look out for inefficiencies and bottlenecks in the standard

process and how to think beyond the box. Automation of repetitive data science tasks

is a key mindset that you will develop from reading this book. In many cases, you will

also learn how to extend existing coding practices to handle larger datasets, with high

efficiency, with the help of advanced software tools that already exist in the Python

ecosystem but are not taught in any standard data science book.

This is not a regular Python cookbook that teaches standard libraries like NumPy

or Pandas. Rather, it focuses on useful techniques such as how to measure the memory

footprint and execution speed of ML models, modularize a data science or deep learning

task, write object-oriented code for a data science library or web app development, and so

on. It also covers Python libraries, which come in handy for automating and speeding up the

day-to-day tasks of any data scientist. Furthermore, it touches upon tools and packages that

help a data scientist tackle large and complex datasets in a far more optimal way than what

would have been possible by following standard Python data science technology wisdom.

If you take away a mentality of probing and measuring inefficiency in your data

science code, and you learn tricks to discover effective solutions for those productivity

issues, I will consider this book to be successful. This will be an immense reward for me.

�Source Code
All source code used in this book’s examples can be downloaded from

https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-

with-Python

﻿https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-with-Python﻿
﻿https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-with-Python﻿

1

CHAPTER 1

What Is Productive
and Efficient Data
Science?
The goal of this chapter is to introduce you to the benefits of performing data science

tasks efficiently and productively. I also illustrate some potential pitfalls in the everyday

work of a regular data scientist to drive home the point of efficient data science.

Like any other computing (and non-computing) task in life, data science (DS)

and machine learning (ML) can be practiced with varying degrees of efficiency and

productivity. This book focuses specifically on Python-based tools and techniques

to help a data scientist, beginner and seasoned professional alike, become highly
productive at all aspects of typical DS stacks (e.g., statistical analysis, visualization,

model selection, feature engineering, code quality testing, modularization, parallel

processing, and even easy web app deployment).

But why strive to achieve efficiency in data science? What could go wrong in a

regular data science pipeline if these aspects of efficiency and productivity are not kept

in mind and practiced with diligence?

To understand these issues, you need to examine a typical data science pipeline first.

Let me take you through that journey.

�A Typical Data Science Pipeline
Data science is a vast and dynamic field. In the modern business and technology space,

the discipline of data science has assumed the role of a truly transformative force.

Every kind of industry and socio-economic field from healthcare to transportation and

from online retail to on-demand music uses DS tools and techniques in myriad ways.

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_1

https://doi.org/10.1007/978-1-4842-8121-5_1

2

Every day exabytes of business and personal data flow through increasingly complex

dataflow pipelines architected by sophisticated DataOps architectures to be ingested,

processed, and analyzed by database engines or machine learning algorithms, leading to

insightful business decisions or technological breakthroughs.

However, to illustrate the point of efficient data science practices, let’s take the

generic example of a typical data science task flow shown in Figure 1-1. You may

have encountered this in your introductory data science course or practiced it in your

everyday work.

Figure 1-1.  A typical data science pipeline showing various stages of ingestion,
wrangling, visualization, modeling, and even MLOps

You are probably suspecting that there could be a high chance of writing
inefficient code in the data wrangling or ingesting phase. However, you may wonder

what could go wrong in the machine learning/statistical modeling phase as you may be

using the out-of-the-box methods and routines from highly optimized Python libraries

like Scikit-learn, Scipy, or TensorFlow. Furthermore, you may wonder why tasks like

quality testing and app deployments should be included in a productive data science

pipeline anyway.

In the next section, I will answer these questions through simple examples.

Chapter 1 What Is Productive and Efficient Data Science?

3

�Typical Examples of Inefficient Practices
in Data Science
Some modules of the DS pipeline in Figure 1-1, such as data wrangling, visualization,

statistical modeling, ML training, and testing, are more directly impacted by inefficient

programming styles and practices than others.

Let me show some simple examples and take you through some data science stories.

�Iterating Over a pandas DataFrame
As data scientists, all of us have been there.

We are given a large pandas DataFrame and asked to check some relationships

between various fields in the columns, in a row-by-row fashion. It could be a logical

operation or a sophisticated mathematical transformation on the raw data.

Essentially, it is a simple case of iterating over the rows of the DataFrame and

doing some processing at each iteration. However, it may not be that simple in terms

of choosing the most efficient method of executing this apparently simple task. For

example, you can choose from the following approaches.

�Brute-Force for Loop

The code for this naïve approach will go something like this:

for i in range(len(df)):

 if (some condition is satisfied):

 <do some calculation with> df.iloc[i]

Essentially, you are iterating over each row (df.iloc[i]) using a generic for loop

and processing it one at a time. There’s nothing wrong with the logic and you will get the

correct result in the end.

But this is guaranteed to be inefficient. If you try this approach with a DataFrame

with a large number of rows, say ~1,000,000 (1 million) and 10 columns, the total

iteration may run for tens of seconds or more (even on a fast machine).

Now, you may think that being able to process a million records in tens of seconds

is still acceptable. But, as you increase the number of columns or the complexity of

the calculation (or of the condition checking done at each iteration), you will see that

they quickly add up and this approach should be avoided as much as possible when

Chapter 1 What Is Productive and Efficient Data Science?

4

building scalable DS pipelines. On top of that, if you have to repeat such iteration

tasks for hundreds of datasets on a regular basis (in a standard business/production

environment), the inefficiencies will stack up over time.

�Better Approaches: df.iterrows and df.values

Depending on the situations at hand, you may have choices of two better approaches for

this iteration task.

•	 The pandas library has a dedicated method for iterating over rows

named iterrows(), which might be handy to use in this particular

situation. Depending on the DataFrame size and the complexity of

the row operations, this may reduce the total execution time by ~10X

over the for loop approach.

•	 pandas offers a method for returning a NumPy representation of the

DataFrame named df.values(). This can significantly speed things

up (even better than iterrows). However, this method removes the

axis labels (column names) and therefore you must use the generic

NumPy array indexing like 0, 1, to process the data.

�Scatterplot Everything in a Large Dataset
Often, at the beginning of a data analysis task, we are tempted to visualize the pairwise

interrelationships between all kinds of numeric features that are present in the given

dataset. This is often a necessary step for exploratory data analysis (EDA; see

https://en.wikipedia.org/wiki/Exploratory_data_analysis) and can reveal

significant insights about the general pattern of the dataset. However, for large datasets

with hundreds of features (columns), this may put extreme pressure on the visualization

routine, leading to poor plots and a slow response.

�Combinatorial Explosion

It is easy to explain why this apparently simple (pairwise) scatter plot task can become

quickly intractable. The reason is combinatorial explosion (https://en.wikipedia.org/

wiki/Combinatorial_explosion). Essentially, you are trying to plot all combinations of

two-way relationships and therefore you have nC2 possible combinations to plot where n

Chapter 1 What Is Productive and Efficient Data Science?

https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Combinatorial_explosion
https://en.wikipedia.org/wiki/Combinatorial_explosion
https://en.wikipedia.org/wiki/Combinatorial_explosion

5

is the number of numeric features and C denotes the combinatorial sign. Some concrete

examples will help.

•	 4C2 = 6 so you have 6 plots for pairwise plotting 4 features in a dataset

•	 6C2 = 15 so you have 15 plots for pairwise plotting 6 features in

a dataset

•	 10C2 = 45 so you have 45 plots for pairwise plotting 10 features in

a dataset

•	 20C2 = 190 so you have 190 plots for pairwise plotting 20 features in

a dataset

As you can see in Figure 1-2, the number of plots increases rather quickly! On top

of that, if you have a large dataset (with millions of samples), then each plot needs to

have millions of data points rendered on the screen. It is computationally prohibitive to

render millions of points on a web browser for hundreds of plots.

Figure 1-2.  How the combinatorial explosion leads to a large number of possible
two-dimensional plots for even a modest dataset

Chapter 1 What Is Productive and Efficient Data Science?

6

WHY DID I MENTION A WEB BROWSER?

Jupyter notebook is the most popular choice for data scientists to do these exploratory data

analyses (and advanced machine learning in many cases). At its core, the Jupyter notebook

system runs a web server which lets you write code, markdown text, and render plots in

a browser window (using JavaScript code in many cases). Therefore, if you try to render

hundreds of plots with millions of points, your browser memory may be taxed and it can crash!

�Writing Similar Plotting Code Multiple Times
This is a very common practice by data scientists: to copy-paste the same plotting code

(using, for example, the Matplotlib or Seaborn library) repeatedly in an analysis Jupyter

notebook. While, inherently, this may not increase the total running time of the code,

this is a bad software engineering practice that violates the principle of DRY (don’t

repeat yourself; https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).

Essentially, you are giving up the opportunity of code refactoring

(https://en.wikipedia.org/wiki/Code_refactoring) when you copy-paste the same

plotting code in multiple places, thereby increasing the chance of introducing bugs and

making the code difficult to read and maintain in the long term.

�Write a Generic Function Instead

Instead, you should try to write a generic function that can produce the desired plot with

the right styling that you need and then just pass variables to this function for plotting. A

pseudo-code example would be something like this:

def plot_linechart(x):

 """

 Plots line chart of given 'x' variable from dataframe df

 """

 # Extracts the values from the dataframe as Numpy array

 x_array = df[x].values

 # Mean and upper and lower limits calculations

 x_mean = x_array.mean()

Chapter 1 What Is Productive and Efficient Data Science?

https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Code_refactoring

7

 x_upper = x_mean+2*x_array.std()

 x_lower = x_mean-2*x_array.std()

 # Data length

 data_len = len(x_array)

 # Size and title

 plt.figure(figsize=(15,3))

 plt.title(x,fontsize=15)

 # Main plot

 plt.plot(x_array,color='blue',alpha=0.6)

 # Mean, upper limit, lower limit horizontal lines

 plt.hlines(y=x_mean,xmin=0,xmax=data_len,

 linestyle='--',color='k',linewidth=4)

 plt.hlines(y=x_upper,xmin=0,xmax=data_len,

 linestyle='--',color='red',linewidth=2.5)

 plt.hlines(y=x_lower,xmin=0,xmax=data_len,

 linestyle='--',color='red',linewidth=2.5)

 # Show

 plt.show()

Here, there is already a pandas DataFrame df in the workspace. This function just

plots various columns from that DataFrame as a line chart along with showing the mean,

upper limit, and lower limit lines. The column name is passed as the only argument of

the function.

IS THIS A COMMON SCENARIO?

This is a typical data analytics scenario with, perhaps, some manufacturing process or quality

testing data where you may have a tabular dataset of a large number of parameters (i.e., a

dataframe with a number of columns) and you want to plot multiple line charts side by side

or on top of each other to compare the performance or investigate some pattern. You avoid

inefficient and error-prone code by writing a well-planned function first and then refactoring

that again and again.

Chapter 1 What Is Productive and Efficient Data Science?

8

�Not Writing A Test Module
Testing improves the delivery, performance, and long-term profitability of any software

product/service for all kinds of businesses and industries. It should be, therefore, a no-

brainer that data science and machine learning should also embrace this habit of
testing every important piece of code.

We are increasingly expecting a high-quality and robust software framework behind

various ML services that predict favorite restaurants or guide us when we are lost in a

new city. Trust in these services, which often seem magical, can only come if we know

that the software behind the scenes was tested using a proven and robust methodology.

In many cases, the pace of the development of these new types of services is even

higher than that of traditional software products. Hastening the development of a

product often comes at the price of compromising its quality. A good software testing

strategy can help offset this trade-off.

Put another way, a sound testing strategy can save a lot of development time
in the long term for a data science task flow while guaranteeing a high quality of

the finished product. Saving time in the coding and software engineering stages is an

inherently productive and efficient endeavor.

�Some Pitfalls to Avoid
It is clear from the previous sections that a data scientist can fall into the trap of

inefficient data science practices in myriad ways. It is almost impossible to capture all of

these ways, but here I list some common pitfalls to avoid while working on a data science

task for your business or scientific exploration.

�Don’t Live in Ignorance. Measure Efficiency.
How fast or efficient is your code? Don’t leave it to guesswork. Without a solid metric,

you cannot compare multiple coding styles or options and choose the best one. In

short, without some sort of measurement of efficiency, you can never even start to
improve.

Therefore, always try to include some sort of timing/speed measurement code

in your analysis or test module so that you can test and measure various DS tasks or

function blocks on how efficient they really are. We will revisit this topic in more detail in

Chapter 2.

Chapter 1 What Is Productive and Efficient Data Science?

9

�Don’t Leave Your Code as Orphans. Modularize Them.
If you focus on building a modularized and expressive data science pipeline, it will pay

you back in terms of improved productivity. But what can prevent you from doing so?

Surprisingly, it may be the very programming language that we all have come to adopt

and appreciate for its power and simplicity: Python.

�The Python-Powered Data Science Legacy May Have a Problem

We use Python a lot for our data science work. Why? Because it’s awesome for ML and

the data science community. It is on its way to becoming the fastest-growing major

language for modern data-driven analytics and artificial intelligence (AI) apps. It is

also used for simple scripting purposes, to automate stuff, to test a hypothesis, to create

interactive plots for brainstorming, to control lab instruments, and so on.

However, Python for software development and Python for scripting are not the

same beast, at least in the domain of data science. Scripting is (mostly) the code you
write for yourself. Software is the assemblage of code you (and other teammates)
write for others.

It’s wise to admit that when (a majority of) data scientists, who do not come from

a software engineering background, write Python programs for AI/ML models and

statistical analysis, they tend to write such code for themselves. They just want to get to

the heart of the pattern hidden in the data. Fast. Without thinking deeply about normal

mortals (users). They write a block of code to produce a rich and beautiful plot. But they

don’t create a function out of it to use later. They import lots of methods and classes from

standard libraries. But they don’t create a subclass of their own by inheritance and add

methods to it for extending the functionality.

�Embrace OOP Principles As Much As You Can

Functions, inheritance, methods, classes: they are at the heart of robust object-oriented

programming (OOP; www.educative.io/blog/object-oriented-programming) but they

are somewhat avoidable if all you want to do is create a Jupyter notebook with your data

analysis and plots.

You can avoid the initial pain of using OOP principles but this almost always renders

your Notebook code non-reusable and non-extensible. In short, that piece of code serves

only you (until you forget what logic exactly you coded) and no one else.

Chapter 1 What Is Productive and Efficient Data Science?

http://www.educative.io/blog/object-oriented-programming

10

But readability (and thereby reusability) is critically important. That is the true test of

the merit of what you produced. Not for yourself. But for others.

Therefore, don’t fall into this trap of writing disjoint code pieces with the aim of

doing a quick and dirty analysis. Try to put your code into well-planned functions and

modules (class and subclass) as much as possible. We will revisit this topic in much

more detail and with actual code examples in Chapters 5 and 6.

�Don’t Be Limited by Hardware or Traditional Tools
Many data scientists feel somewhat helpless in the face of large-scale data, say on the

order of hundreds of gigabytes (GB) or multiple terabytes (TB). While enterprise-grade

software solutions routinely handle this kind of data volume every day, individual data

science practitioners may still run into scalability and execution issues with this kind of

dataset. This, of course, impacts their overall productivity.

�Local Hardware Memory Limitation Is a Real Issue

Most data science tasks, especially the initial data ingestion, wrangling, exploratory

analysis, statistical modeling, and feature engineering, happen on the local hardware of

a single data scientist (or a team). This is a fact of the way this enterprise works. With the

advent of AutoML tools and the emphasis on the “citizen data scientist,” individuals are

more and more encouraged to take up data science tasks and start the ball rolling on the

analytics workload that is in high demand for every conceivable business today.

This has great potential to revolutionize the whole field and to propel it to greater

heights. However, it also comes with the caveat that, in many cases, an individual data

scientist may run into the back wall of local hardware memory or compute limit when

dealing with a terabyte (or even multi-gigabyte) scale dataset.

Individual laptop memory (RAM) runs up to 16 GB or 32 GB at best, thereby limiting

the size of a dataset that can be loaded into the working memory in its entirety. Even

for a dataset of a modest 10 GB size, traditional analytics tools like pandas can become

excruciatingly slow when you load the entire data into a single DataFrame object.

Many of these widely used Python data science packages do not support parallel

computing at all.

Chapter 1 What Is Productive and Efficient Data Science?

11

Note A gigabyte (GB) is ~109 bytes or 1,000 MB. A terabyte (TB) is 1,000GB or
~1012 bytes. A petabyte (PB) is 1,000TB or ~1015 bytes. It is estimated that the
entire collection of the Library of Congress including photos, sound recordings, and
movies might take ~3,000TB of storage.

�GPU-Accelerated Computing Has Not Focused on Data Science
as a Whole

From a compute perspective, GPUs have been a blessing for advanced machine learning

with big datasets. However, they are much more discussed and practiced for deep

learning tasks than anything else. As great a success story as deep learning may be for

the rise of AI and ML, a majority of data science and analytics workflows still have little

use for GPUs.

Therefore, it is a common scenario that a data scientist has access to a GPU-powered

workstation or a multi-GPU cloud computing instance but cannot utilize those hardware

resources effectively for the analytics tasks that they want to accomplish (Figure 1-3).

Figure 1-3.  GPU-based accelerated computing needs to become an essential
component of mainstream data analytics (even without any deep learning
component)

Chapter 1 What Is Productive and Efficient Data Science?

12

�Always Explore Alternative Libraries/Frameworks

It is, therefore, clear from the discussion above that to practice productive and efficient

data science, practitioners must learn

How to handle large and complex datasets efficiently (which

would have been difficult with traditional DS tools) with libraries

that support parallel computing and multi-tasking out of the box

How to fully utilize GPU and multi-core processors for all kinds of

data science and analytics tasks, and not just for specialized deep

learning modeling

We will discuss many of these issues at length and show some emerging (and

exciting) alternatives to the traditional tools and frameworks in Chapters 10–12.

�Efficiency and Productivity Go Hand in Hand
This is one of the poorly understood and less appreciated facts about data science, or about

any technical enterprise for that matter: being efficient and tidy and avoiding bugs and
errors directly leads to productivity in all aspects of professional life. While some of the

connections are easy to spot, others are less obvious. Therefore, in this section, I provide key

examples of techniques for high efficiency with regard to the practice of data science.

�Measuring Efficiency Goes a Long Way
As discussed in the preceding section, if you develop a habit of measuring the efficiency

of your code or function, you will automatically create an environment where you are

keeping track of those metrics and how you are improving over time. In this way, you can

become much more productive in your daily tasks as they can be probed and improved

upon with clear targets when they start showing any sign of lag. Measuring the memory

and compute footprint is one prominent example; I talk about this in detail in Chapter 9.

This habit helps to increase productivity at a large enterprise scale, too. For example,

you may feel confident before committing a large piece of ML prediction code that was

written by you or your team only when you know that your team has measured the
code execution efficiency thoroughly and ensured that the code won’t blow up the API

endpoint in the face of gigabytes of real-time streaming data.

Chapter 1 What Is Productive and Efficient Data Science?

13

�Testing Reduces the Chance of Rework
The more unit or functional testing modules are planned and written at the development

stage of a data science pipeline or ML predictive framework, the fewer chances of

discovering critical bugs at the deployment stage. While for pure exploratory analysis,

testing has less impact on the overall speed of the development cycle, the productivity of

any real-life deployment will depend on building this habit.

However, traditional software testing best practices may not be 100% applicable
to data science and ML code testing since they involve a lot of probabilistic features
or randomized input/output patterns. Therefore, careful planning and a deep

familiarity with the stochastic nature of these systems are essential ingredients for

building a high-performance testing framework. This necessitates some sort of data

science expertise on the part of the test engineering team as well.

�Planning ML Model Development
ML model development and tuning is often done in an ad-hoc manner, with the

sole focus of obtaining the highest accuracy or some similar model performance

metric. Long-term productivity improvement is not considered a major goal of such

experimentation and model iteration.

However, making small changes to the process like logging hyperparameters and

metrics properly, or creating a model iteration routine that systematically stores and

visualizes the tuning process, can go a long way to reducing waste in repeatable work. I

talk about some of these best practices in Chapter 4.

It is important, however, to identify the productivity of a complete ML platform in

a holistic manner which places greater emphasis on the overall system productivity
rather than on the speed of developing individual models. Incorporating model

tracking, logging, and visualization code certainly places some overhead on the

individual modeling components, but the benefit is realized in the longer run in a

system-wide manner. This must be realized and supported by the higher management

for the data science team to execute with confidence.

Chapter 1 What Is Productive and Efficient Data Science?

14

�Knowledge of GUI Programming/Web App Development Is
Quite Helpful
This may sound counterintuitive but learning a bit of GUI/API programming can often

lead to overall productivity improvement for your data science pipeline. This happens,

of course, when you use that knowledge to wrap the GUI around a piece of ML model or

data analytics code to make it presentable to a wide user base.

Let me illustrate with a concrete example. Often, the essential first step in getting

approval for a large-scale ML platform development is to produce a working prototype

for the internal users or stakeholders such as higher management or the Sales and

Marketing departments. This audience will understand the purpose and utility of the

prototype much better if they see it in a visual manner and, even better, if they can play

around with the platform (Figure 1-4).

Figure 1-4.  A quick demo of working data science prototypes to higher
management often increases the overall productivity of the team

This requires not only the back-end development of the ML models and data

analytics pipeline but a front-end app demonstrating the inner workings in as visually

intuitive and interactive manner as possible. A data science team may not write the exact

code for creating this demo app, but a deep knowledge of how those front-end elements

and components should be designed and integrated into the back-end ML platform will

go a long way towards faster development of the prototype. Reducing the time gap in

this phase automatically means a quicker decision timeline and overall improvement

in the time-to-market and productivity of the whole team. Web/browser-based apps are

Chapter 1 What Is Productive and Efficient Data Science?

15

a natural choice for this type of task, and I discuss some of these tools (that can quickly

create a web app to showcase your data science work) in Chapter 12.

�Skills and Attitude for Practicing Productive
Data Science
It goes without saying that you must work consciously towards developing the specific

set of skills and aptitude to move into the realm of productive and efficient data science.

By its very nature, data science welcomes and embraces professionals from all kinds of

technical backgrounds and professional training. While this is a wonderful thing for the

field in general, it also means that anybody who wants to break the cycle of inefficiency

must make a focused effort to develop these skills.

No book or course can cover the entire spectrum of possible skills and topics that

need to be taught to propel a data scientist towards the path of productive and efficient

data science. However, if I had to imagine some specific components for such an ideal

book, I would expect it to

Teach how to look out for inefficiencies and bottlenecks in the

standard data science code and how to think beyond the box to

solve those problems.

Teach how to write modularized, efficient data analysis and

machine learning code to improve productivity in a variety of

situations such as exploratory data analysis, visualization, deep

learning, and more.

Cover a wide range of side topics such as software testing, module

development, GUI programming, and ML model deployment as a

web app, which are invaluable skillsets for budding data scientists

to possess.

Teach how to whip up quick GUI apps for the demo of a data

science/ML idea or model tuning, or how to easily (and quickly)

deploy ML models and data analysis code at a web app endpoint.

Cover parallel computing, out-of-core (larger than the system

memory) scalability, and GPU-powered data science stack with

hands-on examples.

Chapter 1 What Is Productive and Efficient Data Science?

16

Expose and guide the readers to a larger and ever-expanding

Python ecosystem of data science tools that are connected to the

broader aspects of software engineering and production-level

deployment.

And, above all, instill and reinforce the sense of inquisitiveness
about the efficiency of one’s data science pipeline so that the

practitioner can continuously research and develop their own

methods and best practices for probing the code and systems they

are working with.

�Summary
In this introductory chapter, I covered a lot of ground to give you a fairly detailed idea

about the emerging concepts of productive and efficient data science. I talked about

what it means from a technical point of view and how it helps the organization as a

whole. I pointed out that inefficiencies can seep into any stage of a typical data science

pipeline: ingestion, wrangling, visualization, EDA, ML modeling, or even the demo stage.

I delved deeply into some concrete examples that appear frequently in a typical

data science task such as iteration over a large dataset or visualization practices with

a complex dataset. In particular, I talked about embracing good OOP principles and

developing the mentality of a test engineer while working on DS tasks.

I described common pitfalls to avoid in these aspects. I placed special emphasis on

not limiting yourself with local hardware or traditional tools while dealing with large

terabyte-scale datasets. GPU-accelerated computing, which has not received much

attention beyond deep learning, was discussed. I also touched upon parallel computing

ideas that will be explored in more detail later in this book.

Next, I showed, with concrete examples, how productivity and efficiency go hand in

hand in typical data science tasks or platforms. The use of GUI/app development as a

tool to accelerate the decision-making process was discussed in this regard.

Finally, I talked about the ideal skills and aptitudes to develop in order to embrace

the habit of productive data science. You will explore these ideas with hands-on

examples in the following chapters.

Chapter 1 What Is Productive and Efficient Data Science?

17

CHAPTER 2

Better Programming
Principles for Efficient
Data Science
The goal of this chapter is to introduce you to the concepts of certain programming

styles and habits that play an essential part in developing efficient data science (DS) and

machine learning (ML) systems and pipelines. I will illustrate the concepts through brief

examples (or pseudo-codes wherever applicable) and talk about how to measure or track

inefficiency.

I will start by introducing the concepts of time and space complexities

(https://levelup.gitconnected.com/time-and-space-complexity-725dcba31902)

in programming and algorithms. You will also get to see Big-O notation

(https://en.wikipedia.org/wiki/Big_O_notation) used in this context. These are

foundational concepts for analyzing the runtime or efficiency of any algorithm and

can be used to measure and describe the efficiency of standard ML algorithms, as an

example. I will also talk briefly about why complexity measures matter for data science

tasks in particular.

Then I will demonstrate practical examples of common, inefficient data science and

ML coding practices. This is by no means meant to be an exhaustive illustration of every

kind of inefficient data science programming. However, I will try to give you a glimpse

of typical inefficient code snippets that do not scale well or make some aspects of the

overall system design inefficient. Hopefully, you can internalize these examples and

apply the same thought process to your own analytics work to become more productive.

In most of these cases, I will also show some more examples of what can be

done instead, such as how you can improve the efficiency of the same task using a

better programming style or choice of a different tool or function (within the Python

ecosystem).

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_2

https://levelup.gitconnected.com/time-and-space-complexity-725dcba31902
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://doi.org/10.1007/978-1-4842-8121-5_2

18

Finally, I will introduce tools and techniques to measure the execution time of your

code or function blocks. I will cover both generic Python modules and Jupyter magic

commands in this regard.

�The Concept of Time and Space Complexities plus
Big-O Notation
The time and space complexities of an algorithm are related to the worst-case (generally)

execution time and the memory/storage space it takes to run that algorithm for a given

input. Because the time and space almost always depend on the size of the input

(for example, number of elements in an array), these complexity measures are expressed

as functions of the input size, thus f(n) or g(n) for the n-element array where f or g denote

the time and space complexities, respectively.

�A Simple Example: Searching for an Element
Let’s demonstrate this using a simple example. Consider the following Python program

for searching for a given element inside a list. Note that you could have written the code

in more Pythonic way with if ele in lst, but for demonstration purpose, let’s write it

using naïve list traversing code:

def ele_in_lst(ele,lst):

 len_lst = len(lst)

 for i in range(len_lst):

 if lst[i] == ele:

 return True

 return False

If you test this function with the following input, you get True:

ele_in_lst(ele=2,lst=[3,4,5,2,9])

>> True

But if you test with the following input, you get False:

ele_in_lst(ele=2,lst=[3,4,5,5,9,11,3,4,-1,3,5,7,12,15])

>> False

Chapter 2 Better Programming Principles for Efficient Data Science

19

In the second example above, the loop is traversed entirely, so the equality check

operation of if lst[i] == ele is done 14 times (the length of the list). This is the core

operation of the program, which is performed by the CPU and factors into the time

complexity of the code.

So, what is the time complexity of this search method? It is clear that in the worst
case, where the ele is not in the given lst, the time taken will always be proportional
to the length of the lst (if we assume that each equality operation takes a constant

time to perform). This is denoted by the function O(n) where n denotes the number of

elements in the input array.

�The Big-O Notation
This notation of O in the function O(n) is called the Big-O notation. As per Wikipedia,

“it describes the limiting behavior of a function when the argument tends towards a

particular value or infinity” (https://en.wikipedia.org/wiki/Big_O_notation).

In particular, this is an example of the worst-case time complexity for this situation

(because the element is not present in the given list), but in the limiting case, this is what

every computer programmer should be concerned about.

One may wonder why we are not calculating the average case time complexity. As

it turns out, in most cases, it is quite difficult to calculate or even estimate what that

average case looks like, whereas the worst case is generally defined and understood

in a much simpler manner. Furthermore, the notation of O(n) is understood in an

asymptotic sense, thus the worst-case time taken will not deviate from this linear trend

when n becomes large.

Why linear trend? Because O(n) denotes the first power of n. Similarly, we have

algorithms of O(n2) or O(n3) complexities that show quadratic or cubic trends. In

other words, the time taken will grow looking like a quadratic or cubic function of the

problem size n.

The origin of this Big-O notation is deeply rooted in the more advanced mathematics

of analytic number theory (https://en.wikipedia.org/wiki/Analytic_number_theory),

and it shows up in discussions of many mathematical theorems as well. But, in the

context of computer science and programming, this is the standard notation to denote

the time/space complexity of a given algorithm.

Chapter 2 Better Programming Principles for Efficient Data Science

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Analytic_number_theory
https://en.wikipedia.org/wiki/Analytic_number_theory

20

�Complexities: Linear, Logarithmic, Quadratic, and More
So, if this is O(n), can the search be made better? Yes, as it turns out, the search can be

made to run as fast as O(log2(n)) if the list is presorted. The specific algorithm to be

used in that case is called the binary search. And, as you can guess, the naïve algorithm

that we wrote above is called the linear search.

�How Much Faster?

And just how much faster is O(log2(n)) than O(n), anyway? We can find that out by

simply plotting the two functions f(n) = n and g(n) = log2(n) as the number n grows. For

a better illustration, see Figure 2-1. It contains two plots: one with the direct comparison

between these two functions and another where the logarithmic function is multiplied

by a large constant number like 25.

What does the second case in Figure 2-1 represent? It is for a situation where we are

using a O(log2(n)) algorithm but we also have a large overhead for the unit computation,

so where the fundamental unit of computing is much slower than the corresponding

unit operation with the O(n) linear algorithm.

Figure 2-1.  Function value growth comparison between logarithmic and linear-
time complexity algorithms. In (a), both have the constant multiplier 1. In (b), the
log algorithm has a multiplier of 25

What is abundantly clear from Figure 2-1 is that no matter the constant multiplier

(1 or 25), the O(log2(n)) algorithm becomes much faster than the O(n) algorithm as n

grows, so the function value, which represents the time taken by the algorithm, grows

much slower with n. Therefore, we should always use a logarithmic complexity
algorithm in place of a linear complexity algorithm for the same task (if we can get
our hands on such an algorithm).

Chapter 2 Better Programming Principles for Efficient Data Science

21

For the search example, this needs presorting of the list, which has its own

algorithmic complexity (see sorting algorithms complexity at www.geeksforgeeks.org/

time-complexities-of-all-sorting-algorithms). But this is often done given that, in

a typical application scenario, you might have to sort the list much less frequently than

you have to search through it.

�What’s Beyond Linear?

Although the linear-time complexity looked worse compared to the logarithmic-time

one, it is, in fact, a remarkably efficient algorithm in the context of common computing

algorithms that we generally encounter (both in data science and non-data-science

work). As you can guess, complexities with higher powers of n are pretty common and

are denoted accordingly:

O(n2) for quadratic-time complexity

O(n3) for cubic-time complexity

O(2n) for exponential-time complexity (yes, those hellish

things exist!)

Let me show you quick (and naïve) examples of O(n2) and O(n3) algorithms. Here is

a simple algorithm iterating over the dimensions of a given NumPy array and counting

the elements that are greater than zero (you surely know about the NumPy library and

arrays at https://numpy.org/doc/stable/user/whatisnumpy.html if you are interested

in data science, don’t you?):

import numpy as np

array_2D = np.random.normal(size=(5,5))

def count_positives(array):

 """

 Counts positives in a random 2-D array

 """

 m,n = array.shape

 count = 0

 for i in range(m):

Chapter 2 Better Programming Principles for Efficient Data Science

http://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms
http://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html

22

 for j in range(n):

 if array[i][j] > 0.0:

 count+=1

 return count

How many times is the core unit of computation (if array[i][j] > 0.0)

performed? Clearly, it is done 5 x 5 = 25 times here for this 2D array of dimension (5, 5).

If we change the code for the dimension to be (100, 100) then the computation will be

performed 100 x 100 = 10,000 times!

Therefore, the time-complexity here is O(m×n) where (m, n) are the dimensions of

the 2D array. For square arrays, it is roughly equivalent to our familiar O(n2).

�Why Complexity Matters for Data Science
All these discussions about algorithmic complexity may make you wonder how you

might utilize this knowledge in your data science work, especially for productive data

science. To answer that, first you need to see some common examples of data science

tasks that may have high algorithmic complexity. I covered the linear, logarithmic,

and quadratic ones in the last section. Let me show you two more (worse) complexity

examples in the context of data science tasks.

�Image Data: Cubic-Complexity Algorithms
As a natural progression to the code example from the O(n2) case, if we increase the

number of loops to 3, as in a 3D array, then the time complexity becomes O(n3). A

prominent example of a 3D array, specifically in the context of data science, is image

data where a 2D array represents the coordinates of the pixel, and in each pixel, there

is another number representing the color depth (https://en.wikipedia.org/wiki/

Color_depth) or the grayscale value (examples shown in Figure 2-2).

Since you may have to work frequently with image data as a data scientist, you have a

high chance of running into O(n3) algorithms. In fact, you may be facing a more complex

computing task at each pixel, as it can be a vector of multiple color values (e.g., RGB)

instead of a single floating-point number.

Chapter 2 Better Programming Principles for Efficient Data Science

https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Color_depth

23

Figure 2-2.  Color-depth and grayscale images example (Source: Wikimedia, GNU
Free Documentation License)

�Best Regression Model: Exponential Complexity
What about the dreaded O(2n) complexity? Do you really encounter them in everyday

data science work? Yes, it turns out that there is a simple data science example for

that too.

Consider the exercise of determining the best linear regression model for a
large dataset with many features. All of the features may not be impactful or equally

important. Only a specific subset of features is optimum for most practical cases.

Determining that optimum set sounds like a common data science task.

As we know, adding more features to the model will increase the simple R2

coefficient but when we take into consideration advanced metrics such as adjusted-R2

(www.statisticshowto.com/probability-and-statistics/statistics-definitions/

adjusted-r2/) or AIC criterion (https://en.wikipedia.org/wiki/

Akaike_information_criterion), then we need to experiment with multiple

combinations of features to find out the best combination. In short, we need to search
through the space of all possible combinations of features, build a regression model

for each combination, calculate the desired performance metric, and pick the best one at

the end (e.g., for which the performance metric is highest).

Chapter 2 Better Programming Principles for Efficient Data Science

https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/
http://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/
http://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion

24

In more mathematical terms, this translates to finding the best subset among all
subsets of a given set. This is an exponentially hard problem to compute. This means

that the algorithmic complexity is O(2n). Moreover, this is just for building the set of all

subsets of the feature space, not even considering the computational cost of building the

actual regression model for each combination.

Why? Because of this simple equation that we may remember from high school

math. Basically, the sum total of all combinations taken 1, 2, 3, …, n from n possible

items is 2n. In the context of our regression problem, we are choosing 1, 2, 3, or more

features at a time and building the models.

	
∑ + +… +() =C C Cn n n

n
n

1 2
2 	

This is the reason exhaustive search is almost never encouraged for a regression
model optimization. Instead, we have greedy search (https://en.wikipedia.org/

wiki/Greedy_algorithm) methods such as forward- and backward-selection algorithms

(https://quantifyinghealth.com/stepwise-selection/), which cut down the search

time drastically and yet find a reasonably good solution for almost all practical cases.

�Relative Growth Comparison
To illustrate the benefit (or disadvantage) of having algorithms with various complexity

orders, we can draw the kind of simple chart shown in Figure 2-3. It is clear that the

logarithm-time algorithm grows slowest, followed by the linear-time one. Algorithms

with higher powers grow quickly and the exponential type just takes off like a ballistic

missile!

Figure 2-3.  Relative growth of various time-complexity algorithms (not to scale)

Chapter 2 Better Programming Principles for Efficient Data Science

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Greedy_algorithm
https://quantifyinghealth.com/stepwise-selection/

25

It is also noteworthy to state that, because these complexity measures and the Big-O

notation are really defined in an asymptotic sense, as in the limit of large values of n,

they really need to be treated as belonging to entirely separate classes of computing

difficulty. This means no matter what actual complexity function a particular algorithm

may be reduced to, if it is cubic, then it is always worse than a linear or quadratic

algorithm in the long run.

The quickest way to judge is to look at the highest degree of the algorithm and

determine the rank. Exponentials are always worse than polynomials, and polynomials

are always worse than linear. Some quick examples are as follows:

An algorithm of O(200*n+3) complexity is better than one with

O(0.1*n2+12).

An algorithm of O(3*n3+2n+5) complexity is worse than one with

O(100*n2+12).

An algorithm of O(40.1n) complexity is worse than one with

O(100*n100).

The last one in the above list must have surprised you! You are encouraged to
calculate these two functions starting from small to large values of n and overlay
them to get an understanding of how the first function overtakes the second one
at large values of n. Therefore, judging from an asymptotic sense, you should
still prefer the polynomial-degree algorithm (even with a term like n100) over the
exponential one (40.1n).

�AI Is Intractable, but It Works
Deep learning networks have been trained to recognize speech, caption
photographs, and translate text between languages at high levels of perfor-
mance. Although applications of deep learning networks to real-world
problems have become ubiquitous, our understanding of why they are so
effective is lacking. These empirical results should not be possible
according to sample complexity in statistics and nonconvex optimiza-
tion theory.

Chapter 2 Better Programming Principles for Efficient Data Science

26

Terrence J. Sejnowski (www.salk.edu/scientist/terrence-sejnowski/),
“The unreasonable effectiveness of deep learning in artificial intelligence”
(www.pnas.org/doi/10.1073/pnas.1907373117), PNAS, December 2020

It is a big jump, going from simple searching and sorting algorithms to the world of

gradient descent and backpropagation (https://blog.paperspace.com/

intro-to-optimization-in-deep-learning-gradient-descent/) used in deep

learning, but it’s necessary to make the point of AI algorithms being intractable yet

manageable.

So, what is intractability? It is a whole new subject in itself, beyond the scope of

this book, albeit closely related to the topic of algorithmic complexity discussed in the

previous subsections. Simply put, intractable problems are computational problems
for which no efficient algorithm (that solves them) can be found. Here, the term

efficient means, under most circumstances, polynomial-time algorithms, so algorithms

with complexities at most O(nk) but not the ones with O(2n) or O(n!).

Unfortunately, in the field of AI, most of the common problems can be shown to be

intractable in theory. In particular, for AI problems, their most optimum solution needs

some kind of algorithm that searches through a space that is exponential in nature, such

as the number of all possible trees (and branches) in a decision tree or the number of

all possible models in a simple multivariate regression. As these traditional ML tasks fall

into the realm of intractability, it is no surprise that deep learning networks will also be

plagued by the same computational difficulty.

However, despite the theoretical impossibility (of finding the best possible solution),

common ML algorithms and solutions work for almost all practical situations by

employing clever techniques such as greedy search (www.programiz.com/dsa/greedy-

algorithm), heuristics (https://en.wikipedia.org/wiki/Heuristic_(computer_

science)), dynamic programming (www.programiz.com/dsa/dynamic-programming),

randomized algorithms (https://en.wikipedia.org/wiki/Randomized_algorithm),

and more. Concretely, the practical techniques do not seek to find the absolute
best solution but a “good enough” solution that can be found efficiently and with
reasonable computing resources. They also utilize domain knowledge and inductive

bias heavily to trim the search space of potential solutions.

Chapter 2 Better Programming Principles for Efficient Data Science

http://www.salk.edu/scientist/terrence-sejnowski/
http://www.pnas.org/doi/10.1073/pnas.1907373117
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
http://www.programiz.com/dsa/greedy-algorithm
http://www.programiz.com/dsa/greedy-algorithm
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://www.programiz.com/dsa/dynamic-programming
https://en.wikipedia.org/wiki/Randomized_algorithm

27

Heuristic search techniques are often called informed search as they tend to use
additional information about the problem and the environment (that an AI agent
may be in). Imagine you are in a foreign country and don’t have access to Google
Maps! You have a choice of driving to a few cities from the place you are currently
in, as the first step of the journey to reach your ultimate destination. You may not
know the exact driving distance of these cities, but you may have heard from your
friend that it took her less time for a train journey to city A than it took to travel to
city B. This is additional information about the environment and, although it does
not guarantee that the actual driving distance to City A is less than that to City B,
there is a good chance of it being true. It’s called a heuristic and you can use it to
determine the optimal path to take on your journey. A great many AI algorithms use
this technique for efficient search.

Therefore, to summarize, the intent of the preceding sections on computational

complexity and Big-O notation was to introduce the idea of efficiency of common

algorithms and to illustrate that there are, indeed, separate classes of algorithms that

perform quite differently when the input size grows. This was done to instill a sense

of probing in your mind, to check your code and implementation for weakness, even

if you are not required to rigorously analyze and mathematically derive the exact Big-

O function for a particular solution. Moreover, this is also to assure you that clever
solution techniques exist to handle even seemingly intractable problems with big

data, and you should explore them at every chance.

�Inefficient Programming in Data Science
Data science code can be plagued by inefficient practices and design patterns in

countless ways. One of the major reasons for this happening is that data scientists often

come from diverse backgrounds (e.g., physics, biology, economics, statistics, electrical

engineering, etc.) and they don’t follow the well-established software engineering design

patterns (https://en.wikipedia.org/wiki/Software_design_pattern) all the time.

Data science boot camps, workshops, and online courses, which are often the places

where a lot of budding data scientists get their training from, teach a plethora of topics

covering Python coding, statistics, and machine learning but not necessarily these high-

efficiency programming techniques.

Chapter 2 Better Programming Principles for Efficient Data Science

https://en.wikipedia.org/wiki/Software_design_pattern

28

However, it is to be noted at the outset that this book is not a primer on software

engineering for data science. In particular, the goal of this chapter is to showcase some

of the most obvious and widely repeated inefficient programming patterns that are

found in data science tasks so that you can recognize and learn from these examples.

This is precisely what I set forth to do in the next sections. Also, for good measure, I show

workarounds and alternatives that are supposed to be more efficient.

�Canonical Examples
In this section, I show some examples of inefficient programming patterns that occur

frequently in regular data science workflow. I follow an approach that is practical and

hands-on rather than pedagogical. That means I am not taking a rigorous mathematical

approach to calculate and prove the algorithmic complexities of various functions and

code snippets. Instead, you are encouraged to measure the execution times of code

snippets using various tools and explore possible improvement strategies on your own.

There is no one right answer on how to improve upon these snippets.

It is to be noted that I am not talking about specific libraries like NumPy or
pandas in this section. In fact, I will discuss efficient best practices with these libraries

in the next chapter. Here, I am showing examples of basic Python coding patterns that

you can utilize for many situations (data science and beyond).

A note to the reader: I intend to keep the code snippets compact and therefore I
am not making them self-contained and exhaustive. This means code snippets
are not meant to be run on their own. Accompanying notebooks will have the full
runnable code.

�Use a Filter Instead of a for Loop

There are countless articles written about avoiding a for loop for simple repetitive tasks

that can be cast with some other form of mathematical logic. Now, for many complicated

logic and iteration situations, you cannot avoid for loops. However, in many situations

you can use alternate methods and you should be on the lookout for them. Python

provides some built-in methods to be used in specific situations like data filtering.

Chapter 2 Better Programming Principles for Efficient Data Science

29

Consider the following code block with three function definitions:

ONE_MILLION = list(range(int(1e6)))

def for_loop():

 result = []

 for ele in ONE_MILLION:

 if not ele % 3:

 result.append(ele)

 return result

def list_comprehension():

 return [num for num in ONE_MILLION if not num % 3]

def filter_fn():

 return filter(lambda x: not x % 3, ONE_MILLION)

The first function contains a plain vanilla for loop and list appending. The second

one is much cleaner and uses Python’s list comprehension (https://realpython.com/

list-comprehension-python/). Finally, the third function uses the built-in filter

function and the lambda expression (https://realpython.com/python-lambda/) to

achieve the same goal.

Let’s use Jupyter Notebook’s built-in magic command (https://stackoverflow.

com/questions/29280470/what-is-timeit-in-python) %%timeit to measure the

execution speed.

For the for_loop function,

%%timeit -r20 -n5

for_loop()

>> 56.6 ms ± 3.03 ms per loop (mean ± std. dev. of 20 runs, 5 loops each)

For the list_comprehension function,

%%timeit -r20 -n5

list_comprehension()

>> 44.2 ms ± 2.21 ms per loop (mean ± std. dev. of 20 runs, 5 loops each)

Chapter 2 Better Programming Principles for Efficient Data Science

https://realpython.com/list-comprehension-python/
https://realpython.com/list-comprehension-python/
https://realpython.com/python-lambda/
https://stackoverflow.com/questions/29280470/what-is-timeit-in-python
https://stackoverflow.com/questions/29280470/what-is-timeit-in-python

30

For the filter_fn function,

%%timeit -r20 -n5

filter_fn()

>> 440 ns ± 93.6 ns per loop (mean ± std. dev. of 20 runs, 5 loops each)

The list comprehension is slightly faster than the plain for loop whereas the filter-

based method is much faster. Clearly, for this kind of situation, where you are essentially

doing data filtering (by iterating over a list and creating a new list based on whether each

element meets a specific criterion), you should try the filter function whenever possible.

One thing to remember about these examples, strewn throughout this book, is that
the exact numerical result of a timing measurement will vary wildly from machine
to machine, or even from one execution to the next. The timing profile is a tricky
subject and difficult to standardize. You may get a totally different result depending
on the hardware you are using and local software settings. Nonetheless, (in most
cases) the overall trend will be apparent from the examples.

�Use Sets to Find Unique Elements

Sets are a powerful data structure (https://realpython.com/python-sets/) in Python,

and they can be used creatively for situations where you want to find the unique

elements from a long list or array. Consider the following code with two function

definitions:

import random

random_lst = [random.randint(1,100) for _ in range(100000)]

def unique_for_loop():

 unique_elements = []

 for ele in random_lst:

 if ele not in random_lst:

 unique_elements.append(ele)

 return unique_elements

def unique_set():

 return list(set(random_lst))

Chapter 2 Better Programming Principles for Efficient Data Science

https://realpython.com/python-sets/

31

As usual, you run tests using the Jupyter %%timeit command and get the following

with the for loop function:

%%timeit -r20 -n5

unique_for_loop()

>> 109 ms ± 4 ms per loop (mean ± std. dev. of 20 runs, 5 loops each)

You get the following result using set:

%%timeit -r20 -n5

unique_set()

>> 788 μs ± 181 μs per loop (mean ± std. dev. of 20 runs, 5 loops each)

The method with set is much faster! Therefore, it makes sense to use it any time you

have a situation involving finding unique elements in a long array.

Furthermore, the in operator is designed to be very fast when working on sets.

Therefore, if you want to check the membership of an element in a long list (i.e., check if

that element exists in the list), and you have reason to believe that the list contains many

duplicate entries, then you can reduce the search time significantly by first removing all

the duplicates and creating a set out of that list. A pseudo-code will look something like

a_long_list = ...

duplicates_removed = set(a_long_list)

ele = ...

if ele in duplicates_removed:

 print(f"The element {ele} exists in the list")

The method shown above is not a fundamental principle of changing the
algorithmic complexity of the search operation (as discussed in the previous
section). It is a trick to take advantage of in specific situations using the
built-in data structures of Python and their optimized methods and operators.
In data science tasks (or, in general, with programming), you should keep your
eyes open for these sorts of tricks as they can be found everywhere and in every
programming language.

Chapter 2 Better Programming Principles for Efficient Data Science

32

�Use a Specialized Data Structure for Counting

In many situations, you may need to count the frequency of variables or elements from

a large corpus of text or blob of data. One natural instinct is to construct a dictionary

where the variables are stored as keys and their corresponding count as the integer

values. A simple way to do this is to write a function like this:

def word_counts(text):

 dict_words = {}

 for w in text.split(' '):

 if w in dict_words.keys():

 dict_words[w]+=1

 else:

 dict_words[w] = 1

 return dict_words

Run it on a text sample (from the familiar A Tale of Two Cities):

text = """It was the best of times, it was the worst of times,

it was the age of wisdom, it was the age of foolishness,

it was the epoch of belief, it was the epoch of incredulity,

it was the season of Light, it was the season of Darkness,

it was the spring of hope, it was the winter of despair,

we had everything before us, we had nothing before us,

we were all going direct to Heaven, we were all going direct the other

way – in short, the period was so far like the present period, that some of

its noisiest authorities insisted on its being received, for good or for

evil, in the superlative degree of comparison only

"""

You get the following result:

%%timeit -r1000 -n10

word_counts(text)

>> 28.6 μs ± 13.9 μs per loop (mean ± std. dev. of 1000 runs, 10
loops each)

Chapter 2 Better Programming Principles for Efficient Data Science

33

For this kind of situation involving counting, you can use a specialized data structure

called Counter from the collections module (https://docs.python.org/3/library/

collections.html#collections.Counter) of Python. You will see that by using this

built-in data structure, you can make the code compact, organized, and faster.

Here is the single-line code to create a Counter object from the given text:

counter_words = Counter(text.split(' '))

This counter_words object has a dictionary-like API just like the dict_words object

returned by the word_counts function. For example, you can easily print the counts (of

each unique word) using the .items() method:

counter_words.items()

>> dict_items([('It', 1), ('was', 11), ('the', 14), ('best', 1), ('of', 12),

('times,', 2), ('it', 5), ('worst', 1), ('\nit', 4), ('age', 2),

('wisdom,', 1), ('foolishness,', 1), ('epoch', 2), ...

Truncated output to save space

Observe that counter_words has more useful built-in methods than the regular

dictionary dict_words. For example, one of the most common data science tasks (used

repeatedly in Natural Language Processing or NLP pipelines) is to list the top 5 (or 10)

most common words. If you were to use the native Python dictionary approach, then you

would have to write a small additional code to get that list:

dict_words = word_counts(text)

top_5 = sorted([(v,i) for i,v in dict_words.items()], reverse=True)[:5]

This would get you the list of tuples with the five most frequently appearing words:

[(14, 'the'), (12, 'of'), (11, 'was'), (5, 'it'), (4, '\nit')]

But you can get the same result using the built-in most_common() method, which

takes a single argument of the number of top words you want to extract:

counter_words.most_common(5)

>> [('the', 14), ('of', 12), ('was', 11), ('it', 5), ('\nit', 4)]

Not only is this approach faster (you are encouraged to measure the execution speed

using the Jupyter magic command) but also it is cleaner and less error-prone because

you don’t have to write your own code with a separate list variable like top_5. You just

pass on the number as an argument to the built-in method and get back a list.

Chapter 2 Better Programming Principles for Efficient Data Science

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter

34

�Use the itertools Library for Combinatorial Structures

Suppose you are working on a machine learning model with a dataset that has four

numerical and four categorical features. You want to build all combinations of two

feature models combining one numerical and one categorical feature and compare the

performance of all such models.

A naïve way to build a list combining numerical and categorical features would be

using nested for loops, like so:

lst_features = []

for i in num_features:

 for j in cat_features:

 lst_features.append((i,j))

The resulting list may look like this:

[('num_feature-1', 'cat_feature-1'),

 ('num_feature-1', 'cat_feature-2'),

 ('num_feature-1', 'cat_feature-3'),

 ('num_feature-1', 'cat_feature-4'),

 ('num_feature-2', 'cat_feature-1'),

 ('num_feature-2', 'cat_feature-2'),

 ('num_feature-2', 'cat_feature-3'),

 ('num_feature-2', 'cat_feature-4'),

 ('num_feature-3', 'cat_feature-1'),

 ('num_feature-3', 'cat_feature-2'),

 ('num_feature-3', 'cat_feature-3'),

 ('num_feature-3', 'cat_feature-4'),

 ('num_feature-4', 'cat_feature-1'),

 ('num_feature-4', 'cat_feature-2'),

 ('num_feature-4', 'cat_feature-3'),

 ('num_feature-4', 'cat_feature-4')]

For such combinatorial data structures, you can use the itertools module (built-in

Python). You can get the same result as above by using the product function from the

library. Here is the single-line code:

lst_features = list(product(num_features, cat_features, repeat=1))

Chapter 2 Better Programming Principles for Efficient Data Science

35

You are encouraged to measure the timing on these two approaches. It is highly

likely that the itertools function will run faster.

Furthermore, you may want to build all combinations of five-feature models by

mixing the numerical and categorical features together. Again, one line of code is

sufficient to build the whole combination using the combinations function from the

library. Note the argument r=5 in the function denoting that you want a five-feature

combination:

comb_features = list(combinations(num_features+cat_features, r=5))

It looks like following (truncated output):

Model 0: num_feature-1, num_feature-2, num_feature-3, num_feature-4,

cat_feature-1,

Model 1: num_feature-1, num_feature-2, num_feature-3, num_feature-4,

cat_feature-2,

Model 2: num_feature-1, num_feature-2, num_feature-3, num_feature-4,

cat_feature-3,

Model 3: num_feature-1, num_feature-2, num_feature-3, num_feature-4,

cat_feature-4,

Model 4: num_feature-1, num_feature-2, num_feature-3, cat_feature-1,

cat_feature-2,

Model 5: num_feature-1, num_feature-2, num_feature-3, cat_feature-1,

cat_feature-3,

�Lessons Learned from the Examples
In the examples above, you covered important computing tasks such as

•	 Filtering

•	 Finding unique elements

•	 Counting the frequency of occurrence and most common elements

•	 Building combinatorial data structures

Chapter 2 Better Programming Principles for Efficient Data Science

36

In all of these cases, I first showed a somewhat naïve way of accomplishing the task

using Python code and then demonstrated a faster and cleaner way to accomplish the

same task using specialized data structures or built-in functions in Python. Although

these examples cover a lot of common tasks in any data science workflow, there are so

many more situations where you can apply the lessons learned here.

So, what are the core lessons learned? Here is a short list.

Always look for an optimum data structure to use to store and

manipulate your data. For different situations, different data

structures can be optimal.

No need to restrict yourself to just the default containers like

lists, sets, tuples, and dictionaries. Python has other modules with

specialized containers and data structures which can come in

handy in many situations and deliver faster performance.

Cleaner code is efficient and productive code. A clean and

compact single-line code may not be faster than the five lines

of code it replaces, but it enhances the maintainability and

readability of the overall codebase. This leads to increased

productivity and higher efficiency in the long run.

Always take care to measure the execution time and experiment

with various options (as listed above) to determine the best one

for your particular situation. Without measuring, you cannot say

anything for certain.

�Measuring Code Execution Timing
You saw in the examples in the preceding section the importance of measuring the

execution time and speed of your code and functions. But what are some of the standard

methods to accomplish this? In this section, I will cover a few approaches (Figure 2-4).

Chapter 2 Better Programming Principles for Efficient Data Science

37

Figure 2-4.  Measuring the execution speed is the first essential step towards
making your data science code more efficient and productive

�Python’s time Module Is Your Friend
For almost any timing measurement situation, you can use functions from the time

module of Python. It has a few different functions to offer, and you should utilize them in

a certain way to get accurate results.

�Basic Usage Example

One of the fundamental functions in the time module is also named time() and it gives

back the current system time. Here is a simple code example to illustrate its usage:

from time import time, sleep

Function which just sleeps for 2 seconds

def sleep_fn():

 sleep(2)

The main timing block

t1 = time()

sleep_fn()

t2 = time()

print("Elapsed time: ", t2-t1)

You may get the following:

Elapsed time: 2.0102791786193848

Chapter 2 Better Programming Principles for Efficient Data Science

38

You could have any piece of code (however long and complex) in place of sleep_fn

in the code above and the timing block would have measured t1 and t2 before and

after the code executes. From those measurements, you would get the difference or the

runtime of the code. Therefore, this is the basic usage pattern:

t1 = time()

<data science code or function>

t2 = time()

time_delta = t2-t1

It looks simple, doesn’t it? However, there are a few caveats which I discuss next.

�Many Loops Needed for a Fast Code Block

The returned value in the function time is in seconds, so it may return zero if you are

trying to measure a fast code block. For example,

t1 = time()

s = sum([i for i in range(10)])

t2 = time()

print("Sum: ", s)

print("Elapsed time: ", t2-t1)

You will get the correct sum, but the elapsed time will show up as zero. It is that fast.

Sum: 45

Elapsed time: 0.0

So, what can you do? Just run the same code many times so that the total time is in

the range of at least milliseconds. Then, calculate the average.

NUM_LOOPS = 10000

t1 = time()

for _ in range(NUM_LOOPS):

 s=sum([i for i in range(10)])

t2 = time()

print("Sum: ", s)

print("Elapsed time: ", t2-t1)

print("Average time: ", (t2-t1)/NUM_LOOPS)

Chapter 2 Better Programming Principles for Efficient Data Science

39

You may get something like:

Sum: 45

Elapsed time: 0.006996631622314453

Average time: 6.996631622314453e-07

So, you ran the summation code 10,000 times and found out that it takes

approximately 0.7 microseconds or 699 nanoseconds to sum numbers 1 through 10.

As you can surely appreciate, averaging the measurements for 10,000 runs also
eliminated any kind of variance and provided a stable measurement.

�A Timing Decorator

Writing the timing code as above is fine but in the spirit of refactoring and the DRY

principle of software engineering (https://thevaluable.dev/dry-principle-cost-

benefit-example/) it would be great to avoid writing the same code again and again.

Instead, it’s better to have a mechanism at which you can throw any data science
function and it will tell you the execution time. Needless to say, this mechanism

should be able to accept functions with arbitrary arguments and keywords (Figure 2-5).

Figure 2-5.  A mechanism to measure the execution time of any arbitrary Python
function

Fortunately, Python provides a couple of clever constructs to accomplish just that.

You can use Python decorators and wrapping constructs from the functools module to

get what you want.

