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Introduction

Data science and machine learning can be practiced with various degrees of efficiency 

and productivity. This book focuses specifically on Python-based tools and techniques 

to help data scientists, beginners and seasoned professionals alike, become highly 

productive at all aspects of typical data science tasks.

This book is specifically intended for those who wish to leapfrog beyond the 

standard way of performing data science and machine learning tasks, and utilize the full 

spectrum of the Python data science ecosystem for a much higher level of productivity. 

You will be taught how to look out for inefficiencies and bottlenecks in the standard 

process and how to think beyond the box. Automation of repetitive data science tasks 

is a key mindset that you will develop from reading this book. In many cases, you will 

also learn how to extend existing coding practices to handle larger datasets, with high 

efficiency, with the help of advanced software tools that already exist in the Python 

ecosystem but are not taught in any standard data science book.

This is not a regular Python cookbook that teaches standard libraries like NumPy 

or Pandas. Rather, it focuses on useful techniques such as how to measure the memory 

footprint and execution speed of ML models, modularize a data science or deep learning 

task, write object-oriented code for a data science library or web app development, and so 

on. It also covers Python libraries, which come in handy for automating and speeding up the 

day-to-day tasks of any data scientist. Furthermore, it touches upon tools and packages that 

help a data scientist tackle large and complex datasets in a far more optimal way than what 

would have been possible by following standard Python data science technology wisdom.

If you take away a mentality of probing and measuring inefficiency in your data 

science code, and you learn tricks to discover effective solutions for those productivity 

issues, I will consider this book to be successful. This will be an immense reward for me.

�Source Code
All source code used in this book’s examples can be downloaded from  

https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-

with-Python

﻿https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-with-Python﻿
﻿https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-with-Python﻿
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CHAPTER 1

What Is Productive 
and Efficient Data 
Science?
The goal of this chapter is to introduce you to the benefits of performing data science 

tasks efficiently and productively. I also illustrate some potential pitfalls in the everyday 

work of a regular data scientist to drive home the point of efficient data science.

Like any other computing (and non-computing) task in life, data science (DS) 

and machine learning (ML) can be practiced with varying degrees of efficiency and 

productivity. This book focuses specifically on Python-based tools and techniques 

to help a data scientist, beginner and seasoned professional alike, become highly 
productive at all aspects of typical DS stacks (e.g., statistical analysis, visualization, 

model selection, feature engineering, code quality testing, modularization, parallel 

processing, and even easy web app deployment).

But why strive to achieve efficiency in data science? What could go wrong in a 

regular data science pipeline if these aspects of efficiency and productivity are not kept 

in mind and practiced with diligence?

To understand these issues, you need to examine a typical data science pipeline first. 

Let me take you through that journey.

�A Typical Data Science Pipeline
Data science is a vast and dynamic field. In the modern business and technology space, 

the discipline of data science has assumed the role of a truly transformative force.  

Every kind of industry and socio-economic field from healthcare to transportation and 

from online retail to on-demand music uses DS tools and techniques in myriad ways. 

© Dr. Tirthajyoti Sarkar 2022 
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Every day exabytes of business and personal data flow through increasingly complex 

dataflow pipelines architected by sophisticated DataOps architectures to be ingested, 

processed, and analyzed by database engines or machine learning algorithms, leading to 

insightful business decisions or technological breakthroughs.

However, to illustrate the point of efficient data science practices, let’s take the 

generic example of a typical data science task flow shown in Figure 1-1. You may 

have encountered this in your introductory data science course or practiced it in your 

everyday work.

Figure 1-1.  A typical data science pipeline showing various stages of ingestion, 
wrangling, visualization, modeling, and even MLOps

You are probably suspecting that there could be a high chance of writing 
inefficient code in the data wrangling or ingesting phase. However, you may wonder 

what could go wrong in the machine learning/statistical modeling phase as you may be 

using the out-of-the-box methods and routines from highly optimized Python libraries 

like Scikit-learn, Scipy, or TensorFlow. Furthermore, you may wonder why tasks like 

quality testing and app deployments should be included in a productive data science 

pipeline anyway.

In the next section, I will answer these questions through simple examples.

Chapter 1  What Is Productive and Efficient Data Science?
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�Typical Examples of Inefficient Practices 
in Data Science
Some modules of the DS pipeline in Figure 1-1, such as data wrangling, visualization, 

statistical modeling, ML training, and testing, are more directly impacted by inefficient 

programming styles and practices than others.

Let me show some simple examples and take you through some data science stories.

�Iterating Over a pandas DataFrame
As data scientists, all of us have been there.

We are given a large pandas DataFrame and asked to check some relationships 

between various fields in the columns, in a row-by-row fashion. It could be a logical 

operation or a sophisticated mathematical transformation on the raw data.

Essentially, it is a simple case of iterating over the rows of the DataFrame and 

doing some processing at each iteration. However, it may not be that simple in terms 

of choosing the most efficient method of executing this apparently simple task. For 

example, you can choose from the following approaches.

�Brute-Force for Loop

The code for this naïve approach will go something like this:

for i in range(len(df)):

    if (some condition is satisfied):

        <do some calculation with> df.iloc[i]

Essentially, you are iterating over each row (df.iloc[i]) using a generic for loop 

and processing it one at a time. There’s nothing wrong with the logic and you will get the 

correct result in the end.

But this is guaranteed to be inefficient. If you try this approach with a DataFrame 

with a large number of rows, say ~1,000,000 (1 million) and 10 columns, the total 

iteration may run for tens of seconds or more (even on a fast machine).

Now, you may think that being able to process a million records in tens of seconds 

is still acceptable. But, as you increase the number of columns or the complexity of 

the calculation (or of the condition checking done at each iteration), you will see that 

they quickly add up and this approach should be avoided as much as possible when 

Chapter 1  What Is Productive and Efficient Data Science?
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building scalable DS pipelines. On top of that, if you have to repeat such iteration 

tasks for hundreds of datasets on a regular basis (in a standard business/production 

environment), the inefficiencies will stack up over time.

�Better Approaches: df.iterrows and df.values

Depending on the situations at hand, you may have choices of two better approaches for 

this iteration task.

•	 The pandas library has a dedicated method for iterating over rows 

named iterrows(), which might be handy to use in this particular 

situation. Depending on the DataFrame size and the complexity of 

the row operations, this may reduce the total execution time by ~10X 

over the for loop approach.

•	 pandas offers a method for returning a NumPy representation of the 

DataFrame named df.values(). This can significantly speed things 

up (even better than iterrows). However, this method removes the 

axis labels (column names) and therefore you must use the generic 

NumPy array indexing like 0, 1, to process the data.

�Scatterplot Everything in a Large Dataset
Often, at the beginning of a data analysis task, we are tempted to visualize the pairwise 

interrelationships between all kinds of numeric features that are present in the given 

dataset. This is often a necessary step for exploratory data analysis (EDA; see  

https://en.wikipedia.org/wiki/Exploratory_data_analysis) and can reveal 

significant insights about the general pattern of the dataset. However, for large datasets 

with hundreds of features (columns), this may put extreme pressure on the visualization 

routine, leading to poor plots and a slow response.

�Combinatorial Explosion

It is easy to explain why this apparently simple (pairwise) scatter plot task can become 

quickly intractable. The reason is combinatorial explosion (https://en.wikipedia.org/

wiki/Combinatorial_explosion). Essentially, you are trying to plot all combinations of 

two-way relationships and therefore you have nC2 possible combinations to plot where n 
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is the number of numeric features and C denotes the combinatorial sign. Some concrete 

examples will help.

•	 4C2 = 6 so you have 6 plots for pairwise plotting 4 features in a dataset

•	 6C2 = 15 so you have 15 plots for pairwise plotting 6 features in 

a dataset

•	 10C2 = 45 so you have 45 plots for pairwise plotting 10 features in 

a dataset

•	 20C2 = 190 so you have 190 plots for pairwise plotting 20 features in 

a dataset

As you can see in Figure 1-2, the number of plots increases rather quickly! On top 

of that, if you have a large dataset (with millions of samples), then each plot needs to 

have millions of data points rendered on the screen. It is computationally prohibitive to 

render millions of points on a web browser for hundreds of plots.

Figure 1-2.  How the combinatorial explosion leads to a large number of possible 
two-dimensional plots for even a modest dataset

Chapter 1  What Is Productive and Efficient Data Science?
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WHY DID I MENTION A WEB BROWSER?

Jupyter notebook is the most popular choice for data scientists to do these exploratory data 

analyses (and advanced machine learning in many cases). At its core, the Jupyter notebook 

system runs a web server which lets you write code, markdown text, and render plots in 

a browser window (using JavaScript code in many cases). Therefore, if you try to render 

hundreds of plots with millions of points, your browser memory may be taxed and it can crash!

�Writing Similar Plotting Code Multiple Times
This is a very common practice by data scientists: to copy-paste the same plotting code 

(using, for example, the Matplotlib or Seaborn library) repeatedly in an analysis Jupyter 

notebook. While, inherently, this may not increase the total running time of the code, 

this is a bad software engineering practice that violates the principle of DRY (don’t 

repeat yourself; https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).

Essentially, you are giving up the opportunity of code refactoring  

(https://en.wikipedia.org/wiki/Code_refactoring) when you copy-paste the same 

plotting code in multiple places, thereby increasing the chance of introducing bugs and 

making the code difficult to read and maintain in the long term.

�Write a Generic Function Instead

Instead, you should try to write a generic function that can produce the desired plot with 

the right styling that you need and then just pass variables to this function for plotting. A 

pseudo-code example would be something like this:

def plot_linechart(x):

    """

    Plots line chart of given 'x' variable from dataframe df

    """

    # Extracts the values from the dataframe as Numpy array

    x_array = df[x].values

    # Mean and upper and lower limits calculations

    x_mean = x_array.mean()

Chapter 1  What Is Productive and Efficient Data Science?
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    x_upper = x_mean+2*x_array.std()

    x_lower = x_mean-2*x_array.std()

    # Data length

    data_len = len(x_array)

    # Size and title

    plt.figure(figsize=(15,3))

    plt.title(x,fontsize=15)

    # Main plot

    plt.plot(x_array,color='blue',alpha=0.6)

    # Mean, upper limit, lower limit horizontal lines

    plt.hlines(y=x_mean,xmin=0,xmax=data_len,

               linestyle='--',color='k',linewidth=4)

    plt.hlines(y=x_upper,xmin=0,xmax=data_len,

               linestyle='--',color='red',linewidth=2.5)

    plt.hlines(y=x_lower,xmin=0,xmax=data_len,

               linestyle='--',color='red',linewidth=2.5)

    # Show

    plt.show()

Here, there is already a pandas DataFrame df in the workspace. This function just 

plots various columns from that DataFrame as a line chart along with showing the mean, 

upper limit, and lower limit lines. The column name is passed as the only argument of 

the function.

IS THIS A COMMON SCENARIO?

This is a typical data analytics scenario with, perhaps, some manufacturing process or quality 

testing data where you may have a tabular dataset of a large number of parameters (i.e., a 

dataframe with a number of columns) and you want to plot multiple line charts side by side 

or on top of each other to compare the performance or investigate some pattern. You avoid 

inefficient and error-prone code by writing a well-planned function first and then refactoring 

that again and again.

Chapter 1  What Is Productive and Efficient Data Science?
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�Not Writing A Test Module
Testing improves the delivery, performance, and long-term profitability of any software 

product/service for all kinds of businesses and industries. It should be, therefore, a no-

brainer that data science and machine learning should also embrace this habit of 
testing every important piece of code.

We are increasingly expecting a high-quality and robust software framework behind 

various ML services that predict favorite restaurants or guide us when we are lost in a 

new city. Trust in these services, which often seem magical, can only come if we know 

that the software behind the scenes was tested using a proven and robust methodology.

In many cases, the pace of the development of these new types of services is even 

higher than that of traditional software products. Hastening the development of a 

product often comes at the price of compromising its quality. A good software testing 

strategy can help offset this trade-off.

Put another way, a sound testing strategy can save a lot of development time 
in the long term for a data science task flow while guaranteeing a high quality of 

the finished product. Saving time in the coding and software engineering stages is an 

inherently productive and efficient endeavor.

�Some Pitfalls to Avoid
It is clear from the previous sections that a data scientist can fall into the trap of 

inefficient data science practices in myriad ways. It is almost impossible to capture all of 

these ways, but here I list some common pitfalls to avoid while working on a data science 

task for your business or scientific exploration.

�Don’t Live in Ignorance. Measure Efficiency.
How fast or efficient is your code? Don’t leave it to guesswork. Without a solid metric, 

you cannot compare multiple coding styles or options and choose the best one. In 

short, without some sort of measurement of efficiency, you can never even start to 
improve.

Therefore, always try to include some sort of timing/speed measurement code 

in your analysis or test module so that you can test and measure various DS tasks or 

function blocks on how efficient they really are. We will revisit this topic in more detail in 

Chapter 2.

Chapter 1  What Is Productive and Efficient Data Science?
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�Don’t Leave Your Code as Orphans. Modularize Them.
If you focus on building a modularized and expressive data science pipeline, it will pay 

you back in terms of improved productivity. But what can prevent you from doing so? 

Surprisingly, it may be the very programming language that we all have come to adopt 

and appreciate for its power and simplicity: Python.

�The Python-Powered Data Science Legacy May Have a Problem

We use Python a lot for our data science work. Why? Because it’s awesome for ML and 

the data science community. It is on its way to becoming the fastest-growing major 

language for modern data-driven analytics and artificial intelligence (AI) apps. It is 

also used for simple scripting purposes, to automate stuff, to test a hypothesis, to create 

interactive plots for brainstorming, to control lab instruments, and so on.

However, Python for software development and Python for scripting are not the 

same beast, at least in the domain of data science. Scripting is (mostly) the code you 
write for yourself. Software is the assemblage of code you (and other teammates) 
write for others.

It’s wise to admit that when (a majority of) data scientists, who do not come from 

a software engineering background, write Python programs for AI/ML models and 

statistical analysis, they tend to write such code for themselves. They just want to get to 

the heart of the pattern hidden in the data. Fast. Without thinking deeply about normal 

mortals (users). They write a block of code to produce a rich and beautiful plot. But they 

don’t create a function out of it to use later. They import lots of methods and classes from 

standard libraries. But they don’t create a subclass of their own by inheritance and add 

methods to it for extending the functionality.

�Embrace OOP Principles As Much As You Can

Functions, inheritance, methods, classes: they are at the heart of robust object-oriented 

programming (OOP; www.educative.io/blog/object-oriented-programming) but they 

are somewhat avoidable if all you want to do is create a Jupyter notebook with your data 

analysis and plots.

You can avoid the initial pain of using OOP principles but this almost always renders 

your Notebook code non-reusable and non-extensible. In short, that piece of code serves 

only you (until you forget what logic exactly you coded) and no one else.

Chapter 1  What Is Productive and Efficient Data Science?
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But readability (and thereby reusability) is critically important. That is the true test of 

the merit of what you produced. Not for yourself. But for others.

Therefore, don’t fall into this trap of writing disjoint code pieces with the aim of 

doing a quick and dirty analysis. Try to put your code into well-planned functions and 

modules (class and subclass) as much as possible. We will revisit this topic in much 

more detail and with actual code examples in Chapters 5 and 6.

�Don’t Be Limited by Hardware or Traditional Tools
Many data scientists feel somewhat helpless in the face of large-scale data, say on the 

order of hundreds of gigabytes (GB) or multiple terabytes (TB). While enterprise-grade 

software solutions routinely handle this kind of data volume every day, individual data 

science practitioners may still run into scalability and execution issues with this kind of 

dataset. This, of course, impacts their overall productivity.

�Local Hardware Memory Limitation Is a Real Issue

Most data science tasks, especially the initial data ingestion, wrangling, exploratory 

analysis, statistical modeling, and feature engineering, happen on the local hardware of 

a single data scientist (or a team). This is a fact of the way this enterprise works. With the 

advent of AutoML tools and the emphasis on the “citizen data scientist,” individuals are 

more and more encouraged to take up data science tasks and start the ball rolling on the 

analytics workload that is in high demand for every conceivable business today.

This has great potential to revolutionize the whole field and to propel it to greater 

heights. However, it also comes with the caveat that, in many cases, an individual data 

scientist may run into the back wall of local hardware memory or compute limit when 

dealing with a terabyte (or even multi-gigabyte) scale dataset.

Individual laptop memory (RAM) runs up to 16 GB or 32 GB at best, thereby limiting 

the size of a dataset that can be loaded into the working memory in its entirety. Even 

for a dataset of a modest 10 GB size, traditional analytics tools like pandas can become 

excruciatingly slow when you load the entire data into a single DataFrame object. 

Many of these widely used Python data science packages do not support parallel 

computing at all.

Chapter 1  What Is Productive and Efficient Data Science?
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Note A  gigabyte (GB) is ~109 bytes or 1,000 MB. A terabyte (TB) is 1,000GB or 
~1012 bytes. A petabyte (PB) is 1,000TB or ~1015 bytes. It is estimated that the 
entire collection of the Library of Congress including photos, sound recordings, and 
movies might take ~3,000TB of storage.

�GPU-Accelerated Computing Has Not Focused on Data Science 
as a Whole

From a compute perspective, GPUs have been a blessing for advanced machine learning 

with big datasets. However, they are much more discussed and practiced for deep 

learning tasks than anything else. As great a success story as deep learning may be for 

the rise of AI and ML, a majority of data science and analytics workflows still have little 

use for GPUs.

Therefore, it is a common scenario that a data scientist has access to a GPU-powered 

workstation or a multi-GPU cloud computing instance but cannot utilize those hardware 

resources effectively for the analytics tasks that they want to accomplish (Figure 1-3).

Figure 1-3.  GPU-based accelerated computing needs to become an essential 
component of mainstream data analytics (even without any deep learning 
component)

Chapter 1  What Is Productive and Efficient Data Science?
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�Always Explore Alternative Libraries/Frameworks

It is, therefore, clear from the discussion above that to practice productive and efficient 

data science, practitioners must learn

How to handle large and complex datasets efficiently (which 

would have been difficult with traditional DS tools) with libraries 

that support parallel computing and multi-tasking out of the box

How to fully utilize GPU and multi-core processors for all kinds of 

data science and analytics tasks, and not just for specialized deep 

learning modeling

We will discuss many of these issues at length and show some emerging (and 

exciting) alternatives to the traditional tools and frameworks in Chapters 10–12.

�Efficiency and Productivity Go Hand in Hand
This is one of the poorly understood and less appreciated facts about data science, or about 

any technical enterprise for that matter: being efficient and tidy and avoiding bugs and 
errors directly leads to productivity in all aspects of professional life. While some of the 

connections are easy to spot, others are less obvious. Therefore, in this section, I provide key 

examples of techniques for high efficiency with regard to the practice of data science.

�Measuring Efficiency Goes a Long Way
As discussed in the preceding section, if you develop a habit of measuring the efficiency 

of your code or function, you will automatically create an environment where you are 

keeping track of those metrics and how you are improving over time. In this way, you can 

become much more productive in your daily tasks as they can be probed and improved 

upon with clear targets when they start showing any sign of lag. Measuring the memory 

and compute footprint is one prominent example; I talk about this in detail in Chapter 9.

This habit helps to increase productivity at a large enterprise scale, too. For example, 

you may feel confident before committing a large piece of ML prediction code that was 

written by you or your team only when you know that your team has measured the 
code execution efficiency thoroughly and ensured that the code won’t blow up the API 

endpoint in the face of gigabytes of real-time streaming data.

Chapter 1  What Is Productive and Efficient Data Science?
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�Testing Reduces the Chance of Rework
The more unit or functional testing modules are planned and written at the development 

stage of a data science pipeline or ML predictive framework, the fewer chances of 

discovering critical bugs at the deployment stage. While for pure exploratory analysis, 

testing has less impact on the overall speed of the development cycle, the productivity of 

any real-life deployment will depend on building this habit.

However, traditional software testing best practices may not be 100% applicable 
to data science and ML code testing since they involve a lot of probabilistic features 
or randomized input/output patterns. Therefore, careful planning and a deep 

familiarity with the stochastic nature of these systems are essential ingredients for 

building a high-performance testing framework. This necessitates some sort of data 

science expertise on the part of the test engineering team as well.

�Planning ML Model Development
ML model development and tuning is often done in an ad-hoc manner, with the 

sole focus of obtaining the highest accuracy or some similar model performance 

metric. Long-term productivity improvement is not considered a major goal of such 

experimentation and model iteration.

However, making small changes to the process like logging hyperparameters and 

metrics properly, or creating a model iteration routine that systematically stores and 

visualizes the tuning process, can go a long way to reducing waste in repeatable work. I 

talk about some of these best practices in Chapter 4.

It is important, however, to identify the productivity of a complete ML platform in 

a holistic manner which places greater emphasis on the overall system productivity 
rather than on the speed of developing individual models. Incorporating model 

tracking, logging, and visualization code certainly places some overhead on the 

individual modeling components, but the benefit is realized in the longer run in a 

system-wide manner. This must be realized and supported by the higher management 

for the data science team to execute with confidence.

Chapter 1  What Is Productive and Efficient Data Science?
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�Knowledge of GUI Programming/Web App Development Is 
Quite Helpful
This may sound counterintuitive but learning a bit of GUI/API programming can often 

lead to overall productivity improvement for your data science pipeline. This happens, 

of course, when you use that knowledge to wrap the GUI around a piece of ML model or 

data analytics code to make it presentable to a wide user base.

Let me illustrate with a concrete example. Often, the essential first step in getting 

approval for a large-scale ML platform development is to produce a working prototype 

for the internal users or stakeholders such as higher management or the Sales and 

Marketing departments. This audience will understand the purpose and utility of the 

prototype much better if they see it in a visual manner and, even better, if they can play 

around with the platform (Figure 1-4).

Figure 1-4.  A quick demo of working data science prototypes to higher 
management often increases the overall productivity of the team

This requires not only the back-end development of the ML models and data 

analytics pipeline but a front-end app demonstrating the inner workings in as visually 

intuitive and interactive manner as possible. A data science team may not write the exact 

code for creating this demo app, but a deep knowledge of how those front-end elements 

and components should be designed and integrated into the back-end ML platform will 

go a long way towards faster development of the prototype. Reducing the time gap in 

this phase automatically means a quicker decision timeline and overall improvement 

in the time-to-market and productivity of the whole team. Web/browser-based apps are 
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a natural choice for this type of task, and I discuss some of these tools (that can quickly 

create a web app to showcase your data science work) in Chapter 12.

�Skills and Attitude for Practicing Productive 
Data Science
It goes without saying that you must work consciously towards developing the specific 

set of skills and aptitude to move into the realm of productive and efficient data science. 

By its very nature, data science welcomes and embraces professionals from all kinds of 

technical backgrounds and professional training. While this is a wonderful thing for the 

field in general, it also means that anybody who wants to break the cycle of inefficiency 

must make a focused effort to develop these skills.

No book or course can cover the entire spectrum of possible skills and topics that 

need to be taught to propel a data scientist towards the path of productive and efficient 

data science. However, if I had to imagine some specific components for such an ideal 

book, I would expect it to

Teach how to look out for inefficiencies and bottlenecks in the 

standard data science code and how to think beyond the box to 

solve those problems.

Teach how to write modularized, efficient data analysis and 

machine learning code to improve productivity in a variety of 

situations such as exploratory data analysis, visualization, deep 

learning, and more.

Cover a wide range of side topics such as software testing, module 

development, GUI programming, and ML model deployment as a 

web app, which are invaluable skillsets for budding data scientists 

to possess.

Teach how to whip up quick GUI apps for the demo of a data 

science/ML idea or model tuning, or how to easily (and quickly) 

deploy ML models and data analysis code at a web app endpoint.

Cover parallel computing, out-of-core (larger than the system 

memory) scalability, and GPU-powered data science stack with 

hands-on examples.
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Expose and guide the readers to a larger and ever-expanding 

Python ecosystem of data science tools that are connected to the 

broader aspects of software engineering and production-level 

deployment.

And, above all, instill and reinforce the sense of inquisitiveness 
about the efficiency of one’s data science pipeline so that the 

practitioner can continuously research and develop their own 

methods and best practices for probing the code and systems they 

are working with.

�Summary
In this introductory chapter, I covered a lot of ground to give you a fairly detailed idea 

about the emerging concepts of productive and efficient data science. I talked about 

what it means from a technical point of view and how it helps the organization as a 

whole. I pointed out that inefficiencies can seep into any stage of a typical data science 

pipeline: ingestion, wrangling, visualization, EDA, ML modeling, or even the demo stage.

I delved deeply into some concrete examples that appear frequently in a typical 

data science task such as iteration over a large dataset or visualization practices with 

a complex dataset. In particular, I talked about embracing good OOP principles and 

developing the mentality of a test engineer while working on DS tasks.

I described common pitfalls to avoid in these aspects. I placed special emphasis on 

not limiting yourself with local hardware or traditional tools while dealing with large 

terabyte-scale datasets. GPU-accelerated computing, which has not received much 

attention beyond deep learning, was discussed. I also touched upon parallel computing 

ideas that will be explored in more detail later in this book.

Next, I showed, with concrete examples, how productivity and efficiency go hand in 

hand in typical data science tasks or platforms. The use of GUI/app development as a 

tool to accelerate the decision-making process was discussed in this regard.

Finally, I talked about the ideal skills and aptitudes to develop in order to embrace 

the habit of productive data science. You will explore these ideas with hands-on 

examples in the following chapters.
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CHAPTER 2

Better Programming 
Principles for Efficient 
Data Science
The goal of this chapter is to introduce you to the concepts of certain programming 

styles and habits that play an essential part in developing efficient data science (DS) and 

machine learning (ML) systems and pipelines. I will illustrate the concepts through brief 

examples (or pseudo-codes wherever applicable) and talk about how to measure or track 

inefficiency.

I will start by introducing the concepts of time and space complexities  

(https://levelup.gitconnected.com/time-and-space-complexity-725dcba31902)  

in programming and algorithms. You will also get to see Big-O notation  

(https://en.wikipedia.org/wiki/Big_O_notation) used in this context. These are 

foundational concepts for analyzing the runtime or efficiency of any algorithm and 

can be used to measure and describe the efficiency of standard ML algorithms, as an 

example. I will also talk briefly about why complexity measures matter for data science 

tasks in particular.

Then I will demonstrate practical examples of common, inefficient data science and 

ML coding practices. This is by no means meant to be an exhaustive illustration of every 

kind of inefficient data science programming. However, I will try to give you a glimpse 

of typical inefficient code snippets that do not scale well or make some aspects of the 

overall system design inefficient. Hopefully, you can internalize these examples and 

apply the same thought process to your own analytics work to become more productive.

In most of these cases, I will also show some more examples of what can be 

done instead, such as how you can improve the efficiency of the same task using a 

better programming style or choice of a different tool or function (within the Python 

ecosystem).

© Dr. Tirthajyoti Sarkar 2022 
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Finally, I will introduce tools and techniques to measure the execution time of your 

code or function blocks. I will cover both generic Python modules and Jupyter magic 

commands in this regard.

�The Concept of Time and Space Complexities plus 
Big-O Notation
The time and space complexities of an algorithm are related to the worst-case (generally) 

execution time and the memory/storage space it takes to run that algorithm for a given 

input. Because the time and space almost always depend on the size of the input  

(for example, number of elements in an array), these complexity measures are expressed 

as functions of the input size, thus f(n) or g(n) for the n-element array where f or g denote 

the time and space complexities, respectively.

�A Simple Example: Searching for an Element
Let’s demonstrate this using a simple example. Consider the following Python program 

for searching for a given element inside a list. Note that you could have written the code 

in more Pythonic way with if ele in lst, but for demonstration purpose, let’s write it 

using naïve list traversing code:

def ele_in_lst(ele,lst):

    len_lst = len(lst)

    for i in range(len_lst):

        if lst[i] == ele:

            return True

    return False

If you test this function with the following input, you get True:

ele_in_lst(ele=2,lst=[3,4,5,2,9])

>> True

But if you test with the following input, you get False:

ele_in_lst(ele=2,lst=[3,4,5,5,9,11,3,4,-1,3,5,7,12,15])

>> False
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In the second example above, the loop is traversed entirely, so the equality check 

operation of if lst[i] == ele is done 14 times (the length of the list). This is the core 

operation of the program, which is performed by the CPU and factors into the time 

complexity of the code.

So, what is the time complexity of this search method? It is clear that in the worst 
case, where the ele is not in the given lst, the time taken will always be proportional 
to the length of the lst (if we assume that each equality operation takes a constant 

time to perform). This is denoted by the function O(n) where n denotes the number of 

elements in the input array.

�The Big-O Notation
This notation of O in the function O(n) is called the Big-O notation. As per Wikipedia, 

“it describes the limiting behavior of a function when the argument tends towards a 

particular value or infinity” (https://en.wikipedia.org/wiki/Big_O_notation). 

In particular, this is an example of the worst-case time complexity for this situation 

(because the element is not present in the given list), but in the limiting case, this is what 

every computer programmer should be concerned about.

One may wonder why we are not calculating the average case time complexity. As 

it turns out, in most cases, it is quite difficult to calculate or even estimate what that 

average case looks like, whereas the worst case is generally defined and understood 

in a much simpler manner. Furthermore, the notation of O(n) is understood in an 

asymptotic sense, thus the worst-case time taken will not deviate from this linear trend 

when n becomes large.

Why linear trend? Because O(n) denotes the first power of n. Similarly, we have 

algorithms of O(n2) or O(n3) complexities that show quadratic or cubic trends. In 

other words, the time taken will grow looking like a quadratic or cubic function of the 

problem size n.

The origin of this Big-O notation is deeply rooted in the more advanced mathematics 

of analytic number theory (https://en.wikipedia.org/wiki/Analytic_number_theory),  

and it shows up in discussions of many mathematical theorems as well. But, in the 

context of computer science and programming, this is the standard notation to denote 

the time/space complexity of a given algorithm.
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�Complexities: Linear, Logarithmic, Quadratic, and More
So, if this is O(n), can the search be made better? Yes, as it turns out, the search can be 

made to run as fast as O(log2(n)) if the list is presorted. The specific algorithm to be 

used in that case is called the binary search. And, as you can guess, the naïve algorithm 

that we wrote above is called the linear search.

�How Much Faster?

And just how much faster is O(log2(n)) than O(n), anyway? We can find that out by 

simply plotting the two functions f(n) = n and g(n) = log2(n) as the number n grows. For 

a better illustration, see Figure 2-1. It contains two plots: one with the direct comparison 

between these two functions and another where the logarithmic function is multiplied 

by a large constant number like 25.

What does the second case in Figure 2-1 represent? It is for a situation where we are 

using a O(log2(n)) algorithm but we also have a large overhead for the unit computation, 

so where the fundamental unit of computing is much slower than the corresponding 

unit operation with the O(n) linear algorithm.

Figure 2-1.  Function value growth comparison between logarithmic and linear-
time complexity algorithms. In (a), both have the constant multiplier 1. In (b), the 
log algorithm has a multiplier of 25

What is abundantly clear from Figure 2-1 is that no matter the constant multiplier 

(1 or 25), the O(log2(n)) algorithm becomes much faster than the O(n) algorithm as n 

grows, so the function value, which represents the time taken by the algorithm, grows 

much slower with n. Therefore, we should always use a logarithmic complexity 
algorithm in place of a linear complexity algorithm for the same task (if we can get 
our hands on such an algorithm).
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For the search example, this needs presorting of the list, which has its own 

algorithmic complexity (see sorting algorithms complexity at www.geeksforgeeks.org/

time-complexities-of-all-sorting-algorithms). But this is often done given that, in 

a typical application scenario, you might have to sort the list much less frequently than 

you have to search through it.

�What’s Beyond Linear?

Although the linear-time complexity looked worse compared to the logarithmic-time 

one, it is, in fact, a remarkably efficient algorithm in the context of common computing 

algorithms that we generally encounter (both in data science and non-data-science 

work). As you can guess, complexities with higher powers of n are pretty common and 

are denoted accordingly:

O(n2) for quadratic-time complexity

O(n3) for cubic-time complexity

O(2n) for exponential-time complexity (yes, those hellish 

things exist!)

Let me show you quick (and naïve) examples of O(n2) and O(n3) algorithms. Here is 

a simple algorithm iterating over the dimensions of a given NumPy array and counting 

the elements that are greater than zero (you surely know about the NumPy library and 

arrays at https://numpy.org/doc/stable/user/whatisnumpy.html if you are interested 

in data science, don’t you?):

import numpy as np

array_2D = np.random.normal(size=(5,5))

def count_positives(array):

    """

    Counts positives in a random 2-D array

    """

    m,n = array.shape

    count = 0

    for i in range(m):
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        for j in range(n):

            if array[i][j] > 0.0:

                count+=1

    return count

How many times is the core unit of computation (if array[i][j] > 0.0) 

performed? Clearly, it is done 5 x 5 = 25 times here for this 2D array of dimension (5, 5). 

If we change the code for the dimension to be (100, 100) then the computation will be 

performed 100 x 100 = 10,000 times!

Therefore, the time-complexity here is O(m×n) where (m, n) are the dimensions of 

the 2D array. For square arrays, it is roughly equivalent to our familiar O(n2).

�Why Complexity Matters for Data Science
All these discussions about algorithmic complexity may make you wonder how you 

might utilize this knowledge in your data science work, especially for productive data 

science. To answer that, first you need to see some common examples of data science 

tasks that may have high algorithmic complexity. I covered the linear, logarithmic, 

and quadratic ones in the last section. Let me show you two more (worse) complexity 

examples in the context of data science tasks.

�Image Data: Cubic-Complexity Algorithms
As a natural progression to the code example from the O(n2) case, if we increase the 

number of loops to 3, as in a 3D array, then the time complexity becomes O(n3). A 

prominent example of a 3D array, specifically in the context of data science, is image 

data where a 2D array represents the coordinates of the pixel, and in each pixel, there 

is another number representing the color depth (https://en.wikipedia.org/wiki/

Color_depth) or the grayscale value (examples shown in Figure 2-2).

Since you may have to work frequently with image data as a data scientist, you have a 

high chance of running into O(n3) algorithms. In fact, you may be facing a more complex 

computing task at each pixel, as it can be a vector of multiple color values (e.g., RGB) 

instead of a single floating-point number.
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Figure 2-2.  Color-depth and grayscale images example (Source: Wikimedia, GNU 
Free Documentation License)

�Best Regression Model: Exponential Complexity
What about the dreaded O(2n) complexity? Do you really encounter them in everyday 

data science work? Yes, it turns out that there is a simple data science example for 

that too.

Consider the exercise of determining the best linear regression model for a 
large dataset with many features. All of the features may not be impactful or equally 

important. Only a specific subset of features is optimum for most practical cases. 

Determining that optimum set sounds like a common data science task.

As we know, adding more features to the model will increase the simple R2 

coefficient but when we take into consideration advanced metrics such as adjusted-R2 

(www.statisticshowto.com/probability-and-statistics/statistics-definitions/

adjusted-r2/) or AIC criterion (https://en.wikipedia.org/wiki/ 

Akaike_information_criterion), then we need to experiment with multiple 

combinations of features to find out the best combination. In short, we need to search 
through the space of all possible combinations of features, build a regression model 

for each combination, calculate the desired performance metric, and pick the best one at 

the end (e.g., for which the performance metric is highest).
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In more mathematical terms, this translates to finding the best subset among all 
subsets of a given set. This is an exponentially hard problem to compute. This means 

that the algorithmic complexity is O(2n). Moreover, this is just for building the set of all 

subsets of the feature space, not even considering the computational cost of building the 

actual regression model for each combination.

Why? Because of this simple equation that we may remember from high school 

math. Basically, the sum total of all combinations taken 1, 2, 3, …, n from n possible 

items is 2n. In the context of our regression problem, we are choosing 1, 2, 3, or more 

features at a time and building the models.

	
∑ + +… +( ) =C C Cn n n

n
n

1 2
2 	

This is the reason exhaustive search is almost never encouraged for a regression 
model optimization. Instead, we have greedy search (https://en.wikipedia.org/

wiki/Greedy_algorithm) methods such as forward- and backward-selection algorithms 

(https://quantifyinghealth.com/stepwise-selection/), which cut down the search 

time drastically and yet find a reasonably good solution for almost all practical cases.

�Relative Growth Comparison
To illustrate the benefit (or disadvantage) of having algorithms with various complexity 

orders, we can draw the kind of simple chart shown in Figure 2-3. It is clear that the 

logarithm-time algorithm grows slowest, followed by the linear-time one. Algorithms 

with higher powers grow quickly and the exponential type just takes off like a ballistic 

missile!

Figure 2-3.  Relative growth of various time-complexity algorithms (not to scale)
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It is also noteworthy to state that, because these complexity measures and the Big-O 

notation are really defined in an asymptotic sense, as in the limit of large values of n, 

they really need to be treated as belonging to entirely separate classes of computing 

difficulty. This means no matter what actual complexity function a particular algorithm 

may be reduced to, if it is cubic, then it is always worse than a linear or quadratic 

algorithm in the long run.

The quickest way to judge is to look at the highest degree of the algorithm and 

determine the rank. Exponentials are always worse than polynomials, and polynomials 

are always worse than linear. Some quick examples are as follows:

An algorithm of O(200*n+3) complexity is better than one with 

O(0.1*n2+12).

An algorithm of O(3*n3+2n+5) complexity is worse than one with 

O(100*n2+12).

An algorithm of O(40.1n) complexity is worse than one with 

O(100*n100).

The last one in the above list must have surprised you! You are encouraged to 
calculate these two functions starting from small to large values of n and overlay 
them to get an understanding of how the first function overtakes the second one 
at large values of n. Therefore, judging from an asymptotic sense, you should 
still prefer the polynomial-degree algorithm (even with a term like n100) over the 
exponential one (40.1n).

�AI Is Intractable, but It Works
Deep learning networks have been trained to recognize speech, caption 
photographs, and translate text between languages at high levels of perfor-
mance. Although applications of deep learning networks to real-world 
problems have become ubiquitous, our understanding of why they are so 
effective is lacking. These empirical results should not be possible 
according to sample complexity in statistics and nonconvex optimiza-
tion theory.
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Terrence J. Sejnowski (www.salk.edu/scientist/terrence-sejnowski/), 
“The unreasonable effectiveness of deep learning in artificial intelligence” 
(www.pnas.org/doi/10.1073/pnas.1907373117), PNAS, December 2020

It is a big jump, going from simple searching and sorting algorithms to the world of 

gradient descent and backpropagation (https://blog.paperspace.com/ 

intro-to-optimization-in-deep-learning-gradient-descent/) used in deep 

learning, but it’s necessary to make the point of AI algorithms being intractable yet 

manageable.

So, what is intractability? It is a whole new subject in itself, beyond the scope of 

this book, albeit closely related to the topic of algorithmic complexity discussed in the 

previous subsections. Simply put, intractable problems are computational problems 
for which no efficient algorithm (that solves them) can be found. Here, the term 

efficient means, under most circumstances, polynomial-time algorithms, so algorithms 

with complexities at most O(nk) but not the ones with O(2n) or O(n!).

Unfortunately, in the field of AI, most of the common problems can be shown to be 

intractable in theory. In particular, for AI problems, their most optimum solution needs 

some kind of algorithm that searches through a space that is exponential in nature, such 

as the number of all possible trees (and branches) in a decision tree or the number of 

all possible models in a simple multivariate regression. As these traditional ML tasks fall 

into the realm of intractability, it is no surprise that deep learning networks will also be 

plagued by the same computational difficulty.

However, despite the theoretical impossibility (of finding the best possible solution), 

common ML algorithms and solutions work for almost all practical situations by 

employing clever techniques such as greedy search (www.programiz.com/dsa/greedy-

algorithm), heuristics (https://en.wikipedia.org/wiki/Heuristic_(computer_

science)), dynamic programming (www.programiz.com/dsa/dynamic-programming), 

randomized algorithms (https://en.wikipedia.org/wiki/Randomized_algorithm), 

and more. Concretely, the practical techniques do not seek to find the absolute 
best solution but a “good enough” solution that can be found efficiently and with 
reasonable computing resources. They also utilize domain knowledge and inductive 

bias heavily to trim the search space of potential solutions.
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Heuristic search techniques are often called informed search as they tend to use 
additional information about the problem and the environment (that an AI agent 
may be in). Imagine you are in a foreign country and don’t have access to Google 
Maps! You have a choice of driving to a few cities from the place you are currently 
in, as the first step of the journey to reach your ultimate destination. You may not 
know the exact driving distance of these cities, but you may have heard from your 
friend that it took her less time for a train journey to city A than it took to travel to 
city B. This is additional information about the environment and, although it does 
not guarantee that the actual driving distance to City A is less than that to City B, 
there is a good chance of it being true. It’s called a heuristic and you can use it to 
determine the optimal path to take on your journey. A great many AI algorithms use 
this technique for efficient search.

Therefore, to summarize, the intent of the preceding sections on computational 

complexity and Big-O notation was to introduce the idea of efficiency of common 

algorithms and to illustrate that there are, indeed, separate classes of algorithms that 

perform quite differently when the input size grows. This was done to instill a sense 

of probing in your mind, to check your code and implementation for weakness, even 

if you are not required to rigorously analyze and mathematically derive the exact Big-

O function for a particular solution. Moreover, this is also to assure you that clever 
solution techniques exist to handle even seemingly intractable problems with big 

data, and you should explore them at every chance.

�Inefficient Programming in Data Science
Data science code can be plagued by inefficient practices and design patterns in 

countless ways. One of the major reasons for this happening is that data scientists often 

come from diverse backgrounds (e.g., physics, biology, economics, statistics, electrical 

engineering, etc.) and they don’t follow the well-established software engineering design 

patterns (https://en.wikipedia.org/wiki/Software_design_pattern) all the time. 

Data science boot camps, workshops, and online courses, which are often the places 

where a lot of budding data scientists get their training from, teach a plethora of topics 

covering Python coding, statistics, and machine learning but not necessarily these high-

efficiency programming techniques.
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However, it is to be noted at the outset that this book is not a primer on software 

engineering for data science. In particular, the goal of this chapter is to showcase some 

of the most obvious and widely repeated inefficient programming patterns that are 

found in data science tasks so that you can recognize and learn from these examples. 

This is precisely what I set forth to do in the next sections. Also, for good measure, I show 

workarounds and alternatives that are supposed to be more efficient.

�Canonical Examples
In this section, I show some examples of inefficient programming patterns that occur 

frequently in regular data science workflow. I follow an approach that is practical and 

hands-on rather than pedagogical. That means I am not taking a rigorous mathematical 

approach to calculate and prove the algorithmic complexities of various functions and 

code snippets. Instead, you are encouraged to measure the execution times of code 

snippets using various tools and explore possible improvement strategies on your own. 

There is no one right answer on how to improve upon these snippets.

It is to be noted that I am not talking about specific libraries like NumPy or 
pandas in this section. In fact, I will discuss efficient best practices with these libraries 

in the next chapter. Here, I am showing examples of basic Python coding patterns that 

you can utilize for many situations (data science and beyond).

A note to the reader: I intend to keep the code snippets compact and therefore I 
am not making them self-contained and exhaustive. This means code snippets 
are not meant to be run on their own. Accompanying notebooks will have the full 
runnable code.

�Use a Filter Instead of a for Loop

There are countless articles written about avoiding a for loop for simple repetitive tasks 

that can be cast with some other form of mathematical logic. Now, for many complicated 

logic and iteration situations, you cannot avoid for loops. However, in many situations 

you can use alternate methods and you should be on the lookout for them. Python 

provides some built-in methods to be used in specific situations like data filtering.
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Consider the following code block with three function definitions:

ONE_MILLION = list(range(int(1e6)))

def for_loop():

    result = []

    for ele in ONE_MILLION:

        if not ele % 3:

            result.append(ele)

    return result

def list_comprehension():

    return [num for num in ONE_MILLION if not num % 3]

def filter_fn():

    return filter(lambda x: not x % 3, ONE_MILLION)

The first function contains a plain vanilla for loop and list appending. The second 

one is much cleaner and uses Python’s list comprehension (https://realpython.com/

list-comprehension-python/). Finally, the third function uses the built-in filter 

function and the lambda expression (https://realpython.com/python-lambda/) to 

achieve the same goal.