Here is the boilerplate code for your reference:

from functools import wraps

from time import time

Chapter 2 Better Programming Principles for Efficient Data Science

https://thevaluable.dev/dry-principle-cost-benefit-example/
https://thevaluable.dev/dry-principle-cost-benefit-example/

40

def timing(func):

 @wraps(func)

 def wrap(*args, **kw):

 ts = time()

 result = func(*args, **kw)

 te = time()

 �print (f"Function '{func.__name__}' with arguments {args},

keywords {kw} took {te-ts} seconds to run")

 return result

 return wrap

This code basically allows you to define any function func with arbitrary arguments

and keywords and to measure its execution time. Here is a simple example where you

use the @timing as the decorator to the function std_dev, which takes a large integer n

as input, generates that many random numbers using the NumPy library, and calculates

their standard deviation:

import numpy as np

@timing

def std_dev(n=10000):

 a = np.random.randint(1,1000,size=n)

 s = a.std()

 return s

Once decorated by @timing, whenever you run the function, you may get output like

the following:

std_dev(n=1000000)

>> Function 'std_dev' with arguments (), keywords {'n': 1000000} took

0.012999773025512695 seconds to run

If you rerun the function with 10 million as argument (n=10000000), you get

std_dev(n=10000000)

>> Function 'std_dev' with arguments (), keywords {'n': 10000000} took

0.1154332160949707 seconds to run

It took almost 10X time for an input 10X larger. So, the timing calculation is

automatic and updated with every instance of the function execution.

Chapter 2 Better Programming Principles for Efficient Data Science

41

The topic of Python decorators is a vast one and merits its own mini-book or
course. You can utilize them in various ways for productive data science work. Go
to https://realpython.com/primer-on-python-decorators/ for a quick
introduction. You should also look at the functools module and to explore what
it can do.

�Using the Decorator to Measure Complexity

Let me show a quick example of how to use the timing decorator to measure the time

complexity of a particular piece of code. Suppose you want to measure the complexity

of the matrix multiplication method of your favorite NumPy package. This is, of course,

because you use that algorithm or function (numpy.matmul) in many places of your

machine learning code. You may just wonder how much time it takes for the function to

execute as the size of matrices go up.

The following code wraps a test function with the timing decorator:

def gettime(func):

 @wraps(func)

 def wrap(*args, **kw):

 ts = time()

 result = func(*args, **kw)

 te = time()

 tdelta= round(1000*(te-ts),3)

 return tdelta

 return wrap

@gettime

def matrix_mult(n=100):

 matrix_1 = np.random.normal(size=(n,n))

 matrix_2 = np.random.normal(size=(n,n))

 result = np.matmul(matrix_1,matrix_2)

 return result

Note that you are returning the time difference (tdelta) after multiplying it by

1,000 to turn the result in milliseconds and rounding it off to three decimal places

(round(1000*(te-ts),3)) for better readability. Your test function generates two 2D

Chapter 2 Better Programming Principles for Efficient Data Science

https://realpython.com/primer-on-python-decorators/

42

matrices (size=(n,n)) with random Gaussian numbers (np.random.normal) to perform

the matrix multiplication. Now you can just invoke matrix_mult() with a size parameter

n to get the time (in milliseconds) it takes for the multiplication operation.

Refer to the accompanying Jupyter notebook with this book for the details of

the plotting code. When you calculate the execution times for a range of matrix size

from 1,000 to 10,000, you get the result shown in Figure 2-6. The curve does look like

a polynomial function of n, doesn’t it? Is it following O(n2) complexity? You are also

encouraged to experiment with 3D matrices and see what happens to the computational

complexity. Will it become O(n3) as we talked about in the previous chapter for image

processing tasks?

Matrix multiplications are so fundamental and ubiquitous for machine learning
tasks that their execution time and performance often determine the computational
efficiency of the overall machine learning pipeline. Even the simple-looking linear
regression uses matrix multiplication (and inverse) to obtain the best coefficients
when using an ordinary-least-square solution technique. For a simple article
explaining this method, go to www.kdnuggets.com/2016/11/linear-
regression-least-squares-matrix-multiplication-concise-
technical-overview.html. When you move into the realm of deep learning,
matrix multiplications are pervasive and everywhere. In fact, it is hard to improve
the algorithmic complexity beyond what has already been done, thus current
emphasis is on designing hardware architectures that are optimized for matrix
multiplication (go to https://maitrix.com/dsr-modular-computation/
hardware-matrix-multiplication/). These novel hardware solutions are
finding increasing use in AI/ML applications in the form of AI-optimized ICs or
processors.

Chapter 2 Better Programming Principles for Efficient Data Science

http://www.kdnuggets.com/2016/11/linear-regression-least-squares-matrix-multiplication-concise-technical-overview.html
http://www.kdnuggets.com/2016/11/linear-regression-least-squares-matrix-multiplication-concise-technical-overview.html
http://www.kdnuggets.com/2016/11/linear-regression-least-squares-matrix-multiplication-concise-technical-overview.html
https://maitrix.com/dsr-modular-computation/hardware-matrix-multiplication/
https://maitrix.com/dsr-modular-computation/hardware-matrix-multiplication/

43

Figure 2-6.  Two-dimensional matrix multiplication time with a NumPy function

�Jupyter/IPython Magic Command
The Jupyter notebook came out of the IPython (or Interactive-Python) project (https://

ipython.org/), which also provides the core kernel behind the Jupyter front end.

With its language-agnostic notebook format and seamless support for code, graphics

rendering, and markdown texts, Jupyter Notebook (and, more recently, Jupyter Lab)

quickly became the de-facto standard and prototyping tool for data scientists.

Among its powerful features, a set of magic commands (www.tutorialspoint.com/

jupyter/ipython_magic_commands.htm) is worth mentioning. They can do many useful

things like

•	 Execute system commands (change directory, show present

directory, etc.)

•	 Open a default text editor from a Jupyter cell

•	 List environmental variables

The particular set of magic commands (%timeit and %%timeit) can also help

measure the code execution time. You have already seen these commands in this book

for measuring the efficiency of various pieces of code within the Jupyter notebook

environment.

Chapter 2 Better Programming Principles for Efficient Data Science

https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/
http://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm
http://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm

44

�%timeit: Execution Time for Single-Line Code

This magic command is also called a “line command” as it is used in single-line

command situations. For example,

%timeit sum(range(100000))

>> 2.25 ms ± 199 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

It measures the time taken to sum numbers 0 through 99999. Because the core

operation is quite fast, it runs 100 loops of 7 runs and calculates the average and variance

as well.

This kind of magic command is particularly useful to showcase the distinct

improvement you can get by using specialized numeric computing packages like NumPy

over native Python functions. For the same task as above, you can use %timeit with

NumPy code to get the following result:

%timeit np.sum(np.arange(100000))

>> 91.6 μs ± 3.47 μs per loop (mean ± std. dev. of 7 runs, 10000
loops each)

Note how %timeit automatically increased the number of loops to calculate the

individual code runtime accurately as the np.sum runs much faster than the built-in

Python sum function.

�%%timeit: Measuring Execution Time for a Block of Code
in a Cell

These magic commands are also called “cell magic” because they apply to the contents

of a complete Jupyter notebook cell (which is usually a multi-line code block, rather than

a single line of code). You used one earlier in this book. In fact, they are the preferred tool

to measure the performance of a function or logic conditional loop.

Following the same summation example as above, this would look like

%%timeit

s = 0

for i in range(100000):

 s+=i

>> 5.08 ms ± 724 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Chapter 2 Better Programming Principles for Efficient Data Science

45

Note, however, that there are no print statements in this piece of code. This is

because including one will alter the total time slightly because of the additional

function call.

This is important to remember and practice: when you are measuring the
performance of a piece of code, focus on measuring the time taken for that exact
code, no more and no less. This means you should only be interested in the timing

measurement and not the actual computation result.

While the %%timeit command automatically adjusts the number of loops

intelligently, you may want to control that for comparison among different functions that

may vary in speed. All you have to do is insert a couple of extra runtime arguments in the

command. For example, the following code will time the same summation code with 50

loops and 10 runs each. Note the command line arguments -n50 and -r10, denoting the

number of loops and runs, respectively:

%%timeit -n50 -r10

s = 0

for i in range(100000):

 s+=i

�Summary
In this chapter, I started with a discussion of the concepts of algorithmic complexity

and the asymptotic behavior of common algorithms (for example, searching or sorting)

in terms of the size of the input. In that regard, I introduced the concept of the Big-O

notation and what it means for comparing and analyzing the relative performance of

algorithms and computing tasks in general.

Thereafter, I talked about why this concept is important for common data science

tasks as I drew on examples of polynomial-degree and exponential complexities from

regular data science jobs like image data analysis and evaluating the best regression

model for a feature-rich dataset. I gave a sneak peek of how quickly exponential growth

occurs as compared to polynomial-time growth and why an exhaustive search for the

best model is almost never done. In this context, I further discussed the intractability

of AI algorithms in general, and why their practical applications are hugely successful

these days.

Chapter 2 Better Programming Principles for Efficient Data Science

46

Next, I illustrated the idea of inefficient programming patterns in data science with

Python code snippets in the context of common tasks like filtering, searching, and

counting. I showed more efficient alternatives, which I hope will generate new ideas in

your mind.

Finally, I dealt with the matter of measuring inefficiency itself with the help of timing

tools and commands. I explored in detail the various usages of the time module that

comes built-in with Python. In particular, I showed how to create a timing decorator to

measure the execution time of any generic function. Jupyter magic commands constitute

a second set of tools in this regard, and they were also discussed with simple examples. I

will revisit the topic of time profiling with the help of dedicated tools in Chapter 8.

This chapter had the central objective of instilling a sense of probing into your mind,

which you can use anywhere and everywhere in their codebase, to dig deep and probe

the efficiency of your implementations and compare among alternative solutions. I hope

that such efforts were successful in that regard.

Chapter 2 Better Programming Principles for Efficient Data Science

47

CHAPTER 3

How to Use Python Data
Science Packages More
Productively
Python is, without any doubt, the most used and fastest growing programming language

of choice for data scientists (and other related professionals such as machine learning

engineers or artificial intelligence researchers) all over the world. There are many

reasons for this explosive growth of Python as the lingua franca of data science (mostly

in the last decade or so). It has an easy learning curve, it supports dynamic typing, it can

be written both script-type and in object-oriented fashion, and more.

However, probably the most important reason for its growth is the amazing open-

source community activity and the resulting ecosystem of powerful and rich libraries

and frameworks focused on data science work. The default, barebone installation of

Python cannot be used to do any meaningful data science task. However, with minimal

extra work, any data scientist can install and use a handful of feature-rich, well-tested,

production-grade libraries that can jumpstart their work immediately.

Some of the most popular and widely used among these jump-starter packages are

the following:

•	 NumPy for numerical computing (used as the foundation of almost all

data science Python libraries)

•	 pandas for data analytics with tabular, structured data

•	 Matplotlib/Seaborn for powerful graphics and statistical

visualization

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_3

https://doi.org/10.1007/978-1-4842-8121-5_3

48

However, just because these libraries provide easy APIs and smooth learning curves

does not mean that everybody uses them in a highly productive and efficient manner.

One must explore these libraries and understand both their powers and limitations to

exploit them fully for productive data science work.

This is the goal of this chapter: to show how and why these libraries should be used

in various typical data science tasks for achieving high efficiency. You’ll start with the

NumPy library as it is also the foundation of pandas and SciPy. Then you’ll explore the

pandas library, followed by a tour of the Matplotlib and Seaborn packages.

It is to be noted, however, that my goal is not to introduce you to typical features

and functions of these libraries. There are plenty of excellent courses and books for that

purpose. You are expected to have basic knowledge of and experience with using some,

if not all, of these libraries. I will show you canonical examples of how to use these
packages to do your data science work in a productive manner.

You may also wonder where another widely used Python ML package named scikit-

learn fits in this scheme. I cover that in Chapter 4. Additionally, in Chapter 7, I cover how

to use some lesser-known Python packages to aid NumPy and pandas to use them more

efficiently and productively.

�Why NumPy Is Faster Than Regular Python Code
and By How Much
NumPy (or Numpy), short for Numerical Python, is the fundamental package used for

high-performance scientific computing and data analysis in the Python ecosystem. It is

the foundation on which nearly all of the higher-level data science tools and frameworks

such as pandas and Scikit-learn are built.

Deep learning libraries such as TensorFlow and PyTroch use, as their fundamental

building block, NumPy arrays, on top of which they build their specialized Tensor

objects and graph flow routines for deep learning tasks. Most of the machine learning

algorithms make heavy use of linear algebra operations on a long list/vector/matrix of

numbers for which NumPy code and methods have been optimized.

Chapter 3 How to Use Python Data Science Packages More Productively

49

�NumPy Arrays are Different
The fundamental data structure introduced by NumPy is the ndarray or N-dimensional
numerical arrays. For beginners in Python, sometimes these arrays look similar to

a Python list. But they are anything but similar. Let’s demonstrate this using a simple

example.

Consider the following code which creates two Python lists. When you use the +

operator on them, the second list gets appended to the first one.

lst1 = [i for i in range(1,11)]

lst2 = [i*10 for i in range(1,11)]

print(lst1+lst2)

>> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

The treatment of the elements in the lists feel object-like, not very numerical, doesn’t

it? If these were numerical vectors instead of a simple list of numbers, you would expect

the + operator to act slightly different and add the numbers from the first list to the

corresponding numbers in the second list element-wise.

That’s precisely what the NumPy array version of these lists does:

import numpy as np

arr1 = np.array(lst1)

arr2 = np.array(lst2)

arr1+arr2

>> array([11, 22, 33, 44, 55, 66, 77, 88, 99, 110])

What is np.array? It is nothing but the array method called from the NumPy module

(the first line of the code did that with import numpy as np).

Perhaps the easiest way to see the richness of this array representation is to check

the list of all methods associated with the data structure. You can do that using the dir

function like this:

for p in dir(lst1):

 if '__' not in p:

 print(p, end=', ')

>> append, clear, copy, count, extend, index, insert, pop, remove,

reverse, sort,

Chapter 3 How to Use Python Data Science Packages More Productively

50

If you run similar code for the arr1 object, you will see the following output:

>> T, all, any, argmax, argmin, argpartition, argsort, astype, base,
byteswap, choose, clip, compress, conj, conjugate, copy, ctypes, cumprod,
cumsum, data, diagonal, dot, dtype, dump, dumps, fill, flags, flat,
flatten, getfield, imag, item, itemset, itemsize, max, mean, min, nbytes,
ndim, newbyteorder, nonzero, partition, prod, ptp, put, ravel, real,
repeat, reshape, resize, round, searchsorted, setfield, setflags, shape,
size, sort, squeeze, std, strides, sum, swapaxes, take, tobytes, tofile,
tolist, tostring, trace, transpose, var, view,

There are so many more (and different looking) functions and attributes available

with the NumPy array object. In particular, take note of methods such as mean, std, and

sum, as they clearly indicate a focus on numerical/statistical computing with this kind

of array objects. And these operations are fast too. How fast? You will see that now.

�NumPy Array vs. Native Python Computation
NumPy is much faster due to its vectorized implementation and the fact that many

of its core routines were originally written in the C language (based on the CPython

framework). NumPy arrays are densely packed arrays of homogeneous types. Python

lists, by contrast, are arrays of pointers to objects, even when all of them are of the same

type. So, we get the benefits of the locality of reference.

Many NumPy operations are implemented in the C language, avoiding the
general cost of loops in Python, pointer indirection, and elementwise dynamic
type checking. In particular, the boost in speed depends on what operation you are

performing. For data science and ML tasks, this is an invaluable advantage because it

avoids looping in long and multi-dimensional arrays.

Locality of reference (www.geeksforgeeks.org/locality-of-reference-
and-cache-operation-in-cache-memory/) is one of the main reasons
behind NumPy arrays being much faster and more efficient than Python list
objects. Spatial locality in memory access patterns results in performance gains
notably due to the CPU cache operations. The cache loads bytes in chunks from
RAM to the CPU registers (the fastest memory in a computer system, located next
to the processor). Adjacent items in memory are then loaded very efficiently.

Chapter 3 How to Use Python Data Science Packages More Productively

https://www.geeksforgeeks.org/locality-of-reference-and-cache-operation-in-cache-memory/
http://www.geeksforgeeks.org/locality-of-reference-and-cache-operation-in-cache-memory/
http://www.geeksforgeeks.org/locality-of-reference-and-cache-operation-in-cache-memory/

51

�NumPy and Native Python Implementation

Let’s illustrate this using the familiar @timing decorator from the last chapter. Here is

a code wrapping the decorator around two functions, std_dev and std_dev_python,

implementing the calculation of standard deviation of a list/array with NumPy and

native Python code, respectively.

@timing

def std_dev(a):

 if isinstance(a,list):

 a = np.array(a)

 s = a.std()

 return s

from math import sqrt

@timing

def std_dev_python(lst):

 s = sum(lst)

 av = s/len(lst)

 sumsq = 0

 for i in lst:

 sumsq+=(i-av)**2

 sumsq_av = sumsq/len(lst)

 result = sqrt(sumsq_av)

 return result

Next, you define two objects, a NumPy array and a Python list, of the same length

(1,000,000) and calculate the time it takes for the standard deviation computation:

a = np.arange(1000000)

lst = [i for i in range(1000000)]

For the NumPy function,

std_dev(a)

>> Function 'std_dev' took 8.996 milliseconds to run

>> 288675.1345946685

Chapter 3 How to Use Python Data Science Packages More Productively

52

For the Python function,

std_dev_python(lst)

>> Function 'std_dev_python' took 212.995 milliseconds to run

>> 288675.1345958226

So, the NumPy implementation is much faster and should be used for data science

tasks by default.

�Conversion Adds Overhead

If you look at the code for the NumPy function, you will notice a small but significant

code for type checking and coercion at the beginning. This to handle the situation of a

NumPy function receiving a list object instead of the NumPy array it was expecting.

if isinstance(a,list):

 a = np.array(a)

If you pass the lst object to std_dev function, you may see something like this:

std_dev(lst)

>> Function 'std_dev' took 84.004 milliseconds to run

>> 288675.1345946685

This is interesting. The operation is still quite a bit faster than the native Python

implementation, but definitely much slower than the case where a NumPy array was

passed into the function. The result is also slightly different (only after five decimal

places though). This is because of the conversion of the lst object to the NumPy array

type inside the function that takes the extra time. The conversion also impacts the

numerical precision leading to the slightly different result.

Therefore, although type-checking and conversion should be part of your code,

you should focus on converting numerical lists or tables to NumPy arrays as soon as
possible at the beginning of a data science pipeline and work on them afterwards, so

that you do not lose any extra time at the computation stage.

Chapter 3 How to Use Python Data Science Packages More Productively

53

�Using NumPy Efficiently
NumPy offers a dizzying array of functions and methods to use on numerical arrays

and matrices for advanced data science and ML engineering. You can find a plethora of

resources going deep into those aspects and features of NumPy.

Since this book is about productive data science, I am focusing more on the

fundamental aspect of how to use NumPy for building efficient programming pattern in

data science work. I prefer to illustrate that by showing typical examples of inefficient

coding style and how to use the NumPy-based code correctly to increase your

productivity. Let’s start on that path.

�Conversion First, Operation Later
Although not a guaranteed outcome, it is almost always better to vectorize your data
first (Figure 3-1). In other words, convert it to NumPy arrays as early as possible and run

the mathematical operations on those array objects rather than running native Python

functions and then converting them to an array.

Figure 3-1.  NumPy is best taken advantage of when you vectorize your data first
and then do the necessary operations

Here’s a list of numbers and a mathematical operation function:

lst_of_nums = [i for i in range(100000)]

def calc_nums(x):

 return (x+1)/(x+1000)

Chapter 3 How to Use Python Data Science Packages More Productively

54

It is a bad practice to do the following, yet this kind of code pattern is ubiquitous in

the data science world:

result_lst = []

for i in lst_of_nums:

 result_lst.append(calc_nums(i))

result_array = np.array(result_lst)

Instead, first convert to the array format and then apply the mathematical operations

directly on the array. You don’t even need to write a separate Python function.

array_of_nums = np.array(lst_of_nums)

result_array = (array_of_nums+1)/(array_of_nums+1000)

If you test the execution time, you will see the second option is 2X to 3X faster for this

data. For a bigger data size, this much improvement may prove significant.

Data in real-life situations comes from business operations and databases. Data
comes either in streaming or batch mode. Data can also come in web APIs in the
format of JSON or XML. It almost will never come in a nicely NumPy-formatted
manner. This is why it is so important to understand the pros and cons of array
conversion, operations like appending to and updating an array, back conversion to
a Python list in case you must stream the data back to another API through a JSON
interface, and so on.

�Vectorize Logical Operations
You can also vectorize a list where you need to check for logical condition before doing

the mathematical operation directly with NumPy. Suppose from the previous example

you want to apply the function only to the numbers that are integral multiples of 7. You

may be tempted to write this code:

result_lst = []

for i in lst_of_nums:

 if i%7==0:

 result_lst.append(calc_nums(i))

result_array = np.array(result_lst)

Chapter 3 How to Use Python Data Science Packages More Productively

55

Instead, you should use the NumPy operations directly in this manner:

array_of_nums = np.array(lst_of_nums)

array_div7 = array_of_nums[array_of_nums%7==0]

result_array = (array_div7+1)/(array_div7+1000)

The second line of this code uses the Boolean indexing with NumPy where you

create a Boolean NumPy array with array_of_nums%7==0 and then use this array as an

index of the main array. This effectively creates an array with only the elements that are

divisible by 7. Finally, you run your operation on this shorter array_div7. In a way, this

is a filtering operation too where you filter the main array into a shorter array based on a

logical check.

�Use the Built-In Vectorize Function
NumPy provides a built-in vectorizing function to help many user-defined functions

to be vectorized as easily as possible. The exact improvement in speed and efficiency

depends on the type and complexity of the specific function in question. Here is an

example of a function that works on two floating point numbers and performs certain

math operation based on their mutual relationship:

from math import sin

def myfunc(x,y):

 if (x>0.5*y and y<0.3):

 return (sin(x-y))

 elif (x<0.5*y):

 return 0

 elif (x>0.2*y):

 return (2*sin(x+2*y))

 else:

 return (sin(y+x))

In such situations, you can almost mechanically apply the numpy.vectorize method

in the following way:

vectfunc = np.vectorize(myfunc,

 otypes=[np.float64],

 cache=False)

result_array=vectfunc(lst_x,lst_y)

Chapter 3 How to Use Python Data Science Packages More Productively

56

Here you pass on the custom function object myfunc as the first argument in the np.

vectorize and define the object types it should expect by the otypes parameter. The

great thing is that although the main myfunc works on individual floating point numbers

x and y, the resulting vectfunc can accept any array (or even a Python list) with the np.

float64 data type (or even native Python floating point data, which will be coerced into

the np.float64 type automatically).

�Avoid Using the .append Method
Appending new or incoming data to an array is a common data science operation.

Often the situation is that the data is generated by a stochastic or random process (e.g.,

a financial transaction or a sensor measurement) and it has to be recorded in a NumPy

array (for later use in an ML algorithm, for example).

NumPy has an append method but it is quite inefficient because of its behavior of

copying the entire data array into memory every time the update happens. You have two

choices for appending this kind of random data to an NumPy array:

•	 If you know the final length of the array, then initialize an empty

NumPy array (with the numpy.empty method) or an array of zeroes/

ones and just put the new piece of data in the present index while

iterating over the range.

•	 Alternatively, you can use a Python list, append to it, and then

convert to a NumPy array at the end. You can use this with a while

loop until the random process terminates, so you don’t need to know

the length beforehand.

You can see this is directly contrary to what we discussed in the subsection

“Conversion First, Operation Later.” However, the situation is subtly different here

because, in this case, you are updating the array with incoming data that results from an

unknown process, so you don’t know what precise mathematical operation to perform

on the array.

As an example, the following code initializes an empty NumPy array with a known

shape (equal to the known data length of 1,000), records a Gaussian random number

1,000 times, and puts the square of that number in the array:

desired_length = 1000

results = np.empty(desired_length)

Chapter 3 How to Use Python Data Science Packages More Productively

57

for i in range(desired_length):

 sample = np.random.normal()

 results[i] = sample**2

The following code emulates a situation when the length of the data is itself
uncertain. The process terminates when the variable TERMINATE itself goes over 2.0.

TERMINATE = np.random.normal()

result_lst = []

while TERMINATE < 2.0:

 sample = np.random.normal()

 result_lst.append(sample**2)

 TERMINATE = np.random.normal()

result_array = np.array(result_lst)

As discussed, because of the uncertainty in the length of the data or the process

that generates it, it is advisable to use a Python list to append the data as it comes in.

When the data collection is finished, go back to the “conversion first, operation later”

principle and convert the Python list to a NumPy array before doing any sophisticated

mathematical operation over it.

When does TERMINATE become greater than 2.0? In the code above, since
the variable TERMINATE is generated from a normal distribution with a zero
mean and a unity standard deviation, any value greater than 2.0 will be located
more than two standard deviations from the mean. That means it will have ~5%
chance of producing a value greater than 2.0 at each iteration. If you run this code
repeatedly, you will have a new NumPy array of a different length each time you
rerun the code.

�Utilizing NumPy Reading Utilities
How would you read a text file where numerical data is stored in a CSV format into a

NumPy array? This situation is extremely common in a regular data science pipeline

as CSV (comma-separated value) remains one of the most popular file formats in use

across all platforms (Windows, Linux, Mac OS, etc.).

Chapter 3 How to Use Python Data Science Packages More Productively

58

Of course, you can use the csv module that comes with Python and read line by line.

But, conveniently enough, NumPy provides many utility functions to read from file or

string objects. Using them makes the code cleaner and thereby more productive. These

routines are well-optimized for speed too, so your code remains efficient.

�Reading from a Flat Text File

The method numpy.fromfile can be used for this purpose. It is a highly efficient way of

reading binary data with a known datatype, as well as parsing simply formatted text files.

For example, you may be reading a bunch of numeric data written on a text file with a

comma separator:

with open('fdata.txt') as f:

 data = f.readline()

data = data.split(',')

fr = np.array(data[:-1],dtype=float)

Note that when you use the native Python readline with an opened file, you get a

string object. So, you need to split the string with the comma separator and then read the

resulting list as a NumPy array with the dtype set to float. You can do the same reading

with just one line of code:

fr = np.fromfile('fdata.txt',sep=',')

It is clear that there is less chance of bugs and errors in this approach than the native

Python file-reading code.

�Utility for Tabular Data in a Text File

Numpy offers another similar text-reading utility called loadtxt, which is even more

powerful and feature-rich. It works with text file where data is written in tabular
format (i.e., in rows and columns) and loads data directly into a multi-dimensional array

as long as the number of entries in each row remains same. Figure 3-2 illustrates this.

Chapter 3 How to Use Python Data Science Packages More Productively

59

Figure 3-2.  Showing how the loadtxt utility works in NumPy

For example, suppose you have a CSV text file with three rows and three columns of

data, as shown in Figure 3-3.

Figure 3-3.  A simple text file with tabulated comma-separated data to be read

One line of code can read the contents of this file into a 3x3 NumPy array/matrix:

np.loadtxt('npread.txt',delimiter=',')

>> array([[9.2, 22.1, -33.6],

 [6.4, 2.3, -5.4],

 [12.2, 4.5, 7.2]])

You can even read selective columns from the file. This is particularly useful if you

always get a massive data file from a customer, but you know that only certain specific

columns are useful for your data science work. Then, you can load only selective data

into memory and make your pipeline fast and efficient.

Chapter 3 How to Use Python Data Science Packages More Productively

60

np.loadtxt('npread.txt',delimiter=',',usecols=(0,2))

>> array([[9.2, -33.6],

 [6.4, -5.4],

 [12.2, 7.2]])

Imagine the amount of custom text-reading code you would have to write if you did

not have this utility function from NumPy. In the spirit of productive data science and

keeping your code clean and readable, use these utilities whenever possible.

�Using pandas Productively
After covering some of the best practices and productive utilities of the NumPy library,

let’s now look at the most widely used data analytics package in the Python ecosystem:

pandas. This package is used by almost every data scientist and analyst that you may

come across.

pandas uses NumPy at its foundation and interfaces with other highly popular

Python libraries like Scikit-learn so that you can do data analytics and wrangling work in

pandas and transport the processed data seamlessly to an ML algorithm. It also provides

a rich set of data-reading options from various kinds of common data sources (e.g., a

web page, HTML, CSV, Microsoft Excel, JSON formatted object, and even zip files) which

makes it invaluable for data wrangling tasks.

However, it is a large library with many methods and utilities that can be used in

myriad ways to accomplish the same end goal. This makes it highly likely that different

data scientists (even within the same team) are using different programming styles and

patterns with pandas to get the same job done. Some of these patterns yield faster and

cleaner execution than others and should be preferred. In this subsection, I cover a few

of these areas with simple examples.

�Setting Values in a New DataFrame
pandas provides a variety of options to index, select particular data, and set it to a given

value. In many situations, you will find yourself with a Python list or NumPy array that

you want to set at a particular position (row) in your DataFrame.

Chapter 3 How to Use Python Data Science Packages More Productively

61

For demonstration, let’s define a simple list with six values:

–– First name (a Python string object)

–– Last name (a Python string object)

–– Age (a Python integer object)

–– Address (a Python string object)

–– Price (a Python float object)

–– Date (a Python datetime object)

profile_data = ['First name', 'Last name', 30, 'An address', 25.2, today]

You have a few options to insert this data to the rows of a DataFrame. Note that in

reality you will have a dictionary or a few thousand such lists (all different). Just for the

speed demonstration, I show inserting the same list data in the DataFrame.

You can create an empty DataFrame like this, defining the column names explicitly:

df = pd.DataFrame(columns = ['FirstName', 'LastName', 'Age', 'Address',

'Price', 'Date'])

Now comes the part where you iterate and insert the data into one row after another.

�The .at or .iloc Methods Are Slow

A lot of data scientists use the .at or .iloc methods for indexing and slicing data once

they start working with a DataFrame. They are very useful methods to have at your

disposal, and they are fine to use for indexing purpose. However, try to avoid them for

inserting/setting data when you are building a DataFrame from scratch.

Set N = 2000 for the speed test and run the following code to measure the speed of

setting data with these methods:

%%timeit -n5 -r10

for i in range(N):

 df.at[i] = profile_data

>> 207 ms ± 58.6 ms per loop (mean ± std. dev. of 10 runs, 5 loops each)

Chapter 3 How to Use Python Data Science Packages More Productively

62

and

%%timeit -n5 -r10

for i in range(N):

 df.iloc[i] = profile_data

>> 116 ms ± 5.63 ms per loop (mean ± std. dev. of 10 runs, 5 loops each)

In this instance, the .iloc method is slightly faster, but this depends on the type

of the data and other aspects. In general, inserting data this way should be avoided as

much as possible.

�Use .values to Speed Things Up Significantly

The method pandas.DataFrame.values returns a NumPy representation of the

DataFrame and therefore is optimized for speed in the best possible manner. So, if you

run the following code, you get much faster execution time:

%%timeit -n5 -r10

for i in range(N):

 df.values[i] = profile_data

>> 12 ms ± 2.63 ms per loop (mean ± std. dev. of 10 runs, 5 loops each)

Note that for this to work, you must have a pre-existing DataFrame with 2,000

rows. Now, with this code you can set new values much faster than using .at or .iloc

methods. This won’t work on a newly created, empty DataFrame.

�Specify Data Types Whenever Possible
Making pandas guess data types is one of the most frequent inefficient code patterns and

it happens with almost all data scientists. It is inefficient because when you import data

into a DataFrame without specifically telling pandas the datatypes of the columns, it will

read the entire dataset into memory just to figure out the data types. Quite naturally, it

hogs the system memory and results in a highly wasteful process that can be avoided

with more explicit code.

So, how do you do it as a standard practice? Reading data from the disk is often done

with some sort of plain text file like a CSV. You can read just the first few lines of the CSV

file, determine the data types, create a dictionary, and pass it on for the full file read,

Chapter 3 How to Use Python Data Science Packages More Productively

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.values.html

63

or use it repeatedly for reading similar files (if the column types are unchanged). You

can use the dtype parameter in various pandas reading functions to specify the expected

data types.

Here is boilerplate code for accomplishing this task. The function csv_read()

accepts a filename (string) argument and returns a DataFrame. Internally, it does so by

first reading a sample data of the first 20 rows (nrows=20), determining the data types

(df_sample.dtypes), creating a dictionary of those types, and then reading the full

dataset with explicit type mention by passing that dictionary (dtype = dt):

def csv_read(filename):

 """

 Reads a CSV file with explicit data types

 """

 # Reads only the first 20 rows

 df_sample = pd.read_csv(filename, nrows=20)

 # Constructs data type dictionary

 dt = {}

 for col,dtyp in zip(df_sample.columns, df_sample.dtypes):

 dt[col] = dtyp

 # Full read with explicit data type

 df1 = pd.read_csv(filename, dtype = dt)

 return df1

Figure 3-4 shows a visual illustration of the idea of reading sample data first,

determining the data type, and then utilizing it for the full reading of the data.

Figure 3-4.  Reading large data files in pandas first by determining the data types
and then specifying them explicitly while reading

Chapter 3 How to Use Python Data Science Packages More Productively

64

As a practical example, imagine that every morning your data processing
pipeline must read a large CSV file from all the business transactions that were put
into a data warehouse last night. The column names and types are unchanged, and
only the raw data changes every day. You do a lot of data cleaning and processing
on the new raw data every day to pass it on to some cool machine learning
algorithm. In this situation, you should have your data type dictionary ready and
pass it on to your file reading function every morning. You should still run an
occasional check to determine if the data types have changed somehow (e.g., int
to float, string to Boolean).

�Iterating Over a DataFrame
It is a quite common situation where you are given a large pandas DataFrame and are

asked to check some relationships between various fields in the columns, in a row-

by-row fashion. The check could be some logical operation or some conditional logic

involving a sophisticated mathematical transformation on the raw data.

Essentially, it is a simple case of iterating over the rows of the DataFrame and doing

some processing at each iteration. You can choose from the following approaches.

Interestingly, some of the approaches are much more efficient than others.

�Brute-Force For Loop
The code for this naïve approach will go something like this:

for i in range(len(df)):

 if (some condition is satisfied):

 do some calculation with df.iloc[i]

Essentially, you are iterating over each row (df.iloc[i]) using a generic for loop

and processing them one at a time. There’s nothing wrong with the logic and you will get

the correct result at the end.

But this is quite inefficient. As you increase the number of columns or the complexity

of the calculation (or of the condition checking done at each iteration), you will see that

they quickly add up. Therefore, this approach should be avoided as much as possible for

building scalable and efficient data science pipelines.

Chapter 3 How to Use Python Data Science Packages More Productively

65

�Better Approaches: df.iterrows and df.values

Depending on the situations at hand, you may have choices of two better approaches for

this iteration task.

pandas offers a dedicated method for iterating over rows called iterrows()

(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.

DataFrame.iterrows.html), which might be handy to use in this particular situation.

Depending on the DataFrame size and complexity of the row operations, this may

reduce the total execution time by ~10X over the for loop approach.

You already saw the pandas method for obtaining a NumPy representation of the

DataFrame: df.values(). This can significantly speed things up (even better than

iterrows). However, this method removes the axis labels (column names) and so you

must use the generic NumPy array indexing like 0, 1 to process the data. The pseudocode

will look like the following:

for row in df.values:

 if function(row) satisfies some condition:

 do some calculation with row

A clear, worked-out example on this topic of comparing the efficiencies of multiple
pandas methods can be found in the article cited below. It also shows how the
speed improvement depends on the complexity of the specific operation at each
iteration. “Faster Iteration in pandas,” (https://medium.com/productive-
data-science/faster-iteration-in-pandas-15cac58d8226), Towards
Data Science, July 2021.

�Using Modern, Optimized File Formats
CSV is a flat-file format used widely in data analytics. It is simple to work with and

performs decently in small to medium data regimes. However, as you do data processing

with bigger files (and also, perhaps, pay for the cloud-based storage of them), there are

Chapter 3 How to Use Python Data Science Packages More Productively

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iterrows.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iterrows.html
https://medium.com/productive-data-science/faster-iteration-in-pandas-15cac58d8226
https://medium.com/productive-data-science/faster-iteration-in-pandas-15cac58d8226

66

some excellent reasons to move towards file formats using the columnar data storage

principle (www.stitchdata.com/columnardatabase/). The basic idea of columnar data

storage (vs. the traditional row-based storage) is illustrated in Figure 3-5.

Figure 3-5.  Columnar (vs. traditional row-based) data format illustration

Apache Parquet is one of the most popular of these columnar file formats. It’s an

excellent choice in the situation when you have to store and read large data files from

disk or cloud storage. Parquet is intimately related to the Apache Arrow framework. But

what is Apache Arrow?

As per their website, https://arrow.apache.org/, “Apache Arrow is a development

platform for in-memory analytics. It contains a set of technologies that enable big data

systems to process and move data fast. It specifies a standardized language-independent

columnar memory format for flat and hierarchical data, organized for efficient analytic

operations on modern hardware.”

Therefore, to take advantage of this columnar storage format, you need to use

some kind of Python binding or tool to read data stored in Parquet files into the system

memory and possibly transform that into a pandas DataFrame for the data analytics

tasks. This can be accomplished by using the PyArrow framework.

Chapter 3 How to Use Python Data Science Packages More Productively

http://www.stitchdata.com/columnardatabase/
https://arrow.apache.org/

67

�Impressive Speed Improvement

PyArrow is a Python binding (API) for the Apache Arrow framework. Detailed coverage

of Apache Arrow or PyArrow (https://arrow.apache.org/docs/python/) is far beyond

the scope of this book, but interested readers can refer to the official documentation at

https://arrow.apache.org/ to get started.

Using the PyArrow function read_table, you can demonstrate considerable

improvement of the reading speed of large data files over the commonly used pandas

read_csv method. For example, Figure 3-6 shows the ratio of pandas and PyArrow

reading times of the same data, stored in CSV and Parquet, respectively. The ratio goes

up as the data size increases; PyArrow performs considerably better with larger file sizes.

Figure 3-6.  pandas vs. PyArrow reading time ratio for CSV (and Parquet)
files. Source: https://towardsdatascience.com/how-fast-is-reading-
parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94, author
permission granted

This is something truly astonishing to ponder. pandas is based on the fast and
efficient NumPy arrays, yet it cannot match the file-reading performance shown
by the Parquet format. If we think about it deeply, the reason becomes clear that
the file-reading operation has almost nothing to do with how pandas optimize the
in-memory organization of the data after it is loaded into the memory. Therefore,
while pandas can be a fast and efficient package for in-memory analytics, we

Chapter 3 How to Use Python Data Science Packages More Productively

https://arrow.apache.org/docs/python/
https://arrow.apache.org/
https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94
https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94

68

don’t have to stay dependent upon traditional file formats like CSV or Excel to work
with pandas. Instead, we should move towards using more modern and efficient
formats like Parquet.

�Read Only What Is Needed

Often, you may not need to read all the columns from a columnar storage file. For

example, you may apply some filter on the data and choose only selected data for the

actual in-memory processing. With CSV files or regular SQL databases, this means you

are choosing specific rows out of all the data. However, for the columnar database, this

effectively means choosing specific columns. Therefore, you do have an advantage in

terms of reading speed when you are reading only a small fraction of columns from the

Parquet file.

Figure 3-7 shows the reading advantage as the number of columns increases for the

same CSV vs. Parquet comparison. When you read a very small fraction of columns,

say < 10 out of 100, the reading speed ratio becomes as large as > 50 (i.e., you get 50X

speedup compared to the regular pandas CSV file reading). The speedup tapers off for

large fractions of columns and settles down to a stable value.

Chapter 3 How to Use Python Data Science Packages More Productively

69

Figure 3-7.  pandas vs. PyArrow reading time ratio for CSV (and Parquet)
files as the number of columns vary. Source: https://towardsdatascience.
com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-
pandas-2f8095722e94, author permission granted

Reading selected columns from a large dataset is an extremely common
scenario in data analytics and machine learning tasks. Often, subject matter
experts advise data scientists with domain knowledge and can preselect a few
features from a large dataset although the default data collection mechanism may
store a file with many columns/features. In these situations, it makes logical sense
to read only what is needed and process those columns for the ML workload.
Storing the data in a columnar data format like Parquet pays handsomely for
these cases.

�PyArrow to pandas and Back

While the results shown above are impressive, the central question is about how to take

advantage of this fast and efficient file format for pandas-based data analytics tasks. This

has been made extremely simple by PyArrow utility methods, as this simple boilerplate

code illustrates:

import pyarrow as pa

import pandas as pd

Chapter 3 How to Use Python Data Science Packages More Productively

https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94
https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94
https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94

70

df = pd.DataFrame({"a": [1, 2, 3],

 "b":[2.7,-1.2,5.4],

 "c": ['abc','xyz','pqr']})

Convert from pandas to Arrow

table = pa.Table.from_pandas(df)

Convert back to pandas

df_new = table.to_pandas()

So, there are ready functions to convert PyArrow tables and pandas DataFrame back

and forth. You can take advantage of this in the scenario illustrated in Figure 3-8.

Figure 3-8.  Storing large datasets in Parquet (vs. CSV) may offer overall speed
advantage for many processing tasks with pandas

Suppose you have a large CSV file of numeric quantities with ~1 million rows and

14 columns, and you want to calculate the basic descriptive stats on this dataset. Not

so surprisingly, if you only use pandas code, the majority of the time will be taken
by the file reading operation, not by the statistical calculation. You can make this

task efficient by storing the file in the Parquet format instead of CSV, reading it using

the read_table method, converting to pandas using the to_pandas method, doing

the statistical calculation, and then just storing the result back in CSV or Parquet. The

output consists of only a few rows/columns as it is just the descriptive stats, so the file

format does not matter much. A demo example with speed comparison is shown in the

accompanying Jupyter notebook with this book.

Chapter 3 How to Use Python Data Science Packages More Productively

71

�Other Miscellaneous Ideas
pandas is such a vast and storied library that there are thousands of ways to improve

upon inefficient and non-productive code patterns while using it. A few miscellaneous

suggestions are mentioned here.

�Remove Orphan DataFrames Regularly

A very common programming pattern is the following:

•	 Create a DataFrame from an in-memory object or a file on the disk.

•	 Drop or fill Null or NaN values.

•	 Apply a user-defined function on certain columns.

•	 Group the final dataset by some specific column.

•	 Further processing on the grouped object…

Often, data scientists create intermediate DataFrames while executing this pipeline

and don’t remove them from the active memory space, thereby piling up orphan or

unused DataFrames as large memory-hogging garbage.

df1 = pd.read_csv("A large file")

df2 = df1.dropna()

df3 = df2.apply(user_function, columns = [...])

df4 = df3.groupby([column_1, column_2])

df_final = ...

If the only in-memory object that matters is df_final, then you must actively track

and delete all intermediate DataFrames as soon as their utility is over:

df1 = pd.read_csv("A large file")

df2 = df1.dropna()

del(df1)

df3 = df2.apply(user_function, columns = [...])

del(df2)

df4 = df3.groupby([column_1, column_2])

del(df3)

df_final = ...

Chapter 3 How to Use Python Data Science Packages More Productively

72

�Chaining Methods

Continuing from the example above, it makes perfect sense to let the system handle

all the active tracking and deleting of intermediate DataFrame objects for a productive

codebase. pandas allows chaining methods, which makes this a relatively easy approach

to implement. The code can read something like this:

df_final = pd.read_csv("A large file").dropna().apply(user_function,

columns = [...]).groupby([column_1, column_2])

As long as the methods and the chained code are readable, this is a perfectly sensible

approach.

�Using Specialized Libraries to Enhance Performance

There are, in fact, quite a few external libraries that can help speed up pandas tasks

significantly. They include, but are not limited to, the following:

Using a specialized pipeline building library

Using libraries to utilize just-in-time compilation (https://

en.wikipedia.org/wiki/Just-in-time_compilation) and other

numerical tricks

Using parallel processing and Big Data helper frameworks to

spread the pandas workload over multiple computing cores and

in out-of-memory spaces

Use GPU-accelerated computing (https://medium.com/

dataseries/gpu-powered-data-science-not-deep-learning-

with-rapids-29f9ed8d51f3as) an alternative to pandas with

minimal changes in API and codebase

Each of these ideas needs a significant space to discuss at any reasonable details.

Therefore, I cover them separately in later chapters.

Chapter 3 How to Use Python Data Science Packages More Productively

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3as
https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3as
https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3as

73

�Efficient EDA with Matplotlib and Seaborn
Matplotlib and Seaborn are two widely used visualization libraries for data science tasks

in the Python ecosystem. Together, they offer unparalleled versatility, rich graphics

options, and deep integration with the Python data science ecosystem for doing any kind

of visual analytics you can think of.

However, there are a few common situations where you can end up using these

fantastic packages in an inefficient manner. Additionally, you may also waste valuable

time writing unnecessary code or using additional tools to make your visual analytics

end products more presentable, which could have been accomplished with simple

modifications in the settings of Matplotlib and Seaborn. In this section, I cover tips and

tricks that can come handy to make your data science and analytics tasks productive

when using either of these libraries.

�Embrace the Object-Oriented Nature of Matplotlib
Matplotlib is built in a thoughtful manner (www.aosabook.org/en/matplotlib.html)

following multiple layers of abstractions and object-oriented design hierarchy (as shown

in Figure 3-9). Almost always, a data scientist deals with the scripting layer to draw quick

plots (e.g., plt.scatter(x,y)) and change the look and feel of that graphical output

(e.g., plt.xlabel("The x-axis variable", fontsize=15)). Sometimes, they venture

into the middle artistic layer, creating custom Axes and setting the properties of Figure

objects. Usually, a data scientist does not need to work directly with the backend layer

for regular data analytics tasks.

Figure 3-9.  Matplotlib layers and core abstractions/objects

Chapter 3 How to Use Python Data Science Packages More Productively

http://www.aosabook.org/en/matplotlib.html

74

However, it is a great education for a data scientist to have deep knowledge about

this layered architecture and follow the best practices that leverage the strength of a solid

object-oriented design. In particular situations such as those involving subplots, this

becomes prominent.

�Two Approaches for Creating Panels with Subplots

A simple example of a good practice is to not to use the following old style of code to

create two subplots or panels stacked vertically:

Create the main figure

plt.figure()

The first of two panels

plt.subplot(2, 1, 1) # (rows, columns, panel number)

plt.plot(x, np.sin(x))

The second panel

plt.subplot(2, 1, 2)

plt.plot(x, np.cos(x));

A better alternative is to use the following code:

Create an array of two Axes objects

fig, ax = plt.subplots(2)

Call plot() method on the appropriate object

ax[0].plot(x, np.sin(x))

ax[1].plot(x, np.cos(x))

They produce identical graphical output, as shown in Figure 3-10.

Chapter 3 How to Use Python Data Science Packages More Productively

75

Figure 3-10.  Matplotlib subplots panel example

But why is the second approach better or more productive? Think about the cognitive

load you might have to carry if it were 5 or 15 plots instead of 2 and the chances of bugs

that could have been introduced writing code like plt.subplot(3, 1, 3) or plt.

subplot(4, 4, 13). How would you keep track of all those parameters inside the plt.

subplot() function? The second approach frees you from these considerations by

allowing it to pass in a single number like 2 or 15 and repeat the plot statement that

many times.

However, an even better approach is to put this code in a proper function that has

a little more intelligence to handle any number of plots and that refactors the plotting

statements using a loop.

�A Better Approach with a Clever Function

Consider the following code defining a function that can produce a panel with an

arbitrary number of plots (always in a three-column format respecting the natural width

of the webpage or a book), dynamically adjusting the number of rows with the number

of total subplots:

def plot_panels(n):

 """

 Produce a panel consisting of variable number of rows and 3 columns

 """

 if n%3==0:

 nrows = int(n/3)

Chapter 3 How to Use Python Data Science Packages More Productively

76

 else:

 nrows = n//3+1

 ncols = 3

 fig, ax = plt.subplots(nrows, ncols, figsize=(15,nrows*3))

 axes = ax.ravel()

 for i in range(n):

 axes[i].plot(x, np.sin(x))

Here, you can change the variable n to any value. Internally, the function will always

calculate the appropriate number of rows with the logic in the code and set ncols = 3.

Here, ax is a (multi-dimensional) list of Matplotlib Axes objects (https://matplotlib.

org/stable/api/axes_api.html) and therefore can be indexed with axes[i] within a

loop after you flatten the list with an axes = ax.ravel() statement.

When you call this function with plot_panels(5), you get the result shown in

Figure 3-11.

Figure 3-11.  Matplotlib panel function output with five plots

Note the blank canvas in the last row. This is because the plots must be arranged in a

rectangular grid and for placing five plots on a 3 x 2 grid, so the last one will be left blank.

When you call the same function with plot_panels(15), you get the result shown in

Figure 3-12.

Chapter 3 How to Use Python Data Science Packages More Productively

https://matplotlib.org/stable/api/axes_api.html
https://matplotlib.org/stable/api/axes_api.html

77

Figure 3-12.  Matplotlib panel function output with 15 plots

It is the object-oriented style of programming pattern you embraced in your

function definition that resulted in this scalable and efficient mechanism of generating

any number of plots without worrying about potential bugs. This type of practice makes

the codebase productive in the long run.

Chapter 3 How to Use Python Data Science Packages More Productively

78

�Set and Control Image Quality
Matplotlib interacts with the user’s graphical output system (web browser or stand-alone

window) in a complex manner and optimizes the output image quality with a balanced

set of internal settings. However, it is possible to tweak those settings as per the user’s

preference to get the most optimum quality that they desire.

This becomes particularly important for using Matplotlib in the Jupyter notebook

environment, which is an extremely common scenario. The quality of the default image,

rendered in a Jupyter notebook web browser, may not be good enough for publication

in a book or further processing. Data scientists often spend additional time and effort

enhancing the quality of the visualizations they produce as part of the data science

tasks. However, Matplotlib provides a simple and intuitive workaround to accomplish

the same.

�Setting DPI Directly in plt.figure()

Setting the dots per inch is easily done with just one parameter:

plt.figure(figsize=(6,4),dpi=150)

plt.plot(x,y)

In a Jupyter notebook, the default DPI value is quite low. Depending on your system

settings, it is generally between 70 and 100. When you increase it, your figure also gets

bigger, so you have to be mindful of not clipping the image in your browser window.

�Setting DPI and Output Format for Saving Figures

In addition to, or alternatively, you may also want to save the plot as a file object on your

local disk for later use. You can choose the DPI and output format:

plt.figure(figsize=(6,4))

plt.plot(x,y)

plt.title("Parabola", fontsize=16)

plt.xlabel('x-axis')

plt.ylabel('y-axis')

plt.savefig("Parabola.png",

 dpi=300,

 format = 'png')

Chapter 3 How to Use Python Data Science Packages More Productively

79

When you choose JPEG as the output format, you can control a host of other

settings related to the JPEG compression. However, PNG or PDF are better in terms of

publication-worthy quality since they are lossless formats.

What is a good DPI to choose? I t depends on the intended usage, of course.
For print, 150dpi is considered low-quality printing, even though 72dpi is
considered the standard for the web (which is why it’s not easy printing quality
images straight from the web). Low-resolution images will have blurring and
pixelation (https://en.wikipedia.org/wiki/Pixilation) after printing.
Medium-resolution images have between 200dpi - 300dpi. The industry standard
for quality photographs and image is typically 300dpi.

�Adjust Global Parameters

The Matplotlib back end provides the ultimate flexibility in terms of setting global

parameters that control the look and feel of your visualization. The rcParams

settings (https://matplotlib.org/stable/api/matplotlib_configuration_api.

html#matplotlib.RcParams) have all the possible varieties you can think of. Here is a

code example:

import matplotlib as mpl

Data

x = np.arange(-10,10,0.1)

y = x**2

Set all backend parameters

mpl.rcParams['lines.linewidth'] = 3

mpl.rcParams['text.color'] = 'red'

mpl.rcParams['lines.linestyle'] = '--'

mpl.rcParams['axes.facecolor'] = '#c3e2e6'

mpl.rcParams['figure.dpi'] = 120

mpl.rcParams['font.style'] = 'italic'

mpl.rcParams['font.weight'] = 'heavy'

Plot

plt.plot(x,y)

Chapter 3 How to Use Python Data Science Packages More Productively

https://en.wikipedia.org/wiki/Pixilation
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams

80

plt.title("Parabola", fontsize=16)

plt.xlabel('x-axis')

plt.ylabel('y-axis')

Note how you had to import the Matplotlib module itself with the statement import

matplotlib as mpl and not just use the matplotlib.pyplot as plt. Also note the

figure.dpi as one of the many settings you set in this code. A typical result from this

setting is shown in Figure 3-13.

If you have decided on a set of image quality and styling settings, you can store them

in a local config file and just read the values at the beginning of your Jupyter notebook or

Python script while importing Matplotlib. That way, every image produced by that script

or in that Jupyter session will have the same look and feel. The output of the code above

should look something like Figure 3-13.

Figure 3-13.  Matplotlib global rcParams change illustration

Did you notice that the axes.facecolor was set to a hex string #c3e2e6 in the
code above? Matplotlib accepts regular color names like red, green, or blue, or hex
strings in its various internal settings. You can simply use an online color picker
tool (https://imagecolorpicker.com/) and copy-paste the hex code for
better styling of your image.

Chapter 3 How to Use Python Data Science Packages More Productively

https://imagecolorpicker.com/

81

�Tricks with Seaborn
Seaborn is a Python library built on top of Matplotlib with a concentrated focus on

statistical visualizations like boxplots, histograms, and regression plots. Naturally, for

data scientists, it is a great tool to use in a typical exploratory data analysis (EDA) phase.

However, using Seaborn with a couple of simple tricks can improve the productivity of

your EDA tasks.

�Use Sampled Data for Large Datasets

Seaborn provides excellent APIs/methods to generate beautiful visualizations on all

features/variables of your dataset:

•	 Pairwise plots (relating every variable in a dataset to another one)

•	 Histograms

•	 Boxplots

It might be tempting to generate all these plots for all the features and their pairwise

combination (for the pair plot). However, depending on the amount of data and

possible combination for the pairwise plot, the number of raw visual elements can be

overwhelming for your system to handle.

One quick fix to this situation is to use random sample (a small fraction) of the
dataset for generating all these plots. If the data is not too skewed, then by looking at a

random sample (or a few of them), you should get a good feeling about the pattern and

distributions from a typical EDA anyway.

A boilerplate code will look like the following:

N = 100

df_sample = df.sample(N)

plot_seaborn(df_sample)

<more code ...>

Here you pass on only 100 samples from the original DataFrame to the plotting

function. Note that to maintain readability and data structure integrity, you should not

randomly sample 100 rows from the DataFrame but use a built-in function to return

another DataFrame and pass that along to the plotting function.

Chapter 3 How to Use Python Data Science Packages More Productively

82

�Use pandas Correlation with Seaborn heatmap

This is a trick to quickly visualize the correlation strengths between multiple features

of your dataset with just two lines of code. This kind of trick should be standard part of

your efficient data science toolkit.

Here is a code snippet:

df_mpg = sns.load_dataset('mpg')

mpg_corr = df_mpg.corr()

sns.heatmap(mpg_corr,cbar=True,cmap='plasma')

plt.show()

This loads the famous Auto MPG dataset (https://archive.ics.uci.edu/ml/

datasets/auto+mpg) and produces the correlation heatmap shown in Figure 3-14,

demonstrating the positive and negative correlation strengths between various

numerical features of the dataset. The bright colors and italic/bold axis names of this

plot are the result of the Matplotlib style settings you did in the previous section. Unless

you change them explicitly or start a new Jupyter notebook session, they remain in effect.

Figure 3-14.  Using the pandas correlation function with a Seaborn heatmap to
get the correlation visualization quickly for any dataset

Chapter 3 How to Use Python Data Science Packages More Productively

https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/auto+mpg

83

�Use Special Seaborn Methods to Reduce Work

Seaborn provides some special method/plotting utilities that can reduce the work for a

data scientist in common tasks and thereby improve productivity. These utilities should

be put to use at every opportunity. Examples include

•	 Doing a linear regression and creating the plots of residuals with

residplot

•	 Counting the occurrence of categorical variables and plotting them

using countplot

•	 Using clustermap to create a hierarchical colored diagram from a

matrix dataset

�Summary
In this chapter, I started by describing how NumPy is faster than native Python code and

enumerated its speed efficiency in simple scenarios. I talked about the pros and cons of

converting Python objects like lists and tuples to NumPy arrays before doing numerical

processing. Then, I discussed the importance of vectorizing operations as much as

possible for efficient data science pipelines. I also discussed some of the reading utilities

that NumPy offers and how they can make your code compact and productive.

Next, I delved into the efficient use of the pandas framework by discussing various

methods to iterate over DataFrames and accessing or setting values. Usage of modern,

optimized file storage formats like Parquet (in the context of Apache Arrow and column-

oriented data storage) were discussed at length. Some miscellaneous ideas like chaining

and cleaning up orphan DataFrame were talked about next.

Finally, I showed some tips and tricks to be used with popular visualization libraries

Matplotlib and Seaborn. The object-oriented layered structure of Matplotlib was shown

to be a strong foundation for building efficient data science code for plotting. I also

demonstrated various methods of controlling image quality and plot settings in a global

manner (i.e., for a Python or Jupyter session). Sampled data was discussed as an idea to

control the explosion of plots that can happen with large datasets.

Chapter 3 How to Use Python Data Science Packages More Productively

84

These kind of tips and tricks are developed over time based on data analysis,

numerical computing, and exploratory data visualization needs that arise from handling

real-life datasets in projects that need to be efficient and productive from time and

computing resources points of view. As a regular practitioner of data science, you will

also develop your own tricks and make your data analysis and modeling code efficient.

The ideas in this chapter are just introductory guiding pointers to get you to think in that

direction.

Chapter 3 How to Use Python Data Science Packages More Productively

85

CHAPTER 4

Writing Machine Learning
Code More Productively
Data scientists often come from a background quite far removed from traditional

computer science/software engineering, such as physics, biology, statistics, economics,

and electrical engineering. Unfortunately, there are not a lot of tutorials geared towards

data scientists and machine learning practitioners who do not come from a software

engineering background.

Data scientists use Python a lot for their work. Why? Because it’s awesome for ML

and the data science community. It is the most widely used major language for modern

data-driven analytics and artificial intelligence apps. However, it is also used for simple

scripting purposes, to automate stuff, to test a hypothesis, to create interactive plots

for brainstorming, to control lab instruments, and so on. But Python for software

development and Python for scripting are not the same beast, at least in the domain of

data science.

Scripting is (mostly) the code you write for yourself. Software is the assemblage
of code you (and other teammates) write for others. It’s wise to admit that when (a

majority of) data scientists who do not come from a software engineering background

write Python programs for AI/ML models and statistical analysis, they tend to write such

code mostly for themselves.

Writing high-quality, production-level code is a skill to be learned and honed over

a lifetime. It’s the bread and butter of software engineers and developers. Not all data

scientists will have the motivation and drive to acquire these skills. However, some

simple good practices can be learned and applied in your everyday work.

This chapter will take you through that journey with some hands-on examples using

the scikit-learn library. Chapters 5 and 6 will build on and expand the same concept.

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_4

https://doi.org/10.1007/978-1-4842-8121-5_4

86

�Why (and How) to Modularize Code
for Machine Learning
Writing modular and well-organized code almost always comes with long-term rewards.

This habit can save you time and cognitive effort when debugging and troubleshooting.