Let’s use Jupyter Notebook’s built-in magic command (https://stackoverflow.

com/questions/29280470/what-is-timeit-in-python) %%timeit to measure the 

execution speed.

For the for_loop function,

%%timeit -r20 -n5

for_loop()

>> 56.6 ms ± 3.03 ms per loop (mean ± std. dev. of 20 runs, 5 loops each)

For the list_comprehension function,

%%timeit -r20 -n5

list_comprehension()

>> 44.2 ms ± 2.21 ms per loop (mean ± std. dev. of 20 runs, 5 loops each)
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For the filter_fn function,

%%timeit -r20 -n5

filter_fn()

>> 440 ns ± 93.6 ns per loop (mean ± std. dev. of 20 runs, 5 loops each)

The list comprehension is slightly faster than the plain for loop whereas the filter-

based method is much faster. Clearly, for this kind of situation, where you are essentially 

doing data filtering (by iterating over a list and creating a new list based on whether each 

element meets a specific criterion), you should try the filter function whenever possible.

One thing to remember about these examples, strewn throughout this book, is that 
the exact numerical result of a timing measurement will vary wildly from machine 
to machine, or even from one execution to the next. The timing profile is a tricky 
subject and difficult to standardize. You may get a totally different result depending 
on the hardware you are using and local software settings. Nonetheless, (in most 
cases) the overall trend will be apparent from the examples.

�Use Sets to Find Unique Elements

Sets are a powerful data structure (https://realpython.com/python-sets/) in Python, 

and they can be used creatively for situations where you want to find the unique 

elements from a long list or array. Consider the following code with two function 

definitions:

import random

random_lst = [random.randint(1,100) for _ in range(100000)]

def unique_for_loop():

    unique_elements = []

    for ele in random_lst:

        if ele not in random_lst:

            unique_elements.append(ele)

    return unique_elements

def unique_set():

    return list(set(random_lst))
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As usual, you run tests using the Jupyter %%timeit command and get the following 

with the for loop function:

%%timeit -r20 -n5

unique_for_loop()

>> 109 ms ± 4 ms per loop (mean ± std. dev. of 20 runs, 5 loops each)

You get the following result using set:

%%timeit -r20 -n5

unique_set()

>> 788 μs ± 181 μs per loop (mean ± std. dev. of 20 runs, 5 loops each)

The method with set is much faster! Therefore, it makes sense to use it any time you 

have a situation involving finding unique elements in a long array.

Furthermore, the in operator is designed to be very fast when working on sets. 

Therefore, if you want to check the membership of an element in a long list (i.e., check if 

that element exists in the list), and you have reason to believe that the list contains many 

duplicate entries, then you can reduce the search time significantly by first removing all 

the duplicates and creating a set out of that list. A pseudo-code will look something like

a_long_list = ...

duplicates_removed = set(a_long_list)

ele = ...

if ele in duplicates_removed:

    print(f"The element {ele} exists in the list")

The method shown above is not a fundamental principle of changing the 
algorithmic complexity of the search operation (as discussed in the previous 
section). It is a trick to take advantage of in specific situations using the 
built-in data structures of Python and their optimized methods and operators. 
In data science tasks (or, in general, with programming), you should keep your 
eyes open for these sorts of tricks as they can be found everywhere and in every 
programming language.
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�Use a Specialized Data Structure for Counting

In many situations, you may need to count the frequency of variables or elements from 

a large corpus of text or blob of data. One natural instinct is to construct a dictionary 

where the variables are stored as keys and their corresponding count as the integer 

values. A simple way to do this is to write a function like this:

def word_counts(text):

    dict_words = {}

    for w in text.split(' '):

        if w in dict_words.keys():

            dict_words[w]+=1

        else:

            dict_words[w] = 1

    return dict_words

Run it on a text sample (from the familiar A Tale of Two Cities):

text = """It was the best of times, it was the worst of times,

it was the age of wisdom, it was the age of foolishness,

it was the epoch of belief, it was the epoch of incredulity,

it was the season of Light, it was the season of Darkness,

it was the spring of hope, it was the winter of despair,

we had everything before us, we had nothing before us,

we were all going direct to Heaven, we were all going direct the other 

way – in short, the period was so far like the present period, that some of 

its noisiest authorities insisted on its being received, for good or for 

evil, in the superlative degree of comparison only

"""

You get the following result:

%%timeit -r1000 -n10

word_counts(text)

>> 28.6 μs ± 13.9 μs per loop (mean ± std. dev. of 1000 runs, 10 
loops each)
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For this kind of situation involving counting, you can use a specialized data structure 

called Counter from the collections module (https://docs.python.org/3/library/

collections.html#collections.Counter) of Python. You will see that by using this 

built-in data structure, you can make the code compact, organized, and faster.

Here is the single-line code to create a Counter object from the given text:

counter_words = Counter(text.split(' '))

This counter_words object has a dictionary-like API just like the dict_words object 

returned by the word_counts function. For example, you can easily print the counts (of 

each unique word) using the .items() method:

counter_words.items()

>> dict_items([('It', 1), ('was', 11), ('the', 14), ('best', 1), ('of', 12),  

('times,', 2), ('it', 5), ('worst', 1), ('\nit', 4), ('age', 2), 

('wisdom,', 1), ('foolishness,', 1), ('epoch', 2), ...

Truncated output to save space

Observe that counter_words has more useful built-in methods than the regular 

dictionary dict_words. For example, one of the most common data science tasks (used 

repeatedly in Natural Language Processing or NLP pipelines) is to list the top 5 (or 10) 

most common words. If you were to use the native Python dictionary approach, then you 

would have to write a small additional code to get that list:

dict_words = word_counts(text)

top_5 = sorted([(v,i) for i,v in dict_words.items()], reverse=True)[:5]

This would get you the list of tuples with the five most frequently appearing words:

[(14, 'the'), (12, 'of'), (11, 'was'), (5, 'it'), (4, '\nit')]

But you can get the same result using the built-in most_common() method, which 

takes a single argument of the number of top words you want to extract:

counter_words.most_common(5)

>> [('the', 14), ('of', 12), ('was', 11), ('it', 5), ('\nit', 4)]

Not only is this approach faster (you are encouraged to measure the execution speed 

using the Jupyter magic command) but also it is cleaner and less error-prone because 

you don’t have to write your own code with a separate list variable like top_5. You just 

pass on the number as an argument to the built-in method and get back a list.
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�Use the itertools Library for Combinatorial Structures

Suppose you are working on a machine learning model with a dataset that has four 

numerical and four categorical features. You want to build all combinations of two 

feature models combining one numerical and one categorical feature and compare the 

performance of all such models.

A naïve way to build a list combining numerical and categorical features would be 

using nested for loops, like so:

lst_features = []

for i in num_features:

    for j in cat_features:

        lst_features.append((i,j))

The resulting list may look like this:

[('num_feature-1', 'cat_feature-1'),

 ('num_feature-1', 'cat_feature-2'),

 ('num_feature-1', 'cat_feature-3'),

 ('num_feature-1', 'cat_feature-4'),

 ('num_feature-2', 'cat_feature-1'),

 ('num_feature-2', 'cat_feature-2'),

 ('num_feature-2', 'cat_feature-3'),

 ('num_feature-2', 'cat_feature-4'),

 ('num_feature-3', 'cat_feature-1'),

 ('num_feature-3', 'cat_feature-2'),

 ('num_feature-3', 'cat_feature-3'),

 ('num_feature-3', 'cat_feature-4'),

 ('num_feature-4', 'cat_feature-1'),

 ('num_feature-4', 'cat_feature-2'),

 ('num_feature-4', 'cat_feature-3'),

 ('num_feature-4', 'cat_feature-4')]

For such combinatorial data structures, you can use the itertools module (built-in 

Python). You can get the same result as above by using the product function from the 

library. Here is the single-line code:

lst_features = list(product(num_features, cat_features, repeat=1))
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You are encouraged to measure the timing on these two approaches. It is highly 

likely that the itertools function will run faster.

Furthermore, you may want to build all combinations of five-feature models by 

mixing the numerical and categorical features together. Again, one line of code is 

sufficient to build the whole combination using the combinations function from the 

library. Note the argument r=5 in the function denoting that you want a five-feature 

combination:

comb_features = list(combinations(num_features+cat_features, r=5))

It looks like following (truncated output):

Model 0: num_feature-1, num_feature-2, num_feature-3, num_feature-4,  

cat_feature-1,

Model 1: num_feature-1, num_feature-2, num_feature-3, num_feature-4,  

cat_feature-2,

Model 2: num_feature-1, num_feature-2, num_feature-3, num_feature-4,  

cat_feature-3,

Model 3: num_feature-1, num_feature-2, num_feature-3, num_feature-4,  

cat_feature-4,

Model 4: num_feature-1, num_feature-2, num_feature-3, cat_feature-1,  

cat_feature-2,

Model 5: num_feature-1, num_feature-2, num_feature-3, cat_feature-1,  

cat_feature-3,

�Lessons Learned from the Examples
In the examples above, you covered important computing tasks such as

•	 Filtering

•	 Finding unique elements

•	 Counting the frequency of occurrence and most common elements

•	 Building combinatorial data structures
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In all of these cases, I first showed a somewhat naïve way of accomplishing the task 

using Python code and then demonstrated a faster and cleaner way to accomplish the 

same task using specialized data structures or built-in functions in Python. Although 

these examples cover a lot of common tasks in any data science workflow, there are so 

many more situations where you can apply the lessons learned here.

So, what are the core lessons learned? Here is a short list.

Always look for an optimum data structure to use to store and 

manipulate your data. For different situations, different data 

structures can be optimal.

No need to restrict yourself to just the default containers like 

lists, sets, tuples, and dictionaries. Python has other modules with 

specialized containers and data structures which can come in 

handy in many situations and deliver faster performance.

Cleaner code is efficient and productive code. A clean and 

compact single-line code may not be faster than the five lines 

of code it replaces, but it enhances the maintainability and 

readability of the overall codebase. This leads to increased 

productivity and higher efficiency in the long run.

Always take care to measure the execution time and experiment 

with various options (as listed above) to determine the best one 

for your particular situation. Without measuring, you cannot say 

anything for certain.

�Measuring Code Execution Timing
You saw in the examples in the preceding section the importance of measuring the 

execution time and speed of your code and functions. But what are some of the standard 

methods to accomplish this? In this section, I will cover a few approaches (Figure 2-4).
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Figure 2-4.  Measuring the execution speed is the first essential step towards 
making your data science code more efficient and productive

�Python’s time Module Is Your Friend
For almost any timing measurement situation, you can use functions from the time 

module of Python. It has a few different functions to offer, and you should utilize them in 

a certain way to get accurate results.

�Basic Usage Example

One of the fundamental functions in the time module is also named time() and it gives 

back the current system time. Here is a simple code example to illustrate its usage:

from time import time, sleep

# Function which just sleeps for 2 seconds

def sleep_fn():

    sleep(2)

# The main timing block

t1 = time()

sleep_fn()

t2 = time()

print("Elapsed time: ", t2-t1)

You may get the following:

Elapsed time:  2.0102791786193848
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You could have any piece of code (however long and complex) in place of sleep_fn 

in the code above and the timing block would have measured t1 and t2 before and 

after the code executes. From those measurements, you would get the difference or the 

runtime of the code. Therefore, this is the basic usage pattern:

t1 = time()

<data science code or function>

t2 = time()

time_delta = t2-t1

It looks simple, doesn’t it? However, there are a few caveats which I discuss next.

�Many Loops Needed for a Fast Code Block

The returned value in the function time is in seconds, so it may return zero if you are 

trying to measure a fast code block. For example,

t1 = time()

s = sum([i for i in range(10)])

t2 = time()

print("Sum: ", s)

print("Elapsed time: ", t2-t1)

You will get the correct sum, but the elapsed time will show up as zero. It is that fast.

Sum:  45

Elapsed time:  0.0

So, what can you do? Just run the same code many times so that the total time is in 

the range of at least milliseconds. Then, calculate the average.

NUM_LOOPS = 10000

t1 = time()

for _ in range(NUM_LOOPS):

    s=sum([i for i in range(10)])

t2 = time()

print("Sum: ", s)

print("Elapsed time: ", t2-t1)

print("Average time: ", (t2-t1)/NUM_LOOPS)
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You may get something like:

Sum:  45

Elapsed time:  0.006996631622314453

Average time:  6.996631622314453e-07

So, you ran the summation code 10,000 times and found out that it takes 

approximately 0.7 microseconds or 699 nanoseconds to sum numbers 1 through 10. 

As you can surely appreciate, averaging the measurements for 10,000 runs also 
eliminated any kind of variance and provided a stable measurement.

�A Timing Decorator

Writing the timing code as above is fine but in the spirit of refactoring and the DRY 

principle of software engineering (https://thevaluable.dev/dry-principle-cost-

benefit-example/) it would be great to avoid writing the same code again and again. 

Instead, it’s better to have a mechanism at which you can throw any data science 
function and it will tell you the execution time. Needless to say, this mechanism 

should be able to accept functions with arbitrary arguments and keywords (Figure 2-5).

Figure 2-5.  A mechanism to measure the execution time of any arbitrary Python 
function

Fortunately, Python provides a couple of clever constructs to accomplish just that. 

You can use Python decorators and wrapping constructs from the functools module to 

get what you want.

Here is the boilerplate code for your reference:

from functools import wraps

from time import time
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def timing(func):

    @wraps(func)

    def wrap(*args, **kw):

        ts = time()

        result = func(*args, **kw)

        te = time()

        �print (f"Function '{func.__name__}' with arguments {args},  

keywords {kw} took {te-ts} seconds to run")

        return result

    return wrap

This code basically allows you to define any function func with arbitrary arguments 

and keywords and to measure its execution time. Here is a simple example where you 

use the @timing as the decorator to the function std_dev, which takes a large integer n 

as input, generates that many random numbers using the NumPy library, and calculates 

their standard deviation:

import numpy as np

@timing

def std_dev(n=10000):

    a = np.random.randint(1,1000,size=n)

    s = a.std()

    return s

Once decorated by @timing, whenever you run the function, you may get output like 

the following:

std_dev(n=1000000)

>> Function 'std_dev' with arguments (), keywords {'n': 1000000} took 

0.012999773025512695 seconds to run

If you rerun the function with 10 million as argument (n=10000000), you get

std_dev(n=10000000)

>> Function 'std_dev' with arguments (), keywords {'n': 10000000} took 

0.1154332160949707 seconds to run

It took almost 10X time for an input 10X larger. So, the timing calculation is 

automatic and updated with every instance of the function execution.
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The topic of Python decorators is a vast one and merits its own mini-book or 
course. You can utilize them in various ways for productive data science work. Go 
to https://realpython.com/primer-on-python-decorators/ for a quick 
introduction. You should also look at the functools module and to explore what 
it can do.

�Using the Decorator to Measure Complexity

Let me show a quick example of how to use the timing decorator to measure the time 

complexity of a particular piece of code. Suppose you want to measure the complexity 

of the matrix multiplication method of your favorite NumPy package. This is, of course, 

because you use that algorithm or function (numpy.matmul) in many places of your 

machine learning code. You may just wonder how much time it takes for the function to 

execute as the size of matrices go up.

The following code wraps a test function with the timing decorator:

def gettime(func):

    @wraps(func)

    def wrap(*args, **kw):

        ts = time()

        result = func(*args, **kw)

        te = time()

        tdelta= round(1000*(te-ts),3)

        return tdelta

    return wrap

@gettime

def matrix_mult(n=100):

    matrix_1 = np.random.normal(size=(n,n))

    matrix_2 = np.random.normal(size=(n,n))

    result = np.matmul(matrix_1,matrix_2)

    return result

Note that you are returning the time difference (tdelta) after multiplying it by 

1,000 to turn the result in milliseconds and rounding it off to three decimal places 

(round(1000*(te-ts),3)) for better readability. Your test function generates two 2D 
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matrices (size=(n,n)) with random Gaussian numbers (np.random.normal) to perform 

the matrix multiplication. Now you can just invoke matrix_mult() with a size parameter 

n to get the time (in milliseconds) it takes for the multiplication operation.

Refer to the accompanying Jupyter notebook with this book for the details of 

the plotting code. When you calculate the execution times for a range of matrix size 

from 1,000 to 10,000, you get the result shown in Figure 2-6. The curve does look like 

a polynomial function of n, doesn’t it? Is it following O(n2) complexity? You are also 

encouraged to experiment with 3D matrices and see what happens to the computational 

complexity. Will it become O(n3) as we talked about in the previous chapter for image 

processing tasks?

Matrix multiplications are so fundamental and ubiquitous for machine learning 
tasks that their execution time and performance often determine the computational 
efficiency of the overall machine learning pipeline. Even the simple-looking linear 
regression uses matrix multiplication (and inverse) to obtain the best coefficients 
when using an ordinary-least-square solution technique. For a simple article 
explaining this method, go to www.kdnuggets.com/2016/11/linear-
regression-least-squares-matrix-multiplication-concise-
technical-overview.html. When you move into the realm of deep learning, 
matrix multiplications are pervasive and everywhere. In fact, it is hard to improve 
the algorithmic complexity beyond what has already been done, thus current 
emphasis is on designing hardware architectures that are optimized for matrix 
multiplication (go to https://maitrix.com/dsr-modular-computation/
hardware-matrix-multiplication/). These novel hardware solutions are 
finding increasing use in AI/ML applications in the form of AI-optimized ICs or 
processors.
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Figure 2-6.  Two-dimensional matrix multiplication time with a NumPy function

�Jupyter/IPython Magic Command
The Jupyter notebook came out of the IPython (or Interactive-Python) project (https://

ipython.org/), which also provides the core kernel behind the Jupyter front end. 

With its language-agnostic notebook format and seamless support for code, graphics 

rendering, and markdown texts, Jupyter Notebook (and, more recently, Jupyter Lab) 

quickly became the de-facto standard and prototyping tool for data scientists.

Among its powerful features, a set of magic commands (www.tutorialspoint.com/

jupyter/ipython_magic_commands.htm) is worth mentioning. They can do many useful 

things like

•	 Execute system commands (change directory, show present 

directory, etc.)

•	 Open a default text editor from a Jupyter cell

•	 List environmental variables

The particular set of magic commands (%timeit and %%timeit) can also help 

measure the code execution time. You have already seen these commands in this book 

for measuring the efficiency of various pieces of code within the Jupyter notebook 

environment.

Chapter 2  Better Programming Principles for Efficient Data Science

https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/
http://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm
http://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm


44

�%timeit: Execution Time for Single-Line Code

This magic command is also called a “line command” as it is used in single-line 

command situations. For example,

%timeit sum(range(100000))

>> 2.25 ms ± 199 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

It measures the time taken to sum numbers 0 through 99999. Because the core 

operation is quite fast, it runs 100 loops of 7 runs and calculates the average and variance 

as well.

This kind of magic command is particularly useful to showcase the distinct 

improvement you can get by using specialized numeric computing packages like NumPy 

over native Python functions. For the same task as above, you can use %timeit with 

NumPy code to get the following result:

%timeit np.sum(np.arange(100000))

>> 91.6 μs ± 3.47 μs per loop (mean ± std. dev. of 7 runs, 10000 
loops each)

Note how %timeit automatically increased the number of loops to calculate the 

individual code runtime accurately as the np.sum runs much faster than the built-in 

Python sum function.

�%%timeit: Measuring Execution Time for a Block of Code 
in a Cell

These magic commands are also called “cell magic” because they apply to the contents 

of a complete Jupyter notebook cell (which is usually a multi-line code block, rather than 

a single line of code). You used one earlier in this book. In fact, they are the preferred tool 

to measure the performance of a function or logic conditional loop.

Following the same summation example as above, this would look like

%%timeit

s = 0

for i in range(100000):

    s+=i

>> 5.08 ms ± 724 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
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Note, however, that there are no print statements in this piece of code. This is 

because including one will alter the total time slightly because of the additional 

function call.

This is important to remember and practice: when you are measuring the 
performance of a piece of code, focus on measuring the time taken for that exact 
code, no more and no less. This means you should only be interested in the timing 

measurement and not the actual computation result.

While the %%timeit command automatically adjusts the number of loops 

intelligently, you may want to control that for comparison among different functions that 

may vary in speed. All you have to do is insert a couple of extra runtime arguments in the 

command. For example, the following code will time the same summation code with 50 

loops and 10 runs each. Note the command line arguments -n50 and -r10, denoting the 

number of loops and runs, respectively:

%%timeit -n50 -r10

s = 0

for i in range(100000):

    s+=i

�Summary
In this chapter, I started with a discussion of the concepts of algorithmic complexity 

and the asymptotic behavior of common algorithms (for example, searching or sorting) 

in terms of the size of the input. In that regard, I introduced the concept of the Big-O 

notation and what it means for comparing and analyzing the relative performance of 

algorithms and computing tasks in general.

Thereafter, I talked about why this concept is important for common data science 

tasks as I drew on examples of polynomial-degree and exponential complexities from 

regular data science jobs like image data analysis and evaluating the best regression 

model for a feature-rich dataset. I gave a sneak peek of how quickly exponential growth 

occurs as compared to polynomial-time growth and why an exhaustive search for the 

best model is almost never done. In this context, I further discussed the intractability 

of AI algorithms in general, and why their practical applications are hugely successful 

these days.
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Next, I illustrated the idea of inefficient programming patterns in data science with 

Python code snippets in the context of common tasks like filtering, searching, and 

counting. I showed more efficient alternatives, which I hope will generate new ideas in 

your mind.

Finally, I dealt with the matter of measuring inefficiency itself with the help of timing 

tools and commands. I explored in detail the various usages of the time module that 

comes built-in with Python. In particular, I showed how to create a timing decorator to 

measure the execution time of any generic function. Jupyter magic commands constitute 

a second set of tools in this regard, and they were also discussed with simple examples. I 

will revisit the topic of time profiling with the help of dedicated tools in Chapter 8.

This chapter had the central objective of instilling a sense of probing into your mind, 

which you can use anywhere and everywhere in their codebase, to dig deep and probe 

the efficiency of your implementations and compare among alternative solutions. I hope 

that such efforts were successful in that regard.
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CHAPTER 3

How to Use Python Data 
Science Packages More 
Productively
Python is, without any doubt, the most used and fastest growing programming language 

of choice for data scientists (and other related professionals such as machine learning 

engineers or artificial intelligence researchers) all over the world. There are many 

reasons for this explosive growth of Python as the lingua franca of data science (mostly 

in the last decade or so). It has an easy learning curve, it supports dynamic typing, it can 

be written both script-type and in object-oriented fashion, and more.

However, probably the most important reason for its growth is the amazing open-

source community activity and the resulting ecosystem of powerful and rich libraries 

and frameworks focused on data science work. The default, barebone installation of 

Python cannot be used to do any meaningful data science task. However, with minimal 

extra work, any data scientist can install and use a handful of feature-rich, well-tested, 

production-grade libraries that can jumpstart their work immediately.

Some of the most popular and widely used among these jump-starter packages are 

the following:

•	 NumPy for numerical computing (used as the foundation of almost all 

data science Python libraries)

•	 pandas for data analytics with tabular, structured data

•	 Matplotlib/Seaborn for powerful graphics and statistical 

visualization
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However, just because these libraries provide easy APIs and smooth learning curves 

does not mean that everybody uses them in a highly productive and efficient manner. 

One must explore these libraries and understand both their powers and limitations to 

exploit them fully for productive data science work.

This is the goal of this chapter: to show how and why these libraries should be used 

in various typical data science tasks for achieving high efficiency. You’ll start with the 

NumPy library as it is also the foundation of pandas and SciPy. Then you’ll explore the 

pandas library, followed by a tour of the Matplotlib and Seaborn packages.

It is to be noted, however, that my goal is not to introduce you to typical features 

and functions of these libraries. There are plenty of excellent courses and books for that 

purpose. You are expected to have basic knowledge of and experience with using some, 

if not all, of these libraries. I will show you canonical examples of how to use these 
packages to do your data science work in a productive manner.

You may also wonder where another widely used Python ML package named scikit-

learn fits in this scheme. I cover that in Chapter 4. Additionally, in Chapter 7, I cover how 

to use some lesser-known Python packages to aid NumPy and pandas to use them more 

efficiently and productively.

�Why NumPy Is Faster Than Regular Python Code 
and By How Much
NumPy (or Numpy), short for Numerical Python, is the fundamental package used for 

high-performance scientific computing and data analysis in the Python ecosystem. It is 

the foundation on which nearly all of the higher-level data science tools and frameworks 

such as pandas and Scikit-learn are built.

Deep learning libraries such as TensorFlow and PyTroch use, as their fundamental 

building block, NumPy arrays, on top of which they build their specialized Tensor 

objects and graph flow routines for deep learning tasks. Most of the machine learning 

algorithms make heavy use of linear algebra operations on a long list/vector/matrix of 

numbers for which NumPy code and methods have been optimized.
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�NumPy Arrays are Different
The fundamental data structure introduced by NumPy is the ndarray or N-dimensional 
numerical arrays. For beginners in Python, sometimes these arrays look similar to 

a Python list. But they are anything but similar. Let’s demonstrate this using a simple 

example.

Consider the following code which creates two Python lists. When you use the + 

operator on them, the second list gets appended to the first one.

lst1 = [i for i in range(1,11)]

lst2 = [i*10 for i in range(1,11)]

print(lst1+lst2)

>> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

The treatment of the elements in the lists feel object-like, not very numerical, doesn’t 

it? If these were numerical vectors instead of a simple list of numbers, you would expect 

the + operator to act slightly different and add the numbers from the first list to the 

corresponding numbers in the second list element-wise.

That’s precisely what the NumPy array version of these lists does:

import numpy as np

arr1 = np.array(lst1)

arr2 = np.array(lst2)

arr1+arr2

>> array([ 11,  22,  33,  44,  55,  66,  77,  88,  99, 110])

What is np.array? It is nothing but the array method called from the NumPy module 

(the first line of the code did that with import numpy as np).

Perhaps the easiest way to see the richness of this array representation is to check 

the list of all methods associated with the data structure. You can do that using the dir 

function like this:

for p in dir(lst1):

    if '__' not in p:

        print(p, end=', ')

>> append, clear, copy, count, extend, index, insert, pop, remove, 

reverse, sort,
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If you run similar code for the arr1 object, you will see the following output:

>> T, all, any, argmax, argmin, argpartition, argsort, astype, base, 
byteswap, choose, clip, compress, conj, conjugate, copy, ctypes, cumprod, 
cumsum, data, diagonal, dot, dtype, dump, dumps, fill, flags, flat, 
flatten, getfield, imag, item, itemset, itemsize, max, mean, min, nbytes, 
ndim, newbyteorder, nonzero, partition, prod, ptp, put, ravel, real, 
repeat, reshape, resize, round, searchsorted, setfield, setflags, shape, 
size, sort, squeeze, std, strides, sum, swapaxes, take, tobytes, tofile, 
tolist, tostring, trace, transpose, var, view,

There are so many more (and different looking) functions and attributes available 

with the NumPy array object. In particular, take note of methods such as mean, std, and 

sum, as they clearly indicate a focus on numerical/statistical computing with this kind 

of array objects. And these operations are fast too. How fast? You will see that now.

�NumPy Array vs. Native Python Computation
NumPy is much faster due to its vectorized implementation and the fact that many 

of its core routines were originally written in the C language (based on the CPython 

framework). NumPy arrays are densely packed arrays of homogeneous types. Python 

lists, by contrast, are arrays of pointers to objects, even when all of them are of the same 

type. So, we get the benefits of the locality of reference.

Many NumPy operations are implemented in the C language, avoiding the 
general cost of loops in Python, pointer indirection, and elementwise dynamic 
type checking. In particular, the boost in speed depends on what operation you are 

performing. For data science and ML tasks, this is an invaluable advantage because it 

avoids looping in long and multi-dimensional arrays.

Locality of reference (www.geeksforgeeks.org/locality-of-reference-
and-cache-operation-in-cache-memory/) is one of the main reasons 
behind NumPy arrays being much faster and more efficient than Python list 
objects. Spatial locality in memory access patterns results in performance gains 
notably due to the CPU cache operations. The cache loads bytes in chunks from 
RAM to the CPU registers (the fastest memory in a computer system, located next 
to the processor). Adjacent items in memory are then loaded very efficiently.
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�NumPy and Native Python Implementation

Let’s illustrate this using the familiar @timing decorator from the last chapter. Here is 

a code wrapping the decorator around two functions, std_dev and std_dev_python, 

implementing the calculation of standard deviation of a list/array with NumPy and 

native Python code, respectively.

@timing

def std_dev(a):

    if isinstance(a,list):

        a = np.array(a)

    s = a.std()

    return s

from math import sqrt

@timing

def std_dev_python(lst):

    s = sum(lst)

    av = s/len(lst)

    sumsq = 0

    for i in lst:

        sumsq+=(i-av)**2

    sumsq_av = sumsq/len(lst)

    result = sqrt(sumsq_av)

    return result

Next, you define two objects, a NumPy array and a Python list, of the same length 

(1,000,000) and calculate the time it takes for the standard deviation computation:

a = np.arange(1000000)

lst = [i for i in range(1000000)]

For the NumPy function,

std_dev(a)

>> Function 'std_dev' took 8.996 milliseconds to run

>> 288675.1345946685
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For the Python function,

std_dev_python(lst)

>> Function 'std_dev_python' took 212.995 milliseconds to run

>> 288675.1345958226

So, the NumPy implementation is much faster and should be used for data science 

tasks by default.

�Conversion Adds Overhead

If you look at the code for the NumPy function, you will notice a small but significant 

code for type checking and coercion at the beginning. This to handle the situation of a 

NumPy function receiving a list object instead of the NumPy array it was expecting.

if isinstance(a,list):

        a = np.array(a)

If you pass the lst object to std_dev function, you may see something like this:

std_dev(lst)

>> Function 'std_dev' took 84.004 milliseconds to run

>> 288675.1345946685

This is interesting. The operation is still quite a bit faster than the native Python 

implementation, but definitely much slower than the case where a NumPy array was 

passed into the function. The result is also slightly different (only after five decimal 

places though). This is because of the conversion of the lst object to the NumPy array 

type inside the function that takes the extra time. The conversion also impacts the 

numerical precision leading to the slightly different result.

Therefore, although type-checking and conversion should be part of your code, 

you should focus on converting numerical lists or tables to NumPy arrays as soon as 
possible at the beginning of a data science pipeline and work on them afterwards, so 

that you do not lose any extra time at the computation stage.
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�Using NumPy Efficiently
NumPy offers a dizzying array of functions and methods to use on numerical arrays 

and matrices for advanced data science and ML engineering. You can find a plethora of 

resources going deep into those aspects and features of NumPy.

Since this book is about productive data science, I am focusing more on the 

fundamental aspect of how to use NumPy for building efficient programming pattern in 

data science work. I prefer to illustrate that by showing typical examples of inefficient 

coding style and how to use the NumPy-based code correctly to increase your 

productivity. Let’s start on that path.

�Conversion First, Operation Later
Although not a guaranteed outcome, it is almost always better to vectorize your data 
first (Figure 3-1). In other words, convert it to NumPy arrays as early as possible and run 

the mathematical operations on those array objects rather than running native Python 

functions and then converting them to an array.

Figure 3-1.  NumPy is best taken advantage of when you vectorize your data first 
and then do the necessary operations

Here’s a list of numbers and a mathematical operation function:

lst_of_nums = [i for i in range(100000)]

def calc_nums(x):

    return (x+1)/(x+1000)
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It is a bad practice to do the following, yet this kind of code pattern is ubiquitous in 

the data science world:

result_lst = []

for i in lst_of_nums:

    result_lst.append(calc_nums(i))

result_array = np.array(result_lst)

Instead, first convert to the array format and then apply the mathematical operations 

directly on the array. You don’t even need to write a separate Python function.

array_of_nums = np.array(lst_of_nums)

result_array = (array_of_nums+1)/(array_of_nums+1000)

If you test the execution time, you will see the second option is 2X to 3X faster for this 

data. For a bigger data size, this much improvement may prove significant.

Data in real-life situations comes from business operations and databases. Data 
comes either in streaming or batch mode. Data can also come in web APIs in the 
format of JSON or XML. It almost will never come in a nicely NumPy-formatted 
manner. This is why it is so important to understand the pros and cons of array 
conversion, operations like appending to and updating an array, back conversion to 
a Python list in case you must stream the data back to another API through a JSON 
interface, and so on.

�Vectorize Logical Operations
You can also vectorize a list where you need to check for logical condition before doing 

the mathematical operation directly with NumPy. Suppose from the previous example 

you want to apply the function only to the numbers that are integral multiples of 7. You 

may be tempted to write this code:

result_lst = []

for i in lst_of_nums:

    if i%7==0:

        result_lst.append(calc_nums(i))

result_array = np.array(result_lst)
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Instead, you should use the NumPy operations directly in this manner:

array_of_nums = np.array(lst_of_nums)

array_div7 =  array_of_nums[array_of_nums%7==0]

result_array = (array_div7+1)/(array_div7+1000)

The second line of this code uses the Boolean indexing with NumPy where you 

create a Boolean NumPy array with array_of_nums%7==0 and then use this array as an 

index of the main array. This effectively creates an array with only the elements that are 

divisible by 7. Finally, you run your operation on this shorter array_div7. In a way, this 

is a filtering operation too where you filter the main array into a shorter array based on a 

logical check.

�Use the Built-In Vectorize Function
NumPy provides a built-in vectorizing function to help many user-defined functions 

to be vectorized as easily as possible. The exact improvement in speed and efficiency 

depends on the type and complexity of the specific function in question. Here is an 

example of a function that works on two floating point numbers and performs certain 

math operation based on their mutual relationship:

from math import sin

def myfunc(x,y):

    if (x>0.5*y and y<0.3):

        return (sin(x-y))

    elif (x<0.5*y):

        return 0

    elif (x>0.2*y):

        return (2*sin(x+2*y))

    else:

        return (sin(y+x))

In such situations, you can almost mechanically apply the numpy.vectorize method 

in the following way:

vectfunc = np.vectorize(myfunc,

                        otypes=[np.float64],

                        cache=False)

result_array=vectfunc(lst_x,lst_y)
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Here you pass on the custom function object myfunc as the first argument in the np.

vectorize and define the object types it should expect by the otypes parameter. The 

great thing is that although the main myfunc works on individual floating point numbers 

x and y, the resulting vectfunc can accept any array (or even a Python list) with the np.

float64 data type (or even native Python floating point data, which will be coerced into 

the np.float64 type automatically).

�Avoid Using the .append Method
Appending new or incoming data to an array is a common data science operation. 

Often the situation is that the data is generated by a stochastic or random process (e.g., 

a financial transaction or a sensor measurement) and it has to be recorded in a NumPy 

array (for later use in an ML algorithm, for example).

NumPy has an append method but it is quite inefficient because of its behavior of 

copying the entire data array into memory every time the update happens. You have two 

choices for appending this kind of random data to an NumPy array:

•	 If you know the final length of the array, then initialize an empty 

NumPy array (with the numpy.empty method) or an array of zeroes/

ones and just put the new piece of data in the present index while 

iterating over the range.

•	 Alternatively, you can use a Python list, append to it, and then 

convert to a NumPy array at the end. You can use this with a while 

loop until the random process terminates, so you don’t need to know 

the length beforehand.

You can see this is directly contrary to what we discussed in the subsection 

“Conversion First, Operation Later.” However, the situation is subtly different here 

because, in this case, you are updating the array with incoming data that results from an 

unknown process, so you don’t know what precise mathematical operation to perform 

on the array.

As an example, the following code initializes an empty NumPy array with a known 

shape (equal to the known data length of 1,000), records a Gaussian random number 

1,000 times, and puts the square of that number in the array:

desired_length = 1000

results = np.empty(desired_length)
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for i in range(desired_length):

    sample = np.random.normal()

    results[i] = sample**2

The following code emulates a situation when the length of the data is itself 
uncertain. The process terminates when the variable TERMINATE itself goes over 2.0.

TERMINATE = np.random.normal()

result_lst = []

while TERMINATE < 2.0:

    sample = np.random.normal()

    result_lst.append(sample**2)

    TERMINATE = np.random.normal()

result_array = np.array(result_lst)

As discussed, because of the uncertainty in the length of the data or the process 

that generates it, it is advisable to use a Python list to append the data as it comes in. 

When the data collection is finished, go back to the “conversion first, operation later” 

principle and convert the Python list to a NumPy array before doing any sophisticated 

mathematical operation over it.

When does TERMINATE become greater than 2.0? In the code above, since 
the variable TERMINATE is generated from a normal distribution with a zero 
mean and a unity standard deviation, any value greater than 2.0 will be located 
more than two standard deviations from the mean. That means it will have ~5% 
chance of producing a value greater than 2.0 at each iteration. If you run this code 
repeatedly, you will have a new NumPy array of a different length each time you 
rerun the code.

�Utilizing NumPy Reading Utilities
How would you read a text file where numerical data is stored in a CSV format into a 

NumPy array? This situation is extremely common in a regular data science pipeline 

as CSV (comma-separated value) remains one of the most popular file formats in use 

across all platforms (Windows, Linux, Mac OS, etc.).
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Of course, you can use the csv module that comes with Python and read line by line. 

But, conveniently enough, NumPy provides many utility functions to read from file or 

string objects. Using them makes the code cleaner and thereby more productive. These 

routines are well-optimized for speed too, so your code remains efficient.

�Reading from a Flat Text File

The method numpy.fromfile can be used for this purpose. It is a highly efficient way of 

reading binary data with a known datatype, as well as parsing simply formatted text files. 

For example, you may be reading a bunch of numeric data written on a text file with a 

comma separator:

with open('fdata.txt') as f:

    data = f.readline()

data = data.split(',')

fr = np.array(data[:-1],dtype=float)

Note that when you use the native Python readline with an opened file, you get a 

string object. So, you need to split the string with the comma separator and then read the 

resulting list as a NumPy array with the dtype set to float. You can do the same reading 

with just one line of code:

fr = np.fromfile('fdata.txt',sep=',')

It is clear that there is less chance of bugs and errors in this approach than the native 

Python file-reading code.

�Utility for Tabular Data in a Text File

Numpy offers another similar text-reading utility called loadtxt, which is even more 

powerful and feature-rich. It works with text file where data is written in tabular 
format (i.e., in rows and columns) and loads data directly into a multi-dimensional array 

as long as the number of entries in each row remains same. Figure 3-2 illustrates this.
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Figure 3-2.  Showing how the loadtxt utility works in NumPy

For example, suppose you have a CSV text file with three rows and three columns of 

data, as shown in Figure 3-3.

Figure 3-3.  A simple text file with tabulated comma-separated data to be read

One line of code can read the contents of this file into a 3x3 NumPy array/matrix:

np.loadtxt('npread.txt',delimiter=',')

>> array([[  9.2,  22.1, -33.6],

       [  6.4,   2.3,  -5.4],

       [ 12.2,   4.5,   7.2]])

You can even read selective columns from the file. This is particularly useful if you 

always get a massive data file from a customer, but you know that only certain specific 

columns are useful for your data science work. Then, you can load only selective data 

into memory and make your pipeline fast and efficient.
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np.loadtxt('npread.txt',delimiter=',',usecols=(0,2))

>> array([[  9.2, -33.6],

       [  6.4,  -5.4],

       [ 12.2,   7.2]])

Imagine the amount of custom text-reading code you would have to write if you did 

not have this utility function from NumPy. In the spirit of productive data science and 

keeping your code clean and readable, use these utilities whenever possible.

�Using pandas Productively
After covering some of the best practices and productive utilities of the NumPy library, 

let’s now look at the most widely used data analytics package in the Python ecosystem: 

pandas. This package is used by almost every data scientist and analyst that you may 

come across.

pandas uses NumPy at its foundation and interfaces with other highly popular 

Python libraries like Scikit-learn so that you can do data analytics and wrangling work in 

pandas and transport the processed data seamlessly to an ML algorithm. It also provides 

a rich set of data-reading options from various kinds of common data sources (e.g., a 

web page, HTML, CSV, Microsoft Excel, JSON formatted object, and even zip files) which 

makes it invaluable for data wrangling tasks.

However, it is a large library with many methods and utilities that can be used in 

myriad ways to accomplish the same end goal. This makes it highly likely that different 

data scientists (even within the same team) are using different programming styles and 

patterns with pandas to get the same job done. Some of these patterns yield faster and 

cleaner execution than others and should be preferred. In this subsection, I cover a few 

of these areas with simple examples.

�Setting Values in a New DataFrame
pandas provides a variety of options to index, select particular data, and set it to a given 

value. In many situations, you will find yourself with a Python list or NumPy array that 

you want to set at a particular position (row) in your DataFrame.

Chapter 3  How to Use Python Data Science Packages More Productively



61

For demonstration, let’s define a simple list with six values:

–– First name (a Python string object)

–– Last name (a Python string object)

–– Age (a Python integer object)

–– Address (a Python string object)

–– Price (a Python float object)

–– Date (a Python datetime object)

profile_data = ['First name', 'Last name', 30, 'An address', 25.2, today]

You have a few options to insert this data to the rows of a DataFrame. Note that in 

reality you will have a dictionary or a few thousand such lists (all different). Just for the 

speed demonstration, I show inserting the same list data in the DataFrame.

You can create an empty DataFrame like this, defining the column names explicitly:

df = pd.DataFrame(columns = ['FirstName',  'LastName', 'Age', 'Address', 

'Price', 'Date'])

Now comes the part where you iterate and insert the data into one row after another.

�The .at or .iloc Methods Are Slow

A lot of data scientists use the .at or .iloc methods for indexing and slicing data once 

they start working with a DataFrame. They are very useful methods to have at your 

disposal, and they are fine to use for indexing purpose. However, try to avoid them for 

inserting/setting data when you are building a DataFrame from scratch.

Set N = 2000 for the speed test and run the following code to measure the speed of 

setting data with these methods:

%%timeit -n5 -r10

for i in range(N):

    df.at[i] = profile_data

>> 207 ms ± 58.6 ms per loop (mean ± std. dev. of 10 runs, 5 loops each)
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and

%%timeit -n5 -r10

for i in range(N):

    df.iloc[i] = profile_data

>> 116 ms ± 5.63 ms per loop (mean ± std. dev. of 10 runs, 5 loops each)

In this instance, the .iloc method is slightly faster, but this depends on the type 

of the data and other aspects. In general, inserting data this way should be avoided as 

much as possible.

�Use .values to Speed Things Up Significantly

The method pandas.DataFrame.values returns a NumPy representation of the 

DataFrame and therefore is optimized for speed in the best possible manner. So, if you 

run the following code, you get much faster execution time:

%%timeit -n5 -r10

for i in range(N):

    df.values[i] = profile_data

>> 12 ms ± 2.63 ms per loop (mean ± std. dev. of 10 runs, 5 loops each)

Note that for this to work, you must have a pre-existing DataFrame with 2,000 

rows. Now, with this code you can set new values much faster than using .at or .iloc 

methods. This won’t work on a newly created, empty DataFrame.

�Specify Data Types Whenever Possible
Making pandas guess data types is one of the most frequent inefficient code patterns and 

it happens with almost all data scientists. It is inefficient because when you import data 

into a DataFrame without specifically telling pandas the datatypes of the columns, it will 

read the entire dataset into memory just to figure out the data types. Quite naturally, it 

hogs the system memory and results in a highly wasteful process that can be avoided 

with more explicit code.

So, how do you do it as a standard practice? Reading data from the disk is often done 

with some sort of plain text file like a CSV. You can read just the first few lines of the CSV 

file, determine the data types, create a dictionary, and pass it on for the full file read,  
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or use it repeatedly for reading similar files (if the column types are unchanged). You 

can use the dtype parameter in various pandas reading functions to specify the expected 

data types.