Well-planned, modular code looks elegant. It is often simple to read, and it automatically

welcomes other team members to help you and contribute to your work in a

collaborative fashion. This, of course, improves the overall quality and robustness of the

product/service.

But how do you decide what to modularize? How do you even start thinking about

it? Here are some questions that you can ask yourself while working on any data science

project.

Spaghetti code is to be avoided at all costs  Hastily written code that gets
the job done but does not scale properly, is the prime example of ‘bad code’ or
‘spaghetti code’ that is littered everywhere in data science practice. This type of
code can also result from poor planning, not following well-designed coding style,
non-adherence to any object-oriented programming pattern, etc. Fundamentally,
such spaghetti code is error-prone, extremely difficult to scale and debug, and
counter-productive for production-level usage.

�Questions to Ask Yourself
Even if you have never had a software engineering course in your life, some ideas may

come naturally to you. All you have to do is to put yourself in someone else’s shoes and

think about how that person will use your code in a constructive manner.

•	 If you have a code block that appears more than once in your analysis

(in the exact same form or in slight variations), can you make a
function out of it?

•	 When you make such a function, which parameters will be passed

on? Which can be optional? What are the default values?

Chapter 4 Writing Machine Learning Code More Productively

87

•	 If you encounter a situation where you don’t know how many

parameters need to be passed on, are you using the *args and

**kwargs that Python offers?

•	 Did you write a docstring for that function to let others know what

the function does and what parameters it expects as well plus an

example?

•	 When you have collected a bunch of such utility functions, are you

still working on the same notebook, or switching over to a new, clean

notebook and just calling from my_utility_script import func1,

func2, func3? (Did you create a my_utility_script as a simple

Python file rather than a Jupyter notebook?)

•	 Did you put the my_utility_script in a directory, put an __init__.

py file (even a blank one) in the same directory, and make it a
Python module to be importable just like NumPy or Pandas?

•	 Are you thinking about not merely importing classes and methods

from packages like NumPy and TensorFlow but adding your own
methods to them and extending their functionality?

�Start Simple with a Standard Data Science Flow
For starters, let’s consider a standard data science task flow so you can organize your

coding approach to follow modularization thinking. Even before writing a single line of

code, you can mentally organize (modularize) the tasks and plan for separate modules,

as shown in Figure 4-1.

Chapter 4 Writing Machine Learning Code More Productively

88

Figure 4-1.  A standard data science flow organized in a modular fashion (in your
head) to be implemented in your code

Why those three colors (orange, blue, and green)? They simply represent the three

main flavors of the tasks: data-related, algorithm-related, and deployment-related,

respectively. The deployment portion is highly compressed and represented with this

single model saving task here. In a real-life production scenario, there will be a host of

modules related to it but all of them can start with this module, where you can save and

output the validated model as a software artifact (e.g., a Python pickle).

The main idea of Figure 4-1 is, however, to emphasize the scope and need for

modularization of these tasks. As data science practitioners, you perform these tasks

regularly inside a Jupyter notebook. To embrace productive data science, you need to

organize and even think beyond the notebook towards this modularization.

Let’s see how with a familiar scikit-learn example.

�A Scikit-learn Task Flow Example
In this example, you will work with the famous breast cancer dataset (https://archive.

ics.uci.edu/ml/datasets/breast+cancer) and build a simple logistic regression

classifier for the same. The task is simple, but the key learning will be how to approach

the flow with a modularized coding practice.

Chapter 4 Writing Machine Learning Code More Productively

https://archive.ics.uci.edu/ml/datasets/breast+cancer
https://archive.ics.uci.edu/ml/datasets/breast+cancer

89

�The Monolithic Example
The opposite to modular code is monolithic code: all code in a single file or Jupyter

notebook. You could have written this monolithic code in a single shot:

from sklearn.datasets import load_breast_cancer

from sklearn.linear_model import LogisticRegression

<...>

Data load

data = load_breast_cancer()

X, y = data['data'], data['target']

Some visual exploration

features_avg = []

for i in range(30):

 features_avg.append(X[:,i].mean())

plt.figure(figsize=(4,6),dpi=100)

plt.barh(y=['Feature-'+str(i) for i in range(30)],width=features_avg)

plt.xlabel("Feature average")

plt.show()

Model build

clf = LogisticRegression(random_state=0,

 max_iter=500,

 class_weight='balanced').fit(X, y)

clf.score(X, y)

Cross-validation

scores = cross_val_score(clf, X, y, cv=5)

scores

print(f"Accuracy {scores.mean()} with a standard deviation of {scores.

std()}")

Model save

<...>

Chapter 4 Writing Machine Learning Code More Productively

90

Everything is kind of mixed in the monolithic code above: import, data loading,

model building, validation, and saving. It has some standalone code like clf.score(X, y)

that makes sense only inside a Jupyter notebook cell. It has a print statement, which

is fine for the exploration and experiment phase but may not be suitable for an efficient

codebase. It runs fine in a notebook but is hard to troubleshoot if bugs creep in or the

model needs tuning.

Let’s see how to clearly compartmentalize the code and build a modular code base

for the same task.

�Little Boxes, Little Boxes...
Compartmentalizing or boxing is important for software development. This also

increasingly applies to productive data science work as well. For the code snippet above,

you can make these boxes easily. You start by copying the code blocks for different tasks

into separate Python scripts or standalone files from the Jupyter notebook. The idea is

shown in Figure 4-2.

Figure 4-2.  From monolithic code to constructing little boxes

To start, this code is for data loading only:

from sklearn.datasets import load_breast_cancer

def load_data():

 """

 Loads the data and returns Numpy arrays

 """

Chapter 4 Writing Machine Learning Code More Productively

91

 data = load_breast_cancer()

 X = data['data']

 y = data['target']

 return X,y

That’s it. A single function to do only one job. It is saved in a file called load_data.

py. Modularizing code highly encourages the use of single-purpose functions instead of

standalone code statements in the script. This is what is demonstrated here.

Next, data splitting into test and training sets:

from sklearn.model_selection import train_test_split

def data_split(X,y,

 test_size=0.3,

 random_state=42):

 """

 Randomly splits in test and train sets

 and returns them as Numpy arrays

 """

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size=test_size, random_state=random_state)

 return X_train, X_test, y_train, y_test

Note the use of default variables test_size and random_state in case you want to

play with a test set fraction or different random initializations for experimental purposes.

Next, model fitting code:

from sklearn.linear_model import LogisticRegression

import numpy as np

def model_fit(X_train,y_train,

 max_iter=500):

 """

 Fits the model with training data.

 Returns the fitted estimator.

 """

Chapter 4 Writing Machine Learning Code More Productively

92

 class_zero, class_one = np.bincount(y_train)

 class_ratio = class_zero/class_one

 if class_ratio > 1.25 or class_ratio < 0.8:

 clf = LogisticRegression(max_iter=max_iter,

 class_weight='balanced')

 else:

 clf = LogisticRegression(max_iter=max_iter)

 clf.fit(X_train,y_train)

 return clf

You have to do some cross-validation with the test set data before you save this fitted

model. So, the cross-validation code is as follows:

from sklearn.model_selection import cross_val_score

def cross_validate(clf,X_train,y_train,cv=10):

 """

 Cross validates the model.

 Returns an array of scores.

 """

 scores = cross_val_score(clf,X_train,y_train, cv=cv)

 return scores

You get back a NumPy array of cross-validation scores. Finally, you have to save/

package the model. But you may want to save the model only if the average of the cross-

validated scores is above a certain threshold. Otherwise, you can go back to tune the

model or look for more data (the dataset is fixed in this example, but the general idea

is valid).

Therefore, your final model saving code looks like the following:

from joblib import dump, load

def model_save(clf,scores,threshold=0.9):

 """

 Saves a model depending on the CV scores

 """

Chapter 4 Writing Machine Learning Code More Productively

93

 if scores.mean() > threshold:

 dump(clf, 'logistic_model.joblib')

 return 1

 else:

 return 0

Note that instead of using pickle, you use the joblib library for more efficient and

compact storage of the scikit-learn estimator. This is described here: https://scikit-

learn.org/stable/model_persistence.html.

OK, you created modularized code for your data science task. Now what?

�How to Use the Modular Code
After creating these modules, the directory structure may look like Figure 4-3. Note

the Jupyter notebook at the bottom (circled). This is what you get as the fruit of the

modularization of your code.

Your notebook looks much cleaner and more readable than the spaghetti code you

had earlier. If you examine that Jupyter notebook, you may see something like Figure 4-4.

Figure 4-3.  Python script/modules in the directory for various ML tasks

Chapter 4 Writing Machine Learning Code More Productively

https://scikit-learn.org/stable/model_persistence.html
https://scikit-learn.org/stable/model_persistence.html

94

Figure 4-4.  Typical Jupyter notebook (cleaner and compact) after modularizing
the code

Chapter 4 Writing Machine Learning Code More Productively

95

The key benefit of this approach is that you can play with the following aspects of the

task independently and without touching the main notebook code:

•	 Data source (just modify the load_data.py file)

•	 Data splitting options (just modify the data_split.py file)

•	 Choice of model and hyperparameters (just modify the

model_fit.py file)

•	 Cross-validation strategy and options (just modify the

cross_validate.py file)

•	 The decision to save the model (just modify the model_save.py file)

Also, note how the input and output of each module is controlled through a focused

and targeted function definition. This gives you the opportunity to validate and check
the expected outcome from each of the modules. This means if for some reason the

data or model is corrupted, you can catch it mid-flight before it goes to the model fitting

or saving stage. This saves infrastructure costs and enhances the robustness of the ML

platform as a whole.

Figure 4-5 demonstrates the idea of separate test/validation blocks for each

of the core modules. It also shows a system_config.json file that may store the

cross-validation threshold and the model_save.py file to check the current model’s

performance against that criterion before saving the model.

Can you imagine all this flexibility and possibilities with a monolith Jupyter

notebook?

Chapter 4 Writing Machine Learning Code More Productively

96

Figure 4-5.  Modular code used along with data/model validation checks and
system configuration files

�Systematic Evaluation of ML Algorithms
in an Automated Fashion
As discussed in the beginning of this chapter, apart from modularization, another central

pillar of efficient data science code is automation. We often write repetitive code that can

introduce bugs and inefficiency.

One of the most common tasks for a typical DS workflow is to run the same

data through multiple ML algorithms and choose the best one (according to some

predetermined metric). In this section, you will examine a hands-on example of

automating this evaluation task.

�List of Classifiers
At the beginning, you have to pick the scikit-learn estimators (along with their

hyperparameters) for this evaluation. You can define a list with these objects:

classifiers = [

 LogisticRegression(C=0.1,n_jobs=-1),

 KNeighborsClassifier(10,n_jobs=-1),

 SVC(kernel="linear", C=0.1),

 SVC(gamma='scale', C=1),

Chapter 4 Writing Machine Learning Code More Productively

97

DecisionTreeClassifier(max_depth=10,min_samples_leaf=10),

RandomForestClassifier(max_depth=3, n_estimators=50, max_features=5,

min_samples_leaf=10,n_jobs=-1),

 �MLPClassifier(hidden_layer_sizes=(50,50),alpha=0.2,activation='relu',

max_iter=200,learning_rate_init=0.01,learning_rate='adaptive',

early_stopping=True,validation_fraction=0.2),

 �AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=3),

n_estimators=50,learning_rate=0.1),

 �BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=3),

n_estimators=50, max_features=5,n_jobs=-1),

GaussianNB(),

QuadraticDiscriminantAnalysis(reg_param=0.1)]

You can also define a list of names (strings) for plotting and enumeration purposes:

names = ["Logistic Regression","Nearest Neighbors", "Linear SVM",

"RBF SVM", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost",

"Bagging","Naive Bayes", "QDA"]

�Function to Automate Model Fitting
At the heart of this approach is the function that runs through the given list of estimators

and fits the data to them one by one. It also encapsulates the usual data splitting and

scorekeeping. Optionally, you can also record the time it takes to fit each model so that

you can do a trade-off analysis of model performance and computational cost later on.

So, the function starts like this:

def run_classifiers(X,y,

 clf_lst = [LogisticRegression(C=0.1,n_jobs=-1)],

 names=None,

 num_runs=10,

 test_frac=0.2,

 scaling=True,

 metric='accuracy',

 runtime=True,

 verbose=0):

Chapter 4 Writing Machine Learning Code More Productively

98

 """

 �Runs through the list of classifiers for a given number of times.

Returns a DataFrame with scores (and, optionally, running times).

 """

Note that it only needs some training data (X and y vectors) to run. Everything else

is optional and has default values, even the classifier list. It features essential arguments

like test_frac for the training/test set split, scaling for deciding whether to scale the

training data, metric for comparing the algorithms against a single performance metric,

and runtime to record computation time for each algorithm’s run.

However, the most important argument is num_runs, which ensures that the ML

algorithms run multiple times and all the performance metrics and running times

are saved to a Pandas DataFrame. This is the final DataFrame that is returned by the

function.

For example, if scaling is True, then it performs scaling:

if scaling:

 X_train= StandardScaler().fit_transform(X_train)

 X_test = StandardScaler().fit_transform(X_test)

If the runtime Boolean is enabled, then it computes and stores the running times:

if runtime:

 t1 = time.time()

 clf.fit(X_train, y_train)

 t2 = time.time()

 delta_t = round((t2-t1)*1000,3)

 rt.append(delta_t)

Finally, it returns either a single DataFrame of scores or two DataFrames if the

runtime is also asked for:

if runtime:

 return df_scores, df_runtimes

else:

 return df_scores

The complete code for the function and other details are provided in the

accompanying Jupyter notebook.

Chapter 4 Writing Machine Learning Code More Productively

99

�How Does Automation Help?
Fundamentally, the automation approach makes your exploration and experimentation

code cleaner and compact. You can start a Jupyter notebook, load some data into

two vectors, X and y, and execute the function right away. You can get all the results

(accuracy scores) at the same time with a single execution, as shown in Figure 4-6.

Figure 4-6.  Typical DataFrame output of an automated run of multiple ML
algorithms

d1 = run_classifiers(X,y,
 clf_lst=classifiers,
 metric='f1',
 num_runs=5,
 runtime=False,
 verbose=1)

Chapter 4 Writing Machine Learning Code More Productively

100

Since you have verbose=1, you will see this kind of status message printed:

Finished 5 runs for LogisticRegression algorithm
--
Finished 5 runs for KNeighborsClassifier algorithm
--
Finished 5 runs for SVC algorithm
--
Finished 5 runs for SVC_1 algorithm
--
Finished 5 runs for DecisionTreeClassifier algorithm
--
Finished 5 runs for RandomForestClassifier algorithm
--
Finished 5 runs for MLPClassifier algorithm
--
Finished 5 runs for AdaBoostClassifier algorithm
--
Finished 5 runs for BaggingClassifier algorithm
--
Finished 5 runs for GaussianNB algorithm
--
Finished 5 runs for QuadraticDiscriminantAnalysis algorithm
--

Thereafter, with simple plotting code, you can visualize the average performance of

all of the algorithms and their variances (Figure 4-7).

Figure 4-7.  Mean accuracy scores and their standard deviation for an automated
run of multiple ML algorithms

Chapter 4 Writing Machine Learning Code More Productively

101

Note that you had two support vector classifiers with a different kernel and penalty

coefficients, and they are recorded as SVC and SVC_1 in the table.

You can experiment with various hyperparameter tuning with minimal code change.

For example, to record decision tree performance for various tree depths, you can

create a list:

clf_lst = [DecisionTreeClassifier(max_depth=i) for i in range(2,16)]

You can then pass this list to the automation function. You get the DataFrame back

and simple averaging of the results yields the plot shown in Figure 4-8.

Figure 4-8.  Mean accuracy scores of decision tree classifiers with varying depth

Basically, once you have an automated way to run a multitude of ML algorithms

in a single shot and compare their performance, you can think of a host of practical

applications for this utility in the experimental and production phases.

Automation and modularization naturally lead to a low-code environment 
In Chapter 12, we talk about low-code libraries and frameworks that abstract
away a lot of manual data science work and generate results with only a few lines
of code. One of the main driving forces behind such low-code tools is the kind of
modularization that you did here. Effectively, you reduced the code for repeated
experimentation to only a few lines by utilizing the custom modules. This makes
the overall codebase leaner and more efficient to maintain and debug.

Chapter 4 Writing Machine Learning Code More Productively

102

�Decision Boundary Visualization
For many classification problems in the domain of supervised ML, you may want to go

beyond the numerical prediction (of the class or of the probability) and visualize the

actual decision boundary between the classes. This is, of course, particularly suitable for

binary classification problems and for a pair of features: the visualization is displayed on

a 2D plane. For example, Figure 4-9 shows a visualization of the decision boundary for

a Support Vector Machine (SVM) tutorial from the official scikit-learn documentation

(https://scikit-learn.org/stable/modules/svm.html).

Figure 4-9.  Decision boundaries are visualized for SVMs with different kernels

Now the problem is that scikit-learn does not offer a ready-made, accessible method

for doing this kind of visualization. However, you can create custom code to achieve this

so that the data science task can be more efficient when it comes to visualizing decision

boundaries.

Chapter 4 Writing Machine Learning Code More Productively

https://scikit-learn.org/stable/modules/svm.html

103

�The Custom Function
The full description and the code for the function are provided in the accompanying

Jupyter notebook. The code starts like this:

def plot_decision_boundaries(X, y,

 model_class,

 **model_params):

 """

 Function to plot the decision boundaries of a classification model.

This uses just the first two columns of the data for fitting the model as

we need to find the predicted value for every point in scatter plot.

 Arguments:

 X: Feature data as a Numpy-type array.

 y: Label data as a Numpy-type array.

 model_class: A Scikit-learn ML estimator class

 e.g. GaussianNB or LogisticRegression

 �**model_params: Model parameters to be passed on to the ML

estimator

 """

Note the use of the **model_params unpacking operator to allow the user to pass on

any number and variety of parameters to the function corresponding to the model in

question. Internally, it works by creating a 2D mesh grid and plotting colored contour

regions corresponding to the predicted classes.

Here the model class denotes the exact scikit-learn estimator class that you call in

to instantiate your ML estimator object. Note that you don’t have to pass on the specific

ML estimator that you are working with. Just the class name will suffice. This function

will internally fit the data and predict to create the appropriate decision boundary

(considering the model parameters that you also pass on).

What is this unpacking operator? Y ou might have seen the arguments *args
and **kwargs in the API documentation of many functions. They allow you to pass
multiple arguments or keyword arguments to a function when you don’t even know
the precise number and order of the arguments beforehand and must decide that
dynamically, at runtime. This article presents an excellent tutorial.

Chapter 4 Writing Machine Learning Code More Productively

104

�Example Results
For the demonstration, let’s use a divorce classification dataset. This dataset is about

participants who completed the personal information form and a divorce predictors

scale. The data is a modified version of the publicly available data at the UCI portal

(https://archive.ics.uci.edu/ml/datasets/Divorce+Predictors+data+set) after

injecting some noise. There are 170 participants and 54 attributes (or predictor variables)

that are all real-valued.

You’ll compare the performance of multiple ML estimators on the same dataset:

•	 Naive Bayes

•	 Logistic regression

•	 K-nearest neighbor (KNN)

Because the binary classes of this dataset are easily separable, as shown in

Figure 4-10, all the ML algorithms perform almost equally well. However, their respective

decision boundaries look different from each other and this is what you are interested in

visualizing through this utility function.

Figure 4-10.  Class separability of the divorce dataset

Chapter 4 Writing Machine Learning Code More Productively

https://archive.ics.uci.edu/ml/datasets/Divorce+Predictors+data+set

105

The decision boundary from the Naive Bayes algorithm is smooth and slightly

nonlinear, as shown in Figure 4-11. You achieve this with only four lines of code:

plt.figure()

plt.title("Naïve Bayes decision boundary",fontsize=16)

plot_decision_boundaries(X_train,y_train,GaussianNB)

plt.show()

Figure 4-11.  Decision boundary of the Naïve Bayes algorithm

As expected, the decision boundary from the logistic regression estimator is

visualized as a linear separator, as shown in Figure 4-12.

Figure 4-12.  Decision boundary of the logistic regression algorithm

Chapter 4 Writing Machine Learning Code More Productively

106

The K-nearest neighbor decision boundary comes up as nonlinear and non-smooth,

as shown in Figure 4-13. This is because KNN is an algorithm based on the local

geometry of the distribution of the data on the feature hyperplane (and their relative

distance measures).

Figure 4-13.  Decision boundary of the KNN algorithm

The function works with any scikit-learn estimator, even a neural network. Here is

the decision boundary with the MLPClassifier estimator of scikit-learn, which models a

densely connected neural network with user-configurable parameters (https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.

html). Note that in the code, you pass on the hidden layer settings, the learning rate, and

the optimizer (Stochastic Gradient Descent or SGD; https://towardsdatascience.

com/stochastic-gradient-descent-clearly-explained-53d239905d31). The decision

boundary generated by the code is shown in Figure 4-14.

Chapter 4 Writing Machine Learning Code More Productively

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31

107

Figure 4-14.  Decision boundary and code for the MLP algorithm

�Parametric Experimentation
As mentioned, you can pass on any model parameters that you want to the utility

function. In the case of the KNN classifier, as you increase the number of neighboring

data points, the decision boundary becomes smoother. This can be readily visualized

using this utility function, as shown in Figure 4-15.

Chapter 4 Writing Machine Learning Code More Productively

108

Figure 4-15.  Decision boundary of KNN with different neighbor counts –
experimentation with the algorithm

�Other Scikit-learn Utilities and Techniques
Scikit-learn provides many other tools and utilities to make your ML code more

productive. An exhaustive treatment of them is beyond the scope of this book. However,

here I briefly mention some of the most useful ones that you can readily utilize in your

data science code.

�Hyperparameter Search Utilities
In scikit-learn, hyperparameters are passed as arguments to the constructor of the

estimator classes. They often need to be tuned meticulously in order to achieve good

ML model performance. However, this task can be exhaustive and inefficient if done

manually or without a systematic plan. Fortunately, scikit-learn provides efficient grid

search utilities that behave similarly to standard ML estimators and let you run a large

number of experiments (with varying hyperparameters) with just a few lines of code.

Chapter 4 Writing Machine Learning Code More Productively

109

A search consists of the following:

•	 An estimator (a regressor or classifier such as sklearn.svm.SVC())

•	 A parameter space

•	 A method for searching or sampling candidates

•	 A cross-validation scheme

•	 A score function

Check out the official documentation of scikit-learn at https://scikit-learn.org/

stable/modules/grid_search.html to see the options and their usage. For increasing

the productivity of your data science code, they can come in handy.

�Parallel Job Runner
Not all scikit-learn estimators can take advantage of multi-core CPUs natively, but

some do have the ability to parallelize costly numerical operations using the backend

supporting libraries:

•	 Using the joblib library. In this case, the number of threads or

processes can be controlled with the n_jobs parameter.

•	 Using OpenMP, used in C or Python code.

Joblib is able to support both multiprocessing and multithreading. Whether joblib

chooses to spawn a thread or a process depends on the back end it’s using. You can make

the choice in the code as follows:

from joblib import parallel_backend

with parallel_backend('threading', n_jobs=2):

 # estimator.fit(X,y)

 < ... >

Generally, joblib uses the locy back end. But there are other, more powerful

alternatives. For example, Dask can scale scikit-learn algorithms out to a cluster of

machines by providing an alternative joblib back end:

from dask.distributed import Client

import joblib

Chapter 4 Writing Machine Learning Code More Productively

https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html

110

client = Client(processes=False) # create local cluster

or connect to remote cluster

client = Client("scheduler-address:8786")

with joblib.parallel_backend('dask'):

 # Scikit-learn code

In general, this type of parallel processing is highly suitable for ML models that
match the parallelism natively (e.g., Random Forest with multiple trees or AdaBoost

with multiple base estimators). We will revisit this in more detail in Chapter 11 when we

discuss Dask-based parallelism.

�Out-of-the-box Visualization Methods
Visualization of ML models’ output and performance metrics is a vast and complex

topic. Every data scientist has their own choice and style of visualizing data and model

outputs. However, for efficient data science practice, it is often beneficial to have a set of

out-of-the-box routines that can take an ML model and output standard visualizations

such as a ROC curve, learning curve, precision-recall curve, and confusion matrix.

Scikit-learn provides a uniform API than can accept an estimator object, test or

predicted data, and draw out these visualizations using the Matplotlib back end. This

comes in handy for quick prototyping and productive data science workflow.

More details can be found on the scikit-learn visualization API’s page at https://

scikit-learn.org/stable/visualizations.html#visualizations.

�Synthetic Data Generators
Scikit-learn provides a host of synthetic data generators for quickly evaluating and

experimenting with ML algorithms. While a data science problem with a real dataset does

not directly benefit from these generators, they often come in handy to gauge the relative

strength and weakness of various ML algorithms and test out various coding approaches.

A somewhat detailed discussion about these methods can be found in this article

along with a list of benefits for synthetic data generation in general: “Synthetic data

generation — a must-have skill for new data scientists” (https://towardsdatascience.

com/synthetic-data-generation-a-must-have-skill-for-new-data-scientists-915

896c0c1ae).

Chapter 4 Writing Machine Learning Code More Productively

https://scikit-learn.org/stable/visualizations.html#visualizations
https://scikit-learn.org/stable/visualizations.html#visualizations
https://towardsdatascience.com/synthetic-data-generation-a-must-have-skill-for-new-data-scientists-915896c0c1ae
https://towardsdatascience.com/synthetic-data-generation-a-must-have-skill-for-new-data-scientists-915896c0c1ae
https://towardsdatascience.com/synthetic-data-generation-a-must-have-skill-for-new-data-scientists-915896c0c1ae

111

�Summary
In this chapter, you started by learning about the utility and benefits of modularizing

ML code. You took a typical data science workflow of building out a classification model

with a well-known dataset and applied this principle of modular code. You compared

the monolithic (or spaghetti) code in a Jupyter notebook to the short Python scripts/

modules you wrote and saw the utility of the approach in a cleaner Jupyter notebook.

You also saw how this approach played well with software testing and platform-level

decision making.

Next, you explored an approach of systematic evaluation of ML algorithms with

automation code where you constructed a function that can run through a list of any

scikit-learn estimators, fit models, evaluate performance metrics and running times, and

save everything in a nice dataset for later evaluation. This kind of automation is the first

step towards learning how to do large-scale ML experimentation in a systematic and

productive manner.

Next, you explored another productive technique of visualizing decision boundaries

for arbitrary classification models using a unified function. This leads to efficient visual

analytics of classification boundaries when you need to examine such characteristics.

Finally, you learned utilities and techniques embedded in the scikit-learn library

that can improve the efficiency of your ML code and data science tasks. This included

hyperparameter search, parallel job running, ready-made visualization routines, and

synthetic data generators.

In the next chapters, you will build upon the concept of modular and object-oriented

coding approaches and explore their utility and application for deep learning and

classical ML tasks.

Chapter 4 Writing Machine Learning Code More Productively

113

CHAPTER 5

Modular and Productive
Deep Learning Code
In the previous chapter, I explored the idea that most data scientists often come from

a background that is quite far removed from traditional computer science/software

engineering. Consequently, they produce code that is perfectly suitable for great

exploratory data analysis, statistical modeling, or innovative ML experiments but not

robust enough for the production phase of a large business platform. Data scientists

often think in terms of the next analysis script but not along the lines of the next software

module that integrates into a larger system.

Scripting is (mostly) the code you write for yourself. Software is the assemblage of

code you (and other teammates) write for others. It is an undeniable fact that most data

scientists, not having a traditional software development background and training, tend

to write AI/ML analysis code mostly for themselves.

They just want to get to the heart of the pattern hidden in the data. Fast. Without

thinking deeply about normal mortals (users). They write a block of code to produce a

rich and beautiful plot. But they don’t create a function out of it to use later. They import

lots of methods and classes from standard libraries. But they don’t create a subclass of

their own by inheritance and add methods to it for extending the functionality.

In the previous chapter, you explored some of these issues through scikit-learn code

and a typical classical ML task, fitting a logistic regression model. In this chapter, you

will explore how similar principles can help you write better code for deep learning tasks

with some hands-on examples using Keras/TensorFlow.

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_5

https://doi.org/10.1007/978-1-4842-8121-5_5

114

�Modular Code and Object-Oriented Style
for Productive DL
Functions, inheritance, methods, classes: they are at the heart of robust object-oriented

programming (OOP). But you may not want to delve deeply into them if all you want to

do is create a Jupyter notebook with your exploratory data analysis and plots.

You can avoid the initial pain of using OOP principles, but this almost always renders

your notebook code non-reusable and non-extensible. More precisely, that piece of

code serves only you (until you forget what exact logic you coded) and no one else.

But readability (and, thereby, reusability) is critically important for any good software

product/service. That is the true test of the merit of what you produce. Not for yourself.

But for others.

Data science involving deep learning models and code is no exception. These days,

powerful and flexible frameworks like TensorFlow or PyTorch make the actual coding of

a complex neural network architecture relatively simple and brief. However, if the overall

DS code is not modularized and well-organized (following much of the style discussed

in Chapter 4 in the section “Why (and How) to Modularize Code for Machine Learning”),

then it is plagued by the same issues of non-reproducibility and non-reusability. Let’s

see some examples of how you can organize and modularize DL code in your data

science work.

�Example of a Productive DL Task Flow
Deep learning makes it easy to train ML models for highly nonlinear (and even noisy)

datasets and phenomena. Modern frameworks like Keras/TensorFlow/PyTorch offer

powerful and flexible APIs to build these models with relative ease and a surprisingly

small amount of code. However, an end-to-end DS flow can be made much more

productive if you follow some simple guidelines on how you build, manage, and utilize

DL code. An approach of building compact modules and a systematic flow (shown in

Figure 5-1) can help. Some examples of related guidelines are discussed below in the

form of questions.

One of the most common and repetitive tasks for DL analysis is to

build out a deep neural network (DNN) object. Data scientists

routinely use non-modularized code to just add layers (e.g., from

Keras (https://keras.io/api/layers/) or PyTorch https://

Chapter 5 Modular and Productive Deep Learning Code

https://keras.io/api/layers/
https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html

115

pytorch.org/tutorials/recipes/recipes/defining_a_neural_

network.html) APIs) and build this as a local variable in their

Jupyter notebook. Wouldn’t it be a much better idea to create a

custom function for this task?

After building an (untrained) model, you must compile (set

learning rate, batch size, etc.) and run the model with data. Would

a custom function help make this task modularized as well?

When you make such a DNN builder function, which parameters

will be passed on? Which ones can be optional? What are the

default values? If you encounter a situation where you don’t know

how many parameters need to be passed on, are you using the

*args and **kwargs that Python offers?

Did you write a docstring for that function to let others know

what the function does and what parameters it expects plus an

example?

Can you also modularize the code used to create the visual
analytics based on the output of those model functions?

Chapter 5 Modular and Productive Deep Learning Code

https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html
https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html

116

Figure 5-1.  Deep learning task flow organized in modular fashion

�Wrappers, Builders, Callbacks
Fundamentally, in the subsection above I described wrapping up the most essential

tasks in a DL-based workflow inside custom functions and using them as the core

building blocks of your data science code. Additionally, you can wrap up the tasks

related to data formatting/transformation and prediction/inference in a similar fashion.

It is to be noted that wrapper functions for regression and classification tasks can

have separate sets of architecture and parameters. So, it makes sense to keep their build

customized. The choice of the default parameter values in the wrapper functions is of

critical importance, too.

Apart from a simple functional wrapper, you can also utilize a powerful construct

called a callback that caters to the dynamic nature of DNN training. Essentially, a

callback is an object that can perform actions at various stages of DNN training (e.g., at

the start or end of an epoch or before starting a single batch). You can use callbacks for

various scenarios, including but not limited to the following:

Chapter 5 Modular and Productive Deep Learning Code

117

•	 Early stopping based on some error or computation criterion

•	 Periodically saving the model to disk (making the system robust

against unexpected failure)

•	 Obtaining an overview on various internal states and statistics of a

model in mid-flight (i.e., while the training is going on)

Finally, if you want to extend this approach all the way to the full OOP paradigm,

you can build out classes and utility modules incorporating all these wrappers as special

methods. You can call this a DL utility module, which you can call upon in any data

science task where supervised ML modeling is needed.

�Modular Code for Fast Experimentation
Let’s demonstrate the ideas discussed above using a simple case: a DL image

classification problem with the Fashion MNIST (https://github.com/

zalandoresearch/fashion-mnist) dataset. The core ML task is simple: build a classifier

for this dataset, which is a funny spin on the original famous MNIST hand-written digit

dataset. Fashion MNIST consists of 60,000 training images of 28 x 28-pixel size of objects

related to fashion (e.g., hats, shoes, trousers, t-shirts, dresses, etc.). It also consists of

10,000 test images for model validation and testing. A slice of the dataset is shown in

Figure 5-2 for illustration.

Chapter 5 Modular and Productive Deep Learning Code

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

118

Figure 5-2.  A slice of the Fashion MNIST dataset

�Business/Data Science Question
The basic ML task for this dataset seems straightforward. But what if there is a higher-

order optimization or visual analytics question around this core ML task: how does the

model architecture complexity impact the minimum epochs it takes to reach the desired

accuracy?

It should be clear to you why we even bother about such a question: because this

is related to the overall business optimization. Training a neural net is not a trivial

computational matter (www.technologyreview.com/s/613630/training-a-single-ai-

model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/). Therefore, it

makes sense to investigate what minimum training effort must be spent to achieve a

target performance metric and how the choice of architecture impacts it.

The image classification accuracy could be related to a broader business outcome

such as a fashion recommendation or clothing identification in a store. The core data

science task helps optimize the cost of running that business task—to use the image

database with the optimal expenditure of computing resources using the ML code as the

underlying nuts and bolts.

Chapter 5 Modular and Productive Deep Learning Code

http://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
http://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

119

In this example, you will not even use a convolutional neural network (CNN;

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2b1164a53), which are commonly used for image

classification tasks. This is because, for this dataset, a simple densely connected neural

net can accomplish reasonably high accuracy, and, in fact, a sub-optimal performance

is required to illustrate the main point of the higher-order optimization question

posed above.

So, you must solve two problems:

•	 What the minimum number of epochs for reaching the desired

accuracy target and how do you determine this?

•	 How does the specific architecture of the model impact this number or

training behavior?

To achieve the goals, you will use two simple OOP principles:

•	 Creating an inherited class from a base class object

•	 Creating utility functions and calling them from a compact code

block that can be presented to an external user for higher-order

optimization and analytics

�Inherit from the Keras Callback
You inherit a Keras callback class (as the base) and write your own subclass by adding

a method that checks the training accuracy and takes an action based on that value.

The code snapshot and some explanations are shown in Figure 5-3. More details on

this can be found in the official TensorFlow article “Writing your own callbacks” at www.

tensorflow.org/guide/keras/custom_callback.

Chapter 5 Modular and Productive Deep Learning Code

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://www.tensorflow.org/guide/keras/custom_callback
http://www.tensorflow.org/guide/keras/custom_callback

120

Figure 5-3.  A custom class built on top of a Keras callback

Basically, this simple callback results in dynamic control of the epochs; the training

stops automatically when the accuracy reaches the desired threshold. Figure 5-4 shows a

snapshot of an example run.

Figure 5-4.  Snapshot of an example run with the callback enabled

Chapter 5 Modular and Productive Deep Learning Code

121

�Model Builder and Compile/Train Functions
Next, you put the Keras model construction code in a utility function so that a model of

an arbitrary number of layers and architecture (as long as they are densely connected)

can be generated using simple user input in the form of some function arguments. The

code snapshot and the associated explanations are shown in Figure 5-5.

Figure 5-5.  Snapshot of a model builder function

You also put the compilation and training code into a utility function to use those

hyperparameters in a higher-order optimization loop conveniently. The code snapshot

and the associated explanations are shown in Figure 5-6.

Chapter 5 Modular and Productive Deep Learning Code

122

Figure 5-6.  Snapshot of a model compiling and training function

�Visualization Function
Next, it’s time for visualization. Generic plot functions take raw data as input. However,

if you have a specific purpose of plotting the evolution of training set accuracy (and

showing how it compares to the target), then your plot function should just accept the

(trained) deep learning model as the input and generate the desired plot. The code

snapshot and the associated explanations are shown in Figure 5-7.

Chapter 5 Modular and Productive Deep Learning Code

123

Figure 5-7.  Snapshot of the visualization function

A typical result (loss-accuracy plot) is shown in Figure 5-8.

Figure 5-8.  A typical loss-accuracy plot from the trained DL model

�Final Analytics Code, Compact and Simple
Thus far you have modularized the core DL code. Now you can take advantage of all the

functions and classes you defined earlier and bring them together to accomplish the

higher-order optimization task. Consequently, your final code will be highly compact,

but it will generate the same interesting plots of loss and accuracy over epochs for a

variety of accuracy threshold values and DNN architectures (neuron counts).

Chapter 5 Modular and Productive Deep Learning Code

124

This will give you the ability to use a minimal amount of code to produce visual

analytics about the choice of performance metric (classification accuracy in this case)

and DNN architecture. This is the first step towards building an optimized machine

learning system.

Generate a few cases for investigation:

from itertools import product

accuracy_desired = [0.85,0.9,0.95]

num_neurons = [16,32,64,128]

cases = list(product(accuracy_desired,num_neurons))

print("So, the cases we are considering are as follows...\n")

for i,c in enumerate(cases):

 print("Accuracy target {}, number of neurons: {}".format(c[0],c[1]))

 if (i+1)%4==0 and (i+1)!=len(cases):

 print("-"*50)

This code generates the cases shown in Figure 5-9.

Figure 5-9.  Some representative cases are generated for the optimization task

Chapter 5 Modular and Productive Deep Learning Code

125

The final analytics/optimization code is succinct and easy to follow for a high-

level user who does not need to know the complexity of Keras model building or

callbacks classes. This is the core principle behind OOP, the abstraction of the layers of
complexity, which you are able to accomplish for your deep learning task.

Note how you pass on the print_msg=False to the class instance. While you need

basic printing of the status for the initial check/debug, you should execute the analysis

silently for the optimization task. If you did not have this argument in your class

definition, you would not have a way to stop printing debugging messages:

for c in cases:

 # A mycallback class with the specific accuracy target

 callbacks = myCallback(c[0], print_msg=False)

 # Build a model with a specific number of neurons

 model = build_model(num_layers=1,architecture=[c[1]])

 # Compile and train the model with the callback class.

 # Choose suitable batch size and a max epoch limit

 model = compile_train_model(model, x_train,y_train,callbacks=callbacks,

 batch_size=32,epochs=30)

 # A suitable title string

 title = "Loss and accuracy over the epochs for\naccuracy threshold \

 {} and number of neurons {}".format(c[0],c[1])

 # Use the plotting function, pass on the accuracy target,

 # trained model, and the custom title string

 plot_loss_acc(model,target_acc=c[0],title=title)

Some representative results are shown in Figure 5-10; they are automatically

generated by executing the code block above. It clearly shows how with a minimal

amount of high-level code you can generate visual analytics to judge the relative

performance of various neural architectures for various levels of performance metrics.

This enables a user, without tweaking the lower-level functions, to easily make a

judgment on the choice of a model as per the desired accuracy and complexity.

Chapter 5 Modular and Productive Deep Learning Code

126

Figure 5-10.  Representative results for various model architecture (neuron counts
per hidden layer) and accuracy targets

Also, note the custom titles for each plot. These titles clearly enunciate the target

performance and the complexity of the neural net, thereby making the analytics easy. It was

a small addition to the plotting utility function, but this shows the need for careful planning

while creating such functions. If you had not planned for such an argument to the function,

it would not have been possible to generate a custom title for each plot. This careful
planning of the API (application program interface) is part and parcel of good OOP.

�Turn the Scripts into a Utility Module
So far, you may be working with a Jupyter notebook, but you may want to turn this

exercise into a neat Python module that you can import from any time you want. Just

like you write from matplotlib import pyplot, you can import these utility functions

(Keras model build, train, and plotting) anywhere. The idea is shown in Figure 5-11.

Chapter 5 Modular and Productive Deep Learning Code

127

Figure 5-11.  Building a deep learning utility module (for your own use)

�Summary of Good Practices
You just learned some good practices, borrowed from OOP, to apply to a DL analysis

task. Almost all of them may seem trivial to seasoned software developers. However,

this chapter is designed for budding data scientists who may not have that structured

programming background but need to understand the importance of imbuing these

good practices in their ML workflow.

At the risk of repeating myself, let me summarize the good practices here:

Whenever you get a chance, turn repetitive code blocks into utility
functions.

Think very carefully about the API of the function (i.e., the

minimal set of arguments required and how they will serve a

purpose for a higher-level programming task).

Don’t forget to write a docstring for a function, even if it is a one-

liner description.

If you start accumulating many utility functions related to the

same object, consider turning that object to a class and the utility

functions as methods.

Chapter 5 Modular and Productive Deep Learning Code

128

Extend class functionality whenever you get a chance to

accomplish complex analysis using inheritance.

Don’t stop at Jupyter notebooks. Turn them into executable scripts

and put them in a small module. Build the habit of modularizing

your work so that it can be easily reused and extended by anyone,

anywhere.

In the next chapter, you will try your hand at building your own ML estimator class

based on these principles. For a taste of DL utility functions and a neural net trainer

class, please read “Deep learning with Python” at https://github.com/tirthajyoti/

Deep-learning-with-Python/tree/master/utils.

�Streamline Image Classification Task Flow
Image classification is one of the most common tasks in a data science workflow

involving deep learning tools. Streamlining or automating such a task is, therefore,

a prime example of the automation and modularization that I have been preaching

thus far.

For this specific task, a data scientist may desire a single function to automatically

pull images from a specified directory on the disk (or from a network address) and

give back a fully trained neural net model, ready to be used for prediction. Therefore,

in this section, you will explore how to use a couple of utility methods from the

Keras (TensorFlow) API to streamline the training of such models (specifically for a

classification task) with built-in data preprocessing.

Put simply, you want to

•	 Grab some data.

•	 Put it inside a directory/folder arranged by classes.

•	 Train a neural net model with minimum code/fuss.

In the end, you aim to write a single utility function that can accept just the name/

address of the folder where the training images are stored and give back a fully trained

CNN model. The idea is visually illustrated in Figure 5-12.

Chapter 5 Modular and Productive Deep Learning Code

https://github.com/tirthajyoti/Deep-learning-with-Python/tree/master/utils
https://github.com/tirthajyoti/Deep-learning-with-Python/tree/master/utils
https://github.com/tirthajyoti/Deep-learning-with-Python/tree/master/utils
https://github.com/tirthajyoti/Deep-learning-with-Python/tree/master/utils

129

Figure 5-12.  Streamlining (and simplifying) the image classification task

�The Dataset
Let’s use a dataset consisting of 4000+ images of flowers for this demo. The dataset can

be downloaded from the Kaggle website here: . The data collection is based on Flickr,

Google, and Yandex images. The pictures are divided into five classes:

•	 Daisy

•	 Tulip

•	 Rose

•	 Sunflower

•	 Dandelion

For each class, there are about 800 photos. The photos are not particularly high

resolution (about 320 x 240 pixels each). They are not reduced to a single size since they

have different proportions. However, they come organized neatly in five directories

named with the corresponding class labels. You can take advantage of this organization

and apply the Keras methods to streamline the training of your convolutional network.

The full Jupyter notebook is in the GitHub repository. I will use selected snapshots of

the code in this section to show the important parts for illustration.

Chapter 5 Modular and Productive Deep Learning Code

130

Should you use a GPU? I t is recommended to run this script on a GPU. You will
build a convolutional neural net (CNN) with five convolutional layers; consequently,
the training process with thousands of images can be computationally intensive
and slow if you are not using some sort of GPU. For the Flowers dataset, a single
epoch took ~1 minute on my laptop with a NVidia GTX 1060 Ti GPU (6GB Video
RAM), Core i-7 8770 CPU, and 16GB DDR4 RAM.

For illustration, Figure 5-13 shows how they are stored on a local hard disk. Some

sample images are in Figure 5-14.

Figure 5-13.  Stored Flowers image data

Chapter 5 Modular and Productive Deep Learning Code

131

Figure 5-14.  Sample flower images. Note the difference is shape and resolution

�Building the Data Generator Object
This is where the actual magic happens. The official description of the

ImageDataGenerator class says "Generate batches of tensor image data with real-time

data augmentation. The data will be looped over (in batches)."

Basically, it can be used to augment image data with a lot of built-in preprocessing

such as scaling, shifting, rotation, noise, whitening, etc. Right now, you’ll just use the

rescale attribute to scale the image tensor values between 0 and 1. Here is a useful

article on this aspect of the class: “How to increase your small image dataset using Keras

ImageDataGenerator”(https://medium.com/@arindambaidya168/https-medium-com-

arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad).

But the real utility of this class for the current demonstration is the super useful

method named flow_from_directory, which can pull image files one after another from

the specified directory. Note that this directory must be the top-level directory where

all the subdirectories of individual classes can be stored separately. The flow_from_

directory method automatically scans through the subdirectories and sources the

images along with their appropriate labels.

Chapter 5 Modular and Productive Deep Learning Code

https://medium.com/@arindambaidya168/https-medium-com-arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad
https://medium.com/@arindambaidya168/https-medium-com-arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad
https://medium.com/@arindambaidya168/https-medium-com-arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad
https://medium.com/@arindambaidya168/https-medium-com-arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad

132

You can specify the class names (as you did here with the classes argument) but this

is optional. However, you will later see how this can be useful for selective training from

a large trove of data.

Another useful argument is the target_size, which lets you resize the source images

to a uniform size of 200 x 200, no matter the original size of the image. This is some cool

image-processing right there with a simple function argument.

You can also specify the batch size. If you leave batch_size unspecified, by default,

it will be set to 32. Choose the class_mode as categorical since you are doing a multi-

class classification here. Here is the code snippet:

batch_size = 128

from tf.keras.preprocessing.image import ImageDataGenerator

All images will be rescaled by 1./255

train_datagen = ImageDataGenerator(rescale=1/255)

Flow training images in batches of 128

All images will be resized to 200 x 200

train_generator = train_datagen.flow_from_directory(

 '../Data//flowers-recognition',

 target_size=(200, 200),

 batch_size=batch_size,

 classes = ['daisy','dandelion','rose','sunflower','tulip'],

 class_mode='categorical')

When you run this code, the Keras function scans through the top-level directory,

finds all the image files, and automatically labels them with the proper class (based on

the subdirectory they were in). The working of this utility is shown in Figure 5-15 with

respect to the flowers’ dataset.

Chapter 5 Modular and Productive Deep Learning Code

133

Figure 5-15.  The ImageDataGenerator object working on the Flower dataset

What’s more interesting is that this is also a Python generator object (https://

realpython.com/introduction-to-python-generators/). That means it will be used

to yield data one by one during the training. This significantly reduces the problem of

dealing with a very large dataset whose contents cannot be fitted into memory at one go.

�Building the Convolutional Neural Net Model
For the sake of brevity, I will not delve deep into the code behind the CNN model. In

brief, it consists of five convolutional layers/max-pooling layers and 128 neurons at the

end followed by a 5-neuron output layer with a SoftMax activation for the multi-class

classification. You use the RMSprop optimizer with an initial learning rate of 0.001. The

model summary is shown in Figure 5-16. It has in excess of 200,000 trainable parameters.

Chapter 5 Modular and Productive Deep Learning Code

https://realpython.com/introduction-to-python-generators/
https://realpython.com/introduction-to-python-generators/

134

Figure 5-16.  Summary of the CNN model used for flower classification

�Training with the fit_generator Method
I discussed the cool things the train_generator object does with the flow_from_

directory method and with its arguments. Let’s utilize this object in the fit_generator

method of the CNN model, defined above.

Note the steps_per_epoch argument to fit_generator. Since train_generator

is a generic Python generator, it never stops and therefore the fit_generator will not

know where a particular epoch ends and the next one starts. You have to let it know the

steps in a single epoch. This is, in most cases, the length of the total training sample

divided by the batch size. In the previous section, you found out the total sample size

Chapter 5 Modular and Productive Deep Learning Code

135

as total_sample. Therefore, in this particular case, the steps_per_epoch is set to

int(total_sample/batch_size), which is 34, so you will see 34 steps per epoch in the

training log below.

history = model.fit_generator(

 train_generator,

 steps_per_epoch=int(total_sample/batch_size),

 epochs=epochs,

 verbose=1)

When you execute, the model trains and you can check the accuracy/loss with the

usual plot code (Figure 5-17).

Figure 5-17.  Representative loss/accuracy plots of the CNN training task

�Encapsulate All of This in a Single Function
What have you accomplished so far?

You have been able to utilize the Keras ImageDataGenerator and fit_generator

methods to pull images automatically from a single directory, label them, resize and

scale them, and flow them one by one (in batches) for training a neural network.

Can you encapsulate all of this in a single function?

One of the central goals of making useful software/computing systems is abstraction

(i.e., hiding the gory details of internal computation and data manipulation, and

presenting a simple and intuitive working interface/API to the user). Towards that goal,

let’s encapsulate the process you followed above into a single function. Figure 5-18

shows the idea.

Chapter 5 Modular and Productive Deep Learning Code

136

Figure 5-18.  Encapsulate the core components in a single function. The user
supplies a directory name and gets back a trained model

When you are designing a high-level API, you should aim for more generalization

than what is required for a particular demo. With that in mind, you can think of

providing additional arguments to this function to make it applicable to other image

classification cases (you will see an example soon).

Specifically, you provide the following arguments in the function:

•	 train_directory: The directory where the training images are stored

in separate folders. These folders should be named as per the classes.

•	 target_size: Target size for the training images. A tuple such as

(200,200).

•	 classes: A Python list with the classes for which you want the

training to happen. This forces the generator to choose specific files

from the train_directory and not look at all the data.

•	 batch_size: Batch size for training

•	 num_epochs: Number of epochs for training

•	 num_classes: Number of output classes to consider

•	 verbose: Verbosity level of the training, passed to the fit_

generator method

Of course, you could have provided additional arguments corresponding to the

whole model architecture or optimizer settings. This chapter is not focused on such

Chapter 5 Modular and Productive Deep Learning Code

137

issues, so let’s keep it compact. The full code is in the GitHub repo. Figure 5-19 shows the

docstring portion to emphasize on the point of making it a flexible API.

Figure 5-19.  Snapshot of the single utility function that streamlines the
classification task

�Testing the Utility Function
You test the train_CNN function by simply supplying a folder/directory name and getting

back a trained model that can be used for predictions. Suppose that you want to train

only for daisy, rose, and tulip classes and ignore the other two flowers’ data. You

simply pass on a list to the classes argument. In this case, you must set the num_classes

argument to 3.

You will notice how the steps per epoch are automatically reduced to 20 as the

number of training samples is less than the case above. Also, note that verbose is set to 0

by default in the function above, so you need to specify explicitly verbose=1 if you want

to monitor the progress of the training epoch-wise.

Basically, you can get a fully trained CNN model with two lines of code now!

Define the folder

train_directory = "../Data//flowers-recognition/"

Get the model

Chapter 5 Modular and Productive Deep Learning Code

138

trained_model=train_CNN(train_directory=train_directory,

 classes=['daisy','rose','tulip'],

 num_epochs=30,

 num_classes=3,

 verbose=1)

�Does It Work (Readily) for Another Dataset?
This is an acid test for the utility of such a function: can we just take it and apply to

another dataset without much modification? Let’s find out.

A rich yet manageable image classification dataset is Caltech-101 (www.vision.

caltech.edu/Image_Datasets/Caltech101/). By manageable, I mean not as large

as the famous ImageNet (www.image-net.org/about.php) database, which requires

massive hardware infrastructure to train (and is therefore out of bounds for testing

ideas quickly on your laptop), yet diverse enough for practicing and learning the tricks

of convolutional neural networks. It is an image dataset of diverse types of objects

belonging to 101 categories. There are 40 to 800 images per category. Most categories

have about 50 images. The size of each image is roughly 300 x 200 pixels. Some categories

are shown in Figure 5-20.

Figure 5-20.  The Caltech-101 image dataset

Who built Caltech-101? T he Caltech-101 dataset was built by none other than
famous Stanford professor Dr. Fei Fei Li (https://profiles.stanford.edu/
fei-fei-li) and her colleagues (Marco Andreetto and Marc Aurelio Ranzato)
at Caltech in 2003 when she was a graduate student there. We can surmise,
therefore, that Caltech-101 was a direct precursor for her work on ImageNet.

Chapter 5 Modular and Productive Deep Learning Code

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.image-net.org/about.php
https://profiles.stanford.edu/fei-fei-li
https://profiles.stanford.edu/fei-fei-li

139

Download the dataset and uncompress the contents in the same Data folder as

before. The directory should look like Figure 5-21.

Figure 5-21.  Directory of the stored Caltech-101 images

So, you have what you want: a top-level directory with subdirectories containing

training images. And then, the same two lines as before:

Define the folder

train_directory = "../Data/101_ObjectCategories/"

Get the model

model_caltech101 = train_CNN(train_directory=train_directory,

 classes=['crab','cup'],

 batch_size=4,

 num_epochs=25,

 num_classes=2,

 verbose=1)

All you did is to pass on the address of this directory to the function and choose the

categories of the images you want to train the model for. Let’s say you want to train the

model for classification between cup and crab. You can just pass their names as a list to

the classes argument as before.

Also, note that you may have to reduce the batch_size significantly for this dataset

as the total number of training images will be much lower compared to the Flowers

dataset, and if the batch_size is higher than the total sample, you will have steps_per_

epoch equal to 0 and that will create an error during training.

Chapter 5 Modular and Productive Deep Learning Code

140

Voila! The function finds the relevant images (130 of them in total) and trains the

model, 4 per batch, so 33 steps per epoch. The result is shown in Figure 5-22.

Figure 5-22.  Training happening with Caltech-101 images (two classes, cup
and crab)

You saw how easy it was to just pass on the training images’ directory address to the

function and train a CNN model with your chosen classes. But is the model any good?

Let’s find out by testing it with random pictures downloaded from the Internet. Let’s say

you downloaded images of crabs and cups. You do some rudimentary image processing

(resizing and dimension expansion) to match the model and get the output objects,

img_crab and img_cup. Then you test the model with these images.

model_caltech101.predict(img_crab)

>> array([[1., 0.]], dtype=float32)

The model predicted the class correctly for the crab test image.

And for the cup image,

model_caltech101.predict(img_cup)

>> array([[0., 1.]], dtype=float32)

You can download any random image and test the performance of your model. If not

satisfied, you should train the model by changing the architecture and hyperparameters

using the modularized function.

The main point, however, is that you were able to train a CNN model with just
the same two lines of code for a completely different dataset than you started with.

This is the power of modularizing code and building a generic API that works with a

wide variety of data sources. This saves valuable time and makes the code reusable. The

edifice of productive data science stands on these foundational elements.

Chapter 5 Modular and Productive Deep Learning Code

141

�Other Extensions
So far, inside the fit_generator you only had a train_generator object for training. But

what about a validation set? It follows exactly the same concept as a train_generator.

You can randomly split from your training images a validation set and set it aside in a

separate directory (the same subdirectory structures as the training directory) and you

should be able to pass that on to the fit_generator function.

Want to directly work with a pandas DataFrame that stores your image? No problem.

There is a method called flow_from_dataframe for the ImageDataGenerator class where

you can pass on the names of the image files as contained in a pandas DataFrame and

the training can proceed.

You are strongly encouraged to check out and extend these ideas as you see fit for

your applications.

�Activation Maps in a Few Lines of Code
DL models use millions of parameters and create extremely complex and highly

nonlinear internal representations of the images or datasets that are fed to these

models. They are, therefore, often called the perfect black-box ML techniques (www.

wired.com/story/inside-black-box-of-neural-network/) (Figure 5-23). We can

get highly accurate predictions from them after we train them with large datasets, but

we have little hope of understanding the internal features and representations (www.

technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/) of the data

that a model uses to classify a particular image into a category. In short, the black-box

problem of deep learning is a powerful predictive power without an intuitive and easy-to-

follow explanation.

Figure 5-23.  The black-box problem of deep learning (source: CMU ML blog,
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-
variational-information-bottleneck-approach/).

Chapter 5 Modular and Productive Deep Learning Code

http://www.wired.com/story/inside-black-box-of-neural-network/
http://www.wired.com/story/inside-black-box-of-neural-network/
http://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/
http://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/

142

This does not bode well because we humans are visual creatures (www.seyens.

com/humans-are-visual-creatures/). Millions of years of evolution have gifted us

an amazingly complex pair of eyes (www.relativelyinteresting.com/irreducible-

complexity-intelligent-design-evolution-and-the-eye/) and an even more

complex visual cortex (www.neuroscientificallychallenged.com/blog/know-your-

brain-primary-visual-cortex), and we use these organs to make sense of the world.

The scientific process starts with observation, and that is almost always synonymous

with vision. In business, only what we can observe and measure can we control and

manage effectively. Seeing/observing is how we start to make mental models (https://

medium.com/personal-growth/mental-models-898f70438075) of worldly phenomena,

classify objects around us, separate a friend from a foe, and so on.

Activations maps have been proposed to help visualize the inner workings of

complex CNN models. Let’s talk about them.

�Activation Maps
Several approaches for understanding and visualizing CNNs have been developed in the

literature, partly as a response to the common criticism that the learned internal features

in a CNN are not interpretable. The most straightforward visualization technique is to

show the activations of the network during the forward pass.

At a simple level, activation functions help decide whether a neuron should be

activated. This helps determine whether the information that the neuron is receiving

is relevant for the input. The activation function is a non-linear transformation that

happens over an input signal, and the transformed output is sent to the next neuron.

Activation maps are just a visual representation of these activation numbers at

various layers of the network as a given image progresses through as a result of various

linear algebraic operations. One can deduce the workings of the network and design

limitations from these maps. For ReLU activation-based networks, the activations

usually start out looking relatively blobby and dense, but as the training progresses the

activations usually become sparser and more localized. One design pitfall that can be

easily caught with this visualization is that some activation maps may be all zero for

many different inputs, which can indicate dead filters and can be a symptom of high

learning rates.

Chapter 5 Modular and Productive Deep Learning Code

http://www.seyens.com/humans-are-visual-creatures/
http://www.seyens.com/humans-are-visual-creatures/
http://www.relativelyinteresting.com/irreducible-complexity-intelligent-design-evolution-and-the-eye/
http://www.relativelyinteresting.com/irreducible-complexity-intelligent-design-evolution-and-the-eye/
http://www.neuroscientificallychallenged.com/blog/know-your-brain-primary-visual-cortex
http://www.neuroscientificallychallenged.com/blog/know-your-brain-primary-visual-cortex
https://medium.com/personal-growth/mental-models-898f70438075
https://medium.com/personal-growth/mental-models-898f70438075

143

However, visualizing these activation maps is a non-trivial task, even after you have

trained your neural net well and are making predictions out of it. How do you easily

visualize and show these activation maps for a reasonably complicated CNN with just a

few lines of code?

�Activation Maps with a Few Lines of Code
In the previous section, I showed how to write a single compact function to obtain a fully

trained CNN model by reading image files one by one automatically from the disk. Now

you’ll you use this function along with a nice little library called Keract, which makes the

visualization of activation maps very easy. It is a high-level accessory library of Keras to

show useful heatmaps and activation maps on various layers of a neural network.

Therefore, for this code, you need to use a couple of utility functions from the

module you built earlier, train_CNN_keras and preprocess_image, to make a random

RGB image compatible for generating the activation maps.

You’ll use the same Caltech-101 dataset discussed in the last section. However, you

are training only with five categories of images: crab, cup, brain, camera, and chair.

�Training

Training is done with a few lines of code only:

train_directory = "../Data/101_ObjectCategories/"

target_size=(512,512)

batch_size=4

classes = ['crab','cup','brain','camera','chair']

num_classes = len(classes)

num_epochs=10

model = train_CNN_keras(train_directory=train_directory,

 num_epochs=num_epochs,

 target_size=target_size,

 classes = classes,

 batch_size=batch_size,

 num_classes=num_classes)

To generate the activations, you can choose a random image of a human brain from

the Internet or any other source. Store the test image as the file brain-1.jpg.

Chapter 5 Modular and Productive Deep Learning Code

144

�Activation

Another couple of lines of code generate the activation:

from keract import get_activations

The image path

img_path = '../images/brain-1.jpg'

Preprocessing the image for the model

img = preprocess_image(img_path=img_path,

 model=model,

 resize=target_size)

Generate the activations

activations = get_activations(model, img)

You get back a dictionary with layer names as the keys and NumPy arrays as the

values corresponding to the activations. Figure 5-24 shows where the activation arrays

have varying lengths corresponding to the size of the filter maps of that particular

convolutional layer.

Figure 5-24.  Activation map arrays are stored (the variable length corresponding
to the size of the convolutional filter at that layer)

Chapter 5 Modular and Productive Deep Learning Code

145

Thereafter, two lines of code for displaying the activation maps:

from keract import display_activations

display_activations(activations, save=False)

You get to see activation maps layer by layer. Figure 5-25 shows first convolutional

layer (the 16 images corresponding to the 16 filters). Your actual image may look

different based on what you use as the test image, but the idea of activation layers

visualization is clearly demonstrated.

Figure 5-25.  Activation maps for the first convolution layer

Chapter 5 Modular and Productive Deep Learning Code

146

Figure 5-26 shows layer number 2 (the 32 images corresponding to the 32 filters).

Figure 5-26.  Activation maps for the second convolution layer

For this model, there are 5 convolutional layers (followed by max pooling layers), so

you get back 10 sets of images. For brevity, I won’t show the rest, but you are encouraged

to explore and see them by playing with the Jupyter notebook.

Chapter 5 Modular and Productive Deep Learning Code

147

�Another Library for Web-Based UI

Another beautiful library for activation visualization is called Quiver. However, this one

is built on the Python microserver framework Flask and displays the activation maps

on a browser port rather than inside your Jupyter Notebook. It also needs a fully trained

Keras model as input. So, you can easily use the utility function described in the previous

section and try this library for interactive visualization of activation maps.

�How Is This Productive Data Science?
In this chapter, you learned how by using only a few lines of code (utilizing compact

functions from a special module and a nice little accessory library to Keras) you can train

a CNN, generate activation maps, and display them layer by layer—from scratch. This

gives you the ability to train CNN models (simple to complex) from any image dataset (as

long as you can arrange them in a simple directory format) and look inside their guts for

any test image you want.

And once you build the necessary utility modules and the activation map scripts,

you can reuse and apply them to a wide variety of image data. This leads to a fast and

efficient exploration of a large set of images for all kinds of applications. This is why this

kind of approach integrates with the story of productive and efficient data science.

�Hyperparameter Search with Scikit-learn
Keras is one of the most popular go-to Python libraries/APIs for beginners and

professionals in deep learning. Although it started as a stand-alone project by François

Chollet, it has been integrated natively into TensorFlow starting in version 2.0. Read

more about it here (https://keras.io/about/):. As per its own official doc, it is “an

API designed for human beings, not machines” as it “follows best practices for reducing

cognitive load.”

Now, hyperparameter tuning is one of the situations where the cognitive load is

sure to increase. DL models have a great many hyperparameters to begin with: learning

rate, decay rate, activation function, dropout rate, momentum, batch size, and more.

Optimizing a DL model for best performance and computing cost depends critically on

the right choice of these hyperparameters. Therefore, data scientists spend a lot of time

and effort tuning them manually or via some automated script or optimization strategy/

framework.

Chapter 5 Modular and Productive Deep Learning Code

https://keras.io/about/

148

Although there are many supporting libraries and frameworks for handling it, for

simple grid searches, Keras offers a beautiful API to integrate with our favorite scikit-

learn library. In this section, we will talk about it.

�Scikit-learn Enmeshes with Keras
Almost every Python machine-learning practitioner is intimately familiar with the scikit-

learn library and its beautiful API with simple methods (www.tutorialspoint.com/

scikit_learn/scikit_learn_estimator_api.htm) like fit, get_params, and predict.

The library also offers extremely useful methods for cross-validation, model selection,

pipelining, and grid search abilities. Data scientists use these tools for classical ML

problems every day. But can you use the same APIs for a deep learning problem?

It turns out that Keras offer a couple of special wrapper classes, both for regression

and classification problems, to utilize the full power of these APIs that are native to scikit-

learn. In this section, you will work using a simple k-fold cross-validation (https://

medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833) and

exhaustive grid search with a Keras classifier (www.tensorflow.org/api_docs/

python/tf/keras/wrappers/scikit_learn/KerasClassifier) model. It utilizes an

implementation of the scikit-learn classifier API for Keras.

�Data and (Preliminary) Keras Model
First, you create a simple function to synthesize and compile a Keras model with some

tunable arguments built in:

from tf.keras.models import Sequential

from tf.keras.layers import Dense

def create_model():

 # create model

 model = Sequential()

 model.add(Dense(30, input_dim=8, activation='relu'))

 model.add(Dense(15, activation='relu'))

 model.add(Dense(1, activation='sigmoid'))

 # Compile model

 model.compile(loss='binary_crossentropy',

Chapter 5 Modular and Productive Deep Learning Code

http://www.tutorialspoint.com/scikit_learn/scikit_learn_estimator_api.htm
http://www.tutorialspoint.com/scikit_learn/scikit_learn_estimator_api.htm
https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833
https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833
http://www.tensorflow.org/api_docs/python/tf/keras/wrappers/scikit_learn/KerasClassifier
http://www.tensorflow.org/api_docs/python/tf/keras/wrappers/scikit_learn/KerasClassifier

149

 optimizer='adam',

 metrics=['accuracy'])

 return model

You tackle a simple binary classification task using the popular Pima Indians

Diabetes dataset (www.kaggle.com/uciml/pima-indians-diabetes-database). This

dataset is originally from the National Institute of Diabetes and Digestive and Kidney

Diseases (www.niddk.nih.gov/). The objective of the dataset is to diagnostically predict

whether or not a patient has diabetes, based on certain diagnostic measurements

included in the dataset.

You do some minimal data preprocessing including scaling the feature data with

MinMaxScaler from scikit-learn. You can pass this X_scaled vector to the special wrapper

class you will create.

�The KerasClassifier Class
This is the special wrapper class from Keras that enmeshes the scikit-learn classifier

API with Keras parametric models. You can pass on various model parameters

corresponding to the create_model function, and other hyperparameters like epochs

and batch size to this class. Here is the code:

from tf.keras.wrappers.scikit_learn import KerasClassifier

model = KerasClassifier(build_fn=create_model,

 epochs=10,

 batch_size=32,

 verbose=0)

Note how you pass on your model creation function as the build_fn argument. This

is an example of using a function as a first-class object in Python (https://dbader.org/

blog/python-first-class-functions) where you can pass on functions as regular

parameters to other classes or functions.

For now, you have fixed the batch size and the number of epochs you want to run

your model for because you just want to run cross-validation on this model. Later, you

will treat them as hyperparameters and do a full grid search over them to find the best

combination.

Chapter 5 Modular and Productive Deep Learning Code

http://www.kaggle.com/uciml/pima-indians-diabetes-database
http://www.niddk.nih.gov/
https://dbader.org/blog/python-first-class-functions
https://dbader.org/blog/python-first-class-functions

150

�Cross-Validation with the Scikit-learn API
Here is the code to build a 10-fold cross-validation sweep with the Keras model. First,

you must import the estimators from the model_selection module of scikit-learn.

Thereafter, you can simply run the model with this code, where you pass on the

KerasClassifier object you built earlier along with the feature and target vectors.

The important parameter here is the cv where you pass the kfold object. This tells the

cross_val_score estimator to run the Keras model with the data provided, in a 10-fold

stratified cross-validation setting.

from sklearn.model_selection import StratifiedKFold

from sklearn.model_selection import cross_val_score

num_folds = 10

kfold = StratifiedKFold(n_splits=num_folds,

 shuffle=True)

cv_results = cross_val_score(model,

 X_scaled, Y,

 cv=kfold,

 verbose=2)

The output variable cv_results is a NumPy array consisting of all of the accuracy

scores. Accuracy is the metric you coded in your model compiling process. Obviously,

you could have chosen any other classification metric like precision or recall, and in that

case, that metric would have been calculated and stored in the cv_results array.

You can easily calculate the average and standard deviation of the 10-fold CV run

to estimate the stability of the model predictions. This is one of the primary utilities of a

cross-validation run and now you can gauge the stability of any Keras model using this

approach.

�Grid Search with a Updated Model
In this example, you will search over the following hyperparameters:

•	 Activation function

•	 Optimizer type

•	 Initialization method

Chapter 5 Modular and Productive Deep Learning Code

151

•	 Batch size

•	 Number of epochs

However, for this to work, you must integrate the first three of these parameters into

your model definition code:

def create_model_grid(activation = 'relu',

 optimizer='rmsprop',

 init='glorot_uniform'):

 # create model

 model = Sequential()

 if activation=='relu':

 model.add(Dense(12, input_dim=8,

 kernel_initializer=init, activation='relu'))

 model.add(Dense(8, kernel_initializer=init, activation='relu'))

 if activation=='tanh':

 model.add(Dense(12, input_dim=8,

 kernel_initializer=init, activation='tanh'))

 model.add(Dense(8, kernel_initializer=init, activation='tanh'))

 if activation=='sigmoid':

 model.add(Dense(12, input_dim=8,

 kernel_initializer=init, activation='sigmoid'))

 model.add(Dense(8, kernel_initializer=init, activation='sigmoid'))

 model.add(Dense(1, kernel_initializer=init, activation='sigmoid'))

 # Compile model

 model.compile(loss='binary_crossentropy',

 optimizer=optimizer,

 metrics=['accuracy'])

 return model

Then, you create the same KerasClassifier object as before but call it model_grid:

model_grid = KerasClassifier(build_fn=create_model_grid, verbose=0)

Chapter 5 Modular and Productive Deep Learning Code

152

Make the exhaustive hyperparameter search space size as 3 × 3 × 3 × 3 × 3 = 243.

Note that the actual number of Keras runs will also depend on the number of cross-

validation you choose, as cross-validation will be used for each of these combinations.

In total, there will be 729 fittings of the model, 3 cross-validation runs for each of the

243 parametric combinations. If you don’t like the full grid search, you can always try a

randomized grid search.

Figure 5-27 shows the choices for this exhaustive grid search.

Figure 5-27.  Exhaustive grid search options

You must create a dictionary of search parameters and pass it on to the scikit-learn

GridSearchCV estimator:

from sklearn.model_selection import GridSearchCV

param_grid = dict(activation = activations,

 optimizer = optimizers,

 epochs = epochs,

 batch_size = batches,

 init = initializers)

grid = GridSearchCV(estimator = model_grid,

 param_grid = param_grid,

 cv = 3,

 verbose = 2,)

You set the cv = 3 to reduce the time for the run. By default, it will be set to 5 by

scikit-learn if you leave out that argument.

Chapter 5 Modular and Productive Deep Learning Code

153

What verbosity levels to choose? I t is advisable to set the verbosity of
GridSearchCV to 2 to keep visual track of what’s going on. Remember to keep
verbose=0 for the main KerasClassifier class, though, as you probably don't
want to display all the gory details of training individual epochs.

After this, just fit with the scaled feature data and labels!

grid_result = grid.fit(X_scaled, Y)

How does the result look? It is just as expected from a standard scikit-learn estimator,

with all the parameters internally stored for exploration (Figure 5-28).

Figure 5-28.  Fitted grid search estimator with all the parameters

You can find out the best combination with the best_score_ and best_params_

attributes from the fitted estimator. A snapshot is shown in Figure 5-29.

Figure 5-29.  Snapshot of best hyperparameter choice printed

Chapter 5 Modular and Productive Deep Learning Code

154

You did the initial 10-fold cross-validation using ReLU activation and Adam optimizer

and got an average accuracy of 0.691. After doing an exhaustive grid search, you discover

that a tanh activation and a rmsprop optimizer could have been better choices for this

problem.

It is also quite straightforward to create a pandas DataFrame from the grid search

results and analyze them further. You include the mean and standard dev scores in

this table.

import pandas as pd

params = grid_result.cv_results_['params']

d = pd.DataFrame(params)

d['Mean'] = grid_result.cv_results_['mean_test_score']

d['Std. Dev'] = grid_result.cv_results_['std_test_score']

The DataFrame looks like Figure 5-30.

Figure 5-30.  DataFrame created from the grid search parameters

Chapter 5 Modular and Productive Deep Learning Code

155

You can create targeted visualizations from this dataset to examine which

hyperparameters improve the performance and reduce the variation in the accuracy

metric. Figure 5-31 shows some examples.

Figure 5-31.  Visualizations of the grid search results

Chapter 5 Modular and Productive Deep Learning Code

156

�Summary
This chapter covered a variety of topics centered on the idea of making commonly used

deep learning code and tasks more productive and efficient. I carried over the idea

of modularizing the code from the previous chapter and showed hands-on examples

with useful model building and plot functions with the Keras framework. A powerful

construct called the Keras callback was also discussed in this context.

Next, I discussed the idea of streamlining one of the most common DL tasks that

a data scientist can encounter: image classification. The goal was to arrive at a single

utility function that presents a very simple API to the user. You just pass on a folder

name to this function, and it will return a fully trained conv net model by processing all

the images in that folder. Not only did you build this function step by step, but you also

demonstrated the utility of such an API by applying it to a completely different dataset.

In the next section, you further utilized this function and integrated it with a special

library that can extract and visualize activation maps for the various convolution layers

of the DL model. Basically, you demonstrated how to visualize the inner workings of a

complex DL model with only a few lines of code. Together, these two sections embodied

the true journey towards productive and efficient data science involving deep learning.

Finally, you explored the topic of making hyperparameter search easy and seamless.

Although there are many dedicated libraries and frameworks for this task, you saw a

simple and intuitive approach using the grid search tool from scikit-learn and some

special wrapper classes from Keras. It also demonstrated how two of the most popular

ML libraries, Keras and scikit-learn, can work together in a seamless manner.

Making deep learning code and products fast and efficient is a huge topic by itself.

There are countless approaches and research directions focusing on this. This chapter

only aims to induce some fundamental ideas so that you can explore them further.

Chapter 5 Modular and Productive Deep Learning Code

157

CHAPTER 6

Build Your Own ML
Estimator/Package
I start this chapter with the same assertion as in Chapter 4: data scientists often

come from a background quite removed from traditional computer science/software

engineering, such as physics, biology, statistics, economics, and electrical engineering.

Figure Figure 6-1 confirms this.

Figure 6-1.  Data scientists come from a wide variety of fields and professional
experience. Source: “Where do Data Scientists Come From?” (https://medium.com/
indeed-engineering/where-do-data-scientists-come-from-fc526023ace)

But ultimately data scientists are expected to pick up enough programming/software

engineering skills to be truly impactful for their organization and business. Even if data

scientists are not writing the final production code for the ML platform/service, they are

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_6

https://medium.com/indeed-engineering/where-do-data-scientists-come-from-fc526023ace
https://medium.com/indeed-engineering/where-do-data-scientists-come-from-fc526023ace
https://medium.com/indeed-engineering/where-do-data-scientists-come-from-fc526023ace
https://doi.org/10.1007/978-1-4842-8121-5_6

158

expected to work in a highly integrated fashion with seasoned software development

teams. This is essential to ensure a smooth delivery experience, flawless execution of the

ML product, and, of course, achieve the desired business outcome.

This means that data scientists must learn how to write machine learning code

(whether it is the final model or just some experimental prototype) efficiently.

There must be proper organization and modularization in

their code so that it can interface well with the standard software

engineering tools and techniques.

There must be some amount of automation in their code to

reduce the time to explore, evaluate, and experiment with data

and models.

Data scientists must be comfortable with writing functional
and module tests, incorporating object-oriented principles,

and so on.

Data scientists must also develop the habit of producing good

documentation for their code so that it can be reusable and

readable by other developers.

In Chapters 4 and 5, I touched upon some of these concepts, especially

modularization and OOP principles. This chapter will take you through the journey of

developing a lightweight but useful ML package of your own, so that you can experience

many aspects of producing a complete piece of software for data science. In my

experience, this exercise of writing (and publishing) an ML package teaches several

valuable lessons to any upcoming data scientist.

�Why Develop Your Own ML Package?
There is a very succinct answer to the question posed above: so that others (anywhere in

the world) can use your work and benefit from it.

Imagine that feeling. Your code is not restricted to a standalone Jupyter notebook. It

is properly structured and modularized first, so that you can call the useful methods just

like you do with your favorite Python libraries (e.g., NumPy and pandas). Going beyond

Chapter 6 Build Your Own ML Estimator/Package

159

that, you are packaging the code in the form of a downloadable Python library, so that

anybody in the world can install it with a single pip command and start getting a benefit

from your work. The idea is simply illustrated in Figure 6-2.

Figure 6-2.  From a Jupyter notebook to a PyPi installer package

Some of the steps (and associated learnings) of going through this process are as

follows:

Code organizational thinking: Publishing an open-source

Python package forces a data scientist to plan and organize their

code and modules meticulously.

Writing docstrings: Docstrings are an essential good practice

in a high-quality open-source package where collaboration is

highly welcome. The data scientist will learn the value of the same

in this process. Good docstrings may even lead to high-quality

documentation for the package (generally maintained in websites

such as readthedoc.io).

Unit and functional tests: The importance of tests for good

software development cannot be overemphasized. For data

science, testing brings its own challenges. Package development

will usually include writing a basic suite of test cases. This will add

a fundamentally valuable skill to the data scientist’s repertoire.

GitHub commit and actions: Although not strictly necessary for

publishing an open-source package, it is highly advisable to set up

a GitHub repository and GitHub actions (commands that trigger

based on a code change or commit, for example) for maintaining

and updating the package (e.g., releasing new version or bug fix)

in the long run.

Chapter 6 Build Your Own ML Estimator/Package

160

Discussing all of these aspects is beyond the scope of this book. Therefore, I will

mainly focus on developing the code structure from the ground up. However, there are

plenty of good tutorials on how to write good docstrings or set up GitHub actions for

open-source packages that you are encouraged to explore.

�A Data Scientist’s Example
There are a few tutorials and guides that deal with teaching data scientists the principles

of OOP and modular coding. However, almost all of them cover standard out-of-the-box

OOP examples that do not appeal to a data scientist. Let me show you what I mean.

�An Arithmetic Example
If you are asked to write a program to implement addition, subtraction, multiplication,

and division involving a couple of variables, a and b, what will you most likely do? You

will most likely open up a Jupyter notebook and type the following in a cell, hit Shift-

Enter, and get the result:

a+b

a-b

a*b

a/b

If you like to tidy things up by working with functions, then you may do the following

as well:

def add(a,b):

 return a + b

def subtract(a,b):

 return a - b

...

But will you go as far as defining (complete with an initializer method) a Calc class

and putting these functions inside that class as methods? These are all operations of a

similar nature, and they work on similar data. Why not encapsulate them within a single

higher-order object then? Why not the following code?

Chapter 6 Build Your Own ML Estimator/Package

161

class Calc:

 def __init__(self,a,b):

 self.a = a

 self.b = b

 def add(self):

 return self.a+self.b

 def sub(self):

 return self.a-self.b

 def mult(self):

 return self.a*self.b

 def div(self):

 return self.a/self.b

No, most probably you won’t do this. It does not make sense to do it for this problem

either. But the idea is valid: if you have data and functions (methods, as they are called in

the parlance of OOP) that can be combined logically, then they should be encapsulated

in a class.

But it looks like too much work just to get quick answers to some simple numerical

computations. So, what’s the point? Data scientists are often valued on whether they can

get the right answer to the data problem, not on what elaborate programming constructs

they use in their code.

These kinds of examples are used to teach data scientists about OOP principles.

They are perfectly valid examples and cover all the necessary know-how of writing good

object-oriented Python code. However, the spark is missing as the final product can be

rather pedantic, like an arithmetic calculator.

�Data Scientists Use OOP All the Time
If data scientists are not coding this way, is it not the case that they really don’t need to

use these elaborate programming constructs?

Wrong.

Without consciously being aware, data scientists make heavy use of the benefits of

the OOP paradigm. All the time.

Do you remember plt.plot after import matplotlib.pyplot as plt? Those .
symbols? You have a dash of object-oriented programming right there.

Chapter 6 Build Your Own ML Estimator/Package

162

Or do you remember being happy to learn the cool trick in the Jupyter notebook

of hitting Tab after putting a DOT (.), thereby showing all the functions that can be

associated with an object (Figure 6-3)?

Figure 6-3.  The OOP paradigm makes it easy to access methods and parameters

This example shows adherence to a logical consistency. Without following an OOP

paradigm, we might have to name functions like linear_model_linear_regression_

fit, linear_model_linear_regression_predict, and so on. They wouldn’t be grouped

under a common logical unit.

Why? Because they are different functions and work on a different set of data. While

the fit function expects both training features and targets, predict needs only a test

data set. The fit function is not expected to return anything, while predict is expected

to return a set of predictions.

So, why are they visible under the same drop-down? In spite of being different, they

have the commonality that they can both be imagined to be essential parts of the overall

linear regression process. We expect a linear regression to fit some training data and then

be able to predict for future unseen data. We also expect the linear regression model to

provide some indication about how good the fit was, generally in the form of a single

numeric quantity or score called the coefficient of regression or R². As expected, we see

a function score, which returns exactly that R² number, also hanging around fit and

predict. It is neat and clean. Data, functions, and parameters are cohabitating inside a

single logical unit (Figure 6-4).

Chapter 6 Build Your Own ML Estimator/Package

163

Figure 6-4.  Data, functions, and parameters cohabitating inside a single
logical unit

�How Was It Made?
It was possible because somebody (the developers at the scikit-learn project) thought

about the linear regression as a high-level process and decided what essential actions it

should serve and what critical parameters it should inform its users about. Somebody

made a high-level class called LinearRegression under which all those apparently

disparate functions can be grouped together for easy bookkeeping and enhanced usability.

As data scientists, once you import this class from the library, you just have to create

an instance of the class (called lm). That’s it. All the functions, grouped under the class,

became accessible to you through that newly defined instance. If you are not satisfied

with some of the internal implementation of the functions, you can work on them and

reattach them to the main class after modification. Only the code of the internal function

changes, nothing else. The idea is visually illustrated in Figure 6-5.

Figure 6-5.  Attaching functions and methods to the class as needed

In the following sections, you will examine the step-by-step process and thinking

that goes into making such a useful ML estimator from scratch. You will start with

basic data and parameters, attach methods as needed, and group them under suitable

logical units.

Chapter 6 Build Your Own ML Estimator/Package

164

�Linear Regression Estimator—with a Twist
A traditional introduction to OOP will have plenty of examples using classes such

as animals, sports, and geometric shapes. But for data scientists, why not illustrate

the concepts using the example of an object they use every day in their code: an ML

estimator? It’s just like the LinearRegression object from the scikit-learn library, shown

in the picture above.

Next, you will go through the steps of building a simple linear regression (single or

multivariate) estimator class following the OOP paradigm. Yes, it is the good ol’ linear

regression class. It has the usual fit and predict methods as in the LinearRegression

class from scikit-learn. But it has a twist: it provides many more functionalities. Figure 6-6

shows a sneak peek.

Figure 6-6.  A linear regression estimator with extra statistical functions and plot
utilities

As shown above, this estimator is richer than the scikit-learn estimator in the

sense that it has, in addition to standard fit, predict, and R² score functions, a host of

other utilities that are essential for a linear regression modeling task, especially for

data scientists and statistical modeling folks who not only want to predict but also

would like to

Chapter 6 Build Your Own ML Estimator/Package

165

•	 Measure the goodness of the fit

•	 Verify the assumptions of the linear regression

•	 Check for multicollinearity in the data

•	 Detect outliers

Let’s see how to start building this.

�How Do You Start Building This?
In this section, I will show how to start with the ML estimator and add essential methods.

The next sections will cover adding more utility functions, grouping them, and so on. I

want to note, however, that much of the actual code will be skipped for brevity purposes

and only the essential concepts will be shown with the code snippets. For the complete

code, you can check the Jupyter notebook or the Python script files provided with

the book.

�Base Class Definition
Let’s start with a simple code snippet to define the base class: MyLinearRegression.

Here, self denotes the object itself and __init__ is a special function that is invoked

when an instance of the class is created somewhere in the code. As the name suggests,

__init__ can be used to initialize the class with necessary parameters (if any). Let’s also

add a simple descriptor with the __repr__ method.

import numpy as np

class MyLinearRegression:

 def __init__(self, fit_intercept=True):

 self.coef_ = None

 self.intercept_ = None

 self._fit_intercept = fit_intercept

 def __repr__(self, fit_intercept=True):

 return "I am a Linear Regression model!"

These methods with double underscores (__init__ and __repr__) serve special

purpose inside a Python class and are called dunder methods.

Chapter 6 Build Your Own ML Estimator/Package

166

What are Dunder methods? T hey are magic methods inside a Python class
definition that can help override functionality for built-in functions for custom
classes. They are called so because of the presence of the double underscores in
their names. Some common ones are

__init__: Initializes the class with default parameters and states

__repr__: A generic description of the class

__str__: A string description of some property of the class when one prints it with the print function.

__len__: Returns the length of the class/object when it makes sense (e.g., if the class represents
some kind of collection or array)

Here is a nice article about them: “Dunder/Magic Methods in Python” (www.
section.io/engineering-education/dunder-methods-python/).

Basically, you can now instantiate an object and print it:

mlr = MyLinearRegression()

print(mlr)

>> I am a Linear Regression model!

�Adding Useful Methods
So far, you have a correct but useless class definition because it does not do any machine

learning. In this section, you start adding some useful methods and see how to test them.

�The Fitting Method

First, let’s add the most useful method for an ML estimator: the fit method that

executes the training/fitting with the given data. Here is the code. Note that this function

definition will go inside the base class.

def fit(self, X, y):

 """

 Fit model coefficients.

 Arguments:

 X: 1D or 2D numpy array

 y: 1D numpy array

Chapter 6 Build Your Own ML Estimator/Package

http://www.section.io/engineering-education/dunder-methods-python/
http://www.section.io/engineering-education/dunder-methods-python/

167

 """

 # Data type check and conversion

 if type(X) is not np.ndarray:

 try:

 X = np.array(X)

 except:

 print("Could not convert features to Numpy array")

 return None

 if type(y) is not np.ndarray:

 try:

 y = np.array(y)

 except:

 print("Could not convert labels to Numpy array")

 return None

 # check if X is 1D or 2D array

 if len(X.shape) == 1:

 X = X.reshape(-1,1)

 # add bias if fit_intercept is True

 if self._fit_intercept:

 X_biased = np.c_[np.ones(X.shape[0]), X]

 else:

 X_biased = X

 # closed form solution

 xTx = np.dot(X_biased.T, X_biased)

 inverse_xTx = np.linalg.inv(xTx)

 xTy = np.dot(X_biased.T, y)

 coef = np.dot(inverse_xTx, xTy)

 # set attributes

 if self._fit_intercept:

 self.intercept_ = coef[0]

 self.coef_ = coef[1:]

 else:

 self.intercept_ = 0

 self.coef_ = coef

Chapter 6 Build Your Own ML Estimator/Package

168

The code is long but self-explanatory with the help of docstrings and carefully added

comments. You use the NumPy matrix inversion (np.linalg.inv) to solve the linear

regression problem from an ordinary least-square (https://en.wikipedia.org/wiki/

Ordinary_least_squares) point of view and obtain the best-fitting coefficients. Also,

note the rudimentary checks (if type(X) is not np.ndarray) and transformation of

the data shape (X = X.reshape(-1,1)) that you put in the beginning to make sure that

the linear algebra calculations are done without any error.

�Testing the Method

Let’s test the method by generating some random data:

X = 10*np.random.random(size=(20,2))

y = 3.5*X.T[0]-1.2*X.T[1]+np.random.randn(20)

So, you have a linear relationship between the 2D vector X and the 1D vector y. You

can visualize the linear relationship in Figure 6-7 (note the intentional noise added to

the data)

Figure 6-7.  Plot of the test (randomly generated) data

Chapter 6 Build Your Own ML Estimator/Package

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares

169

Create a fresh instance:

mlr = MyLinearRegression()

You can try to print the coefficients (mlr.coef_) but with a check on the mlr.fitted_

state. If not fitted, you print that message.

if mlr.fitted_:

 print("Regression coefficients:", mlr.coef_)

else:

 print("Not fitted yet")

>> Not fitted yet

Then you fit, as follows:

mlr.fit(X,y)

Now, for the same code for printing the coefficients, you get the expected results:

if mlr.fitted_:

 print("Regression coefficients:", mlr.coef_)

else:

 print("Not fitted yet")

>> Regression coefficients: [3.40807972 -1.23152211]

So, the actual coefficients are 3.5 and -1.2, but due to the random noise added, you

get the best fit as approximately 3.4 and -1.23. You can also get the intercept as

print("The intercept term is given by: ", mlr.intercept_)

>> The intercept term is given by: 0.7673816772685598

Note that the estimated coefficients and intercept will change every time you run

this code because of the random noise addition to the data generation process.

Chapter 6 Build Your Own ML Estimator/Package

170

�Prediction Method

Now, let’s add the predict method to the class:

def predict(self, X):

 """

 Output model prediction.

 Arguments:

 X: 1D or 2D numpy array

 """

 # check if X is 1D or 2D array

 if len(X.shape) == 1:

 X = X.reshape(-1,1)

 # Calculates only if already fitted

 if self.fitted_:

 self.predicted_ = self.intercept_ + np.dot(X, self.coef_)

 else:

 print("Not fitted yet")

 return None

 return self.predicted_

�Testing Prediction

You use the old (training) data for fitting and a set of new points for prediction. Here is

sample code for testing:

num_new_samples = 10

X_new = 10*np.random.random(size=(num_new_samples,2))

y_new = 3.5*X_new.T[0]-1.2*X_new.T[1]+np.random.randn(num_new_samples)

mlr = MyLinearRegression()

mlr.fit(X,y)

y_pred=mlr.predict(X_new)

When you plot the predicted vs. true values, you get the result shown in Figure 6-8.

Chapter 6 Build Your Own ML Estimator/Package

171

Figure 6-8.  Predicted vs. true values of the y-vector

Now that you have sorted out the quintessential methods, let’s discuss adding some

utility methods like visualization and statistical analysis.

�Adding Utility Methods
At this point, you can start expanding your regression class and add stuff that is not even

present in the standard scikit-learn class! For example, you always want to see how the

fitted values compare to the ground truth. This is what was plotted above. But instead of

having that code lying around in the Jupyter notebook, you can create a function for that

and add it to the class.

�Method for Plotting True vs. Predicted Values

Let’s call it plot_fitted. Note that a method is like a normal function. It can take

additional arguments. Here, you have an argument reference_line (default set to

False) that draws a 45-degree reference line on the fitted vs. true plot. Also, note the

docstring description.

def plot_fitted(self,reference_line=False):

 """

 Plots fitted values against the

 true output values from the data

 Arguments:

 reference_line: A Boolean switch to

Chapter 6 Build Your Own ML Estimator/Package

172

 draw a 45-degree reference line on the plot

 """

 if self.fitted_:

 y_pred = np.dot(X,self.coef_) + self.intercept_

 plt.title("True vs. fitted values",fontsize=14)

 plt.scatter(y,y_pred,

 s=150,alpha=0.75,

 color='orange',

 edgecolor='k')

 if reference_line:

 plt.plot(y,y,c='k',linestyle='dotted')

 plt.xlabel("True values")

 plt.ylabel("Fitted values")

 plt.grid(True)

 plt.show()

 else:

 print("Not fitted yet")

 return None

Note that you have a prediction going on inside the plotting code (y_pred=

np.dot(X,self.coef)+self.intercept) and then you use that vector for plotting. As

always, you execute the plotting code only after ensuring that some data has been fitted

(if self.fitted_).

Here is code to demonstrate the utility of this method. With just three lines of

code, you create a brand new estimator, fit the data, and plot the ground truth vs.

predicted values!

A fresh estimator

mlr = MyLinearRegression()

Fitting with the data

mlr.fit(X,y)

Call the 'plot_fitted' method

mlr.plot_fitted()

Figure 6-9 shows the result. It’s similar to Figure 6-8 but using a built-in method

instead of standalone code.

Chapter 6 Build Your Own ML Estimator/Package

173

Figure 6-9.  Predicted vs. true values using the built-in plotting utility

Here are many more useful plotting utilities to add:

•	 Pairplots (plots the pairwise relation between all features and

outputs, much like the pairs function in the R language)

•	 Fitted vs. residual plot (this falls under diagnostic plots for the linear

regression i.e., to check the validity of the fundamental assumptions

of regression (https://towardsdatascience.com/how-do-you-

check-the-quality-of-your-regression-model-in-python-

fa61759ff685)

•	 Histogram and the quantile-quantile (Q-Q) plot of the residuals

(this checks for the assumption of normality of the error distribution)

�All Kinds of Error Metrics

You can add a bunch of error metrics to the base class like this:

def sse(self):

 '''returns sum of squared errors (model vs actual)'''

 squared_errors = (self.resid_) ** 2

 self.sq_error_ = np.sum(squared_errors)

 return self.sq_error_

def sst(self):

 '''returns total sum of squared errors (actual vs. avg(actual))'''

Chapter 6 Build Your Own ML Estimator/Package

https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685
https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685
https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685

174

 avg_y = np.mean(self.target_)

 squared_errors = (self.target_ - avg_y) ** 2

 self.sst_ = np.sum(squared_errors)

 return self.sst_

def r_squared(self):

 '''returns calculated value of r^2'''

 self.r_sq_ = 1 - self.sse()/self.sst()

 return self.r_sq_

More metrics here

def pretty_print_stats(self):

 '''returns report of statistics for a given model object'''

 items = (('sse:', self.sse()), ('sst:', self.sst()),

 ('mse:', self.mse()), ('r^2:', self.r_squared()),

 ('adj_r^2:', self.adj_r_squared()))

 for item in items:

 print('{0:8} {1:.4f}'.format(item[0], item[1]))

For this to work, you must calculate one essential property called residuals (self.

resid_) when fitting the data. So, add that code to the fit method, of course:

features and data

self.features_ = X

self.target_ = y

< ... >

Predicted/fitted y

self.predicted_ = np.dot(X,self.coef_) + self.intercept_

Residuals

self.resid_ = self.target_ - self.predicted_

< ... >

However, instead of cluttering the base class with so many methods, let’s go back to

the idea of logical consistency and grouping and use more OOP principles to organize

the code better. Let’s see how in the following section.

Chapter 6 Build Your Own ML Estimator/Package

175

�Do More in the OOP Style
As you enthusiastically plan utility methods to add to the class, you recognize that this

approach may make the code of the main class very long and difficult to debug. To

solve this conundrum, you can make use of another beautiful principle of OOP called

inheritance (www.geeksforgeeks.org/inheritance-in-python/).

�Separate Plotting Classes
You recognize that all plots are not of the same type. Pairplots and fitted vs. true data

plots are of similar nature as they can be derived from the data only. Other plots are

related to the goodness-of-fit and residuals. Therefore, you can create two separate

classes with those plotting functions: Data_plots and Diagnostic_plots. Furthermore,

you can also define your main MyLinearRegression class in terms of these utility classes.

That is an instance of inheritance. This whole approach is shown in Figure 6-10.

Figure 6-10.  Define several distinct plotting classes and use them in the base class

Partial code for the Diagnostic_plots is as follows:

class Diagnostics_plots:

 """

 Diagnostics plots and methods

 Arguments:

 fitted_vs_residual: Plots fitted values vs. residuals

 fitted_vs_features: Plots residuals vs all feature variables in a grid

Chapter 6 Build Your Own ML Estimator/Package

http://www.geeksforgeeks.org/inheritance-in-python/

176

 histogram_resid: Plots a histogram of the residuals (can be normalized)

 shapiro_test: Performs Shapiro-Wilk normality test on the residuals

 �qqplot_resid: Creates a quantile-quantile plot for residuals comparing

with a normal distribution

 """

 def __init__():

 pass

 def fitted_vs_residual(self):

 """Plots fitted values vs. residuals"""

<...>

And for the Data_plots:

class Data_plots:

 """

 Methods for data related plots

 pairplot: Creates pairplot of all variables and the target

 �plot_fitted: Plots fitted values against the true output values from

the data

 """

 def __init__():

 pass

 def pairplot(self):

 �"""Creates pairplot of all variables and the target using the

Seaborn library"""

 if not self.is_fitted:

 print("Model not fitted yet!")

 return None

<...>

So, the definition of the main class changes slightly now:

class MyLinearRegression(Data_plots, Diagnostics_plots):

 def __init__(self, fit_intercept=True):

Chapter 6 Build Your Own ML Estimator/Package

177

 self.coef_ = None

 self.intercept_ = None

 self._fit_intercept = fit_intercept

<...>

The class definition MyLinearRegression(Data_plots,Diagnostics_plots) allows

the main class to inherit all the beautiful plotting methods defined in the plotting classes.

Now you can check the quality of the regression fit by plotting the diagnostics and data

plots with only three or four lines of code:

mlr = MyLinearRegression()

mlr.fit(X,y)

The fitted vs. residual plot is shown in Figure 6-11:

mlr.fitted_vs_residual()

Figure 6-11.  Fitted vs. residuals plot

Histogram of the residuals (Figure 6-12):

mlr.histogram_resid()

Chapter 6 Build Your Own ML Estimator/Package

178

Figure 6-12.  Histogram of the normalized residuals

Q-Q plot of the residuals (Figure 6-13):

mlr.qqplot_resid()

Figure 6-13.  Quantile-quantile plot of the residuals

The modularization of code is at work here. You can modify and improve the core

plotting utilities without touching the main class. This is a highly flexible and less error-

prone approach that increases the productivity and efficiency of the data scientist.

Chapter 6 Build Your Own ML Estimator/Package

179

�More Supporting Classes and Syntactic Sugar
Just for completeness, consider the following:

•	 Metrics class for computing various regression metrics: SSE, SST,

MSE, R², and Adjusted R².

•	 Outliers class to plot Cook’s distance (https://en.wikipedia.org/

wiki/Cook%27s_distance) leverage, and influence plots

•	 Multicollinearity class to compute variance inflation factors (VIF;

https://en.wikipedia.org/wiki/Variance_inflation_factor)

All in all, the grand scheme looks like Figure 6-14.

Figure 6-14.  Linear regression estimator with all the supporting classes

Once you inherit other classes, they behave just like the usual Python module you

are familiar with. So, you can add utility methods to the main class to execute multiple

methods from a sub-class together. For example, the following method runs all the usual

diagnostics checks at once. Note how you are accessing the plot methods by putting a

simple .DOT (i.e. Diagnostics_plot.histogram_resid), just like accessing a function

from pandas or NumPy library.

def run_diagnostics(self):

 """Runs diagnostics tests and plots"""

 Diagnostics_plots.fitted_vs_residual(self)

 Diagnostics_plots.histogram_resid(self)

Chapter 6 Build Your Own ML Estimator/Package

https://en.wikipedia.org/wiki/Cook's_distance
https://en.wikipedia.org/wiki/Cook's_distance
https://en.wikipedia.org/wiki/Variance_inflation_factor

180

 Diagnostics_plots.qqplot_resid(self)

 print()

 Diagnostics_plots.shapiro_test(self)

�Modularization: Importing the Class as a Module
Although not a canonical OOP principle, the essential advantage of following the OOP

paradigm is to be able to modularize your code. You can experiment and develop all this

code in a standard Jupyter notebook. But for maximum modularity, consider converting

the notebook into a standalone executable Python script (with a .py extension). As a

good practice, remove all the unnecessary comments and test code from this file and

keep only the classes together.

Once you do that, you can import the MyLinearRgression class from a completely

different notebook. This is often the preferred way of testing your code as this does

not touch the core model but only tests it with various data samples and functional

parameters. Figure 6-15 shows a snapshot of a clean notebook where you import the

class from a separate module.

Figure 6-15.  Testing the ML estimator by importing it from a separate module

Chapter 6 Build Your Own ML Estimator/Package

181

�Publishing It as a Python Package
At this point, you can consider releasing this Python script as a standalone Python

package (https://towardsdatascience.com/build-your-first-open-source-python-

project-53471c9942a7) that does fitting, prediction, plotting, diagnostics, and more.

Although you can host the package on your personal website or on the cloud, the most

obvious place to put it is in the official Python package repository, PyPI. This is the place

from where anybody in the world can download and install your package with the pip

command. For example, if your package is named my-ml-package, then anybody can run

pip install my-ml-package and the Python library will be installed on their machine.

�Special Instructions for PyPI Hosting
To host on PyPI, you must follow certain steps:

	 1.	 Create a setup.py file (https://godatadriven.com/blog/a-

practical-guide-to-using-setup-py/).

	 2.	 Create the proper directory structure (if you have files other

than the main script and setup.py, such as sample data and test

scripts).

	 3.	 Put the files in a GitHub repository.

	 4.	 Set up GitHub actions for regular commits and updates.

	 5.	 Create documentation using a tool like Sphinx and link it to the

GitHub Readmes.

	 6.	 And so on.

These specific instructions are already well explained in the link provided above, so I

don’t repeat them in this book.

Of course, you should a lot of docstring descriptions (www.geeksforgeeks.org/

python-docstrings/), examples of usage of a function, assertion checks (https://

airbrake.io/blog/python/python-assertionerror), and unit tests (https://

softwaretestingfundamentals.com/unit-testing/) to make it a good package. But

since you built the code from scratch (following some key OOP principles), you learned a

lot of valuable lessons. You obtained a taste of developing a useful piece of software from

the ground up.

Chapter 6 Build Your Own ML Estimator/Package

https://towardsdatascience.com/build-your-first-open-source-python-project-53471c9942a7
https://towardsdatascience.com/build-your-first-open-source-python-project-53471c9942a7
https://godatadriven.com/blog/a-practical-guide-to-using-setup-py/
https://godatadriven.com/blog/a-practical-guide-to-using-setup-py/
http://www.geeksforgeeks.org/python-docstrings/
http://www.geeksforgeeks.org/python-docstrings/
https://airbrake.io/blog/python/python-assertionerror
https://airbrake.io/blog/python/python-assertionerror
https://softwaretestingfundamentals.com/unit-testing/
https://softwaretestingfundamentals.com/unit-testing/

182

What is PyPI? T he Python Package Index or PyPI is the official third-party
software repository for the Python language. It is analogous to the CPAN repository
for Perl or the CRAN repository for R. PyPI is run by the Python Software Foundation
(PSF), which maintains and develops the official Python version release.

�GitHub Integration
My version of the open-source package is here: https://github.com/tirthajyoti/mlr

(Figure 6-16). Although a GitHub repo is not mandatory for publishing a Python package

on PyPI, it is highly recommended to create and maintain one. GitHub integration

can make updating and version controlling of your package easy and painless. With

a proper GitHub setup, all you have to do is to push/commit the latest updated files

onto your GitHub and the PyPI version will be updated as well (after executing a set of

special commands that tells PyPI to read the updated files from your GitHub repo). The

documentation for the same can be found here: https://mlr.readthedocs.io/en/

latest/.

Figure 6-16.  GitHub repo snapshot of the linear regression package

Chapter 6 Build Your Own ML Estimator/Package

https://github.com/tirthajyoti/mlr
https://mlr.readthedocs.io/en/latest/
https://mlr.readthedocs.io/en/latest/

183

�Summary
In this chapter, you focused on building a linear regression estimator from the ground

up. You aimed for a clean and simple API, like what is provided by a scikit-learn

estimator. However, you added quite a few additional methods and utilities (e.g., for

visualization and statistical inference) to this class than what is found in a standard

scikit-learn estimator.

In the process, you learned how to plan and organize the code for building such an

ML estimator and how to take advantage of the OOP paradigm using inheritance and

encapsulation. The design was not meant to be set in stone, but rather act as a guide

for you to plan and build your own data science APIs for various business and scientific

applications.

You also learned additional steps that a data scientist must take to publish this

code as a full-fledged Python package (on the PyPI server) and how this can teach you

valuable skills.

Chapter 6 Build Your Own ML Estimator/Package

185

CHAPTER 7

Some Cool Utility
Packages
Python has an amazing ecosystem for data science work, starting from numerical

analysis to advanced deep learning or reinforcement learning, with statistical modeling

and visualization thrown in as well. A great open-source culture keeps new and exciting

developments coming and thriving. Data scientists can learn, contribute code, share

their experience, help debug, and support each other in this environment.

There are some predominant libraries and packages in this ecosystem that are used

by almost all data scientists in their daily job. I touch upon them in the next section.

However, there are also some little-known Python packages (the so-called hidden

gems, as in Figure 7-1) that can help you do common data science jobs faster and more

efficiently. They are not general-purpose large projects like NumPy or pandas. Instead,

they focus on some niche aspects of similar data science tasks and do them well.

Figure 7-1.  There are hidden gems beyond the great Python data science
ecosystem

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_7

https://doi.org/10.1007/978-1-4842-8121-5_7

186

To be highly productive in data science, you must stay abreast of these new

developments and embrace these focused utility packages wherever they makes sense.

In this chapter, I touch upon a few such nifty packages and show some hands-on

examples of efficient data science. The goal is to introduce the idea of exploration to you

so that you take full advantage of the great Python data science zoo.

�Build Pipelines Using pdpipe
pandas is an amazing library in the Python ecosystem for data analytics and machine

learning. It forms the perfect bridge between the data world, where Excel/CSV files and

SQL tables live, and the modeling world, where scikit-learn and TensorFlow perform

their magic.

A data science flow is most often a sequence of steps: datasets must be cleaned,

scaled, and validated before they can be used by that powerful machine learning

algorithm. These tasks can, of course, be done with many single-step functions/methods

that are offered by packages like pandas. However, an elegant alternative is to use a

pipeline. In almost all cases, a pipeline reduces the chance of error and saves time by

automating repetitive tasks. In the data science world, great examples of packages with

pipeline features are dplyr (https://dplyr.tidyverse.org/) in the R language and the

scikit-learn module composition and pipelines (https://scikit-learn.org/stable/

modules/compose.html) in the Python ecosystem.

pandas also offer a pipe method that can be used for similar purposes with user-

defined functions. However, in this section, I am going to discuss a wonderful little

library called pdpipe, which specifically addresses this pipelining issue with pandas

DataFrame and solves the problem in an elegant and intuitive way.

�The Dataset
You will use a dataset of US housing prices (downloaded from Kaggle at www.kaggle.

com/vedavyasv/usa-housing). You can load the dataset in pandas. Its summary statistics

are shown in Figure 7-2.

Chapter 7 Some Cool Utility Packages

https://dplyr.tidyverse.org/
https://scikit-learn.org/stable/modules/compose.html
https://scikit-learn.org/stable/modules/compose.html
https://www.kaggle.com/vedavyasv/usa-housing
http://www.kaggle.com/vedavyasv/usa-housing
http://www.kaggle.com/vedavyasv/usa-housing

187

Figure 7-2.  Summary statistics of the dataset used for the demo

However, this is only a partial view. It also contains an Address field (Figure 7-3) that

contains raw text data. This does not show up in the summary stats above because it is

not a numeric column.

Figure 7-3.  The dataset contains an Address field with raw text

Let’s add a small transformation based on the Avg. Area Number of Bedrooms

column. Here is the code:

def size(n):
 if n<=4:
 return 'Small'
 elif 4<n<=6:
 return 'Medium'
 else:
 return 'Big'

df['House_size']=df['Avg. Area Number of Rooms'].apply(size)

Chapter 7 Some Cool Utility Packages

188

You define a function named size and apply it to the Avg. Area Number of Rooms

column. The resulting dataset looks like Figure 7-4.

Figure 7-4.  Dataset after applying the house size transformation

�Start Laying Pipes
Start with the simplest possible pipeline, consisting of just one operation. Let’s say the

machine learning team and the domain experts say that they think they can safely ignore

the Avg. Area House Age data for modeling. Therefore, you can drop this column from

the dataset. For this task, you create a pipeline object named drop_age with the ColDrop

method from pdpipe and pass the DataFrame to this pipeline:

import pdpipe as pdp

drop_age = pdp.ColDrop(‘Avg. Area House Age’)

df2 = drop_age(df)

That’s it. The resulting DataFrame, as expected, looks like Figure 7-5.

Figure 7-5.  Dataset after dropping the Age column using a pipe operation

Chapter 7 Some Cool Utility Packages

189

�Chain Stages of Pipeline Simply by Adding

Now, single pipes are fun, but pipelines are truly useful and practical only when they

have multiple (connected) stages. There are multiple methods by which you can

do that in pdpipe. However, the simplest and most intuitive approach is to use the +

operator. It is like hand-joining pipes. Just add one to another.

Let’s say, apart from dropping the Age column, you also want to one-hot-encode the

House_size column so that a classification or regression algorithm can be run on the

dataset easily. You can accomplish this simply by writing this code:

pipeline = pdp.ColDrop('Avg. Area House Age')

pipeline += pdp.OneHotEncode(‘House_size’)

df3 = pipeline(df)

So, you created a pipeline object first with the ColDrop method to drop the Avg.

Area House Age column. Thereafter, you simply added the OneHotEncode method to this

pipeline object with the usual Python += syntax. The new pipeline now processes the

DataFrame object. The resulting DataFrame is shown in Figure 7-6. Note the additional

indicator columns House_size_Medium and House_size_Small created from the one-

hot-encoding process.

Figure 7-6.  Dataset after one-hot-coding added to the pipeline

Chapter 7 Some Cool Utility Packages

190

�Dropping Rows Based on Their Values

Next, you may want to remove rows of data based on their values. Specifically, you may

want to drop all the data where the house price is less than 250,000. You can use the

ApplybyCol method to apply any user-defined function to the DataFrame. You can also

use the method ValDrop to drop rows based on a specific value. You can easily chain

these methods to your pipeline to selectively drop rows (you are still adding to your

existing pipeline object which already does the other jobs of column dropping and one-

hot-encoding). You accomplish this by creating a small user-defined function named

price_tag and then using it inside the pipe:

def price_tag(x):

 if x>250000:

 return 'keep'

 else:

 return 'drop'

pipeline+=pdp.ApplyByCols('Price',price_tag,

 'Price_tag',drop=False)

pipeline+=pdp.ValDrop(['drop'],'Price_tag')

pipeline+= pdp.ColDrop('Price_tag')

Note, in the code above, for the first operation, the second argument of the ApplyByCols

method represents the user-defined function whereas the third argument named Price_

tag represent the name of the resulting column. Figure 7-7 shows the dataset.

Figure 7-7.  Dataset after the price tag function is applied

Chapter 7 Some Cool Utility Packages

191

Now the ValDrop method comes in and it looks for the string drop in the Price_tag

column and drops those rows that match. Finally, the ColDrop method removes the

Price_tag column, cleaning up the DataFrame. Essentially, this Price_tag column is

only needed temporarily, to tag specific rows, and should be removed after it serves its

purpose.

The efficient aspect is that all of this is accomplished by simply chaining stages of
operations on the same pipeline. At this point, you can look back and see what your

pipeline does to the DataFrame right from the beginning:

•	 Drops a specific column

•	 One-hot-encodes a categorical data column for modeling

•	 Tags data based on a user-defined function

•	 Drops rows based on the tag

•	 Drops the temporary tagging column

Six lines of code for all of these actions:

pipeline = pdp.ColDrop('Avg. Area House Age')

pipeline+= pdp.OneHotEncode('House_size')

pipeline+=pdp.ApplyByCols('Price',price_tag,

 'Price_tag',drop=False)

pipeline+=pdp.ValDrop(['drop'],'Price_tag')

pipeline+= pdp.ColDrop('Price_tag')

df5 = pipeline(df) # Final DataFrame

Moreover, the latest version of the package implements another direct method to do

all of this in a single line of code like this:

pdp.RowDrop({'Price': lambda x: x <= 250000})

�scikit-learn and NLTK Stages
There are many more useful and intuitive DataFrame manipulation methods available

for in pdpipe that can make the data science tasks productive and efficient. Additionally,

even some operations from the scikit-learn and NLTK packages are included in pdpipe

for making awesome pipelines.

Chapter 7 Some Cool Utility Packages

192

�Scaling Data with a scikit-learn Method

For example, one of the most common tasks for building ML models is the scaling of

the data. scikit-learn offers a few different types of scaling such as min-max scaling or

standardization-based scaling (where the mean of a data set is subtracted followed

by division by standard deviation). You can directly chain such scaling operations in a

pipeline. The following code demonstrates the use:

exclude = ['House_size_Medium','House_size_Small']

pipeline_scale = pdp.Scale('StandardScaler', exclude_columns=exclude)

df6 = pipeline_scale(df5)

Here you apply the StandardScaler estimator from the scikit-learn package to

transform the data for clustering or neural network fitting. You can selectively exclude

columns that do not need such scaling, as you have done here for the indicator columns

House_size_Medium and House_size_Small. The resulting DataFrame shows the effect

of scaling (Figure 7-8).

Figure 7-8.  Dataset after standard normal scaling was applied to
selected columns

�Tokenizer from NLTK

The Address field in your DataFrame is useless right now. However, if you can extract ZIP

codes or states from those strings, they might be useful for some form of visualization or

machine learning task.

Chapter 7 Some Cool Utility Packages

193

You can use a word tokenizer for this purpose. NLTK is a popular and powerful

Python library for text mining and natural language processing (NLP) and it offers a

range of tokenizer methods. Here, you can use one such tokenizer to split up the text

in the Address field and extract the name of the state from that. You recognize that the

name of the state is the penultimate word in the address string. Therefore, you can create

the following chained pipeline for this job:

def extract_state(token):

 return str(token[-2])

pipeline_tokenize = pdp.TokenizeWords('Address')

pipeline_state = pdp.ApplyByCols('Address',extract_state,

result_columns='State')

pipeline_state_extract = pipeline_tokenize + pipeline_state

df7 = pipeline_state_extract(df6)

The resulting DataFrame is shown in Figure 7-9. Note the new State column.

Figure 7-9.  Dataset after NLTK tokenizer method was applied to the
Address column

Chapter 7 Some Cool Utility Packages

194

�All Together
Figure 7-10 summarizes all the operations shown in this demo.

Figure 7-10.  Dataset after a NLTK tokenizer method was applied to the
Address column

All of these operations may be used as frequently as needed on similar types of

datasets. Having a simple set of sequential code blocks to execute as a preprocessing

operation enhances the productivity of the data scientist. Pipelining is the key to

achieving that uniform set of sequential code blocks. pandas is the most widely used

Python library for such data preprocessing tasks in a data science team, and pdpipe

provides a simple yet powerful way to build pipelines with pandas-type operations.

�Speeding Up NumPy and pandas
NumPy and pandas are probably the two most widely used core Python libraries for

DS and ML tasks. Obviously, the speed of evaluating numerical expressions is critically

important for these DS/ML tasks and these two libraries do not disappoint in that regard.

Under the hood, they use fast and optimized vectorized operations (as much

as possible) to speed up mathematical operations. Plenty of articles have been

written about how NumPy is much superior (especially when you can vectorize your

calculations) over plain-vanilla Python loops or list-based operations. In this section, I

show how using a simple extension library called NumExpr can improve the speed of the

mathematical operations that the core NumPy and pandas yield.

�What Is This Library?
First, install it with the pip command:

pip install numexpr

Chapter 7 Some Cool Utility Packages

195

The project is hosted on GitHub at https://github.com/pydata/numexpr. It is

from the PyData (https://pydata.org/) stable, the organization under NumFocus,

(https://numfocus.org/), which also gave rise to Numpy and pandas.

As per the official source,

“NumExpr is a fast numerical expression evaluator for NumPy.

With it, expressions that operate on arrays are accelerated and

use less memory than doing the same calculation in Python. In

addition, its multi-threaded capabilities can make use of all your

cores—which generally results in substantial performance scaling

compared to NumPy.”

Here is the detailed documentation for the library and examples of various use cases:

https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/.

�Speeding It Up
Let’s start with a very simple mathematical operation of adding a scalar number, say 1,

to a NumPy array. To use the Numexpr package, all you need to do is to wrap the same

calculation under a special method named evaluate in a symbolic expression. The

following code illustrates the usage clearly:

import numpy as np

import numexpr as ne

a = np.arange(1e6)

b = np.arange(1e6)

%%timeit -n200 -r10

c = a+1

>> 3.55 ms ± 52.1 μs per loop (mean ± std. dev. of 10 runs, 200 loops each)

%%timeit -n200 -r10

c = ne.evaluate("a + 1")

>> 1.94 ms ± 86.5 μs per loop (mean ± std. dev. of 10 runs, 200 loops each)

Chapter 7 Some Cool Utility Packages

https://github.com/pydata/numexpr
https://pydata.org/
https://numfocus.org/
https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/

196

That was magical! All you had to do was to write the familiar a+1 NumPy code in the

form of a symbolic expression "a+1" and pass it on to the ne.evaluate() function. And

you got a significant speed boost from 3.55 ms to 1.94 ms on average.

Note that, for consistency purposes, you ran the same computation 200 times in a

10-loop test to calculate the execution time. Of course, the exact results are somewhat

dependent on the underlying hardware. You are welcome to evaluate this on your

machine and see what improvement you got.

�Arithmetic Involving Two Arrays

Let’s dial it up a little and involve two arrays. Here is the code to evaluate a simple linear

expression using two arrays:

%%timeit -n100 -r10

c = 2*a+3*b

>> 11.7 ms ± 177 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

%%timeit -n100 -r10

c = ne.evaluate("2*a+3*b")

>> 2.14 ms ± 130 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

For two-array operation, there’s an even bigger improvement than the simple scalar

addition from 11.7 ms to 2.14 ms on the average.

�A Somewhat More Complex Operation

Now, let’s notch it up further by involving more arrays in a somewhat complicated

rational function expression. Suppose you want to evaluate the expression in Figure 7-11

involving five Numpy arrays, each with one million random numbers (drawn from a

Normal distribution).