Here is boilerplate code for accomplishing this task. The function csv_read() 

accepts a filename (string) argument and returns a DataFrame. Internally, it does so by 

first reading a sample data of the first 20 rows (nrows=20), determining the data types 

(df_sample.dtypes), creating a dictionary of those types, and then reading the full 

dataset with explicit type mention by passing that dictionary (dtype = dt):

def csv_read(filename):

    """

    Reads a CSV file with explicit data types

    """

    # Reads only the first 20 rows

    df_sample = pd.read_csv(filename, nrows=20)

    # Constructs data type dictionary

    dt = {}

    for col,dtyp in zip(df_sample.columns, df_sample.dtypes):

        dt[col] = dtyp

    # Full read with explicit data type

    df1 = pd.read_csv(filename, dtype = dt)

    return df1

Figure 3-4 shows a visual illustration of the idea of reading sample data first, 

determining the data type, and then utilizing it for the full reading of the data.

Figure 3-4.  Reading large data files in pandas first by determining the data types 
and then specifying them explicitly while reading
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As a practical example, imagine that every morning your data processing 
pipeline must read a large CSV file from all the business transactions that were put 
into a data warehouse last night. The column names and types are unchanged, and 
only the raw data changes every day. You do a lot of data cleaning and processing 
on the new raw data every day to pass it on to some cool machine learning 
algorithm. In this situation, you should have your data type dictionary ready and 
pass it on to your file reading function every morning. You should still run an 
occasional check to determine if the data types have changed somehow (e.g., int 
to float, string to Boolean).

�Iterating Over a DataFrame
It is a quite common situation where you are given a large pandas DataFrame and are 

asked to check some relationships between various fields in the columns, in a row-

by-row fashion. The check could be some logical operation or some conditional logic 

involving a sophisticated mathematical transformation on the raw data.

Essentially, it is a simple case of iterating over the rows of the DataFrame and doing 

some processing at each iteration. You can choose from the following approaches. 

Interestingly, some of the approaches are much more efficient than others.

�Brute-Force For Loop
The code for this naïve approach will go something like this:

for i in range(len(df)):

    if (some condition is satisfied):

        do some calculation with df.iloc[i]

Essentially, you are iterating over each row (df.iloc[i]) using a generic for loop 

and processing them one at a time. There’s nothing wrong with the logic and you will get 

the correct result at the end.

But this is quite inefficient. As you increase the number of columns or the complexity 

of the calculation (or of the condition checking done at each iteration), you will see that 

they quickly add up. Therefore, this approach should be avoided as much as possible for 

building scalable and efficient data science pipelines.
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�Better Approaches: df.iterrows and df.values

Depending on the situations at hand, you may have choices of two better approaches for 

this iteration task.

pandas offers a dedicated method for iterating over rows called iterrows() 

(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.

DataFrame.iterrows.html), which might be handy to use in this particular situation. 

Depending on the DataFrame size and complexity of the row operations, this may 

reduce the total execution time by ~10X over the for loop approach.

You already saw the pandas method for obtaining a NumPy representation of the 

DataFrame: df.values(). This can significantly speed things up (even better than 

iterrows). However, this method removes the axis labels (column names) and so you 

must use the generic NumPy array indexing like 0, 1 to process the data. The pseudocode 

will look like the following:

for row in df.values:

    if function(row) satisfies some condition:

        do some calculation with row

A clear, worked-out example on this topic of comparing the efficiencies of multiple 
pandas methods can be found in the article cited below. It also shows how the 
speed improvement depends on the complexity of the specific operation at each 
iteration. “Faster Iteration in pandas,” (https://medium.com/productive-
data-science/faster-iteration-in-pandas-15cac58d8226), Towards 
Data Science, July 2021.

�Using Modern, Optimized File Formats
CSV is a flat-file format used widely in data analytics. It is simple to work with and 

performs decently in small to medium data regimes. However, as you do data processing 

with bigger files (and also, perhaps, pay for the cloud-based storage of them), there are 
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some excellent reasons to move towards file formats using the columnar data storage 

principle (www.stitchdata.com/columnardatabase/). The basic idea of columnar data 

storage (vs. the traditional row-based storage) is illustrated in Figure 3-5.

Figure 3-5.  Columnar (vs. traditional row-based) data format illustration

Apache Parquet is one of the most popular of these columnar file formats. It’s an 

excellent choice in the situation when you have to store and read large data files from 

disk or cloud storage. Parquet is intimately related to the Apache Arrow framework. But 

what is Apache Arrow?

As per their website, https://arrow.apache.org/, “Apache Arrow is a development 

platform for in-memory analytics. It contains a set of technologies that enable big data 

systems to process and move data fast. It specifies a standardized language-independent 

columnar memory format for flat and hierarchical data, organized for efficient analytic 

operations on modern hardware.”

Therefore, to take advantage of this columnar storage format, you need to use 

some kind of Python binding or tool to read data stored in Parquet files into the system 

memory and possibly transform that into a pandas DataFrame for the data analytics 

tasks. This can be accomplished by using the PyArrow framework.
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�Impressive Speed Improvement

PyArrow is a Python binding (API) for the Apache Arrow framework. Detailed coverage 

of Apache Arrow or PyArrow (https://arrow.apache.org/docs/python/) is far beyond 

the scope of this book, but interested readers can refer to the official documentation at 

https://arrow.apache.org/ to get started.

Using the PyArrow function read_table, you can demonstrate considerable 

improvement of the reading speed of large data files over the commonly used pandas 

read_csv method. For example, Figure 3-6 shows the ratio of pandas and PyArrow 

reading times of the same data, stored in CSV and Parquet, respectively. The ratio goes 

up as the data size increases; PyArrow performs considerably better with larger file sizes.

Figure 3-6.  pandas vs. PyArrow reading time ratio for CSV (and Parquet) 
files. Source: https://towardsdatascience.com/how-fast-is-reading-
parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94, author 
permission granted

This is something truly astonishing to ponder. pandas is based on the fast and 
efficient NumPy arrays, yet it cannot match the file-reading performance shown 
by the Parquet format. If we think about it deeply, the reason becomes clear that 
the file-reading operation has almost nothing to do with how pandas optimize the 
in-memory organization of the data after it is loaded into the memory. Therefore, 
while pandas can be a fast and efficient package for in-memory analytics, we 
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don’t have to stay dependent upon traditional file formats like CSV or Excel to work 
with pandas. Instead, we should move towards using more modern and efficient 
formats like Parquet.

�Read Only What Is Needed

Often, you may not need to read all the columns from a columnar storage file. For 

example, you may apply some filter on the data and choose only selected data for the 

actual in-memory processing. With CSV files or regular SQL databases, this means you 

are choosing specific rows out of all the data. However, for the columnar database, this 

effectively means choosing specific columns. Therefore, you do have an advantage in 

terms of reading speed when you are reading only a small fraction of columns from the 

Parquet file.

Figure 3-7 shows the reading advantage as the number of columns increases for the 

same CSV vs. Parquet comparison. When you read a very small fraction of columns, 

say < 10 out of 100, the reading speed ratio becomes as large as > 50 (i.e., you get 50X 

speedup compared to the regular pandas CSV file reading). The speedup tapers off for 

large fractions of columns and settles down to a stable value.
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Figure 3-7.  pandas vs. PyArrow reading time ratio for CSV (and Parquet) 
files as the number of columns vary. Source: https://towardsdatascience.
com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-
pandas-2f8095722e94, author permission granted

Reading selected columns from a large dataset is an extremely common 
scenario in data analytics and machine learning tasks. Often, subject matter 
experts advise data scientists with domain knowledge and can preselect a few 
features from a large dataset although the default data collection mechanism may 
store a file with many columns/features. In these situations, it makes logical sense 
to read only what is needed and process those columns for the ML workload. 
Storing the data in a columnar data format like Parquet pays handsomely for 
these cases.

�PyArrow to pandas and Back

While the results shown above are impressive, the central question is about how to take 

advantage of this fast and efficient file format for pandas-based data analytics tasks. This 

has been made extremely simple by PyArrow utility methods, as this simple boilerplate 

code illustrates:

import pyarrow as pa

import pandas as pd
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df = pd.DataFrame({"a": [1, 2, 3],

                   "b":[2.7,-1.2,5.4],

                   "c": ['abc','xyz','pqr']})

# Convert from pandas to Arrow

table = pa.Table.from_pandas(df)

# Convert back to pandas

df_new = table.to_pandas()

So, there are ready functions to convert PyArrow tables and pandas DataFrame back 

and forth. You can take advantage of this in the scenario illustrated in Figure 3-8.

Figure 3-8.  Storing large datasets in Parquet (vs. CSV) may offer overall speed 
advantage for many processing tasks with pandas

Suppose you have a large CSV file of numeric quantities with ~1 million rows and 

14 columns, and you want to calculate the basic descriptive stats on this dataset. Not 

so surprisingly, if you only use pandas code, the majority of the time will be taken 
by the file reading operation, not by the statistical calculation. You can make this 

task efficient by storing the file in the Parquet format instead of CSV, reading it using 

the read_table method, converting to pandas using the to_pandas method, doing 

the statistical calculation, and then just storing the result back in CSV or Parquet. The 

output consists of only a few rows/columns as it is just the descriptive stats, so the file 

format does not matter much. A demo example with speed comparison is shown in the 

accompanying Jupyter notebook with this book.
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�Other Miscellaneous Ideas
pandas is such a vast and storied library that there are thousands of ways to improve 

upon inefficient and non-productive code patterns while using it. A few miscellaneous 

suggestions are mentioned here.

�Remove Orphan DataFrames Regularly

A very common programming pattern is the following:

•	 Create a DataFrame from an in-memory object or a file on the disk.

•	 Drop or fill Null or NaN values.

•	 Apply a user-defined function on certain columns.

•	 Group the final dataset by some specific column.

•	 Further processing on the grouped object…

Often, data scientists create intermediate DataFrames while executing this pipeline 

and don’t remove them from the active memory space, thereby piling up orphan or 

unused DataFrames as large memory-hogging garbage.

df1 = pd.read_csv("A large file")

df2 = df1.dropna()

df3 = df2.apply(user_function, columns = [...])

df4 = df3.groupby([column_1, column_2])

df_final = ...

If the only in-memory object that matters is df_final, then you must actively track 

and delete all intermediate DataFrames as soon as their utility is over:

df1 = pd.read_csv("A large file")

df2 = df1.dropna()

del(df1)

df3 = df2.apply(user_function, columns = [...])

del(df2)

df4 = df3.groupby([column_1, column_2])

del(df3)

df_final = ...
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�Chaining Methods

Continuing from the example above, it makes perfect sense to let the system handle 

all the active tracking and deleting of intermediate DataFrame objects for a productive 

codebase. pandas allows chaining methods, which makes this a relatively easy approach 

to implement. The code can read something like this:

df_final = pd.read_csv("A large file").dropna().apply(user_function, 

columns = [...]).groupby([column_1, column_2])

As long as the methods and the chained code are readable, this is a perfectly sensible 

approach.

�Using Specialized Libraries to Enhance Performance

There are, in fact, quite a few external libraries that can help speed up pandas tasks 

significantly. They include, but are not limited to, the following:

Using a specialized pipeline building library

Using libraries to utilize just-in-time compilation (https://

en.wikipedia.org/wiki/Just-in-time_compilation) and other 

numerical tricks

Using parallel processing and Big Data helper frameworks to 

spread the pandas workload over multiple computing cores and 

in out-of-memory spaces

Use GPU-accelerated computing (https://medium.com/

dataseries/gpu-powered-data-science-not-deep-learning-

with-rapids-29f9ed8d51f3as) an alternative to pandas with 

minimal changes in API and codebase

Each of these ideas needs a significant space to discuss at any reasonable details. 

Therefore, I cover them separately in later chapters.
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�Efficient EDA with Matplotlib and Seaborn
Matplotlib and Seaborn are two widely used visualization libraries for data science tasks 

in the Python ecosystem. Together, they offer unparalleled versatility, rich graphics 

options, and deep integration with the Python data science ecosystem for doing any kind 

of visual analytics you can think of.

However, there are a few common situations where you can end up using these 

fantastic packages in an inefficient manner. Additionally, you may also waste valuable 

time writing unnecessary code or using additional tools to make your visual analytics 

end products more presentable, which could have been accomplished with simple 

modifications in the settings of Matplotlib and Seaborn. In this section, I cover tips and 

tricks that can come handy to make your data science and analytics tasks productive 

when using either of these libraries.

�Embrace the Object-Oriented Nature of Matplotlib
Matplotlib is built in a thoughtful manner (www.aosabook.org/en/matplotlib.html) 

following multiple layers of abstractions and object-oriented design hierarchy (as shown 

in Figure 3-9). Almost always, a data scientist deals with the scripting layer to draw quick 

plots (e.g., plt.scatter(x,y)) and change the look and feel of that graphical output 

(e.g., plt.xlabel("The x-axis variable", fontsize=15)). Sometimes, they venture 

into the middle artistic layer, creating custom Axes and setting the properties of Figure 

objects. Usually, a data scientist does not need to work directly with the backend layer 

for regular data analytics tasks.

Figure 3-9.  Matplotlib layers and core abstractions/objects
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However, it is a great education for a data scientist to have deep knowledge about 

this layered architecture and follow the best practices that leverage the strength of a solid 

object-oriented design. In particular situations such as those involving subplots, this 

becomes prominent.

�Two Approaches for Creating Panels with Subplots

A simple example of a good practice is to not to use the following old style of code to 

create two subplots or panels stacked vertically:

# Create the main figure

plt.figure()

# The first of two panels

plt.subplot(2, 1, 1) # (rows, columns, panel number)

plt.plot(x, np.sin(x))

# The second panel

plt.subplot(2, 1, 2)

plt.plot(x, np.cos(x));

A better alternative is to use the following code:

# Create an array of two Axes objects

fig, ax = plt.subplots(2)

# Call plot() method on the appropriate object

ax[0].plot(x, np.sin(x))

ax[1].plot(x, np.cos(x))

They produce identical graphical output, as shown in Figure 3-10.

Chapter 3  How to Use Python Data Science Packages More Productively



75

Figure 3-10.  Matplotlib subplots panel example

But why is the second approach better or more productive? Think about the cognitive 

load you might have to carry if it were 5 or 15 plots instead of 2 and the chances of bugs 

that could have been introduced writing code like plt.subplot(3, 1, 3) or plt.

subplot(4, 4, 13). How would you keep track of all those parameters inside the plt.

subplot() function? The second approach frees you from these considerations by 

allowing it to pass in a single number like 2 or 15 and repeat the plot statement that 

many times.

However, an even better approach is to put this code in a proper function that has 

a little more intelligence to handle any number of plots and that refactors the plotting 

statements using a loop.

�A Better Approach with a Clever Function

Consider the following code defining a function that can produce a panel with an 

arbitrary number of plots (always in a three-column format respecting the natural width 

of the webpage or a book), dynamically adjusting the number of rows with the number 

of total subplots:

def plot_panels(n):

    """

    Produce a panel consisting of variable number of rows and 3 columns

    """

    if n%3==0:

        nrows =  int(n/3)
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    else:

        nrows = n//3+1

    ncols = 3

    fig, ax = plt.subplots(nrows, ncols, figsize=(15,nrows*3))

    axes = ax.ravel()

    for i in range(n):

        axes[i].plot(x, np.sin(x))

Here, you can change the variable n to any value. Internally, the function will always 

calculate the appropriate number of rows with the logic in the code and set ncols = 3. 

Here, ax is a (multi-dimensional) list of Matplotlib Axes objects (https://matplotlib.

org/stable/api/axes_api.html) and therefore can be indexed with axes[i] within a 

loop after you flatten the list with an axes = ax.ravel() statement.

When you call this function with plot_panels(5), you get the result shown in 

Figure 3-11.

Figure 3-11.  Matplotlib panel function output with five plots

Note the blank canvas in the last row. This is because the plots must be arranged in a 

rectangular grid and for placing five plots on a 3 x 2 grid, so the last one will be left blank. 

When you call the same function with plot_panels(15), you get the result shown in 

Figure 3-12.
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Figure 3-12.  Matplotlib panel function output with 15 plots

It is the object-oriented style of programming pattern you embraced in your 

function definition that resulted in this scalable and efficient mechanism of generating 

any number of plots without worrying about potential bugs. This type of practice makes 

the codebase productive in the long run.
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�Set and Control Image Quality
Matplotlib interacts with the user’s graphical output system (web browser or stand-alone 

window) in a complex manner and optimizes the output image quality with a balanced 

set of internal settings. However, it is possible to tweak those settings as per the user’s 

preference to get the most optimum quality that they desire.

This becomes particularly important for using Matplotlib in the Jupyter notebook 

environment, which is an extremely common scenario. The quality of the default image, 

rendered in a Jupyter notebook web browser, may not be good enough for publication 

in a book or further processing. Data scientists often spend additional time and effort 

enhancing the quality of the visualizations they produce as part of the data science 

tasks. However, Matplotlib provides a simple and intuitive workaround to accomplish 

the same.

�Setting DPI Directly in plt.figure()

Setting the dots per inch is easily done with just one parameter:

plt.figure(figsize=(6,4),dpi=150)

plt.plot(x,y)

In a Jupyter notebook, the default DPI value is quite low. Depending on your system 

settings, it is generally between 70 and 100. When you increase it, your figure also gets 

bigger, so you have to be mindful of not clipping the image in your browser window.

�Setting DPI and Output Format for Saving Figures

In addition to, or alternatively, you may also want to save the plot as a file object on your 

local disk for later use. You can choose the DPI and output format:

plt.figure(figsize=(6,4))

plt.plot(x,y)

plt.title("Parabola", fontsize=16)

plt.xlabel('x-axis')

plt.ylabel('y-axis')

plt.savefig("Parabola.png",

            dpi=300,

            format = 'png')
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When you choose JPEG as the output format, you can control a host of other 

settings related to the JPEG compression. However, PNG or PDF are better in terms of 

publication-worthy quality since they are lossless formats.

What is a good DPI to choose? I t depends on the intended usage, of course. 
For print, 150dpi is considered low-quality printing, even though 72dpi is 
considered the standard for the web (which is why it’s not easy printing quality 
images straight from the web). Low-resolution images will have blurring and 
pixelation (https://en.wikipedia.org/wiki/Pixilation) after printing. 
Medium-resolution images have between 200dpi - 300dpi. The industry standard 
for quality photographs and image is typically 300dpi.

�Adjust Global Parameters

The Matplotlib back end provides the ultimate flexibility in terms of setting global 

parameters that control the look and feel of your visualization. The rcParams 

settings (https://matplotlib.org/stable/api/matplotlib_configuration_api.

html#matplotlib.RcParams) have all the possible varieties you can think of. Here is a 

code example:

import matplotlib as mpl

# Data

x = np.arange(-10,10,0.1)

y = x**2

# Set all backend parameters

mpl.rcParams['lines.linewidth'] = 3

mpl.rcParams['text.color'] = 'red'

mpl.rcParams['lines.linestyle'] = '--'

mpl.rcParams['axes.facecolor'] = '#c3e2e6'

mpl.rcParams['figure.dpi'] = 120

mpl.rcParams['font.style'] = 'italic'

mpl.rcParams['font.weight'] = 'heavy'

# Plot

plt.plot(x,y)
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plt.title("Parabola", fontsize=16)

plt.xlabel('x-axis')

plt.ylabel('y-axis')

Note how you had to import the Matplotlib module itself with the statement import 

matplotlib as mpl and not just use the matplotlib.pyplot as plt. Also note the 

figure.dpi as one of the many settings you set in this code. A typical result from this 

setting is shown in Figure 3-13.

If you have decided on a set of image quality and styling settings, you can store them 

in a local config file and just read the values at the beginning of your Jupyter notebook or 

Python script while importing Matplotlib. That way, every image produced by that script 

or in that Jupyter session will have the same look and feel. The output of the code above 

should look something like Figure 3-13.

Figure 3-13.  Matplotlib global rcParams change illustration

Did you notice that the axes.facecolor was set to a hex string #c3e2e6 in the 
code above? Matplotlib accepts regular color names like red, green, or blue, or hex 
strings in its various internal settings. You can simply use an online color picker 
tool (https://imagecolorpicker.com/) and copy-paste the hex code for 
better styling of your image.
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�Tricks with Seaborn
Seaborn is a Python library built on top of Matplotlib with a concentrated focus on 

statistical visualizations like boxplots, histograms, and regression plots. Naturally, for 

data scientists, it is a great tool to use in a typical exploratory data analysis (EDA) phase. 

However, using Seaborn with a couple of simple tricks can improve the productivity of 

your EDA tasks.

�Use Sampled Data for Large Datasets

Seaborn provides excellent APIs/methods to generate beautiful visualizations on all 

features/variables of your dataset:

•	 Pairwise plots (relating every variable in a dataset to another one)

•	 Histograms

•	 Boxplots

It might be tempting to generate all these plots for all the features and their pairwise 

combination (for the pair plot). However, depending on the amount of data and 

possible combination for the pairwise plot, the number of raw visual elements can be 

overwhelming for your system to handle.

One quick fix to this situation is to use random sample (a small fraction) of the 
dataset for generating all these plots. If the data is not too skewed, then by looking at a 

random sample (or a few of them), you should get a good feeling about the pattern and 

distributions from a typical EDA anyway.

A boilerplate code will look like the following:

N = 100

df_sample = df.sample(N)

plot_seaborn(df_sample)

<more code ...>

Here you pass on only 100 samples from the original DataFrame to the plotting 

function. Note that to maintain readability and data structure integrity, you should not 

randomly sample 100 rows from the DataFrame but use a built-in function to return 

another DataFrame and pass that along to the plotting function.
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�Use pandas Correlation with Seaborn heatmap

This is a trick to quickly visualize the correlation strengths between multiple features 

of your dataset with just two lines of code. This kind of trick should be standard part of 

your efficient data science toolkit.

Here is a code snippet:

df_mpg = sns.load_dataset('mpg')

mpg_corr = df_mpg.corr()

sns.heatmap(mpg_corr,cbar=True,cmap='plasma')

plt.show()

This loads the famous Auto MPG dataset (https://archive.ics.uci.edu/ml/

datasets/auto+mpg) and produces the correlation heatmap shown in Figure 3-14, 

demonstrating the positive and negative correlation strengths between various 

numerical features of the dataset. The bright colors and italic/bold axis names of this 

plot are the result of the Matplotlib style settings you did in the previous section. Unless 

you change them explicitly or start a new Jupyter notebook session, they remain in effect.

Figure 3-14.  Using the pandas correlation function with a Seaborn heatmap to 
get the correlation visualization quickly for any dataset

Chapter 3  How to Use Python Data Science Packages More Productively

https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/auto+mpg


83

�Use Special Seaborn Methods to Reduce Work

Seaborn provides some special method/plotting utilities that can reduce the work for a 

data scientist in common tasks and thereby improve productivity. These utilities should 

be put to use at every opportunity. Examples include

•	 Doing a linear regression and creating the plots of residuals with 

residplot

•	 Counting the occurrence of categorical variables and plotting them 

using countplot

•	 Using clustermap to create a hierarchical colored diagram from a 

matrix dataset

�Summary
In this chapter, I started by describing how NumPy is faster than native Python code and 

enumerated its speed efficiency in simple scenarios. I talked about the pros and cons of 

converting Python objects like lists and tuples to NumPy arrays before doing numerical 

processing. Then, I discussed the importance of vectorizing operations as much as 

possible for efficient data science pipelines. I also discussed some of the reading utilities 

that NumPy offers and how they can make your code compact and productive.

Next, I delved into the efficient use of the pandas framework by discussing various 

methods to iterate over DataFrames and accessing or setting values. Usage of modern, 

optimized file storage formats like Parquet (in the context of Apache Arrow and column-

oriented data storage) were discussed at length. Some miscellaneous ideas like chaining 

and cleaning up orphan DataFrame were talked about next.

Finally, I showed some tips and tricks to be used with popular visualization libraries 

Matplotlib and Seaborn. The object-oriented layered structure of Matplotlib was shown 

to be a strong foundation for building efficient data science code for plotting. I also 

demonstrated various methods of controlling image quality and plot settings in a global 

manner (i.e., for a Python or Jupyter session). Sampled data was discussed as an idea to 

control the explosion of plots that can happen with large datasets.
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These kind of tips and tricks are developed over time based on data analysis, 

numerical computing, and exploratory data visualization needs that arise from handling 

real-life datasets in projects that need to be efficient and productive from time and 

computing resources points of view. As a regular practitioner of data science, you will 

also develop your own tricks and make your data analysis and modeling code efficient. 

The ideas in this chapter are just introductory guiding pointers to get you to think in that 

direction.
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CHAPTER 4

Writing Machine Learning 
Code More Productively
Data scientists often come from a background quite far removed from traditional 

computer science/software engineering, such as physics, biology, statistics, economics, 

and electrical engineering. Unfortunately, there are not a lot of tutorials geared towards 

data scientists and machine learning practitioners who do not come from a software 

engineering background.

Data scientists use Python a lot for their work. Why? Because it’s awesome for ML 

and the data science community. It is the most widely used major language for modern 

data-driven analytics and artificial intelligence apps. However, it is also used for simple 

scripting purposes, to automate stuff, to test a hypothesis, to create interactive plots 

for brainstorming, to control lab instruments, and so on. But Python for software 

development and Python for scripting are not the same beast, at least in the domain of 

data science.

Scripting is (mostly) the code you write for yourself. Software is the assemblage 
of code you (and other teammates) write for others. It’s wise to admit that when (a 

majority of) data scientists who do not come from a software engineering background 

write Python programs for AI/ML models and statistical analysis, they tend to write such 

code mostly for themselves.

Writing high-quality, production-level code is a skill to be learned and honed over 

a lifetime. It’s the bread and butter of software engineers and developers. Not all data 

scientists will have the motivation and drive to acquire these skills. However, some 

simple good practices can be learned and applied in your everyday work.

This chapter will take you through that journey with some hands-on examples using 

the scikit-learn library. Chapters 5 and 6 will build on and expand the same concept.
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�Why (and How) to Modularize Code 
for Machine Learning
Writing modular and well-organized code almost always comes with long-term rewards. 

This habit can save you time and cognitive effort when debugging and troubleshooting. 

Well-planned, modular code looks elegant. It is often simple to read, and it automatically 

welcomes other team members to help you and contribute to your work in a 

collaborative fashion. This, of course, improves the overall quality and robustness of the 

product/service.

But how do you decide what to modularize? How do you even start thinking about 

it? Here are some questions that you can ask yourself while working on any data science 

project.

Spaghetti code is to be avoided at all costs  Hastily written code that gets 
the job done but does not scale properly, is the prime example of ‘bad code’ or 
‘spaghetti code’ that is littered everywhere in data science practice. This type of 
code can also result from poor planning, not following well-designed coding style, 
non-adherence to any object-oriented programming pattern, etc. Fundamentally, 
such spaghetti code is error-prone, extremely difficult to scale and debug, and 
counter-productive for production-level usage.

�Questions to Ask Yourself
Even if you have never had a software engineering course in your life, some ideas may 

come naturally to you. All you have to do is to put yourself in someone else’s shoes and 

think about how that person will use your code in a constructive manner.

•	 If you have a code block that appears more than once in your analysis 

(in the exact same form or in slight variations), can you make a 
function out of it?

•	 When you make such a function, which parameters will be passed 

on? Which can be optional? What are the default values?
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•	 If you encounter a situation where you don’t know how many 

parameters need to be passed on, are you using the *args and 

**kwargs that Python offers?

•	 Did you write a docstring for that function to let others know what 

the function does and what parameters it expects as well plus an 

example?

•	 When you have collected a bunch of such utility functions, are you 

still working on the same notebook, or switching over to a new, clean 

notebook and just calling from my_utility_script import func1, 

func2, func3? (Did you create a my_utility_script as a simple 

Python file rather than a Jupyter notebook?)

•	 Did you put the my_utility_script in a directory, put an __init__.

py file (even a blank one) in the same directory, and make it a 
Python module to be importable just like NumPy or Pandas?

•	 Are you thinking about not merely importing classes and methods 

from packages like NumPy and TensorFlow but adding your own 
methods to them and extending their functionality?

�Start Simple with a Standard Data Science Flow
For starters, let’s consider a standard data science task flow so you can organize your 

coding approach to follow modularization thinking. Even before writing a single line of 

code, you can mentally organize (modularize) the tasks and plan for separate modules, 

as shown in Figure 4-1.
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Figure 4-1.  A standard data science flow organized in a modular fashion (in your 
head) to be implemented in your code

Why those three colors (orange, blue, and green)? They simply represent the three 

main flavors of the tasks: data-related, algorithm-related, and deployment-related, 

respectively. The deployment portion is highly compressed and represented with this 

single model saving task here. In a real-life production scenario, there will be a host of 

modules related to it but all of them can start with this module, where you can save and 

output the validated model as a software artifact (e.g., a Python pickle).

The main idea of Figure 4-1 is, however, to emphasize the scope and need for 

modularization of these tasks. As data science practitioners, you perform these tasks 

regularly inside a Jupyter notebook. To embrace productive data science, you need to 

organize and even think beyond the notebook towards this modularization.

Let’s see how with a familiar scikit-learn example.

�A Scikit-learn Task Flow Example
In this example, you will work with the famous breast cancer dataset (https://archive.

ics.uci.edu/ml/datasets/breast+cancer) and build a simple logistic regression 

classifier for the same. The task is simple, but the key learning will be how to approach 

the flow with a modularized coding practice.
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�The Monolithic Example
The opposite to modular code is monolithic code: all code in a single file or Jupyter 

notebook. You could have written this monolithic code in a single shot:

from sklearn.datasets import load_breast_cancer

from sklearn.linear_model import LogisticRegression

<...>

# Data load

data = load_breast_cancer()

X, y = data['data'], data['target']

# Some visual exploration

features_avg = []

for i in range(30):

    features_avg.append(X[:,i].mean())

plt.figure(figsize=(4,6),dpi=100)

plt.barh(y=['Feature-'+str(i) for i in range(30)],width=features_avg)

plt.xlabel("Feature average")

plt.show()

# Model build

clf = LogisticRegression(random_state=0,

                         max_iter=500,

                        class_weight='balanced').fit(X, y)

clf.score(X, y)

# Cross-validation

scores = cross_val_score(clf, X, y, cv=5)

scores

print(f"Accuracy {scores.mean()} with a standard deviation of {scores.

std()}")

# Model save

<...>
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Everything is kind of mixed in the monolithic code above: import, data loading, 

model building, validation, and saving. It has some standalone code like clf.score(X, y)  

that makes sense only inside a Jupyter notebook cell. It has a print statement, which 

is fine for the exploration and experiment phase but may not be suitable for an efficient 

codebase. It runs fine in a notebook but is hard to troubleshoot if bugs creep in or the 

model needs tuning.

Let’s see how to clearly compartmentalize the code and build a modular code base 

for the same task.

�Little Boxes, Little Boxes...
Compartmentalizing or boxing is important for software development. This also 

increasingly applies to productive data science work as well. For the code snippet above, 

you can make these boxes easily. You start by copying the code blocks for different tasks 

into separate Python scripts or standalone files from the Jupyter notebook. The idea is 

shown in Figure 4-2.

Figure 4-2.  From monolithic code to constructing little boxes

To start, this code is for data loading only:

from sklearn.datasets import load_breast_cancer

def load_data():

    """

    Loads the data and returns Numpy arrays

    """
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    data = load_breast_cancer()

    X = data['data']

    y = data['target']

    return X,y

That’s it. A single function to do only one job. It is saved in a file called load_data.

py. Modularizing code highly encourages the use of single-purpose functions instead of 

standalone code statements in the script. This is what is demonstrated here.

Next, data splitting into test and training sets:

from sklearn.model_selection import train_test_split

def data_split(X,y,

               test_size=0.3,

               random_state=42):

    """

    Randomly splits in test and train sets

    and returns them as Numpy arrays

    """

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, test_size=test_size, random_state=random_state)

    return  X_train, X_test, y_train, y_test

Note the use of default variables test_size and random_state in case you want to 

play with a test set fraction or different random initializations for experimental purposes.

Next, model fitting code:

from sklearn.linear_model import LogisticRegression

import numpy as np

def model_fit(X_train,y_train,

              max_iter=500):

    """

    Fits the model with training data.

    Returns the fitted estimator.

    """
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    class_zero, class_one = np.bincount(y_train)

    class_ratio = class_zero/class_one

    if class_ratio > 1.25 or class_ratio < 0.8:

        clf = LogisticRegression(max_iter=max_iter,

                             class_weight='balanced')

    else:

        clf = LogisticRegression(max_iter=max_iter)

    clf.fit(X_train,y_train)

    return clf

You have to do some cross-validation with the test set data before you save this fitted 

model. So, the cross-validation code is as follows:

from sklearn.model_selection import cross_val_score

def cross_validate(clf,X_train,y_train,cv=10):

    """

    Cross validates the model.

    Returns an array of scores.

    """

    scores = cross_val_score(clf,X_train,y_train, cv=cv)

    return scores

You get back a NumPy array of cross-validation scores. Finally, you have to save/

package the model. But you may want to save the model only if the average of the cross-

validated scores is above a certain threshold. Otherwise, you can go back to tune the 

model or look for more data (the dataset is fixed in this example, but the general idea 

is valid).

Therefore, your final model saving code looks like the following:

from joblib import dump, load

def model_save(clf,scores,threshold=0.9):

    """

    Saves a model depending on the CV scores

    """
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    if scores.mean() > threshold:

        dump(clf, 'logistic_model.joblib')

        return 1

    else:

        return 0

Note that instead of using pickle, you use the joblib library for more efficient and 

compact storage of the scikit-learn estimator. This is described here: https://scikit-

learn.org/stable/model_persistence.html.

OK, you created modularized code for your data science task. Now what?

�How to Use the Modular Code
After creating these modules, the directory structure may look like Figure 4-3. Note 

the Jupyter notebook at the bottom (circled). This is what you get as the fruit of the 

modularization of your code.

Your notebook looks much cleaner and more readable than the spaghetti code you 

had earlier. If you examine that Jupyter notebook, you may see something like Figure 4-4.

Figure 4-3.  Python script/modules in the directory for various ML tasks
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Figure 4-4.  Typical Jupyter notebook (cleaner and compact) after modularizing 
the code
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The key benefit of this approach is that you can play with the following aspects of the 

task independently and without touching the main notebook code:

•	 Data source (just modify the load_data.py file)

•	 Data splitting options (just modify the data_split.py file)

•	 Choice of model and hyperparameters (just modify the  

model_fit.py file)

•	 Cross-validation strategy and options (just modify the  

cross_validate.py file)

•	 The decision to save the model (just modify the model_save.py file)

Also, note how the input and output of each module is controlled through a focused 

and targeted function definition. This gives you the opportunity to validate and check 
the expected outcome from each of the modules. This means if for some reason the 

data or model is corrupted, you can catch it mid-flight before it goes to the model fitting 

or saving stage. This saves infrastructure costs and enhances the robustness of the ML 

platform as a whole.

Figure 4-5 demonstrates the idea of separate test/validation blocks for each 

of the core modules. It also shows a system_config.json file that may store the 

cross-validation threshold and the model_save.py file to check the current model’s 

performance against that criterion before saving the model.

Can you imagine all this flexibility and possibilities with a monolith Jupyter 

notebook?
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Figure 4-5.  Modular code used along with data/model validation checks and 
system configuration files

�Systematic Evaluation of ML Algorithms 
in an Automated Fashion
As discussed in the beginning of this chapter, apart from modularization, another central 

pillar of efficient data science code is automation. We often write repetitive code that can 

introduce bugs and inefficiency.

One of the most common tasks for a typical DS workflow is to run the same 

data through multiple ML algorithms and choose the best one (according to some 

predetermined metric). In this section, you will examine a hands-on example of 

automating this evaluation task.

�List of Classifiers
At the beginning, you have to pick the scikit-learn estimators (along with their 

hyperparameters) for this evaluation. You can define a list with these objects:

classifiers = [

    LogisticRegression(C=0.1,n_jobs=-1),

    KNeighborsClassifier(10,n_jobs=-1),

    SVC(kernel="linear", C=0.1),

    SVC(gamma='scale', C=1),
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DecisionTreeClassifier(max_depth=10,min_samples_leaf=10),

RandomForestClassifier(max_depth=3, n_estimators=50,       max_features=5, 

min_samples_leaf=10,n_jobs=-1),

    �MLPClassifier(hidden_layer_sizes=(50,50),alpha=0.2,activation='relu', 

max_iter=200,learning_rate_init=0.01,learning_rate='adaptive', 

early_stopping=True,validation_fraction=0.2),

    �AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=3), 

n_estimators=50,learning_rate=0.1),

    �BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=3), 

n_estimators=50, max_features=5,n_jobs=-1),

GaussianNB(),

QuadraticDiscriminantAnalysis(reg_param=0.1)]

You can also define a list of names (strings) for plotting and enumeration purposes:

names = ["Logistic Regression","Nearest Neighbors", "Linear SVM",  

"RBF SVM", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", 

"Bagging","Naive Bayes", "QDA"]

�Function to Automate Model Fitting
At the heart of this approach is the function that runs through the given list of estimators 

and fits the data to them one by one. It also encapsulates the usual data splitting and 

scorekeeping. Optionally, you can also record the time it takes to fit each model so that 

you can do a trade-off analysis of model performance and computational cost later on.

So, the function starts like this:

def run_classifiers(X,y,

                    clf_lst = [LogisticRegression(C=0.1,n_jobs=-1)],

                    names=None,

                    num_runs=10,

                    test_frac=0.2,

                    scaling=True,

                    metric='accuracy',

                    runtime=True,

                    verbose=0):
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    """

    �Runs through the list of classifiers for a given number of times. 

Returns a DataFrame with scores (and, optionally, running times).

    """

Note that it only needs some training data (X and y vectors) to run. Everything else 

is optional and has default values, even the classifier list. It features essential arguments 

like test_frac for the training/test set split, scaling for deciding whether to scale the 

training data, metric for comparing the algorithms against a single performance metric, 

and runtime to record computation time for each algorithm’s run.

However, the most important argument is num_runs, which ensures that the ML 

algorithms run multiple times and all the performance metrics and running times 

are saved to a Pandas DataFrame. This is the final DataFrame that is returned by the 

function.

For example, if scaling is True, then it performs scaling:

if scaling:

      X_train= StandardScaler().fit_transform(X_train)

      X_test = StandardScaler().fit_transform(X_test)

If the runtime Boolean is enabled, then it computes and stores the running times:

if runtime:

      t1 = time.time()

      clf.fit(X_train, y_train)

      t2 = time.time()

      delta_t = round((t2-t1)*1000,3)

      rt.append(delta_t)

Finally, it returns either a single DataFrame of scores or two DataFrames if the 

runtime is also asked for:

if runtime:

      return df_scores, df_runtimes

else:

      return df_scores

The complete code for the function and other details are provided in the 

accompanying Jupyter notebook.
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�How Does Automation Help?
Fundamentally, the automation approach makes your exploration and experimentation 

code cleaner and compact. You can start a Jupyter notebook, load some data into 

two vectors, X and y, and execute the function right away. You can get all the results 

(accuracy scores) at the same time with a single execution, as shown in Figure 4-6.

Figure 4-6.  Typical DataFrame output of an automated run of multiple ML 
algorithms

d1 = run_classifiers(X,y,
                     clf_lst=classifiers,
                     metric='f1',
                     num_runs=5,
                     runtime=False,
                     verbose=1)
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Since you have verbose=1, you will see this kind of status message printed:

Finished 5 runs for LogisticRegression algorithm
--------------------------------------------------------------
Finished 5 runs for KNeighborsClassifier algorithm
--------------------------------------------------------------
Finished 5 runs for SVC algorithm
--------------------------------------------------------------
Finished 5 runs for SVC_1 algorithm
--------------------------------------------------------------
Finished 5 runs for DecisionTreeClassifier algorithm
--------------------------------------------------------------
Finished 5 runs for RandomForestClassifier algorithm
--------------------------------------------------------------
Finished 5 runs for MLPClassifier algorithm
--------------------------------------------------------------
Finished 5 runs for AdaBoostClassifier algorithm
--------------------------------------------------------------
Finished 5 runs for BaggingClassifier algorithm
--------------------------------------------------------------
Finished 5 runs for GaussianNB algorithm
--------------------------------------------------------------
Finished 5 runs for QuadraticDiscriminantAnalysis algorithm
--------------------------------------------------------------

Thereafter, with simple plotting code, you can visualize the average performance of 

all of the algorithms and their variances (Figure 4-7).

Figure 4-7.  Mean accuracy scores and their standard deviation for an automated 
run of multiple ML algorithms
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Note that you had two support vector classifiers with a different kernel and penalty 

coefficients, and they are recorded as SVC and SVC_1 in the table.

You can experiment with various hyperparameter tuning with minimal code change. 

For example, to record decision tree performance for various tree depths, you can 

create a list:

clf_lst = [DecisionTreeClassifier(max_depth=i) for i in range(2,16)]

You can then pass this list to the automation function. You get the DataFrame back 

and simple averaging of the results yields the plot shown in Figure 4-8.

Figure 4-8.  Mean accuracy scores of decision tree classifiers with varying depth

Basically, once you have an automated way to run a multitude of ML algorithms 

in a single shot and compare their performance, you can think of a host of practical 

applications for this utility in the experimental and production phases.

Automation and modularization naturally lead to a low-code environment   
In Chapter 12, we talk about low-code libraries and frameworks that abstract 
away a lot of manual data science work and generate results with only a few lines 
of code. One of the main driving forces behind such low-code tools is the kind of 
modularization that you did here. Effectively, you reduced the code for repeated 
experimentation to only a few lines by utilizing the custom modules. This makes 
the overall codebase leaner and more efficient to maintain and debug.
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�Decision Boundary Visualization
For many classification problems in the domain of supervised ML, you may want to go 

beyond the numerical prediction (of the class or of the probability) and visualize the 

actual decision boundary between the classes. This is, of course, particularly suitable for 

binary classification problems and for a pair of features: the visualization is displayed on 

a 2D plane. For example, Figure 4-9 shows a visualization of the decision boundary for 

a Support Vector Machine (SVM) tutorial from the official scikit-learn documentation 

(https://scikit-learn.org/stable/modules/svm.html). 

Figure 4-9.  Decision boundaries are visualized for SVMs with different kernels

Now the problem is that scikit-learn does not offer a ready-made, accessible method 

for doing this kind of visualization. However, you can create custom code to achieve this 

so that the data science task can be more efficient when it comes to visualizing decision 

boundaries.
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�The Custom Function
The full description and the code for the function are provided in the accompanying 

Jupyter notebook. The code starts like this:

def plot_decision_boundaries(X, y,

                             model_class,

                             **model_params):

      """

    Function to plot the decision boundaries of a classification model. 

This uses just the first two columns of the data for fitting the model as 

we need to find the predicted value for every point in scatter plot.

    Arguments:

            X: Feature data as a Numpy-type array.

            y: Label data as a Numpy-type array.

            model_class: A Scikit-learn ML estimator class

            e.g. GaussianNB or LogisticRegression

           �**model_params: Model parameters to be passed on to the ML 

estimator

    """

Note the use of the **model_params unpacking operator to allow the user to pass on 

any number and variety of parameters to the function corresponding to the model in 

question. Internally, it works by creating a 2D mesh grid and plotting colored contour 

regions corresponding to the predicted classes.

Here the model class denotes the exact scikit-learn estimator class that you call in 

to instantiate your ML estimator object. Note that you don’t have to pass on the specific 

ML estimator that you are working with. Just the class name will suffice. This function 

will internally fit the data and predict to create the appropriate decision boundary 

(considering the model parameters that you also pass on).

What is this unpacking operator? Y ou might have seen the arguments *args 
and **kwargs in the API documentation of many functions. They allow you to pass 
multiple arguments or keyword arguments to a function when you don’t even know 
the precise number and order of the arguments beforehand and must decide that 
dynamically, at runtime. This article presents an excellent tutorial.
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�Example Results
For the demonstration, let’s use a divorce classification dataset. This dataset is about 

participants who completed the personal information form and a divorce predictors 

scale. The data is a modified version of the publicly available data at the UCI portal 

(https://archive.ics.uci.edu/ml/datasets/Divorce+Predictors+data+set) after 

injecting some noise. There are 170 participants and 54 attributes (or predictor variables) 

that are all real-valued.