Figure 7-11.  A complex rational function involving multiple NumPy arrays

Chapter 7 Some Cool Utility Packages

197

Here is the code. You create a NumPy array of the shape (1000000, 5) and extract five

(1000000,1) vectors from it to use in the rational function. Also note how the symbolic

expression in the Numexpr method understands the string symbol ‘sqrt’ natively (you just

write sqrt).

a = np.random.normal(size=(1000000,5))

a1,a2,a3,a4,a5 = a[:,0],a[:,1],a[:,2],a[:,3],a[:,4]

%%timeit -n100 -r10

c = (a1**2+2*a2+(3/a3))/(np.sqrt(a4**2+a5**2))

>> 47 ms ± 220 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

%%timeit -n100 -r10

ne.evaluate("(a1**2+2*a2+(3/a3))/(sqrt(a4**2+a5**2))")

>> 3.96 ms ± 218 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

This shows a huge speed boost from 47 ms to ~4 ms on average. In fact, this is a

trend; you will notice that the more complicated the expression becomes and the greater

number of arrays it involves, the higher the speed boost becomes with Numexpr.

�Logical Expressions/Boolean Filtering

Furthermore, you are not limited to the simple arithmetic expressions shown above.

One of the most useful features of NumPy arrays is to use them directly in an expression

involving logical operators such as > or < to create Boolean filters or masks. You can

do the same with Numexpr and speed up the filtering process. Here is an example of

checking whether the Euclidean distance measure involving four vectors is greater than

a certain threshold:

x1 = np.random.random(1000000)

x2 = np.random.random(1000000)

y1 = np.random.random(1000000)

y2 = np.random.random(1000000)

%%timeit -n100 -r10

c = np.sqrt((x1-x2)**2+(y1-y2)**2) > 0.5

>> 23.2 ms ± 143 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

Chapter 7 Some Cool Utility Packages

198

%%timeit -n100 -r10

c = ne.evaluate("sqrt((x1-x2)**2+(y1-y2)**2) > 0.5")

>> 1.86 ms ± 112 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

This kind of filtering operation appears all the time in a data science/machine

learning pipeline, and you can imagine how much compute time can be saved by

strategically replacing NumPy evaluations with Numexpr expressions.

�Complex Numbers

You can make the jump from the real to the imaginary domain pretty easily. Numexpr

works equally well with complex numbers, which are natively supported by Python and

NumPy. Here is an example, which also illustrates the use of a transcendental math

operation, a logarithm:

a = np.random.random(1000000)

b = np.random.random(1000000)

cplx = a + b*1j

%%timeit -n100 -r10

c = np.log10(cplx)

>> 55.9 ms ± 159 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

%%timeit -n100 -r10

c = ne.evaluate("log10(cplx)")

>> 9.9 ms ± 117 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

�Impact of the Array Size

Next, let’s examine the impact of the size of the NumPy array over the speed

improvement. For this, let’s choose a simple conditional expression with two arrays like

2*a+3*b < 3.5 and plot the relative execution times (after averaging over 10 runs) for

a wide range of sizes. The code is in the accompanying Jupyter notebook, and the final

result is shown in Figure 7-12.

Chapter 7 Some Cool Utility Packages

199

Figure 7-12.  Impact of the size of the array on speed improvement

�The pandas eval Method
It turns out that pandas has an eval method where you can select to use a Numexpr

engine to speed up the operation of evaluating a Python symbolic expression (as

a string). Figure 7-13 shows a snapshot of the method from the official pandas

documentation.

Figure 7-13.  Partial snapshot of the Pandas eval method with the numexpr engine

Chapter 7 Some Cool Utility Packages

200

The following code demonstrates an example where you construct four DataFrames

with 50,000 rows and 100 columns each (filled with uniform random numbers) and

evaluate a nonlinear transformation involving those DataFrames, in one case with a

native pandas expression and in other case using the pd.eval() method:

nrows, ncols = 50000, 100

df1,df2,df3,df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in

range(4)]

%%timeit -n20 -r10

c=2*df1 - (df2/2) + (df3/df4)

>> 55.8 ms ± 1.8 ms per loop (mean ± std. dev. of 10 runs, 20 loops each)

%%timeit -n20 -r10

pd.eval('2*df1 - (df2/2) + (df3/df4)')

>> 17.3 ms ± 539 μs per loop (mean ± std. dev. of 10 runs, 20 loops each)

Note how you use a string with symbolic expressions for the DataFrames in the

second case: pd.eval('2*df1 - (df2/2) + (df3/df4)')

You do a similar analysis of the impact of the size (number of rows, while keeping

the number of columns fixed at 100) of the DataFrame on the speed improvement. The

result is shown in Figure 7-14.

Figure 7-14.  Impact of the size of the DataFrame on the speed improvement

Chapter 7 Some Cool Utility Packages

201

�How It Works, Supported Operators
The details of the mechanism that makes Numexpr work are somewhat complex and

involve the optimal use of the underlying compute architecture. I won’t cover that

in this book. Basically, the expression is compiled using a Python compile function,

variables are extracted, and a parse tree structure is built. This tree is then compiled into

a Bytecode program, which describes the element-wise operation flow using something

called vector registers (each 4096 elements wide). The key to speed enhancement is

Numexpr’s ability to handle chunks of elements at a time.

It skips NumPy’s practice of using temporary arrays, which wastes memory and

cannot even fit into cache memory for large arrays. Also, the virtual machine is written

entirely in C, which makes it faster than native Python. It is also multi-threaded, allowing

faster parallelization of the operations on suitable hardware. A simplified illustration is

shown in Figure 7-15.

Figure 7-15.  Simplified illustration of the inner workings of Numexpr

Numexpr supports a wide array of mathematical operators for use in the expression

but not conditional operators like if or else. The full list of operators can be found

at https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/user_guide.

html#supported-operators.

You can also control the number of threads that you want to spawn for parallel

operations with large arrays by setting the environment variable NUMEXPR_MAX_THREAD.

Currently, the maximum possible number of threads is 64 but there is no real benefit of

going higher than the number of virtual cores available on the underlying CPU node.

Chapter 7 Some Cool Utility Packages

https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/user_guide.html#supported-operators
https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/user_guide.html#supported-operators

202

So, in this section, you saw how to take advantage of the special virtual machine-

based expression evaluation paradigm for speeding up mathematical calculations in

NumPy and pandas. Although this method may not be applicable for all possible tasks, a

large fraction of data science, data wrangling, and statistical modeling pipelines can take

advantage of this with minimal change in the code.

�Discover Best-Fitting Distributions Quickly
Imagine that you have some numeric data points and you want to find out which

statistical distribution they might have come from. This is a classic statistical inference

problem.

There are, of course, rigorous statistical methods to accomplish this goal. But maybe

you are a busy data scientist. Or a busier software engineer who happens to be given this

dataset to quickly write an application endpoint so that another ML app can use some

synthetic data generated based on the best distribution that matches the data.

In short, you don't have a lot of time on hand and you want to find a quick method to

discover the best-matching distribution that the data could have come from. Basically,

in this scenario, you want to run an automated batch of goodness-of-fit (GOF) tests

(https://en.wikipedia.org/wiki/Goodness_of_fit) on several distributions and

summarize the results in a flash. You can, of course, write code from scratch to run

the data through standard GOF tests using the Scipy library, one by one, for several

distributions.

Alternatively, you can use a small but useful Python library called  distfit to do the

heavy lifting for you.

What are GOF tests? T he goodness of fit of a statistical model describes
how well it fits a set of observations. Put simply, a measure of goodness of fit
typically summarizes the discrepancy between the observed values and the values
expected under the model in question. They find wide use in all kinds of statistical
problems and hypothesis testing scenarios.

Chapter 7 Some Cool Utility Packages

https://en.wikipedia.org/wiki/Goodness_of_fit

203

�Simple Fitting Example
You will generate some random synthetic data and try to find the best-matching

distribution with only a few lines of code:

from distfit import distfit

import numpy as np

Generate test data

data1 = np.random.normal(loc=5.0, scale=10, size=1000)

Then you initiate a model and fit the data to it:

Initialize model

dist1 = distfit(bins=25,alpha=0.02,stats='ks')

Fit the data

dist1.fit_transform(data1,verbose=1)

Note the similarity to the scikit-learn API; it has a fit_transform method, which

you just used. Here, alpha denotes a confidence interval for fitting and stats='ks'

denotes the scoring strategy standing for the Kolmogorov-Smirnov statistic (https://

en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test). When you run this code

in a Jupyter notebook, you get the (very) detailed output shown in Figure 7-16.

Chapter 7 Some Cool Utility Packages

https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

204

Figure 7-16.  Detailed (partial) output of distribution fitting

In fact, the fitting process creates and stores all kinds of information in that dist1

object. Perhaps you are mostly interested in seeing some matching visualization and a

summary of matching performance with various distributions.

�Plot and Summary
A simple plot command shows the best-fitted distribution and how it matches with your

data points:

dist1.plot(verbose=1)

Chapter 7 Some Cool Utility Packages

205

This results in the chart shown in Figure 7-17.

Figure 7-17.  Best-matched distribution with the test data points

A nice summary table is available with one line of code:

dist1.summary

It shows information about all the distributions that the fit_transform method

went through under the hood. The score here is the metric that determines the best-

matching distribution. It is like an error or distance metric, so the lower the score, better

the match is. For this case, quite a few distributions match the data with nearly zero

scores. After looking at the summary table in Figure 7-18, you can decide which one to

pick, if needed.

Chapter 7 Some Cool Utility Packages

206

Figure 7-18.  Summary table of all the distributions the data was
evaluated against

Why are there only 11 distributions in this summary? Because, by default, it uses a

list of the most popular distributions to scan through. If you want to search through a

fixed list of distributions, you can specify the exact list as an argument to the distfit

object while initializing it, with distribution names as common strings.

�Be Careful with Small Datasets
As with every other statistical learning model fitting process, this also works best with a

large dataset. For small data, the fit may be ambiguous (multiple distributions showing

similar match) or suboptimal (the wrong distribution is identified as the best fit).

For example, let’s generate some data from the Beta distribution (https://

en.wikipedia.org/wiki/Beta_distribution) with parameters chosen such as they

look almost like a Normal distribution. If you choose the parameters α and β to be equal

or close, you can accomplish this. Then, if you fit 1,000 data points, you may get the

Normal distribution as the best-fitted distribution (Figure 7-19).

Chapter 7 Some Cool Utility Packages

https://en.wikipedia.org/wiki/Beta_distribution
https://en.wikipedia.org/wiki/Beta_distribution

207

import numpy as np

data2 = np.random.beta(a=2.2,b=2.0,size=500)

dist2 = distfit(bins=50,alpha=0.02,stats='ks')

dist2.fit_transform(data2,verbose=1)

dist2.plot(title="Best-fitted with 500 data points",verbose=1)

Figure 7-19.  Data generated from the beta distribution fitted with 1,000 points

However, if you extend the dataset size to 10,000 points, you will most likely get the

correct answer (Figure 7-20).

Chapter 7 Some Cool Utility Packages

208

Figure 7-20.  Data generated from the beta distribution fitted with 10,000 points

�Other Things You Can Do
There are many things you can do with the distfit library:

You can choose which statistical test (RSS, Kolmogorov-Smirnov,

etc.) to use for determining the best fit.

You can control the exact list of distributions you want to run

through.

You can use the distfit.predict method to predict the

probability of a response variable.

You can generate synthetic data using the distfit.

generate method.

I have shown examples of continuous distribution fitting only.

However, you can easily do fitting with discrete distributions.

Chapter 7 Some Cool Utility Packages

209

�Summary
In this chapter, you explored lightweight Python packages that can speed up common

data science tasks such as pipelining data wrangling and cleaning, numerical

manipulation using NumPy and pandas, and finding the best-matched statistical

distribution for numeric data points.

There are hundreds of such specialized libraries in the Python ecosystem that can

lead to productive and efficient data science if you look for them. GitHub is a great place

to start searching for them. Watch for the number of stars that a GitHub project has

received to determine the quality of the package and determine whether it is mature/

stable enough to include in your data science stack.

There are also excellent articles and blogs that specifically discusses new and

exciting Python packages as alternatives to the established brands. Khyuen Tran’s open-

source book, Chapter 5 has compact (although code-heavy) discussions of many such

useful libraries.

Chapter 7 Some Cool Utility Packages

211

CHAPTER 8

Memory and Timing
Profile
Data science tasks come with a wide variety of computational costs of both space and

time. Data wrangling jobs may need the support of large storage, while advanced ML

algorithms need high intensity computing speed. Some ML algorithms work better with

the support of large local memory (RAM) and cannot perform well with data situated far

from the CPU on a hard disk, while others are optimized to perform well with distributed

data storage.

Furthermore, the nature of the data may change slowly or frequently depending on

the application. Some models and data science code scale gracefully with the increasing

size and complexity of the input data, some do not. When the scaling is not properly

planned or baked into the code, the performance can suffer, even leading to possible

catastrophic failure in time. In many of those situations, excessive memory usage by the

code (or demand on the memory bandwidth) is at the root of the problem.

To plan for such situations or to design the data science code robustly, you must

start with basics: measuring the efficiency of the code in terms of memory usage or

profile. Obviously, this integrates tightly with the core philosophy of productive data

science, which is the theme of this book. There are many tools and techniques for such

measurements depending on the code and the underlying hardware. In Chapter 2, we

talked about a basic timing measurement and a time decorator to measure the execution

time of an ML function. In this chapter, my goal is to introduce you to some tools (with

hands-on examples) that can be used to measure a memory usage profile of data science

and ML code.

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_8

https://doi.org/10.1007/978-1-4842-8121-5_8

212

�Why Profile Memory Usage?
Memory usage measurement or profiling may seem an afterthought for most data

science work. However, it is becoming more and more commonplace and critical to

have. As a data scientist, if you can measure the memory profile of your code reliably

and plan your larger codebase, you are sure to positively impact the robustness of your

software platform.

�A Common Scenario
Suppose you have written a cool machine learning app or created a shiny neural network

model. Now you want to deploy this model over some web service or REST API. Or, you

might have developed a model based on data streams coming from industrial sensors

in a manufacturing plant and now you must deploy the model on one of the industrial

control PCs to serve decisions based on continuously incoming data.

As a data scientist, an extremely common question that you may expect from the

engineering/platform team is “what memory footprint does your model/code have?”

or “what’s the peak memory usage by your code when running with some given

data load?” This is quite natural to wonder about because hardware resources may be

limited and a single ML module should not hog all of the memory of the system. This

is particularly true for edge computing scenarios such as where the ML app may be

running on the very edge such as inside a virtualized container on an industrial PC (and

with no cloud-supported auto-scaling of memory or dynamic allocation).

Also, your model may be just one of hundreds of models running on that piece of

hardware. Therefore, you must have some idea about the peak memory usage of the

model because if a multiple models peak in their memory usage at the same time, which

can crash the whole system. All these models do not necessarily come from the same

data scientist either. Various teams might have developed them over time. It makes sense

to have a common mechanism of measuring or gauging the memory usage (peak and

average) of all those models (and data science code in general). The idea is illustrated in

Figure 8-1.

Chapter 8 Memory and Timing Profile

213

Figure 8-1.  Measuring (gauge) of memory and CPU (execution) profile of a
multitude of ML models, all running on a single system

�It’s Not the Model Size (or Compression)
You may think that making a compact and less complex ML model may solve all of your

problems. But that would be a mistaken assumption to make. When it comes to the

question of peak memory usage, we are talking about the runtime memory profile (a

dynamic quantity) of your entire code. This has very little to do with the size (or even

the compression) of your ML model (which you may have saved as a special object

on the disk, such as a scikit-learn Joblib dump, a simple Python pickle dump, or a

TensorFlow HFD5).

Model compression and sizing is quite important, too. In many situations, you may

be asked to pay special attention to it. You may have to restrict yourself from training a

model with millions of parameters by choosing a simpler model architecture. You may

have to try post-training model compression (e.g., intentionally reducing the floating-

point accuracy of the numeric coefficients) to reduce the model size (on the disk).

Often, these exercises lead to the reduction of active memory usage of the model while

it is running. However, you still need to have active code and a mechanism in place to

measure the memory usage profile in runtime.

Chapter 8 Memory and Timing Profile

214

�Scalene: A Neat Little Memory Profiler
Although there are many memory and CPU profilers, it is good to have a one-stop shop

for getting a good view of the overall data science code. One such comprehensive utility

is Scalene. Let’s examine it in more detail.

As per its GitHub page, “Scalene is a high-performance CPU, GPU, and memory

profiler for Python that does several things that other Python profilers do not and

cannot do. It runs orders of magnitude faster than other profilers while delivering far

more detailed information.” It was developed at the University of Massachusetts. Check

out the video at www.youtube.com/watch?v=5iEf-_7mM1k&feature=youtu.be for a

comprehensive introduction.

So, Scalene promises the following:

•	 Profile for CPU, GPU, and memory

•	 Offer an order of magnitude faster execution than other profilers

•	 More detailed information than other similar tools

�Basic Usage
The install is by pip:

pip install scalene

One obvious limitation is that currently, it works only for Linux OS. If you run

Windows or MacOS, you can use it by creating a virtual machine and running your

scripts there.

The use of Scalene is extremely straightforward. You just type scalene in front of the

name of your Python script:

scalene <MyApp.py>

Alternatively, you can use in inside a Jupyter notebook, first by executing this magic

command:

%load_ext scalene

A typical output snapshot is shown in Figure 8-2. A more detailed explanation

follows.

Chapter 8 Memory and Timing Profile

http://www.youtube.com/watch?v=5iEf-_7mM1k&feature=youtu.be

215

Figure 8-2.  A typical output snapshot from Scalene

�Features
Here are some of the cool features of Scalene. Most of them are self-explanatory and can

be gauged from Figure 8-2.

Lines or functions: Reports information both for entire functions

and for every independent code line

Threads: Supports Python threads

Multiprocessing: Supports use of the multiprocessing library

Python vs. C time: Scalene breaks out time spent in Python vs.

native code (e.g., libraries)

System time: It distinguishes system time (e.g., sleeping or

performing I/O operations)

GPU: It can also report the time spent on an NVIDIA GPU (if

present)

Copy volume: It reports MBs of data being copied per second

Detects leaks: Scalene can automatically pinpoint lines

responsible for likely memory leaks!

Chapter 8 Memory and Timing Profile

216

�A Concrete Machine Learning Example
Let’s get down to the business of putting Scalene to use for memory profiling standard

machine learning code. You will look at two different types of ML models for reasons that

will be clarified soon. You will use the scikit-learn library for all three models and utilize

its synthetic data generation function to create your dataset:

•	 A multiple linear regression model

•	 A deep neural network model with the same dataset

The modeling code follows the exact same structure for these two models. External

I/O ops are also indicated in Figure 8-3, as you will see that they may or may not

dominate the memory profile depending on the type of model.

Figure 8-3.  The common ML model code flow used for the Scalene demo example

�Linear Regression Model

The complete code is in the accompanying Jupyter notebook. You use standard

imports and two variables named NUM_FEATURES and NUM_SMPLES for doing some

experiments later:

import pandas as pd

import pickle

import numpy as np

from sklearn.linear_model import LinearRegression

from sklearn.datasets import make_regression

NUM_FEATURES = 10

Chapter 8 Memory and Timing Profile

217

NUM_SAMPLES = 1000

For brevity, I won’t show they data generation and model fitting code because it’s

standard. You save the fitted model as a pickled dump and load the pickled object along

with a test CSV file for the inference:

Model saving function

def save(lm):

 """

 Saves a sklearn linear model as a pickled object

 """

 with open('LinearModel.sav',mode='wb') as f:

 pickle.dump(lm,f)

Model run function

def model_run(model,testfile):

 """

 Loads and runs a sklearn linear model from pickled object

 """

 lm = pickle.load(open(model, 'rb'))

 X_test = pd.read_csv(testfile)

 _= lm.predict(X_test)

 return None

You run everything under a main loop for clarity with Scalene execution and

reporting (you will understand shortly):

if __name__ == '__main__':

 data = make_data()

 X_train,y_train,X_test,y_test = test_train(data)

 lm = fitting(X_train,y_train)

 save(lm)

 model_run('LinearModel.sav','Test.csv')

You run the command

$ scalene linearmodel.py --html >> linearmodel-scalene.html

Chapter 8 Memory and Timing Profile

218

You get the results in Figure 8-4 as output. Note that you use the --html flag and the

pipe operator (>>) to channel the output to an HTML file for easy reporting.

Figure 8-4.  Scalene output after the linear regression model code was run
through it

The most important observation from this profile is that the memory footprint
is almost entirely dominated by the external I/O such as pandas and scikit-learn

estimator loading. A tiny amount of memory usage goes to writing the test data to a CSV

file on the disk.

Chapter 8 Memory and Timing Profile

219

The actual ML modeling, NumPy or pandas operations, and inference do not impact

the memory at all. This is a somewhat unexpected and non-obvious fact. Clearly, without

a proper memory profiler like scalene, you could not have discovered this.

�What Happens as the Model and Data Scale?

You can scale the dataset size (number of rows) and the model complexity (number of

features) and run the same memory profiling to document how the various operations

behave in terms of memory consumption.

The result is shown in Figure 8-5. The X-axis represents the number of features/

number of data points as a pair. Note that this plot depicts percentage and not the

absolute values to showcase the relative importance of the various types of operations.

Figure 8-5.  Impact of data and model (number of parameters) scaling for the
linear model

From these experiments, you can conclude that a scikit-learn linear regression
estimator is quite efficient and does not consume much memory for actual model
fitting or inference. It does, however, have a fixed memory footprint in terms of the code

and consumes that much while getting loaded. However, the percentage of that code

footprint goes down as the data size and model complexity increase.

Therefore, if you are working with a small to moderate linear model (e.g., thousands

of data points but only tens of parameters), you may want to focus on data file I/O to

optimize the data loading, storage, modeling, and inference code for better memory

utilization. For example, you can use a different file storage option than plain CSV

Chapter 8 Memory and Timing Profile

220

(e.g., Parquet or similar modern data format optimized for in-memory analytics; go

to https://medium.com/productive-data-science/why-you-should-use-parquet-

files-with-pandas-b0ca8cb14d71 for more information).

�Deep Learning Model

If you run similar experiments with a two-hidden-layer neural network (with 50

neurons in each hidden layer), the result looks like Figure 8-6. It uses the MLPRegressor

estimator from the sklearn.neural_network module. The code is in the accompanying

Python script.

Figure 8-6.  Impact of data and model (number of parameters) scaling for neural
network model

Clearly, the neural network model consumes a lot of memory at the training/fitting

step, unlike the linear regression model. However, for a small number of features and

large data size, the fitting takes a low amount of memory. You can also experiment with

various architectures and hyperparameters and document the memory usage to arrive at

the setting that works for a specific data science task.

�Key Approaches and Advice
If you repeat the experiments with the same code files, the results will vary widely

depending on your hardware (disk/CPU/GPU/memory type). The purpose of the results

shown above is not to focus on the actual values or even on the trends. I want you to

learn to do memory profiling experiments for your own code.

Chapter 8 Memory and Timing Profile

https://medium.com/productive-data-science/why-you-should-use-parquet-files-with-pandas-b0ca8cb14d71
https://medium.com/productive-data-science/why-you-should-use-parquet-files-with-pandas-b0ca8cb14d71

221

�Key Advice

Some key advice, in this regard, is the following:

Preferably write small functions focused on one single task in

your code.

Keep some free variables like the number of features and number

of data points so that you can run the same code file with minimal

changes to check the memory profile when the data/model scales.

If you are comparing one ML algorithm to another, try to keep the

structure and flow of the overall code as identical as possible to

reduce confusion. Preferably, just change the estimator class and

compare the memory profiles.

Data and model I/O (import statements, model persistence on the

disk) can be surprisingly dominating in terms of memory footprint

depending on your modeling scenario. Never ignore them while

doing optimization.

For the reason above, consider comparing the memory profiles

of the same algorithm from multiple implementation/packages

(e.g., Keras vs. PyTorch vs. scikit-learn). If memory optimization is

your primary goal, you may have to look for the implementation

that has a minimal memory footprint yet can do the job

satisfactorily even if it is not the absolute best in terms of features

or performance.

If the data I/O becomes a bottleneck, explore faster options or

other storage types such as replacing pandas CSV with a Parquet

file and Apache Arrow storage.

Chapter 8 Memory and Timing Profile

222

�Other Things You Can Do with Scalene

In this section, I discussed the bare minimum memory profiling with a focus on a

canonical ML modeling code. Scalene CLI has other options you can take advantage of:

•	 Profiling CPU time only and no memory profile

•	 Reduced profiling with non-zero memory footprint only

•	 Specifying CPU and memory allocation minimum thresholds

•	 Setting the CPU sampling rate

•	 Multithreading and checking the difference

�Final Validation Is Sometimes Necessary

In many cases, ML models are run on edge devices where hardware resources are

limited, especially on the memory (RAM) side. For such low-resource situations, it’s a

good idea to host a validation environment/server that will accept a given modeling

code (after it is developed and tested but before it is deployed) and run it through a

memory profiler to create runtime statistics. If it passes the predetermined criteria of the

memory footprint, then it can be accepted for further deployment. The idea is illustrated

in Figure 8-7.

Figure 8-7.  Validation check with memory profile before deployment of a
ML model

Frameworks like Scalene can be very useful in these situations. By setting up such a

validation gateway, data scientists can make the overall platform much more stable and

robust against accidental memory overshoot and system crash.

Chapter 8 Memory and Timing Profile

223

�Timing Profile with cProfile
You have already seen some basic tricks and techniques to measure execution time of

simple code blocks or a function with a timing decorator. In this section, I will discuss a

built-in Python library named cProfile that can give you a detailed timing profile about

the various parts of your data science code with a simple command. The advantage is

that you don’t have to insert code snippets like time.time() in various places (as shown

in Chapter 2) and track them manually.

�Basic Usage
The cProfile library comes with the default Python installation, so there is nothing to

install. Here’s the basic usage with simple code where you add two NumPy arrays:

import numpy as np

import cProfile

SIZE = 10_000_000

a = np.arange(SIZE)

b = np.random.normal(size=SIZE)

cProfile.run('a+b')

The main thing to notice is that you must wrap the code within a string and pass it

on to the cProfile.run function. Here the code is simply ‘a+b’. The output may look

something like Figure 8-8. Note that the exact time will vary, of course, depending on the

underlying hardware.

Figure 8-8.  Output snapshot of cProfile run with a simple Numpy array addition

Chapter 8 Memory and Timing Profile

224

The interesting thing to remember is that the only piece of code that was measured

for timing is the snippet a+b. The array creation is not being measured here, only the

addition.

If you want to measure the timing profile of all the steps, you could write

code = """SIZE = 10_000_000

a = np.arange(SIZE)

b = np.random.normal(size=SIZE)

a+b"""

cProfile.run(code)

Here you put all the code inside the string variable code and then pass that on to the

cProfile.run function. The output looks different (Figure 8-9), as expected.

Figure 8-9.  Output snapshot of cProfile run with array creation and addition

Note that the extra array creation operations resulted in a total of five function calls,

as opposed to three for the basic addition code.

�With a Function as an Argument
You could, of course, create a standalone function and pass the name of that object to

cProfile.run function for the same task:

def add():

 SIZE = 10_000_000

 a = np.arange(SIZE)

 b = np.random.normal(size=SIZE)

 c=a+b

cProfile.run('add()')

Chapter 8 Memory and Timing Profile

225

The output (Figure 8-10) is similar to the output in Figure 8-9, but an additional

function call is registered that comes from the construction of the add function itself.

Figure 8-10.  Output snapshot of cProfile run with a standalone function (same
NumPy ops)

The function that is passed on to cProfile can have any argument as well. In many

cases, you can change the arguments and see the impact on the profile results. This is

one of the most obvious use-cases of the library. Let’s rewrite the add function to accept

a size argument:

def add(size):

 a = np.arange(size)

 b = np.random.normal(size=size)

 c = a+b

Then you can use it to profile the array operations with 10 million elements

(Figure 8-11):

SIZE = 10_000_000

cProfile.run('add(SIZE)')

Figure 8-11.  Running cProfile and passing in an argument to the function of 10
million elements

When you change the number of elements to 20 million, it reflects immediately

(Figure 8-12):

Chapter 8 Memory and Timing Profile

226

SIZE = 20_000_000

cProfile.run('add(SIZE)')

Figure 8-12.  Running cProfile and passing in an argument to the function for 20
million elements

�Using the Profiler Class
cProfile has a special Profiler class that stores all the important information, and it

can be enabled/disabled programmatically. You can also use the pstats library and pass

this Profiler object to it for printing and extracting data. Here is the code to measure

and print the total execution time:

import cProfile, pstats

profiler = cProfile.Profile()

Enable profiler

profiler.enable()

Function execution

add(SIZE)

Disable profiler

profiler.disable()

pstats

stats = pstats.Stats(profiler)

Print the total time and number of calls

print("Total function calls:", stats.total_calls)

print("Total time (seconds):", stats.total_tt)

The result looks like the following:

>> Total function calls: 48

>> Total time (seconds): 1.1527893999999999

Chapter 8 Memory and Timing Profile

227

Here you get the execution time from the total_tt attribute of the stats object and

the number of calls from the total_calls attribute.

Consequently, this opens up the possibility to programmatically control the profiling

and storing of information as needed. For example, you can profile the execution of the

same add function over a range of arrays sizes:

size = [int(i*1e6) for i in range(5,26,5)]

total_tt = []

for s in size:

 profiler = cProfile.Profile()

 profiler.enable()

 add(s)

 profiler.disable()

 stats = pstats.Stats(profiler)

 total_tt.append(round(stats.total_tt,3))

The timings are stored in the total_tt array. When plotted, it shows the expected

pattern (Figure 8-13).

Figure 8-13.  Computation time extracted using cProfile for various array sizes

�Data Science Workflow Profiling
While measuring the execution time of these small standalone functions serves as a

basic demonstration of the usage of these profilers, the real utility is realized when they

are used in a large-scale data science workflow. Such a workflow has a variety of modules

and functions, and you can set up profiling for all of them if necessary. The output may

be logged into a database or even be fed into a monitoring system that will track the

Chapter 8 Memory and Timing Profile

228

performance of the modules over time and act if needed (e.g., if a function performs

poorly by taking too much time in a certain run or for a certain input data). The idea is

illustrated in Figure 8-14.

Figure 8-14.  Time and memory profiling at various data science workflow stages

�Summary
In this chapter, you examined the importance of memory profiling your ML code for

smooth and easy interfacing with the platform/engineering team that will deploy the

code on a service/machine. Profiling memory can also show you surprising ways to

optimize the code based on the combination of specific datasets and algorithms you

are dealing with. You saw a typical ML modeling code example being profiled with

a powerful yet lightweight Python library. You saw representative results with linear

regression and neural network models and received some general advice.

Next, you saw the basic usage of the built-in Python timing profiler cProfile and how

it can be used with raw code or function modules. You learned how to extract the total

execution time or number of function calls using this library for NumPy operations. This idea

can be extended to any data science workflow that consists of many stages and modules.

Every data science team or organization has its own style for measuring code

and module efficiency and memory footprint. The motivation for this chapter was to

introduce you to the importance of these measurements and show some hands-on

examples so that you can explore further and be ready for such implementation.

Chapter 8 Memory and Timing Profile

229

CHAPTER 9

Scalable Data Science
Data science tasks may encounter a wide variety of dataset sizes, ranging from kilobytes

to petabytes. Some business spreadsheets will only have a few hundred rows while a

whole factory may send a deluge of sensor data to a single dataset, resulting in billions of

rows per day or even per hour. Some datasets can have many rows and a small number

of columns, while others may consist of a few rows but millions of columns as feature

dimensions. Even within the same organization or a data science team there can be

multiple pipelines dealing with different types of input, and they may be facing a wide

variation in the dataset size and complexity.

It is often a natural practice for data scientists to build a scaled prototype of a data

science job (such as combining data wrangling, ML algorithms, and some prediction

functions). They build such a prototype, test it with a typical dataset that is expected to

hit the pipeline, evaluate the result or measure some performance metric with a few ML

algorithms, tune them, and finally make a choice. This is an experimental mentality,

and it serves the spirit of doing science with data very well. However, to support this

quick analysis and prototyping, a data scientist must be able to quickly scale across a

wide variety of dataset sizes and complexity as the need arises. They should not run into

issues like being out of memory while prototyping on their laptop.

This chapter talks about the common problems and limitations that arise while

scaling out to larger datasets and what tools are out there to address these issues.

Specifically, you will visit some of the limitations that arise while doing analysis with

large datasets using the most common data analysis library, Python pandas, and explore

two alternative libraries or add-ons that can be used to overcome these limitations.

In fact, scalability is closely related to the ability to do parallel processing of large

data. Therefore, this theme will be continued in the next chapter where you will explore

Python libraries that support parallel processing natively for data science tasks.

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_9

https://doi.org/10.1007/978-1-4842-8121-5_9

230

�Common Problems for Scalability
Python is a great language for data science. Libraries like pandas open myriad

possibilities for data scientists to slice and dice the data any way they like and create

meaningful insights and high-impact analytics reports with a relatively small amount of

programming. However, they have some serious limitations when it comes to dealing

with large datasets even one as simple as a CSV file with a billion rows.

Two of the most common issues that a data scientist may encounter as the scale of

the data grows are out-of-core failures and inefficiencies related to the Python single-

threading characteristic.

Out-of-core really means the inability to load the full data properly in the working

memory (RAM) of the machine. Single threading is related to the fundamental Python

design feature of the Global Interpreter Lock (GIL) (https://realpython.com/python-

gil/) that allows a single thread to put a lock on the interpreter so that other threads

cannot get a hold of it. Together, they can make doing efficient data analysis on large

datasets (anything larger than a few gigabytes) with limited hardware quite tricky.

�Out-of-Core (a.k.a. Out of Memory)
pandas is the most popular data analysis library in Python, and it is at the front end of

any standard data science pipeline. However, if you have ever tried to work with data

files larger than a few GB, you may have seen the memory error that is thrown by pandas

(Figure 9-1).

Figure 9-1.  A memory error thrown by pandas

Chapter 9 Scalable Data Science

https://realpython.com/python-gil/
https://realpython.com/python-gil/

231

Of course, this error depends on the exact state of the system memory such as how

many other processes are running alongside the pandas code and what type of memory

they are blocking. Nonetheless, it is a well-known fact that pandas cannot handle multi-

GB datasets (no matter how simple in structure they may be) efficiently.

Furthermore, this inefficiency and limitation can rear its ugly head even with a

large dataset that could be somehow loaded in the memory without any memory error

at the beginning. Due to the way pandas handles in-memory objects and calculations,

it is quite easy to run into the same memory error in your data science code. This can

be exacerbated by code that produces many large in-memory DataFrames in quick

succession with intermediate calculations.

For example, imagine what the following code can do. Let’s assume that the Large-

file.csv has 10 million rows and 20 columns.

df1 = pd.read_csv("Large-file.csv") # Successful

df2 = df1.dropna()

df3 = df2[df2['col1'] > 10 and df2['col2'] < 20]

def complex_calc(x):

 # Some complex math

df3['new-col'] = df3['col3'].apply(complex_calc)

def some_transformation(df):

 # Transformation code

 return transformed_df

df4 = some_transformation(df3)

...

This is a generic code snippet, but you get the idea that this code is inefficient,

particularly when dealing with large pandas DataFrame objects. It produces multiple

intermediate DataFrames and does not purge them from memory when their job is

done. At the end, it may use only the final DataFrame for a machine learning modeling,

but the system memory is already clogged with so many useless objects that it will result

in a memory error and the whole pipeline will crash. This is illustrated in Figure 9-2.

Chapter 9 Scalable Data Science

232

Figure 9-2.  A memory error produced by too many intermediate DataFrames
(bad coding practice) even when a large file could be read from the disk

Of course, one way to get around this issue is to rigorously maintain a good coding

habit where unused objects are tracked and purged regularly. However, while doing

prototyping on their Jupyter notebooks, data scientists are bound to write quick and dirty

code without following this practice, and this will hinder their scalability options with

large datasets.

�Python Single Threading
The GIL was one of the earlier design choices in the Python language and it solved quite

a few important problems related to memory leaks and racing conditions. Put simply,

it is a locking mechanism that allows only one thread to hold the control of the Python

interpreter. This means that only one thread can be in a state of execution at any given

point in time.

Generally, its impact isn’t visible to programmers executing single-threaded

programs. In fact, many data science tasks can run just fine without worrying about

GIL as they execute a series of tasks one after another and do not employ many parallel

processing tricks. However, it can become a performance bottleneck in CPU-bound and

multi-threaded code.

For larger datasets, sometimes it makes sense to divide the data into multiple chunks

and utilize a parallel processing execution pipeline. The idea is to send the chunked data

to each core of the CPU and execute the analysis as much in parallel as possible. When

the executions are done, the results can be combined to get back a transformed dataset.

While this does not necessarily help to fit a larger dataset in memory, it can make

analysis of the same dataset faster by the parallel execution.

Chapter 9 Scalable Data Science

233

The beauty here is that this approach can speed up data science exploration and

prototyping tasks even without paying for large CPU clusters on the cloud. It is really

a matter of taking advantage of the 8 or 16 cores that routinely come with the single

modern-day CPU inside a data scientist’s laptop. However, you must make sure that the

data science code and libraries are not getting in the way, and that you are using libraries

that can take full advantage of the multi-core hardware platform.

�What Options Are Out There?
To solve the memory issue (while loading and transforming large datasets) there are

many possible solutions depending on the situation you are in. Some are related to your

choice of hardware and some have to do with your data loading strategy. Let’s talk about

them in a systematic manner.

�Cloud Instances
For larger and larger datasets, there is always a brute-force solution of renting out a

cloud instance with a large RAM attached. As an example, these days you can rent out

an AWS (Amazon Web Service) Elastic Compute (EC2) instance with 128GB of RAM

for less than a dollar per hour. Figure 9-3 shows the pricing for a r6g.4xlarge instance

(a so-called memory optimized EC2 instance, www.amazonaws.cn/en/ec2/instance-

types/#Memory_Optimized_Instances).

Figure 9-3.  A memory-optimized EC2 (AWS) instance pricing

Once set up, you can install all your favorite Python libraries, read large data

files stored locally (e.g., to a mapped SSD) or from an AWS S3 folder, and do pandas

data transformation without worrying about memory errors. While it may still seem

expensive to a causal user, organizations or teams who need that much memory to

process pandas DataFrames regularly probably won’t mind paying ~$0.8 an hour for a

smooth and error-free data science task flow.

Chapter 9 Scalable Data Science

http://www.amazonaws.cn/en/ec2/instance-types/#Memory_Optimized_Instances
http://www.amazonaws.cn/en/ec2/instance-types/#Memory_Optimized_Instances

234

However, remember that pandas will still be limited to use only one CPU core at a

time and, by default, it will exhibit slowness while loading and dealing with large files.

Just running run-of-the-mill pandas code on a large-memory cloud instance may stop

some frequent memory error situations, but it may not fundamentally make the data
science pipeline productive or efficient at scale.

What is a memory-optimized EC2 instance?   A cloud service like AWS must
cater to a wide variety of users with various needs. Someone may need fast
processing with a CPU cluster, someone else may need a high network bandwidth,
and someone else may require large on-board memory (RAM). Memory-optimized
instances are just that: they provide a large amount of RAM at an optimized cost.
They do not necessarily have the best-in-class CPUs or network bandwidth,
but they work best for jobs that demand large slices of physical memory during
execution. Within these instances, there are multiple choices depending on cost
and available CPU types. The r6g.4xlarge is really the starting point of this lineup
that goes up to a 768GB memory option with a reasonable hourly cost.

AWS is not the only cloud service to offer this. Every major player–Google
Cloud or Microsoft Azure, for example–offers similar high-memory instances as
Infrastructure-as-a-Service (IaaS) that can address the problem of insufficient
memory while executing a data science task (on a local machine).

�Google Colab
Google Colaboratory (or Colab, as it is known popularly; https://research.google.

com/colaboratory/faq.html) is also a cloud service at its core. Basically, it runs a

Jupyter notebook service that is hosted on Google cloud servers. You can use a CPU,

GPU, or even a TPU (if you are lucky) for free just by having a Google account.

The greatest advantage of Colab, as compared to AWS or GCP, is its ease of
use and low barrier of entry. If you have your data science Python code in a Jupyter

notebook, Colab can help get you started on this cloud instance instantly (as soon as you

upload your notebook to the instance). Unlike AWS or GCP barebone instances, there is

no setup or installation needed. You can directly access Colab notebooks through your

browser and start running your code in a matter of minutes.

Chapter 9 Scalable Data Science

https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html

235

What is a Tensor Processing Unit? T ensor Processing Units (TPUs) are
Google’s custom-developed application-specific integrated circuits (ASICs) used to
accelerate machine learning workloads. These ASICs are designed from the ground
up with the sole aim of optimizing the speed and power of computation tasks
that appear in deep learning such as matrix multiplication and addition, special
activations functions, other linear algebra routines like matrix inversion, and so on.
Their internal architecture is quite different from traditional CPUs that are designed
for general purpose computing tasks. Memory bandwidth memory transfer speed
of a TPU is also enhanced as this factors critically in a deep learning training
performance.

For some specific situations, this may indeed increase productivity and efficiency.

For example, if the local laptop does not have a good enough CPU or a GPU card

installed, or the RAM is under 8GB, then switching to Google Colab should enhance the

productivity instantly.

The typical instance (free of cost) has ~12-13 GB of RAM and a CPU equivalent to an

Intel Xeon processor. Getting a GPU instance is also quite easy, with the most common

GPU being a Tesla K80 (compute 3.7, having 2496 CUDA cores and 12GB GDDR5

VRAM). While the CPU core count is nothing boast about, having a larger RAM and GPU

memory may help data science exploration, especially if it involves GPU-intensive tasks

like training a deep neural network or even vectorized computation involving NumPy

arrays. If 12GB RAM seems too little, you can upgrade to Colab Pro (https://colab.

research.google.com/signup), which offers double the RAM for only $10/month (a

whole lot cheaper than paying for an equivalent EC2 instance with 24GB of RAM).

However, despite its attractive features, Colab does have some serious limitations

for practicing data scientists who are trying to explore larger datasets and scale up their

data science workflow. At the outset, it puts a time limit on the running time of the

notebook, so if you leave it idle for a certain amount of time, the instance will die (along

with any variables and internal states). Basically, you must plan your code execution

carefully and be ever vigilant to take full advantage of Colab.

Also, file loading (whether uploading from local drive or reading from the Web) is

painfully slow (most probably a deliberate choice to control the bandwidth usage over

Chapter 9 Scalable Data Science

https://colab.research.google.com/signup
https://colab.research.google.com/signup

236

the Google Cloud infrastructure). Therefore, while you can do in-memory analytics and

data transformations rather quickly, the initial loading can take an inordinate amount

of time or may even crash your notebook. Upgrading to Colab Pro or Pro+ (from a

completely free account) alleviates these issues to some extent but not fully.

�pandas-Specific Tricks
Since I started the scalability discussion by pointing out the out-of-core issues in pandas,

it makes sense to loop back to ground zero and examine what suggestions the pandas

developers have to address this issue.

There is a dedicated resource page on the pandas documentation portal about this

topic: “Scaling to large datasets” (https://pandas.pydata.org/pandas-docs/stable/

user_guide/scale.html). It starts like this:

Pandas provides data structures for in-memory analytics, which makes
using pandas to analyze datasets that are larger than memory datasets
somewhat tricky. Even datasets that are a sizable fraction of memory
become unwieldy, as some pandas operations need to make intermedi-
ate copies.

It goes on to point out some useful tricks and techniques for coping with memory

issues. I discuss some of them below and add a few more.

�Load Only the Columns You Need

Often, a particular data transformation task requires only a small fraction of the columns

that the complete dataset features. If you have a dataset with 10 million rows and 100

columns, and you need only the first 5, it makes absolute sense to load only those 5

columns and not even look at the rest. You avoid loading a whopping 950 million pieces

of data into memory. The essential trick here is to include the necessary argument in

your data loading function.

Write

df = pd.read_csv("Large-file.csv",

 names = ['Col-1','Col-2','Col-3'])

instead of

Chapter 9 Scalable Data Science

https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html

237

df = pd.read_csv("Large-file.csv")

This little change can indeed make or break your data transformation pipeline.

�Column-Specific Functions (If Applicable)

Following the same idea as above, it is a good practice (wherever applicable) to write

separate functions that deal with specific columns/features in the dataset as needed

(Figure 9-4). For example, a dataset may have the following:

•	 String data corresponding to name and address. This can be handled

by a specific function.

•	 Datetime data corresponding to some business transaction. This

should be handled by another specific function that loads and

process only these columns.

•	 Pure numeric data, which can be handled many ways, even read

as a pure NumPy array and utilizing vectorizing tricks (as discussed

elsewhere in this book) to speed up the data transformation process.

Figure 9-4.  Functions to deal with specific columns of a large on-disk file, never
loading more than a small fraction into memory

�Explicitly Specify/Convert Data Types

The default data types in pandas are not designed to be the most memory efficient.

This is especially true for text/string data columns with relatively few unique values

Chapter 9 Scalable Data Science

238

(alternatively known as low-cardinality data). By using more efficient and targeted data

types, you can significantly reduce the memory usage and process larger datasets.

There is a dataset called loan_data.csv on file (supplied with the book). Let’s see

how explicitly specifying the data type can reduce the memory usage while working with

this dataset:

import pandas as pd

df = pd.read_csv("../loan_data.csv")

df.memory_usage(deep=True)

The function memory_usage() shows the true memory usage by the in-memory

object. The output is shown in Figure 9-5. The output of df.info() is shown in the same

figure, indicating that the default loading assigned the general-purpose object data type

to that column while others were assigned data types like int64 or float.

Figure 9-5.  Default data loading assigned a general-purpose data type to a text/
string column, causing it to take up too much memory

You might also have noticed that the credit.policy is an unsigned integer taking on

values 1 or 0. Why do you need a 64-bit integer data type to represent that? So, let’s also

type convert that column:

df['credit.policy'].unique()

>> array([1, 0], dtype=int64)

Here is the code for doing the data type conversions (explicit specifications):

Chapter 9 Scalable Data Science

239

df2 = df.copy()

df2['purpose'] = df2['purpose'].astype('category')

df2['credit.policy'] = df2['credit.policy'].astype('uint8')

del(df)

Here, first you do a copy on the existing DataFrame. Then, you use the astype

function to assign the category data type to the purpose column and unit8 (8-bit

unsigned integer) to the credit.policy column. Lastly, as a good practice, you delete

the old DataFrame object from the memory since you no longer need it for your data

science pipeline.

You can see the stark difference in Figure 9-6.

Figure 9-6.  Loan dataset memory usage after explicit data type specification/
conversion

This memory saving may seem trivial for this example, but small savings like this

add up quickly for a long and data-intensive pipeline and can reduce the total overhead

significantly.

�Libraries for Parallel Processing
Parallel computing is an extensive field of its own. It is not trivial to implement optimized

code in Python that will execute parallel threads/processes flawlessly and with high

Chapter 9 Scalable Data Science

240

performance. Fortunately, there are some fantastic Python frameworks for doing parallel

processing with minimal learning curves.

I will discuss a couple of them, Dask and Ray, with hands-on examples in the next

chapter, so I won’t get into those details here.

�Libraries for Handling Out-of-Core Datasets
There are special libraries to handle out-of-core datasets. Vaex and Modin are two such

frameworks. Let’s discuss them in more detail with hands-on examples next.

�A Note About the Preferred OS
Although a many data scientists use Windows OS for their day-to-day tasks, it has been

observed that (in general, and while doing the technical review of this book) advanced

libraries like Vaex, Modin, Ray, and Dask may have trouble being set up or performing

smoothly on Windows OS. Therefore, you are strongly encouraged to use a Linux-based

OS for practicing with these libraries and running some of the Jupyter Notebooks that are

provided. You can either

•	 Use a Linux-based OS (e.g., Ubuntu, Fedora, or Red Hat) on your

local machine natively

•	 Run a virtual machine (VM) using tools like Oracle VirtualBox on

your Windows-based machine, with a Linux-based OS on the VM

•	 Use a cloud instance with a Linux-based OS (including the Amazon

Linux flavor that comes with any EC2 instance)

�Hands-On Example with Vaex
Vaex is a Python library designed for working with lazy out-of-core DataFrames. One

of its central goals is to help visualize and explore big tabular datasets. Vaex is high-

performant for large datasets. For example, it can help calculate statistics such as mean,

sum, count, standard deviation, and more on an N-dimensional grid of up to a billion

objects/rows per second.

Chapter 9 Scalable Data Science

241

In this section, you will see hands-on examples of such calculations and

visualizations with the Vaex library.

�Features at a Glance
Here is a quick summarization of the key features of Vaex:

Performance: It can work easily with huge tabular data. Its

processing capability is in the order of billions rows/second.

Lazy/virtual columns: The computation is done on the fly,

without wasting precious RAM/virtual memory.

Memory efficient: No memory copies when doing routine data

slicing such as filtering/selections/subsets.

Visualization: Natively and directly supported. Lots of functions

to realize routine visualization from huge tabular datasets.

User friendly API: The DataFrame object is the main API and it is

all that a general user will ever need. The API feels very similar to

pandas and therefore presents with minimal learning curve when

replacing pandas code with Vaex for out-of-core data processing.

Lean and compartmentalized: Vaex is separated into multiple

subpackages and you can install any combination of them as per

your specific needs. For example, Vaex-astro supports astronomy

related transformations and FITS file reading. Vaex-viz support

all visualizations. But if all you want is to calculate statistics and

not visualize the data, you don’t have to install it. For modern file

types like Apache Arrow, it has a package named Vaex-arrow.

�Basic Usage Example
Start by using an example dataset provided with Vaex:

import vaex

df = vaex.example()

Chapter 9 Scalable Data Science

242

When you run this code first time, it will download the dataset from the Web, so an

Internet connection is required while running this code first time. It will store the dataset

(a .hdf5 file) in a folder called data.

You can examine the information about the file:

df.info()

You will see something like Figure 9-7.

Figure 9-7.  Vaex example dataset information

The slicing and indexing of the data are just like pandas. For example, say you want

to see only the x, y, vx, and vy columns for rows 3 to 7:

df[['x','y','vx','vy']][3:8]

Chapter 9 Scalable Data Science

243

It will give you the expected output (Figure 9-8).

Figure 9-8.  Vaex example of indexing the dataset

The calculation of statistics is fast. On my laptop, calculating the mean of 330,000

rows took under 20ms.

%%timeit

df.x.mean()

>> 19.6 ms ± 2.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

�No Unnecessary Memory Copying
The best thing about Vaex is that it does not create unnecessary copies of DataFrame

objects while doing simple filtering operations or intermediate calculations. Even the

base DataFrame has minimal memory impact. The computations are done in a lazy, on-

the-fly (when necessary) manner.

Check the memory footprint with this code:

import sys

Vaex dataframe

print("Size of Vaex DF:", sys.getsizeof(df))

Convert to Pandas dataframe

df_pandas = df.to_pandas_df()

print("Size of Pandas DF:", sys.getsizeof(df_pandas))

The output is astonishing:

Chapter 9 Scalable Data Science

244

Size of Vaex DF: 48

Size of Pandas DF: 13530144

You can run all the necessary calculations on the Vaex dataframe object with much

less worry about memory errors cropping up.

For example, you can filter the dataframe for only those rows that have negative x

values and positive z values:

df_filtered = df[df.x < 0 and df.z > 0]

sys.getsizeof(df_filtered)

>> 48

As expected, the new df_filtered dataframe still has a low memory footprint, but it

only has 164464 rows compared to original 330,000 rows.

df_filtered.shape

>> (164464, 11)

�Expressions and Virtual Columns
You can create custom expressions and assign them to virtual columns with no memory

copying (again). Working with pure pandas code, every such operation runs a chance

of creating memory overhead. Let’s say you want to calculate the root of the sum of the

squares of two columns from the example dataset:

import numpy as np

sqroot_exp = np.sqrt(df['x']**2+df['y']**2)

Now, if you examine this sqroot_exp, you will see that it is a special expression (not

evaluated yet). It has not created any memory overhead.

type(sqroot_exp)

>> vaex.expression.Expression

If you do this in pandas, it will create a pandas series object:

sqroot_pandas = np.sqrt(df_pandas['x']**2+df_pandas['y']**2)

type(sqroot_pandas)

>> pandas.core.series.Series

Chapter 9 Scalable Data Science

245

Now, such Vaex expressions can be added to a DataFrame, creating a virtual column.

These virtual columns are similar to normal DataFrame columns, except they do not

waste any memory.

Assignment of expression to a virtual column

df['sqroot'] = sqroot_exp

Evaluation only when needed

df['sqroot'].mean()

>> array(8.38820497)

�Computation on a Multidimensional Grid
One of the most interesting features of Vaex is the ability to calculate statistics on user-

selectable grids in a fast and efficient manner. This has many practical applications when

you are interested in finding local minima or maxima or the distribution of numeric

quantities over specific regions from a maze of numbers.

counts_x = df.count(binby=df.x, limits=[-5, 5], shape=32)

counts_x

>> array([4216, 4434, 4730, 4975, 5332, 5800, 6162, 6540, 6805, 7261,

7478,7642, 7839, 8336, 8736, 8279, 8269, 8824, 8217, 7978, 7541, 7383,7116,

6836, 6447, 6220, 5864, 5408, 4881, 4681, 4337, 4015], dtype=int64)

The result is nothing but a NumPy array with the number counts in 32 bins

distributed between x = -5, and x = 5. The key thing to note here is the binby argument

inside the function that works similar to GroupBy in SQL or even pandas. Here the data

was grouped by the x column (binby=df.x).

So, with this single line of code, you

•	 Filtered/restricted the data within -5 and 5

•	 Counted the number of data points

•	 Binned the counts in 32 bins

Chapter 9 Scalable Data Science

246

Figure 9-9 shows the visualization.

Figure 9-9.  Counts of x column data for a specific range and bin count

Want a more powerful example? You can calculate the root of the sum of the squares

of velocities vx, vy, and vz to get the resultant velocity. However, you may want to do it

for a certain range of x and y data and bin the result for easy visualization.

Just an expression

velo = np.sqrt(df.vx**2 + df.vy**2 + df.vz**2)

Pass the expression to the function

Binned by x and y, over limits of -10 to 10

xy_mean_v = df.mean(velo, binby=[df.x, df.y],

 limits=[[-10, 10], [-10, 10]],

 shape=(64, 64))

You can do a 2D plot of the resultant velocity over the same xy range:

plt.figure(dpi=120,figsize=(3,3))

plt.imshow(xy_mean_v.T,

 origin='lower',

 extent=[-10, 10, -10, 10])

plt.show()

Figure 9-10 shows the result.

Chapter 9 Scalable Data Science

247

Figure 9-10.  Resultant velocity calculated and visualized over specific ranges of x
and y data

�Dynamic Visualizations Using Widgets and Other
Plotting Libraries
The N-dimensional grid-based computation is designed to be fast with Vaex. This allows

you to extend the visualization to be dynamic using widgets and third-party libraries

like bqplot. Unfortunately, these dynamic visualizations are not possible to render in the

pages of a book. However, some code and results are shown in the Jupyter notebook.

For example, this simple code creates a plot widget in the Jupyter notebook where

you can pan and zoom around and choose a few data transformations from the drop-

down menu. (Figure 9-11 shows a static snapshot of the widget.)

Chapter 9 Scalable Data Science

248

Figure 9-11.  Snapshot of a dynamic visualization with a Vaex plot widget method

The usefulness of such utility methods cannot be overemphasized for large-scale

data analysis. You can plot complex transformations on large, out-of-core datasets (say

10GB or 20GB in size) with only a few lines of code to visualize the hidden patterns. This

increases the productivity and efficiency of such a data analysis pipeline far beyond what

would have been possible with only pandas and Matplotlib code.

�Vaex Preferred HDF5 Format
The magic in Vaex happens because of internal optimization and data representation.

One of the design choices is to work with HDF5 file formats as much as possible.

Therefore, the best way to work with Vaex is to load other types of data into this format

before you start exploring. For convenience, Vaex provides many utility methods to

convert other files or data structures to this format. You can convert from CSVs, Arrow

tables, Python dictionaries, NumPy arrays, JSON, and more.

For example, this code converts a moderate-sized CSV file (close to a million rows

and 15 columns) into a HDF5 file:

df2 = vaex.from_csv("Large-data.csv", convert=True)

Chapter 9 Scalable Data Science

249

When you run this code, another file named Large-data.csv.hdf5 gets created

in the folder where the Large-data.csv file resides. You must not forget to set

convert=True for this to happen.

After that, you can read/open this HDF5 much faster than what is possible with

pandas CSV reading. Here is the complete code:

Pandas reading CSV

t1 = time.time()

df2_pandas = pd.read_csv("Large-data.csv")

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds with Pandas")

Vaex conversion from CSV

df2 = vaex.from_csv("Large-data.csv", convert=True)

Vaex reading HDF5

t1 = time.time()

df2 = vaex.open("Large-data.csv.hdf5")

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds with Vaex")

The results speak for themselves:

Took 2354.523 milliseconds with Pandas

Took 14.057 milliseconds with Vaex

In today’s world of data science, a dataset with a million rows is not a particularly

large one. Even this modest sized file caused pandas to take over 2 seconds to read from

the disk. With Vaex, after conversion to HDF5, it becomes so much faster. Therefore,

for a data processing pipeline utilizing the power of libraries like Vaex, it makes sense

to convert (in a systematic manner) all the text-based data files (CSV or even JSON if

that makes sense) to HDF5 and read them as a Vaex DataFrame as much as possible, as

illustrated in Figure 9-12.

Chapter 9 Scalable Data Science

250

Figure 9-12.  Converting to HDF5 and working with Vaex results in a faster and
more productive data science pipeline, particularly for out-of-core datasets

�Hands-On Examples with Modin
Modin is a library whose actual utility falls into the realm of parallel processing or multi-

core processing. It uses a Ray or Dask back end to provide an effortless way to speed up

pandas notebooks, scripts, and libraries. The main attractiveness of Modin is its tight

integration and identical API to that of pandas.

You will see the use of a Dask DataFrame and Ray in the next chapter. However,

unlike these distributed DataFrame libraries, Modin provides seamless integration and

compatibility with existing pandas code including DataFrame construction. Basically,

you just need to change a single line of code to get started.

�Single CPU Core to Multi-Core
For most of the data science workload to use Modin, you just start like this:

import modin.pandas as pd

From a simple change in one line of code, the benefit that you get is enormous.

This comes from the fact that despite all the great features and capabilities, the core
implementation of pandas is inherently single-threaded. This means that only one of

the multiple CPU cores can be utilized at any given time for executing normal pandas

code. In a single CPU machine (e.g., a data scientist’s laptop), it would look something

like Figure 9-13.

Chapter 9 Scalable Data Science

251

Figure 9-13.  The pandas code utilizing only a single core of the system

However, just wrapping the pandas code with Modin (a single line of code change),

you can utilize all the cores (by setting up a Dask or Ray backend cluster/worker system),

as shown in Figure 9-14.

Figure 9-14.  Modin code utilizing all the CPU cores

�Out-of-Core Processing
Let’s now demonstrate the out-of-core processing capability of Modin. Here, the phrase

“core” does not refer to the CPU core but really to the system memory or RAM.

The following code creates a DataFrame with ~1 million (220 to be precise) rows and

256 columns with random integers. Note the use of modin.pandas here.

import modin.pandas as pd

import numpy as np

Chapter 9 Scalable Data Science

252

raw_data = np.random.randint(0, 100, size=(2**20, 2**8))

df = pd.DataFrame(raw_data).add_prefix("col")

When you execute this code for the first time, you may see some user warnings and

message (Figure 9-15) about the Dask cluster setup (assuming that you are using the

Dask back end for the parallel processing/ clustering). In the next chapter, you will see

how to start and monitor a Dask cluster. The good thing with Modin is that all of this gets

taken care of under the hood, and the user doesn’t have to write the cluster setup code.

Figure 9-15.  Warning message related to Dask cluster setup for Modin code
execution (first time only)

You can check the information about the DataFrame:

df.info()

It will show something like this:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1048576 entries, 0 to 1048575

Columns: 256 entries, col0 to col255

dtypes: int32(256)

memory usage: 1.0 GB

So, under the hood, it uses the pandas.core.frame.DataFrame class but when

you check the type of the DataFrame object, it is a Modin pandas object, not the

regular pandas.

type(df)

>> modin.pandas.dataframe.DataFrame

Chapter 9 Scalable Data Science

253

Now you come to the key part of this demo. The following code concatenates 20
such 1GB DataFrames into a single large DataFrame. Check out the time it takes to

do this and think what could have gone wrong if you tried this with normal pandas code

(assuming your local machine has a 16GB RAM).

import time

t1 = time.time()

big_df = pd.concat([df for _ in range(20)])

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds")

It should be done under a second.

Took 236.584 milliseconds

If you want to see the shape of this large DataFrame big_df:

big_df.shape

>> (20971520, 256)

So, it does have over 20 million rows and 256 columns. This would be almost

impossible to handle as a persistent in-memory object with pure pandas.

If you check the memory usage explicitly:

big_df.memory_usage(deep=True)

>>

Index 167772160

col0 83886080

col1 83886080

col2 83886080

col3 83886080

 ...

col251 83886080

col252 83886080

col253 83886080

col254 83886080

col255 83886080

Length: 257, dtype: int64

Chapter 9 Scalable Data Science

254

So, each column’s memory usage is over 80MB. In total, for 256 columns (and one

index), this represents over 20GB of memory usage. My laptop has only 16GB of RAM

and surely the Jupyter notebook, where this code is being run, did not take up all the

memory. This is the direct demonstration of out-of-core computing with Modin.

You can treat this large DataFrame as a regular pandas DataFrame for all purposes

from now on. For example, calculating the mean on col0 is done under 2 seconds.

t1 = time.time()

big_df['col0'].mean()

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds for calculating mean

of col0")

>> Took 2677.044 milliseconds for calculating mean of col0

How about calculating the mean of the entire DataFrame? Instead of one column,

now you are operating over all 256 columns of data.

t1 = time.time()

big_df.mean()

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds for calculating mean of

the entire DataFrame")

>> Took 37654.585 milliseconds for calculating mean of the entire DataFrame

So, the time goes from 2.7 seconds to 37.7 seconds. Not a 256X increase in the

computing time, but much less. This is the fruit of parallel processing and allocating data

chunks optimally to each worker that the Dask cluster has set up in the background.

�Other Features of Modin
Modin is a live, open-source project and new contributions get added all the time. It

also has

•	 Distributed XGBoost support for fast machine learning

•	 Standard SQL connection support to execute SQL queries on

databases

Chapter 9 Scalable Data Science

255

•	 Gradually maturing support for various input data ingestion

APIs (reading all kinds of files and data formats). In this matter, if

something is tricky to support, it defaults to the pandas reading API

automatically for ingestion, and then processes the object as a Modin

DataFrame.

For more details and updates, interested readers should definitely check out the

official documentation at https://modin.readthedocs.io/en/stable/index.html.

�Summary
In this chapter, you started addressing the concept of scaling out a data science workload

to multiple CPU cores and beyond the system memory. This is particularly important for

dealing with increasingly larger datasets, going from the realm of megabytes to gigabytes

to terabytes and more. The conventional Python data science ecosystem using NumPy,

pandas, and Matplotlib is great at smaller datasets but starts becoming inefficient while

dealing with large file sizes, particularly reading from the disk or performing aggregation

and statistical computations. pandas may throw up memory errors for a lot of trivial

situations involving multi-GB level datasets because it makes a lot of unnecessary

memory copies while doing regular data wrangling.

You explored common tricks and techniques within pandas to address these issues

such as selective data loading, explicit type setting, and more. Then, you followed hands-

on examples of out-of-core computing and scalability with large file and dataset size

with two powerful libraries, Vaex and Modin. Doing data transformation (or visualization)

with such large datasets would have been slow and inefficient with pure pandas code.

Among these, Modin uses a Ray or Dask back end for distributing computing load

to multiple CPU cores. In the next chapter, you will take this discussion of scalable data

science further by exploring these parallel or distributed computing aspects.

Chapter 9 Scalable Data Science

https://modin.readthedocs.io/en/stable/index.html

257

CHAPTER 10

Parallelized Data Science
In the last chapter, I talked about how data science tasks may encounter a wide variety of

dataset sizes, ranging from kilobytes to petabytes. There can be a range of scale either in

the number of samples or the extent of feature dimensionality. To handle complex data

analytics and machine learning, data scientists employ a dizzying array of models, and

that ecosystem scales up quickly, too.

Handling data and models at scale is a special skill to be acquired. When a

data scientist starts learning the tradecraft, they first focus on understanding the

mathematical basis, data wrangling and formatting concepts, and how to source and

scrape data from various sources. In the next stage, they focus mainly on various ML

algorithms and statistical modeling techniques and how to apply them for various tasks.

Model performance and hyperparameter tuning remains their sole focus.

However, in almost all real-life scenarios, the success of a data science pipeline

(and its value addition to the overall business of the organization) may depend on how

smoothly and flawlessly it can be deployed at scale (i.e., how easily it can handle large

datasets, faster streaming data, rapid change in the sampling or dimensionality, etc.). In

this era of Big Data, the principles of the five V’s (or six) must be embraced by enterprise-

scale data science systems.

Of course, a single data scientist will not oversee implementing this whole enterprise

or the pipeline. However, knowledge about scaling up the data science workflow is fast

becoming a prerequisite for even an entry-level job in this field. There are a few different

dimensions to that knowledge: cloud computing, Big Data technologies like Hadoop

and Spark, and parallel computing with data science focus, for example.

The topics of cloud computing and associated tools (think AWS, Google Cloud

Service, or Azure ML) are squarely beyond the scope of this book. Additionally, there

are excellent resources (both online courses and textbooks) for learning the essentials

of distributed data processing with the Hadoop infrastructure and related technologies.

This chapter focuses on the Python-based parallel computing aspects that can be used

directly for data science tasks. Much like the last chapter, I will discuss some of the

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_10

https://doi.org/10.1007/978-1-4842-8121-5_10

258

limitations that arise while doing analysis with large and complex datasets using the

most common data analysis and numerical computing libraries like pandas or NumPy

and discuss alternative libraries to help with those tasks.

It is to be noted, however, that this is not going to be an exhaustive discussion

about general parallel computing tricks and techniques with Python. In fact, I will

avoid detailed treatment of the topics that often come up in a standard Python

parallel computing tutorial or treatise, such as working with built-in modules like

multiprocessing, threading, or asynco. The focus, like any other chapter in this book,

is squarely on data science, and therefore, I will cover two libraries named Dask and

Ray that truly add value to any data science pipeline where you want to mix the power of

parallel computing.

�Parallel Computing for Data Science
You’ll start with a simple code snippet to understand where you want to go. Assuming

you have standard Python installed on your laptop, execute this code (on a CLI or inside

a Jupyter notebook):

import multiprocessing as mp

print("Number of processors: ", mp.cpu_count())

You are highly likely to get a response like 4 or 6. This is because all modern CPUs

consist of more than one core; they’re parallel computing units, effectively. There

are subtle differences between the actual physical cores (electronic units with those

nanometer-scale transistors) and logical cores, but for all computing purposes, you can

think of the logical cores as the fundamental units in your system.

For more detailed information on the CPU installed on your laptop, you may execute

the following snippet:

import psutil

print("="*20, "CPU Info", "="*20)

number of cores

print("Physical cores:", psutil.cpu_count(logical=False))

print("Total cores:", psutil.cpu_count(logical=True))

CPU frequencies

cpufreq = psutil.cpu_freq()

Chapter 10 Parallelized Data Science

259

print(f"Max Frequency: {cpufreq.max:.2f}Mhz")

print(f"Current Frequency: {cpufreq.current:.2f}Mhz")

CPU usage

print("CPU Usage Per Core:")

for i, percentage in enumerate(psutil.cpu_percent(percpu=True,

interval=1)):

 print(f"Core {i}: {percentage}%")

print(f"Total CPU Usage: {psutil.cpu_percent()}%")

On my laptop, I get the following:

==================== CPU Info ====================

Physical cores: 2

Total cores: 4

Max Frequency: 2195.00Mhz

Current Frequency: 2195.00Mhz

CPU Usage Per Core:

Core 0: 64.7%

Core 1: 40.9%

Core 2: 58.5%

Core 3: 29.2%

Total CPU Usage: 55.6%

So, we have multiple cores, and we should be able to take advantage of that
hardware design in our data science tasks. What might that look like?

�Single Core to Multi-Core CPUs
Although this is a book about data science, sometimes it is necessary (and nostalgic)

to take a slight detour into the hardware realm and revisit the history of development

on that side. For parallel computing, a lot of hardware development had to happen

over a long period of time before the modern software stack started taking full-blown

advantage of that development. It will be beneficial to get a brief glimpse of this history

to put our discussion in context.

Chapter 10 Parallelized Data Science

260

The earliest commercially available CPU was the Intel 4004, a 4-bit 750kHz

processor released in 1971. Since then, processor performance improvements were

mainly due to clock frequency increases and data/address bus width expansion. A

watershed moment was the release of the Intel 8086 in 1979 with a max clock frequency

of 10MHz and a 16-bit data width and 20-bit address width.

The first hint of parallelism came with the first pipelined CPU design for the Intel

i386 (80386) which allowed running multiple instructions in parallel. Separating the

instruction execution flow into distinct stages was the key innovation here. As one

instruction was being executed in one stage, other instructions could be executed in the

other stages and that led to some degree of parallelism.

At around the same time, superscalar architecture was introduced. In a sense,

this can be thought of as the precursor to the multi-core design of the future. This

architecture duplicated some instruction execution units, allowing the CPU to run

multiple instructions at the same time if there were no dependencies in the instructions.

The earliest commercial CPUs with this architecture included the Intel i960CA, AMD

29000 series, and Motorola MC88100.

The unstoppable march of Moore’s Law (shrinking the transistor sizes and

manufacturing cost at an exponential pace; www.synopsys.com/glossary/what-is-

moores-law.html) helped fuel this whole revolution in microarchitecture with the

necessary steam. Semiconductor process technology was improving and lithography

was driving the transistor nodes to the realm of sub 100 nm (1/1000th of the width of

a typical human hair), supporting circuitry, motherboards, and memory technology

(taking advantage of the same manufacturing process advancements).

The war for clock frequency heated up and AMD released the Athlon CPU,

hitting the 1GHz speed for the first time, at the turn of the century in 1999. This war was

eventually won by Intel, who released a dizzying array of high-frequency single-core

CPUs in the early 2000s, culminating in the Pentium-4 with a base frequency around

3.8GHz - 4GHz.

But fundamental physics struck back. High clock frequencies and nanoscale

transistor sizes resulted in faster circuit operations, but the power consumption shot

up as well. The direct relationship between frequency and power dissipation posed an

insurmountable problem for scaling up. Effectively, this power dissipation resulted in

so-called higher leakage current that destabilized the entire CPU and system operation

when the transistor count was also going up into billions (imagine billions of tiny and

unpredictable current leakages happening inside your CPU).

Chapter 10 Parallelized Data Science

http://www.synopsys.com/glossary/what-is-moores-law.html
http://www.synopsys.com/glossary/what-is-moores-law.html

261

To solve this issue, multi-CPU designs were tried that housed two physical CPUs

sharing a bus and a common memory pool on a motherboard. The fundamental idea

is to stop increasing the frequency of operations and go parallel by distributing the

computing tasks over many equally powerful computation units (and then accumulate

the result somehow). But due to communication latencies from sharing external (outside

the package) bus and memory, they were not meant to be truly scalable designs.

Fortunately, true multi-core designs followed soon after where multiple CPU cores

were designed from the ground up within the same package, with special consideration

for parallel memory and bus access. They also featured shared caches that are separate

from the individual CPU caches (L1/L2/L3) to improve inter-core communication by

decreasing latency significantly. In 2001, IBM released Power4, which can be considered

the first multi-core CPU, although the real pace of innovation and release cycle picked

up after Intel’s 2005 release of the Core-2 Duo and AMD’s Athlon X2 series.

Many architectural innovations and design optimizations are still ongoing in this

race. Enhancing core counts per generation has been the mainstay for both industry

heavyweights, Intel and AMD. While today’s desktop workstation/laptops regularly

use 4 or 6 core CPUs, high-end systems (enterprise data center machines or somewhat

expensive cloud instances) may feature 12 or 16 cores per CPU.

For the data science revolution and progress, it makes sense to follow this journey

closely and reap the benefits of all the innovations that hardware design can offer. But it

is easier said than done. Parallelizing everyday data science tasks is a non-trivial task and

needs special attention and investment.

�What Is Parallel in Data Science?
For data science jobs, both data and models are important artifacts. Therefore, one of the

first considerations to be made for any parallel computing effort is to the focal point of

parallelizing: data or model.

Why do you need to think this through? Because some artifacts are easier to be

imagined to be parallelized than the others. For example, assume you have 100 datasets

to run some statistical testing on and 4 CPU cores in your laptop. It is not hard to imagine

that it would be great if somehow you could distribute the datasets evenly across all the

cores and execute the same code in parallel (Figure 10-1). This should reduce the overall

time to execute the statistical testing code significantly, even if the scheme involves

some upfront overhead for dividing and distributing data, and some end-of-the-cycle

aggregation or accumulation of the processed data.

Chapter 10 Parallelized Data Science

262

Although this is not hard to imagine, the actual implementation is not that

straightforward for a traditional Python-based data science stack using pandas or SciPy.

As discussed in the last chapter, Python is inherently single-threaded and doing parallel

processing with Python code needs some prior setup and clever manipulation. When a

data scientist is using high-level analytics libraries like pandas, it is even more important

to know the limitations for parallel processing (if any).

Moreover, data science is not limited to model exploration and statistical analysis

on a single person’s laptop (or a single cloud-based compute node) anymore. From a

single machine (however powerful it might be), the advantages are apparent for large-

scale data analytics when one connects to a cluster architecture consisting of multiple

computers banded together with high-speed network. In the limiting case, such a cluster

aims to become a single entity of computing for all intents and purposes: a single brain

arising out of parallel combination and communication among many smaller brains.

Naturally, data scientists start imagining all kinds of possibilities that can be tried and

tested with this collective brain. Alongside splitting a large collection of datasets, they can

think of splitting models (or even modeling subtasks) into chunks and executing them

in a parallel fashion. Datasets can be sliced and diced in multiple ways and all those

dimensions might be parallelized, depending on the problem at hand. Some tasks may

benefit from splitting data samples in rows; others may benefit from column-wise splitting.

Figure 10-1.  Distributing datasets across multiple computing cores

Chapter 10 Parallelized Data Science

263

Even many optimization tasks can be parallelized with sufficient effort and thrown

to multiple compute nodes. One example could be running parallel local area searches

for finding the best cost function of a global problem. All these ideas are captured in

Figure 10-2.

Figure 10-2.  Cluster of computing nodes for parallelizing data science tasks in
various dimensions: data, model, optimizations, and so on

�Parallel Data Science with Dask
Dask is a feature-rich, easy-to-use, flexible library for parallelized and scalable

computing in the Python ecosystem. While there are quite a few choices and approaches

for such parallel computing with Python, the great thing about Dask is that it is

specifically optimized and designed for data science and analytics workloads. In that

way, it really separates itself from other major players such as Apache Spark.

In a typical application scenario, Dask comes to the rescue when a data scientist is

dealing with large datasets that would have been tricky (if not downright impossible)

to handle with the standard Python data science workflow of NumPy/ pandas/scikit-

learn/TensorFlow. Although these Python libraries are the workhorses of any modern

data science pipeline, it is not straightforward how to take advantage of large parallel

computing infrastructure or clusters with these libraries.

Chapter 10 Parallelized Data Science

264

At the minimum, one must spend quite a bit of manual effort and set up customized

code or preprocessing steps to optimally distribute a large dataset or split a model that

can be executed on the parallel computing infrastructure. Moreover, this limitation is

not only for cloud-based clusters but applies to a single machine scenario as well. It

is not apparent how to take advantage of all the logical cores or threads of a powerful

workstation (with a single standalone CPU) when doing a pandas data analysis task

or using SciPy for a statistical hypothesis testing. Some of the design features of these

libraries may even fundamentally prevent us from using multiple CPU cores at once.

Fortunately, Dask takes away the pain of planning and writing customized code for

turning most types of data science tasks into parallel computing jobs and abstracts away

the hidden complexity as much as possible. It also offers a DataFrame API that looks

and feels much like the pandas DataFrame so that standard data analytics and data

wrangling code can be ported over with minimal change and debugging. It also has a

dedicated ML library (APIs similar to that of scikit-learn). Let’s explore how Dask works

and more features in the next sections.

Is Dask the same as Spark? T his article (https://coiled.io/is-spark-
still-relevant-dask-vs-spark-vs-rapids/) lays out the similarities and
differences nicely. In brief, Dask is more “friendly and familiar” to data scientists
working with Python codebase and solving problems that do not always restrict
themselves to SQL-type data queries.

�How Dask Works Under the Hood
At its core, Dask operates by using efficient data structures (arrays and DataFrames)

and a cleverly designed graph. Basically, it uses a client-scheduler-worker cluster

architecture (Figure 10-3) to optimally distribute subtasks, collect them together, and

calculate the outcome/prediction. The intricacies of parallel computing are abstracted

away from regular Python programmers or data scientists, so working with large datasets

is made easy and accessible. Figure 10-3 shows a schematic illustration.

Chapter 10 Parallelized Data Science

https://coiled.io/is-spark-still-relevant-dask-vs-spark-vs-rapids/
https://coiled.io/is-spark-still-relevant-dask-vs-spark-vs-rapids/

265

Figure 10-3.  Dask client-scheduler-worker operations under the hood

The most useful fundamental building blocks of Dask are the following:

•	 Dask array

•	 Dask DataFrame

•	 Dask bag

•	 Dask task graph

�Dask Array

This is an implementation of a subset of the NumPy n-dimensional array (or ndarray)

interface using blocked algorithms that effectively cut up a large array into many small

arrays/chunks. This facilitates computation on out-of-core (larger than memory) arrays

using all the cores in a computer in a parallel fashion. These blocked algorithms are

coordinated using Dask task graphs. For more details on Dask arrays, go to the official

documentation at https://docs.dask.org/en/latest/array.html.

Chapter 10 Parallelized Data Science

https://docs.dask.org/en/latest/array.html

266

�Dask DataFrame

Essentially, a Dask DataFrame is a large-scale parallelized DataFrame composed of

many smaller pandas DataFrames, split along the index. Depending on the size and

situation, the pandas DataFrames may exist on the disk for out-of-core computing on a

single machine, or they may live on many different computing nodes in a cluster.

A single Dask DataFrame operation triggers many operations down the chain (i.e., on

the constituent pandas DataFrames in a parallel manner).

Efficiency and ease of use are main goals of the Dask project. Therefore, Dask

DataFrames are partitioned row-wise, grouping rows by index value for efficiency. At the

same time, they can expose the same API and methods as those coming from the pandas

stable. A data scientist won’t feel the difference or need to change existing code but can

utilize the parallelism just by working with the Dask DataFrame API. In fact, the pandas

official documentation suggests using Dask for scaling out to large datasets (Figure 10-4).

Figure 10-4.  The pandas official documentation suggests using Dask for large
datasets

�Dask Bag

This is a data structure that implements operations like map, filter, fold, and groupby

on collections of generic Python objects like lists or tuples. It uses a small memory

footprint using Python iterators and is inherently parallelized.

Apache Spark has its famous Resilient Distributed Dataset (RDD; https://

databricks.com/glossary/what-is-rdd). A Dask Bag is a Pythonic version of that RDD,

suitable for operations inherently popular with users of the Hadoop file system. They are

mostly used to parallelize simple computations on unstructured or semi-structured data

such as text data, JSON records, log files, or customized user-defined Python objects.

Chapter 10 Parallelized Data Science

https://databricks.com/glossary/what-is-rdd
https://databricks.com/glossary/what-is-rdd

267

�Dask Task Graph

Dask uses the common approach to parallel execution in user-space: task scheduling.

With this approach, it breaks the main high-level program/code into many medium-

sized tasks or units of computation (e.g., a single function calls on a non-trivial amount

of data). These tasks are represented as nodes in a graph. Edges run between nodes if

one task is dependent on the data produced by another. A task scheduler is called upon

to execute this whole graph in a way that respects all the inter-node data dependencies

and leverages parallelism wherever possible, thereby speeding up the overall

computation.

There are many techniques for scheduling: Embarrassingly Parallel, MapReduce, Full

Task Scheduling, etc. Often task scheduling logic hides within other larger frameworks

like Luigi, Storm, Spark, and IPython Parallel. Dask encodes full task scheduling

(Figure 10-5) with minimal incidental complexity using common Python artifacts (i.e.,

dictionaries, tuples, and callables). Dask can even use Python-native schedulers such as

Threaded and Multiprocessing.

Figure 10-5.  Dask uses a full task scheduling approach for its task graph

Taking the fundamental data structures and schedulers, we can illustrate the

flexibility of Dask as shown in Figure 10-6.

Figure 10-6.  Dask collections, task graph, and schedulers

Chapter 10 Parallelized Data Science

268

�Works on Many Types of Clusters

One of the great features of Dask is that tasks and code can be deployed over many types

of clusters:

•	 Hadoop/Spark clusters running YARN

•	 HPC clusters running job managers like SLURM, SGE, PBS, LSF,

or others

•	 common in academic and scientific labs

•	 Kubernetes clusters

This makes Dask a truly powerful engine for parallel computing no matter the

underlying distributed data processing infrastructure choice. Naturally, Dask code and

pipelines can be easily ported from one organization to another or shared among the

teams of a large data science organization.

�Basic Usage Examples
Here is how you can define and examine some of the data structures you just learned

about. Let’s start with arrays and then go on to show some examples with DataFrames

and Bags.

A note about Dask and Ray code examples / A lmost all the code snippets in
this chapter are for illustration and conceptualization purpose only. They are not
fully executable, working code. The reason for this is brevity. The book focuses on
concepts and learning and does not intend to act as a code manual. Working code
examples are provided in the accompanying Jupyter notebooks (or GitHub links).

�Array

Define a Numpy array of 100,000 elements (Gaussian random numbers) and create a

Dask array from that using the da.from_array() method:

import numpy as np

import pandas as pd

Chapter 10 Parallelized Data Science

269

import dask.dataframe as dd

import dask.array as da

import dask.bag as db

arr = np.random.normal(size=100_000).reshape(500,200)

dask_arr = da.from_array(arr,chunks=(100,100))

Note that for creating the Dask array, you have chosen a chunk size of (100, 100). In

a Jupyter notebook, if you just examine this dask_arr object, it is even visualized nicely

(Figure 10-7).

Figure 10-7.  A 2D Dask array created from a NumPy array of random numbers

All the chunks have the same size of 78.12 kiB whereas the total dataset is 781.25

kiB. These chunks can effectively be distributed over cores or machines for parallel

computing. You can go ahead and define a 3D array in a similar fashion:

arr = np.random.normal(size=100_000).reshape(50,200,10)

dask_arr = da.from_array(arr,chunks=(50,20,10))

Now the Dask array looks like a stack of bricks with a 3D shape (Figure 10-8).

Chapter 10 Parallelized Data Science

270

Figure 10-8.  A 3D Dask array created from a NumPy array of random numbers

Dask operates on the principle of lazy valuation where final values are not computed

unless explicitly asked to do so. You can define a summation operation on the 3D array

like this where you are also counting the time for the operation:

import time

t1 = time.time()

task1 = dask_arr.sum(axis=2)

t2 = time.time()

print("Time (milliseocnds):", round((t2-t1)*1000,3))

task1

In the Jupyter notebook, this will show a visualization. Note the time taken for this

operation is ~4 milliseconds (Figure 10-9). Nothing has been computed; just a task graph

has been built, and the expected output array shape has been determined.

Chapter 10 Parallelized Data Science

271

Figure 10-9.  A simple summation operation leads to a new array and task graph

Similarly, you can add another operation to this chain, determining the max value

out of those summed values along the columns (i.e., axis=1):

t1 = time.time()

task2=task1.max(axis=1)

t2 = time.time()

print("Time (milliseocnds):", round((t2-t1)*1000,3))

task2

Again, the task2 is shown as an array with a shape of (50,), and it took ~6

milliseconds for this to be built (Figure 10-10).

Chapter 10 Parallelized Data Science

272

Figure 10-10.  Determining the max out of the summed values along columns

Finally, you need to call a special computation method to evaluate the result –

result = task2.compute(). The computation time is much higher here (~24

milliseconds) and you get the one-dimensional array of max values as expected

(Figure 10-11). This is where all the tasks in the task graph are executed over multiple

cores in a parallel fashion.

Chapter 10 Parallelized Data Science

273

Figure 10-11.  Final computation for the 3D array

In fact, you can check the details of the task graph just by examining the dask

attribute of any array such as task2 (Figure 10-12).

Chapter 10 Parallelized Data Science

274

Figure 10-12.  A high-level task graph for the sum-max operations

In the Jupyter notebook, each of these layers can be expanded to see more details.

You are encouraged to check out the accompanying notebook.

�DataFrames

Dask DataFrames are equally easy to use if you are already familiar with pandas. You can

create a DataFrame with timeseries data using Dask’s built-in datasets module:

from dask import datasets

df = datasets.timeseries(

 start='2022-01-01',

 end='2022-01-31',

 freq='1min',

 partition_freq='1d',)

Now, if you just type df in a Jupyter notebook cell, it won’t show the data snapshot

that you are used to seeing in a pandas DataFrame. This is because Dask operates on lazy

evaluation and just typing df does not demand any actual computation. Instead, it will

Chapter 10 Parallelized Data Science

275

show the schema (i.e., datatypes) and the general structure information (Figure 10-13).

Note that it has 30 partitions because you chose the partition_freq = '1d' in the code

and the start and end dates fall on the 1st and 31st of the month.

Figure 10-13.  A time series DataFrame in Dask showing the data schema

If you want to see the first few entries, the familiar head method will serve that

purpose and, by default, the computation will be done (i.e., the actual data will be

shown) as in Figure 10-14.

Figure 10-14.  A Dask DataFrame showing the first few entries

Chapter 10 Parallelized Data Science

276

Most pandas-type operations are supported. For example, to know how many

unique names there are, you write the following code:

df['name'].nunique().compute()

>> 26

Now, to group by those names and compare their variances of x and y data side by

side, you can write

df.groupby(by='name').var().compute()[['x','y']]

>>

 x y

name

Alice 0.331361 0.318624

Bob 0.328595 0.336009

Charlie 0.324984 0.334246

Dan 0.329188 0.333593

Edith 0.324070 0.332390

Frank 0.340098 0.335124

<truncated output>

Direct plotting is also supported like pandas. Using a special resample method

(because the data is a time series), you can plot the mean data like this (Figure 10-15):

df[['x', 'y']].resample('24h').mean().compute().plot()

Figure 10-15.  Time series resampled data mean

Chapter 10 Parallelized Data Science

277

Randomly accessing a partition’s data is fast but still needs to be computed to

see the actual data. For example, to see all the time for the 25th of January partition

(Figure 10-16), you can write this:

df.loc['2022-01-25'].compute()

Figure 10-16.  Accesing and computing the data for a particular day/partition

�Dask Bags

Here’s a Dask Bag example that contains some JSON records. This could be randomly

generated information and the code for generating such JSON data is given in the

accompanying notebook/source code. You can have five JSON records (about five

people) in a folder called data. You read them in a Dask Bag structure via following code

(note the use of map and json.loads functions):

import dask.bag as db

import json

bag = db.read_text('data/*.json').map(json.loads)

Chapter 10 Parallelized Data Science

278

Again, due to lazy evaluation, you cannot see inside the Bag unless you explicitly ask

for that. You can use either take method for that:

bag.take(2)

This should show something like Figure 10-17. The records contain information

about people’s name, occupation, phone number, and address. The record is multi-level.

For example the address field has another level of data fields: address and city.

Figure 10-17.  Dask bag containing JSON records (the first two records are
shown here)

Now you can do operations like map, filter, and aggregation on this records data. For

example, you may want to filter only those people whose age is over 50 and whose credit-

card expiration date year is beyond 2022. You write a simple filtering function and pass

it to the Bag object’s filter method. Note that you must use take or compute to get the

actual computation done.

def filter_func(record):

 cond1 = record['age'] > 50

 cond2 = int(record['credit-card']['expiration-date'].split('/')

[-1]) > 22

 return cond1 and cond2

bag.filter(filter_func).take(2)

This may return something like Figure 10-18.

Chapter 10 Parallelized Data Science

279

Figure 10-18.  Filtering operation done on the records contained in the Dask Bag

There are many powerful usages for Dask Bags with semi-structured datasets that

would have been difficult to accomplish just with an array or DataFrames.

�Dask Distributed Client
All the usage examples in the earlier sections feature the formalism and lazy evaluation

nature of Dask APIs (arrays, DataFrames, and Bags), but they don’t showcase the

distributed/parallelized nature of computation in an obvious manner. For that, you

must select and use the distributed scheduler from the Dask repertoire. It is actually a

separate module or lightweight library called Dask.distributed that extends both the

concurrent.futures and Dask APIs to moderate sized clusters.

Some of the core features of this module are as follows:

Low overhead and latency: There is only about 1ms of overhead

for each task. A small computation and network roundtrip can be

completed in less than 10ms.

Data sharing between peers: Worker nodes (e.g., logical cores

on a local machine or cheap computing nodes in a cluster)

communicate with each other to share data.

Locality of the data: Computations happen where the data lives.

Scheduling algorithms distribute and schedule tasks following

this principle. This also minimizes network traffic and improves

the overall efficiency.

Chapter 10 Parallelized Data Science

280

Complex task scheduling: This is probably the most attractive

feature. The scheduler supports complex workflows and is not

restricted to standard map/filter/reduce operations that are the

primary feature of other distributed data processing frameworks

like Hadoop-based systems. This is absolutely necessary for

sophisticated data science tasks involving n-dimensional arrays,

machine learning, image or high-dimensional data processing,

and statistical modeling.

The flexibility and power of the scheduler also stems from the fact that it is

asynchronous and event driven. This means it can simultaneously respond to

computation requests from multiple clients and track the progress of a multitude of

workers that have been given tasks already. It is also capable of concurrently handling a

variety of workloads coming from multiple users while also managing a dynamic worker

population with possible failures and new additions.

The best thing for the user, a data scientist, is that they can use all these features

and powers with pure Python code and a minimal learning curve. Cluster management

or distributed scheduling is not a trivial matter to accomplish programmatically. A

data scientist using Dask does not have to bother about those complexities as they are

abstracted away. That’s where the theme of productive data science gets its support from

libraries like Dask.

In fact, with just two lines of code, you can start a local cluster (utilizing the CPU

cores of a local machine):

from dask.distributed import Client

client = Client()

Now, if you type client in the Jupyter notebook cell, you will see a description like

Figure 10-19. Note that it shows a hyperlink to a dashboard, which you will see in

action soon.

Chapter 10 Parallelized Data Science

281

Figure 10-19.  Starting up a Dask-distributed cluster/scheduler (on a local
machine)

If you keep expanding the Cluster Info drop-down, you may see something like

Figure 10-20. Note how it shows the threads/workers of the local machine and the

available system memory.

Figure 10-20.  Cluster and scheduler info for Dask distributed client setup

Chapter 10 Parallelized Data Science

282

The important thing to know is that you can pass on many customizable parameters

to the Client constructor when you create your scheduler/cluster. Some of the most

prominent ones are

address: IP address (with port) of a real cloud-based, remote

cluster or the local host machine. If you can afford to rent a high-

end cloud instance with a high CPU count (as discussed in the

previous chapter), the Dask scheduler can directly connect to it

and start utilizing the resources. When not specified, only the local

host machine is taken up as the computing node.

n_workers: Explicitly specifying the number of CPU cores that the

cluster will be able to use. This could be important for resource

constrained situations or if there are many Dask tasks to be

distributed among a finite number of CPU cores.

threads_per_worker: Just like specifying number of CPU cores,

this dictates the number of threads per core. Generally, this

number is 1 or 2.

memory_limit: This is another useful keyword to use for optimally

managing the total system memory for the distributed client.

This limit is on a per-CPU core basis and should be a string (e.g.,

‘2 GiB’).

Once the scheduler is started up, it manages the distributed computing aspects

by itself. However, there is a certain way to submit jobs to the scheduler using map and

submit methods. Here is a (somewhat contrived) example.

Suppose you have a few datasets of random variables (generated from a specific

statistical distribution) and you want to measure the differences between their max

and median, and then take an average of those measurements. Each dataset may

contain 1,000 values and there are 21 such datasets. Taken together, this could be a

measure of some sort of outliers in the data (i.e., how much the max value is higher

than the median values for a certain batch of data). You have the data generation code

in the accompanying notebook. The distributions (of individual datasets) are shown in

Figure 10-21.

Chapter 10 Parallelized Data Science

283

Figure 10-21.  A synthetic batch of data for which a distributed processing needs
to be run

So, this involves the following computations:

•	 21 max computation (from 1,000 data points each time)

•	 21 median computation (from 1,000 data points each time)

•	 Two arithmetic mean computations (of 21 max/median values

each time)

•	 A final difference calculation

You write the Dask code as follows (assuming that the datasets are contained in a

Python list called dists). The code for generating such randomized numbers in a list is

given in the accompanying source code/notebook.

Mapping statistical computations to data distributions

A = client.map(np.max, dists)

B = client.map(np.median, dists)

Submitting averaging jobs

mean_max = client.submit(np.mean, A)

mean_min = client.submit(np.mean, B)

Chapter 10 Parallelized Data Science

284

At this point, if you examine the mean_max object, you will see it is something called a

Dask Future (a sort of promise that will be calculated or acted upon in future, similar to a

concept in JavaScript):

mean_max

>> Future: mean status: finished, type: numpy.float64, key: mean-2e5b19a3

2f99725e1cf4f6f5ba8e295a

The entire distributed task is just planned at this point and no actual computation

has happened. You must call result to execute the actual computations:

final = mean_max.result() - mean_min.result()

final

>> 0.6780617253952232

However, more interesting things can be observed simply by looking at the

dynamic dashboard that Dask provides. You can simply click on the hyperlink shown in

Figure 10-20 and see something like Figure 10-22.

Figure 10-22.  Task status view of the dynamic Dask dashboard

Chapter 10 Parallelized Data Science

285

This is a static snapshot of the task status tab of the dashboard. When the parallel

processes execute (distributed over multiple CPU cores), the graph changes and updates

dynamically as all the data chunks are split and shared among workers. A good visual

demonstration of this dynamic process can be seen in an article that I published at

https://medium.com/productive-data-science/out-of-core-larger-than-ram-

machine-learning-with-dask-9d2e5f29d733 with a hands-on example involving the

Dask Machine Learning library. You are encouraged to check out this article.

There are many other tabs in this dashboard. The information tab about workers is

one among them (Figure 10-23). Again, here the view is static and after the processing

was finished. Therefore, you see minimal usage of memory and CPU. But for a dynamic

state, those numbers will be high and constantly changing.

Figure 10-23.  Workers information view of the dynamic Dask dashboard

�Dask Machine Learning Module
While Dask provides an amazing suite of parallel and out-of-core computing facilities

and a straightforward set of APIs (Arrays, DataFrames, Bags, etc.,), the utility does not

stop there. Going beyond the data wrangling and transformation stage, when data

scientists arrive at the machine learning phase, they can still leverage Dask for doing

the modeling and preprocessing tasks with the power of parallel computing. All of

this can be achieved with a minimal change in their existing codebase and in pure

Pythonic manner.

For ML algorithms and APIs, Dask has a separately installable module called

dask-ml. Full treatment of that module is beyond the scope of this book. You are again

encouraged to check out the above-mentioned article to get a feel about the API. Here, I

will briefly discuss some key aspects of dask-ml.

Chapter 10 Parallelized Data Science

https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733
https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733
https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733

286

�What Problems Does It Address?

Fundamentally, libraries like dask-ml addresses the dual problems of data scaling and

model scaling.

The data scaling challenge comes about with the Big Data domain, for example,

when the computing hardware starts having trouble containing training data in the

working memory. So, this is essentially a memory-bound problem. Dask solves this

problem by spilling data out-of-core onto drive storage and providing incremental meta-

learning estimators that can learn from batches of data rather than having to load entire

dataset in the memory.

The model scaling challenge, on the other hand, raises its ugly head when the

parametric space of ML model becomes too large and the operations become compute-
bound. To address these challenges, you can continue to use the efficient collections

Dask offers (arrays, DataFrames, bags) and use a Dask Cluster to parallelize the

workload on an array of machines. Even the task of parallelization has choices. It can

occur through one of the built-in integrations (e.g., Dask’s joblib back end to parallelize

scikit-Learn directly) or one of dask-ml estimators (e.g., a hyper-parameter optimizer or

a parallelized Random Forest estimator).

�Tight Integration with scikit-learn

Following through the principle of simplicity of use, dask-ml maintains a high degree

of integration and the drop-in replacement philosophy with the most popular Python

ML library, scikit-learn. Dask-ml provides data preprocessing, model selection, training,

and even data generating functions just like scikit-learn does while supporting Dask

collections as native objects to use with those APIs.

Generic code could go like this (not an actual working code):

import dask.dataframe as ddf

from dask_ml.model_selection import train_test_split

from dask_ml.preprocessing import MinMaxScaler

from dask_ml.xgboost import XGBRegressor

Reading efficient parquet file format

data = ddf.read_parquet('Parquet file' engine='pyarrow’),

X = data[Feature_columns]

y = data[Label_column]

Chapter 10 Parallelized Data Science

287

Test/train split

train, train_labels, test, test_labels = train_test_split(X,y,

test_size=0.2,...)

Scale/pre-process

train = MinMaxScaler.fit_transform(train)

test = MinMaxScaler.fit_transform(test)

Parallelized estimator

est = XGBRegressor(...)

est.fit(train, train_labels)

est.score(test)

It is easy to spot the almost line-by-line similarity between this code and a standard

scikit-learn pipeline. This is called the drop-in replacement ability of dask-ml. You may

also notice the use of the Parquet file format for reading a large dataset efficiently (into

a Dask DataFrame) from a disk drive or network storage. You may check out my article

on this topic (https://medium.com/productive-data-science/out-of-core-larger-

than-ram-machine-learning-with-dask-9d2e5f29d733). When executed, this code

combines the advantage of out-of-core data handling of a Dask DataFrame with the

parallelized estimator API and delivers a scalable machine learning experience for the

data scientist, thereby boosting their productivity.

The dask-ml library also offers some meta-estimators/ wrappers to help parallelize

and scale out certain tasks that would not have been possible with scikit-learn itself. For

example, ParallelPostFit can be used to parallelize the predict, predict_proba, and

transform methods, enabling them to work on large (possibly larger-than-memory)

datasets. This is highly suited for real-life production deployments, as the live data can

be pretty large even when the training was done with a smaller dataset. For smooth

and stable performance of a prediction service, these post-fitting methods should scale

gracefully whatever the dataset size may be and dask-ml helps accomplish this without a

lot of code change. A generic code snippet for such a task may look like the following:

from sklearn.ensemble import GradientBoostingClassifier

from dask_ml.wrappers import ParallelPostFit

Wrapping the sklearn estimator with Dask wrapper

clf = ParallelPostFit(estimator=GradientBoostingClassifier())

clf.fit(X, y)

Chapter 10 Parallelized Data Science

https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733
https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733

288

Big dataset for prediction

X_big, _ = make_classification(n_samples=100000, chunks=10000,)

Probability of first 10 data points

clf.predict_proba(X_big).compute()[:10]

In the code above, note that the main estimator comes from scikit-learn itself. The

Dask part is only a wrapper that utilizes the underlying estimator to work on a Dask

collection like a DataFrame for lazy evaluation and out-of-core computing.

�Parallel Computing with Ray
Parallel computing in pure Python has recently been revolutionized by the rapid rise

of a few great open-source frameworks, Ray being one of them. It was created by two

graduate students in the UC Berkley RISElab (https://rise.cs.berkeley.edu/), Robert

Nishihara and Philipp Moritz, as a development and runtime framework for simplifying

distributed computing. Under the guidance of Professors Michael Jordan and Ion

Stoica, it rapidly progressed from being a research project to a full-featured computing

platform with many subcomponents built atop it for different AI and ML focused tasks

(hyperparameter tuning, reinforcement learning, data science jobs, and even ML model

deployment).

Currently, Ray is maintained and continuously enhanced by Anyscale

(www.anyscale.com/), a commercial entity (startup company) formed by the creators

of Ray. It is a fully managed Ray offering that accelerates building, scaling, and

deploying AI applications on Ray by eliminating the need to build and manage complex

infrastructure.

�Features and Ecosystem of Ray
Some of the core features of Ray are as follows:

Ray achieves scalability and fault tolerance by abstracting the

control state of the system in a global control store and keeping

all other components stateless.

Chapter 10 Parallelized Data Science

https://rise.cs.berkeley.edu/
http://www.anyscale.com/

289

It uses a shared-memory distributed object store to efficiently

handle large data through shared memory, and it uses a bottom-

up hierarchical scheduling architecture to achieve low-latency

and high-throughput scheduling.

Ray presents a lightweight API based on dynamic task graphs

and actors to express a wide range of data science and general-

purpose applications in a flexible manner.

Utilizing these features, a great many distributed computing tools and frameworks

are being built that are powered by the engine of Ray. For an excellent reference article to

get an overview of these tools, go to https://gradientflow.com/understanding-the-

ray-ecosystem-and-community/. Figure 10-24 shows a visual illustration.

Figure 10-24.  Distributed data science/ML ecosystem built atop Ray

In this section, I will show only a couple of examples of running parallel data science

workloads using Ray. You are highly encouraged to check out the official documentation

(www.ray.io/docs) and try out all the great features that this library provides.

Chapter 10 Parallelized Data Science

https://gradientflow.com/understanding-the-ray-ecosystem-and-community/
https://gradientflow.com/understanding-the-ray-ecosystem-and-community/
http://www.ray.io/docs

290

�Simple Parallelization Example
Before I show the hands-on examples, I want to mention that Ray is currently built

and tested for Linux and Mac OS, and the Windows version is experimental and not

guaranteed to be stable. Therefore, you are encouraged to practice Ray examples in
a Linux environment or create a virtual machine (VM) on your Windows platform,

install Ray, and continue.

For example, the following examples are run inside an Ubuntu Linux 20.04

environment that runs within a VM managed by Oracle Virtual Box software (installed

on a Windows 11 laptop). The VM has also been assigned four logical CPU cores by the

creator/user (Figure 10-25). This is important to note as the default starting number for

the CPU cores may be only one and that will not demonstrate the expected speed-up for

parallel processing tasks. A detailed guide on how to create such a VM is given in this

article (https://brb.nci.nih.gov/seqtools/installUbuntu.html). If you are working

on native Linux or Mac OS machine, then this step is unnecessary.

Figure 10-25.  Multiple logical CPU cores assigned to a VM that is used to run Ray

You can start Ray by the ray.init() method:

import ray

ray.init()

You may see something like the following upon running this code:

Chapter 10 Parallelized Data Science

https://brb.nci.nih.gov/seqtools/installUbuntu.html

291

{'node_ip_address': '10.0.2.15',

 'raylet_ip_address': '10.0.2.15',

 'redis_address': '10.0.2.15:6379',

 �'object_store_address': '/tmp/ray/

session_2022-02-08_21-00-00_998495_21742/sockets/plasma_store',

 �'raylet_socket_name': '/tmp/ray/session_2022-02-08_21-00-00_998495_21742/

sockets/raylet',

 'webui_url': '127.0.0.1:8265',

 'session_dir': '/tmp/ray/session_2022-02-08_21-00-00_998495_21742',

 'metrics_export_port': 62074,

 'gcs_address': '10.0.2.15:43155',

 'node_id': '922916ef0c5dcf02dc25fea428b930df40ccf2450fa974bb307826fe'}

Note that the initiation of Ray starts things like Redis, object store, and Dashboard. In

fact, you will notice a message printed at the top with the URL of the dashboard:

View the Ray dashboard at http://127.0.0.1:8265

If you click this hyperlink, you will see the Ray dashboard with workers and their

status, as shown in Figure 10-26 (quite like the Dask dashboard discussed earlier).

Figure 10-26.  Snapshot of a Ray dashboard (with five CPU assignments)

You can check the assigned resources to this Ray cluster with

ray.available_resources()

>> {'memory': 2325037056.0,

Chapter 10 Parallelized Data Science

292

 'node:10.0.2.15': 1.0,

 'object_store_memory': 1162518528.0,

 'CPU': 5.0}

Now, let’s construct a few large DataFrames and calculate their statistics using

pandas and Rays to show the parallel computing benefit:

NUM_ROWS = 100_000

NUM_COLS = 20

data_dict = {}

Pandas DataFrames

for i in range(4):

 data = np.random.normal(size=(NUM_ROWS, NUM_COLS))

 data_dict['df'+str(i)] = pd.DataFrame(data,

 �columns=['Col-'+str(i) for i in

range(NUM_COLS)])

For pandas, you write a function that simply returns the statistics:

def build_stats(df):

 return df.describe().T

You measure the time to run this function over multiple DataFrames (here, four):

t1 = time.time()

results = [build_stats(data_dict['df'+str(i)]) for i in range(4)]

t2 = time.time()

print("Total time (milliseconds): ", round((t2-t1)*1000,2))

>> Total time (milliseconds): 1130.66

The trick to do the same thing with Ray and take advantage of the parallel computing

is to use the decorator @ray.remote with the same function and use the ray.get()

method to collect the result after it has been submitted for parallel execution. Here is the

decorated function:

@ray.remote

def build_stats_ray(df):

 return df.describe().T

Chapter 10 Parallelized Data Science

293

You can now write similar code for measuring the time:

t1 = time.time()

results = ray.get([build_stats_ray.remote(data_dict['df'+str(i)]) for i in

range(4)])

t2 = time.time()

print("Total time (milliseconds): ", round((t2-t1)*1000,2))

You will get a lower number for total execution time (this will vary on many factors

like hardware, number of CPUs, Ray build, OS, etc.):

>> Total time (milliseconds): 575.77

Note how you call the build_stats_ray function with a .remote() method and how

you wrap that with the ray.get() method to run everything in parallel. The takeaway

is that although Ray offers a great many features, you must learn how to properly

take advantage of them and how to submit a parallelizable task to the Ray cluster by

pipelining the sub-components in correct order. Figure 10-27 shows the idea.

Figure 10-27.  Pipeling sub-components in the correct order

�Ray Dataset for Distributed Loading and Compute
Ray Datasets (https://docs.ray.io/en/latest/data/dataset.html) are the standard

(and recommended) way to load and exchange data in the Ray ecosystem. These objects

provide basic distributed data transformations such as map, filter, and repartition,

and play well with a wide variety of file formats, data sources, and distributed

Chapter 10 Parallelized Data Science

https://docs.ray.io/en/latest/data/dataset.html

294

frameworks for easy loading and conversion. They are also specifically designed to

load and preprocess data with high performance for distributed ML training pipelines

built with Ray such as Ray-Train. (https://docs.ray.io/en/latest/train/train.

html#train-docs).

Ray Datasets are a relatively new feature and are available as Beta from
Ray 1.8+ version onwards. If you are using an older version of Ray, you need to
upgrade to take advantage of them. Also, make sure that the PyArrow library is
installed.

Ray Datasets are a good candidate for the last-mile data processing blocks (before

data is fed into a parallelized ML task flow) where the initial data sources are traditional

RDBMS, output of ETL pipeline, or even Spark DataFrames.

Previously, I talked about Apache Arrow and how these modern data storage formats

are revolutionizing the data science world. Ray Datasets, at their core, implement

distributed Arrow. Each Dataset is essentially a list of Ray object references to blocks

that hold Arrow tables (or Python lists in some cases). The presence of such block-level

structure allows the parallelism and compatibility with distributed ML training. In this

manner, Ray Datasets are similar to what you saw with Dask. Moreover, since Datasets

are just lists of Ray object references, they can be freely (almost no memory operation
overhead) exchanged between Ray tasks, actors, and libraries. This lets you have

tremendous flexibility with their usage and integration, and it improves the system

performance.

As mentioned, Ray Datasets work with almost every kind of data sources that you use

in your everyday work. Figure 10-28 shows a partial snapshot of their input compatibility.

Chapter 10 Parallelized Data Science

https://docs.ray.io/en/latest/train/train.html#train-docs
https://docs.ray.io/en/latest/train/train.html#train-docs

295

Figure 10-28.  Snapshot of Ray Datasets’ input compatibility

As an example, you can create a Ray Dataset with the range function:

ds = ray.data.range(100000)

If you examine it by typing ds in a Jupyter notebook cell, you will see

Dataset(num_blocks=200, num_rows=100000, schema=<class 'int'>)

So, by default, it has created 200 blocks of object reference and also assigned a

schema of integer to the data. This parallelism and data type integration inherently

makes the Dataset more efficient than traditional data sources like pandas DataFrame.

You can apply a mapping function to the Dataset just like others:

op_ds = ds.map(lambda x: np.sin(x)+np.cos(x))

Chapter 10 Parallelized Data Science

296

The op_ds is itself a Ray Dataset now but its schema has changed due to the

operation.

op_ds

>> Dataset(num_blocks=200, num_rows=100000, schema=<class 'numpy.float64'>)

Because the schema has changed, many NumPy methods are directly available now.

op_ds.std()

>> 1.0000051823664913

One cool thing is that you can read batches of the data (which are originally integers)

as a Python list or pandas DataFrames and do calculations on those batches. This is very

useful for distributed ML training on this kind of data. The following code reads batches

of size 25,000 at a time as pandas DataFrame and prints out their statistics:

i = 1

for batch in ds.iter_batches(batch_size=25000,

 batch_format='pandas'):

 print("Batch number: ",i)

 print("="*40)

 print(batch.describe(percentiles=[0.5]))

 print("="*40)

 i+=1

The result looks like Figure 10-29.

Chapter 10 Parallelized Data Science

297

Figure 10-29.  Partial result of batch iteration of a Ray Dataset as chunks of a
pandas DataFrame

The Dataset makes it possible to run parallel data transformation tasks on blocks
of data as pandas. Here is a pseudo-code example:

A Pandas DataFrame UDF

def transform_batch(df: pd.DataFrame):

 # Drop nulls.

 df = df.dropna(...)

 # Add new column.

 df["new_col"] = (...)

 # Transform existing column.

 df["feature_1"] = (...)

 # Drop column.

 df.drop(...)

 # One-hot encoding.

 categories = ["cat_1", "cat_2", "cat_3"]

 for category in categories:

 (...)

 return df

Chapter 10 Parallelized Data Science

298

batch_format="pandas" tells Datasets to provide the transformer

with blocks

represented as Pandas DataFrames.

ds = ds.map_batches(transform_batch,

 batch_format="pandas")

�Summary
In this chapter, I continued the discussion about making data science scalable across

large datasets and models with parallel (and distributed) computing tools. I discussed

that both raw data and large models can be processed with these parallel processing

techniques. With the advent of modern multi-core CPUs and the easy availability of

large computing clusters at a reasonable cost (from cloud vendors), the prospects of

parallelized data science look bright.

I focused particularly on two Python frameworks, Dask and Ray. I covered, in detail,

various core data structures and internal representations that Dask provides to make

parallel computing easy and fun. I also discussed the Dask distributed client in detail

with hands-on examples. For Ray, I covered the basic Ray parallelism with special

decorators and methods and the distributed data loading functionalities.

In the next chapter, I will go beyond the realm of the CPU and venture into a different

kind of scalability: how to port and take advantage of GPU-based systems for data

science tasks.

Chapter 10 Parallelized Data Science

299

CHAPTER 11

GPU-Based Data Science
for High Productivity
In the last two chapters, you learned about various tools and frameworks for doing

out-of-core and distributed/parallelized data science. The central goal has always

been the same: enhancing the productivity of the data science pipeline. Productivity is

often directly related to the speed of execution of various DS tasks including numerical

processing, data wrangling, and feature engineering. When it goes to the advanced

machine learning stage, depending on the modeling complexity, the matter of speed and

performance assumes even a critical role.

It is now well established that the unprecedented success of modern ML systems

has been critically dependent on their ability to process massive amounts of raw data in

a parallel fashion using task-optimized hardware. The history of machine learning has

clearly demonstrated that the use of specialized hardware like the graphics processing

unit (GPU) played a significant role in the early success of ML.

For example, in 2012, Alex Krizhevsky (https://qz.com/1307091/the-inside-

story-of-how-ai-got-good-enough-to-dominate-silicon-valley/), in collaboration

with Ilya Sutskever and Geoffrey Hinton (www.cs.toronto.edu/~hinton/), designed

a neural network eventually known as AlexNet (https://proceedings.neurips.cc/

paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf) that won the

famous ImageNet Large Scale Visual Recognition Challenge (https://en.wikipedia.

org/wiki/ImageNet_Large_Scale_Visual_Recognition_Challenge). Among many

novel features, it was one of the early neural nets to be trained on parallel GPU

combinations that went on to beat classical ML algorithms in the ImageNet competition

by a large margin. Consequently, the whole idea of deep neural networks got a huge

boost and so did the essential role that GPU-based training hardware played in that

success. Since then, a lot of emphasis has been given to building highly optimized

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_11

https://qz.com/1307091/the-inside-story-of-how-ai-got-good-enough-to-dominate-silicon-valley/
https://qz.com/1307091/the-inside-story-of-how-ai-got-good-enough-to-dominate-silicon-valley/
https://www.cs.toronto.edu/~hinton/
http://www.cs.toronto.edu/~hinton/
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://en.wikipedia.org/wiki/ImageNet_Large_Scale_Visual_Recognition_Challenge
https://en.wikipedia.org/wiki/ImageNet_Large_Scale_Visual_Recognition_Challenge
https://doi.org/10.1007/978-1-4842-8121-5_11

300

software tools and customized mathematical processing engines (both hardware and

software) to leverage the power and architecture of GPUs and parallel computing for

artificial intelligence and machine learning.

While the use of GPUs and distributed computing is widely discussed in academic and

business circles for core AI/ML tasks (e.g., running a deep neural network of 100+ layers

for image classification or billion-parameter BERT language synthesis model (https://

towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-

nlp-f8b21a9b6270)), they get less coverage when it comes to their utility for regular data

science and data engineering tasks. These data-related tasks are the essential precursor to

any ML workload in an AI pipeline and they often constitute a majority percentage of the

time and intellectual effort spent by a data scientist or even an ML engineer.

In fact, the famous AI pioneer Andrew Ng recently talked about moving from a model-

centric to a data-centric approach (https://spectrum.ieee.org/andrew-ng-data-

centric-ai) to AI tools development. The central idea there is to not use large datasets
but smaller datasets of higher quality. This means spending much more time with the

raw data and preprocessing it before an actual AI workload executes on your pipeline.

Watch Andrew’s interview at www.youtube.com/watch?v=06-AZXmwHjo (note this is a

YouTube video link). This also means that if we can put the power of the GPU into such

pre-ML data processing tasks, then the overall pipeline will benefit immediately.

However, the important question remains: can we leverage the power of GPUs for
regular data science jobs (e.g., data wrangling, descriptive statistics) too? The answer

is not trivial and needs some special consideration and knowledge sharing (Figure 11-1).

In this chapter, I will focus on a specialized suite of tools called RAPIDS that helps any

data scientist take advantage of GPU-based hardware for a wide variety of data science

tasks (not necessarily deep learning or advanced ML). We expect that by utilizing the

inherent parallel processing power of GPUs we can enhance the productivity of such

common data science tasks significantly.

What is ImageNet?  It is an ongoing research effort to provide researchers
around the world an easily accessible image database. This project is inspired
by a growing sentiment in the image and vision research field: the need for more
data. The project has been instrumental in advancing computer vision and
deep learning research. The data is available for free to researchers for non-
commercial use. The latest deep learning architectures are pitted against each

Chapter 11 GPU-Based Data Science for High Productivity

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://spectrum.ieee.org/andrew-ng-data-centric-ai
https://spectrum.ieee.org/andrew-ng-data-centric-ai
http://www.youtube.com/watch?v=06-AZXmwHjo

301

other in an annual competition that centers around this data repository, and the
performance of the algorithms/architectures/techniques are measured based on
how they performed on images from this source.

Figure 11-1.  “Can we leverage the power of GPUs for regular data science jobs”?

�The RAPIDS Ecosystem
The RAPIDS suite of open-source software libraries and APIs provides the ability to

execute end-to-end data science and analytics pipelines entirely on GPUs. Nvidia

incubated this project and built tools to take advantage of CUDA primitives for low-level

compute optimization. It specifically focuses on exposing GPU parallelism and high-

bandwidth memory speed features through the friendly Python language so popular

with data scientists and analytics professionals.

Common data preparation and wrangling tasks are highly valued in the RAPIDS

ecosystem as they take up a significant amount of time in a typical data science

pipeline. A familiar dataframe-like API has been developed with a lot of optimization

and robustness built in. It has also been customized to integrate with a variety of ML

algorithms for end-to-end pipeline accelerations with incurring serialization costs.

Chapter 11 GPU-Based Data Science for High Productivity

302

RAPIDS also includes a significant amount of internal support for multi-node,

multi-GPU deployment and distributed processing. It integrates with other libraries that

make out-of-memory (i.e., dataset sizes larger than the individual computer RAM) data

processing easy and accessible for individual data scientists.

The following subsections describe, in brief, the most prominent libraries in this

ecosystem that data scientists will find quite useful.