You’ll compare the performance of multiple ML estimators on the same dataset:

•	 Naive Bayes

•	 Logistic regression

•	 K-nearest neighbor (KNN)

Because the binary classes of this dataset are easily separable, as shown in 

Figure 4-10, all the ML algorithms perform almost equally well. However, their respective 

decision boundaries look different from each other and this is what you are interested in 

visualizing through this utility function. 

Figure 4-10.  Class separability of the divorce dataset
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The decision boundary from the Naive Bayes algorithm is smooth and slightly 

nonlinear, as shown in Figure 4-11. You achieve this with only four lines of code:

plt.figure()

plt.title("Naïve Bayes decision boundary",fontsize=16)

plot_decision_boundaries(X_train,y_train,GaussianNB)

plt.show()

Figure 4-11.  Decision boundary of the Naïve Bayes algorithm

As expected, the decision boundary from the logistic regression estimator is 

visualized as a linear separator, as shown in Figure 4-12. 

Figure 4-12.  Decision boundary of the logistic regression algorithm
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The K-nearest neighbor decision boundary comes up as nonlinear and non-smooth, 

as shown in Figure 4-13. This is because KNN is an algorithm based on the local 

geometry of the distribution of the data on the feature hyperplane (and their relative 

distance measures). 

Figure 4-13.  Decision boundary of the KNN algorithm

The function works with any scikit-learn estimator, even a neural network. Here is 

the decision boundary with the MLPClassifier estimator of scikit-learn, which models a 

densely connected neural network with user-configurable parameters (https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.

html). Note that in the code, you pass on the hidden layer settings, the learning rate, and 

the optimizer (Stochastic Gradient Descent or SGD; https://towardsdatascience.

com/stochastic-gradient-descent-clearly-explained-53d239905d31). The decision 

boundary generated by the code is shown in Figure 4-14. 
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Figure 4-14.  Decision boundary and code for the MLP algorithm

�Parametric Experimentation
As mentioned, you can pass on any model parameters that you want to the utility 

function. In the case of the KNN classifier, as you increase the number of neighboring 

data points, the decision boundary becomes smoother. This can be readily visualized 

using this utility function, as shown in Figure 4-15. 
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Figure 4-15.  Decision boundary of KNN with different neighbor counts – 
experimentation with the algorithm

�Other Scikit-learn Utilities and Techniques
Scikit-learn provides many other tools and utilities to make your ML code more 

productive. An exhaustive treatment of them is beyond the scope of this book. However, 

here I briefly mention some of the most useful ones that you can readily utilize in your 

data science code.

�Hyperparameter Search Utilities
In scikit-learn, hyperparameters are passed as arguments to the constructor of the 

estimator classes. They often need to be tuned meticulously in order to achieve good 

ML model performance. However, this task can be exhaustive and inefficient if done 

manually or without a systematic plan. Fortunately, scikit-learn provides efficient grid 

search utilities that behave similarly to standard ML estimators and let you run a large 

number of experiments (with varying hyperparameters) with just a few lines of code.
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A search consists of the following:

•	 An estimator (a regressor or classifier such as sklearn.svm.SVC())

•	 A parameter space

•	 A method for searching or sampling candidates

•	 A cross-validation scheme

•	 A score function

Check out the official documentation of scikit-learn at https://scikit-learn.org/

stable/modules/grid_search.html to see the options and their usage. For increasing 

the productivity of your data science code, they can come in handy.

�Parallel Job Runner
Not all scikit-learn estimators can take advantage of multi-core CPUs natively, but 

some do have the ability to parallelize costly numerical operations using the backend 

supporting libraries:

•	 Using the joblib library. In this case, the number of threads or 

processes can be controlled with the n_jobs parameter.

•	 Using OpenMP, used in C or Python code.

Joblib is able to support both multiprocessing and multithreading. Whether joblib 

chooses to spawn a thread or a process depends on the back end it’s using. You can make 

the choice in the code as follows:

from joblib import parallel_backend

with parallel_backend('threading', n_jobs=2):

      # estimator.fit(X,y)

      < ... >

Generally, joblib uses the locy back end. But there are other, more powerful 

alternatives. For example, Dask can scale scikit-learn algorithms out to a cluster of 

machines by providing an alternative joblib back end:

from dask.distributed import Client

import joblib
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client = Client(processes=False) # create local cluster

# or connect to remote cluster

# client = Client("scheduler-address:8786")

with joblib.parallel_backend('dask'):

    # Scikit-learn code

In general, this type of parallel processing is highly suitable for ML models that 
match the parallelism natively (e.g., Random Forest with multiple trees or AdaBoost 

with multiple base estimators). We will revisit this in more detail in Chapter 11 when we 

discuss Dask-based parallelism.

�Out-of-the-box Visualization Methods
Visualization of ML models’ output and performance metrics is a vast and complex 

topic. Every data scientist has their own choice and style of visualizing data and model 

outputs. However, for efficient data science practice, it is often beneficial to have a set of 

out-of-the-box routines that can take an ML model and output standard visualizations 

such as a ROC curve, learning curve, precision-recall curve, and confusion matrix.

Scikit-learn provides a uniform API than can accept an estimator object, test or 

predicted data, and draw out these visualizations using the Matplotlib back end. This 

comes in handy for quick prototyping and productive data science workflow.

More details can be found on the scikit-learn visualization API’s page at https://

scikit-learn.org/stable/visualizations.html#visualizations.

�Synthetic Data Generators
Scikit-learn provides a host of synthetic data generators for quickly evaluating and 

experimenting with ML algorithms. While a data science problem with a real dataset does 

not directly benefit from these generators, they often come in handy to gauge the relative 

strength and weakness of various ML algorithms and test out various coding approaches.

A somewhat detailed discussion about these methods can be found in this article 

along with a list of benefits for synthetic data generation in general: “Synthetic data 

generation — a must-have skill for new data scientists” (https://towardsdatascience.

com/synthetic-data-generation-a-must-have-skill-for-new-data-scientists-915

896c0c1ae).
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�Summary
In this chapter, you started by learning about the utility and benefits of modularizing 

ML code. You took a typical data science workflow of building out a classification model 

with a well-known dataset and applied this principle of modular code. You compared 

the monolithic (or spaghetti) code in a Jupyter notebook to the short Python scripts/

modules you wrote and saw the utility of the approach in a cleaner Jupyter notebook. 

You also saw how this approach played well with software testing and platform-level 

decision making.

Next, you explored an approach of systematic evaluation of ML algorithms with 

automation code where you constructed a function that can run through a list of any 

scikit-learn estimators, fit models, evaluate performance metrics and running times, and 

save everything in a nice dataset for later evaluation. This kind of automation is the first 

step towards learning how to do large-scale ML experimentation in a systematic and 

productive manner.

Next, you explored another productive technique of visualizing decision boundaries 

for arbitrary classification models using a unified function. This leads to efficient visual 

analytics of classification boundaries when you need to examine such characteristics.

Finally, you learned utilities and techniques embedded in the scikit-learn library 

that can improve the efficiency of your ML code and data science tasks. This included 

hyperparameter search, parallel job running, ready-made visualization routines, and 

synthetic data generators.

In the next chapters, you will build upon the concept of modular and object-oriented 

coding approaches and explore their utility and application for deep learning and 

classical ML tasks.
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CHAPTER 5

Modular and Productive 
Deep Learning Code
In the previous chapter, I explored the idea that most data scientists often come from 

a background that is quite far removed from traditional computer science/software 

engineering. Consequently, they produce code that is perfectly suitable for great 

exploratory data analysis, statistical modeling, or innovative ML experiments but not 

robust enough for the production phase of a large business platform. Data scientists 

often think in terms of the next analysis script but not along the lines of the next software 

module that integrates into a larger system.

Scripting is (mostly) the code you write for yourself. Software is the assemblage of 

code you (and other teammates) write for others. It is an undeniable fact that most data 

scientists, not having a traditional software development background and training, tend 

to write AI/ML analysis code mostly for themselves.

They just want to get to the heart of the pattern hidden in the data. Fast. Without 

thinking deeply about normal mortals (users). They write a block of code to produce a 

rich and beautiful plot. But they don’t create a function out of it to use later. They import 

lots of methods and classes from standard libraries. But they don’t create a subclass of 

their own by inheritance and add methods to it for extending the functionality.

In the previous chapter, you explored some of these issues through scikit-learn code 

and a typical classical ML task, fitting a logistic regression model. In this chapter, you 

will explore how similar principles can help you write better code for deep learning tasks 

with some hands-on examples using Keras/TensorFlow.
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�Modular Code and Object-Oriented Style 
for Productive DL
Functions, inheritance, methods, classes: they are at the heart of robust object-oriented 

programming (OOP). But you may not want to delve deeply into them if all you want to 

do is create a Jupyter notebook with your exploratory data analysis and plots.

You can avoid the initial pain of using OOP principles, but this almost always renders 

your notebook code non-reusable and non-extensible. More precisely, that piece of 

code serves only you (until you forget what exact logic you coded) and no one else. 

But readability (and, thereby, reusability) is critically important for any good software 

product/service. That is the true test of the merit of what you produce. Not for yourself. 

But for others.

Data science involving deep learning models and code is no exception. These days, 

powerful and flexible frameworks like TensorFlow or PyTorch make the actual coding of 

a complex neural network architecture relatively simple and brief. However, if the overall 

DS code is not modularized and well-organized (following much of the style discussed 

in Chapter 4 in the section “Why (and How) to Modularize Code for Machine Learning”), 

then it is plagued by the same issues of non-reproducibility and non-reusability. Let’s 

see some examples of how you can organize and modularize DL code in your data 

science work.

�Example of a Productive DL Task Flow
Deep learning makes it easy to train ML models for highly nonlinear (and even noisy) 

datasets and phenomena. Modern frameworks like Keras/TensorFlow/PyTorch offer 

powerful and flexible APIs to build these models with relative ease and a surprisingly 

small amount of code. However, an end-to-end DS flow can be made much more 

productive if you follow some simple guidelines on how you build, manage, and utilize 

DL code. An approach of building compact modules and a systematic flow (shown in 

Figure 5-1) can help. Some examples of related guidelines are discussed below in the 

form of questions.

One of the most common and repetitive tasks for DL analysis is to 

build out a deep neural network (DNN) object. Data scientists 

routinely use non-modularized code to just add layers (e.g., from 

Keras (https://keras.io/api/layers/) or PyTorch https://
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pytorch.org/tutorials/recipes/recipes/defining_a_neural_

network.html) APIs) and build this as a local variable in their 

Jupyter notebook. Wouldn’t it be a much better idea to create a 

custom function for this task?

After building an (untrained) model, you must compile (set 

learning rate, batch size, etc.) and run the model with data. Would 

a custom function help make this task modularized as well?

When you make such a DNN builder function, which parameters 

will be passed on? Which ones can be optional? What are the 

default values? If you encounter a situation where you don’t know 

how many parameters need to be passed on, are you using the 

*args and **kwargs that Python offers?

Did you write a docstring for that function to let others know 

what the function does and what parameters it expects plus an 

example?

Can you also modularize the code used to create the visual 
analytics based on the output of those model functions? 
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Figure 5-1.  Deep learning task flow organized in modular fashion

�Wrappers, Builders, Callbacks
Fundamentally, in the subsection above I described wrapping up the most essential 

tasks in a DL-based workflow inside custom functions and using them as the core 

building blocks of your data science code. Additionally, you can wrap up the tasks 

related to data formatting/transformation and prediction/inference in a similar fashion.

It is to be noted that wrapper functions for regression and classification tasks can 

have separate sets of architecture and parameters. So, it makes sense to keep their build 

customized. The choice of the default parameter values in the wrapper functions is of 

critical importance, too.

Apart from a simple functional wrapper, you can also utilize a powerful construct 

called a callback that caters to the dynamic nature of DNN training. Essentially, a 

callback is an object that can perform actions at various stages of DNN training (e.g., at 

the start or end of an epoch or before starting a single batch). You can use callbacks for 

various scenarios, including but not limited to the following:
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•	 Early stopping based on some error or computation criterion

•	 Periodically saving the model to disk (making the system robust 

against unexpected failure)

•	 Obtaining an overview on various internal states and statistics of a 

model in mid-flight (i.e., while the training is going on)

Finally, if you want to extend this approach all the way to the full OOP paradigm, 

you can build out classes and utility modules incorporating all these wrappers as special 

methods. You can call this a DL utility module, which you can call upon in any data 

science task where supervised ML modeling is needed.

�Modular Code for Fast Experimentation
Let’s demonstrate the ideas discussed above using a simple case: a DL image 

classification problem with the Fashion MNIST (https://github.com/

zalandoresearch/fashion-mnist) dataset. The core ML task is simple: build a classifier 

for this dataset, which is a funny spin on the original famous MNIST hand-written digit 

dataset. Fashion MNIST consists of 60,000 training images of 28 x 28-pixel size of objects 

related to fashion (e.g., hats, shoes, trousers, t-shirts, dresses, etc.). It also consists of 

10,000 test images for model validation and testing. A slice of the dataset is shown in 

Figure 5-2 for illustration.
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Figure 5-2.  A slice of the Fashion MNIST dataset

�Business/Data Science Question
The basic ML task for this dataset seems straightforward. But what if there is a higher-

order optimization or visual analytics question around this core ML task: how does the 

model architecture complexity impact the minimum epochs it takes to reach the desired 

accuracy?

It should be clear to you why we even bother about such a question: because this 

is related to the overall business optimization. Training a neural net is not a trivial 

computational matter (www.technologyreview.com/s/613630/training-a-single-ai-

model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/). Therefore, it 

makes sense to investigate what minimum training effort must be spent to achieve a 

target performance metric and how the choice of architecture impacts it.

The image classification accuracy could be related to a broader business outcome 

such as a fashion recommendation or clothing identification in a store. The core data 

science task helps optimize the cost of running that business task—to use the image 

database with the optimal expenditure of computing resources using the ML code as the 

underlying nuts and bolts.
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In this example, you will not even use a convolutional neural network (CNN; 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2b1164a53), which are commonly used for image 

classification tasks. This is because, for this dataset, a simple densely connected neural 

net can accomplish reasonably high accuracy, and, in fact, a sub-optimal performance 

is required to illustrate the main point of the higher-order optimization question 

posed above.

So, you must solve two problems:

•	 What the minimum number of epochs for reaching the desired 

accuracy target and how do you determine this?

•	 How does the specific architecture of the model impact this number or 

training behavior?

To achieve the goals, you will use two simple OOP principles:

•	 Creating an inherited class from a base class object

•	 Creating utility functions and calling them from a compact code 

block that can be presented to an external user for higher-order 

optimization and analytics

�Inherit from the Keras Callback
You inherit a Keras callback class (as the base) and write your own subclass by adding 

a method that checks the training accuracy and takes an action based on that value. 

The code snapshot and some explanations are shown in Figure 5-3. More details on 

this can be found in the official TensorFlow article “Writing your own callbacks” at www.

tensorflow.org/guide/keras/custom_callback. 
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Figure 5-3.  A custom class built on top of a Keras callback

Basically, this simple callback results in dynamic control of the epochs; the training 

stops automatically when the accuracy reaches the desired threshold. Figure 5-4 shows a 

snapshot of an example run. 

Figure 5-4.  Snapshot of an example run with the callback enabled
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�Model Builder and Compile/Train Functions
Next, you put the Keras model construction code in a utility function so that a model of 

an arbitrary number of layers and architecture (as long as they are densely connected) 

can be generated using simple user input in the form of some function arguments. The 

code snapshot and the associated explanations are shown in Figure 5-5. 

Figure 5-5.  Snapshot of a model builder function

You also put the compilation and training code into a utility function to use those 

hyperparameters in a higher-order optimization loop conveniently. The code snapshot 

and the associated explanations are shown in Figure 5-6. 
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Figure 5-6.  Snapshot of a model compiling and training function

�Visualization Function
Next, it’s time for visualization. Generic plot functions take raw data as input. However, 

if you have a specific purpose of plotting the evolution of training set accuracy (and 

showing how it compares to the target), then your plot function should just accept the 

(trained) deep learning model as the input and generate the desired plot. The code 

snapshot and the associated explanations are shown in Figure 5-7. 
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Figure 5-7.  Snapshot of the visualization function

A typical result (loss-accuracy plot) is shown in Figure 5-8. 

Figure 5-8.  A typical loss-accuracy plot from the trained DL model

�Final Analytics Code, Compact and Simple
Thus far you have modularized the core DL code. Now you can take advantage of all the 

functions and classes you defined earlier and bring them together to accomplish the 

higher-order optimization task. Consequently, your final code will be highly compact, 

but it will generate the same interesting plots of loss and accuracy over epochs for a 

variety of accuracy threshold values and DNN architectures (neuron counts).
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This will give you the ability to use a minimal amount of code to produce visual 

analytics about the choice of performance metric (classification accuracy in this case) 

and DNN architecture. This is the first step towards building an optimized machine 

learning system.

Generate a few cases for investigation:

from itertools import product

accuracy_desired = [0.85,0.9,0.95]

num_neurons = [16,32,64,128]

cases = list(product(accuracy_desired,num_neurons))

print("So, the cases we are considering are as follows...\n")

for i,c in enumerate(cases):

      print("Accuracy target {}, number of neurons: {}".format(c[0],c[1]))

      if (i+1)%4==0 and (i+1)!=len(cases):

            print("-"*50)

This code generates the cases shown in Figure 5-9.

Figure 5-9.  Some representative cases are generated for the optimization task
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The final analytics/optimization code is succinct and easy to follow for a high-

level user who does not need to know the complexity of Keras model building or 

callbacks classes. This is the core principle behind OOP, the abstraction of the layers of 
complexity, which you are able to accomplish for your deep learning task.

Note how you pass on the print_msg=False to the class instance. While you need 

basic printing of the status for the initial check/debug, you should execute the analysis 

silently for the optimization task. If you did not have this argument in your class 

definition, you would not have a way to stop printing debugging messages:

for c in cases:

    # A mycallback class with the specific accuracy target

    callbacks = myCallback(c[0], print_msg=False)

    # Build a model with a specific number of neurons

    model = build_model(num_layers=1,architecture=[c[1]])

    # Compile and train the model with the callback class.

    # Choose suitable batch size and a max epoch limit

    model = compile_train_model(model, x_train,y_train,callbacks=callbacks,

                              batch_size=32,epochs=30)

    # A suitable title string

    title = "Loss and accuracy over the epochs for\naccuracy threshold \

    {} and number of neurons {}".format(c[0],c[1])

    # Use the plotting function, pass on the accuracy target,

    # trained model, and the custom title string

    plot_loss_acc(model,target_acc=c[0],title=title)

Some representative results are shown in Figure 5-10; they are automatically 

generated by executing the code block above. It clearly shows how with a minimal 

amount of high-level code you can generate visual analytics to judge the relative 

performance of various neural architectures for various levels of performance metrics. 

This enables a user, without tweaking the lower-level functions, to easily make a 

judgment on the choice of a model as per the desired accuracy and complexity. 
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Figure 5-10.  Representative results for various model architecture (neuron counts 
per hidden layer) and accuracy targets

Also, note the custom titles for each plot. These titles clearly enunciate the target 

performance and the complexity of the neural net, thereby making the analytics easy. It was 

a small addition to the plotting utility function, but this shows the need for careful planning 

while creating such functions. If you had not planned for such an argument to the function, 

it would not have been possible to generate a custom title for each plot. This careful 
planning of the API (application program interface) is part and parcel of good OOP.

�Turn the Scripts into a Utility Module
So far, you may be working with a Jupyter notebook, but you may want to turn this 

exercise into a neat Python module that you can import from any time you want. Just 

like you write from matplotlib import pyplot, you can import these utility functions 

(Keras model build, train, and plotting) anywhere. The idea is shown in Figure 5-11.
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Figure 5-11.  Building a deep learning utility module (for your own use)

�Summary of Good Practices
You just learned some good practices, borrowed from OOP, to apply to a DL analysis 

task. Almost all of them may seem trivial to seasoned software developers. However, 

this chapter is designed for budding data scientists who may not have that structured 

programming background but need to understand the importance of imbuing these 

good practices in their ML workflow.

At the risk of repeating myself, let me summarize the good practices here:

Whenever you get a chance, turn repetitive code blocks into utility 
functions.

Think very carefully about the API of the function (i.e., the 

minimal set of arguments required and how they will serve a 

purpose for a higher-level programming task).

Don’t forget to write a docstring for a function, even if it is a one-

liner description.

If you start accumulating many utility functions related to the 

same object, consider turning that object to a class and the utility 

functions as methods.
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Extend class functionality whenever you get a chance to 

accomplish complex analysis using inheritance.

Don’t stop at Jupyter notebooks. Turn them into executable scripts 

and put them in a small module. Build the habit of modularizing 

your work so that it can be easily reused and extended by anyone, 

anywhere.

In the next chapter, you will try your hand at building your own ML estimator class 

based on these principles. For a taste of DL utility functions and a neural net trainer 

class, please read “Deep learning with Python” at https://github.com/tirthajyoti/

Deep-learning-with-Python/tree/master/utils.

�Streamline Image Classification Task Flow
Image classification is one of the most common tasks in a data science workflow 

involving deep learning tools. Streamlining or automating such a task is, therefore, 

a prime example of the automation and modularization that I have been preaching 

thus far.

For this specific task, a data scientist may desire a single function to automatically 

pull images from a specified directory on the disk (or from a network address) and 

give back a fully trained neural net model, ready to be used for prediction. Therefore, 

in this section, you will explore how to use a couple of utility methods from the 

Keras (TensorFlow) API to streamline the training of such models (specifically for a 

classification task) with built-in data preprocessing.

Put simply, you want to

•	 Grab some data.

•	 Put it inside a directory/folder arranged by classes.

•	 Train a neural net model with minimum code/fuss.

In the end, you aim to write a single utility function that can accept just the name/

address of the folder where the training images are stored and give back a fully trained 

CNN model. The idea is visually illustrated in Figure 5-12.
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Figure 5-12.  Streamlining (and simplifying) the image classification task

�The Dataset
Let’s use a dataset consisting of 4000+ images of flowers for this demo. The dataset can 

be downloaded from the Kaggle website here: . The data collection is based on Flickr, 

Google, and Yandex images. The pictures are divided into five classes:

•	 Daisy

•	 Tulip

•	 Rose

•	 Sunflower

•	 Dandelion

For each class, there are about 800 photos. The photos are not particularly high 

resolution (about 320 x 240 pixels each). They are not reduced to a single size since they 

have different proportions. However, they come organized neatly in five directories 

named with the corresponding class labels. You can take advantage of this organization 

and apply the Keras methods to streamline the training of your convolutional network.

The full Jupyter notebook is in the GitHub repository. I will use selected snapshots of 

the code in this section to show the important parts for illustration.
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Should you use a GPU? I t is recommended to run this script on a GPU. You will 
build a convolutional neural net (CNN) with five convolutional layers; consequently, 
the training process with thousands of images can be computationally intensive 
and slow if you are not using some sort of GPU. For the Flowers dataset, a single 
epoch took ~1 minute on my laptop with a NVidia GTX 1060 Ti GPU (6GB Video 
RAM), Core i-7 8770 CPU, and 16GB DDR4 RAM.

For illustration, Figure 5-13 shows how they are stored on a local hard disk. Some 

sample images are in Figure 5-14. 

Figure 5-13.  Stored Flowers image data
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Figure 5-14.  Sample flower images. Note the difference is shape and resolution

�Building the Data Generator Object
This is where the actual magic happens. The official description of the 

ImageDataGenerator class says "Generate batches of tensor image data with real-time 

data augmentation. The data will be looped over (in batches)."

Basically, it can be used to augment image data with a lot of built-in preprocessing 

such as scaling, shifting, rotation, noise, whitening, etc. Right now, you’ll just use the 

rescale attribute to scale the image tensor values between 0 and 1. Here is a useful 

article on this aspect of the class: “How to increase your small image dataset using Keras 

ImageDataGenerator”(https://medium.com/@arindambaidya168/https-medium-com-

arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad).

But the real utility of this class for the current demonstration is the super useful 

method named flow_from_directory, which can pull image files one after another from 

the specified directory. Note that this directory must be the top-level directory where 

all the subdirectories of individual classes can be stored separately. The flow_from_

directory method automatically scans through the subdirectories and sources the 

images along with their appropriate labels.
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You can specify the class names (as you did here with the classes argument) but this 

is optional. However, you will later see how this can be useful for selective training from 

a large trove of data.

Another useful argument is the target_size, which lets you resize the source images 

to a uniform size of 200 x 200, no matter the original size of the image. This is some cool 

image-processing right there with a simple function argument.

You can also specify the batch size. If you leave batch_size unspecified, by default, 

it will be set to 32. Choose the class_mode as categorical since you are doing a multi-

class classification here. Here is the code snippet:

batch_size = 128

from tf.keras.preprocessing.image import ImageDataGenerator

# All images will be rescaled by 1./255

train_datagen = ImageDataGenerator(rescale=1/255)

# Flow training images in batches of 128

# All images will be resized to 200 x 200

train_generator = train_datagen.flow_from_directory(

        '../Data//flowers-recognition',

        target_size=(200, 200),

        batch_size=batch_size,

        classes = ['daisy','dandelion','rose','sunflower','tulip'],

        class_mode='categorical')

When you run this code, the Keras function scans through the top-level directory, 

finds all the image files, and automatically labels them with the proper class (based on 

the subdirectory they were in). The working of this utility is shown in Figure 5-15 with 

respect to the flowers’ dataset.
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Figure 5-15.  The ImageDataGenerator object working on the Flower dataset

What’s more interesting is that this is also a Python generator object (https://

realpython.com/introduction-to-python-generators/). That means it will be used 

to yield data one by one during the training. This significantly reduces the problem of 

dealing with a very large dataset whose contents cannot be fitted into memory at one go.

�Building the Convolutional Neural Net Model
For the sake of brevity, I will not delve deep into the code behind the CNN model. In 

brief, it consists of five convolutional layers/max-pooling layers and 128 neurons at the 

end followed by a 5-neuron output layer with a SoftMax activation for the multi-class 

classification. You use the RMSprop optimizer with an initial learning rate of 0.001. The 

model summary is shown in Figure 5-16. It has in excess of 200,000 trainable parameters.
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Figure 5-16.  Summary of the CNN model used for flower classification

�Training with the fit_generator Method
I discussed the cool things the train_generator object does with the flow_from_

directory method and with its arguments. Let’s utilize this object in the fit_generator 

method of the CNN model, defined above.

Note the steps_per_epoch argument to fit_generator. Since train_generator 

is a generic Python generator, it never stops and therefore the fit_generator will not 

know where a particular epoch ends and the next one starts. You have to let it know the 

steps in a single epoch. This is, in most cases, the length of the total training sample 

divided by the batch size. In the previous section, you found out the total sample size 
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as total_sample. Therefore, in this particular case, the steps_per_epoch is set to 

int(total_sample/batch_size), which is 34, so you will see 34 steps per epoch in the 

training log below.

history = model.fit_generator(

        train_generator,

        steps_per_epoch=int(total_sample/batch_size),

        epochs=epochs,

        verbose=1)

When you execute, the model trains and you can check the accuracy/loss with the 

usual plot code (Figure 5-17).

Figure 5-17.  Representative loss/accuracy plots of the CNN training task

�Encapsulate All of This in a Single Function
What have you accomplished so far?

You have been able to utilize the Keras ImageDataGenerator and fit_generator 

methods to pull images automatically from a single directory, label them, resize and 

scale them, and flow them one by one (in batches) for training a neural network.

Can you encapsulate all of this in a single function?

One of the central goals of making useful software/computing systems is abstraction 

(i.e., hiding the gory details of internal computation and data manipulation, and 

presenting a simple and intuitive working interface/API to the user). Towards that goal, 

let’s encapsulate the process you followed above into a single function. Figure 5-18 

shows the idea.
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Figure 5-18.  Encapsulate the core components in a single function. The user 
supplies a directory name and gets back a trained model

When you are designing a high-level API, you should aim for more generalization 

than what is required for a particular demo. With that in mind, you can think of 

providing additional arguments to this function to make it applicable to other image 

classification cases (you will see an example soon).

Specifically, you provide the following arguments in the function:

•	 train_directory: The directory where the training images are stored 

in separate folders. These folders should be named as per the classes.

•	 target_size: Target size for the training images. A tuple such as 

(200,200).

•	 classes: A Python list with the classes for which you want the 

training to happen. This forces the generator to choose specific files 

from the train_directory and not look at all the data.

•	 batch_size: Batch size for training

•	 num_epochs: Number of epochs for training

•	 num_classes: Number of output classes to consider

•	 verbose: Verbosity level of the training, passed to the fit_

generator method

Of course, you could have provided additional arguments corresponding to the 

whole model architecture or optimizer settings. This chapter is not focused on such 
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issues, so let’s keep it compact. The full code is in the GitHub repo. Figure 5-19 shows the 

docstring portion to emphasize on the point of making it a flexible API.

Figure 5-19.  Snapshot of the single utility function that streamlines the 
classification task

�Testing the Utility Function
You test the train_CNN function by simply supplying a folder/directory name and getting 

back a trained model that can be used for predictions. Suppose that you want to train 

only for daisy, rose, and tulip classes and ignore the other two flowers’ data. You 

simply pass on a list to the classes argument. In this case, you must set the num_classes 

argument to 3.

You will notice how the steps per epoch are automatically reduced to 20 as the 

number of training samples is less than the case above. Also, note that verbose is set to 0 

by default in the function above, so you need to specify explicitly verbose=1 if you want 

to monitor the progress of the training epoch-wise.

Basically, you can get a fully trained CNN model with two lines of code now!

# Define the folder

train_directory = "../Data//flowers-recognition/"

# Get the model
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trained_model=train_CNN(train_directory=train_directory,

                        classes=['daisy','rose','tulip'],

                        num_epochs=30,

                        num_classes=3,

                        verbose=1)

�Does It Work (Readily) for Another Dataset?
This is an acid test for the utility of such a function: can we just take it and apply to 

another dataset without much modification? Let’s find out.

A rich yet manageable image classification dataset is Caltech-101 (www.vision.

caltech.edu/Image_Datasets/Caltech101/). By manageable, I mean not as large 

as the famous ImageNet (www.image-net.org/about.php) database, which requires 

massive hardware infrastructure to train (and is therefore out of bounds for testing 

ideas quickly on your laptop), yet diverse enough for practicing and learning the tricks 

of convolutional neural networks. It is an image dataset of diverse types of objects 

belonging to 101 categories. There are 40 to 800 images per category. Most categories 

have about 50 images. The size of each image is roughly 300 x 200 pixels. Some categories 

are shown in Figure 5-20.

Figure 5-20.  The Caltech-101 image dataset

Who built Caltech-101? T he Caltech-101 dataset was built by none other than 
famous Stanford professor Dr. Fei Fei Li (https://profiles.stanford.edu/
fei-fei-li) and her colleagues (Marco Andreetto and Marc Aurelio Ranzato) 
at Caltech in 2003 when she was a graduate student there. We can surmise, 
therefore, that Caltech-101 was a direct precursor for her work on ImageNet.
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Download the dataset and uncompress the contents in the same Data folder as 

before. The directory should look like Figure 5-21.

Figure 5-21.  Directory of the stored Caltech-101 images

So, you have what you want: a top-level directory with subdirectories containing 

training images. And then, the same two lines as before:

# Define the folder

train_directory = "../Data/101_ObjectCategories/"

# Get the model

model_caltech101 = train_CNN(train_directory=train_directory,

                              classes=['crab','cup'],

                              batch_size=4,

                              num_epochs=25,

                              num_classes=2,

                              verbose=1)

All you did is to pass on the address of this directory to the function and choose the 

categories of the images you want to train the model for. Let’s say you want to train the 

model for classification between cup and crab. You can just pass their names as a list to 

the classes argument as before.

Also, note that you may have to reduce the batch_size significantly for this dataset 

as the total number of training images will be much lower compared to the Flowers 

dataset, and if the batch_size is higher than the total sample, you will have steps_per_

epoch equal to 0 and that will create an error during training.
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Voila! The function finds the relevant images (130 of them in total) and trains the 

model, 4 per batch, so 33 steps per epoch. The result is shown in Figure 5-22.

Figure 5-22.  Training happening with Caltech-101 images (two classes, cup 
and crab)

You saw how easy it was to just pass on the training images’ directory address to the 

function and train a CNN model with your chosen classes. But is the model any good? 

Let’s find out by testing it with random pictures downloaded from the Internet. Let’s say 

you downloaded images of crabs and cups. You do some rudimentary image processing 

(resizing and dimension expansion) to match the model and get the output objects, 

img_crab and img_cup. Then you test the model with these images.

model_caltech101.predict(img_crab)

>> array([[1., 0.]], dtype=float32)

The model predicted the class correctly for the crab test image.

And for the cup image,

model_caltech101.predict(img_cup)

>> array([[0., 1.]], dtype=float32)

You can download any random image and test the performance of your model. If not 

satisfied, you should train the model by changing the architecture and hyperparameters 

using the modularized function.

The main point, however, is that you were able to train a CNN model with just 
the same two lines of code for a completely different dataset than you started with. 

This is the power of modularizing code and building a generic API that works with a 

wide variety of data sources. This saves valuable time and makes the code reusable. The 

edifice of productive data science stands on these foundational elements.
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�Other Extensions
So far, inside the fit_generator you only had a train_generator object for training. But 

what about a validation set? It follows exactly the same concept as a train_generator. 

You can randomly split from your training images a validation set and set it aside in a 

separate directory (the same subdirectory structures as the training directory) and you 

should be able to pass that on to the fit_generator function.

Want to directly work with a pandas DataFrame that stores your image? No problem. 

There is a method called flow_from_dataframe for the ImageDataGenerator class where 

you can pass on the names of the image files as contained in a pandas DataFrame and 

the training can proceed.

You are strongly encouraged to check out and extend these ideas as you see fit for 

your applications.

�Activation Maps in a Few Lines of Code
DL models use millions of parameters and create extremely complex and highly 

nonlinear internal representations of the images or datasets that are fed to these 

models. They are, therefore, often called the perfect black-box ML techniques (www.

wired.com/story/inside-black-box-of-neural-network/) (Figure 5-23). We can 

get highly accurate predictions from them after we train them with large datasets, but 

we have little hope of understanding the internal features and representations (www.

technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/) of the data 

that a model uses to classify a particular image into a category. In short, the black-box 

problem of deep learning is a powerful predictive power without an intuitive and easy-to-

follow explanation.

Figure 5-23.  The black-box problem of deep learning (source: CMU ML blog, 
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-
variational-information-bottleneck-approach/).
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This does not bode well because we humans are visual creatures (www.seyens.

com/humans-are-visual-creatures/). Millions of years of evolution have gifted us 

an amazingly complex pair of eyes (www.relativelyinteresting.com/irreducible-

complexity-intelligent-design-evolution-and-the-eye/) and an even more 

complex visual cortex (www.neuroscientificallychallenged.com/blog/know-your-

brain-primary-visual-cortex), and we use these organs to make sense of the world. 

The scientific process starts with observation, and that is almost always synonymous 

with vision. In business, only what we can observe and measure can we control and 

manage effectively. Seeing/observing is how we start to make mental models (https://

medium.com/personal-growth/mental-models-898f70438075) of worldly phenomena, 

classify objects around us, separate a friend from a foe, and so on.

Activations maps have been proposed to help visualize the inner workings of 

complex CNN models. Let’s talk about them.

�Activation Maps
Several approaches for understanding and visualizing CNNs have been developed in the 

literature, partly as a response to the common criticism that the learned internal features 

in a CNN are not interpretable. The most straightforward visualization technique is to 

show the activations of the network during the forward pass.

At a simple level, activation functions help decide whether a neuron should be 

activated. This helps determine whether the information that the neuron is receiving 

is relevant for the input. The activation function is a non-linear transformation that 

happens over an input signal, and the transformed output is sent to the next neuron.

Activation maps are just a visual representation of these activation numbers at 

various layers of the network as a given image progresses through as a result of various 

linear algebraic operations. One can deduce the workings of the network and design 

limitations from these maps. For ReLU activation-based networks, the activations 

usually start out looking relatively blobby and dense, but as the training progresses the 

activations usually become sparser and more localized. One design pitfall that can be 

easily caught with this visualization is that some activation maps may be all zero for 

many different inputs, which can indicate dead filters and can be a symptom of high 

learning rates.

Chapter 5  Modular and Productive Deep Learning Code

http://www.seyens.com/humans-are-visual-creatures/
http://www.seyens.com/humans-are-visual-creatures/
http://www.relativelyinteresting.com/irreducible-complexity-intelligent-design-evolution-and-the-eye/
http://www.relativelyinteresting.com/irreducible-complexity-intelligent-design-evolution-and-the-eye/
http://www.neuroscientificallychallenged.com/blog/know-your-brain-primary-visual-cortex
http://www.neuroscientificallychallenged.com/blog/know-your-brain-primary-visual-cortex
https://medium.com/personal-growth/mental-models-898f70438075
https://medium.com/personal-growth/mental-models-898f70438075


143

However, visualizing these activation maps is a non-trivial task, even after you have 

trained your neural net well and are making predictions out of it. How do you easily 

visualize and show these activation maps for a reasonably complicated CNN with just a 

few lines of code?

�Activation Maps with a Few Lines of Code
In the previous section, I showed how to write a single compact function to obtain a fully 

trained CNN model by reading image files one by one automatically from the disk. Now 

you’ll you use this function along with a nice little library called Keract, which makes the 

visualization of activation maps very easy. It is a high-level accessory library of Keras to 

show useful heatmaps and activation maps on various layers of a neural network.

Therefore, for this code, you need to use a couple of utility functions from the 

module you built earlier, train_CNN_keras and preprocess_image, to make a random 

RGB image compatible for generating the activation maps.

You’ll use the same Caltech-101 dataset discussed in the last section. However, you 

are training only with five categories of images: crab, cup, brain, camera, and chair.

�Training

Training is done with a few lines of code only:

train_directory = "../Data/101_ObjectCategories/"

target_size=(512,512)

batch_size=4

classes = ['crab','cup','brain','camera','chair']

num_classes = len(classes)

num_epochs=10

model = train_CNN_keras(train_directory=train_directory,

                        num_epochs=num_epochs,

                        target_size=target_size,

                        classes = classes,

                        batch_size=batch_size,

                        num_classes=num_classes)

To generate the activations, you can choose a random image of a human brain from 

the Internet or any other source. Store the test image as the file brain-1.jpg.

Chapter 5  Modular and Productive Deep Learning Code



144

�Activation

Another couple of lines of code generate the activation:

from keract import get_activations

# The image path

img_path = '../images/brain-1.jpg'

# Preprocessing the image for the model

img = preprocess_image(img_path=img_path,

                     model=model,

                     resize=target_size)

# Generate the activations

activations = get_activations(model, img)

You get back a dictionary with layer names as the keys and NumPy arrays as the 

values corresponding to the activations. Figure 5-24 shows where the activation arrays 

have varying lengths corresponding to the size of the filter maps of that particular 

convolutional layer.

Figure 5-24.  Activation map arrays are stored (the variable length corresponding 
to the size of the convolutional filter at that layer)
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Thereafter, two lines of code for displaying the activation maps:

from keract import display_activations

display_activations(activations, save=False)

You get to see activation maps layer by layer. Figure 5-25 shows first convolutional 

layer (the 16 images corresponding to the 16 filters). Your actual image may look 

different based on what you use as the test image, but the idea of activation layers 

visualization is clearly demonstrated. 

Figure 5-25.  Activation maps for the first convolution layer
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Figure 5-26 shows layer number 2 (the 32 images corresponding to the 32 filters). 

Figure 5-26.  Activation maps for the second convolution layer

For this model, there are 5 convolutional layers (followed by max pooling layers), so 

you get back 10 sets of images. For brevity, I won’t show the rest, but you are encouraged 

to explore and see them by playing with the Jupyter notebook.
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�Another Library for Web-Based UI

Another beautiful library for activation visualization is called Quiver. However, this one 

is built on the Python microserver framework Flask and displays the activation maps 

on a browser port rather than inside your Jupyter Notebook. It also needs a fully trained 

Keras model as input. So, you can easily use the utility function described in the previous 

section and try this library for interactive visualization of activation maps.

�How Is This Productive Data Science?
In this chapter, you learned how by using only a few lines of code (utilizing compact 

functions from a special module and a nice little accessory library to Keras) you can train 

a CNN, generate activation maps, and display them layer by layer—from scratch. This 

gives you the ability to train CNN models (simple to complex) from any image dataset (as 

long as you can arrange them in a simple directory format) and look inside their guts for 

any test image you want.

And once you build the necessary utility modules and the activation map scripts, 

you can reuse and apply them to a wide variety of image data. This leads to a fast and 

efficient exploration of a large set of images for all kinds of applications. This is why this 

kind of approach integrates with the story of productive and efficient data science.

�Hyperparameter Search with Scikit-learn
Keras is one of the most popular go-to Python libraries/APIs for beginners and 

professionals in deep learning. Although it started as a stand-alone project by François 

Chollet, it has been integrated natively into TensorFlow starting in version 2.0. Read 

more about it here (https://keras.io/about/):. As per its own official doc, it is “an 

API designed for human beings, not machines” as it “follows best practices for reducing 

cognitive load.”

Now, hyperparameter tuning is one of the situations where the cognitive load is 

sure to increase. DL models have a great many hyperparameters to begin with: learning 

rate, decay rate, activation function, dropout rate, momentum, batch size, and more. 

Optimizing a DL model for best performance and computing cost depends critically on 

the right choice of these hyperparameters. Therefore, data scientists spend a lot of time 

and effort tuning them manually or via some automated script or optimization strategy/

framework.
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Although there are many supporting libraries and frameworks for handling it, for 

simple grid searches, Keras offers a beautiful API to integrate with our favorite scikit-

learn library. In this section, we will talk about it.

�Scikit-learn Enmeshes with Keras
Almost every Python machine-learning practitioner is intimately familiar with the scikit-

learn library and its beautiful API with simple methods (www.tutorialspoint.com/

scikit_learn/scikit_learn_estimator_api.htm) like fit, get_params, and predict. 

The library also offers extremely useful methods for cross-validation, model selection, 

pipelining, and grid search abilities. Data scientists use these tools for classical ML 

problems every day. But can you use the same APIs for a deep learning problem?

It turns out that Keras offer a couple of special wrapper classes, both for regression 

and classification problems, to utilize the full power of these APIs that are native to scikit-

learn. In this section, you will work using a simple k-fold cross-validation (https://

medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833) and 

exhaustive grid search with a Keras classifier (www.tensorflow.org/api_docs/

python/tf/keras/wrappers/scikit_learn/KerasClassifier) model. It utilizes an 

implementation of the scikit-learn classifier API for Keras.

�Data and (Preliminary) Keras Model
First, you create a simple function to synthesize and compile a Keras model with some 

tunable arguments built in:

from tf.keras.models import Sequential

from tf.keras.layers import Dense

def create_model():

    # create model

    model = Sequential()

    model.add(Dense(30, input_dim=8, activation='relu'))

    model.add(Dense(15, activation='relu'))

    model.add(Dense(1, activation='sigmoid'))

    # Compile model

    model.compile(loss='binary_crossentropy',
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                  optimizer='adam',

                  metrics=['accuracy'])

    return model

You tackle a simple binary classification task using the popular Pima Indians 

Diabetes dataset (www.kaggle.com/uciml/pima-indians-diabetes-database). This 

dataset is originally from the National Institute of Diabetes and Digestive and Kidney 

Diseases (www.niddk.nih.gov/). The objective of the dataset is to diagnostically predict 

whether or not a patient has diabetes, based on certain diagnostic measurements 

included in the dataset.

You do some minimal data preprocessing including scaling the feature data with 

MinMaxScaler from scikit-learn. You can pass this X_scaled vector to the special wrapper 

class you will create.