What is CUDA?  CUDA is a parallel computing platform and programming model
created by NVIDIA. First introduced in 2006, it has grown to become the most
common choice for enabling GPU-accelerated computing with support for multiple
programming languages (e.g., C, C++, Fortran, Python, and MATLAB) and APIs.

A noteworthy point is that CUDA by itself is neither a programming language, nor
an API. It is a platform for building third-party libraries, SDKs, and profiling and
optimization tools. It mainly supplies extensions or primitives to add to an existing
programming language, and these extensions essentially connect the computation
(performed by the high-level language or API) directly to the underlying GPU
hardware.

The CUDA Toolkit (https://developer.nvidia.com/cuda-toolkit)
includes GPU-accelerated libraries, a compiler, development tools, and the CUDA
runtime. To boost performance across multiple application domains from AI to
HPC, developers can harness NVIDIA CUDA-X—a collection of libraries, tools and
technologies built on top of CUDA (www.nvidia.com/en-us/technologies/
cuda-x/).

�CuPy
CuPy is a CUDA-powered array library that looks and feels like NumPy, the foundation

of all numerical computing and ML with Python. Under the hood, it uses CUDA-based

low-level libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT, and

NCCL to make full use of the a given GPU architecture with the goal of providing GPU-

accelerated computing with Python.

Chapter 11 GPU-Based Data Science for High Productivity

https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.com/en-us/technologies/cuda-x/
http://www.nvidia.com/en-us/technologies/cuda-x/

303

CuPy’s interface is highly similar to that of NumPy and can be used as a simple

drop-in replacement for most use cases. Here is the module-level detailed list of

API compatibility between CuPy and NumPy: https://docs.cupy.dev/en/stable/

reference/comparison.html. Notice that almost all common NumPy methods are

duplicated in CuPy and the names are identical, too. For data science tasks, this

essentially presents you with GPU-powered speed-up without any significant
learning curve.

The speed-up over NumPy can be significant depending on the data type and

use case. In the next section, I will show a hands-on example of a speedup comparison

between CuPy and NumPy for two different array sizes and for various common

numerical operations like slicing, statistical operations like sum and standard

deviation over multi-dimensional array, matrix multiplication and inverse, Fast Fourier

Transformation (FFT), and singular value decomposition (SVD).

�CuDF
Built on the Apache Arrow columnar memory format, CuDF is a GPU-accelerated data

analysis library for loading, joining, aggregating, filtering, and manipulating tabular

data in all manners imaginable. It is no surprise that it provides a pandas-like API that

will be familiar to almost all data engineers and data scientists. The idea is that data

scientists should be able to use CuDF to easily accelerate their workflows using powerful

GPUs without delving deeply into the details of CUDA programming. Just like CuPy,

the majority of the methods are just drop-in replacements from an existing pandas

codebase.

Note, however, that currently CuDF is supported only on Linux OS and works with

Python versions 3.7 and later. Other requirements for installing and using CuDF are

•	 CUDA 11.0+

•	 NVIDIA driver 450.80.02+

•	 Pascal architecture or better (compute capability >=6.0)

Therefore, you must undergo some environment setup and installation procedures

before CuDF can be used. Here is a resource to quickly get started with this powerful

library: https://docs.rapids.ai/api/cudf/stable/10min.html.

Chapter 11 GPU-Based Data Science for High Productivity

https://docs.cupy.dev/en/stable/reference/comparison.html
https://docs.cupy.dev/en/stable/reference/comparison.html
https://docs.rapids.ai/api/cudf/stable/10min.html

304

Combined, CuPy and CuDF present a wonderful opportunity to any data scientist,

regardless of whether they are using deep learning or not, to enhance the productivity of

their work using GPU-accelerated computing power.

�CuML
CuML is another library within RAPIDS that enables data scientists, analysts, and

researchers to run traditional/classical ML algorithmic tasks with (mostly) tabular

datasets on GPUs without knowing a lot of details of CUDA programming. In most cases,

CuML’s Python API matches that of the popular Python library scikit-learn to make

the transition to GPU hardware fast and painless. Here is the GitHub page for the library

for you to follow and dig deep into: https://github.com/rapidsai/cuml.

Along with CuPy and CuDF, in the next section you will also explore some hands-

on examples of CuML functions and methods for common ML tasks and compare their

execution speed and scalability with equivalent scikit-learn algorithms.

Going beyond the scenario of a single GPU on a laptop, CuML also integrates with

Dask, wherever it can, to offer multi-GPU and multi-node-GPU support for an ever-

increasing set of algorithms that take advantage of such distributed processing. Basically,

instead of a single GPU, many modern high-end hardware platforms come equipped

with four or even eight GPUs, sometimes interconnected by a special memory bus and

data interfacing channels that completely bypass the CPU and traditional slow-speed

motherboard communication bus for direct GPU-to-GPU connection.

�CuGraph
CuGraph is a collection of GPU-accelerated graph algorithms that processes data found

in GPU DataFrames. The vision of CuGraph is to make graph analysis ubiquitous to the

point that users just think in terms of analysis and not technologies or frameworks.

Data scientists will readily pick up how CuGraph integrates with the pandas-like

API of CuDF. On the other hand, users familiar with NetworkX will quickly recognize

the NetworkX-like API provided in CuGraph, with the goal of allowing existing code to

be ported into RAPIDS with minimal effort. Currently, it supports a wide array of graph

analytics algorithms:

•	 Centrality

•	 Community

Chapter 11 GPU-Based Data Science for High Productivity

https://github.com/rapidsai/cuml

305

•	 Link analysis

•	 Link prediction

•	 Traversal

Many scientific and business analytics tasks involve the use of extensive graph

algorithms on large datasets. Libraries like CuGraph lend the assurance of higher

productivity to those engineers when they invest in GPU-powered workstations.

�Hardware Story
The hardware side of this story cannot be emphasized enough. Driven by the grand

success and wide adoption of AI and ML solutions, with particular emphasis on deep

learning applications, there has been a plethora of investments and developments in

the domain of customized hardware for running such workloads. For example, all major

server and workstation suppliers (e.g., HP, IBM, Lenovo, Super Micro, etc.) that were

solely focused on building computing infrastructure for cloud computing only now

offer a dizzying array of GPU-optimized hardware options. Google’s Tensor Processing

Unit (TPU; https://en.wikipedia.org/wiki/Tensor_Processing_Unit), for instance,

is an application-specific integrated circuit that is designed from the ground up with
the sole aim of speeding up computations unique to machine learning and deep
learning workloads such as linear algebra, matrix multiplication, special nonlinear

transformation, and supporting multiple floating-point number formats. Nvidia, the

leader in GPU research and development, is pioneering many such groundbreaking

hardware platforms, too. In fact, a whole hardware ecosystem with specialized

storage, shared memory architecture and chipsets, motherboard designs, and data

communication channels and standards are being actively developed to cater to AI

workloads (Figure 11-2).

Granted, the focus of such hardware development has always been specific types of

AI workloads such as large-scale computer vision, powerful chatbots, or industrial-scale

natural language processing. Nonetheless, with the help of frameworks such as RAPIDS,

finally data scientists and analysts (i.e., those who do not necessarily use deep learning

in any of their daily tasks) can rejoice and use these powerful AI-workstations to enhance

their productivity.

Chapter 11 GPU-Based Data Science for High Productivity

https://en.wikipedia.org/wiki/Tensor_Processing_Unit

306

Figure 11-2.  Data scientists can rejoice and use AI-optimized hardware for
their tasks

�Choice of Environment and Setup
As noted, RAPIDS will work only on the Linux OS and with certain GPUs and above.

Although CuPy works with earlier generation of GPUs, for CuDF and CuML, you must

have a GPU with compute capability 6 or higher. NVIDIA provides a list of GPUs and

their compute capability (https://developer.nvidia.com/cuda-gpus#compute) that

you can check to make sure you have the right kind of GPU for taking advantage of the

RAPIDS framework.

For laptops, if you have anything above GeForce 1050, RAPIDS will work. This, of

course, includes the RTX line of GPUs. For workstations, a M6000 or K-series may not

work but anything above P400 will work. For datacenter GPUs (when you may be renting

a cloud instance, for example), it must be of the Pascal architecture or above, such as P4,

P40, P100, V100, and A100.

Chapter 11 GPU-Based Data Science for High Productivity

https://developer.nvidia.com/cuda-gpus#compute

307

Once you have the right GPU, you also need to make sure that CUDA 11.2 or above

is installed. After that, a lot of custom setup and environment install needs to happen

for RAPIDS to work properly. Therefore, two common ways to accomplish this are as

follows:

•	 Use a hosted environment without getting into the details of the

custom setup

•	 Use a NVIDIA docker image if you’re using it on a bare-metal Linux

OS (for example, on an EC2 instance)

For instance, the following examples were run using a free hosted setup on Saturn
Cloud. This service is a fully managed data science cloud service offering GPU-based
infrastructure and a transparent pricing. For the free tier, it has certain limitations on

how many hours of free usage you get in a month. However, for basic learning, the free

usage quota (30 hours of Jupyter Lab sessions in a month) should be enough. You are

encouraged to sign up on their website and follow the examples in this book (and the

associated Jupyter notebooks).

When you log in to the Saturn Cloud platform, you are presented with several

choices for starting a Jupyter notebook. Each choice represents a managed service (e.g., a

RAPIDS environment, TensorFlow, PyTorch, or a FastAPI instance). Figure 11-3 shows a

typical snapshot of all the choices (note that it was taken in April 2022, and the offerings

may change).

Chapter 11 GPU-Based Data Science for High Productivity

308

Figure 11-3.  Saturn Cloud opening page with choices of various managed services

At the bottom of Figure 11-3, you can see a RAPIDS Jupyter server already created

by me. When you click on your version, the following screen (Figure 11-4) shows where

you can start the Jupyter lab. Essentially, Saturn Cloud deploys a docker container
with Jupyter lab, RAPIDS, and other Python libraries preinstalled and properly
configured on a GPU-based hardware/computing node. It is to be noted that they also

pair up a Dask cluster choice with this service so that you can take advantage of multi-

GPU systems if you choose to do so. The free tier limits the type and number of GPUs

that you can take advantage of; however, as mentioned, for basic learning, you don’t

need more than one GPU, and therefore you won’t launch a Dask cluster.

Chapter 11 GPU-Based Data Science for High Productivity

309

Figure 11-4.  Saturn Cloud’s Jupyter server with RAPIDS

Once the Jupyter lab starts up, you can verify that you have a compatible GPU for

RAPIDS. Figure 11-5 shows the command and a typical output. Here, the GPU is a Tesla

T4 (www.nvidia.com/en-us/data-center/tesla-t4/), the CUDA version is 11.4, and

the NVIDIA driver version is 470.57.02.

Figure 11-5.  A typical output for a Nvidia GPU status command

Chapter 11 GPU-Based Data Science for High Productivity

http://www.nvidia.com/en-us/data-center/tesla-t4/

310

�CuPy vs. NumPy
In this section, I will show some basic examples of CuPy usage and how it compares

with the ubiquitous NumPy package. As NumPy finds wide and varying use in almost all

data science and ML tasks, it is interesting to note that productivity of all those tasks can

probably be increased significantly by switching to CuPy.

�Looks and Works Just Like NumPy
As mentioned, the CuPy API is designed to be drop-in replacement for NumPy code.

Therefore, all the common methods are available for use. Start by importing both

libraries (for comparison) and others:

import numpy as np, cupy as cp

import matplotlib.pyplot as plt

import time

You can define an array just like in NumPy:

a1 = cp.array([1,2,3])

a2 = cp.arange(1,11,2)

a3 = cp.random.normal(size=(3,3))

Only the type is different:

type(a3)

>> cupy._core.core.ndarray

You can have all the usual and useful NumPy operations such as broadcasting,

transpose, inverse, and Boolean filtering.

a3.T

a3+1

a3.mean(axis=1)

a3*(a3>0)

The output of the last one is as follows:

>> array([[0.58731747, -0. , -0.],

 [-0. , -0. , 0.7699453],

 [1.80051069, 0.67680871, 1.3091392]])

Chapter 11 GPU-Based Data Science for High Productivity

311

�Much Faster Than NumPy
Although CuPy looks and feels same as NumPy, it is much faster for vectorized

operations when supported by a high-performance GPU. Here is some code to show this

conclusively:

SIZE = 200

%%timeit -n10 -r10

np.random.normal(size=(SIZE,SIZE))@np.random.normal(size=(SIZE,SIZE))

>> 3.67 ms ± 258 μs per loop (mean ± std. dev. of 10 runs, 10 loops each)

This code measures the average time taken for a NumPy operation of matrix

multiplication with (200 x 200) size.

Now, let’s run the exact same code with a single change of replacing np by cp (i.e.,

using CuPy arrays and methods instead of NumPy):

%%timeit -n10 -r10

cp.random.normal(size=(SIZE,SIZE))@cp.random.normal(size=(SIZE,SIZE))

>> 127 μs ± 40.7 μs per loop (mean ± std. dev. of 10 runs, 10 loops each)

Even a simple 200 x 200 matrix multiplication shows a more than 25X speedup (127

μs as compared to 3.67 ms). Imagine the extent of the performance improvement for

large data science operations involving much larger numeric datasets.

�Data (Array) Size Matters
The performance improvement, demonstrated above, scales up quickly with the size of

the array. Let’s see this using a simple set of code. First, you write a timing measurement

code using NumPy with np.linalg.solve() method (i.e., solving a set of simultaneous

equations). Recall that this same method is used (under the hood) for solving a simple

multiple linear regression algorithm.

import time, tqdm

size=[100*i for i in range(1,21)]

numpy_time = []

for s in tqdm(size):

 a = np.array([np.random.randint(-10,10,s).tolist() for i in range(s)])

Chapter 11 GPU-Based Data Science for High Productivity

312

 b = np.array([np.random.randint(-100,100,s)]).T

 t1 = time.time()

 x = np.linalg.solve(a,b)

 t2 = time.time()

 delta_t = (t2-t1)*1000

 numpy_time.append(delta_t)

You must repeat the same code for CuPy by replacing np with cp, as showed before.

Finally, with a simple plotting code, you can see the comparison clearly (Figure 11-6).

Observe that the performance improvement scales up with the array size and somewhat

nonlinearly too. This means for even larger size arrays, the improvement will scale up

even faster. This kind of improvement, of course, can be achieved up to the point
where the data (array) can be properly fit in the GPU memory. This could be a

limitation for datasets with tens of millions of rows or columns as the GPU memory can

be smaller compared to a system memory (RAM). However, many batch operations or

segmented operations can be designed to work around this limitation and still achieve

significant speedup.

Figure 11-6.  CuPy and NumPy comparison with varying array sizes for a linear
system solve

Chapter 11 GPU-Based Data Science for High Productivity

313

Next, let’s tackle the problem of singular value decomposition (SVD) using a

randomly generated square matrix (drawn from a normal distribution) of varying sizes.

I won’t repeat the code block here but just show the result for brevity (Figure 11-7). Note

that the CuPy algorithm does not show markedly superior performance to that of the

NumPy algorithm in this problem class. Perhaps this is something to be taken up by the

CuPy developers to improve upon.

Figure 11-7.  CuPy and NumPy comparison with varying matrix sizes for SVD

Next, let’s go back to the basics and consider the fundamental problem of matrix

inversion (used in almost all machine learning algorithms). The result again shows a

strongly favorable performance gain by the CuPy algorithm over that from the NumPy

package (Figure 11-8).

Chapter 11 GPU-Based Data Science for High Productivity

314

Figure 11-8.  CuPy and NumPy comparison for matrix multiplication tasks

�CuDF vs. pandas
Let’s use the same Saturn Cloud instance and spin up a new Jupyter notebook for doing

this exercise. The idea is to show some basic operations with CuDF and to demonstrate a

simple computing speed comparison with pandas.

�Data Reading from an URL
Let’s read a dataset from an URL hosted on my personal GitHub:

import numpy as np, cupy as cp, cudf

import pandas as pd

<more imports...>

url = "https://raw.githubusercontent.com/tirthajyoti/Machine-Learning-with-

Python/master/Datasets/College_Data"

content = requests.get(url).content.decode('utf-8')

cdf = cudf.read_csv(StringIO(content))

Chapter 11 GPU-Based Data Science for High Productivity

315

So you read a CSV file over the Internet and load it into a CuDF DataFrame. You can

use the familiar .head() method to examine the first few entries:

cdf.head()

This produces the output shown in Figure 11-9.

Figure 11-9.  CuDF DataFrame first few entries after loading the data from a URL

�Indexing, Filtering, and Grouping
The indexing, column naming, and filtering works just like the pandas API. First, rename

the Unnamed: 0 column to something more meaningful:

cdf.rename(columns={"Unnamed: 0": "College"}, inplace=True)

Then you can see a selective portion of the data:

cdf[['F.Undergrad','P.Undergrad']][2:4]

This produces the output in Figure 11-10.

Figure 11-10.  CuDF DataFrame indexing selected columns and rows

Chapter 11 GPU-Based Data Science for High Productivity

316

Now try a somewhat complicated filtering operation to extract and list colleges with

a decent student-faculty ratio (under 10) but with low tuition expenditure (under $8000)

as well:

filter_1 = cdf['S.F.Ratio']< 10

filter_2 = cdf['Expend'] < 8000

cdf[filter_1 & filter_2][['College','S.F.Ratio','Expend']]

The results are shown in Figure 11-11.

Figure 11-11.  Multiple filtering operation on the CuDF DataFrame

Chapter 11 GPU-Based Data Science for High Productivity

317

A groupby operation, followed by an aggregation, works just like pandas too

(Figure 11-12).

Figure 11-12.  Groupby and averaging operations on the CuDF DataFrame

�NumPy Array Conversion
For many purposes, especially for plotting and visualization, you may need to convert

the CuDF data fields to standard NumPy arrays. In these cases, just using the standard

.values attribute will yield a CuPy array only. To get to the NumPy array, you need to use

the .get() method on top of it.

Here is what you get with .values only:

phds=cdf['PhD'].values

type(phds)

>> cupy._core.core.ndarray

Using the .get method, you get the NumPy array and can plot a histogram of the

number of PhDs (Figure 11-13).

phds=cdf['PhD'].values.get()

plt.title('Histogram of PhD',fontsize=15)

plt.hist(phds,edgecolor='k')

plt.show()

Chapter 11 GPU-Based Data Science for High Productivity

318

Figure 11-13.  Histogram of PhDs from the CuDF DataFrame after NumPy array
conversion

�Simple Benchmarking of Speed
You can show the improvement in the computation performance (by using the T4 GPU,

of course) with CuDF with a very simple benchmarking exercise.

Construct a NumPy array with 1 million rows and 100 columns with random

numbers (drawing from a Gaussian distribution), and convert that to a pandas

DataFrame first and a CuDF DataFrame next:

data = np.random.normal(size=(1000_000,100))

df = pd.DataFrame(data)

cdf = cudf.DataFrame.from_pandas(df)

Here, the .from_pandas method converts an existing pandas DataFrame to a CuDF

DataFrame quickly and painlessly.

A simple mean calculation on the first column gives the following output for the

pandas DataFrame:

%timeit -n10 -r10 df[0].mean()

>> 15 ms ± 1.16 ms per loop (mean ± std. dev. of 10 runs, 10 loops each)

The same exercise the CuDF DataFrame yields a much faster result:

%timeit -n10 -r10 cdf[0].mean()

>> 504 μs ± 52.7 μs per loop (mean ± std. dev. of 10 runs, 10 loops each)

Chapter 11 GPU-Based Data Science for High Productivity

319

Extending this exercise further, you run a loop by selecting an increasing number

of columns each time and see how the computation time scales with the number of

columns and how the benchmark comparison between pandas and CuDF looks:

for i in range(2,11):

 t1=time.time()

 df[[j for j in range(i)]].mean()

 t2=time.time()

 del_t = round(1000*(t2-t1),3)

 print(f"Calculation with {i} columns took {del_t} ms")

>>

Calculation with 2 columns took 3.333 ms

Calculation with 3 columns took 2.835 ms

Calculation with 4 columns took 2.878 ms

Calculation with 5 columns took 3.269 ms

Calculation with 6 columns took 3.589 ms

Calculation with 7 columns took 4.11 ms

Calculation with 8 columns took 4.606 ms

Calculation with 9 columns took 4.99 ms

Calculation with 10 columns took 5.478 ms

For the CuDF DataFrame, the calculation times are much shorter and it scales

much slower:

Calculation with 2 columns took 3.333 ms

Calculation with 3 columns took 2.835 ms

Calculation with 4 columns took 2.878 ms

Calculation with 5 columns took 3.269 ms

Calculation with 6 columns took 3.589 ms

Calculation with 7 columns took 4.11 ms

Calculation with 8 columns took 4.606 ms

Calculation with 9 columns took 4.99 ms

Calculation with 10 columns took 5.478 ms

Chapter 11 GPU-Based Data Science for High Productivity

320

�Dask Integration, User-Defined Functions,
and Other Features
CuDF plays nicely with a Dask cluster where the power of multiple GPUs can be
utilized for massively parallelized data processing. It also natively supports complex
user-defined functions (UDFs, as they are called) to be applied over selected axes or

columns. These functions work block by block (pertaining to the internal representation

of the data in the GPU memory) and exhibit a much faster computation speed than what

would have been possible with a CPU-based pandas workflow. For the sake of brevity, I

won’t cover all these features, but you are encouraged to check out the excellent tutorials

provided on the RAPIDS portal at https://docs.rapids.ai/api/cudf/stable/user_

guide/10min.html.

�CuML vs. scikit-learn
After covering the basic usage of CuPy and CuDF and showing comparative benchmarks

with NumPy and pandas, it makes sense to move up to the next stage of a data science

pipeline and discuss about the GPU-powered equivalent of scikit-learn: CuML.

As most instances of conventional usage of GPU-powered hardware have been

squarely in the machine learning domain, it is important to clarify what this comparative

discussion is about. Here, we are focusing solely on the non-deep-learning aspects

of the machine learning world (i.e., instances where a data scientist would apply out-

of-the-box algorithms borrowing from the scikit-learn API). The point is that, in such

circumstances, if the data scientist has access to a GPU-based system, they can improve

the computing performance significantly without spending any time or effort on

tweaking the code or learning about GPU programming. These are the situations where

TensorFlow is not required, yet the power of GPU must be fully utilized.

�Classification with Random Forest
In this exercise, you will use a scikit-learn Random Forest classifier to train with a

synthetic dataset and compare the performance and speed with a similar classifier from

the CuML API. First, you create some synthetic data with 10,000 samples and 20 features:

NUM_ROWS = 10000

NUM_FEATURES = 20

Chapter 11 GPU-Based Data Science for High Productivity

https://docs.rapids.ai/api/cudf/stable/user_guide/10min.html
https://docs.rapids.ai/api/cudf/stable/user_guide/10min.html

321

from sklearn.datasets import make_classification

X,y = make_classification(n_samples=NUM_ROWS,

 n_classes=2,

 n_features=NUM_FEATURES,

 n_informative=NUM_FEATURES,

 n_redundant=0,

 n_repeated=0)

You have imported the necessary functions and classes from the respective APIs.

However, for such a comparative study, you need to be careful about the naming

as the class and function names are largely identical between scikit-learn and

CuML. Therefore, you can create your own versions while importing:

from sklearn.model_selection import train_test_split as sk_tts

from cuml.model_selection import train_test_split as cuml_tts

from sklearn.ensemble import RandomForestClassifier as SKRF

from cuml.ensemble import RandomForestClassifier as CURF

Note that you are importing not only the classifier but also the train/test splitting

utility from CuML. As a general practice, you should use every bit of the API that is
offered by CuML when you are utilizing the power of a GPU.

For proper comparison and data protection, you build two separate functions, one with a

scikit-learn pipeline and another with the CuML API. Here is the scikit-learn version:

def sklearn_pipeline(X,y,n_estimators=100):

 """

 Executes Sklearn-based pipeline

 """

 t1 =time.time()

 X_train, X_test, y_train, y_test = sk_tts(X,y, test_size=0.3)

 model = SKRF(n_estimators=n_estimators)

 model.fit(X_train,y_train)

 t2 =time.time()

 del_t = round(1000*(t2-t1),3)

 score = round(model.score(X_test,y_test),3)

 return (score, del_t)

Chapter 11 GPU-Based Data Science for High Productivity

322

The code below is the CuML version. Note that to be compatible with certain GPU

calculations, the data type is changed to np.float32 (i.e., 32-bit floating point precision

for the CuML). Also, CuML API works with CuPy arrays only, and that’s where the

NumPy-to-CuPy conversion is required. Nonetheless, you measure the entire time taken

by this pipeline, not just the training/fitting part. The function returns a tuple for the

classification score (on the test set) and the time taken to execute.

def cuml_pipeline(X,y,n_estimators=100):

 """

 Executes CuML-based pipeline

 """

 t1 =time.time()

 X = cupy.array(X,dtype=np.float32)

 y = cupy.array(y,dtype=np.float32)

 X_train, X_test, y_train, y_test = cuml_tts(X,y, test_size=0.3)

 model = CURF(n_estimators=n_estimators)

 model.fit(X_train,y_train)

 t2 =time.time()

 del_t = round(1000*(t2-t1),3)

 score = round(model.score(X_test,y_test),3)

 return (score, del_t)

Then you just run these pipelines one after another. For the scikit-learn case, here

are the results:

score_sk, t_sk = sklearn_pipeline(X,y)

print("Sklearn pipeline score: ",score_sk)

print("Sklearn pipeline time (ms): ",t_sk)

>>

Sklearn pipeline score: 0.937

Sklearn pipeline time (ms): 2132.17

Chapter 11 GPU-Based Data Science for High Productivity

323

For the CuML pipeline, here are the results:

score_cuml, t_cuml = cuml_pipeline(X,y)

print("CuML pipeline score: ",score_cuml)

print("CuML pipeline time (ms): ",t_cuml)

>>

CuML pipeline score: 0.936

CuML pipeline time (ms): 100.471

You can observe a massive speed-up for the CuML pipeline with the identical data

input. The accuracy scores of both pipelines are almost identical, with the CuML score

differing at the third decimal place, perhaps due to the 32-bit floating point precision

conversion. But the speed improvement compensates for that miniscule accuracy

change many times over.

Note that while running the code (or associated Jupyter notebook), the first time
you may get a result that may show the scikit-learn pipeline is faster than the
CuML pipeline. This is related to how the GPU memory is prefetched and cached
with code and data, and it only happens for the very first run. This should be
ignored. If you run the code again, you should get the same trend as shown in the
results here.

Extending this further, let’s investigate whether the model complexity factors into

this relative improvement over scikit-learn when you use CuML. Fit the same data to

the Random Forest models of increasing complexity (i.e., increasing number of root

estimators/trees). The result shown in Figure 11-14 clearly demonstrates the fact that

CuML and its parallelized (GPU-powered) operation helps ensemble classifiers like
Random Forest in a significant manner as the model complexity grows. While the

computing time goes up for both classifiers, the pace of growth is miniscule for CuML as

compared to that of scikit-learn. There are some minor differences in the accuracy scores

but the payoff in terms of the computation efficiency is much more significant.

Chapter 11 GPU-Based Data Science for High Productivity

324

Figure 11-14.  Varying Random Forest classfier complexities with scikit-learn
and CuML

�K-Means Clustering
Next, consider an unsupervised learning problem of clustering using the all-too-familiar

k-means algorithm. Here, you are again comparing a CuML function with an equivalent

estimator from the Scikit-learn package. Just for reference, Figure 11-15 shows the API

comparison between these two estimators. They look virtually identical, except the

CuML uses something called “scalable-k-means++” as the initialization parameter. The

CuML k-means estimator also accepts a max_samples_per_batch argument that allows

controlled batch training.

Figure 11-15.  API comparison between scikit-learn and CuML K-means
estimators

Chapter 11 GPU-Based Data Science for High Productivity

325

Figure 11-16 shows the result for a dataset with 10 features/dimensions.

Figure 11-16.  K-means clustering speed comparison for 10 features

Figure 11-17 shows the result of another experiment with a 100-feature dataset.

Clearly, both the sample size (number of rows) and dimensionality (number of columns)

matter in how the GPU-based acceleration performed so well.

Figure 11-17.  K-means clustering speed comparison for 100 features

Chapter 11 GPU-Based Data Science for High Productivity

326

Further discussion and results on a linear regression problem can be found in this

article by me: https://medium.com/dataseries/gpu-powered-data-science-not-

deep-learning-with-rapids-29f9ed8d51f3. You are encouraged to check it out.

�Summary
This chapter focused on the usage and application of GPU-based hardware systems for

data science tasks that do not necessarily involve deep learning models or inferencing,

but still can benefit significantly from hardware-centric optimizations.

I introduced you to the fantastic ecosystem of RAPIDS, a GPU-centered data science

framework with separate libraries for numerical computing, tabular data analytics,

classical machine learning, graph analysis, and even signal processing. This framework

is powered by CUDA-accelerated libraries and takes full advantage of NVIDIA GPUs

(above a certain generation of GPU class and compute capability).

However, the best feature is that all of these modules try to mimic their non-GPU,

pure-Python counterparts like NumPy, pandas, and scikit-learn. Therefore, for data

scientists, the learning curve is short and (almost) drop-in code replacements can work

most of the time. Following this principle, next you saw multiple hands-on examples

of the basic usage of these libraries using a Tesla T4 GPU powered hosted runtime (on

the cloud). I also showed benchmark comparisons of computation performance of

equivalent operations and ML algorithms to clearly demonstrate the advantage of GPU-

accelerated data science.

Chapter 11 GPU-Based Data Science for High Productivity

https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3
https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3

327

CHAPTER 12

Other Useful Skills
to Master
As you progress towards the end of the grand journey of productive and efficient data

science that you took in this book, I would like to dedicate one complete chapter to

the set of various disparate useful skills that a data scientist should strive to master to

enhance their productivity. Unlike the previous chapters, where you examined similarly

grouped skills (e.g., memory profilers or distributed computing tools), the tools and skills

you’ll explore in this chapter may look somewhat disjointed from each other. It is true

that they do not fall under one unifying class but taken as a whole, they truly aid any data

scientist in performing their tasks with higher productivity.

I start with a discussion on the importance of learning basic web technologies such

as HTML, CSS, and JavaScript. Building on the same concepts, next I discuss the utility

of creating a simple web app for a data science project. I show a hands-on example with

two Python libraries, Flask and PyWebIO. Thereafter, I talk about cloud technologies

such as Amazon Web Service and show (with lined resources) the simple process of

bringing the power of the cloud to a local data science workflow. Finally, I switch gears

and discuss how, in many cases, using a so-called “low-code” framework can be useful

and productive for a data science task. I demonstrate PyCaret, a popular low-code

Python library in this regard.

As you can observe from this description, unlike previous chapters, this chapter

is not focused on one (or a small number of) Python tools/libraries. While I may be

discussing a few useful Python libraries in some sections, elsewhere I may be discussing

general technology features without any reference to a specific Python tool. In those

sections, I may have general suggestions for what topics to learn and how to go

about that.

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_12

https://doi.org/10.1007/978-1-4842-8121-5_12

328

�Understanding the Basics of Web Technologies
You may be wondering why a data scientist needs to understand the nuts and bolts of

web apps or general web technologies. The answer lies in the simple fact that a data

scientist’s responsibility should not just be limited to statistical analysis or building

ML models. Above all, the job of a data scientist is to solve a business or scientific

problem using data in a scientific manner. Communicating the result and presenting

the modeling and analysis to the external world in an accessible (or even interactive)

manner is a necessary goal of any reasonable data science job.

�A Consumer-Facing Layer
In other words, while analyzing datasets, finding hidden patterns, and building

predictive models are rightfully considered the primary skills for a data scientist, it is

equally important to communicate the key insights gleaned from those analyses and/

or to build some sort of interactive layers on top of those models that works as the touch

point for the external consumers. These aspects can be especially important if a data

scientist is thinking about building a consumer-facing product or even starting their own

business powered by data science methods.

To build a functioning consumer-facing interactive layer on top of a data science
core, creating a web app is an obvious choice. In the early days of personal computing

(until around the turn of the 21st century), building a standalone desktop app could

have been sufficient. The technology and tools for such an app are quite different from

the tools used in building a web app. However, in today’s world, a web app is expected

for any sort of computing or information technology product and data science is no

exception in this regard. Therefore, it makes sense for a data scientist to understand the

basics of building such an app. All the usual data science tools and technologies are still

fully used, only to find a presentable outlet or user-interaction layer through a web app,

as shown in Figure 12-1.

Chapter 12 Other Useful Skills to Master

329

Figure 12-1.  A well-rounded data science project with a consumer-facing layer of
a web application at the front end

�All Useful Data Science Is Delivered Through Web Apps
Observing from the side of consumer, we realize that almost all useful data science

is delivered to us through some web app or another. If we watch a suggested movie

on Netflix or buy a product on Amazon, there is a recommendation engine and a

sophisticated ML algorithm powdered by petabytes of data about ourselves and our

buying/watching habits and choices behind that. But ultimately, the cumulative result

of all that sophisticated data science work is presented through a simple web interface

showing a movie or product link for us to click and enjoy.

Now, it is quite likely that in any reasonably sized organization, the web app

developer is a person (or a team) who is separate from the data science team. However, it

is extremely beneficial for the data scientists to know the details (to a reasonable degree)

about the full technology stack that starts with the raw data (with their team) and ends

with a nice, shiny web app developed by other software engineers using a different set of

technologies. This kind of knowledge facilitates conversations and brainstorming for
solving existing problems (both on the data side and the web app side) and promotes
innovative ideas.

Chapter 12 Other Useful Skills to Master

330

There are many dimensions to this kind of conversation, which facilitates problem

solving and product innovation. Some typical examples are shown below. Let’s assume

a typical scenario of a data science pipeline running at the back end (along with some

database integration) and a web app serving the results of that pipeline to users who may

be logging on to a portal and even paying to use some of the services.

Is the web app easy to scale with the existing data science/

processing pipeline? What are the challenges and how can the

data science team help?

What portion of visualization should be done on the data science

(for example, using Python frameworks) back end vs. front-end

JavaScript rendering? What JavaScript library works better with

Python data objects? What are the caveats to watch for?

Where are the exact touch points between the data science and

the deployment layers? What about the interactive user inputs and

their impact on the data science pipeline?

How should the data science tasks be organized and managed

to help the web app? How about containerization of various

services? Will that help the app in terms of service quality and

latency?

What should be the strategies around data storage and databases

that play equally well with the data science back end and web app

front end?

What (if any) other back-end services (e.g., user authorization,

financial transactions) must play well with the data science

service? What are the dependencies?

Clearly, to have meaningful impact on the overall business operations, the data

science team must have a good grasp of the full stack of tools and technologies used

(HTML, CSS, JavaScript, PHP, Ruby on Rails, Docker, Kubernetes, to name a few

common ones). Other back-end services that operate very close to the data science

services (using Python) and that may even consume the output of the data science

pipeline somehow (before it is sent to the front end) may be written in languages like Go

or Rust.

Chapter 12 Other Useful Skills to Master

331

The point here is that a data scientist need not become an expert in all these tools

and technologies. But they must have the curiosity to know more about them and the
inclination to see the complete technology stack as a holistic data-oriented enabler.

Python-based data science is a critically important piece of this enterprise, but it is

the whole stack that delivers the final value to the customer and brings revenue to the

organization.

�What Are Some Pathways to Learn?
Web apps (and full web-based services) development, and the associated tools and

technologies, perhaps constitute the largest domain of knowledge in the universe of

software engineering and information technology. There are dizzying number of choices

and varieties, standards and protocols, languages and frameworks, and practices both

good and bad. It is neither within the scope of this book nor within the expertise of the

author to try to teach you about these technologies. However, I feel that some typical

example-based suggestions can encourage you explore these areas along with your data

science journey. They may include but are not limited to the following examples:

Learning to build and deploy a simple web application based on

a data analysis project, complete with exploratory visualizations

and a simple predictive model

Learning deeply about a Python-based web microframeworks

such as Flask or FastAPI and how to serve a machine learning

model using them

Learning a front-end framework that is meant for visual analytics

such as D3.js. Pursuing this kind of knowledge gives you a solid

grasp of fundamental JavaScript programming while keeping

you motivated by showing the power of visual data analysis

on the Web

Learning markdown language and acquiring basic CSS skills

with the goal of creating attractive-looking Readme documents for

GitHub repositories and open-source data science projects and

packages that you have developed

Learning about and implementing database integration with

Python data science services with a live web application in mind

Chapter 12 Other Useful Skills to Master

332

Learning about container technologies and how they enrich

modern web applications and how they enable organizations

to move away from the older-generation monolithic software

building practice

It is clear from these suggestions that they are specifically meant for data scientists
who hail from a non-software or non-web-development background. There are,

in fact, many web developers who are extremely enthusiastic about data science and

gradually transitioning into that kind of role. They, of course, are already deeply familiar

with these tools. It is the other section of data science practitioners, coming from diverse

backgrounds of physics, economics, statistics, and social sciences, that do a great service

to themselves when they add web-related technologies to their repertoire. Having such

well-rounded knowledge and a holistic view of the application will help them prosper in

their jobs and prepare for newer challenges too.

�Building Simple Web Apps for Data Science
In this section, I demonstrate how to build a simple web app backed by a few data

science tasks and services. First, I will showcase a ML model prediction example using

one of the most popular Python web frameworks, Flask. This will require you to write a

Python script and an HTML script that will be rendered on the web page. In the parlance

of web app development, Python is the back end (that performs the data science tasks

such as machine learning) whereas the HTML is the front-end technology for this app.

Next, I will showcase another Python library that abstracts away the front-end

programming part even more and lets data scientists focus on the data science part

while allowing them to build a useful web app with a minimal learning curve.

�Hands-On Example with Flask
Flask is a powerful yet lightweight web framework for Python that can be used to build

fast-response web apps. It is particularly popular with the data science community as it

presents a reasonably easy learning curve, while providing a lot of flexibility for building

useful web apps for presenting their data science work (models or analysis). It effectively

takes care of a lot of the environment and project setup involved in a web application.

Consequently, the developer, a data scientist in this case, can focus on the real data

science code and methods while Flask takes care of HTTP, routing, assets, and so on.

Chapter 12 Other Useful Skills to Master

333

There are a lot of wonderful learning resources about Flask on the Internet that you

are encouraged to find if you are interested in learning about this library. I will not get

into those details here. Instead, I will present the code and the results directly for a small

web app featuring predictions from an ML model.

There are two main files/scripts in a folder: a Python script (with Flask code) and

a HTML file that is used as the front end for the app. Both files are supplied with the

book. The Python script loads a pretrained ML model that is trained on the famous

adult income dataset (https://archive.ics.uci.edu/ml/datasets/adult) for a

classification task using a simple logistic regression model.

I will not go into the details of the HTML file as that is not the focus of this book.

Instead, I will just show the output of the HTML, which is the page it produces

(Figures 12-2 through 12-4). You can see textboxes that accept numerical input and

drop-down boxes with category options. The ML model is trained to work with both

input types. However, the Flask-based script must carefully convert and encode the input

received from the HTML page for seamless processing with the ML model.

Figure 12-2.  Income range prediction model app page

Chapter 12 Other Useful Skills to Master

https://archive.ics.uci.edu/ml/datasets/adult

334

Figure 12-3.  Marital status dropdown choices shown on the app

Figure 12-4.  Race dropdown choices shown on the app

Next, here’s the Flask app code piece by piece:

from flask import Flask, render_template, request

import pickle

import numpy as np

app = Flask(__name__)

Chapter 12 Other Useful Skills to Master

335

Load model and scaler objects (from pickle dumps)

model = pickle.load(open(‘income_model.pkl’,’rb’))

scaler = pickle.load(open(‘income_model_scaler.pkl’,’rb’))

Here, you create the app object as a Flask class and load two objects from pickled

dumps: the pretrained ML model called model and a scikit-learn scaling object called

scaler. This scaler is an instance of the MinMaxScaler class used to scale the input data

while training the model. For proper predictions, this needs to be saved and loaded

into the app. The training of the model was done separately and is shown in a Jupyter

notebook that is also supplied with this book.

The next piece of code just creates two routes (or endpoints) with the @app.route

decorator. The noteworthy point here is the render_template function used in the home

function definition where you pass in the name of the HTML file. This file must be stored

under a folder called templates inside the same directory where the Flask app script is

located. A typical arrangement of files/resources is shown in Figure 12-5.

The prediction route decorates the main prediction function predict, which is not

shown in this snippet. In this route, you define the methods argument that basically lists

the URL methods that are allowed for this route: GET and POST. These are operations that

can be performed on this route by the browser (on the client side). These methods are

basically the fundamental data exchange methods between the client (front end) and the

server (back end) sides for any web application.

Home page

@app.route("/")

def home():

 return render_template('ml1.html')

@app.route("/predict", methods=['GET','POST'])

Prediction function

def predict():

Chapter 12 Other Useful Skills to Master

336

…Figure 12-5.  Typical Flask app files and resources arrangement

Next, here’s the prediction function in detail:

def predict():

 if request.method == 'POST':

 # Access the data from form

 age = int(request.form["age"])

 education_num = int(request.form["education-num"])

 marital_status = request.form["maritalstatus"]

 race = request.form["Race"]

 # Convert marital status and race to numbers

 marital_status = marital_encoder(marital_status)

 race = race_encoder(race)

 # Arrange input features in an array

 X = np.array([age, education_num,

 marital_status, race])

 X = scaler.transform(X.reshape(1,-1))

 # Prediction

 prediction = model.predict(X)

 # Output formatting

Chapter 12 Other Useful Skills to Master

337

 output_fn = lambda x: 'below $50k' if x==0 else 'above $50k'

 output = output_fn(int(prediction))

 return render_template("ml1.html",

 �prediction_range='Your predicted annual

income is {}'.format(output))

Here, you are receiving the data payload from the HTML form with the POST
method and parsing it for extracting the individual input features such as variables

like age, education_num, marital_status, and race. A couple of these variables need

to be converted/encoded into numerical features using helper functions (not shown in

this code) as they are received in the payload as text strings from the HTML form. In fact,

age and education_num are also read as text and converted to integer types using the int

type conversion function.

Thereafter, you prepare the input feature vector, use the scaling transformer, and

pass it on to the model object for prediction. The output prediction is also converted into

a string object using a lambda function and that is what is printed as the final output.

Also noteworthy is the use of the render_template function in the return statement.

You basically return a formatted string that contains the output from the model and

places it in the HTML element/tag with an id of prediction_range.

The placement of this prediction_range element in the HTML code is at the

botttom of the page below the Submit button (that has an identifier of “Predict income

range”). It has a H2 (header level 2) tag as well to make it prominent on the page.

<button type="submit" class="btn btn-primary btn-block btn-large">Predict

income range</button>

 </form>

 <h2>

 {{ prediction_range }}

The last part of the app code is for starting the web app using the app.run() method:

if __name__ == "__main__":

 app.run(debug=True)

Chapter 12 Other Useful Skills to Master

338

You start this app by simply running the Python app on command line:

python app.py

This will start a web server and expose a particular port. You can simply go to the

localhost:5000 on the local browser and see the web app (i.e., the homepage rendered

by the HTML file).

When you first load the web app, this won’t be visible as it is coded as a Jinja

template variable (with “{{ ... }}”). Jinja is a helper Python library for Flask that
takes care of all the HTML/CSS rendering for Flask scripts with some predetermined

encoding of variables and loop statements. Here, the {{ ... }} essentially holds a

Python variable that comes from the Flask app script (through the return statement of

the predict function).

Here is a recap of the whole process sequence. After a user clicks on the button

Predict income range (shown in Figure 12-2), the input will be submitted through the

HTML form (with textboxes and drop-down menu selections), the ML prediction will

happen at the app.py level, and the result will be returned back to be rendered at the

bottom of the page through this Jinja placeholder (Figure 12-6). Note the large font for

the result string as it has the HTML H2 tag assoociated with it.

Figure 12-6.  Rendering the final result for the Flask ML prediction app

Chapter 12 Other Useful Skills to Master

339

Although this example used a very simple data flow and a small ML model, it
showcased all the essential components of a Flask-based Python project that are

needed to build a powerful web application. For example, the data submission can be

manual user input or reading from an online resource or a back-end database; the ML

algorithm could be a simple logistic regression or a complex deep learning; there could

be a large data wrangling and preprocessing pipeline before the features are extracted

from the input layer; and the output could be a simple text rendering or a JavaScript-

based fancy visualization. Whatever components the web app might feature, the core

connection between them will follow the glue that is Flask and its resources.

�Hands-On Example with PyWebIO
PyWebIO is another helper library for building quick web apps without the need to know

anything about HTML/CSS/JavaScript. PyWebIO provides a diverse set of imperative

functions to obtain user input and output content on the browser, essentially turning the

browser into a rich text terminal. Using PyWebIO, data scientists can build simple web

applications just by writing Python scripts and inserting web-based GUI elements inside

those scripts as they are required. Additionally, it supports file handling and image/plot

generation natively to make the data scientists’ life easier.

The full code for the app is supplied along with this book. Here, I just show the main

function to highlight a few features (that are also different than what you saw in the Flask

example):

def app():

 """

 Main app

 """

 put_markdown("""# A utility for analyzing a CSV file

[Dr. Tirthajyoti Sarkar](https://www.linkedin.com/in/tirthajyoti-

sarkar-2127aa7/)

You can upload a data file (CSV) and,

- display histograms of the data coulmns

- download the summary statistics as a file.

 """)

Chapter 12 Other Useful Skills to Master

340

 �data = input_group("Input data",[file_upload(label='Upload your CSV

file', accept='.csv',name='file'),

 radio('Display data?',['Yes','No'], name='display_data',value='No'),

 radio('Display plots?',['Yes','No'], name='display_plot',value='No'),

])

 file = data['file']

 display_data = data['display_data']

 display_plot = data['display_plot']

 content = file['content'].decode('utf-8').splitlines()

 df = content_to_pandas(content)

 if display_data=='Yes':

 show_data(df)

 if display_plot=='Yes':

 show_plots(df)

 show_stats(df)

Note the use of the function put_markdown() that helps display simple markdown

content on the web app. This largely eliminates the need of coding a lot of HTML/CSS

content as templates or static files, as in the Flask example. Further, the input_group

object and other elements like radio create corresponding radio button elements on

the web app page, again eliminating the need to code them using HTML. Basically,

PyWebIO does not require a data scientist to do anything else other than work on a
single Python script, yet enables them to create a nice-looking web app.

I named this script csv-analysis.py as it accepts a CSV file (through a file uploading

function) from the user, internally creates a pandas DataFrame representation, and

shows some basic plots of the numeric variables. The app function, shown above, calls

other helper functions like show_data() and show_stats() that accept the pandas

DataFrame and display the raw data or descriptive statistics on the web page.

The last bit of code of the script looks quite similar to what you saw with the Flask

example:

if __name__ == '__main__':

 start_server(app,port=9999,debug=True)

Chapter 12 Other Useful Skills to Master

341

It basically starts a web server and exposes it through the port 9999. When you run

this on a command line:

python csv-analysis.py

you see the following output on the command line:

Running on all addresses.

Use http://10.0.0.55:9999/ to access the application

So, you go to this address on the local browser (http://10.0.0.55:9999/) and see

this neat little web app popping up (Figure 12-7). Note how the markdown content you

coded in the Python script is rendered nicely on the web page with headers, hyperlinks,

and bullets. The input data section is nicely grouped as well, complete with a file upload

box and radio buttons for selecting the choice of data display or statistics display.

Figure 12-7.  CSV analysis web app created by PyWebIO with just a single
Python script

Chapter 12 Other Useful Skills to Master

342

Overall, this presents a HTML form (much like what you saw with the Flask example

earlier) that accepts user input, does background Python processing, and presents the

processed data back to the user. All the user needs to do is upload a file and press the

Submit button.

The file upload functionality exposes the local filesystem for searching and choosing

any file that the user wants to select. Figure 12-8 shows the state of the app after the user

presses the Browse button on the file upload box.

Figure 12-8.  The user chooses the file they want to analyze with the PyWebIo app

After pressing the Submit button, the back-end processing happens and the page

elements and states are updated to show the output in the bottom frame. Figure 12-9

shows the result. Note that here both the raw data table and plots section are truncated

for intelligibility purposes.

Chapter 12 Other Useful Skills to Master

343
Figure 12-9.  Typical output from the CSV analysis web app

Chapter 12 Other Useful Skills to Master

344

At the bottom of the page, the descriptive stats, calculated from the CSV file data, are

also displayed and a download option is presented to the user (Figure 12-10).

Figure 12-10.  More output from the CSV analysis app including a
download option

Although you saw a very simple data analysis task, this example demonstrates the

essential features and advantages of PyWebIO for this kind of workflow: user uploads of

data files, background data transformations and visualizations, displaying the results,

and a download option for the transformed data. You can create such an app just by

coding a single Python script and abstracting away all the HTML/CSS/JavaScript front-

end details using PyWebIO methods and utilities. This enhances your productivity and

helps you present the result of your data science exploration in a nicely organized
visual manner to external stakeholders within a short span of time.

�Other Options and GUI-Building Tools
Although I demonstrated the PyWebIO library in this section, there are quite a few

options for a similar task: going from a Python script or Jupyter notebook to a full-

fledged web app. Streamlit is one of the most prominent and widely used options.

Interested readers can refer to this article that I wrote about working with Streamlit:

https://towardsdatascience.com/data-analytics-to-web-app-streamlit-made-

easy-ed687266f0e8.

Chapter 12 Other Useful Skills to Master

https://towardsdatascience.com/data-analytics-to-web-app-streamlit-made-easy-ed687266f0e8
https://towardsdatascience.com/data-analytics-to-web-app-streamlit-made-easy-ed687266f0e8
https://towardsdatascience.com/data-analytics-to-web-app-streamlit-made-easy-ed687266f0e8

345

There is a recently developed tool called mljar-mercury that lets you convert Jupyter

notebooks into web apps with the minimal addition of some YAML config code. With

this library, you define interactive widgets for the notebook with a YAML header, and

the end users can change the widgets’ values, execute the notebook, and save the results

(as an HTML file). You can also hide the code to abstract the complexity from any non-

technical collaborators. The library makes it easy to deploy the app to any server such

as AWS or Heroku. For more information, please see the GitHub site (https://github.

com/mljar/mercury) or the documentation (https://mljar.com/mercury/).

In many cases, building a stand-alone GUI app (not necessarily running on a web

browser) may also be required to quickly demonstrate and disseminate some data

science work or model. There are a host of options for doing that. Interested readers can

check out this article that I wrote about a framework called PySimpleGUI and how to use

it to build simple data science GUI apps: https://towardsdatascience.com/building-

data-science-gui-apps-with-pysimplegui-179db54a9a15.

�Going from Local to the Cloud
Cloud technology, with any doubt, has ushered in the biggest revolution in both the

personal and enterprise computing spaces in the modern era. It takes full advantage of

the improved infrastructure of the global high-speed internet backbone that continues to

reach an ever-expanding section of human society every day. And, with that advantage,

it has democratized and commoditized the process of delivering goods and services of

every kind imaginable, virtual and physical.

Data science is no exception in this regard. While a great many data scientists prefer

to work and explore ideas on their local machines, for various reasons they may need to

transport their workflow seamlessly on to cloud resources, or at least have the skills to do

so at a moment’s notice when the need arrives.

Some typical example scenarios include but are not limited to the following:

Need to analyze a multi-terabyte-sized dataset that they cannot

store properly on their local machine

Large in-memory analytics requirements for which their local

system memory is awfully inadequate

Fast, distributed computing requirement with a cluster of CPU/

GPU resources

Chapter 12 Other Useful Skills to Master

https://github.com/mljar/mercury
https://github.com/mljar/mercury
https://mljar.com/mercury/
https://towardsdatascience.com/building-data-science-gui-apps-with-pysimplegui-179db54a9a15
https://towardsdatascience.com/building-data-science-gui-apps-with-pysimplegui-179db54a9a15

346

Need to use highly specialized libraries, frameworks, and

specially designed environments that come only with a prebuilt

container/image that is difficult and time-consuming to set up on

a local machine

In all these cases, the ability to quickly spin up a cloud resource and connect

the existing data science codebase to that infrastructure determines the ultimate

productivity and efficiency of the data science pipeline.

�Many Types of Cloud Services for Data Science
There is no denying the fact that a dizzying variety of cloud services exist that can be

used to enhance the productivity and efficiency of regular data science work. Some

of them fall under the category of Infrastructure-as-a-Service (IaaS), where the end

users rent the raw compute/storage power that exists in the cloud environment and just

transport their local codebase to that layer. The typical usage scenarios in the previous

section are applicable for this IaaS case. A specific example is to rent an EC2 compute

node on AWS, connect it to some S3 storage bucket, and start doing large-scale data

science work on this “rented” infrastructure that would not have been possible with

limited local compute power.

�Platform-as-a-Service

A variety of new startups (and new service organizations of established corporations) are

also working on services that can be classified as Platform-as-a-Service (PaaS). Here a

host of modules and submodules run on top of an IaaS layer (that is not chosen or entirely

visible to the end user). These modules can perform all the necessary and expected tasks

of a typical data science pipeline (data ingestion, transformation, machine learning,

visualization, model deployment, long-term data and logs storage, etc.). Users may choose

all or a mix of the modules/services that are part of a PaaS offering.

For example, AWS has many components (Amazon QuickSight (business analytics

service), Amazon RedShift (data warehousing), AWS Data Pipeline, AWS Data
Exchange, Amazon Kinesis (real-time data analysis), Amazon EMR (big data processing

using map-reduce)) that can be used as per the requirements of the end user’s data

science workflow. Google Cloud also provides a host of similar services (BigQuery

(data warehouse), Dataflow (streaming analytics), Dataproc (running Apache Hadoop,

Apache Spark clusters), Looker (business intelligence and analytics), Google Data

Chapter 12 Other Useful Skills to Master

347

Studio (visualization dashboards, data reporting), Dataprep (data preparation for

analytics)) for the end user to pick and choose. At the other end of this spectrum,

these services can be highly specialized, focusing on a single type of AI/ML job. AWS

Sagemaker and Google Vertex AI are examples in this regard.

�Data-as-a-Service

Data-as-a-Service (DaaS) is also becoming a popular concept with the advent of cloud-

based data services. DaaS is provided by a host of new and established cloud vendors

that use cloud computing to provide data storage, data processing, multi-domain data

sources integration, and advanced data analytics to clients using distributed network

infrastructure. They have proper security and identity management layers integrated

and their focus is on AI/ML and data analytics without a limit on scaling. This kind of

service can be used by any organization to rapidly improve their business process and

create long-term value using the power of data. Some prominent examples of service

providers in this field include Databricks and H2O.ai.
There are also cloud services focusing on providing specialized data science coding

and programming environments for end users. An example that you have already seen

in this book is the Saturn Cloud service that you used in Chapter 11 to spin up a GPU-

powered cloud instance with the RAPIDS framework preinstalled and configured. All

you had to do was to click a few buttons and within minutes you could connect to a

Jupyter notebook with access to all the RAPIDS libraries from your local browser.

Paperspace Gradient is another such successful hosted service provider for ML

tasks. Without a doubt, these services enhance the productivity of data scientists by

reducing the barrier of entry to environments that need special setup or a dedicated

hardware configuration.

�Bringing Cloud Power to a Local Environment
There are a plenty of excellent resources to learn about cloud computing technologies

and how they can help various data science tasks and projects. In fact, knowledge

and basic experience of such technologies are becoming standard requirements for

getting into the field of data science as a professional. This means, apart from studying

programming languages, algorithms, machine learning theory and practices, and

statistics concepts, a data scientist also needs to acquire skills and basic experience in

cloud computing for prospective job interviews or career progression.

Chapter 12 Other Useful Skills to Master

348

Therefore, a related question is, how can you bring the power of cloud computing

(mostly the infrastructure part, as mentioned in the previous section) to a local

environment?

This basically entails the following tasks:

•	 Spin up a EC2 instance on AWS.

•	 Set up a Python data science environment on that instance (basically

a computer in the cloud).

•	 Start a Jupyter server.

•	 Securely connect to that server through a local browser.

If these tasks are completed successfully, a data scientist will have a Jupyter
notebook running on their local browser that is powered by the cloud computing
instance. Local files and existing code can be ported into an environment that is no

longer restricted by the hardware limitations of a single system.

Fortunately, many excellent step-by-step tutorials on this topic are available on the

Internet. Instead of repeating the steps from those articles, I will provide links so you can

follow them directly. Many of these tutorials feature low-resource EC2 instances (e.g., t2-

micro) to keep the cost of the AWS service minimal or even zero. However, the concept
is extendable to almost any kind of EC2 instance, and the data scientist can spin
up as large and powerful cloud computing resource as needed by the data science
workflow. If it is a CPU-intensive data science task, a 32- or 64-core CPU instance can be

chosen. It is a memory-intensive job, specialized high-memory instances can be used.

Additionally, the following links also include a guide for accomplishing the same

goal with a Google Cloud Platform (GCP), which is a competitor and equivalent service

to what AWS offers. GCP is powered by the vast distributed computing resource of

Google and runs the familiar Jupyter notebook on a GCP computing node; it could be

the first step towards extending your local data science pipeline to the amazing world of

cloud computing. Furthermore, the similarity of the overall process in these two articles

will prove that the fundamentals of this local-to-cloud connection remain exactly
same regardless of the cloud service adopted.

Article/guide about AWS: “JupyterLab on AWS EC2” (https://medium.com/

analytics-vidhya/jupyterlab-on-aws-ec2-d6b2cb945e54)

Article/guide about GCP: “"Setting up Jupyter Lab Instance on Google Cloud

Platform” (https://medium.com/analytics-vidhya/setting-up-jupyter-lab-

instance-on-google-cloud-platform-3a7acaa732b7)

Chapter 12 Other Useful Skills to Master

https://medium.com/analytics-vidhya/jupyterlab-on-aws-ec2-d6b2cb945e54
https://medium.com/analytics-vidhya/jupyterlab-on-aws-ec2-d6b2cb945e54
https://medium.com/analytics-vidhya/setting-up-jupyter-lab-instance-on-google-cloud-platform-3a7acaa732b7
https://medium.com/analytics-vidhya/setting-up-jupyter-lab-instance-on-google-cloud-platform-3a7acaa732b7

349

�Low-Code Libraries for Productive Data Science
Low-code libraries are becoming some of the most promising gateways for professionals

who come from a diverse background such as web developers, business analysts, and

even academic researchers in parallel fields and want to enter the world of data science

and leverage its full power for their profession or daily work. In this section, I discuss the

essential nature of low-code libraries and show a popular example.

�What Are These Low-Code Libraries?
At their core, these libraries are built atop the traditional data science ecosystem (e.g.,

programmatic frameworks with languages like Python, R, or Julia) with the goal of

abstracting away the coding portion of data science as much as possible while
keeping the technical rigor largely intact.

Naturally, these libraries act as thin wrapper layers on established coding-

oriented libraries and frameworks. They provide easy and intuitive APIs and may even

incorporate a lot of attractive visual elements and dashboard analytics tools to make the

data science work ever more approachable and presentable.