�The KerasClassifier Class
This is the special wrapper class from Keras that enmeshes the scikit-learn classifier 

API with Keras parametric models. You can pass on various model parameters 

corresponding to the create_model function, and other hyperparameters like epochs 

and batch size to this class. Here is the code:

from tf.keras.wrappers.scikit_learn import KerasClassifier

model = KerasClassifier(build_fn=create_model,

                        epochs=10,

                        batch_size=32,

                        verbose=0)

Note how you pass on your model creation function as the build_fn argument. This 

is an example of using a function as a first-class object in Python (https://dbader.org/

blog/python-first-class-functions) where you can pass on functions as regular 

parameters to other classes or functions.

For now, you have fixed the batch size and the number of epochs you want to run 

your model for because you just want to run cross-validation on this model. Later, you 

will treat them as hyperparameters and do a full grid search over them to find the best 

combination.

Chapter 5  Modular and Productive Deep Learning Code

http://www.kaggle.com/uciml/pima-indians-diabetes-database
http://www.niddk.nih.gov/
https://dbader.org/blog/python-first-class-functions
https://dbader.org/blog/python-first-class-functions


150

�Cross-Validation with the Scikit-learn API
Here is the code to build a 10-fold cross-validation sweep with the Keras model. First, 

you must import the estimators from the model_selection module of scikit-learn. 

Thereafter, you can simply run the model with this code, where you pass on the 

KerasClassifier object you built earlier along with the feature and target vectors. 

The important parameter here is the cv where you pass the kfold object. This tells the 

cross_val_score estimator to run the Keras model with the data provided, in a 10-fold 

stratified cross-validation setting.

from sklearn.model_selection import StratifiedKFold

from sklearn.model_selection import cross_val_score

num_folds = 10

kfold = StratifiedKFold(n_splits=num_folds,

                        shuffle=True)

cv_results = cross_val_score(model,

                          X_scaled, Y,

                          cv=kfold,

                          verbose=2)

The output variable cv_results is a NumPy array consisting of all of the accuracy 

scores. Accuracy is the metric you coded in your model compiling process. Obviously, 

you could have chosen any other classification metric like precision or recall, and in that 

case, that metric would have been calculated and stored in the cv_results array.

You can easily calculate the average and standard deviation of the 10-fold CV run 

to estimate the stability of the model predictions. This is one of the primary utilities of a 

cross-validation run and now you can gauge the stability of any Keras model using this 

approach.

�Grid Search with a Updated Model
In this example, you will search over the following hyperparameters:

•	 Activation function

•	 Optimizer type

•	 Initialization method
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•	 Batch size

•	 Number of epochs

However, for this to work, you must integrate the first three of these parameters into 

your model definition code:

def create_model_grid(activation = 'relu',

                      optimizer='rmsprop',

                      init='glorot_uniform'):

    # create model

    model = Sequential()

    if activation=='relu':

        model.add(Dense(12, input_dim=8,

                        kernel_initializer=init, activation='relu'))

        model.add(Dense(8, kernel_initializer=init, activation='relu'))

    if activation=='tanh':

        model.add(Dense(12, input_dim=8,

                        kernel_initializer=init, activation='tanh'))

        model.add(Dense(8, kernel_initializer=init, activation='tanh'))

    if activation=='sigmoid':

        model.add(Dense(12, input_dim=8,

                        kernel_initializer=init, activation='sigmoid'))

        model.add(Dense(8, kernel_initializer=init, activation='sigmoid'))

    model.add(Dense(1, kernel_initializer=init, activation='sigmoid'))

    # Compile model

    model.compile(loss='binary_crossentropy',

                  optimizer=optimizer,

                  metrics=['accuracy'])

    return model

Then, you create the same KerasClassifier object as before but call it model_grid:

model_grid = KerasClassifier(build_fn=create_model_grid, verbose=0)
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Make the exhaustive hyperparameter search space size as 3 × 3 × 3 × 3 × 3 = 243. 

Note that the actual number of Keras runs will also depend on the number of cross-

validation you choose, as cross-validation will be used for each of these combinations. 

In total, there will be 729 fittings of the model, 3 cross-validation runs for each of the 

243 parametric combinations. If you don’t like the full grid search, you can always try a 

randomized grid search.

Figure 5-27 shows the choices for this exhaustive grid search.

Figure 5-27.  Exhaustive grid search options

You must create a dictionary of search parameters and pass it on to the scikit-learn 

GridSearchCV estimator:

from sklearn.model_selection import GridSearchCV

param_grid = dict(activation =  activations,

                  optimizer = optimizers,

                  epochs = epochs,

                  batch_size = batches,

                  init = initializers)

grid = GridSearchCV(estimator = model_grid,

                    param_grid = param_grid,

                    cv = 3,

                    verbose = 2,)

You set the cv = 3 to reduce the time for the run. By default, it will be set to 5 by 

scikit-learn if you leave out that argument.
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What verbosity levels to choose? I t is advisable to set the verbosity of 
GridSearchCV to 2 to keep visual track of what’s going on. Remember to keep 
verbose=0 for the main KerasClassifier class, though, as you probably don't 
want to display all the gory details of training individual epochs.

After this, just fit with the scaled feature data and labels!

grid_result = grid.fit(X_scaled, Y)

How does the result look? It is just as expected from a standard scikit-learn estimator, 

with all the parameters internally stored for exploration (Figure 5-28).

Figure 5-28.  Fitted grid search estimator with all the parameters

You can find out the best combination with the best_score_ and best_params_ 

attributes from the fitted estimator. A snapshot is shown in Figure 5-29.

Figure 5-29.  Snapshot of best hyperparameter choice printed
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You did the initial 10-fold cross-validation using ReLU activation and Adam optimizer 

and got an average accuracy of 0.691. After doing an exhaustive grid search, you discover 

that a tanh activation and a rmsprop optimizer could have been better choices for this 

problem.

It is also quite straightforward to create a pandas DataFrame from the grid search 

results and analyze them further. You include the mean and standard dev scores in 

this table.

import pandas as pd

params = grid_result.cv_results_['params']

d = pd.DataFrame(params)

d['Mean'] = grid_result.cv_results_['mean_test_score']

d['Std. Dev'] = grid_result.cv_results_['std_test_score']

The DataFrame looks like Figure 5-30.

Figure 5-30.  DataFrame created from the grid search parameters
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You can create targeted visualizations from this dataset to examine which 

hyperparameters improve the performance and reduce the variation in the accuracy 

metric. Figure 5-31 shows some examples. 

Figure 5-31.  Visualizations of the grid search results
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�Summary
This chapter covered a variety of topics centered on the idea of making commonly used 

deep learning code and tasks more productive and efficient. I carried over the idea 

of modularizing the code from the previous chapter and showed hands-on examples 

with useful model building and plot functions with the Keras framework. A powerful 

construct called the Keras callback was also discussed in this context.

Next, I discussed the idea of streamlining one of the most common DL tasks that 

a data scientist can encounter: image classification. The goal was to arrive at a single 

utility function that presents a very simple API to the user. You just pass on a folder 

name to this function, and it will return a fully trained conv net model by processing all 

the images in that folder. Not only did you build this function step by step, but you also 

demonstrated the utility of such an API by applying it to a completely different dataset.

In the next section, you further utilized this function and integrated it with a special 

library that can extract and visualize activation maps for the various convolution layers 

of the DL model. Basically, you demonstrated how to visualize the inner workings of a 

complex DL model with only a few lines of code. Together, these two sections embodied 

the true journey towards productive and efficient data science involving deep learning.

Finally, you explored the topic of making hyperparameter search easy and seamless. 

Although there are many dedicated libraries and frameworks for this task, you saw a 

simple and intuitive approach using the grid search tool from scikit-learn and some 

special wrapper classes from Keras. It also demonstrated how two of the most popular 

ML libraries, Keras and scikit-learn, can work together in a seamless manner.

Making deep learning code and products fast and efficient is a huge topic by itself. 

There are countless approaches and research directions focusing on this. This chapter 

only aims to induce some fundamental ideas so that you can explore them further.
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CHAPTER 6

Build Your Own ML 
Estimator/Package
I start this chapter with the same assertion as in Chapter 4: data scientists often 

come from a background quite removed from traditional computer science/software 

engineering, such as physics, biology, statistics, economics, and electrical engineering. 

Figure Figure 6-1 confirms this. 

Figure 6-1.  Data scientists come from a wide variety of fields and professional 
experience. Source: “Where do Data Scientists Come From?” (https://medium.com/ 
indeed-engineering/where-do-data-scientists-come-from-fc526023ace)

But ultimately data scientists are expected to pick up enough programming/software 

engineering skills to be truly impactful for their organization and business. Even if data 

scientists are not writing the final production code for the ML platform/service, they are 
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expected to work in a highly integrated fashion with seasoned software development 

teams. This is essential to ensure a smooth delivery experience, flawless execution of the 

ML product, and, of course, achieve the desired business outcome.

This means that data scientists must learn how to write machine learning code 

(whether it is the final model or just some experimental prototype) efficiently.

There must be proper organization and modularization in 

their code so that it can interface well with the standard software 

engineering tools and techniques.

There must be some amount of automation in their code to 

reduce the time to explore, evaluate, and experiment with data 

and models.

Data scientists must be comfortable with writing functional 
and module tests, incorporating object-oriented principles, 

and so on.

Data scientists must also develop the habit of producing good 

documentation for their code so that it can be reusable and 

readable by other developers.

In Chapters 4 and 5, I touched upon some of these concepts, especially 

modularization and OOP principles. This chapter will take you through the journey of 

developing a lightweight but useful ML package of your own, so that you can experience 

many aspects of producing a complete piece of software for data science. In my 

experience, this exercise of writing (and publishing) an ML package teaches several 

valuable lessons to any upcoming data scientist.

�Why Develop Your Own ML Package?
There is a very succinct answer to the question posed above: so that others (anywhere in 

the world) can use your work and benefit from it.

Imagine that feeling. Your code is not restricted to a standalone Jupyter notebook. It 

is properly structured and modularized first, so that you can call the useful methods just 

like you do with your favorite Python libraries (e.g., NumPy and pandas). Going beyond 
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that, you are packaging the code in the form of a downloadable Python library, so that 

anybody in the world can install it with a single pip command and start getting a benefit 

from your work. The idea is simply illustrated in Figure 6-2.

Figure 6-2.  From a Jupyter notebook to a PyPi installer package

Some of the steps (and associated learnings) of going through this process are as 

follows:

Code organizational thinking: Publishing an open-source 

Python package forces a data scientist to plan and organize their 

code and modules meticulously.

Writing docstrings: Docstrings are an essential good practice 

in a high-quality open-source package where collaboration is 

highly welcome. The data scientist will learn the value of the same 

in this process. Good docstrings may even lead to high-quality 

documentation for the package (generally maintained in websites 

such as readthedoc.io).

Unit and functional tests: The importance of tests for good 

software development cannot be overemphasized. For data 

science, testing brings its own challenges. Package development 

will usually include writing a basic suite of test cases. This will add 

a fundamentally valuable skill to the data scientist’s repertoire.

GitHub commit and actions: Although not strictly necessary for 

publishing an open-source package, it is highly advisable to set up 

a GitHub repository and GitHub actions (commands that trigger 

based on a code change or commit, for example) for maintaining 

and updating the package (e.g., releasing new version or bug fix) 

in the long run.
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Discussing all of these aspects is beyond the scope of this book. Therefore, I will 

mainly focus on developing the code structure from the ground up. However, there are 

plenty of good tutorials on how to write good docstrings or set up GitHub actions for 

open-source packages that you are encouraged to explore.

�A Data Scientist’s Example
There are a few tutorials and guides that deal with teaching data scientists the principles 

of OOP and modular coding. However, almost all of them cover standard out-of-the-box 

OOP examples that do not appeal to a data scientist. Let me show you what I mean.

�An Arithmetic Example
If you are asked to write a program to implement addition, subtraction, multiplication, 

and division involving a couple of variables, a and b, what will you most likely do? You 

will most likely open up a Jupyter notebook and type the following in a cell, hit Shift-

Enter, and get the result:

a+b

a-b

a*b

a/b

If you like to tidy things up by working with functions, then you may do the following 

as well:

def add(a,b):

    return a + b

def subtract(a,b):

    return a - b

...

But will you go as far as defining (complete with an initializer method) a Calc class 

and putting these functions inside that class as methods? These are all operations of a 

similar nature, and they work on similar data. Why not encapsulate them within a single 

higher-order object then? Why not the following code?

Chapter 6  Build Your Own ML Estimator/Package



161

class Calc:

    def __init__(self,a,b):

        self.a = a

        self.b = b

    def add(self):

        return self.a+self.b

    def sub(self):

        return self.a-self.b

    def mult(self):

        return self.a*self.b

    def div(self):

        return self.a/self.b

No, most probably you won’t do this. It does not make sense to do it for this problem 

either. But the idea is valid: if you have data and functions (methods, as they are called in 

the parlance of OOP) that can be combined logically, then they should be encapsulated 

in a class.

But it looks like too much work just to get quick answers to some simple numerical 

computations. So, what’s the point? Data scientists are often valued on whether they can 

get the right answer to the data problem, not on what elaborate programming constructs 

they use in their code.

These kinds of examples are used to teach data scientists about OOP principles. 

They are perfectly valid examples and cover all the necessary know-how of writing good 

object-oriented Python code. However, the spark is missing as the final product can be 

rather pedantic, like an arithmetic calculator.

�Data Scientists Use OOP All the Time
If data scientists are not coding this way, is it not the case that they really don’t need to 

use these elaborate programming constructs?

Wrong.

Without consciously being aware, data scientists make heavy use of the benefits of 

the OOP paradigm. All the time.

Do you remember plt.plot after import matplotlib.pyplot as plt? Those . 
symbols? You have a dash of object-oriented programming right there.
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Or do you remember being happy to learn the cool trick in the Jupyter notebook 

of hitting Tab after putting a DOT (.), thereby showing all the functions that can be 

associated with an object (Figure 6-3)?

Figure 6-3.  The OOP paradigm makes it easy to access methods and parameters

This example shows adherence to a logical consistency. Without following an OOP 

paradigm, we might have to name functions like linear_model_linear_regression_

fit, linear_model_linear_regression_predict, and so on. They wouldn’t be grouped 

under a common logical unit.

Why? Because they are different functions and work on a different set of data. While 

the fit function expects both training features and targets, predict needs only a test 

data set. The fit function is not expected to return anything, while predict is expected 

to return a set of predictions.

So, why are they visible under the same drop-down? In spite of being different, they 

have the commonality that they can both be imagined to be essential parts of the overall 

linear regression process. We expect a linear regression to fit some training data and then 

be able to predict for future unseen data. We also expect the linear regression model to 

provide some indication about how good the fit was, generally in the form of a single 

numeric quantity or score called the coefficient of regression or R². As expected, we see 

a function score, which returns exactly that R² number, also hanging around fit and 

predict. It is neat and clean. Data, functions, and parameters are cohabitating inside a 

single logical unit (Figure 6-4).
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Figure 6-4.  Data, functions, and parameters cohabitating inside a single 
logical unit

�How Was It Made?
It was possible because somebody (the developers at the scikit-learn project) thought 

about the linear regression as a high-level process and decided what essential actions it 

should serve and what critical parameters it should inform its users about. Somebody 

made a high-level class called LinearRegression under which all those apparently 

disparate functions can be grouped together for easy bookkeeping and enhanced usability.

As data scientists, once you import this class from the library, you just have to create 

an instance of the class (called lm). That’s it. All the functions, grouped under the class, 

became accessible to you through that newly defined instance. If you are not satisfied 

with some of the internal implementation of the functions, you can work on them and 

reattach them to the main class after modification. Only the code of the internal function 

changes, nothing else. The idea is visually illustrated in Figure 6-5.

Figure 6-5.  Attaching functions and methods to the class as needed

In the following sections, you will examine the step-by-step process and thinking 

that goes into making such a useful ML estimator from scratch. You will start with 

basic data and parameters, attach methods as needed, and group them under suitable 

logical units.
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�Linear Regression Estimator—with a Twist
A traditional introduction to OOP will have plenty of examples using classes such 

as animals, sports, and geometric shapes. But for data scientists, why not illustrate 

the concepts using the example of an object they use every day in their code: an ML 

estimator? It’s just like the LinearRegression object from the scikit-learn library, shown 

in the picture above.

Next, you will go through the steps of building a simple linear regression (single or 

multivariate) estimator class following the OOP paradigm. Yes, it is the good ol’ linear 

regression class. It has the usual fit and predict methods as in the LinearRegression 

class from scikit-learn. But it has a twist: it provides many more functionalities. Figure 6-6 

shows a sneak peek.

Figure 6-6.  A linear regression estimator with extra statistical functions and plot 
utilities

As shown above, this estimator is richer than the scikit-learn estimator in the 

sense that it has, in addition to standard fit, predict, and R² score functions, a host of 

other utilities that are essential for a linear regression modeling task, especially for 

data scientists and statistical modeling folks who not only want to predict but also 

would like to
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•	 Measure the goodness of the fit

•	 Verify the assumptions of the linear regression

•	 Check for multicollinearity in the data

•	 Detect outliers

Let’s see how to start building this.

�How Do You Start Building This?
In this section, I will show how to start with the ML estimator and add essential methods. 

The next sections will cover adding more utility functions, grouping them, and so on. I 

want to note, however, that much of the actual code will be skipped for brevity purposes 

and only the essential concepts will be shown with the code snippets. For the complete 

code, you can check the Jupyter notebook or the Python script files provided with 

the book.

�Base Class Definition
Let’s start with a simple code snippet to define the base class: MyLinearRegression. 

Here, self denotes the object itself and __init__ is a special function that is invoked 

when an instance of the class is created somewhere in the code. As the name suggests, 

__init__ can be used to initialize the class with necessary parameters (if any). Let’s also 

add a simple descriptor with the __repr__ method.

import numpy as np

class MyLinearRegression:

    def __init__(self, fit_intercept=True):

        self.coef_ = None

        self.intercept_ = None

        self._fit_intercept = fit_intercept

    def __repr__(self, fit_intercept=True):

        return "I am a Linear Regression model!"

These methods with double underscores (__init__ and __repr__) serve special 

purpose inside a Python class and are called dunder methods.
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What are Dunder methods? T hey are magic methods inside a Python class 
definition that can help override functionality for built-in functions for custom 
classes. They are called so because of the presence of the double underscores in 
their names. Some common ones are

__init__: Initializes the class with default parameters and states

__repr__: A generic description of the class

__str__:  A string description of some property of the class when one prints it with the print function.

__len__: Returns the length of the class/object when it makes sense (e.g., if the class represents 
some kind of collection or array)

Here is a nice article about them: “Dunder/Magic Methods in Python” (www.
section.io/engineering-education/dunder-methods-python/).

Basically, you can now instantiate an object and print it:

mlr = MyLinearRegression()

print(mlr)

>> I am a Linear Regression model!

�Adding Useful Methods
So far, you have a correct but useless class definition because it does not do any machine 

learning. In this section, you start adding some useful methods and see how to test them.

�The Fitting Method

First, let’s add the most useful method for an ML estimator: the fit method that 

executes the training/fitting with the given data. Here is the code. Note that this function 

definition will go inside the base class.

def fit(self, X, y):

    """

    Fit model coefficients.

    Arguments:

    X: 1D or 2D numpy array

    y: 1D numpy array
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    """

    # Data type check and conversion

    if type(X) is not np.ndarray:

        try:

            X = np.array(X)

        except:

            print("Could not convert features to Numpy array")

            return None

    if type(y) is not np.ndarray:

        try:

            y = np.array(y)

        except:

            print("Could not convert labels to Numpy array")

            return None

    # check if X is 1D or 2D array

    if len(X.shape) == 1:

        X = X.reshape(-1,1)

    # add bias if fit_intercept is True

    if self._fit_intercept:

        X_biased = np.c_[np.ones(X.shape[0]), X]

    else:

        X_biased = X

    # closed form solution

    xTx = np.dot(X_biased.T, X_biased)

    inverse_xTx = np.linalg.inv(xTx)

    xTy = np.dot(X_biased.T, y)

    coef = np.dot(inverse_xTx, xTy)

    # set attributes

    if self._fit_intercept:

        self.intercept_ = coef[0]

        self.coef_ = coef[1:]

    else:

        self.intercept_ = 0

        self.coef_ = coef
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The code is long but self-explanatory with the help of docstrings and carefully added 

comments. You use the NumPy matrix inversion (np.linalg.inv) to solve the linear 

regression problem from an ordinary least-square (https://en.wikipedia.org/wiki/

Ordinary_least_squares) point of view and obtain the best-fitting coefficients. Also, 

note the rudimentary checks (if type(X) is not np.ndarray) and transformation of 

the data shape (X = X.reshape(-1,1)) that you put in the beginning to make sure that 

the linear algebra calculations are done without any error.

�Testing the Method

Let’s test the method by generating some random data:

X = 10*np.random.random(size=(20,2))

y = 3.5*X.T[0]-1.2*X.T[1]+np.random.randn(20)

So, you have a linear relationship between the 2D vector X and the 1D vector y. You 

can visualize the linear relationship in Figure 6-7 (note the intentional noise added to 

the data)

Figure 6-7.  Plot of the test (randomly generated) data
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Create a fresh instance:

mlr = MyLinearRegression()

You can try to print the coefficients (mlr.coef_) but with a check on the mlr.fitted_ 

state. If not fitted, you print that message.

if mlr.fitted_:

    print("Regression coefficients:", mlr.coef_)

else:

    print("Not fitted yet")

>> Not fitted yet

Then you fit, as follows:

mlr.fit(X,y)

Now, for the same code for printing the coefficients, you get the expected results:

if mlr.fitted_:

    print("Regression coefficients:", mlr.coef_)

else:

    print("Not fitted yet")

>> Regression coefficients: [ 3.40807972 -1.23152211]

So, the actual coefficients are 3.5 and -1.2, but due to the random noise added, you 

get the best fit as approximately 3.4 and -1.23. You can also get the intercept as

print("The intercept term is given by: ", mlr.intercept_)

>> The intercept term is given by:  0.7673816772685598

Note that the estimated coefficients and intercept will change every time you run 

this code because of the random noise addition to the data generation process.
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�Prediction Method

Now, let’s add the predict method to the class:

def predict(self, X):

    """

    Output model prediction.

    Arguments:

    X: 1D or 2D numpy array

    """

    # check if X is 1D or 2D array

    if len(X.shape) == 1:

        X = X.reshape(-1,1)

    # Calculates only if already fitted

    if self.fitted_:

        self.predicted_ = self.intercept_ + np.dot(X, self.coef_)

    else:

        print("Not fitted yet")

        return None

    return self.predicted_

�Testing Prediction

You use the old (training) data for fitting and a set of new points for prediction. Here is 

sample code for testing:

num_new_samples = 10

X_new = 10*np.random.random(size=(num_new_samples,2))

y_new = 3.5*X_new.T[0]-1.2*X_new.T[1]+np.random.randn(num_new_samples)

mlr = MyLinearRegression()

mlr.fit(X,y)

y_pred=mlr.predict(X_new)

When you plot the predicted vs. true values, you get the result shown in Figure 6-8.
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Figure 6-8.  Predicted vs. true values of the y-vector

Now that you have sorted out the quintessential methods, let’s discuss adding some 

utility methods like visualization and statistical analysis.

�Adding Utility Methods
At this point, you can start expanding your regression class and add stuff that is not even 

present in the standard scikit-learn class! For example, you always want to see how the 

fitted values compare to the ground truth. This is what was plotted above. But instead of 

having that code lying around in the Jupyter notebook, you can create a function for that 

and add it to the class.

�Method for Plotting True vs. Predicted Values

Let’s call it plot_fitted. Note that a method is like a normal function. It can take 

additional arguments. Here, you have an argument reference_line (default set to 

False) that draws a 45-degree reference line on the fitted vs. true plot. Also, note the 

docstring description.

def plot_fitted(self,reference_line=False):

    """

    Plots fitted values against the

    true output values from the data

    Arguments:

    reference_line: A Boolean switch to
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    draw a 45-degree reference line on the plot

    """

    if self.fitted_:

        y_pred = np.dot(X,self.coef_) + self.intercept_

        plt.title("True vs. fitted values",fontsize=14)

        plt.scatter(y,y_pred,

                    s=150,alpha=0.75,

                    color='orange',

                    edgecolor='k')

        if reference_line:

            plt.plot(y,y,c='k',linestyle='dotted')

        plt.xlabel("True values")

        plt.ylabel("Fitted values")

        plt.grid(True)

        plt.show()

    else:

        print("Not fitted yet")

        return None

Note that you have a prediction going on inside the plotting code (y_pred= 

np.dot(X,self.coef)+self.intercept) and then you use that vector for plotting. As 

always, you execute the plotting code only after ensuring that some data has been fitted 

(if self.fitted_).

Here is code to demonstrate the utility of this method. With just three lines of 

code, you create a brand new estimator, fit the data, and plot the ground truth vs. 

predicted values!

# A fresh estimator

mlr = MyLinearRegression()

# Fitting with the data

mlr.fit(X,y)

# Call the 'plot_fitted' method

mlr.plot_fitted()

Figure 6-9 shows the result. It’s similar to Figure 6-8 but using a built-in method 

instead of standalone code.
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Figure 6-9.  Predicted vs. true values using the built-in plotting utility

Here are many more useful plotting utilities to add:

•	 Pairplots (plots the pairwise relation between all features and 

outputs, much like the pairs function in the R language)

•	 Fitted vs. residual plot (this falls under diagnostic plots for the linear 

regression i.e., to check the validity of the fundamental assumptions 

of regression (https://towardsdatascience.com/how-do-you-

check-the-quality-of-your-regression-model-in-python-

fa61759ff685)

•	 Histogram and the quantile-quantile (Q-Q) plot of the residuals 

(this checks for the assumption of normality of the error distribution)

�All Kinds of Error Metrics

You can add a bunch of error metrics to the base class like this:

def sse(self):

        '''returns sum of squared errors (model vs actual)'''

        squared_errors = (self.resid_) ** 2

        self.sq_error_ = np.sum(squared_errors)

        return self.sq_error_

def sst(self):

    '''returns total sum of squared errors (actual vs. avg(actual))'''
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    avg_y = np.mean(self.target_)

    squared_errors = (self.target_ - avg_y) ** 2

    self.sst_ = np.sum(squared_errors)

    return self.sst_

def r_squared(self):

    '''returns calculated value of r^2'''

    self.r_sq_ = 1 - self.sse()/self.sst()

    return self.r_sq_

# More metrics here

def pretty_print_stats(self):

    '''returns report of statistics for a given model object'''

    items = ( ('sse:', self.sse()), ('sst:', self.sst()),

             ('mse:', self.mse()), ('r^2:', self.r_squared()),

              ('adj_r^2:', self.adj_r_squared()))

    for item in items:

        print('{0:8} {1:.4f}'.format(item[0], item[1]))

For this to work, you must calculate one essential property called residuals (self.

resid_) when fitting the data. So, add that code to the fit method, of course:

# features and data

self.features_ = X

self.target_ = y

< ... >

# Predicted/fitted y

self.predicted_ = np.dot(X,self.coef_) + self.intercept_

# Residuals

self.resid_ = self.target_ - self.predicted_

< ... >

However, instead of cluttering the base class with so many methods, let’s go back to 

the idea of logical consistency and grouping and use more OOP principles to organize 

the code better. Let’s see how in the following section.
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�Do More in the OOP Style
As you enthusiastically plan utility methods to add to the class, you recognize that this 

approach may make the code of the main class very long and difficult to debug. To 

solve this conundrum, you can make use of another beautiful principle of OOP called 

inheritance (www.geeksforgeeks.org/inheritance-in-python/).

�Separate Plotting Classes
You recognize that all plots are not of the same type. Pairplots and fitted vs. true data 

plots are of similar nature as they can be derived from the data only. Other plots are 

related to the goodness-of-fit and residuals. Therefore, you can create two separate 

classes with those plotting functions: Data_plots and Diagnostic_plots. Furthermore, 

you can also define your main MyLinearRegression class in terms of these utility classes. 

That is an instance of inheritance. This whole approach is shown in Figure 6-10.

Figure 6-10.  Define several distinct plotting classes and use them in the base class

Partial code for the Diagnostic_plots is as follows:

class Diagnostics_plots:

    """

    Diagnostics plots and methods

    Arguments:

    fitted_vs_residual: Plots fitted values vs. residuals

    fitted_vs_features: Plots residuals vs all feature variables in a grid
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    histogram_resid: Plots a histogram of the residuals (can be normalized)

    shapiro_test: Performs Shapiro-Wilk normality test on the residuals

    �qqplot_resid: Creates a quantile-quantile plot for residuals comparing 

with a normal distribution

    """

    def __init__():

        pass

    def fitted_vs_residual(self):

        """Plots fitted values vs. residuals"""

<...>

And for the Data_plots:

class Data_plots:

    """

    Methods for data related plots

    pairplot: Creates pairplot of all variables and the target

    �plot_fitted: Plots fitted values against the true output values from 

the data

    """

    def __init__():

        pass

    def pairplot(self):

        �"""Creates pairplot of all variables and the target using the 

Seaborn library"""

        if not self.is_fitted:

            print("Model not fitted yet!")

            return None

<...>

So, the definition of the main class changes slightly now:

class MyLinearRegression(Data_plots, Diagnostics_plots):

    def __init__(self, fit_intercept=True):
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        self.coef_ = None

        self.intercept_ = None

        self._fit_intercept = fit_intercept

<...>

The class definition MyLinearRegression(Data_plots,Diagnostics_plots) allows 

the main class to inherit all the beautiful plotting methods defined in the plotting classes. 

Now you can check the quality of the regression fit by plotting the diagnostics and data 

plots with only three or four lines of code:

mlr = MyLinearRegression()

mlr.fit(X,y)

The fitted vs. residual plot is shown in Figure 6-11:

mlr.fitted_vs_residual()

Figure 6-11.  Fitted vs. residuals plot

Histogram of the residuals (Figure 6-12):

mlr.histogram_resid()
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Figure 6-12.  Histogram of the normalized residuals

Q-Q plot of the residuals (Figure 6-13): 

mlr.qqplot_resid()

Figure 6-13.  Quantile-quantile plot of the residuals

The modularization of code is at work here. You can modify and improve the core 

plotting utilities without touching the main class. This is a highly flexible and less error-

prone approach that increases the productivity and efficiency of the data scientist.
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�More Supporting Classes and Syntactic Sugar
Just for completeness, consider the following:

•	 Metrics class for computing various regression metrics: SSE, SST, 

MSE, R², and Adjusted R².

•	 Outliers class to plot Cook’s distance (https://en.wikipedia.org/

wiki/Cook%27s_distance) leverage, and influence plots

•	 Multicollinearity class to compute variance inflation factors (VIF; 

https://en.wikipedia.org/wiki/Variance_inflation_factor)

All in all, the grand scheme looks like Figure 6-14.

Figure 6-14.  Linear regression estimator with all the supporting classes

Once you inherit other classes, they behave just like the usual Python module you 

are familiar with. So, you can add utility methods to the main class to execute multiple 

methods from a sub-class together. For example, the following method runs all the usual 

diagnostics checks at once. Note how you are accessing the plot methods by putting a 

simple .DOT (i.e. Diagnostics_plot.histogram_resid), just like accessing a function 

from pandas or NumPy library.

def run_diagnostics(self):

    """Runs diagnostics tests and plots"""

    Diagnostics_plots.fitted_vs_residual(self)

    Diagnostics_plots.histogram_resid(self)
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    Diagnostics_plots.qqplot_resid(self)

    print()

    Diagnostics_plots.shapiro_test(self)

�Modularization: Importing the Class as a Module
Although not a canonical OOP principle, the essential advantage of following the OOP 

paradigm is to be able to modularize your code. You can experiment and develop all this 

code in a standard Jupyter notebook. But for maximum modularity, consider converting 

the notebook into a standalone executable Python script (with a .py extension). As a 

good practice, remove all the unnecessary comments and test code from this file and 

keep only the classes together.

Once you do that, you can import the MyLinearRgression class from a completely 

different notebook. This is often the preferred way of testing your code as this does 

not touch the core model but only tests it with various data samples and functional 

parameters. Figure 6-15 shows a snapshot of a clean notebook where you import the 

class from a separate module. 

Figure 6-15.  Testing the ML estimator by importing it from a separate module
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�Publishing It as a Python Package
At this point, you can consider releasing this Python script as a standalone Python 

package (https://towardsdatascience.com/build-your-first-open-source-python-

project-53471c9942a7) that does fitting, prediction, plotting, diagnostics, and more. 

Although you can host the package on your personal website or on the cloud, the most 

obvious place to put it is in the official Python package repository, PyPI. This is the place 

from where anybody in the world can download and install your package with the pip 

command. For example, if your package is named my-ml-package, then anybody can run 

pip install my-ml-package and the Python library will be installed on their machine.

�Special Instructions for PyPI Hosting
To host on PyPI, you must follow certain steps:

	 1.	 Create a setup.py file (https://godatadriven.com/blog/a-

practical-guide-to-using-setup-py/).

	 2.	 Create the proper directory structure (if you have files other 

than the main script and setup.py, such as sample data and test 

scripts).

	 3.	 Put the files in a GitHub repository.

	 4.	 Set up GitHub actions for regular commits and updates.

	 5.	 Create documentation using a tool like Sphinx and link it to the 

GitHub Readmes.

	 6.	 And so on.

These specific instructions are already well explained in the link provided above, so I 

don’t repeat them in this book.

Of course, you should a lot of docstring descriptions (www.geeksforgeeks.org/

python-docstrings/), examples of usage of a function, assertion checks (https://

airbrake.io/blog/python/python-assertionerror), and unit tests (https://

softwaretestingfundamentals.com/unit-testing/) to make it a good package. But 

since you built the code from scratch (following some key OOP principles), you learned a 

lot of valuable lessons. You obtained a taste of developing a useful piece of software from 

the ground up.
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What is PyPI? T he Python Package Index or PyPI is the official third-party 
software repository for the Python language. It is analogous to the CPAN repository 
for Perl or the CRAN repository for R. PyPI is run by the Python Software Foundation 
(PSF), which maintains and develops the official Python version release.

�GitHub Integration
My version of the open-source package is here: https://github.com/tirthajyoti/mlr 

(Figure 6-16). Although a GitHub repo is not mandatory for publishing a Python package 

on PyPI, it is highly recommended to create and maintain one. GitHub integration 

can make updating and version controlling of your package easy and painless. With 

a proper GitHub setup, all you have to do is to push/commit the latest updated files 

onto your GitHub and the PyPI version will be updated as well (after executing a set of 

special commands that tells PyPI to read the updated files from your GitHub repo). The 

documentation for the same can be found here: https://mlr.readthedocs.io/en/

latest/.

Figure 6-16.  GitHub repo snapshot of the linear regression package
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�Summary
In this chapter, you focused on building a linear regression estimator from the ground 

up. You aimed for a clean and simple API, like what is provided by a scikit-learn 

estimator. However, you added quite a few additional methods and utilities (e.g., for 

visualization and statistical inference) to this class than what is found in a standard 

scikit-learn estimator.

In the process, you learned how to plan and organize the code for building such an 

ML estimator and how to take advantage of the OOP paradigm using inheritance and 

encapsulation. The design was not meant to be set in stone, but rather act as a guide 

for you to plan and build your own data science APIs for various business and scientific 

applications.

You also learned additional steps that a data scientist must take to publish this 

code as a full-fledged Python package (on the PyPI server) and how this can teach you 

valuable skills.
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CHAPTER 7

Some Cool Utility 
Packages
Python has an amazing ecosystem for data science work, starting from numerical 

analysis to advanced deep learning or reinforcement learning, with statistical modeling 

and visualization thrown in as well. A great open-source culture keeps new and exciting 

developments coming and thriving. Data scientists can learn, contribute code, share 

their experience, help debug, and support each other in this environment.

There are some predominant libraries and packages in this ecosystem that are used 

by almost all data scientists in their daily job. I touch upon them in the next section. 

However, there are also some little-known Python packages (the so-called hidden 

gems, as in Figure 7-1) that can help you do common data science jobs faster and more 

efficiently. They are not general-purpose large projects like NumPy or pandas. Instead, 

they focus on some niche aspects of similar data science tasks and do them well.

Figure 7-1.  There are hidden gems beyond the great Python data science 
ecosystem
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To be highly productive in data science, you must stay abreast of these new 

developments and embrace these focused utility packages wherever they makes sense. 

In this chapter, I touch upon a few such nifty packages and show some hands-on 

examples of efficient data science. The goal is to introduce the idea of exploration to you 

so that you take full advantage of the great Python data science zoo.

�Build Pipelines Using pdpipe
pandas is an amazing library in the Python ecosystem for data analytics and machine 

learning. It forms the perfect bridge between the data world, where Excel/CSV files and 

SQL tables live, and the modeling world, where scikit-learn and TensorFlow perform 

their magic.

A data science flow is most often a sequence of steps: datasets must be cleaned, 

scaled, and validated before they can be used by that powerful machine learning 

algorithm. These tasks can, of course, be done with many single-step functions/methods 

that are offered by packages like pandas. However, an elegant alternative is to use a 

pipeline. In almost all cases, a pipeline reduces the chance of error and saves time by 

automating repetitive tasks. In the data science world, great examples of packages with 

pipeline features are dplyr (https://dplyr.tidyverse.org/) in the R language and the 

scikit-learn module composition and pipelines (https://scikit-learn.org/stable/

modules/compose.html) in the Python ecosystem.

pandas also offer a pipe method that can be used for similar purposes with user-

defined functions. However, in this section, I am going to discuss a wonderful little 

library called pdpipe, which specifically addresses this pipelining issue with pandas 

DataFrame and solves the problem in an elegant and intuitive way.

�The Dataset
You will use a dataset of US housing prices (downloaded from Kaggle at www.kaggle.

com/vedavyasv/usa-housing). You can load the dataset in pandas. Its summary statistics 

are shown in Figure 7-2.
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Figure 7-2.  Summary statistics of the dataset used for the demo

However, this is only a partial view. It also contains an Address field (Figure 7-3) that 

contains raw text data. This does not show up in the summary stats above because it is 

not a numeric column.

Figure 7-3.  The dataset contains an Address field with raw text

Let’s add a small transformation based on the Avg. Area Number of Bedrooms 

column. Here is the code:

def size(n):
    if n<=4:
        return 'Small'
    elif 4<n<=6:
        return 'Medium'
    else:
        return 'Big'

df['House_size']=df['Avg. Area Number of Rooms'].apply(size)
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You define a function named size and apply it to the Avg. Area Number of Rooms 

column. The resulting dataset looks like Figure 7-4.

Figure 7-4.  Dataset after applying the house size transformation

�Start Laying Pipes
Start with the simplest possible pipeline, consisting of just one operation. Let’s say the 

machine learning team and the domain experts say that they think they can safely ignore 

the Avg. Area House Age data for modeling. Therefore, you can drop this column from 

the dataset. For this task, you create a pipeline object named drop_age with the ColDrop 

method from pdpipe and pass the DataFrame to this pipeline:

import pdpipe as pdp

drop_age = pdp.ColDrop(‘Avg. Area House Age’)

df2 = drop_age(df)

That’s it. The resulting DataFrame, as expected, looks like Figure 7-5.

Figure 7-5.  Dataset after dropping the Age column using a pipe operation
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�Chain Stages of Pipeline Simply by Adding

Now, single pipes are fun, but pipelines are truly useful and practical only when they 

have multiple (connected) stages. There are multiple methods by which you can 

do that in pdpipe. However, the simplest and most intuitive approach is to use the + 

operator. It is like hand-joining pipes. Just add one to another.

Let’s say, apart from dropping the Age column, you also want to one-hot-encode the 

House_size column so that a classification or regression algorithm can be run on the 

dataset easily. You can accomplish this simply by writing this code:

pipeline = pdp.ColDrop('Avg. Area House Age')

pipeline += pdp.OneHotEncode(‘House_size’)

df3 = pipeline(df)

So, you created a pipeline object first with the ColDrop method to drop the Avg. 

Area House Age column. Thereafter, you simply added the OneHotEncode method to this 

pipeline object with the usual Python += syntax. The new pipeline now processes the 

DataFrame object. The resulting DataFrame is shown in Figure 7-6. Note the additional 

indicator columns House_size_Medium and House_size_Small created from the one-

hot-encoding process.

Figure 7-6.  Dataset after one-hot-coding added to the pipeline
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�Dropping Rows Based on Their Values

Next, you may want to remove rows of data based on their values. Specifically, you may 

want to drop all the data where the house price is less than 250,000. You can use the 

ApplybyCol method to apply any user-defined function to the DataFrame. You can also 

use the method ValDrop to drop rows based on a specific value. You can easily chain 

these methods to your pipeline to selectively drop rows (you are still adding to your 

existing pipeline object which already does the other jobs of column dropping and one-

hot-encoding). You accomplish this by creating a small user-defined function named 

price_tag and then using it inside the pipe:

def price_tag(x):

    if x>250000:

        return 'keep'

    else:

        return 'drop'

pipeline+=pdp.ApplyByCols('Price',price_tag,

                          'Price_tag',drop=False)

pipeline+=pdp.ValDrop(['drop'],'Price_tag')

pipeline+= pdp.ColDrop('Price_tag')

Note, in the code above, for the first operation, the second argument of the ApplyByCols 

method represents the user-defined function whereas the third argument named Price_

tag represent the name of the resulting column. Figure 7-7 shows the dataset.

Figure 7-7.  Dataset after the price tag function is applied
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Now the ValDrop method comes in and it looks for the string drop in the Price_tag 

column and drops those rows that match. Finally, the ColDrop method removes the 

Price_tag column, cleaning up the DataFrame. Essentially, this Price_tag column is 

only needed temporarily, to tag specific rows, and should be removed after it serves its 

purpose.

The efficient aspect is that all of this is accomplished by simply chaining stages of 
operations on the same pipeline. At this point, you can look back and see what your 

pipeline does to the DataFrame right from the beginning:

•	 Drops a specific column

•	 One-hot-encodes a categorical data column for modeling

•	 Tags data based on a user-defined function

•	 Drops rows based on the tag

•	 Drops the temporary tagging column

Six lines of code for all of these actions:

pipeline = pdp.ColDrop('Avg. Area House Age')

pipeline+= pdp.OneHotEncode('House_size')

pipeline+=pdp.ApplyByCols('Price',price_tag,

                          'Price_tag',drop=False)

pipeline+=pdp.ValDrop(['drop'],'Price_tag')

pipeline+= pdp.ColDrop('Price_tag')

df5 = pipeline(df) # Final DataFrame

Moreover, the latest version of the package implements another direct method to do 

all of this in a single line of code like this:

pdp.RowDrop({'Price': lambda x: x <= 250000})

�scikit-learn and NLTK Stages
There are many more useful and intuitive DataFrame manipulation methods available 

for in pdpipe that can make the data science tasks productive and efficient. Additionally, 

even some operations from the scikit-learn and NLTK packages are included in pdpipe 

for making awesome pipelines.
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�Scaling Data with a scikit-learn Method

For example, one of the most common tasks for building ML models is the scaling of 

the data. scikit-learn offers a few different types of scaling such as min-max scaling or 

standardization-based scaling (where the mean of a data set is subtracted followed 

by division by standard deviation). You can directly chain such scaling operations in a 

pipeline. The following code demonstrates the use:

exclude = ['House_size_Medium','House_size_Small']

pipeline_scale = pdp.Scale('StandardScaler', exclude_columns=exclude)

df6 = pipeline_scale(df5)

Here you apply the StandardScaler estimator from the scikit-learn package to 

transform the data for clustering or neural network fitting. You can selectively exclude 

columns that do not need such scaling, as you have done here for the indicator columns 

House_size_Medium and House_size_Small. The resulting DataFrame shows the effect 

of scaling (Figure 7-8).

Figure 7-8.  Dataset after standard normal scaling was applied to 
selected columns

�Tokenizer from NLTK

The Address field in your DataFrame is useless right now. However, if you can extract ZIP 

codes or states from those strings, they might be useful for some form of visualization or 

machine learning task.