In many cases, they incorporate some Auto-ML bells and whistles that help run a

series of data science/machine learning experiments and tuning exercises with only a

few lines of codes (or at the click of a button). When such a low-code library abstracts

away all its direct programmatic APIs into a GUI-oriented, interactive front end, then it

can also be called a No-code data science library.

�Example with PyCaret
As its website (https://pycaret.org/) says, “PyCaret is an open-source, low-code

machine learning library in Python that automates machine learning workflows”

(Figure 12-11). Although the emphasis on machine learning is heavy in this statement, it

can support all the usual stuff in a typical data science pipeline, like

•	 Exploratory data analysis

•	 Data wrangling and preprocessing

•	 Model training and tuning

•	 Basic model explainability and model management (MLOps)

Chapter 12 Other Useful Skills to Master

https://pycaret.org/

350

Figure 12-11.  PyCaret, a low-code, open source data science/ML library

Here is a simple classification example with PyCaret to demonstrate the idea of low-

code data science. First, install the library via pip:

pip install pycaret

PyCaret offers friendly data loading functions that can be used to import popular ML

datasets, one of them being the diabetes dataset (https://archive.ics.uci.edu/ml/

datasets/diabetes):

from pycaret.datasets import get_data

data = get_data('diabetes')

The next steps are almost magical! With a single function call (setup), the data is

examined and set up (i.e., prepared for an ML experiment):

from pycaret.classification import *

s = setup(data, target = 'Class variable')

The inference algorithm embedded (and largely abstracted from the general user)

inside PyCaret will automatically infer the data types for all features based on certain

properties. If the inference is not 100% correct, PyCaret handles this by displaying a user

prompt and asking for a confirmation of data types when the setup function is executed.

Chapter 12 Other Useful Skills to Master

https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/diabetes

351

You can press Enter if the data types are correct, or type quit to exit the setup. Ensuring

the correct data types is critically important in PyCaret as it automatically performs

multiple type-specific preprocessing tasks that are imperative for accurate ML modeling.

The next step is equally magical in its simplicity and power. One function call of

compare_models() trains and evaluates the performance of all the ML estimators

available in the model library using cross-validation (CV). The output is a scoring grid

with average cross-validated scores. CV metrics can be accessed with the get_metrics

function and customized metrics can be added or removed using the add_metric and

remove_metric functions, respectively.

Best = compare_models()

print(best)

Figure 12-12 shows the results.

Figure 12-12.  One function call trains a handful of ML estimators and displays
the CV metrics of all kinds. Image from https://pycaret.gitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

Chapter 12 Other Useful Skills to Master

https://pycaret.gitbook.io/docs/get-started/quickstart
https://pycaret.gitbook.io/docs/get-started/quickstart

352

Next, you can analyze the performance of the trained model on the test set, again

with a single function call. This actually gives you a choice of many types of plots, and

you can select any one of them.

evaluate_model(best)

A typical result is shown in Figure 12-13 where the user has chosen to see a feature

importance plot.

Figure 12-13.  One function call analyzes the trained model against the test set
and produces various plots. Image from https://pycaret.gitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

Note that evaluate_model can only be used in a Jupyter notebook session since it

uses ipywidget (to interactively show the user all the plot options). You can also use the

following code to generate plots individually:

plot_model(best, plot = 'auc')

Chapter 12 Other Useful Skills to Master

https://pycaret.gitbook.io/docs/get-started/quickstart
https://pycaret.gitbook.io/docs/get-started/quickstart

353

This produces the plot shown in Figure 12-14 showing the area-under-the-curve.

Figure 12-14.  Individual plot. Image from https://pycaret.gitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

Prediction is, as expected, one line of code. The evaluation metrics are calculated on

the test set.

predict_model(best)

And finally, saving a model (the full pipeline, actually) and loading it back is simple,

too (Figure 12-15).

save_model(best, 'my_best_pipeline')

loaded_model = load_model('my_best_pipeline')

Chapter 12 Other Useful Skills to Master

https://pycaret.gitbook.io/docs/get-started/quickstart
https://pycaret.gitbook.io/docs/get-started/quickstart

354

Figure 12-15.  Saved model. Image from https://pycaret.gitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

It is clear from this hands-on demo that one of the primary goals of these libraries is

to save time for the data science practitioner by simplifying the front API, reducing the

lines of the raw coding needed, and even helping run multiple ML experiments in an

autopilot mode. All these goals line up very well with that of the productive data science

and therefore I strongly believe that low-code libraries are going to be an important
part of this initiative in the future ahead.

�Summary
This chapter was not about a particular topic or a specific type of Python framework. It

was an ensemble of topics and skills that often need to be studied and acquired by data

scientists parallel to practicing a productive data science agenda. Although these skills

do not feature directly in a data science pipeline as explicit components, they often

provide additional value and foundation bedrock. Learning them can truly amplify the

power and efficiency of a standard data science task flow.

Chapter 12 Other Useful Skills to Master

https://pycaret.gitbook.io/docs/get-started/quickstart
https://pycaret.gitbook.io/docs/get-started/quickstart

355

In that spirit of learning, I started with a discussion on the importance of learning

basic web technologies (HTML, CSS, and JavaScript). Next, I touched upon the utility of

creating web apps for data science projects and made the point that the ultimate success

of a data science task depends critically on communicating the insights that it generates

and how this can be done best with an interactive web app. I showed how to build

simple web apps with Python libraries of two distinct flavors, Flask and PyWebIO.

Almost invariably, web apps are supported by the cloud infrastructure that is the

backbone of modern high-tech society. In the context of data science, I also talked about

cloud technologies such as Amazon Web Service and Google Cloud Platform and data-

focused platforms such as Databricks and Saturn Cloud. I also provided pointers to the

simple process for bringing the power of cloud computing power to a local data science

environment.

Finally, I switched gears and discussed how in many cases using a “low-code”

framework can be useful and productive for a data science task. I demonstrated a ML

classification task with PyCaret, a popular Python library in this genre, and showed how

the low-code-focused abstraction made the whole affair of doing data science highly

productive, faster, and intuitively simple.

Chapter 12 Other Useful Skills to Master

357

CHAPTER 13

Wrapping It Up
You underwent a long and arduous journey over the course of the last 12 chapters. As

you begin the last phase of this book, let’s summarize the key takeaways and salient

points of those chapters. This is important because one of the main things that I

will focus on in this chapter is the topic of what was not covered. Naturally, you will

appreciate the treatment of what was not by examining and recollecting what was

covered.

�Chapter 1
Like any other computing (and non-computing) task in life, data science and machine

learning can be practiced with various degrees of efficiency and productivity. Therefore,

the goal of Chapter 1 was to introduce you to the benefits of performing data science

tasks efficiently and productively. I also illustrated potential pitfalls in the everyday work

of a regular data scientist to drive home the point of efficient data science.

�Chapter 2
The goal of Chapter 2 was to introduce you to the concepts of certain programming

styles and habits that play an essential part in developing efficient data science systems

and pipelines. I illustrated the concepts through brief examples and talked about how to

measure or track inefficiency. Concepts of time and space complexities in programming

and algorithms were introduced, as was the Big-O notation. Then I demonstrated

practical examples of common, inefficient data science and ML coding practices to show

you a glimpse of typically inefficient (but commonly used) coding patterns that do not

scale well or make some aspects of the overall system design inefficient.

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_13

https://doi.org/10.1007/978-1-4842-8121-5_13

358

�Chapter 3
In Chapter 3, I came close to the root of this book in a sense. This is a book based on

exploring productive data science with the Python programming language. The choice

of this language is almost self-explanatory. Python is, without any doubt, the most used

and fastest growing programming language of choice for data scientists (and other

related professionals such as ML engineers or artificial intelligence researchers) all

over the world. One of the primary reasons for this popularity is the availability of high-

quality and powerful yet easy-to-learn libraries focused on data science.

However, just because these libraries provide easy APIs and smooth learning

curves does not mean that everybody uses them in a highly productive and efficient

manner. You must explore these libraries in depth and understand both their power and

weaknesses to exploit them fully for productive data science work.

This was precisely the goal of this chapter: to show how and why these libraries should be

used in typical data science tasks for achieving high efficiency. You started with the Numpy

library as it is also the foundation of Pandas and Scipy. Then you explored the Pandas

library, followed by a tour of the Matplotlib and Seaborn visualization packages.

�Chapter 4
This chapter built on the connection between data scientists and the Python

language that was discussed in the previous chapter. Data scientists often come from

a background that is quite far removed from traditional computer science/software

engineering, one of physics, biology, statistics, economics, and electrical engineering,

and they also use Python a lot for their work. While Python is the most widely used

major language for modern data-driven analytics and AI apps, it is also used for simple

scripting purposes, to automate stuff, and to build a web framework back end. It turns

out that Python for data science work and Python for scripting and general software

development can be quite different in style and temperament.

Scripting is (mostly) the code you write for yourself. Software is the assemblage of code

you (and other teammates) write for others. It has been widely observed that when (a

majority of) data scientists who do not come from a software engineering background

write Python programs for AI/ML models and statistical analysis, they tend to write such

code mostly for themselves. Writing high-quality, production level code is a skill to be

learned and honed over a lifetime. It is the bread and butter of software engineers and

Chapter 13 Wrapping It Up

359

developers. Not all data scientists will have the motivation and drive to acquire these

skills. However, some good practices can be learned and applied in your everyday work.

This chapter provided some pointers in the context of productive data science.

�Chapter 5
Functions, inheritance, methods, classes: they are at the heart of robust object-oriented

programming. But a typical data scientist may not delve deeply into them if all they want

to do is to create a Jupyter notebook with exploratory data analysis and plots. Therefore,

they can avoid the initial pain of using OOP principles, but that almost always renders

the Notebook code non-reusable and non-extensible. More precisely, that piece of code

serves only the individual (until that individual forgets what exact logic was coded) and

no one else.

But readability (and thereby reusability) is critically important for any good software

product/service. Following a discussion about modular, readable, reusable coding

practices in Chapter 4, this chapter focused on examples of such practices in the domain

of deep learning. These days, powerful and flexible frameworks like TensorFlow or

PyTorch make the actual coding of a complex neural network architecture relatively

simple and brief. However, if the overall data science code is not modularized and well

organized, then it can be plagued by the same issues of non-reproducibility and non-

reusability.

Specifically, I discussed wrapping up the most essential tasks in a DL-based

workflow, such as building and compiling a classification or regression model, creating

targeted visual analytics, creating proper docstrings inside custom functions, and using

them as the core building blocks of the main data science pipeline. Additionally, you can

wrap up the task related to data formatting/transformation and prediction/inference

in a similar fashion. Apart from simple functional wrappers, I also discussed a powerful

construct called callback that caters to the dynamic nature of training a deep neural

network. I showed how to extend this approach all the way to the full OOP paradigm,

to build out classes and utility modules incorporating all these wrappers as special

methods. I called this a DL utility module that can be called from any data science task.

Chapter 13 Wrapping It Up

360

�Chapter 6
In the previous two chapters, I showed that data scientists must learn how to write

machine learning code (whether it is the final model or just some experimental

prototype) efficiently. There must be proper organization and modularization in the

code so that it can interface well with the standard software engineering tools and

techniques. There must be some amount of automation in the code to reduce the time

to explore, evaluate, and experiment with data and models. Data scientists must be

comfortable with writing functional and module tests, incorporating object-oriented

principles, and so on. And finally, data scientists must also develop the habit of

producing good documentation for their code so that it can be reusable and readable by

other developers.

This chapter took you through the journey of developing a lightweight but useful

ML package of your own so that you can experience many aspects of producing a

complete piece of software for data science. In my experience, this exercise of writing

(and publishing) an ML package teaches several valuable lessons to any upcoming data

scientist.

�Chapter 7
Python has an amazing ecosystem for data science work, starting from numerical

analysis and going all the way to advanced deep learning or reinforcement learning, with

statistical modeling and visualization thrown in the mix. A great open-source culture

keeps new and exciting developments coming and thriving. Data scientists can learn,

contribute code, share their experience, help debug, and support each other in this

environment.

There are some predominant libraries and packages in this ecosystem that are used

by almost all data scientists in their daily job: Pandas, NumPy, and Scikit-learn are three.

However, there are also some little-known Python packages that can help you do some

common data science jobs faster and more efficiently. These are not general-purpose

large projects like Numpy or Pandas. Instead, they focus on niche aspects of similar data

science tasks and do them really well.

In this chapter, I touched upon a few such nifty packages and showed hands-on

examples of efficient data science. The goal was to induce the idea of exploration in your

mind so that you can take full advantage of the great Python data science zoo.

Chapter 13 Wrapping It Up

361

�Chapter 8
Data science tasks come with a wide variety of computational costs of both space and

time. Data wrangling jobs may need the support of large storage, while advanced ML

algorithms need high intensity computing speed. Some ML algorithms work better with

the support of large local memory (RAM) and cannot perform well with data situated far

from the CPU on a hard disk, while others are optimized to perform well with distributed

data storage.

Furthermore, the nature of the data may change slowly or frequently, depending on

the application. Some models and data science code scale gracefully with increasing

size and complexity of the input data, some do not. When their scaling is not properly

planned or baked into the code, the performance can suffer, even leading to possible

catastrophic failure in time.

To plan for such a situation or to design data science code robustly, you must start

with the basic measurement of the efficiency of the code in terms of memory usage

or profile. There are many tools and techniques for such measuring depending on the

code and the underlying hardware. In this chapter, I introduced tools (with hands-on

examples) that can be used to measure the memory usage profile of data science and

ML code.

�Chapter 9
Data science tasks may cover a wide variety of dataset sizes, ranging from kilobytes to

petabytes. Some datasets can have many rows and a small number of columns while

others (e.g., genomic assay) may be extremely high-dimensional and consist of a few

rows but millions of columns as feature dimensions. Even within the same organization

or data science team, there can be multiple pipelines dealing with different types of

input and they may face wide variation in the dataset size and complexity.

It is often a natural practice for data scientists to build a scaled prototype of a data

science job (such as combining data wrangling, a ML algorithm, and some prediction

functions). To support this quick analysis and prototyping, a data scientist must be able

to quickly scale across a wide variety of dataset sizes and complexity as the need arises.

They should not run into issues like out-of-memory while prototyping on their laptop.

This chapter talked about the common problems and limitations that arise while

scaling out to larger datasets and what tools exist to address those issues. Specifically,

Chapter 13 Wrapping It Up

362

you explored some of the limitations that arise while doing analysis with a large dataset

using the most common data analysis library, Python Pandas, and discussed two

alternative libraries or add-ons that can be used to overcome those limitations.

�Chapter 10
In almost all real-life scenarios, the success of a data science pipeline (and its value

addition to the overall business of the organization) may depend on how smoothly and

flawlessly it can be deployed at scale, such as how easily it can handle large datasets,

faster streaming data, rapid changes in the sampling or dimensionality, and so on. This

aspect of scalability is also closely related to the ability to do parallel processing of large

data. Therefore, the theme of Chapter 9 was continued in this chapter where I discussed

Python libraries that support parallel processing natively for data science tasks.

Much like the last chapter, I discussed limitations that arise while doing analysis

with large and complex datasets using the most common data analysis and numerical

computing libraries like Pandas or Numpy and I discussed some alternative libraries

to help with those tasks. However, this chapter does not focus on an exhaustive

discussion about the general parallel computing tricks and techniques with Python.

It purposely avoids detailed treatment of the topics that often come up in a standard

Python parallel computing tutorial or treatise such as working with built-in modules like

multiprocessing, threading, or asynco. The focus, like any other chapter in this book,

is squarely on data science, so I covered two libraries named Dask and Ray that truly add

value to any data science pipeline where the user wants to bring in the power of parallel

computing to their tasks.

�Chapter 11
Productivity in data science is often directly related to the speed of execution of various

tasks including numerical processing, data wrangling, and feature engineering. When it

goes to the advanced machine learning stage, depending on the modeling complexity,

the matter of speed and performance assumes a critical role. It is now well established

that the unprecedented success of modern ML systems has been critically dependent

on their ability to process massive amounts of raw data in a parallel fashion using task-

Chapter 13 Wrapping It Up

363

optimized hardware. The history of machine learning has clearly demonstrated that the

use of specialized hardware like GPUs played a significant role in the early success of ML.

While the use of GPUs and distributed computing is widely discussed in academic

and business circles for core AI/ML tasks, there is less coverage when it comes to their

utility for regular data science and data engineering tasks. So, the important question

is, can we leverage the power of GPUs for regular data science jobs (e.g., data wrangling,

descriptive statistics) too? The answer is not trivial and needs some special consideration

and knowledge sharing. In this chapter, I focused on a specialized suite of tools called

RAPIDS that help any data scientist take advantage of GPU-based hardware for a wide

variety of data science tasks (not necessarily deep learning or advanced ML). You

explored how by utilizing the inherent parallel processing power of GPUs, you can

enhance the productivity of such common data science tasks significantly.

�Chapter 12
I dedicated this complete chapter to the set of various disparate useful skills that a data

scientist should strive to master to enhance their productivity. Unlike previous chapters

where I examined and discussed similarly grouped skills (e.g., memory profilers or

distributed computing tools), the tools and skills discussed in this chapter might have

looked somewhat disjointed from each other. They do not fall under one unifying class,

but taken as a whole, they can truly aid a data scientist in enhancing productivity.

I started with a discussion on the importance of learning basic web technologies

such as HTML, CSS, and JavaScript. Building on the same concepts, next I discussed

the utility of creating a simple web app for a data science project. You saw a hands-

on example with two Python libraries, Flask and PyWebIO. Then I moved on to cloud

technologies such as Amazon Web Services and showed (with lined resources) the

simple process for bringing the power of the cloud to a local data science workflow.

Finally, I switched gears and discussed how, in many cases, using a so-called “low-code”

framework can be useful and productive for a data science task. I demonstrated PyCaret,

a popular low-code Python library in this regard.

Chapter 13 Wrapping It Up

364

�What Was Not Discussed in This Book
Often, the most important thing that an author can (and should) discuss at the end of a

book is not a running list of all the topics that were covered in the book, but what was not

covered. In that spirit, in the following subsections, I identify some key topics that should

be pointed out to you, the reader, for self-learning and exploring beyond this book.

These topics should help you equip yourself with productive data science techniques.

�MLOps and DataOps
A typical (or traditional) software development lifecycle goes from requirement

elicitation, to designing, to development, to testing, to deployment, and all the way

down to maintenance. For many years, these practices were firmly in the realm of so-

called DevOps.

As business and technological enterprises incorporate more and more data

science and machine learning into their products and services, the new requirement of

building ML systems modifies these time-tested principles of the SDLC to give rise to

a new engineering discipline called MLOps (a handshake between ML practices and
traditional DevOps). One of the most popular and widely used Python libraries for

getting started with basic MLOps is MLFlow.

While MLOps deals primarily with ML models and artifacts, a similar and related

concept is DataOps, which focuses data (and the various transformations, techniques,

and systems associated with the processing and flow of data) as main artifacts. Like

MLOps, this modern discipline tries to blend the newer set of demands created by the
unprecedented scale and complexity of data processing with traditional DevOps tool
chain and produce a homogenized pipeline that delivers value to any organization that

wants to take advantage of the power of data science.

These are newly emerging disciplines with ever-changing standards and golden

practices. To be productive and efficient, a data scientist must keep abreast of these

developments. There are conferences exclusively dedicated to these spaces, and

excellent books and blogs are being produced all the time. You are highly encouraged to

start exploring these avenues to get a firm grasp of these concepts.

Chapter 13 Wrapping It Up

365

�Container Technologies
Containers have become an essential part of any modern software technology stack.

Fundamentally, they enable packaging software code and services with all the necessary

components like libraries, frameworks, and other dependencies so that they are

“contained” and “isolated” in their own private space. This results in the ability of the

software or application within the container to move across and run consistently in
any environment and on any infrastructure, independent of that environment or

infrastructure’s operating system.

Although the core idea of such process isolation has been around for years, in

2013, Docker introduced Docker Engine, which set a standard for container use with

easy-to-use tools and pioneered a universal approach for packaging. This accelerated

the adoption of container technology with breakneck speed, leading to container

orchestration tools like Kubernetes (developed and open sourced by Google). Today,

developers can choose from a large selection of containerization platforms and tools that

support the Open Container Initiative standards pioneered by Docker.

In fact, the adoption of containerization has pushed software development from

being monolithic (where all services and components use the same language or a

fixed set of technology) towards a much more diversified situation (each individual

service is written in the best programming language for the task and then run as pods

with a container orchestration tool like Kubernetes). Naturally, an increasing number

of modern data science and ML services and platforms are also being built with

containerization at their core. To take advantage of this mega-trend and to make it work

for productive data science, you should familiarize yourself with the basic principles,

workings, and features of container tools such as Docker and Kubernetes.

�Database Technologies
Database and related technologies have been around for much longer than modern data

science and machine learning, going back to the early 1960s. For the longest time, they

centered around relational database management systems or RDMBS. These systems

mainly dealt with “structured data” such as business transactional records or tabular

data coming from inventory, quality control, production, or other business processes of

a similar nature. Structured Query Language or SQL (and the many variants it spawned)

has been the mainstay of querying large databases with amazing speed and accuracy for

more than five decades.

Chapter 13 Wrapping It Up

366

It is imperative for any aspiring data scientist to acquire at least a rudimentary
knowledge of databases and SQL and to constantly practice and upgrade that

knowledge. Almost every web app, platform, and enterprise software makes use of

multiple databases in some form or another. In real-life scenarios, it is extremely likely

that the raw data for a data science pipeline must come from a legacy database (or a

combination of multiple such databases). Therefore, the data scientists in charge need to

be proficient in SQL to perform those queries to extract raw data from the databases.

SQL, being a declarative language (https://365datascience.com/tutorials/sql-

tutorials/sql-declarative-language/), does not necessarily have a steep learning

curve. But a solid knowledge of database design and optimization can go a long way

towards performing optimized queries for data extraction that enhances the efficiency

of the entire data science pipeline. There are, in fact, many database bindings or
connector libraries in Python that allow data scientists to build tight coupling with

existing databases and extract data even from within a Python environment.

However, SQL and RDBMS are just the tip of the iceberg. With the growing

importance of unstructured data such as images, videos, audio, natural language,

handwritten notes, and streaming output from digital sensor networks, particularly in

the field of data science and ML, there is a fresh revolution in database technologies

leading to the development of NoSQL technologies. These tools and languages are

generally designed and optimized for dealing with unstructured or semi-structured

datasets.

You are duly encouraged to update your database knowledge, invest time in building

solid fundamentals in SQL, and keep abreast of developments in the latest database

trends and technologies. No matter what background you come from or what kind of

business or scientific application you are working on, this knowledge will help you

become highly productive and efficient with maximum impact.

�General Advice for Upcoming Data Scientists
It is not hard to imagine that the following question comes up often when a few data

scientists gather for a drink, after work: how can you distinguish yourself from
hundreds of other data science practitioners/candidates at work or in a job
interview?

Why is this question important to ponder?

Chapter 13 Wrapping It Up

https://365datascience.com/tutorials/sql-tutorials/sql-declarative-language/
https://365datascience.com/tutorials/sql-tutorials/sql-declarative-language/

367

Because there is a tremendous amount of competition to get a job as a data scientist

(www.kdnuggets.com/2020/10/getting-data-science-job-harder.html). Because

there is a mad rush. Every kind of engineer, scientist, and working professional is calling
himself or herself a data scientist (www.linkedin.com/pulse/why-so-many-fake-

data-scientist-bernard-marr/). Because, as an aspiring data scientist, you may not be

sure if you can cut your teeth in this field. The so-called imposter syndrome is alive and

well in data science (https://towardsdatascience.com/how-to-manage-impostor-

syndrome-in-data-science-ad814809f068).

I neither claim to have ready answers nor do I know whether you can truly

distinguish yourself, but I will list a few pointers.

�Ask Questions and Learn Constantly
Ask yourself the following questions and count the number of YES answers. The more

you have done, the more you can separate yourself from the masses.

�If You Are a Beginner

Have you published your own Python/R (whatever you code in)

package?

If yes, have you written extensive documentation for it to be used

easily by everyone else?

Have you taken your analysis from a Jupyter notebook to a fully

published web app? Or have you investigated tools that help you

do so easily?

Have you written at least a few high-quality, detailed articles

describing your hobby project?

Do you try to practice the Feynman method of learning, which

is to teach a concept you want to learn about to a student in the

sixth grade?

�At a More Advanced Phase

If you consider yourself to be at a somewhat mature stage as a data scientist, answer

these questions:

Chapter 13 Wrapping It Up

http://www.kdnuggets.com/2020/10/getting-data-science-job-harder.html
http://www.linkedin.com/pulse/why-so-many-fake-data-scientist-bernard-marr/
http://www.linkedin.com/pulse/why-so-many-fake-data-scientist-bernard-marr/
https://towardsdatascience.com/how-to-manage-impostor-syndrome-in-data-science-ad814809f068
https://towardsdatascience.com/how-to-manage-impostor-syndrome-in-data-science-ad814809f068

368

Do you consciously try to integrate good software engineering
practices (e.g., object-oriented programming, modularization,

unit testing) in your data science code at every chance you get?

Do you make it a point to not stop at the scope of the immediate

data analysis required but imagine what would happen for 100X

data volume or 10X cost of making the wrong prediction? In other

words, do you think consciously about data or problem scaling

and its impact?

Do you make it a point to not stop at the traditional ML metrics,

but also think about the cost of data acquisition and business
value resulting from applying ML?

�Learn a Diverse Set of Skills

I particularly would like to advise you to not spend all of your time and energy analyzing

larger and larger datasets or experimenting with the latest deep learning model. As well-

rounded data scientists, we should set aside at least a quarter of our time learning to do a

couple of things that are valued everywhere, in every organization, in all situations.

Build a small but focused utility tool for your daily data analysis.

Your creative juices will flow freely in this exercise. You are

creating something that may not have thousands of immediate

users, but it will be novel, and it will be your own creation.

Read and create high-quality documentation related to new

tools or frameworks or the utility tool you just built (see above).

This will force you to learn how to communicate the utility and

mechanics of your creation in a manner that is intelligible to a

wide audience.

As you can see, these habits are easy to develop and practice. They do not require

backbreaking work, a years-long background in statistics, or advanced expertise in deep

machine learning knowledge. But, surprisingly, not everybody embraces them. So, here’s

your chance to distinguish yourself from a set of large number of candidates either at a

new job or at an interview (Figure 13-1).

Chapter 13 Wrapping It Up

369

Figure 13-1.  Building data science tools (apps) and high-quality documentation
could distinguish yourself from others. Image source: “How Can You Distinguish
Yourself from Hundreds of Other Data Science Candidates?” by Tirthajyoti Sarkar
(https://towardsdatascience.com/how-to-distinguish-yourself-from-
hundreds-of-data-science-candidates-62457dd8f385)

�Read About Broad Topics at Every Chance

Aspiring data scientists often spend a disproportionate amount of time reading about

the latest deep learning trick or blog posts about the latest Python library. While these

are positive attributes, in order to be productive and efficient, you should also allocate

some time for reading broader topics in data science or artificial intelligence in general. I

encourage you to read about broad and diverse topics in the industry’s top forums and in

good books. Figure 13-2 shows some of the books and forums that I enjoy.

Chapter 13 Wrapping It Up

https://towardsdatascience.com/how-to-distinguish-yourself-from-hundreds-of-data-science-candidates-62457dd8f385
https://towardsdatascience.com/how-to-distinguish-yourself-from-hundreds-of-data-science-candidates-62457dd8f385

370

Figure 13-2.  Some high impact blogs, forums, and books on broad topics related
to data science, machine learning, and artificial intelligence

�Distinguish Yourself at a Job Interview
Following the goal of distinguishing yourself at a job interview, imagine yourself to be

in such a situation. If you did have many YES answers to the questions above, you can

mention something like the following to your interviewer:

•	 “Hey, check out the cool Python package I built for generating synthetic

time-series data at will.”

•	 “I also wrote a detailed documentation which is hosted at MyApp.

readthedocs.io website. It’s built with Sphinx and Jekyll.”

•	 “I write data science articles regularly for the largest online platform,

Towards Data Science. Based on those articles, I even got a book

publishing offer from a well-known publisher like Packt or Springer.”

•	 “Everybody can fit an ML model in a Jupyter notebook. But I can hack

out a basic web app demo of that Scikit-learn function where you can

send data through a REST API and get back the prediction.”

Chapter 13 Wrapping It Up

371

•	 “I can help in the cost-benefit analysis of a new machine learning

program and tell you if the benefit outweighs the data collection effort

and how to do it optimally.”

Imagine how different you will sound to the interview board from all the other

candidates who do well on regular questions of statistics and gradient descent but do not

offer demonstrable proof of all-around capabilities.

This shows that you are inquisitive about data science problems. This shows

that you read, you analyze, and you communicate. This shows that You create and

document for others to create. This shows that your thinking goes beyond notebooks

and classification accuracy to the realm of business value addition and customer
empathy. This is the secret sauce of being truly productive and efficient.

What company wouldn’t love this kind of candidate?

�Some Useful Resources
There are so many great tools and resources for acquiring and practicing these skills. It is

impossible to even list a good fraction of them in the space of a single chapter, but below

I list some representative examples. The key idea is to instill the idea of exploring along

these lines and discovering such learning aids for yourself.

�A Data Scientist’s Amazing, Curated List of Useful Tricks
and Tools

Khuyen Tran is a data science writer at NVIDIA and a data science intern at Ocelot

Consulting. She has written over 200 data science articles and hundreds of daily data

science tips at Data Science Simplified (https://mathdatasimplified.com/). Her

current mission is to make open source more accessible to the data science community.

She has curated a list of efficient Python tricks and tools that can act as a perfect

supplement to this book. Check out the open-source book Efficient Python Tricks

and Tools for Data Scientists (Figure 13-2) at https://khuyentran1401.github.io/

Efficient_Python_tricks_and_tools_for_data_scientists/intro.html.

Chapter 13 Wrapping It Up

https://mathdatasimplified.com/
https://khuyentran1401.github.io/Efficient_Python_tricks_and_tools_for_data_scientists/intro.html
https://khuyentran1401.github.io/Efficient_Python_tricks_and_tools_for_data_scientists/intro.html

372

�Build Installable Software Packages Using Only
Jupyter Notebooks

This tool comes from the developers of FastAI, a popular deep learning framework and

learning resource. They experimented with the idea that one can build an installable

Python package right from the Jupyter notebook code and came up with this tool. Of

course, the Jupyter notebook is where data scientists are mostly at ease and this kind of

tool lets them publish packages right from their preferred coding and experimentation

environment. Here are the details about this project: www.fast.ai/2019/12/02/nbdev/.

�Learn How to Integrate Unit Testing Principles

Testing software modules enhances robustness and trust in the final product/service.

The importance of high-quality testing cannot be emphasized enough in any software

development. The same argument goes for your data science pipeline. Even if you are

developing a data science codebase mainly for prototyping and research, it’s a good idea

to know how to write basic testing modules to check if the functions and classes you are

developing are working as expected.

It is often not about checking the input data type but about checking whether your

data science pipeline can handle it. It is not only just randomly throwing out-of-range

variables at the function but also about checking whether the response is as expected.

To get you started, here are references to a couple of useful articles in this regard. In

these short articles, I looked at an example of a typical data science pipeline (consisting

of small, dedicated functions) instead of a monolith, and showed how to write a Pytest

module for it. I also looked at why writing test modules for data science can be slightly

different from what software engineers or Quality Assurance folks do every day.

“PyTest for Machine Learning” (https://towardsdatascience.com/pytest-for-

machine-learning-a-simple-example-based-tutorial-a3df3c58cf8)

“How to Write Test Code for a Data Science Pipeline” (https://heartbeat.comet.

ml/how-to-write-test-code-for-data-science-pipeline-4ee35956c513)

�Write Whole Programming and Technology Books Right
from Your Jupyter Notebook

This is an awesome open-source project to help develop code-oriented, quick-read

books and booklets: “Books with Jupyter” (https://jupyterbook.org/intro.html).

Chapter 13 Wrapping It Up

http://www.fast.ai/2019/12/02/nbdev/
https://towardsdatascience.com/pytest-for-machine-learning-a-simple-example-based-tutorial-a3df3c58cf8
https://towardsdatascience.com/pytest-for-machine-learning-a-simple-example-based-tutorial-a3df3c58cf8
https://heartbeat.comet.ml/how-to-write-test-code-for-data-science-pipeline-4ee35956c513
https://heartbeat.comet.ml/how-to-write-test-code-for-data-science-pipeline-4ee35956c513
https://jupyterbook.org/intro.html

373

�Get Started with MLOps

As discussed, MLOps was not covered in this book, and yet it deserves the full attention

of aspiring data scientists to succeed professionally and be productive in today’s

business environment. Check out this high-quality introductory guide: “What is

MLOps – Everything You Must Know to Get Started” (https://towardsdatascience.

com/what-is-mlops-everything-you-must-know-to-get-started-523f2d0b8bd8).

�Understand the Multi-Faceted Complexity of a Real-Life
Analytics Problem

Check out the following article to understand the multi-faceted complexities of a real-

life analytics problem: “Why a Business Analytics Problems Demands all of your Data

Science Skills” (https://medium.com/analytics-vidhya/why-a-business-analytics-

problem-demands-all-of-your-expertise-at-once-1290170808c4). In this case

study example, I describe in detail what could be a good analytics pipeline for a power

company that wants to run a power shut-off campaign (for non-payment of electric

bills), shown in Figure 13-3. Specifically, I analyzed

•	 What data needs to be collected and how it needs to be cleaned and

prepared using wrangling techniques

•	 What the main components of the pipeline need to be

•	 What subcomponents or specific modeling technique may be used

•	 How to formulate the optimization problem

•	 What business and social factors to consider

•	 When to apply stochastic simulations and what kind of simulation

runs need to be conducted

Chapter 13 Wrapping It Up

https://towardsdatascience.com/what-is-mlops-everything-you-must-know-to-get-started-523f2d0b8bd8
https://towardsdatascience.com/what-is-mlops-everything-you-must-know-to-get-started-523f2d0b8bd8
https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4
https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4

374

Figure 13-3.  Khuyen Tran’s ebook on efficient Python tricks and tools for
data science

Chapter 13 Wrapping It Up

375

Figure 13-4.  An example of a real-life business analytics problem incorporating
data science tools of all kinds, such as classification, simulation, time-series,
risk and cost modeling, randomized (stochastic) analyses, optimization, etc.
Image source: “Why a Business Analytics Problem Demands all of your Data
Science Skills” by Tirthajyoti Sarkar (https://medium.com/analytics-vidhya/
why-a-business-analytics-problem-demands-all-of-your-expertise-at-
once-1290170808c4)

You will appreciate, after reading this article, how the modern practice of
data-driven analytics, when applied to a real-life business problem, is always
a complicated mixture of multiple techniques and frameworks including data

wrangling, machine learning, business logic, and even ethical choices.

�Begin a New Journey
Well, that’s the end for this journey with this book. My goal was simple: to illustrate the

concept of productive data science and introduce you to a few tools and techniques

(all using the Python language and its rich ecosystem) that can help you achieve higher

productivity (and efficiency) in your data science work. With that goal in mind, I covered

Chapter 13 Wrapping It Up

https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4
https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4
https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4

376

a wide array of topics in the span of 13 chapters. Some of those topics dealt directly with

the efficiency of the data science code and programming patterns, while others covered

concepts that may play critically important roles in practical data science pipelines.

There were discussions on as diverse topics as modularity, code packaging, memory and

time profiling, GPU processing, parallel computing, web technologies, and everything in

between.

I sincerely hope that this medley was useful and illuminating to you, and that you

gained an insight or two about productive data science practices by making the journey

through these chapters, either by following every example diligently or just browsing

casually. As expected from a book on such a mixed topic, not everything that I know

to be important for practicing productive data science could be covered within these

chapters. Whenever possible, I encouraged you to explore those topics and concepts on

their own.

Those explorations will surely lead to newer adventures, professional success,

and pure joy for the practitioners of the wonderful enterprise (and transformative

technology) that is data science. With this hope, I signal the start of that newer and future

journey.

Chapter 13 Wrapping It Up

377

Index

A
Activation maps, 142

activation, 144–146
training, 143
web-based UI, 147

AI/ML models, 9, 85, 358
Algorithmic complexity

deep learning network, 25, 26
image data, cubic-complexity, 22
regression model, 23, 24
relative growth comparison, 24, 25

Apache Arrow columnar memory
format, 303

Artificial intelligence (AI), 9, 47, 85,
300, 358, 370

Aspiring data, 369, 373
.at or .iloc methods, 61
AutoML tools, 10

B
Back-end processing, 342
Base class, 119, 165, 166, 173, 175
Basic web technologies, 327, 355, 363
Best-matching distribution

datasets, 206, 207
plot, 204
simple fitting, 203, 204

Binary search, 20
Boolean filters, 197
Business and technological

enterprises, 364

C
Cell magic, 44
Classification score, 322
Client-scheduler-worker, 264, 265
Cloud computing

technologies, 347
Cloud instance, 233, 234, 261, 282,

314, 347
Cloud technology, 345
Colab Pro, 236
ColDrop method, 189, 191
Computing, 212, 235, 254, 357
Containers technologies, 365
Convolutional neural

network (CNN), 119, 138
cProfile library

array operations, 225
data science workflow, 227
Profiler class, 226, 227
usage, 223

cProfile.run function, 223, 224
Cross-validation (CV), 92, 95,

148, 150, 351
CSV analysis app, 344
CSV analysis web app, 341, 343
CUDA programming, 303, 304
CUDA version, 309
CuDF DataFrame, 315, 317, 319
CuDF vs. pandas, 314
CuGraph, 304–305
CuML pipeline, 323
CuML version, 322

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5

https://doi.org/10.1007/978-1-4842-8121-5

378

CuPy algorithm, 304, 311, 313
NumPy comparison, 312
interface, 303
usage, 310

D
Dask, 263, 264

array, 265
bag, 266, 277–279
clusters, 268, 308, 320
dashboard, 285
DataFrame, 266, 274–277
distributed client, 279–283
hood, 264, 265
ML, 285
tasks, 267

Dask Future, 284
dask-ml library, 287
Data-as-a-Service (DaaS), 347
Database technologies, 365
Database knowledge, 366
DataOps architectures, 2
Data/problem scaling, 368
Data repository, 301
Data scaling challenge, 286
Data science, 147, 211, 345, 354, 361

brute-force for loop, 3
combinatorial sign, 5
definition, 1
generic function, 6, 7
inefficient programming

canonical example, 28–35
computing tasks, 35, 36

iterrows(), 4
pandas DataFrame, 3
pitfalls

GUI programming/web app
development, 14

hardware/traditional tools, 10–12
measure efficiency, 8
measuring efficiency, 12
ML model development, 13
modularized and expressive data

science pipeline, 9
OOP, 9
productive data, 15
Python, 9
unit/functional testing, 13

plotting code, 6
Python libraries, 2
scatterplot, 4
task flow, 2
test module, 8
tools, 328
workflow stages, 228

Data science methods, 328
Data science pipeline, 13, 230, 239, 257,

301, 349, 354, 362, 372
Data scientist

arithmetic, 160, 161
OOP, 161–163

Datasets, 129, 130, 262
Decision boundary visualization, 102–108
Deep learning (DL), 11, 15, 26, 48, 114,

116, 147, 220
Deep neural network (DNN), 114, 216,

299, 359
DevOps, 364
distfit library, 202, 208
Docker Engine, 365

E
Elastic Compute (EC2) instance, 233
eval method, 199
Evaluation metrics, 353
Execution time

INDEX

379

Jupyter/IPython magic
command, 43–45

Pythons time module, 37–41, 43
Extend class functionality, 128

F
Filtering operation, 55, 198, 243, 316
fit_generator method, 134, 135
fit_transform method, 203, 205
Flask, 332
Flask app files, 336
Flask ML prediction app, 338

G
Gigabytes (GB), 10
Global Interpreter Lock (GIL), 230
Goodness-of-fit (GOF), 175, 202
Google Cloud Platform (GCP),

348, 355
Google Colaboratory, 234
GPU-accelerated data science, 326
GPU memory, 235, 312, 320
GPU-powered hardware, 320
Graphics processing unit (GPU), 299
GUI/app development, 16

H
Hardware story

AI and ML solutions, 305
hardware development, 305

Hidden gems, 185
Hyperparameter

cross-validation, 150
data/keras model, 148, 149
grid search, 150, 152–155

kerasClassifier class, 149
scikit-learn library, 148

I
Image classification

CNN, 133, 134
data generator object, 131, 132
dataset, 129, 130
encapsulate, 135–137
extensions, 141
fit_generator method, 134, 135
image dataset, 138–140
simplifying, 129
testing utility function, 137

Imposter syndrome, 367
Income range prediction model, 333
Informed search, 27
Infrastructure-as-a-Service (IaaS),

234, 346

J
JavaScript library, 330
Job interview, 347, 370–371
Jump-starter packages, 47
Jupyter magic commands, 33, 46
Jupyter notebook, 6, 9, 29, 42, 78, 88, 98,

114, 147, 159, 180, 216, 240, 247,
270, 280, 307, 335, 348, 372

K
Keract, 143
Keras callback class, 119, 120
k-means algorithm, 324
K-means clustering, 325
K-nearest neighbor (KNN), 104, 106
Kubernetes, 365

INDEX

380

L
Linear regression algorithm, 163, 164, 311
Linear search, 20
Line command, 44
Low-cardinality data, 238
Low-code libraries, 101, 349, 354

M
Machine learning (ML), 1, 17, 213, 216

algorithms, 326
data scale, 219
deep learning, 220
experiments, 354
final validation, 222
key advice, 221
linear regression, 216–218
modular code, 86
standard data science task

flow, 87, 88
systematic evaluation, 96
systematic evaluation,

automation, 96–101
Mathematical operators, 201
Matplotlib and Seaborn, 6, 47,

73–75, 77–83
Memory profile, 212, 213, 222
mljar-mercury, 345
MLOps, 364, 373
Model compression, 213
Model scaling challenge, 286
Modern data science, 263, 365
Modern ML systems, 299
Modin, 250

features, 254
out-of-core processing, 251–254
single CPU, 250, 251

Modular Code

fast experimentation
business/data science, 118
compile/train functions, 121
final code, 124–126
keras callback, 119, 120
utility functions, 126
visualization function, 123

OOP
builders, 116
callbacks, 116
DL task, 114, 116
wrapper, 116

Multiple terabytes (TB), 10

N
Natural language processing (NLP), 33,

193, 305
N-dimensional numerical arrays, 49
ne.evaluate() function, 196
Neural network model, 212, 216, 220
NLTK tokenizer method, 194
NoSQL technologies, 366
Numerical Python, 48
Numexpr method, 197
Numexpr package, 194, 195
NumPy, 47, 194, 358

.append method, 56, 57
arithmetic, 196
arrays, 49, 268–272, 274, 317, 318
array size, 198, 199
arrays vs. native python

computation, 50–52
Boolean filters, 197
built-in vectorize function, 55, 56
chaining methods, 72
complex numbers, 198
complex operation, 196, 197

INDEX

381

conversion first/operation later, 53
definition, 48, 83
libraries, 72
logical operators, 197
pandas productivity, 60–70
reading utilities, 57–59
remove orphan dataframes, 71
vectorize logical operations, 54, 55

NumPy operations, 310, 311
NumPy package, 41, 310, 313

O
Object-oriented programming (OOP),

9, 114
modularization, 180
separate plotting classes, 175–178
supporting classes, 179

Out-of-core datasets, 230, 231, 240,
251–254, 285

P
Pandas, 47, 186

DataFrame, 200
documentation, 199
eval method, 199

Pandas-specific tricks
column-specific functions, 237
convert data, 238, 239
loading function, 236

Paperspace Gradient, 347
Parallel computing, 257, 288

data science, 258, 261, 262
single core, 259–261

Parallel processing, 240, 252, 262, 290, 300
pd.eval() method, 200
pdpipe

dataset, 186–188
laying pipes

chain stages, 189
dropping rows, 190, 191
NLTK, 192–194
scikit-learn, 191, 192

pip command, 159, 181, 194
Platform-as-a-Service (PaaS), 346
plot command, 204
predict method, 164, 170
Productive data science work, 41, 48, 90,

110, 358, 359
PyArrow, 67, 69–70
PyCaret, 349–351, 355
PyPi installer package

code organizational thinking, 159
GitHub, 159
unit/functional tests, 159
writing docstrings, 159

Python app, 47, 338, 360
Python-based data science, 262, 331
Python data science ecosystem, 73, 185
Python language, 182, 232, 301, 358, 375
Python libraries, 2, 60, 147, 193, 223, 240,

327, 332, 364
Python package, 48, 372

GitHub integration, 182
instructions, 181

Python processing, 342
Python programs, 85, 358
Python script, 80, 90, 93, 165, 180, 214,

220, 333, 341, 344
PyWebIO library, 327, 339, 344, 355

Q
Quantile-quantile plot, 178
Quiver, 147

INDEX

382

R
Race dropdown choices, 334
Random Forest, 286, 320–324
RAPIDS ecosystem

advantage, 306
CUDA, 302
data preparation and wrangling

tasks, 301
data processing, 302
fantastic ecosystem, 326
internal support, 302
Jupyter server, 308
libraries and APIs, 301
parallelism, 301

RAPIDS environment, 307
Ray, 288

data science, 289
dataset, 291–297
distributed data transformations, 293
ecosystems, 288
VM, 290

Real-life analytics problem, 373
Residuals, 174

S
Saturn Cloud platform, 307, 314, 347
Scalability problems, 230
Scalene, 214

CLI, 222
features, 215
output, 215
usage, 214

Scikit-learn, 286, 287
hyperparameters, 108, 109

out-of-box visualization methods, 110
parallel job runner, 109
synthetic data generators, 110

Scikit-learn Task Flow, 88–96
Scripting, 9, 73, 113
Single-threaded programs, 232
Singular value decomposition (SVD),

303, 313
Software engineering practices, 368
Static snapshot, 285
Support Vector Machine (SVM), 102

T
Task scheduling, 267
Testing software modules, 372
Time and space complexities

Big-O notation, 19
binary search, 20
linear time, 21, 22
searching element, 18
worst-case, 18

U
Useless class

fitting method, 166, 168
prediction method, 170
testing method, 168, 169
testing prediction, 170

Utility functions, 58, 87, 126, 127, 165
Utility method

error metrics, 173, 174
plotting true vs. predicted

values, 171–173

INDEX

383

V
Vaex library, 241

dynamic visualizations, 247, 248
expressions/virtual columns, 244
features, 241
HDF5 format, 248, 249
memory copying, 243, 244
multidimensional grid, 245, 246
usage, 241, 242

ValDrop method, 191

Vector registers, 201
Virtual machine (VM), 201, 240, 290
Visualization function, 122–123

W, X, Y, Z
Web apps, 328, 329, 331, 345, 355
Windows OS, 240
Wrapper functions, 116
Wrapping up, 116, 359

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is Productive and Efficient Data Science?
	A Typical Data Science Pipeline
	Typical Examples of Inefficient Practices in Data Science
	Iterating Over a pandas DataFrame
	Brute-Force for Loop
	Better Approaches: df.iterrows and df.values

	Scatterplot Everything in a Large Dataset
	Combinatorial Explosion

	Writing Similar Plotting Code Multiple Times
	Write a Generic Function Instead

	Not Writing A Test Module

	Some Pitfalls to Avoid
	Don’t Live in Ignorance. Measure Efficiency.
	Don’t Leave Your Code as Orphans. Modularize Them.
	The Python-Powered Data Science Legacy May Have a Problem
	Embrace OOP Principles As Much As You Can

	Don’t Be Limited by Hardware or Traditional Tools
	Local Hardware Memory Limitation Is a Real Issue
	GPU-Accelerated Computing Has Not Focused on Data Science as a Whole
	Always Explore Alternative Libraries/Frameworks

	Efficiency and Productivity Go Hand in Hand
	Measuring Efficiency Goes a Long Way
	Testing Reduces the Chance of Rework
	Planning ML Model Development
	Knowledge of GUI Programming/Web App Development Is Quite Helpful

	Skills and Attitude for Practicing Productive Data Science
	Summary

	Chapter 2: Better Programming Principles for Efficient Data Science
	The Concept of Time and Space Complexities plus Big-O Notation
	A Simple Example: Searching for an Element
	The Big-O Notation
	Complexities: Linear, Logarithmic, Quadratic, and More
	How Much Faster?
	What’s Beyond Linear?

	Why Complexity Matters for Data Science
	Image Data: Cubic-Complexity Algorithms
	Best Regression Model: Exponential Complexity
	Relative Growth Comparison
	AI Is Intractable, but It Works

	Inefficient Programming in Data Science
	Canonical Examples
	Use a Filter Instead of a for Loop
	Use Sets to Find Unique Elements
	Use a Specialized Data Structure for Counting
	Use the itertools Library for Combinatorial Structures

	Lessons Learned from the Examples

	Measuring Code Execution Timing
	Python’s time Module Is Your Friend
	Basic Usage Example
	Many Loops Needed for a Fast Code Block
	A Timing Decorator
	Using the Decorator to Measure Complexity

	Jupyter/IPython Magic Command
	%timeit: Execution Time for Single-Line Code
	%%timeit: Measuring Execution Time for a Block of Code in a Cell

	Summary

	Chapter 3: How to Use Python Data Science Packages More Productively
	Why NumPy Is Faster Than Regular Python Code and By How Much
	NumPy Arrays are Different
	NumPy Array vs. Native Python Computation
	NumPy and Native Python Implementation
	Conversion Adds Overhead

	Using NumPy Efficiently
	Conversion First, Operation Later
	Vectorize Logical Operations
	Use the Built-In Vectorize Function
	Avoid Using the .append Method
	Utilizing NumPy Reading Utilities
	Reading from a Flat Text File
	Utility for Tabular Data in a Text File

	Using pandas Productively
	Setting Values in a New DataFrame
	The .at or .iloc Methods Are Slow
	Use .values to Speed Things Up Significantly

	Specify Data Types Whenever Possible
	Iterating Over a DataFrame
	Brute-Force For Loop
	Better Approaches: df.iterrows and df.values

	Using Modern, Optimized File Formats
	Impressive Speed Improvement
	Read Only What Is Needed
	PyArrow to pandas and Back

	Other Miscellaneous Ideas
	Remove Orphan DataFrames Regularly
	Chaining Methods
	Using Specialized Libraries to Enhance Performance

	Efficient EDA with Matplotlib and Seaborn
	Embrace the Object-Oriented Nature of Matplotlib
	Two Approaches for Creating Panels with Subplots
	A Better Approach with a Clever Function

	Set and Control Image Quality
	Setting DPI Directly in plt.figure()
	Setting DPI and Output Format for Saving Figures
	Adjust Global Parameters

	Tricks with Seaborn
	Use Sampled Data for Large Datasets
	Use pandas Correlation with Seaborn heatmap
	Use Special Seaborn Methods to Reduce Work

	Summary

	Chapter 4: Writing Machine Learning Code More Productively
	Why (and How) to Modularize Code for Machine Learning
	Questions to Ask Yourself
	Start Simple with a Standard Data Science Flow

	A Scikit-learn Task Flow Example
	The Monolithic Example
	Little Boxes, Little Boxes...
	How to Use the Modular Code

	Systematic Evaluation of ML Algorithms in an Automated Fashion
	List of Classifiers
	Function to Automate Model Fitting
	How Does Automation Help?

	Decision Boundary Visualization
	The Custom Function
	Example Results
	Parametric Experimentation

	Other Scikit-learn Utilities and Techniques
	Hyperparameter Search Utilities
	Parallel Job Runner
	Out-of-the-box Visualization Methods
	Synthetic Data Generators

	Summary

	Chapter 5: Modular and Productive Deep Learning Code
	Modular Code and Object-Oriented Style for Productive DL
	Example of a Productive DL Task Flow
	Wrappers, Builders, Callbacks

	Modular Code for Fast Experimentation
	Business/Data Science Question
	Inherit from the Keras Callback
	Model Builder and Compile/Train Functions
	Visualization Function
	Final Analytics Code, Compact and Simple
	Turn the Scripts into a Utility Module
	Summary of Good Practices

	Streamline Image Classification Task Flow
	The Dataset
	Building the Data Generator Object
	Building the Convolutional Neural Net Model
	Training with the fit_generator Method
	Encapsulate All of This in a Single Function
	Testing the Utility Function
	Does It Work (Readily) for Another Dataset?
	Other Extensions

	Activation Maps in a Few Lines of Code
	Activation Maps
	Activation Maps with a Few Lines of Code
	Training
	Activation
	Another Library for Web-Based UI

	How Is This Productive Data Science?

	Hyperparameter Search with Scikit-learn
	Scikit-learn Enmeshes with Keras
	Data and (Preliminary) Keras Model
	The KerasClassifier Class
	Cross-Validation with the Scikit-learn API
	Grid Search with a Updated Model

	Summary

	Chapter 6: Build Your Own ML Estimator/Package
	Why Develop Your Own ML Package?
	A Data Scientist’s Example
	An Arithmetic Example
	Data Scientists Use OOP All the Time
	How Was It Made?

	Linear Regression Estimator—with a Twist
	How Do You Start Building This?
	Base Class Definition
	Adding Useful Methods
	The Fitting Method
	Testing the Method
	Prediction Method
	Testing Prediction

	Adding Utility Methods
	Method for Plotting True vs. Predicted Values
	All Kinds of Error Metrics

	Do More in the OOP Style
	Separate Plotting Classes
	More Supporting Classes and Syntactic Sugar
	Modularization: Importing the Class as a Module

	Publishing It as a Python Package
	Special Instructions for PyPI Hosting
	GitHub Integration

	Summary

	Chapter 7: Some Cool Utility Packages
	Build Pipelines Using pdpipe
	The Dataset
	Start Laying Pipes
	Chain Stages of Pipeline Simply by Adding
	Dropping Rows Based on Their Values

	scikit-learn and NLTK Stages
	Scaling Data with a scikit-learn Method
	Tokenizer from NLTK

	All Together

	Speeding Up NumPy and pandas
	What Is This Library?
	Speeding It Up
	Arithmetic Involving Two Arrays
	A Somewhat More Complex Operation
	Logical Expressions/Boolean Filtering
	Complex Numbers
	Impact of the Array Size

	The pandas eval Method
	How It Works, Supported Operators

	Discover Best-Fitting Distributions Quickly
	Simple Fitting Example
	Plot and Summary
	Be Careful with Small Datasets
	Other Things You Can Do

	Summary

	Chapter 8: Memory and Timing Profile
	Why Profile Memory Usage?
	A Common Scenario
	It’s Not the Model Size (or Compression)

	Scalene: A Neat Little Memory Profiler
	Basic Usage
	Features
	A Concrete Machine Learning Example
	Linear Regression Model
	What Happens as the Model and Data Scale?
	Deep Learning Model

	Key Approaches and Advice
	Key Advice
	Other Things You Can Do with Scalene
	Final Validation Is Sometimes Necessary

	Timing Profile with cProfile
	Basic Usage
	With a Function as an Argument
	Using the Profiler Class
	Data Science Workflow Profiling

	Summary

	Chapter 9: Scalable Data Science
	Common Problems for Scalability
	Out-of-Core (a.k.a. Out of Memory)
	Python Single Threading

	What Options Are Out There?
	Cloud Instances
	Google Colab
	pandas-Specific Tricks
	Load Only the Columns You Need
	Column-Specific Functions (If Applicable)
	Explicitly Specify/Convert Data Types

	Libraries for Parallel Processing
	Libraries for Handling Out-of-Core Datasets
	A Note About the Preferred OS

	Hands-On Example with Vaex
	Features at a Glance
	Basic Usage Example
	No Unnecessary Memory Copying
	Expressions and Virtual Columns
	Computation on a Multidimensional Grid
	Dynamic Visualizations Using Widgets and Other Plotting Libraries
	Vaex Preferred HDF5 Format

	Hands-On Examples with Modin
	Single CPU Core to Multi-Core
	Out-of-Core Processing
	Other Features of Modin

	Summary

	Chapter 10: Parallelized Data Science
	Parallel Computing for Data Science
	Single Core to Multi-Core CPUs
	What Is Parallel in Data Science?

	Parallel Data Science with Dask
	How Dask Works Under the Hood
	Dask Array
	Dask DataFrame
	Dask Bag
	Dask Task Graph
	Works on Many Types of Clusters

	Basic Usage Examples
	Array
	DataFrames
	Dask Bags

	Dask Distributed Client
	Dask Machine Learning Module
	What Problems Does It Address?
	Tight Integration with scikit-learn

	Parallel Computing with Ray
	Features and Ecosystem of Ray
	Simple Parallelization Example
	Ray Dataset for Distributed Loading and Compute

	Summary

	Chapter 11: GPU-Based Data Science for High Productivity
	The RAPIDS Ecosystem
	CuPy
	CuDF
	CuML
	CuGraph
	Hardware Story
	Choice of Environment and Setup

	CuPy vs. NumPy
	Looks and Works Just Like NumPy
	Much Faster Than NumPy
	Data (Array) Size Matters

	CuDF vs. pandas
	Data Reading from an URL
	Indexing, Filtering, and Grouping
	NumPy Array Conversion
	Simple Benchmarking of Speed
	Dask Integration, User-Defined Functions, and Other Features

	CuML vs. scikit-learn
	Classification with Random Forest
	K-Means Clustering

	Summary

	Chapter 12: Other Useful Skills to Master
	Understanding the Basics of Web Technologies
	A Consumer-Facing Layer
	All Useful Data Science Is Delivered Through Web Apps
	What Are Some Pathways to Learn?

	Building Simple Web Apps for Data Science
	Hands-On Example with Flask
	Hands-On Example with PyWebIO
	Other Options and GUI-Building Tools

	Going from Local to the Cloud
	Many Types of Cloud Services for Data Science
	Platform-as-a-Service
	Data-as-a-Service

	Bringing Cloud Power to a Local Environment

	Low-Code Libraries for Productive Data Science
	What Are These Low-Code Libraries?
	Example with PyCaret

	Summary

	Chapter 13: Wrapping It Up
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	What Was Not Discussed in This Book
	MLOps and DataOps
	Container Technologies
	Database Technologies

	General Advice for Upcoming Data Scientists
	Ask Questions and Learn Constantly
	If You Are a Beginner
	At a More Advanced Phase
	Learn a Diverse Set of Skills
	Read About Broad Topics at Every Chance

	Distinguish Yourself at a Job Interview
	Some Useful Resources
	A Data Scientist’s Amazing, Curated List of Useful Tricks and Tools
	Build Installable Software Packages Using Only Jupyter Notebooks
	Learn How to Integrate Unit Testing Principles
	Write Whole Programming and Technology Books Right from Your Jupyter Notebook
	Get Started with MLOps
	Understand the Multi-Faceted Complexity of a Real-Life Analytics Problem

	Begin a New Journey

	Index