Chapter 7  Some Cool Utility Packages



193

You can use a word tokenizer for this purpose. NLTK is a popular and powerful 

Python library for text mining and natural language processing (NLP) and it offers a 

range of tokenizer methods. Here, you can use one such tokenizer to split up the text 

in the Address field and extract the name of the state from that. You recognize that the 

name of the state is the penultimate word in the address string. Therefore, you can create 

the following chained pipeline for this job:

def extract_state(token):

    return str(token[-2])

pipeline_tokenize = pdp.TokenizeWords('Address')

pipeline_state = pdp.ApplyByCols('Address',extract_state,

result_columns='State')

pipeline_state_extract = pipeline_tokenize + pipeline_state

df7 = pipeline_state_extract(df6)

The resulting DataFrame is shown in Figure 7-9. Note the new State column.

Figure 7-9.  Dataset after NLTK tokenizer method was applied to the 
Address column
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�All Together
Figure 7-10 summarizes all the operations shown in this demo.

Figure 7-10.  Dataset after a NLTK tokenizer method was applied to the 
Address column

All of these operations may be used as frequently as needed on similar types of 

datasets. Having a simple set of sequential code blocks to execute as a preprocessing 

operation enhances the productivity of the data scientist. Pipelining is the key to 

achieving that uniform set of sequential code blocks. pandas is the most widely used 

Python library for such data preprocessing tasks in a data science team, and pdpipe 

provides a simple yet powerful way to build pipelines with pandas-type operations.

�Speeding Up NumPy and pandas
NumPy and pandas are probably the two most widely used core Python libraries for 

DS and ML tasks. Obviously, the speed of evaluating numerical expressions is critically 

important for these DS/ML tasks and these two libraries do not disappoint in that regard.

Under the hood, they use fast and optimized vectorized operations (as much 

as possible) to speed up mathematical operations. Plenty of articles have been 

written about how NumPy is much superior (especially when you can vectorize your 

calculations) over plain-vanilla Python loops or list-based operations. In this section, I 

show how using a simple extension library called NumExpr can improve the speed of the 

mathematical operations that the core NumPy and pandas yield.

�What Is This Library?
First, install it with the pip command:

pip install numexpr
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The project is hosted on GitHub at https://github.com/pydata/numexpr. It is 

from the PyData (https://pydata.org/) stable, the organization under NumFocus, 

(https://numfocus.org/), which also gave rise to Numpy and pandas.

As per the official source,

“NumExpr is a fast numerical expression evaluator for NumPy. 

With it, expressions that operate on arrays are accelerated and 

use less memory than doing the same calculation in Python. In 

addition, its multi-threaded capabilities can make use of all your 

cores—which generally results in substantial performance scaling 

compared to NumPy.”

Here is the detailed documentation for the library and examples of various use cases: 

https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/.

�Speeding It Up
Let’s start with a very simple mathematical operation of adding a scalar number, say 1, 

to a NumPy array. To use the Numexpr package, all you need to do is to wrap the same 

calculation under a special method named evaluate in a symbolic expression. The 

following code illustrates the usage clearly:

import numpy as np

import numexpr as ne

a = np.arange(1e6)

b = np.arange(1e6)

%%timeit -n200 -r10

c = a+1

>> 3.55 ms ± 52.1 μs per loop (mean ± std. dev. of 10 runs, 200 loops each)

%%timeit -n200 -r10

c = ne.evaluate("a + 1")

>> 1.94 ms ± 86.5 μs per loop (mean ± std. dev. of 10 runs, 200 loops each)
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That was magical! All you had to do was to write the familiar a+1 NumPy code in the 

form of a symbolic expression "a+1" and pass it on to the ne.evaluate() function. And 

you got a significant speed boost from 3.55 ms to 1.94 ms on average.

Note that, for consistency purposes, you ran the same computation 200 times in a 

10-loop test to calculate the execution time. Of course, the exact results are somewhat 

dependent on the underlying hardware. You are welcome to evaluate this on your 

machine and see what improvement you got.

�Arithmetic Involving Two Arrays

Let’s dial it up a little and involve two arrays. Here is the code to evaluate a simple linear 

expression using two arrays:

%%timeit -n100 -r10

c = 2*a+3*b

>> 11.7 ms ± 177 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

%%timeit -n100 -r10

c = ne.evaluate("2*a+3*b")

>> 2.14 ms ± 130 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

For two-array operation, there’s an even bigger improvement than the simple scalar 

addition from 11.7 ms to 2.14 ms on the average.

�A Somewhat More Complex Operation

Now, let’s notch it up further by involving more arrays in a somewhat complicated 

rational function expression. Suppose you want to evaluate the expression in Figure 7-11 

involving five Numpy arrays, each with one million random numbers (drawn from a 

Normal distribution).

Figure 7-11.  A complex rational function involving multiple NumPy arrays
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Here is the code. You create a NumPy array of the shape (1000000, 5) and extract five 

(1000000,1) vectors from it to use in the rational function. Also note how the symbolic 

expression in the Numexpr method understands the string symbol ‘sqrt’ natively (you just 

write sqrt).

a = np.random.normal(size=(1000000,5))

a1,a2,a3,a4,a5 = a[:,0],a[:,1],a[:,2],a[:,3],a[:,4]

%%timeit -n100 -r10

c = (a1**2+2*a2+(3/a3))/(np.sqrt(a4**2+a5**2))

>> 47 ms ± 220 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

%%timeit -n100 -r10

ne.evaluate("(a1**2+2*a2+(3/a3))/(sqrt(a4**2+a5**2))")

>> 3.96 ms ± 218 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

This shows a huge speed boost from 47 ms to ~4 ms on average. In fact, this is a 

trend; you will notice that the more complicated the expression becomes and the greater 

number of arrays it involves, the higher the speed boost becomes with Numexpr.

�Logical Expressions/Boolean Filtering

Furthermore, you are not limited to the simple arithmetic expressions shown above. 

One of the most useful features of NumPy arrays is to use them directly in an expression 

involving logical operators such as > or < to create Boolean filters or masks. You can 

do the same with Numexpr and speed up the filtering process. Here is an example of 

checking whether the Euclidean distance measure involving four vectors is greater than 

a certain threshold:

x1 = np.random.random(1000000)

x2 = np.random.random(1000000)

y1 = np.random.random(1000000)

y2 = np.random.random(1000000)

%%timeit -n100 -r10

c = np.sqrt((x1-x2)**2+(y1-y2)**2) > 0.5

>> 23.2 ms ± 143 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)
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%%timeit -n100 -r10

c = ne.evaluate("sqrt((x1-x2)**2+(y1-y2)**2) > 0.5")

>> 1.86 ms ± 112 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

This kind of filtering operation appears all the time in a data science/machine 

learning pipeline, and you can imagine how much compute time can be saved by 

strategically replacing NumPy evaluations with Numexpr expressions.

�Complex Numbers

You can make the jump from the real to the imaginary domain pretty easily. Numexpr 

works equally well with complex numbers, which are natively supported by Python and 

NumPy. Here is an example, which also illustrates the use of a transcendental math 

operation, a logarithm:

a = np.random.random(1000000)

b = np.random.random(1000000)

cplx = a + b*1j

%%timeit -n100 -r10

c = np.log10(cplx)

>> 55.9 ms ± 159 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

%%timeit -n100 -r10

c = ne.evaluate("log10(cplx)")

>> 9.9 ms ± 117 μs per loop (mean ± std. dev. of 10 runs, 100 loops each)

�Impact of the Array Size

Next, let’s examine the impact of the size of the NumPy array over the speed 

improvement. For this, let’s choose a simple conditional expression with two arrays like 

2*a+3*b < 3.5 and plot the relative execution times (after averaging over 10 runs) for 

a wide range of sizes. The code is in the accompanying Jupyter notebook, and the final 

result is shown in Figure 7-12.

Chapter 7  Some Cool Utility Packages



199

Figure 7-12.  Impact of the size of the array on speed improvement

�The pandas eval Method
It turns out that pandas has an eval method where you can select to use a Numexpr 

engine to speed up the operation of evaluating a Python symbolic expression (as 

a string). Figure 7-13 shows a snapshot of the method from the official pandas 

documentation.

Figure 7-13.  Partial snapshot of the Pandas eval method with the numexpr engine
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The following code demonstrates an example where you construct four DataFrames 

with 50,000 rows and 100 columns each (filled with uniform random numbers) and 

evaluate a nonlinear transformation involving those DataFrames, in one case with a 

native pandas expression and in other case using the pd.eval() method:

nrows, ncols = 50000, 100

df1,df2,df3,df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in 

range(4)]

%%timeit -n20 -r10

c=2*df1 - (df2/2) + (df3/df4)

>> 55.8 ms ± 1.8 ms per loop (mean ± std. dev. of 10 runs, 20 loops each)

%%timeit -n20 -r10

pd.eval('2*df1 - (df2/2) + (df3/df4)')

>> 17.3 ms ± 539 μs per loop (mean ± std. dev. of 10 runs, 20 loops each)

Note how you use a string with symbolic expressions for the DataFrames in the 

second case: pd.eval('2*df1 - (df2/2) + (df3/df4)')

You do a similar analysis of the impact of the size (number of rows, while keeping 

the number of columns fixed at 100) of the DataFrame on the speed improvement. The 

result is shown in Figure 7-14.

Figure 7-14.  Impact of the size of the DataFrame on the speed improvement
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�How It Works, Supported Operators
The details of the mechanism that makes Numexpr work are somewhat complex and 

involve the optimal use of the underlying compute architecture. I won’t cover that 

in this book. Basically, the expression is compiled using a Python compile function, 

variables are extracted, and a parse tree structure is built. This tree is then compiled into 

a Bytecode program, which describes the element-wise operation flow using something 

called vector registers (each 4096 elements wide). The key to speed enhancement is 

Numexpr’s ability to handle chunks of elements at a time.

It skips NumPy’s practice of using temporary arrays, which wastes memory and 

cannot even fit into cache memory for large arrays. Also, the virtual machine is written 

entirely in C, which makes it faster than native Python. It is also multi-threaded, allowing 

faster parallelization of the operations on suitable hardware. A simplified illustration is 

shown in Figure 7-15.

Figure 7-15.  Simplified illustration of the inner workings of Numexpr

Numexpr supports a wide array of mathematical operators for use in the expression 

but not conditional operators like if or else. The full list of operators can be found 

at https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/user_guide.

html#supported-operators.

You can also control the number of threads that you want to spawn for parallel 

operations with large arrays by setting the environment variable NUMEXPR_MAX_THREAD.  

Currently, the maximum possible number of threads is 64 but there is no real benefit of 

going higher than the number of virtual cores available on the underlying CPU node.
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So, in this section, you saw how to take advantage of the special virtual machine-

based expression evaluation paradigm for speeding up mathematical calculations in 

NumPy and pandas. Although this method may not be applicable for all possible tasks, a 

large fraction of data science, data wrangling, and statistical modeling pipelines can take 

advantage of this with minimal change in the code.

�Discover Best-Fitting Distributions Quickly
Imagine that you have some numeric data points and you want to find out which 

statistical distribution they might have come from. This is a classic statistical inference 

problem.

There are, of course, rigorous statistical methods to accomplish this goal. But maybe 

you are a busy data scientist. Or a busier software engineer who happens to be given this 

dataset to quickly write an application endpoint so that another ML app can use some 

synthetic data generated based on the best distribution that matches the data.

In short, you don't have a lot of time on hand and you want to find a quick method to 

discover the best-matching distribution that the data could have come from. Basically, 

in this scenario, you want to run an automated batch of goodness-of-fit (GOF) tests 

(https://en.wikipedia.org/wiki/Goodness_of_fit) on several distributions and 

summarize the results in a flash. You can, of course, write code from scratch to run 

the data through standard GOF tests using the Scipy library, one by one, for several 

distributions.

Alternatively, you can use a small but useful Python library called  distfit to do the 

heavy lifting for you.

What are GOF tests? T he goodness of fit of a statistical model describes 
how well it fits a set of observations. Put simply, a measure of goodness of fit 
typically summarizes the discrepancy between the observed values and the values 
expected under the model in question. They find wide use in all kinds of statistical 
problems and hypothesis testing scenarios.
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�Simple Fitting Example
You will generate some random synthetic data and try to find the best-matching 

distribution with only a few lines of code:

from distfit import distfit

import numpy as np

# Generate test data

data1 = np.random.normal(loc=5.0, scale=10, size=1000)

Then you initiate a model and fit the data to it:

# Initialize model

dist1 = distfit(bins=25,alpha=0.02,stats='ks')

# Fit the data

dist1.fit_transform(data1,verbose=1)

Note the similarity to the scikit-learn API; it has a fit_transform method, which 

you just used. Here, alpha denotes a confidence interval for fitting and stats='ks' 

denotes the scoring strategy standing for the Kolmogorov-Smirnov statistic (https://

en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test). When you run this code 

in a Jupyter notebook, you get the (very) detailed output shown in Figure 7-16.

Chapter 7  Some Cool Utility Packages

https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test


204

Figure 7-16.  Detailed (partial) output of distribution fitting

In fact, the fitting process creates and stores all kinds of information in that dist1 

object. Perhaps you are mostly interested in seeing some matching visualization and a 

summary of matching performance with various distributions.

�Plot and Summary
A simple plot command shows the best-fitted distribution and how it matches with your 

data points:

dist1.plot(verbose=1)
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This results in the chart shown in Figure 7-17. 

Figure 7-17.  Best-matched distribution with the test data points

A nice summary table is available with one line of code:

dist1.summary

It shows information about all the distributions that the fit_transform method 

went through under the hood. The score here is the metric that determines the best-

matching distribution. It is like an error or distance metric, so the lower the score, better 

the match is. For this case, quite a few distributions match the data with nearly zero 

scores. After looking at the summary table in Figure 7-18, you can decide which one to 

pick, if needed.
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Figure 7-18.  Summary table of all the distributions the data was 
evaluated against

Why are there only 11 distributions in this summary? Because, by default, it uses a 

list of the most popular distributions to scan through. If you want to search through a 

fixed list of distributions, you can specify the exact list as an argument to the distfit 

object while initializing it, with distribution names as common strings.

�Be Careful with Small Datasets
As with every other statistical learning model fitting process, this also works best with a 

large dataset. For small data, the fit may be ambiguous (multiple distributions showing 

similar match) or suboptimal (the wrong distribution is identified as the best fit).

For example, let’s generate some data from the Beta distribution (https://

en.wikipedia.org/wiki/Beta_distribution) with parameters chosen such as they 

look almost like a Normal distribution. If you choose the parameters α and β to be equal 

or close, you can accomplish this. Then, if you fit 1,000 data points, you may get the 

Normal distribution as the best-fitted distribution (Figure 7-19).
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import numpy as np

data2 = np.random.beta(a=2.2,b=2.0,size=500)

dist2 = distfit(bins=50,alpha=0.02,stats='ks')

dist2.fit_transform(data2,verbose=1)

dist2.plot(title="Best-fitted with 500 data points",verbose=1)

Figure 7-19.  Data generated from the beta distribution fitted with 1,000 points

However, if you extend the dataset size to 10,000 points, you will most likely get the 

correct answer (Figure 7-20). 
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Figure 7-20.  Data generated from the beta distribution fitted with 10,000 points

�Other Things You Can Do
There are many things you can do with the distfit library:

You can choose which statistical test (RSS, Kolmogorov-Smirnov, 

etc.) to use for determining the best fit.

You can control the exact list of distributions you want to run 

through.

You can use the distfit.predict method to predict the 

probability of a response variable.

You can generate synthetic data using the distfit.

generate method.

I have shown examples of continuous distribution fitting only. 

However, you can easily do fitting with discrete distributions.
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�Summary
In this chapter, you explored lightweight Python packages that can speed up common 

data science tasks such as pipelining data wrangling and cleaning, numerical 

manipulation using NumPy and pandas, and finding the best-matched statistical 

distribution for numeric data points.

There are hundreds of such specialized libraries in the Python ecosystem that can 

lead to productive and efficient data science if you look for them. GitHub is a great place 

to start searching for them. Watch for the number of stars that a GitHub project has 

received to determine the quality of the package and determine whether it is mature/

stable enough to include in your data science stack.

There are also excellent articles and blogs that specifically discusses new and 

exciting Python packages as alternatives to the established brands. Khyuen Tran’s open-

source book, Chapter 5 has compact (although code-heavy) discussions of many such 

useful libraries.
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CHAPTER 8

Memory and Timing 
Profile
Data science tasks come with a wide variety of computational costs of both space and 

time. Data wrangling jobs may need the support of large storage, while advanced ML 

algorithms need high intensity computing speed. Some ML algorithms work better with 

the support of large local memory (RAM) and cannot perform well with data situated far 

from the CPU on a hard disk, while others are optimized to perform well with distributed 

data storage.

Furthermore, the nature of the data may change slowly or frequently depending on 

the application. Some models and data science code scale gracefully with the increasing 

size and complexity of the input data, some do not. When the scaling is not properly 

planned or baked into the code, the performance can suffer, even leading to possible 

catastrophic failure in time. In many of those situations, excessive memory usage by the 

code (or demand on the memory bandwidth) is at the root of the problem.

To plan for such situations or to design the data science code robustly, you must 

start with basics: measuring the efficiency of the code in terms of memory usage or 

profile. Obviously, this integrates tightly with the core philosophy of productive data 

science, which is the theme of this book. There are many tools and techniques for such 

measurements depending on the code and the underlying hardware. In Chapter 2, we 

talked about a basic timing measurement and a time decorator to measure the execution 

time of an ML function. In this chapter, my goal is to introduce you to some tools (with 

hands-on examples) that can be used to measure a memory usage profile of data science 

and ML code.
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�Why Profile Memory Usage?
Memory usage measurement or profiling may seem an afterthought for most data 

science work. However, it is becoming more and more commonplace and critical to 

have. As a data scientist, if you can measure the memory profile of your code reliably 

and plan your larger codebase, you are sure to positively impact the robustness of your 

software platform.

�A Common Scenario
Suppose you have written a cool machine learning app or created a shiny neural network 

model. Now you want to deploy this model over some web service or REST API. Or, you 

might have developed a model based on data streams coming from industrial sensors 

in a manufacturing plant and now you must deploy the model on one of the industrial 

control PCs to serve decisions based on continuously incoming data.

As a data scientist, an extremely common question that you may expect from the 

engineering/platform team is “what memory footprint does your model/code have?” 

or “what’s the peak memory usage by your code when running with some given 

data load?” This is quite natural to wonder about because hardware resources may be 

limited and a single ML module should not hog all of the memory of the system. This 

is particularly true for edge computing scenarios such as where the ML app may be 

running on the very edge such as inside a virtualized container on an industrial PC (and 

with no cloud-supported auto-scaling of memory or dynamic allocation).

Also, your model may be just one of hundreds of models running on that piece of 

hardware. Therefore, you must have some idea about the peak memory usage of the 

model because if a multiple models peak in their memory usage at the same time, which 

can crash the whole system. All these models do not necessarily come from the same 

data scientist either. Various teams might have developed them over time. It makes sense 

to have a common mechanism of measuring or gauging the memory usage (peak and 

average) of all those models (and data science code in general). The idea is illustrated in 

Figure 8-1.
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Figure 8-1.  Measuring (gauge) of memory and CPU (execution) profile of a 
multitude of ML models, all running on a single system

�It’s Not the Model Size (or Compression)
You may think that making a compact and less complex ML model may solve all of your 

problems. But that would be a mistaken assumption to make. When it comes to the 

question of peak memory usage, we are talking about the runtime memory profile (a 

dynamic quantity) of your entire code. This has very little to do with the size (or even 

the compression) of your ML model (which you may have saved as a special object 

on the disk, such as a scikit-learn Joblib dump, a simple Python pickle dump, or a 

TensorFlow HFD5).

Model compression and sizing is quite important, too. In many situations, you may 

be asked to pay special attention to it. You may have to restrict yourself from training a 

model with millions of parameters by choosing a simpler model architecture. You may 

have to try post-training model compression (e.g., intentionally reducing the floating-

point accuracy of the numeric coefficients) to reduce the model size (on the disk). 

Often, these exercises lead to the reduction of active memory usage of the model while 

it is running. However, you still need to have active code and a mechanism in place to 

measure the memory usage profile in runtime.
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�Scalene: A Neat Little Memory Profiler
Although there are many memory and CPU profilers, it is good to have a one-stop shop 

for getting a good view of the overall data science code. One such comprehensive utility 

is Scalene. Let’s examine it in more detail.

As per its GitHub page, “Scalene is a high-performance CPU, GPU, and memory 

profiler for Python that does several things that other Python profilers do not and 

cannot do. It runs orders of magnitude faster than other profilers while delivering far 

more detailed information.” It was developed at the University of Massachusetts. Check 

out the video at www.youtube.com/watch?v=5iEf-_7mM1k&feature=youtu.be for a 

comprehensive introduction.

So, Scalene promises the following:

•	 Profile for CPU, GPU, and memory

•	 Offer an order of magnitude faster execution than other profilers

•	 More detailed information than other similar tools

�Basic Usage
The install is by pip:

pip install scalene

One obvious limitation is that currently, it works only for Linux OS. If you run 

Windows or MacOS, you can use it by creating a virtual machine and running your 

scripts there.

The use of Scalene is extremely straightforward. You just type scalene in front of the 

name of your Python script:

scalene <MyApp.py>

Alternatively, you can use in inside a Jupyter notebook, first by executing this magic 

command:

%load_ext scalene

A typical output snapshot is shown in Figure 8-2. A more detailed explanation 

follows.
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Figure 8-2.  A typical output snapshot from Scalene

�Features
Here are some of the cool features of Scalene. Most of them are self-explanatory and can 

be gauged from Figure 8-2.

Lines or functions: Reports information both for entire functions 

and for every independent code line

Threads: Supports Python threads

Multiprocessing: Supports use of the multiprocessing library

Python vs. C time: Scalene breaks out time spent in Python vs. 

native code (e.g., libraries)

System time: It distinguishes system time (e.g., sleeping or 

performing I/O operations)

GPU: It can also report the time spent on an NVIDIA GPU (if 

present)

Copy volume: It reports MBs of data being copied per second

Detects leaks: Scalene can automatically pinpoint lines 

responsible for likely memory leaks!
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�A Concrete Machine Learning Example
Let’s get down to the business of putting Scalene to use for memory profiling standard 

machine learning code. You will look at two different types of ML models for reasons that 

will be clarified soon. You will use the scikit-learn library for all three models and utilize 

its synthetic data generation function to create your dataset:

•	 A multiple linear regression model

•	 A deep neural network model with the same dataset

The modeling code follows the exact same structure for these two models. External 

I/O ops are also indicated in Figure 8-3, as you will see that they may or may not 

dominate the memory profile depending on the type of model.

Figure 8-3.  The common ML model code flow used for the Scalene demo example

�Linear Regression Model

The complete code is in the accompanying Jupyter notebook. You use standard 

imports and two variables named NUM_FEATURES and NUM_SMPLES for doing some 

experiments later:

import pandas as pd

import pickle

import numpy as np

from sklearn.linear_model import LinearRegression

from sklearn.datasets import make_regression

NUM_FEATURES = 10
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NUM_SAMPLES = 1000

For brevity, I won’t show they data generation and model fitting code because it’s 

standard. You save the fitted model as a pickled dump and load the pickled object along 

with a test CSV file for the inference:

# Model saving function

def save(lm):

    """

    Saves a sklearn linear model as a pickled object

    """

    with open('LinearModel.sav',mode='wb') as f:

        pickle.dump(lm,f)

# Model run function

def model_run(model,testfile):

    """

    Loads and runs a sklearn linear model from pickled object

    """

    lm = pickle.load(open(model, 'rb'))

    X_test = pd.read_csv(testfile)

    _= lm.predict(X_test)

    return None

You run everything under a main loop for clarity with Scalene execution and 

reporting (you will understand shortly):

if __name__ == '__main__':

    data = make_data()

    X_train,y_train,X_test,y_test = test_train(data)

    lm = fitting(X_train,y_train)

    save(lm)

    model_run('LinearModel.sav','Test.csv')

You run the command

$ scalene linearmodel.py --html >> linearmodel-scalene.html
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You get the results in Figure 8-4 as output. Note that you use the --html flag and the 

pipe operator (>>) to channel the output to an HTML file for easy reporting.

Figure 8-4.  Scalene output after the linear regression model code was run 
through it

The most important observation from this profile is that the memory footprint 
is almost entirely dominated by the external I/O such as pandas and scikit-learn 

estimator loading. A tiny amount of memory usage goes to writing the test data to a CSV 

file on the disk.
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The actual ML modeling, NumPy or pandas operations, and inference do not impact 

the memory at all. This is a somewhat unexpected and non-obvious fact. Clearly, without 

a proper memory profiler like scalene, you could not have discovered this.

�What Happens as the Model and Data Scale?

You can scale the dataset size (number of rows) and the model complexity (number of 

features) and run the same memory profiling to document how the various operations 

behave in terms of memory consumption.

The result is shown in Figure 8-5. The X-axis represents the number of features/

number of data points as a pair. Note that this plot depicts percentage and not the 

absolute values to showcase the relative importance of the various types of operations.

Figure 8-5.  Impact of data and model (number of parameters) scaling for the 
linear model

From these experiments, you can conclude that a scikit-learn linear regression 
estimator is quite efficient and does not consume much memory for actual model 
fitting or inference. It does, however, have a fixed memory footprint in terms of the code 

and consumes that much while getting loaded. However, the percentage of that code 

footprint goes down as the data size and model complexity increase.

Therefore, if you are working with a small to moderate linear model (e.g., thousands 

of data points but only tens of parameters), you may want to focus on data file I/O to 

optimize the data loading, storage, modeling, and inference code for better memory 

utilization. For example, you can use a different file storage option than plain CSV 
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(e.g., Parquet or similar modern data format optimized for in-memory analytics; go 

to https://medium.com/productive-data-science/why-you-should-use-parquet-

files-with-pandas-b0ca8cb14d71 for more information).

�Deep Learning Model

If you run similar experiments with a two-hidden-layer neural network (with 50 

neurons in each hidden layer), the result looks like Figure 8-6. It uses the MLPRegressor 

estimator from the sklearn.neural_network module. The code is in the accompanying 

Python script.

Figure 8-6.  Impact of data and model (number of parameters) scaling for neural 
network model

Clearly, the neural network model consumes a lot of memory at the training/fitting 

step, unlike the linear regression model. However, for a small number of features and 

large data size, the fitting takes a low amount of memory. You can also experiment with 

various architectures and hyperparameters and document the memory usage to arrive at 

the setting that works for a specific data science task.

�Key Approaches and Advice
If you repeat the experiments with the same code files, the results will vary widely 

depending on your hardware (disk/CPU/GPU/memory type). The purpose of the results 

shown above is not to focus on the actual values or even on the trends. I want you to 

learn to do memory profiling experiments for your own code.
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�Key Advice

Some key advice, in this regard, is the following:

Preferably write small functions focused on one single task in 

your code.

Keep some free variables like the number of features and number 

of data points so that you can run the same code file with minimal 

changes to check the memory profile when the data/model scales.

If you are comparing one ML algorithm to another, try to keep the 

structure and flow of the overall code as identical as possible to 

reduce confusion. Preferably, just change the estimator class and 

compare the memory profiles.

Data and model I/O (import statements, model persistence on the 

disk) can be surprisingly dominating in terms of memory footprint 

depending on your modeling scenario. Never ignore them while 

doing optimization.

For the reason above, consider comparing the memory profiles 

of the same algorithm from multiple implementation/packages 

(e.g., Keras vs. PyTorch vs. scikit-learn). If memory optimization is 

your primary goal, you may have to look for the implementation 

that has a minimal memory footprint yet can do the job 

satisfactorily even if it is not the absolute best in terms of features 

or performance.

If the data I/O becomes a bottleneck, explore faster options or 

other storage types such as replacing pandas CSV with a Parquet 

file and Apache Arrow storage.
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�Other Things You Can Do with Scalene

In this section, I discussed the bare minimum memory profiling with a focus on a 

canonical ML modeling code. Scalene CLI has other options you can take advantage of:

•	 Profiling CPU time only and no memory profile

•	 Reduced profiling with non-zero memory footprint only

•	 Specifying CPU and memory allocation minimum thresholds

•	 Setting the CPU sampling rate

•	 Multithreading and checking the difference

�Final Validation Is Sometimes Necessary

In many cases, ML models are run on edge devices where hardware resources are 

limited, especially on the memory (RAM) side. For such low-resource situations, it’s a 

good idea to host a validation environment/server that will accept a given modeling 

code (after it is developed and tested but before it is deployed) and run it through a 

memory profiler to create runtime statistics. If it passes the predetermined criteria of the 

memory footprint, then it can be accepted for further deployment. The idea is illustrated 

in Figure 8-7.

Figure 8-7.  Validation check with memory profile before deployment of a 
ML model

Frameworks like Scalene can be very useful in these situations. By setting up such a 

validation gateway, data scientists can make the overall platform much more stable and 

robust against accidental memory overshoot and system crash.
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�Timing Profile with cProfile
You have already seen some basic tricks and techniques to measure execution time of 

simple code blocks or a function with a timing decorator. In this section, I will discuss a 

built-in Python library named cProfile that can give you a detailed timing profile about 

the various parts of your data science code with a simple command. The advantage is 

that you don’t have to insert code snippets like time.time() in various places (as shown 

in Chapter 2) and track them manually.

�Basic Usage
The cProfile library comes with the default Python installation, so there is nothing to 

install. Here’s the basic usage with simple code where you add two NumPy arrays:

import numpy as np

import cProfile

SIZE = 10_000_000

a = np.arange(SIZE)

b = np.random.normal(size=SIZE)

cProfile.run('a+b')

The main thing to notice is that you must wrap the code within a string and pass it 

on to the cProfile.run function. Here the code is simply ‘a+b’. The output may look 

something like Figure 8-8. Note that the exact time will vary, of course, depending on the 

underlying hardware.

Figure 8-8.  Output snapshot of cProfile run with a simple Numpy array addition
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The interesting thing to remember is that the only piece of code that was measured 

for timing is the snippet a+b. The array creation is not being measured here, only the 

addition.

If you want to measure the timing profile of all the steps, you could write

code = """SIZE = 10_000_000

a = np.arange(SIZE)

b = np.random.normal(size=SIZE)

a+b"""

cProfile.run(code)

Here you put all the code inside the string variable code and then pass that on to the 

cProfile.run function. The output looks different (Figure 8-9), as expected.

Figure 8-9.  Output snapshot of cProfile run with array creation and addition

Note that the extra array creation operations resulted in a total of five function calls, 

as opposed to three for the basic addition code.

�With a Function as an Argument
You could, of course, create a standalone function and pass the name of that object to 

cProfile.run function for the same task:

def add():

    SIZE = 10_000_000

    a = np.arange(SIZE)

    b = np.random.normal(size=SIZE)

    c=a+b

cProfile.run('add()')

Chapter 8  Memory and Timing Profile



225

The output (Figure 8-10) is similar to the output in Figure 8-9, but an additional 

function call is registered that comes from the construction of the add function itself.

Figure 8-10.  Output snapshot of cProfile run with a standalone function (same 
NumPy ops)

The function that is passed on to cProfile can have any argument as well. In many 

cases, you can change the arguments and see the impact on the profile results. This is 

one of the most obvious use-cases of the library. Let’s rewrite the add function to accept 

a size argument:

def add(size):

    a = np.arange(size)

    b = np.random.normal(size=size)

    c = a+b

Then you can use it to profile the array operations with 10 million elements 

(Figure 8-11):

SIZE = 10_000_000

cProfile.run('add(SIZE)')

Figure 8-11.  Running cProfile and passing in an argument to the function of 10 
million elements

When you change the number of elements to 20 million, it reflects immediately 

(Figure 8-12):
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SIZE = 20_000_000

cProfile.run('add(SIZE)')

Figure 8-12.  Running cProfile and passing in an argument to the function for 20 
million elements

�Using the Profiler Class
cProfile has a special Profiler class that stores all the important information, and it 

can be enabled/disabled programmatically. You can also use the pstats library and pass 

this Profiler object to it for printing and extracting data. Here is the code to measure 

and print the total execution time:

import cProfile, pstats

profiler = cProfile.Profile()

# Enable profiler

profiler.enable()

# Function execution

add(SIZE)

# Disable profiler

profiler.disable()

# pstats

stats = pstats.Stats(profiler)

# Print the total time and number of calls

print("Total function calls:", stats.total_calls)

print("Total time (seconds):", stats.total_tt)

The result looks like the following:

>> Total function calls: 48

>> Total time (seconds): 1.1527893999999999
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Here you get the execution time from the total_tt attribute of the stats object and 

the number of calls from the total_calls attribute.

Consequently, this opens up the possibility to programmatically control the profiling 

and storing of information as needed. For example, you can profile the execution of the 

same add function over a range of arrays sizes:

size = [int(i*1e6) for i in range(5,26,5)]

total_tt = []

for s in size:

    profiler = cProfile.Profile()

    profiler.enable()

    add(s)

    profiler.disable()

    stats = pstats.Stats(profiler)

    total_tt.append(round(stats.total_tt,3))

The timings are stored in the total_tt array. When plotted, it shows the expected 

pattern (Figure 8-13).

Figure 8-13.  Computation time extracted using cProfile for various array sizes

�Data Science Workflow Profiling
While measuring the execution time of these small standalone functions serves as a 

basic demonstration of the usage of these profilers, the real utility is realized when they 

are used in a large-scale data science workflow. Such a workflow has a variety of modules 

and functions, and you can set up profiling for all of them if necessary. The output may 

be logged into a database or even be fed into a monitoring system that will track the 
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performance of the modules over time and act if needed (e.g., if a function performs 

poorly by taking too much time in a certain run or for a certain input data). The idea is 

illustrated in Figure 8-14.

Figure 8-14.  Time and memory profiling at various data science workflow stages

�Summary
In this chapter, you examined the importance of memory profiling your ML code for 

smooth and easy interfacing with the platform/engineering team that will deploy the 

code on a service/machine. Profiling memory can also show you surprising ways to 

optimize the code based on the combination of specific datasets and algorithms you 

are dealing with. You saw a typical ML modeling code example being profiled with 

a powerful yet lightweight Python library. You saw representative results with linear 

regression and neural network models and received some general advice.

Next, you saw the basic usage of the built-in Python timing profiler cProfile and how 

it can be used with raw code or function modules. You learned how to extract the total 

execution time or number of function calls using this library for NumPy operations. This idea 

can be extended to any data science workflow that consists of many stages and modules.

Every data science team or organization has its own style for measuring code 

and module efficiency and memory footprint. The motivation for this chapter was to 

introduce you to the importance of these measurements and show some hands-on 

examples so that you can explore further and be ready for such implementation.

Chapter 8  Memory and Timing Profile



229

CHAPTER 9

Scalable Data Science
Data science tasks may encounter a wide variety of dataset sizes, ranging from kilobytes 

to petabytes. Some business spreadsheets will only have a few hundred rows while a 

whole factory may send a deluge of sensor data to a single dataset, resulting in billions of 

rows per day or even per hour. Some datasets can have many rows and a small number 

of columns, while others may consist of a few rows but millions of columns as feature 

dimensions. Even within the same organization or a data science team there can be 

multiple pipelines dealing with different types of input, and they may be facing a wide 

variation in the dataset size and complexity.

It is often a natural practice for data scientists to build a scaled prototype of a data 

science job (such as combining data wrangling, ML algorithms, and some prediction 

functions). They build such a prototype, test it with a typical dataset that is expected to 

hit the pipeline, evaluate the result or measure some performance metric with a few ML 

algorithms, tune them, and finally make a choice. This is an experimental mentality, 

and it serves the spirit of doing science with data very well. However, to support this 

quick analysis and prototyping, a data scientist must be able to quickly scale across a 

wide variety of dataset sizes and complexity as the need arises. They should not run into 

issues like being out of memory while prototyping on their laptop.

This chapter talks about the common problems and limitations that arise while 

scaling out to larger datasets and what tools are out there to address these issues. 

Specifically, you will visit some of the limitations that arise while doing analysis with 

large datasets using the most common data analysis library, Python pandas, and explore 

two alternative libraries or add-ons that can be used to overcome these limitations.

In fact, scalability is closely related to the ability to do parallel processing of large 

data. Therefore, this theme will be continued in the next chapter where you will explore 

Python libraries that support parallel processing natively for data science tasks.
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�Common Problems for Scalability
Python is a great language for data science. Libraries like pandas open myriad 

possibilities for data scientists to slice and dice the data any way they like and create 

meaningful insights and high-impact analytics reports with a relatively small amount of 

programming. However, they have some serious limitations when it comes to dealing 

with large datasets even one as simple as a CSV file with a billion rows.

Two of the most common issues that a data scientist may encounter as the scale of 

the data grows are out-of-core failures and inefficiencies related to the Python single-

threading characteristic.

Out-of-core really means the inability to load the full data properly in the working 

memory (RAM) of the machine. Single threading is related to the fundamental Python 

design feature of the Global Interpreter Lock (GIL) (https://realpython.com/python-

gil/) that allows a single thread to put a lock on the interpreter so that other threads 

cannot get a hold of it. Together, they can make doing efficient data analysis on large 

datasets (anything larger than a few gigabytes) with limited hardware quite tricky.

�Out-of-Core (a.k.a. Out of Memory)
pandas is the most popular data analysis library in Python, and it is at the front end of 

any standard data science pipeline. However, if you have ever tried to work with data 

files larger than a few GB, you may have seen the memory error that is thrown by pandas 

(Figure 9-1).

Figure 9-1.  A memory error thrown by pandas

Chapter 9  Scalable Data Science

https://realpython.com/python-gil/
https://realpython.com/python-gil/


231

Of course, this error depends on the exact state of the system memory such as how 

many other processes are running alongside the pandas code and what type of memory 

they are blocking. Nonetheless, it is a well-known fact that pandas cannot handle multi-

GB datasets (no matter how simple in structure they may be) efficiently.

Furthermore, this inefficiency and limitation can rear its ugly head even with a 

large dataset that could be somehow loaded in the memory without any memory error 

at the beginning. Due to the way pandas handles in-memory objects and calculations, 

it is quite easy to run into the same memory error in your data science code. This can 

be exacerbated by code that produces many large in-memory DataFrames in quick 

succession with intermediate calculations.

For example, imagine what the following code can do. Let’s assume that the Large-

file.csv has 10 million rows and 20 columns.

df1 = pd.read_csv("Large-file.csv") # Successful

df2 = df1.dropna()

df3 = df2[df2['col1'] > 10 and df2['col2'] < 20]

def complex_calc(x):

    # Some complex math

df3['new-col'] = df3['col3'].apply(complex_calc)

def some_transformation(df):

    # Transformation code

    return transformed_df

df4 = some_transformation(df3)

...

This is a generic code snippet, but you get the idea that this code is inefficient, 

particularly when dealing with large pandas DataFrame objects. It produces multiple 

intermediate DataFrames and does not purge them from memory when their job is 

done. At the end, it may use only the final DataFrame for a machine learning modeling, 

but the system memory is already clogged with so many useless objects that it will result 

in a memory error and the whole pipeline will crash. This is illustrated in Figure 9-2.
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Figure 9-2.  A memory error produced by too many intermediate DataFrames 
(bad coding practice) even when a large file could be read from the disk

Of course, one way to get around this issue is to rigorously maintain a good coding 

habit where unused objects are tracked and purged regularly. However, while doing 

prototyping on their Jupyter notebooks, data scientists are bound to write quick and dirty 

code without following this practice, and this will hinder their scalability options with 

large datasets.

�Python Single Threading
The GIL was one of the earlier design choices in the Python language and it solved quite 

a few important problems related to memory leaks and racing conditions. Put simply, 

it is a locking mechanism that allows only one thread to hold the control of the Python 

interpreter. This means that only one thread can be in a state of execution at any given 

point in time.

Generally, its impact isn’t visible to programmers executing single-threaded 

programs. In fact, many data science tasks can run just fine without worrying about 

GIL as they execute a series of tasks one after another and do not employ many parallel 

processing tricks. However, it can become a performance bottleneck in CPU-bound and 

multi-threaded code.

For larger datasets, sometimes it makes sense to divide the data into multiple chunks 

and utilize a parallel processing execution pipeline. The idea is to send the chunked data 

to each core of the CPU and execute the analysis as much in parallel as possible. When 

the executions are done, the results can be combined to get back a transformed dataset. 

While this does not necessarily help to fit a larger dataset in memory, it can make 

analysis of the same dataset faster by the parallel execution.
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The beauty here is that this approach can speed up data science exploration and 

prototyping tasks even without paying for large CPU clusters on the cloud. It is really 

a matter of taking advantage of the 8 or 16 cores that routinely come with the single 

modern-day CPU inside a data scientist’s laptop. However, you must make sure that the 

data science code and libraries are not getting in the way, and that you are using libraries 

that can take full advantage of the multi-core hardware platform.

�What Options Are Out There?
To solve the memory issue (while loading and transforming large datasets) there are 

many possible solutions depending on the situation you are in. Some are related to your 

choice of hardware and some have to do with your data loading strategy. Let’s talk about 

them in a systematic manner.

�Cloud Instances
For larger and larger datasets, there is always a brute-force solution of renting out a 

cloud instance with a large RAM attached. As an example, these days you can rent out 

an AWS (Amazon Web Service) Elastic Compute (EC2) instance with 128GB of RAM 

for less than a dollar per hour. Figure 9-3 shows the pricing for a r6g.4xlarge instance 

(a so-called memory optimized EC2 instance, www.amazonaws.cn/en/ec2/instance-

types/#Memory_Optimized_Instances).

Figure 9-3.  A memory-optimized EC2 (AWS) instance pricing

Once set up, you can install all your favorite Python libraries, read large data 

files stored locally (e.g., to a mapped SSD) or from an AWS S3 folder, and do pandas 

data transformation without worrying about memory errors. While it may still seem 

expensive to a causal user, organizations or teams who need that much memory to 

process pandas DataFrames regularly probably won’t mind paying ~$0.8 an hour for a 

smooth and error-free data science task flow.
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However, remember that pandas will still be limited to use only one CPU core at a 

time and, by default, it will exhibit slowness while loading and dealing with large files. 

Just running run-of-the-mill pandas code on a large-memory cloud instance may stop 

some frequent memory error situations, but it may not fundamentally make the data 
science pipeline productive or efficient at scale.

What is a memory-optimized EC2 instance?   A cloud service like AWS must 
cater to a wide variety of users with various needs. Someone may need fast 
processing with a CPU cluster, someone else may need a high network bandwidth, 
and someone else may require large on-board memory (RAM). Memory-optimized 
instances are just that: they provide a large amount of RAM at an optimized cost. 
They do not necessarily have the best-in-class CPUs or network bandwidth, 
but they work best for jobs that demand large slices of physical memory during 
execution. Within these instances, there are multiple choices depending on cost 
and available CPU types. The r6g.4xlarge is really the starting point of this lineup 
that goes up to a 768GB memory option with a reasonable hourly cost.

AWS is not the only cloud service to offer this. Every major player–Google 
Cloud or Microsoft Azure, for example–offers similar high-memory instances as 
Infrastructure-as-a-Service (IaaS) that can address the problem of insufficient 
memory while executing a data science task (on a local machine).

�Google Colab
Google Colaboratory (or Colab, as it is known popularly; https://research.google.

com/colaboratory/faq.html) is also a cloud service at its core. Basically, it runs a 

Jupyter notebook service that is hosted on Google cloud servers. You can use a CPU, 

GPU, or even a TPU (if you are lucky) for free just by having a Google account.

The greatest advantage of Colab, as compared to AWS or GCP, is its ease of 
use and low barrier of entry. If you have your data science Python code in a Jupyter 

notebook, Colab can help get you started on this cloud instance instantly (as soon as you 

upload your notebook to the instance). Unlike AWS or GCP barebone instances, there is 

no setup or installation needed. You can directly access Colab notebooks through your 

browser and start running your code in a matter of minutes.
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What is a Tensor Processing Unit? T ensor Processing Units (TPUs) are 
Google’s custom-developed application-specific integrated circuits (ASICs) used to 
accelerate machine learning workloads. These ASICs are designed from the ground 
up with the sole aim of optimizing the speed and power of computation tasks 
that appear in deep learning such as matrix multiplication and addition, special 
activations functions, other linear algebra routines like matrix inversion, and so on. 
Their internal architecture is quite different from traditional CPUs that are designed 
for general purpose computing tasks. Memory bandwidth memory transfer speed 
of a TPU is also enhanced as this factors critically in a deep learning training 
performance.

For some specific situations, this may indeed increase productivity and efficiency. 

For example, if the local laptop does not have a good enough CPU or a GPU card 

installed, or the RAM is under 8GB, then switching to Google Colab should enhance the 

productivity instantly.

The typical instance (free of cost) has ~12-13 GB of RAM and a CPU equivalent to an 

Intel Xeon processor. Getting a GPU instance is also quite easy, with the most common 

GPU being a Tesla K80 (compute 3.7, having 2496 CUDA cores and 12GB GDDR5 

VRAM). While the CPU core count is nothing boast about, having a larger RAM and GPU 

memory may help data science exploration, especially if it involves GPU-intensive tasks 

like training a deep neural network or even vectorized computation involving NumPy 

arrays. If 12GB RAM seems too little, you can upgrade to Colab Pro (https://colab.

research.google.com/signup), which offers double the RAM for only $10/month (a 

whole lot cheaper than paying for an equivalent EC2 instance with 24GB of RAM).

However, despite its attractive features, Colab does have some serious limitations 

for practicing data scientists who are trying to explore larger datasets and scale up their 

data science workflow. At the outset, it puts a time limit on the running time of the 

notebook, so if you leave it idle for a certain amount of time, the instance will die (along 

with any variables and internal states). Basically, you must plan your code execution 

carefully and be ever vigilant to take full advantage of Colab.

Also, file loading (whether uploading from local drive or reading from the Web) is 

painfully slow (most probably a deliberate choice to control the bandwidth usage over 
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the Google Cloud infrastructure). Therefore, while you can do in-memory analytics and 

data transformations rather quickly, the initial loading can take an inordinate amount 

of time or may even crash your notebook. Upgrading to Colab Pro or Pro+ (from a 

completely free account) alleviates these issues to some extent but not fully.

�pandas-Specific Tricks
Since I started the scalability discussion by pointing out the out-of-core issues in pandas, 

it makes sense to loop back to ground zero and examine what suggestions the pandas 

developers have to address this issue.

There is a dedicated resource page on the pandas documentation portal about this 

topic: “Scaling to large datasets” (https://pandas.pydata.org/pandas-docs/stable/

user_guide/scale.html). It starts like this:

Pandas provides data structures for in-memory analytics, which makes 
using pandas to analyze datasets that are larger than memory datasets 
somewhat tricky. Even datasets that are a sizable fraction of memory 
become unwieldy, as some pandas operations need to make intermedi-
ate copies.

It goes on to point out some useful tricks and techniques for coping with memory 

issues. I discuss some of them below and add a few more.

�Load Only the Columns You Need

Often, a particular data transformation task requires only a small fraction of the columns 

that the complete dataset features. If you have a dataset with 10 million rows and 100 

columns, and you need only the first 5, it makes absolute sense to load only those 5 

columns and not even look at the rest. You avoid loading a whopping 950 million pieces 

of data into memory. The essential trick here is to include the necessary argument in 

your data loading function.

Write

df = pd.read_csv("Large-file.csv",

                   names = ['Col-1','Col-2','Col-3'])

instead of
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df = pd.read_csv("Large-file.csv")

This little change can indeed make or break your data transformation pipeline.

�Column-Specific Functions (If Applicable)

Following the same idea as above, it is a good practice (wherever applicable) to write 

separate functions that deal with specific columns/features in the dataset as needed 

(Figure 9-4). For example, a dataset may have the following:

•	 String data corresponding to name and address. This can be handled 

by a specific function.

•	 Datetime data corresponding to some business transaction. This 

should be handled by another specific function that loads and 

process only these columns.

•	 Pure numeric data, which can be handled many ways, even read 

as a pure NumPy array and utilizing vectorizing tricks (as discussed 

elsewhere in this book) to speed up the data transformation process.

Figure 9-4.  Functions to deal with specific columns of a large on-disk file, never 
loading more than a small fraction into memory

�Explicitly Specify/Convert Data Types

The default data types in pandas are not designed to be the most memory efficient. 

This is especially true for text/string data columns with relatively few unique values 
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(alternatively known as low-cardinality data). By using more efficient and targeted data 

types, you can significantly reduce the memory usage and process larger datasets.

There is a dataset called loan_data.csv on file (supplied with the book). Let’s see 

how explicitly specifying the data type can reduce the memory usage while working with 

this dataset:

import pandas as pd

df = pd.read_csv("../loan_data.csv")

df.memory_usage(deep=True)

The function memory_usage() shows the true memory usage by the in-memory 

object. The output is shown in Figure 9-5. The output of df.info() is shown in the same 

figure, indicating that the default loading assigned the general-purpose object data type 

to that column while others were assigned data types like int64 or float.

Figure 9-5.  Default data loading assigned a general-purpose data type to a text/
string column, causing it to take up too much memory

You might also have noticed that the credit.policy is an unsigned integer taking on 

values 1 or 0. Why do you need a 64-bit integer data type to represent that? So, let’s also 

type convert that column:

df['credit.policy'].unique()

>> array([1, 0], dtype=int64)

Here is the code for doing the data type conversions (explicit specifications):
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df2 = df.copy()

df2['purpose'] = df2['purpose'].astype('category')

df2['credit.policy'] = df2['credit.policy'].astype('uint8')

del(df)

Here, first you do a copy on the existing DataFrame. Then, you use the astype 

function to assign the category data type to the purpose column and unit8 (8-bit 

unsigned integer) to the credit.policy column. Lastly, as a good practice, you delete 

the old DataFrame object from the memory since you no longer need it for your data 

science pipeline.

You can see the stark difference in Figure 9-6.

Figure 9-6.  Loan dataset memory usage after explicit data type specification/
conversion

This memory saving may seem trivial for this example, but small savings like this 

add up quickly for a long and data-intensive pipeline and can reduce the total overhead 

significantly.

�Libraries for Parallel Processing
Parallel computing is an extensive field of its own. It is not trivial to implement optimized 

code in Python that will execute parallel threads/processes flawlessly and with high 
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performance. Fortunately, there are some fantastic Python frameworks for doing parallel 

processing with minimal learning curves.

I will discuss a couple of them, Dask and Ray, with hands-on examples in the next 

chapter, so I won’t get into those details here.

�Libraries for Handling Out-of-Core Datasets
There are special libraries to handle out-of-core datasets. Vaex and Modin are two such 

frameworks. Let’s discuss them in more detail with hands-on examples next.

�A Note About the Preferred OS
Although a many data scientists use Windows OS for their day-to-day tasks, it has been 

observed that (in general, and while doing the technical review of this book) advanced 

libraries like Vaex, Modin, Ray, and Dask may have trouble being set up or performing 

smoothly on Windows OS. Therefore, you are strongly encouraged to use a Linux-based 

OS for practicing with these libraries and running some of the Jupyter Notebooks that are 

provided. You can either

•	 Use a Linux-based OS (e.g., Ubuntu, Fedora, or Red Hat) on your 

local machine natively

•	 Run a virtual machine (VM) using tools like Oracle VirtualBox on 

your Windows-based machine, with a Linux-based OS on the VM

•	 Use a cloud instance with a Linux-based OS (including the Amazon 

Linux flavor that comes with any EC2 instance)

�Hands-On Example with Vaex
Vaex is a Python library designed for working with lazy out-of-core DataFrames. One 

of its central goals is to help visualize and explore big tabular datasets. Vaex is high-

performant for large datasets. For example, it can help calculate statistics such as mean, 

sum, count, standard deviation, and more on an N-dimensional grid of up to a billion 

objects/rows per second.
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In this section, you will see hands-on examples of such calculations and 

visualizations with the Vaex library.

�Features at a Glance
Here is a quick summarization of the key features of Vaex:

Performance: It can work easily with huge tabular data. Its 

processing capability is in the order of billions rows/second.

Lazy/virtual columns: The computation is done on the fly, 

without wasting precious RAM/virtual memory.

Memory efficient: No memory copies when doing routine data 

slicing such as filtering/selections/subsets.

Visualization: Natively and directly supported. Lots of functions 

to realize routine visualization from huge tabular datasets.

User friendly API: The DataFrame object is the main API and it is 

all that a general user will ever need. The API feels very similar to 

pandas and therefore presents with minimal learning curve when 

replacing pandas code with Vaex for out-of-core data processing.

Lean and compartmentalized: Vaex is separated into multiple 

subpackages and you can install any combination of them as per 

your specific needs. For example, Vaex-astro supports astronomy 

related transformations and FITS file reading. Vaex-viz support 

all visualizations. But if all you want is to calculate statistics and 

not visualize the data, you don’t have to install it. For modern file 

types like Apache Arrow, it has a package named Vaex-arrow.

�Basic Usage Example
Start by using an example dataset provided with Vaex:

import vaex

df = vaex.example()
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When you run this code first time, it will download the dataset from the Web, so an 

Internet connection is required while running this code first time. It will store the dataset 

(a .hdf5 file) in a folder called data.

You can examine the information about the file:

df.info()

You will see something like Figure 9-7.

Figure 9-7.  Vaex example dataset information

The slicing and indexing of the data are just like pandas. For example, say you want 

to see only the x, y, vx, and vy columns for rows 3 to 7:

df[['x','y','vx','vy']][3:8]
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It will give you the expected output (Figure 9-8).

Figure 9-8.  Vaex example of indexing the dataset

The calculation of statistics is fast. On my laptop, calculating the mean of 330,000 

rows took under 20ms.

%%timeit

df.x.mean()

>> 19.6 ms ± 2.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

�No Unnecessary Memory Copying
The best thing about Vaex is that it does not create unnecessary copies of DataFrame 

objects while doing simple filtering operations or intermediate calculations. Even the 

base DataFrame has minimal memory impact. The computations are done in a lazy, on-

the-fly (when necessary) manner.

Check the memory footprint with this code:

import sys

# Vaex dataframe

print("Size of Vaex DF:", sys.getsizeof(df))

# Convert to Pandas dataframe

df_pandas = df.to_pandas_df()

print("Size of Pandas DF:", sys.getsizeof(df_pandas))

The output is astonishing:
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Size of Vaex DF: 48

Size of Pandas DF: 13530144

You can run all the necessary calculations on the Vaex dataframe object with much 

less worry about memory errors cropping up.

For example, you can filter the dataframe for only those rows that have negative x 

values and positive z values:

df_filtered = df[df.x < 0 and df.z > 0]

sys.getsizeof(df_filtered)

>> 48

As expected, the new df_filtered dataframe still has a low memory footprint, but it 

only has 164464 rows compared to original 330,000 rows.

df_filtered.shape

>> (164464, 11)

�Expressions and Virtual Columns
You can create custom expressions and assign them to virtual columns with no memory 

copying (again). Working with pure pandas code, every such operation runs a chance 

of creating memory overhead. Let’s say you want to calculate the root of the sum of the 

squares of two columns from the example dataset:

import numpy as np

sqroot_exp = np.sqrt(df['x']**2+df['y']**2)

Now, if you examine this sqroot_exp, you will see that it is a special expression (not 

evaluated yet). It has not created any memory overhead.

type(sqroot_exp)

>> vaex.expression.Expression

If you do this in pandas, it will create a pandas series object:

sqroot_pandas = np.sqrt(df_pandas['x']**2+df_pandas['y']**2)

type(sqroot_pandas)

>> pandas.core.series.Series
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Now, such Vaex expressions can be added to a DataFrame, creating a virtual column. 

These virtual columns are similar to normal DataFrame columns, except they do not 

waste any memory.

# Assignment of expression to a virtual column

df['sqroot'] = sqroot_exp

# Evaluation only when needed

df['sqroot'].mean()

>> array(8.38820497)

�Computation on a Multidimensional Grid
One of the most interesting features of Vaex is the ability to calculate statistics on user-

selectable grids in a fast and efficient manner. This has many practical applications when 

you are interested in finding local minima or maxima or the distribution of numeric 

quantities over specific regions from a maze of numbers.

counts_x = df.count(binby=df.x, limits=[-5, 5], shape=32)

counts_x

>> array([4216, 4434, 4730, 4975, 5332, 5800, 6162, 6540, 6805, 7261, 

7478,7642, 7839, 8336, 8736, 8279, 8269, 8824, 8217, 7978, 7541, 7383,7116, 

6836, 6447, 6220, 5864, 5408, 4881, 4681, 4337, 4015], dtype=int64)

The result is nothing but a NumPy array with the number counts in 32 bins 

distributed between x = -5, and x = 5. The key thing to note here is the binby argument 

inside the function that works similar to GroupBy in SQL or even pandas. Here the data 

was grouped by the x column (binby=df.x).

So, with this single line of code, you

•	 Filtered/restricted the data within -5 and 5

•	 Counted the number of data points

•	 Binned the counts in 32 bins
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Figure 9-9 shows the visualization.

Figure 9-9.  Counts of x column data for a specific range and bin count

Want a more powerful example? You can calculate the root of the sum of the squares 

of velocities vx, vy, and vz to get the resultant velocity. However, you may want to do it 

for a certain range of x and y data and bin the result for easy visualization.

# Just an expression

velo = np.sqrt(df.vx**2 + df.vy**2 + df.vz**2)

# Pass the expression to the function

# Binned by x and y, over limits of -10 to 10

xy_mean_v = df.mean(velo, binby=[df.x, df.y],

                    limits=[[-10, 10], [-10, 10]],

                    shape=(64, 64))

You can do a 2D plot of the resultant velocity over the same xy range:

plt.figure(dpi=120,figsize=(3,3))

plt.imshow(xy_mean_v.T,

           origin='lower',

           extent=[-10, 10, -10, 10])

plt.show()

Figure 9-10 shows the result. 
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Figure 9-10.  Resultant velocity calculated and visualized over specific ranges of x 
and y data

�Dynamic Visualizations Using Widgets and Other 
Plotting Libraries
The N-dimensional grid-based computation is designed to be fast with Vaex. This allows 

you to extend the visualization to be dynamic using widgets and third-party libraries 

like bqplot. Unfortunately, these dynamic visualizations are not possible to render in the 

pages of a book. However, some code and results are shown in the Jupyter notebook.

For example, this simple code creates a plot widget in the Jupyter notebook where 

you can pan and zoom around and choose a few data transformations from the drop-

down menu. (Figure 9-11 shows a static snapshot of the widget.)
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Figure 9-11.  Snapshot of a dynamic visualization with a Vaex plot widget method

The usefulness of such utility methods cannot be overemphasized for large-scale 

data analysis. You can plot complex transformations on large, out-of-core datasets (say 

10GB or 20GB in size) with only a few lines of code to visualize the hidden patterns. This 

increases the productivity and efficiency of such a data analysis pipeline far beyond what 

would have been possible with only pandas and Matplotlib code. 

�Vaex Preferred HDF5 Format
The magic in Vaex happens because of internal optimization and data representation. 

One of the design choices is to work with HDF5 file formats as much as possible. 

Therefore, the best way to work with Vaex is to load other types of data into this format 

before you start exploring. For convenience, Vaex provides many utility methods to 

convert other files or data structures to this format. You can convert from CSVs, Arrow 

tables, Python dictionaries, NumPy arrays, JSON, and more.

For example, this code converts a moderate-sized CSV file (close to a million rows 

and 15 columns) into a HDF5 file:

df2 = vaex.from_csv("Large-data.csv", convert=True)
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When you run this code, another file named Large-data.csv.hdf5 gets created 

in the folder where the Large-data.csv file resides. You must not forget to set 

convert=True for this to happen.

After that, you can read/open this HDF5 much faster than what is possible with 

pandas CSV reading. Here is the complete code:

# Pandas reading CSV

t1 = time.time()

df2_pandas = pd.read_csv("Large-data.csv")

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds with Pandas")

# Vaex conversion from CSV

df2 = vaex.from_csv("Large-data.csv", convert=True)

# Vaex reading HDF5

t1 = time.time()

df2 = vaex.open("Large-data.csv.hdf5")

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds with Vaex")

The results speak for themselves:

Took 2354.523 milliseconds with Pandas

Took 14.057 milliseconds with Vaex

In today’s world of data science, a dataset with a million rows is not a particularly 

large one. Even this modest sized file caused pandas to take over 2 seconds to read from 

the disk. With Vaex, after conversion to HDF5, it becomes so much faster. Therefore, 

for a data processing pipeline utilizing the power of libraries like Vaex, it makes sense 

to convert (in a systematic manner) all the text-based data files (CSV or even JSON if 

that makes sense) to HDF5 and read them as a Vaex DataFrame as much as possible, as 

illustrated in Figure 9-12.
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Figure 9-12.  Converting to HDF5 and working with Vaex results in a faster and 
more productive data science pipeline, particularly for out-of-core datasets

�Hands-On Examples with Modin
Modin is a library whose actual utility falls into the realm of parallel processing or multi-

core processing. It uses a Ray or Dask back end to provide an effortless way to speed up 

pandas notebooks, scripts, and libraries. The main attractiveness of Modin is its tight 

integration and identical API to that of pandas.

You will see the use of a Dask DataFrame and Ray in the next chapter. However, 

unlike these distributed DataFrame libraries, Modin provides seamless integration and 

compatibility with existing pandas code including DataFrame construction. Basically, 

you just need to change a single line of code to get started.

�Single CPU Core to Multi-Core
For most of the data science workload to use Modin, you just start like this:

import modin.pandas as pd

From a simple change in one line of code, the benefit that you get is enormous. 

This comes from the fact that despite all the great features and capabilities, the core 
implementation of pandas is inherently single-threaded. This means that only one of 

the multiple CPU cores can be utilized at any given time for executing normal pandas 

code. In a single CPU machine (e.g., a data scientist’s laptop), it would look something 

like Figure 9-13.
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Figure 9-13.  The pandas code utilizing only a single core of the system

However, just wrapping the pandas code with Modin (a single line of code change), 

you can utilize all the cores (by setting up a Dask or Ray backend cluster/worker system), 

as shown in Figure 9-14.

Figure 9-14.  Modin code utilizing all the CPU cores

�Out-of-Core Processing
Let’s now demonstrate the out-of-core processing capability of Modin. Here, the phrase 

“core” does not refer to the CPU core but really to the system memory or RAM.

The following code creates a DataFrame with ~1 million (220 to be precise) rows and 

256 columns with random integers. Note the use of modin.pandas here.

import modin.pandas as pd

import numpy as np
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raw_data = np.random.randint(0, 100, size=(2**20, 2**8))

df = pd.DataFrame(raw_data).add_prefix("col")

When you execute this code for the first time, you may see some user warnings and 

message (Figure 9-15) about the Dask cluster setup (assuming that you are using the 

Dask back end for the parallel processing/ clustering). In the next chapter, you will see 

how to start and monitor a Dask cluster. The good thing with Modin is that all of this gets 

taken care of under the hood, and the user doesn’t have to write the cluster setup code.

Figure 9-15.  Warning message related to Dask cluster setup for Modin code 
execution (first time only)

You can check the information about the DataFrame:

df.info()

It will show something like this:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1048576 entries, 0 to 1048575

Columns: 256 entries, col0 to col255

dtypes: int32(256)

memory usage: 1.0 GB

So, under the hood, it uses the pandas.core.frame.DataFrame class but when 

you check the type of the DataFrame object, it is a Modin pandas object, not the 

regular pandas.

type(df)

>> modin.pandas.dataframe.DataFrame
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Now you come to the key part of this demo. The following code concatenates 20 
such 1GB DataFrames into a single large DataFrame. Check out the time it takes to 

do this and think what could have gone wrong if you tried this with normal pandas code 

(assuming your local machine has a 16GB RAM).

import time

t1 = time.time()

big_df = pd.concat([df for _ in range(20)])

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds")

It should be done under a second.

Took 236.584 milliseconds

If you want to see the shape of this large DataFrame big_df:

big_df.shape

>> (20971520, 256)

So, it does have over 20 million rows and 256 columns. This would be almost 

impossible to handle as a persistent in-memory object with pure pandas.

If you check the memory usage explicitly:

big_df.memory_usage(deep=True)

>>

Index     167772160

col0       83886080

col1       83886080

col2       83886080

col3       83886080

            ...

col251     83886080

col252     83886080

col253     83886080

col254     83886080

col255     83886080

Length: 257, dtype: int64
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So, each column’s memory usage is over 80MB. In total, for 256 columns (and one 

index), this represents over 20GB of memory usage. My laptop has only 16GB of RAM 

and surely the Jupyter notebook, where this code is being run, did not take up all the 

memory. This is the direct demonstration of out-of-core computing with Modin.

You can treat this large DataFrame as a regular pandas DataFrame for all purposes 

from now on. For example, calculating the mean on col0 is done under 2 seconds.

t1 = time.time()

big_df['col0'].mean()

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds for calculating mean 

of col0")

>> Took 2677.044 milliseconds for calculating mean of col0

How about calculating the mean of the entire DataFrame? Instead of one column, 

now you are operating over all 256 columns of data.

t1 = time.time()

big_df.mean()

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds for calculating mean of 

the entire DataFrame")

>> Took 37654.585 milliseconds for calculating mean of the entire DataFrame

So, the time goes from 2.7 seconds to 37.7 seconds. Not a 256X increase in the 

computing time, but much less. This is the fruit of parallel processing and allocating data 

chunks optimally to each worker that the Dask cluster has set up in the background.

�Other Features of Modin
Modin is a live, open-source project and new contributions get added all the time. It 

also has

•	 Distributed XGBoost support for fast machine learning

•	 Standard SQL connection support to execute SQL queries on 

databases
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•	 Gradually maturing support for various input data ingestion 

APIs (reading all kinds of files and data formats). In this matter, if 

something is tricky to support, it defaults to the pandas reading API 

automatically for ingestion, and then processes the object as a Modin 

DataFrame.

For more details and updates, interested readers should definitely check out the 

official documentation at https://modin.readthedocs.io/en/stable/index.html.

�Summary
In this chapter, you started addressing the concept of scaling out a data science workload 

to multiple CPU cores and beyond the system memory. This is particularly important for 

dealing with increasingly larger datasets, going from the realm of megabytes to gigabytes 

to terabytes and more. The conventional Python data science ecosystem using NumPy, 

pandas, and Matplotlib is great at smaller datasets but starts becoming inefficient while 

dealing with large file sizes, particularly reading from the disk or performing aggregation 

and statistical computations. pandas may throw up memory errors for a lot of trivial 

situations involving multi-GB level datasets because it makes a lot of unnecessary 

memory copies while doing regular data wrangling.

You explored common tricks and techniques within pandas to address these issues 

such as selective data loading, explicit type setting, and more. Then, you followed hands-

on examples of out-of-core computing and scalability with large file and dataset size 

with two powerful libraries, Vaex and Modin. Doing data transformation (or visualization) 

with such large datasets would have been slow and inefficient with pure pandas code.

Among these, Modin uses a Ray or Dask back end for distributing computing load 

to multiple CPU cores. In the next chapter, you will take this discussion of scalable data 

science further by exploring these parallel or distributed computing aspects.
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CHAPTER 10

Parallelized Data Science
In the last chapter, I talked about how data science tasks may encounter a wide variety of 

dataset sizes, ranging from kilobytes to petabytes. There can be a range of scale either in 

the number of samples or the extent of feature dimensionality. To handle complex data 

analytics and machine learning, data scientists employ a dizzying array of models, and 

that ecosystem scales up quickly, too.

Handling data and models at scale is a special skill to be acquired. When a 

data scientist starts learning the tradecraft, they first focus on understanding the 

mathematical basis, data wrangling and formatting concepts, and how to source and 

scrape data from various sources. In the next stage, they focus mainly on various ML 

algorithms and statistical modeling techniques and how to apply them for various tasks. 

Model performance and hyperparameter tuning remains their sole focus.

However, in almost all real-life scenarios, the success of a data science pipeline 

(and its value addition to the overall business of the organization) may depend on how 

smoothly and flawlessly it can be deployed at scale (i.e., how easily it can handle large 

datasets, faster streaming data, rapid change in the sampling or dimensionality, etc.). In 

this era of Big Data, the principles of the five V’s (or six) must be embraced by enterprise-

scale data science systems.

Of course, a single data scientist will not oversee implementing this whole enterprise 

or the pipeline. However, knowledge about scaling up the data science workflow is fast 

becoming a prerequisite for even an entry-level job in this field. There are a few different 

dimensions to that knowledge: cloud computing, Big Data technologies like Hadoop 

and Spark, and parallel computing with data science focus, for example.

The topics of cloud computing and associated tools (think AWS, Google Cloud 

Service, or Azure ML) are squarely beyond the scope of this book. Additionally, there 

are excellent resources (both online courses and textbooks) for learning the essentials 

of distributed data processing with the Hadoop infrastructure and related technologies. 

This chapter focuses on the Python-based parallel computing aspects that can be used 

directly for data science tasks. Much like the last chapter, I will discuss some of the 
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limitations that arise while doing analysis with large and complex datasets using the 

most common data analysis and numerical computing libraries like pandas or NumPy 

and discuss alternative libraries to help with those tasks.

It is to be noted, however, that this is not going to be an exhaustive discussion 

about general parallel computing tricks and techniques with Python. In fact, I will 

avoid detailed treatment of the topics that often come up in a standard Python 

parallel computing tutorial or treatise, such as working with built-in modules like 

multiprocessing, threading, or asynco. The focus, like any other chapter in this book, 

is squarely on data science, and therefore, I will cover two libraries named Dask and 

Ray that truly add value to any data science pipeline where you want to mix the power of 

parallel computing.

�Parallel Computing for Data Science
You’ll start with a simple code snippet to understand where you want to go. Assuming 

you have standard Python installed on your laptop, execute this code (on a CLI or inside 

a Jupyter notebook):

import multiprocessing as mp

print("Number of processors: ", mp.cpu_count())

You are highly likely to get a response like 4 or 6. This is because all modern CPUs 

consist of more than one core; they’re parallel computing units, effectively. There 

are subtle differences between the actual physical cores (electronic units with those 

nanometer-scale transistors) and logical cores, but for all computing purposes, you can 

think of the logical cores as the fundamental units in your system.

For more detailed information on the CPU installed on your laptop, you may execute 

the following snippet:

import psutil

print("="*20, "CPU Info", "="*20)

# number of cores

print("Physical cores:", psutil.cpu_count(logical=False))

print("Total cores:", psutil.cpu_count(logical=True))

# CPU frequencies

cpufreq = psutil.cpu_freq()
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print(f"Max Frequency: {cpufreq.max:.2f}Mhz")

print(f"Current Frequency: {cpufreq.current:.2f}Mhz")

# CPU usage

print("CPU Usage Per Core:")

for i, percentage in enumerate(psutil.cpu_percent(percpu=True, 

interval=1)):

    print(f"Core {i}: {percentage}%")

print(f"Total CPU Usage: {psutil.cpu_percent()}%")

On my laptop, I get the following:

==================== CPU Info ====================

Physical cores: 2

Total cores: 4

Max Frequency: 2195.00Mhz

Current Frequency: 2195.00Mhz

CPU Usage Per Core:

Core 0: 64.7%

Core 1: 40.9%

Core 2: 58.5%

Core 3: 29.2%

Total CPU Usage: 55.6%

So, we have multiple cores, and we should be able to take advantage of that 
hardware design in our data science tasks. What might that look like?

�Single Core to Multi-Core CPUs
Although this is a book about data science, sometimes it is necessary (and nostalgic) 

to take a slight detour into the hardware realm and revisit the history of development 

on that side. For parallel computing, a lot of hardware development had to happen 

over a long period of time before the modern software stack started taking full-blown 

advantage of that development. It will be beneficial to get a brief glimpse of this history 

to put our discussion in context.
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The earliest commercially available CPU was the Intel 4004, a 4-bit 750kHz 

processor released in 1971. Since then, processor performance improvements were 

mainly due to clock frequency increases and data/address bus width expansion. A 

watershed moment was the release of the Intel 8086 in 1979 with a max clock frequency 

of 10MHz and a 16-bit data width and 20-bit address width.

The first hint of parallelism came with the first pipelined CPU design for the Intel 

i386 (80386) which allowed running multiple instructions in parallel. Separating the 

instruction execution flow into distinct stages was the key innovation here. As one 

instruction was being executed in one stage, other instructions could be executed in the 

other stages and that led to some degree of parallelism.

At around the same time, superscalar architecture was introduced. In a sense, 

this can be thought of as the precursor to the multi-core design of the future. This 

architecture duplicated some instruction execution units, allowing the CPU to run 

multiple instructions at the same time if there were no dependencies in the instructions. 

The earliest commercial CPUs with this architecture included the Intel i960CA, AMD 

29000 series, and Motorola MC88100.

The unstoppable march of Moore’s Law (shrinking the transistor sizes and 

manufacturing cost at an exponential pace; www.synopsys.com/glossary/what-is-

moores-law.html) helped fuel this whole revolution in microarchitecture with the 

necessary steam. Semiconductor process technology was improving and lithography 

was driving the transistor nodes to the realm of sub 100 nm (1/1000th of the width of 

a typical human hair), supporting circuitry, motherboards, and memory technology 

(taking advantage of the same manufacturing process advancements).

The war for clock frequency heated up and AMD released the Athlon CPU, 

hitting the 1GHz speed for the first time, at the turn of the century in 1999. This war was 

eventually won by Intel, who released a dizzying array of high-frequency single-core 

CPUs in the early 2000s, culminating in the Pentium-4 with a base frequency around 

3.8GHz - 4GHz.

But fundamental physics struck back. High clock frequencies and nanoscale 

transistor sizes resulted in faster circuit operations, but the power consumption shot 

up as well. The direct relationship between frequency and power dissipation posed an 

insurmountable problem for scaling up. Effectively, this power dissipation resulted in 

so-called higher leakage current that destabilized the entire CPU and system operation 

when the transistor count was also going up into billions (imagine billions of tiny and 

unpredictable current leakages happening inside your CPU).
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To solve this issue, multi-CPU designs were tried that housed two physical CPUs 

sharing a bus and a common memory pool on a motherboard. The fundamental idea 

is to stop increasing the frequency of operations and go parallel by distributing the 

computing tasks over many equally powerful computation units (and then accumulate 

the result somehow). But due to communication latencies from sharing external (outside 

the package) bus and memory, they were not meant to be truly scalable designs.

Fortunately, true multi-core designs followed soon after where multiple CPU cores 

were designed from the ground up within the same package, with special consideration 

for parallel memory and bus access. They also featured shared caches that are separate 

from the individual CPU caches (L1/L2/L3) to improve inter-core communication by 

decreasing latency significantly. In 2001, IBM released Power4, which can be considered 

the first multi-core CPU, although the real pace of innovation and release cycle picked 

up after Intel’s 2005 release of the Core-2 Duo and AMD’s Athlon X2 series.

Many architectural innovations and design optimizations are still ongoing in this 

race. Enhancing core counts per generation has been the mainstay for both industry 

heavyweights, Intel and AMD. While today’s desktop workstation/laptops regularly 

use 4 or 6 core CPUs, high-end systems (enterprise data center machines or somewhat 

expensive cloud instances) may feature 12 or 16 cores per CPU.

For the data science revolution and progress, it makes sense to follow this journey 

closely and reap the benefits of all the innovations that hardware design can offer. But it 

is easier said than done. Parallelizing everyday data science tasks is a non-trivial task and 

needs special attention and investment.

�What Is Parallel in Data Science?
For data science jobs, both data and models are important artifacts. Therefore, one of the 

first considerations to be made for any parallel computing effort is to the focal point of 

parallelizing: data or model.

Why do you need to think this through? Because some artifacts are easier to be 

imagined to be parallelized than the others. For example, assume you have 100 datasets 

to run some statistical testing on and 4 CPU cores in your laptop. It is not hard to imagine 

that it would be great if somehow you could distribute the datasets evenly across all the 

cores and execute the same code in parallel (Figure 10-1). This should reduce the overall 

time to execute the statistical testing code significantly, even if the scheme involves 

some upfront overhead for dividing and distributing data, and some end-of-the-cycle 

aggregation or accumulation of the processed data.
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Although this is not hard to imagine, the actual implementation is not that 

straightforward for a traditional Python-based data science stack using pandas or SciPy. 

As discussed in the last chapter, Python is inherently single-threaded and doing parallel 

processing with Python code needs some prior setup and clever manipulation. When a 

data scientist is using high-level analytics libraries like pandas, it is even more important 

to know the limitations for parallel processing (if any).

Moreover, data science is not limited to model exploration and statistical analysis 

on a single person’s laptop (or a single cloud-based compute node) anymore. From a 

single machine (however powerful it might be), the advantages are apparent for large-

scale data analytics when one connects to a cluster architecture consisting of multiple 

computers banded together with high-speed network. In the limiting case, such a cluster 

aims to become a single entity of computing for all intents and purposes: a single brain 

arising out of parallel combination and communication among many smaller brains.

Naturally, data scientists start imagining all kinds of possibilities that can be tried and 

tested with this collective brain. Alongside splitting a large collection of datasets, they can 

think of splitting models (or even modeling subtasks) into chunks and executing them 

in a parallel fashion. Datasets can be sliced and diced in multiple ways and all those 

dimensions might be parallelized, depending on the problem at hand. Some tasks may 

benefit from splitting data samples in rows; others may benefit from column-wise splitting.

Figure 10-1.  Distributing datasets across multiple computing cores

Chapter 10  Parallelized Data Science



263

Even many optimization tasks can be parallelized with sufficient effort and thrown 

to multiple compute nodes. One example could be running parallel local area searches 

for finding the best cost function of a global problem. All these ideas are captured in 

Figure 10-2.

Figure 10-2.  Cluster of computing nodes for parallelizing data science tasks in 
various dimensions: data, model, optimizations, and so on

�Parallel Data Science with Dask
Dask is a feature-rich, easy-to-use, flexible library for parallelized and scalable 

computing in the Python ecosystem. While there are quite a few choices and approaches 

for such parallel computing with Python, the great thing about Dask is that it is 

specifically optimized and designed for data science and analytics workloads. In that 

way, it really separates itself from other major players such as Apache Spark.

In a typical application scenario, Dask comes to the rescue when a data scientist is 

dealing with large datasets that would have been tricky (if not downright impossible) 

to handle with the standard Python data science workflow of NumPy/ pandas/scikit-

learn/TensorFlow. Although these Python libraries are the workhorses of any modern 

data science pipeline, it is not straightforward how to take advantage of large parallel 

computing infrastructure or clusters with these libraries.
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At the minimum, one must spend quite a bit of manual effort and set up customized 

code or preprocessing steps to optimally distribute a large dataset or split a model that 

can be executed on the parallel computing infrastructure. Moreover, this limitation is 

not only for cloud-based clusters but applies to a single machine scenario as well. It 

is not apparent how to take advantage of all the logical cores or threads of a powerful 

workstation (with a single standalone CPU) when doing a pandas data analysis task 

or using SciPy for a statistical hypothesis testing. Some of the design features of these 

libraries may even fundamentally prevent us from using multiple CPU cores at once.

Fortunately, Dask takes away the pain of planning and writing customized code for 

turning most types of data science tasks into parallel computing jobs and abstracts away 

the hidden complexity as much as possible. It also offers a DataFrame API that looks 

and feels much like the pandas DataFrame so that standard data analytics and data 

wrangling code can be ported over with minimal change and debugging. It also has a 

dedicated ML library (APIs similar to that of scikit-learn). Let’s explore how Dask works 

and more features in the next sections.

Is Dask the same as Spark? T his article (https://coiled.io/is-spark-
still-relevant-dask-vs-spark-vs-rapids/) lays out the similarities and 
differences nicely. In brief, Dask is more “friendly and familiar” to data scientists 
working with Python codebase and solving problems that do not always restrict 
themselves to SQL-type data queries.

�How Dask Works Under the Hood
At its core, Dask operates by using efficient data structures (arrays and DataFrames) 

and a cleverly designed graph. Basically, it uses a client-scheduler-worker cluster 

architecture (Figure 10-3) to optimally distribute subtasks, collect them together, and 

calculate the outcome/prediction. The intricacies of parallel computing are abstracted 

away from regular Python programmers or data scientists, so working with large datasets 

is made easy and accessible. Figure 10-3 shows a schematic illustration.
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Figure 10-3.  Dask client-scheduler-worker operations under the hood

The most useful fundamental building blocks of Dask are the following:

•	 Dask array

•	 Dask DataFrame

•	 Dask bag

•	 Dask task graph

�Dask Array

This is an implementation of a subset of the NumPy n-dimensional array (or ndarray) 

interface using blocked algorithms that effectively cut up a large array into many small 

arrays/chunks. This facilitates computation on out-of-core (larger than memory) arrays 

using all the cores in a computer in a parallel fashion. These blocked algorithms are 

coordinated using Dask task graphs. For more details on Dask arrays, go to the official 

documentation at https://docs.dask.org/en/latest/array.html.

Chapter 10  Parallelized Data Science

https://docs.dask.org/en/latest/array.html


266

�Dask DataFrame

Essentially, a Dask DataFrame is a large-scale parallelized DataFrame composed of 

many smaller pandas DataFrames, split along the index. Depending on the size and 

situation, the pandas DataFrames may exist on the disk for out-of-core computing on a 

single machine, or they may live on many different computing nodes in a cluster.  

A single Dask DataFrame operation triggers many operations down the chain (i.e., on 

the constituent pandas DataFrames in a parallel manner).

Efficiency and ease of use are main goals of the Dask project. Therefore, Dask 

DataFrames are partitioned row-wise, grouping rows by index value for efficiency. At the 

same time, they can expose the same API and methods as those coming from the pandas 

stable. A data scientist won’t feel the difference or need to change existing code but can 

utilize the parallelism just by working with the Dask DataFrame API. In fact, the pandas 

official documentation suggests using Dask for scaling out to large datasets (Figure 10-4).

Figure 10-4.  The pandas official documentation suggests using Dask for large 
datasets

�Dask Bag

This is a data structure that implements operations like map, filter, fold, and groupby 

on collections of generic Python objects like lists or tuples. It uses a small memory 

footprint using Python iterators and is inherently parallelized.

Apache Spark has its famous Resilient Distributed Dataset (RDD; https://

databricks.com/glossary/what-is-rdd). A Dask Bag is a Pythonic version of that RDD, 

suitable for operations inherently popular with users of the Hadoop file system. They are 

mostly used to parallelize simple computations on unstructured or semi-structured data 

such as text data, JSON records, log files, or customized user-defined Python objects.
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�Dask Task Graph

Dask uses the common approach to parallel execution in user-space: task scheduling. 

With this approach, it breaks the main high-level program/code into many medium-

sized tasks or units of computation (e.g., a single function calls on a non-trivial amount 

of data). These tasks are represented as nodes in a graph. Edges run between nodes if 

one task is dependent on the data produced by another. A task scheduler is called upon 

to execute this whole graph in a way that respects all the inter-node data dependencies 

and leverages parallelism wherever possible, thereby speeding up the overall 

computation.

There are many techniques for scheduling: Embarrassingly Parallel, MapReduce, Full 

Task Scheduling, etc. Often task scheduling logic hides within other larger frameworks 

like Luigi, Storm, Spark, and IPython Parallel. Dask encodes full task scheduling 

(Figure 10-5) with minimal incidental complexity using common Python artifacts (i.e., 

dictionaries, tuples, and callables). Dask can even use Python-native schedulers such as 

Threaded and Multiprocessing.

Figure 10-5.  Dask uses a full task scheduling approach for its task graph

Taking the fundamental data structures and schedulers, we can illustrate the 

flexibility of Dask as shown in Figure 10-6.

Figure 10-6.  Dask collections, task graph, and schedulers
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�Works on Many Types of Clusters

One of the great features of Dask is that tasks and code can be deployed over many types 

of clusters:

•	 Hadoop/Spark clusters running YARN

•	 HPC clusters running job managers like SLURM, SGE, PBS, LSF, 

or others

•	 common in academic and scientific labs

•	 Kubernetes clusters

This makes Dask a truly powerful engine for parallel computing no matter the 

underlying distributed data processing infrastructure choice. Naturally, Dask code and 

pipelines can be easily ported from one organization to another or shared among the 

teams of a large data science organization.

�Basic Usage Examples
Here is how you can define and examine some of the data structures you just learned 

about. Let’s start with arrays and then go on to show some examples with DataFrames 

and Bags.

A note about Dask and Ray code examples / A lmost all the code snippets in 
this chapter are for illustration and conceptualization purpose only. They are not 
fully executable, working code. The reason for this is brevity. The book focuses on 
concepts and learning and does not intend to act as a code manual. Working code 
examples are provided in the accompanying Jupyter notebooks (or GitHub links).

�Array

Define a Numpy array of 100,000 elements (Gaussian random numbers) and create a 

Dask array from that using the da.from_array() method:

import numpy as np

import pandas as pd
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import dask.dataframe as dd

import dask.array as da

import dask.bag as db

arr = np.random.normal(size=100_000).reshape(500,200)

dask_arr = da.from_array(arr,chunks=(100,100))

Note that for creating the Dask array, you have chosen a chunk size of (100, 100). In 

a Jupyter notebook, if you just examine this dask_arr object, it is even visualized nicely 

(Figure 10-7).

Figure 10-7.  A 2D Dask array created from a NumPy array of random numbers

All the chunks have the same size of 78.12 kiB whereas the total dataset is 781.25 

kiB. These chunks can effectively be distributed over cores or machines for parallel 

computing. You can go ahead and define a 3D array in a similar fashion:

arr = np.random.normal(size=100_000).reshape(50,200,10)

dask_arr = da.from_array(arr,chunks=(50,20,10))

Now the Dask array looks like a stack of bricks with a 3D shape (Figure 10-8).
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Figure 10-8.  A 3D Dask array created from a NumPy array of random numbers

Dask operates on the principle of lazy valuation where final values are not computed 

unless explicitly asked to do so. You can define a summation operation on the 3D array 

like this where you are also counting the time for the operation:

import time

t1 = time.time()

task1 = dask_arr.sum(axis=2)

t2 = time.time()

print("Time (milliseocnds):", round((t2-t1)*1000,3))

task1

In the Jupyter notebook, this will show a visualization. Note the time taken for this 

operation is ~4 milliseconds (Figure 10-9). Nothing has been computed; just a task graph 

has been built, and the expected output array shape has been determined.
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Figure 10-9.  A simple summation operation leads to a new array and task graph

Similarly, you can add another operation to this chain, determining the max value 

out of those summed values along the columns (i.e., axis=1):

t1 = time.time()

task2=task1.max(axis=1)

t2 = time.time()

print("Time (milliseocnds):", round((t2-t1)*1000,3))

task2

Again, the task2 is shown as an array with a shape of (50,), and it took ~6 

milliseconds for this to be built (Figure 10-10).
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Figure 10-10.  Determining the max out of the summed values along columns

Finally, you need to call a special computation method to evaluate the result – 

result = task2.compute(). The computation time is much higher here (~24 

milliseconds) and you get the one-dimensional array of max values as expected 

(Figure 10-11). This is where all the tasks in the task graph are executed over multiple 

cores in a parallel fashion.
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Figure 10-11.  Final computation for the 3D array

In fact, you can check the details of the task graph just by examining the dask 

attribute of any array such as task2 (Figure 10-12).
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Figure 10-12.  A high-level task graph for the sum-max operations

In the Jupyter notebook, each of these layers can be expanded to see more details. 

You are encouraged to check out the accompanying notebook.

�DataFrames

Dask DataFrames are equally easy to use if you are already familiar with pandas. You can 

create a DataFrame with timeseries data using Dask’s built-in datasets module:

from dask import datasets

df = datasets.timeseries(

    start='2022-01-01',

    end='2022-01-31',

    freq='1min',

    partition_freq='1d',)

Now, if you just type df in a Jupyter notebook cell, it won’t show the data snapshot 

that you are used to seeing in a pandas DataFrame. This is because Dask operates on lazy 

evaluation and just typing df does not demand any actual computation. Instead, it will 
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show the schema (i.e., datatypes) and the general structure information (Figure 10-13). 

Note that it has 30 partitions because you chose the partition_freq = '1d' in the code 

and the start and end dates fall on the 1st and 31st of the month.

Figure 10-13.  A time series DataFrame in Dask showing the data schema

If you want to see the first few entries, the familiar head method will serve that 

purpose and, by default, the computation will be done (i.e., the actual data will be 

shown) as in Figure 10-14.

Figure 10-14.  A Dask DataFrame showing the first few entries
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Most pandas-type operations are supported. For example, to know how many 

unique names there are, you write the following code:

df['name'].nunique().compute()

>> 26

Now, to group by those names and compare their variances of x and y data side by 

side, you can write

df.groupby(by='name').var().compute()[['x','y']]

>>

         x           y

name

Alice    0.331361    0.318624

Bob      0.328595    0.336009

Charlie  0.324984    0.334246

Dan      0.329188    0.333593

Edith    0.324070    0.332390

Frank    0.340098    0.335124

<truncated output>

Direct plotting is also supported like pandas. Using a special resample method 

(because the data is a time series), you can plot the mean data like this (Figure 10-15):

df[['x', 'y']].resample('24h').mean().compute().plot()

Figure 10-15.  Time series resampled data mean
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Randomly accessing a partition’s data is fast but still needs to be computed to 

see the actual data. For example, to see all the time for the 25th of January partition 

(Figure 10-16), you can write this:

df.loc['2022-01-25'].compute()

Figure 10-16.  Accesing and computing the data for a particular day/partition

�Dask Bags

Here’s a Dask Bag example that contains some JSON records. This could be randomly 

generated information and the code for generating such JSON data is given in the 

accompanying notebook/source code. You can have five JSON records (about five 

people) in a folder called data. You read them in a Dask Bag structure via following code 

(note the use of map and json.loads functions):

import dask.bag as db

import json

bag = db.read_text('data/*.json').map(json.loads)
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Again, due to lazy evaluation, you cannot see inside the Bag unless you explicitly ask 

for that. You can use either take method for that:

bag.take(2)

This should show something like Figure 10-17. The records contain information 

about people’s name, occupation, phone number, and address. The record is multi-level. 

For example the address field has another level of data fields: address and city.

Figure 10-17.  Dask bag containing JSON records (the first two records are 
shown here)

Now you can do operations like map, filter, and aggregation on this records data. For 

example, you may want to filter only those people whose age is over 50 and whose credit-

card expiration date year is beyond 2022. You write a simple filtering function and pass 

it to the Bag object’s filter method. Note that you must use take or compute to get the 

actual computation done.

def filter_func(record):

    cond1 = record['age'] > 50

    cond2 = int(record['credit-card']['expiration-date'].split('/')

[-1]) > 22

    return cond1 and cond2

bag.filter(filter_func).take(2)

This may return something like Figure 10-18.
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Figure 10-18.  Filtering operation done on the records contained in the Dask Bag

There are many powerful usages for Dask Bags with semi-structured datasets that 

would have been difficult to accomplish just with an array or DataFrames.

�Dask Distributed Client
All the usage examples in the earlier sections feature the formalism and lazy evaluation 

nature of Dask APIs (arrays, DataFrames, and Bags), but they don’t showcase the 

distributed/parallelized nature of computation in an obvious manner. For that, you 

must select and use the distributed scheduler from the Dask repertoire. It is actually a 

separate module or lightweight library called Dask.distributed that extends both the 

concurrent.futures and Dask APIs to moderate sized clusters.

Some of the core features of this module are as follows:

Low overhead and latency: There is only about 1ms of overhead 

for each task. A small computation and network roundtrip can be 

completed in less than 10ms.

Data sharing between peers: Worker nodes (e.g., logical cores 

on a local machine or cheap computing nodes in a cluster) 

communicate with each other to share data.

Locality of the data: Computations happen where the data lives. 

Scheduling algorithms distribute and schedule tasks following 

this principle. This also minimizes network traffic and improves 

the overall efficiency.
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Complex task scheduling: This is probably the most attractive 

feature. The scheduler supports complex workflows and is not 

restricted to standard map/filter/reduce operations that are the 

primary feature of other distributed data processing frameworks 

like Hadoop-based systems. This is absolutely necessary for 

sophisticated data science tasks involving n-dimensional arrays, 

machine learning, image or high-dimensional data processing, 

and statistical modeling.

The flexibility and power of the scheduler also stems from the fact that it is 

asynchronous and event driven. This means it can simultaneously respond to 

computation requests from multiple clients and track the progress of a multitude of 

workers that have been given tasks already. It is also capable of concurrently handling a 

variety of workloads coming from multiple users while also managing a dynamic worker 

population with possible failures and new additions.

The best thing for the user, a data scientist, is that they can use all these features 

and powers with pure Python code and a minimal learning curve. Cluster management 

or distributed scheduling is not a trivial matter to accomplish programmatically. A 

data scientist using Dask does not have to bother about those complexities as they are 

abstracted away. That’s where the theme of productive data science gets its support from 

libraries like Dask.

In fact, with just two lines of code, you can start a local cluster (utilizing the CPU 

cores of a local machine):

from dask.distributed import Client

client = Client()

Now, if you type client in the Jupyter notebook cell, you will see a description like 

Figure 10-19. Note that it shows a hyperlink to a dashboard, which you will see in 

action soon.
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Figure 10-19.  Starting up a Dask-distributed cluster/scheduler (on a local 
machine)

If you keep expanding the Cluster Info drop-down, you may see something like 

Figure 10-20. Note how it shows the threads/workers of the local machine and the 

available system memory.

Figure 10-20.  Cluster and scheduler info for Dask distributed client setup
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The important thing to know is that you can pass on many customizable parameters 

to the Client constructor when you create your scheduler/cluster. Some of the most 

prominent ones are

address: IP address (with port) of a real cloud-based, remote 

cluster or the local host machine. If you can afford to rent a high-

end cloud instance with a high CPU count (as discussed in the 

previous chapter), the Dask scheduler can directly connect to it 

and start utilizing the resources. When not specified, only the local 

host machine is taken up as the computing node.

n_workers: Explicitly specifying the number of CPU cores that the 

cluster will be able to use. This could be important for resource 

constrained situations or if there are many Dask tasks to be 

distributed among a finite number of CPU cores.

threads_per_worker: Just like specifying number of CPU cores, 

this dictates the number of threads per core. Generally, this 

number is 1 or 2.

memory_limit: This is another useful keyword to use for optimally 

managing the total system memory for the distributed client. 

This limit is on a per-CPU core basis and should be a string (e.g., 

‘2 GiB’).

Once the scheduler is started up, it manages the distributed computing aspects 

by itself. However, there is a certain way to submit jobs to the scheduler using map and 

submit methods. Here is a (somewhat contrived) example.

Suppose you have a few datasets of random variables (generated from a specific 

statistical distribution) and you want to measure the differences between their max 

and median, and then take an average of those measurements. Each dataset may 

contain 1,000 values and there are 21 such datasets. Taken together, this could be a 

measure of some sort of outliers in the data (i.e., how much the max value is higher 

than the median values for a certain batch of data). You have the data generation code 

in the accompanying notebook. The distributions (of individual datasets) are shown in 

Figure 10-21. 
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Figure 10-21.  A synthetic batch of data for which a distributed processing needs 
to be run

So, this involves the following computations:

•	 21 max computation (from 1,000 data points each time)

•	 21 median computation (from 1,000 data points each time)

•	 Two arithmetic mean computations (of 21 max/median values 

each time)

•	 A final difference calculation

You write the Dask code as follows (assuming that the datasets are contained in a 

Python list called dists). The code for generating such randomized numbers in a list is 

given in the accompanying source code/notebook.

# Mapping statistical computations to data distributions

A = client.map(np.max, dists)

B = client.map(np.median, dists)

# Submitting averaging jobs

mean_max = client.submit(np.mean, A)

mean_min = client.submit(np.mean, B)
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At this point, if you examine the mean_max object, you will see it is something called a 

Dask Future (a sort of promise that will be calculated or acted upon in future, similar to a 

concept in JavaScript):

mean_max

>> Future: mean status: finished, type: numpy.float64, key: mean-2e5b19a3

2f99725e1cf4f6f5ba8e295a

The entire distributed task is just planned at this point and no actual computation 

has happened. You must call result to execute the actual computations:

final = mean_max.result() - mean_min.result()

final

>> 0.6780617253952232

However, more interesting things can be observed simply by looking at the 

dynamic dashboard that Dask provides. You can simply click on the hyperlink shown in 

Figure 10-20 and see something like Figure 10-22. 

Figure 10-22.  Task status view of the dynamic Dask dashboard
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This is a static snapshot of the task status tab of the dashboard. When the parallel 

processes execute (distributed over multiple CPU cores), the graph changes and updates 

dynamically as all the data chunks are split and shared among workers. A good visual 

demonstration of this dynamic process can be seen in an article that I published at 

https://medium.com/productive-data-science/out-of-core-larger-than-ram-

machine-learning-with-dask-9d2e5f29d733 with a hands-on example involving the 

Dask Machine Learning library. You are encouraged to check out this article.

There are many other tabs in this dashboard. The information tab about workers is 

one among them (Figure 10-23). Again, here the view is static and after the processing 

was finished. Therefore, you see minimal usage of memory and CPU. But for a dynamic 

state, those numbers will be high and constantly changing.

Figure 10-23.  Workers information view of the dynamic Dask dashboard

�Dask Machine Learning Module
While Dask provides an amazing suite of parallel and out-of-core computing facilities 

and a straightforward set of APIs (Arrays, DataFrames, Bags, etc.,), the utility does not 

stop there. Going beyond the data wrangling and transformation stage, when data 

scientists arrive at the machine learning phase, they can still leverage Dask for doing 

the modeling and preprocessing tasks with the power of parallel computing. All of 

this can be achieved with a minimal change in their existing codebase and in pure 

Pythonic manner.

For ML algorithms and APIs, Dask has a separately installable module called 

dask-ml. Full treatment of that module is beyond the scope of this book. You are again 

encouraged to check out the above-mentioned article to get a feel about the API. Here, I 

will briefly discuss some key aspects of dask-ml.
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�What Problems Does It Address?

Fundamentally, libraries like dask-ml addresses the dual problems of data scaling and 

model scaling.

The data scaling challenge comes about with the Big Data domain, for example, 

when the computing hardware starts having trouble containing training data in the 

working memory. So, this is essentially a memory-bound problem. Dask solves this 

problem by spilling data out-of-core onto drive storage and providing incremental meta-

learning estimators that can learn from batches of data rather than having to load entire 

dataset in the memory.

The model scaling challenge, on the other hand, raises its ugly head when the 

parametric space of ML model becomes too large and the operations become compute-
bound. To address these challenges, you can continue to use the efficient collections 

Dask offers (arrays, DataFrames, bags) and use a Dask Cluster to parallelize the 

workload on an array of machines. Even the task of parallelization has choices. It can 

occur through one of the built-in integrations (e.g., Dask’s joblib back end to parallelize 

scikit-Learn directly) or one of dask-ml estimators (e.g., a hyper-parameter optimizer or 

a parallelized Random Forest estimator).

�Tight Integration with scikit-learn

Following through the principle of simplicity of use, dask-ml maintains a high degree 

of integration and the drop-in replacement philosophy with the most popular Python 

ML library, scikit-learn. Dask-ml provides data preprocessing, model selection, training, 

and even data generating functions just like scikit-learn does while supporting Dask 

collections as native objects to use with those APIs.

Generic code could go like this (not an actual working code):

import dask.dataframe as ddf

from dask_ml.model_selection import train_test_split

from dask_ml.preprocessing import MinMaxScaler

from dask_ml.xgboost import XGBRegressor

# Reading efficient parquet file format

data = ddf.read_parquet('Parquet file' engine='pyarrow’),

X = data[Feature_columns]

y = data[Label_column]
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# Test/train split

train, train_labels, test, test_labels = train_test_split(X,y,

test_size=0.2,...)

# Scale/pre-process

train = MinMaxScaler.fit_transform(train)

test = MinMaxScaler.fit_transform(test)

# Parallelized estimator

est = XGBRegressor(...)

est.fit(train, train_labels)

est.score(test)

It is easy to spot the almost line-by-line similarity between this code and a standard 

scikit-learn pipeline. This is called the drop-in replacement ability of dask-ml. You may 

also notice the use of the Parquet file format for reading a large dataset efficiently (into 

a Dask DataFrame) from a disk drive or network storage. You may check out my article 

on this topic (https://medium.com/productive-data-science/out-of-core-larger-

than-ram-machine-learning-with-dask-9d2e5f29d733). When executed, this code 

combines the advantage of out-of-core data handling of a Dask DataFrame with the 

parallelized estimator API and delivers a scalable machine learning experience for the 

data scientist, thereby boosting their productivity.

The dask-ml library also offers some meta-estimators/ wrappers to help parallelize 

and scale out certain tasks that would not have been possible with scikit-learn itself. For 

example, ParallelPostFit can be used to parallelize the predict, predict_proba, and 

transform methods, enabling them to work on large (possibly larger-than-memory) 

datasets. This is highly suited for real-life production deployments, as the live data can 

be pretty large even when the training was done with a smaller dataset. For smooth 

and stable performance of a prediction service, these post-fitting methods should scale 

gracefully whatever the dataset size may be and dask-ml helps accomplish this without a 

lot of code change. A generic code snippet for such a task may look like the following:

from sklearn.ensemble import GradientBoostingClassifier

from dask_ml.wrappers import ParallelPostFit

# Wrapping the sklearn estimator with Dask wrapper

clf = ParallelPostFit(estimator=GradientBoostingClassifier())

clf.fit(X, y)

Chapter 10  Parallelized Data Science

https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733
https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733


288

# Big dataset for prediction

X_big, _ = make_classification(n_samples=100000, chunks=10000,)

# Probability of first 10 data points

clf.predict_proba(X_big).compute()[:10]

In the code above, note that the main estimator comes from scikit-learn itself. The 

Dask part is only a wrapper that utilizes the underlying estimator to work on a Dask 

collection like a DataFrame for lazy evaluation and out-of-core computing.

�Parallel Computing with Ray
Parallel computing in pure Python has recently been revolutionized by the rapid rise 

of a few great open-source frameworks, Ray being one of them. It was created by two 

graduate students in the UC Berkley RISElab (https://rise.cs.berkeley.edu/), Robert 

Nishihara and Philipp Moritz, as a development and runtime framework for simplifying 

distributed computing. Under the guidance of Professors Michael Jordan and Ion 

Stoica, it rapidly progressed from being a research project to a full-featured computing 

platform with many subcomponents built atop it for different AI and ML focused tasks 

(hyperparameter tuning, reinforcement learning, data science jobs, and even ML model 

deployment).

Currently, Ray is maintained and continuously enhanced by Anyscale  

(www.anyscale.com/), a commercial entity (startup company) formed by the creators 

of Ray. It is a fully managed Ray offering that accelerates building, scaling, and 

deploying AI applications on Ray by eliminating the need to build and manage complex 

infrastructure.

�Features and Ecosystem of Ray
Some of the core features of Ray are as follows:

Ray achieves scalability and fault tolerance by abstracting the 

control state of the system in a global control store and keeping 

all other components stateless.
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It uses a shared-memory distributed object store to efficiently 

handle large data through shared memory, and it uses a bottom-

up hierarchical scheduling architecture to achieve low-latency 

and high-throughput scheduling.

Ray presents a lightweight API based on dynamic task graphs 

and actors to express a wide range of data science and general-

purpose applications in a flexible manner.

Utilizing these features, a great many distributed computing tools and frameworks 

are being built that are powered by the engine of Ray. For an excellent reference article to 

get an overview of these tools, go to https://gradientflow.com/understanding-the-

ray-ecosystem-and-community/. Figure 10-24 shows a visual illustration.

Figure 10-24.  Distributed data science/ML ecosystem built atop Ray

In this section, I will show only a couple of examples of running parallel data science 

workloads using Ray. You are highly encouraged to check out the official documentation 

(www.ray.io/docs) and try out all the great features that this library provides.
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�Simple Parallelization Example
Before I show the hands-on examples, I want to mention that Ray is currently built 

and tested for Linux and Mac OS, and the Windows version is experimental and not 

guaranteed to be stable. Therefore, you are encouraged to practice Ray examples in 
a Linux environment or create a virtual machine (VM) on your Windows platform, 

install Ray, and continue.

For example, the following examples are run inside an Ubuntu Linux 20.04 

environment that runs within a VM managed by Oracle Virtual Box software (installed 

on a Windows 11 laptop). The VM has also been assigned four logical CPU cores by the 

creator/user (Figure 10-25). This is important to note as the default starting number for 

the CPU cores may be only one and that will not demonstrate the expected speed-up for 

parallel processing tasks. A detailed guide on how to create such a VM is given in this 

article (https://brb.nci.nih.gov/seqtools/installUbuntu.html). If you are working 

on native Linux or Mac OS machine, then this step is unnecessary.

Figure 10-25.  Multiple logical CPU cores assigned to a VM that is used to run Ray

You can start Ray by the ray.init() method:

import ray

ray.init()

You may see something like the following upon running this code:
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{'node_ip_address': '10.0.2.15',

 'raylet_ip_address': '10.0.2.15',

 'redis_address': '10.0.2.15:6379',

 �'object_store_address': '/tmp/ray/

session_2022-02-08_21-00-00_998495_21742/sockets/plasma_store',

 �'raylet_socket_name': '/tmp/ray/session_2022-02-08_21-00-00_998495_21742/

sockets/raylet',

 'webui_url': '127.0.0.1:8265',

 'session_dir': '/tmp/ray/session_2022-02-08_21-00-00_998495_21742',

 'metrics_export_port': 62074,

 'gcs_address': '10.0.2.15:43155',

 'node_id': '922916ef0c5dcf02dc25fea428b930df40ccf2450fa974bb307826fe'}

Note that the initiation of Ray starts things like Redis, object store, and Dashboard. In 

fact, you will notice a message printed at the top with the URL of the dashboard:

View the Ray dashboard at http://127.0.0.1:8265

If you click this hyperlink, you will see the Ray dashboard with workers and their 

status, as shown in Figure 10-26 (quite like the Dask dashboard discussed earlier).

Figure 10-26.  Snapshot of a Ray dashboard (with five CPU assignments)

You can check the assigned resources to this Ray cluster with

ray.available_resources()

>> {'memory': 2325037056.0,
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 'node:10.0.2.15': 1.0,

 'object_store_memory': 1162518528.0,

 'CPU': 5.0}

Now, let’s construct a few large DataFrames and calculate their statistics using 

pandas and Rays to show the parallel computing benefit:

NUM_ROWS = 100_000

NUM_COLS = 20

data_dict = {}

# Pandas DataFrames

for i in range(4):

    data = np.random.normal(size=(NUM_ROWS, NUM_COLS))

    data_dict['df'+str(i)] = pd.DataFrame(data,

                                          �columns=['Col-'+str(i) for i in 

range(NUM_COLS)])

For pandas, you write a function that simply returns the statistics:

def build_stats(df):

    return df.describe().T

You measure the time to run this function over multiple DataFrames (here, four):

t1 = time.time()

results = [build_stats(data_dict['df'+str(i)]) for i in range(4)]

t2 = time.time()

print("Total time (milliseconds): ", round((t2-t1)*1000,2))

>> Total time (milliseconds):  1130.66

The trick to do the same thing with Ray and take advantage of the parallel computing 

is to use the decorator @ray.remote with the same function and use the ray.get() 

method to collect the result after it has been submitted for parallel execution. Here is the 

decorated function:

@ray.remote

def build_stats_ray(df):

    return df.describe().T
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You can now write similar code for measuring the time:

t1 = time.time()

results = ray.get([build_stats_ray.remote(data_dict['df'+str(i)]) for i in 

range(4)])

t2 = time.time()

print("Total time (milliseconds): ", round((t2-t1)*1000,2))

You will get a lower number for total execution time (this will vary on many factors 

like hardware, number of CPUs, Ray build, OS, etc.):

>> Total time (milliseconds):  575.77

Note how you call the build_stats_ray function with a .remote() method and how 

you wrap that with the ray.get() method to run everything in parallel. The takeaway 

is that although Ray offers a great many features, you must learn how to properly 

take advantage of them and how to submit a parallelizable task to the Ray cluster by 

pipelining the sub-components in correct order. Figure 10-27 shows the idea.

Figure 10-27.  Pipeling sub-components in the correct order

�Ray Dataset for Distributed Loading and Compute
Ray Datasets (https://docs.ray.io/en/latest/data/dataset.html) are the standard 

(and recommended) way to load and exchange data in the Ray ecosystem. These objects 

provide basic distributed data transformations such as map, filter, and repartition, 

and play well with a wide variety of file formats, data sources, and distributed 
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frameworks for easy loading and conversion. They are also specifically designed to 

load and preprocess data with high performance for distributed ML training pipelines 

built with Ray such as Ray-Train. (https://docs.ray.io/en/latest/train/train.

html#train-docs).

Ray Datasets are a relatively new feature and are available as Beta from 
Ray 1.8+ version onwards. If you are using an older version of Ray, you need to 
upgrade to take advantage of them. Also, make sure that the PyArrow library is 
installed.

Ray Datasets are a good candidate for the last-mile data processing blocks (before 

data is fed into a parallelized ML task flow) where the initial data sources are traditional 

RDBMS, output of ETL pipeline, or even Spark DataFrames.

Previously, I talked about Apache Arrow and how these modern data storage formats 

are revolutionizing the data science world. Ray Datasets, at their core, implement 

distributed Arrow. Each Dataset is essentially a list of Ray object references to blocks 

that hold Arrow tables (or Python lists in some cases). The presence of such block-level 

structure allows the parallelism and compatibility with distributed ML training. In this 

manner, Ray Datasets are similar to what you saw with Dask. Moreover, since Datasets 

are just lists of Ray object references, they can be freely (almost no memory operation 
overhead) exchanged between Ray tasks, actors, and libraries. This lets you have 

tremendous flexibility with their usage and integration, and it improves the system 

performance.

As mentioned, Ray Datasets work with almost every kind of data sources that you use 

in your everyday work. Figure 10-28 shows a partial snapshot of their input compatibility.

Chapter 10  Parallelized Data Science

https://docs.ray.io/en/latest/train/train.html#train-docs
https://docs.ray.io/en/latest/train/train.html#train-docs


295

Figure 10-28.  Snapshot of Ray Datasets’ input compatibility

As an example, you can create a Ray Dataset with the range function:

ds = ray.data.range(100000)

If you examine it by typing ds in a Jupyter notebook cell, you will see

Dataset(num_blocks=200, num_rows=100000, schema=<class 'int'>)

So, by default, it has created 200 blocks of object reference and also assigned a 

schema of integer to the data. This parallelism and data type integration inherently 

makes the Dataset more efficient than traditional data sources like pandas DataFrame.

You can apply a mapping function to the Dataset just like others:

op_ds = ds.map(lambda x: np.sin(x)+np.cos(x))
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The op_ds is itself a Ray Dataset now but its schema has changed due to the 

operation.

op_ds

>> Dataset(num_blocks=200, num_rows=100000, schema=<class 'numpy.float64'>)

Because the schema has changed, many NumPy methods are directly available now.

op_ds.std()

>> 1.0000051823664913

One cool thing is that you can read batches of the data (which are originally integers) 

as a Python list or pandas DataFrames and do calculations on those batches. This is very 

useful for distributed ML training on this kind of data. The following code reads batches 

of size 25,000 at a time as pandas DataFrame and prints out their statistics:

i = 1

for batch in ds.iter_batches(batch_size=25000,

                             batch_format='pandas'):

    print("Batch number: ",i)

    print("="*40)

    print(batch.describe(percentiles=[0.5]))

    print("="*40)

    i+=1

The result looks like Figure 10-29.
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Figure 10-29.  Partial result of batch iteration of a Ray Dataset as chunks of a 
pandas DataFrame

The Dataset makes it possible to run parallel data transformation tasks on blocks 
of data as pandas. Here is a pseudo-code example:

# A Pandas DataFrame UDF

def transform_batch(df: pd.DataFrame):

    # Drop nulls.

    df = df.dropna(...)

    # Add new column.

    df["new_col"] = (...)

    # Transform existing column.

    df["feature_1"] = (...)

    # Drop column.

    df.drop(...)

    # One-hot encoding.

    categories = ["cat_1", "cat_2", "cat_3"]

    for category in categories:

        (...)

    return df
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# batch_format="pandas" tells Datasets to provide the transformer 

with blocks

# represented as Pandas DataFrames.

ds = ds.map_batches(transform_batch,

                    batch_format="pandas")

�Summary
In this chapter, I continued the discussion about making data science scalable across 

large datasets and models with parallel (and distributed) computing tools. I discussed 

that both raw data and large models can be processed with these parallel processing 

techniques. With the advent of modern multi-core CPUs and the easy availability of 

large computing clusters at a reasonable cost (from cloud vendors), the prospects of 

parallelized data science look bright.

I focused particularly on two Python frameworks, Dask and Ray. I covered, in detail, 

various core data structures and internal representations that Dask provides to make 

parallel computing easy and fun. I also discussed the Dask distributed client in detail 

with hands-on examples. For Ray, I covered the basic Ray parallelism with special 

decorators and methods and the distributed data loading functionalities.

In the next chapter, I will go beyond the realm of the CPU and venture into a different 

kind of scalability: how to port and take advantage of GPU-based systems for data 

science tasks.
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CHAPTER 11

GPU-Based Data Science 
for High Productivity
In the last two chapters, you learned about various tools and frameworks for doing 

out-of-core and distributed/parallelized data science. The central goal has always 

been the same: enhancing the productivity of the data science pipeline. Productivity is 

often directly related to the speed of execution of various DS tasks including numerical 

processing, data wrangling, and feature engineering. When it goes to the advanced 

machine learning stage, depending on the modeling complexity, the matter of speed and 

performance assumes even a critical role.

It is now well established that the unprecedented success of modern ML systems 

has been critically dependent on their ability to process massive amounts of raw data in 

a parallel fashion using task-optimized hardware. The history of machine learning has 

clearly demonstrated that the use of specialized hardware like the graphics processing 

unit (GPU) played a significant role in the early success of ML.

For example, in 2012, Alex Krizhevsky (https://qz.com/1307091/the-inside-

story-of-how-ai-got-good-enough-to-dominate-silicon-valley/), in collaboration 

with Ilya Sutskever and Geoffrey Hinton (www.cs.toronto.edu/~hinton/), designed 

a neural network eventually known as AlexNet (https://proceedings.neurips.cc/

paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf) that won the 

famous ImageNet Large Scale Visual Recognition Challenge (https://en.wikipedia.

org/wiki/ImageNet_Large_Scale_Visual_Recognition_Challenge). Among many 

novel features, it was one of the early neural nets to be trained on parallel GPU 

combinations that went on to beat classical ML algorithms in the ImageNet competition 

by a large margin. Consequently, the whole idea of deep neural networks got a huge 

boost and so did the essential role that GPU-based training hardware played in that 

success. Since then, a lot of emphasis has been given to building highly optimized 
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software tools and customized mathematical processing engines (both hardware and 

software) to leverage the power and architecture of GPUs and parallel computing for 

artificial intelligence and machine learning.

While the use of GPUs and distributed computing is widely discussed in academic and 

business circles for core AI/ML tasks (e.g., running a deep neural network of 100+ layers 

for image classification or billion-parameter BERT language synthesis model (https://

towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-

nlp-f8b21a9b6270)), they get less coverage when it comes to their utility for regular data 

science and data engineering tasks. These data-related tasks are the essential precursor to 

any ML workload in an AI pipeline and they often constitute a majority percentage of the 

time and intellectual effort spent by a data scientist or even an ML engineer.

In fact, the famous AI pioneer Andrew Ng recently talked about moving from a model-

centric to a data-centric approach (https://spectrum.ieee.org/andrew-ng-data-

centric-ai) to AI tools development. The central idea there is to not use large datasets 
but smaller datasets of higher quality. This means spending much more time with the 

raw data and preprocessing it before an actual AI workload executes on your pipeline. 

Watch Andrew’s interview at www.youtube.com/watch?v=06-AZXmwHjo (note this is a 

YouTube video link). This also means that if we can put the power of the GPU into such 

pre-ML data processing tasks, then the overall pipeline will benefit immediately.

However, the important question remains: can we leverage the power of GPUs for 
regular data science jobs (e.g., data wrangling, descriptive statistics) too? The answer 

is not trivial and needs some special consideration and knowledge sharing (Figure 11-1). 

In this chapter, I will focus on a specialized suite of tools called RAPIDS that helps any 

data scientist take advantage of GPU-based hardware for a wide variety of data science 

tasks (not necessarily deep learning or advanced ML). We expect that by utilizing the 

inherent parallel processing power of GPUs we can enhance the productivity of such 

common data science tasks significantly.

What is ImageNet?  It is an ongoing research effort to provide researchers 
around the world an easily accessible image database. This project is inspired 
by a growing sentiment in the image and vision research field: the need for more 
data. The project has been instrumental in advancing computer vision and 
deep learning research. The data is available for free to researchers for non-
commercial use. The latest deep learning architectures are pitted against each 
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other in an annual competition that centers around this data repository, and the 
performance of the algorithms/architectures/techniques are measured based on 
how they performed on images from this source.

Figure 11-1.  “Can we leverage the power of GPUs for regular data science jobs”?

�The RAPIDS Ecosystem
The RAPIDS suite of open-source software libraries and APIs provides the ability to 

execute end-to-end data science and analytics pipelines entirely on GPUs. Nvidia 

incubated this project and built tools to take advantage of CUDA primitives for low-level 

compute optimization. It specifically focuses on exposing GPU parallelism and high-

bandwidth memory speed features through the friendly Python language so popular 

with data scientists and analytics professionals.

Common data preparation and wrangling tasks are highly valued in the RAPIDS 

ecosystem as they take up a significant amount of time in a typical data science 

pipeline. A familiar dataframe-like API has been developed with a lot of optimization 

and robustness built in. It has also been customized to integrate with a variety of ML 

algorithms for end-to-end pipeline accelerations with incurring serialization costs.
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RAPIDS also includes a significant amount of internal support for multi-node, 

multi-GPU deployment and distributed processing. It integrates with other libraries that 

make out-of-memory (i.e., dataset sizes larger than the individual computer RAM) data 

processing easy and accessible for individual data scientists.

The following subsections describe, in brief, the most prominent libraries in this 

ecosystem that data scientists will find quite useful.

What is CUDA?  CUDA is a parallel computing platform and programming model 
created by NVIDIA. First introduced in 2006, it has grown to become the most 
common choice for enabling GPU-accelerated computing with support for multiple 
programming languages (e.g., C, C++, Fortran, Python, and MATLAB) and APIs.

A noteworthy point is that CUDA by itself is neither a programming language, nor 
an API. It is a platform for building third-party libraries, SDKs, and profiling and 
optimization tools. It mainly supplies extensions or primitives to add to an existing 
programming language, and these extensions essentially connect the computation 
(performed by the high-level language or API) directly to the underlying GPU 
hardware.

The CUDA Toolkit (https://developer.nvidia.com/cuda-toolkit) 
includes GPU-accelerated libraries, a compiler, development tools, and the CUDA 
runtime. To boost performance across multiple application domains from AI to 
HPC, developers can harness NVIDIA CUDA-X—a collection of libraries, tools and 
technologies built on top of CUDA (www.nvidia.com/en-us/technologies/
cuda-x/).

�CuPy
CuPy is a CUDA-powered array library that looks and feels like NumPy, the foundation 

of all numerical computing and ML with Python. Under the hood, it uses CUDA-based 

low-level libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT, and 

NCCL to make full use of the a given GPU architecture with the goal of providing GPU-

accelerated computing with Python.
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CuPy’s interface is highly similar to that of NumPy and can be used as a simple 

drop-in replacement for most use cases. Here is the module-level detailed list of 

API compatibility between CuPy and NumPy: https://docs.cupy.dev/en/stable/

reference/comparison.html. Notice that almost all common NumPy methods are 

duplicated in CuPy and the names are identical, too. For data science tasks, this 

essentially presents you with GPU-powered speed-up without any significant 
learning curve.

The speed-up over NumPy can be significant depending on the data type and 

use case. In the next section, I will show a hands-on example of a speedup comparison 

between CuPy and NumPy for two different array sizes and for various common 

numerical operations like slicing, statistical operations like sum and standard 

deviation over multi-dimensional array, matrix multiplication and inverse, Fast Fourier 

Transformation (FFT), and singular value decomposition (SVD).

�CuDF
Built on the Apache Arrow columnar memory format, CuDF is a GPU-accelerated data 

analysis library for loading, joining, aggregating, filtering, and manipulating tabular 

data in all manners imaginable. It is no surprise that it provides a pandas-like API that 

will be familiar to almost all data engineers and data scientists. The idea is that data 

scientists should be able to use CuDF to easily accelerate their workflows using powerful 

GPUs without delving deeply into the details of CUDA programming. Just like CuPy, 

the majority of the methods are just drop-in replacements from an existing pandas 

codebase.

Note, however, that currently CuDF is supported only on Linux OS and works with 

Python versions 3.7 and later. Other requirements for installing and using CuDF are

•	 CUDA 11.0+

•	 NVIDIA driver 450.80.02+

•	 Pascal architecture or better (compute capability >=6.0)

Therefore, you must undergo some environment setup and installation procedures 

before CuDF can be used. Here is a resource to quickly get started with this powerful 

library: https://docs.rapids.ai/api/cudf/stable/10min.html.
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Combined, CuPy and CuDF present a wonderful opportunity to any data scientist, 

regardless of whether they are using deep learning or not, to enhance the productivity of 

their work using GPU-accelerated computing power.

�CuML
CuML is another library within RAPIDS that enables data scientists, analysts, and 

researchers to run traditional/classical ML algorithmic tasks with (mostly) tabular 

datasets on GPUs without knowing a lot of details of CUDA programming. In most cases, 

CuML’s Python API matches that of the popular Python library scikit-learn to make 

the transition to GPU hardware fast and painless. Here is the GitHub page for the library 

for you to follow and dig deep into: https://github.com/rapidsai/cuml.

Along with CuPy and CuDF, in the next section you will also explore some hands-

on examples of CuML functions and methods for common ML tasks and compare their 

execution speed and scalability with equivalent scikit-learn algorithms.

Going beyond the scenario of a single GPU on a laptop, CuML also integrates with 

Dask, wherever it can, to offer multi-GPU and multi-node-GPU support for an ever-

increasing set of algorithms that take advantage of such distributed processing. Basically, 

instead of a single GPU, many modern high-end hardware platforms come equipped 

with four or even eight GPUs, sometimes interconnected by a special memory bus and 

data interfacing channels that completely bypass the CPU and traditional slow-speed 

motherboard communication bus for direct GPU-to-GPU connection.

�CuGraph
CuGraph is a collection of GPU-accelerated graph algorithms that processes data found 

in GPU DataFrames. The vision of CuGraph is to make graph analysis ubiquitous to the 

point that users just think in terms of analysis and not technologies or frameworks.

Data scientists will readily pick up how CuGraph integrates with the pandas-like 

API of CuDF. On the other hand, users familiar with NetworkX will quickly recognize 

the NetworkX-like API provided in CuGraph, with the goal of allowing existing code to 

be ported into RAPIDS with minimal effort. Currently, it supports a wide array of graph 

analytics algorithms:

•	 Centrality

•	 Community
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•	 Link analysis

•	 Link prediction

•	 Traversal

Many scientific and business analytics tasks involve the use of extensive graph 

algorithms on large datasets. Libraries like CuGraph lend the assurance of higher 

productivity to those engineers when they invest in GPU-powered workstations.

�Hardware Story
The hardware side of this story cannot be emphasized enough. Driven by the grand 

success and wide adoption of AI and ML solutions, with particular emphasis on deep 

learning applications, there has been a plethora of investments and developments in 

the domain of customized hardware for running such workloads. For example, all major 

server and workstation suppliers (e.g., HP, IBM, Lenovo, Super Micro, etc.) that were 

solely focused on building computing infrastructure for cloud computing only now 

offer a dizzying array of GPU-optimized hardware options. Google’s Tensor Processing 

Unit (TPU; https://en.wikipedia.org/wiki/Tensor_Processing_Unit), for instance, 

is an application-specific integrated circuit that is designed from the ground up with 
the sole aim of speeding up computations unique to machine learning and deep 
learning workloads such as linear algebra, matrix multiplication, special nonlinear 

transformation, and supporting multiple floating-point number formats. Nvidia, the 

leader in GPU research and development, is pioneering many such groundbreaking 

hardware platforms, too. In fact, a whole hardware ecosystem with specialized 

storage, shared memory architecture and chipsets, motherboard designs, and data 

communication channels and standards are being actively developed to cater to AI 

workloads (Figure 11-2).

Granted, the focus of such hardware development has always been specific types of 

AI workloads such as large-scale computer vision, powerful chatbots, or industrial-scale 

natural language processing. Nonetheless, with the help of frameworks such as RAPIDS, 

finally data scientists and analysts (i.e., those who do not necessarily use deep learning 

in any of their daily tasks) can rejoice and use these powerful AI-workstations to enhance 

their productivity.
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Figure 11-2.  Data scientists can rejoice and use AI-optimized hardware for 
their tasks

�Choice of Environment and Setup
As noted, RAPIDS will work only on the Linux OS and with certain GPUs and above. 

Although CuPy works with earlier generation of GPUs, for CuDF and CuML, you must 

have a GPU with compute capability 6 or higher. NVIDIA provides a list of GPUs and 

their compute capability (https://developer.nvidia.com/cuda-gpus#compute) that 

you can check to make sure you have the right kind of GPU for taking advantage of the 

RAPIDS framework.

For laptops, if you have anything above GeForce 1050, RAPIDS will work. This, of 

course, includes the RTX line of GPUs. For workstations, a M6000 or K-series may not 

work but anything above P400 will work. For datacenter GPUs (when you may be renting 

a cloud instance, for example), it must be of the Pascal architecture or above, such as P4, 

P40, P100, V100, and A100.
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Once you have the right GPU, you also need to make sure that CUDA 11.2 or above 

is installed. After that, a lot of custom setup and environment install needs to happen 

for RAPIDS to work properly. Therefore, two common ways to accomplish this are as 

follows:

•	 Use a hosted environment without getting into the details of the 

custom setup

•	 Use a NVIDIA docker image if you’re using it on a bare-metal Linux 

OS (for example, on an EC2 instance)

For instance, the following examples were run using a free hosted setup on Saturn 
Cloud. This service is a fully managed data science cloud service offering GPU-based 
infrastructure and a transparent pricing. For the free tier, it has certain limitations on 

how many hours of free usage you get in a month. However, for basic learning, the free 

usage quota (30 hours of Jupyter Lab sessions in a month) should be enough. You are 

encouraged to sign up on their website and follow the examples in this book (and the 

associated Jupyter notebooks).

When you log in to the Saturn Cloud platform, you are presented with several 

choices for starting a Jupyter notebook. Each choice represents a managed service (e.g., a 

RAPIDS environment, TensorFlow, PyTorch, or a FastAPI instance). Figure 11-3 shows a 

typical snapshot of all the choices (note that it was taken in April 2022, and the offerings 

may change).
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Figure 11-3.  Saturn Cloud opening page with choices of various managed services

At the bottom of Figure 11-3, you can see a RAPIDS Jupyter server already created 

by me. When you click on your version, the following screen (Figure 11-4) shows where 

you can start the Jupyter lab. Essentially, Saturn Cloud deploys a docker container 
with Jupyter lab, RAPIDS, and other Python libraries preinstalled and properly 
configured on a GPU-based hardware/computing node. It is to be noted that they also 

pair up a Dask cluster choice with this service so that you can take advantage of multi-

GPU systems if you choose to do so. The free tier limits the type and number of GPUs 

that you can take advantage of; however, as mentioned, for basic learning, you don’t 

need more than one GPU, and therefore you won’t launch a Dask cluster.
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Figure 11-4.  Saturn Cloud’s Jupyter server with RAPIDS

Once the Jupyter lab starts up, you can verify that you have a compatible GPU for 

RAPIDS. Figure 11-5 shows the command and a typical output. Here, the GPU is a Tesla 

T4 (www.nvidia.com/en-us/data-center/tesla-t4/), the CUDA version is 11.4, and 

the NVIDIA driver version is 470.57.02.

Figure 11-5.  A typical output for a Nvidia GPU status command
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�CuPy vs. NumPy
In this section, I will show some basic examples of CuPy usage and how it compares 

with the ubiquitous NumPy package. As NumPy finds wide and varying use in almost all 

data science and ML tasks, it is interesting to note that productivity of all those tasks can 

probably be increased significantly by switching to CuPy.

�Looks and Works Just Like NumPy
As mentioned, the CuPy API is designed to be drop-in replacement for NumPy code. 

Therefore, all the common methods are available for use. Start by importing both 

libraries (for comparison) and others:

import numpy as np, cupy as cp

import matplotlib.pyplot as plt

import time

You can define an array just like in NumPy:

a1 = cp.array([1,2,3])

a2 = cp.arange(1,11,2)

a3 = cp.random.normal(size=(3,3))

Only the type is different:

type(a3)

>> cupy._core.core.ndarray

You can have all the usual and useful NumPy operations such as broadcasting, 

transpose, inverse, and Boolean filtering.

a3.T

a3+1

a3.mean(axis=1)

a3*(a3>0)

The output of the last one is as follows:

>> array([[ 0.58731747, -0.        , -0.        ],

       [-0.        , -0.        ,  0.7699453 ],

       [ 1.80051069,  0.67680871,  1.3091392 ]])
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�Much Faster Than NumPy
Although CuPy looks and feels same as NumPy, it is much faster for vectorized 

operations when supported by a high-performance GPU. Here is some code to show this 

conclusively:

SIZE = 200

%%timeit -n10 -r10

np.random.normal(size=(SIZE,SIZE))@np.random.normal(size=(SIZE,SIZE))

>> 3.67 ms ± 258 μs per loop (mean ± std. dev. of 10 runs, 10 loops each)

This code measures the average time taken for a NumPy operation of matrix 

multiplication with (200 x 200) size.

Now, let’s run the exact same code with a single change of replacing np by cp (i.e., 

using CuPy arrays and methods instead of NumPy):

%%timeit -n10 -r10

cp.random.normal(size=(SIZE,SIZE))@cp.random.normal(size=(SIZE,SIZE))

>> 127 μs ± 40.7 μs per loop (mean ± std. dev. of 10 runs, 10 loops each)

Even a simple 200 x 200 matrix multiplication shows a more than 25X speedup (127 

μs as compared to 3.67 ms). Imagine the extent of the performance improvement for 

large data science operations involving much larger numeric datasets.

�Data (Array) Size Matters
The performance improvement, demonstrated above, scales up quickly with the size of 

the array. Let’s see this using a simple set of code. First, you write a timing measurement 

code using NumPy with np.linalg.solve() method (i.e., solving a set of simultaneous 

equations). Recall that this same method is used (under the hood) for solving a simple 

multiple linear regression algorithm.

import time, tqdm

size=[100*i for i in range(1,21)]

numpy_time = []

for s in tqdm(size):

    a = np.array([np.random.randint(-10,10,s).tolist() for i in range(s)])
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    b = np.array([np.random.randint(-100,100,s)]).T

    t1 = time.time()

    x = np.linalg.solve(a,b)

    t2 = time.time()

    delta_t = (t2-t1)*1000

    numpy_time.append(delta_t)

You must repeat the same code for CuPy by replacing np with cp, as showed before. 

Finally, with a simple plotting code, you can see the comparison clearly (Figure 11-6). 

Observe that the performance improvement scales up with the array size and somewhat 

nonlinearly too. This means for even larger size arrays, the improvement will scale up 

even faster. This kind of improvement, of course, can be achieved up to the point 
where the data (array) can be properly fit in the GPU memory. This could be a 

limitation for datasets with tens of millions of rows or columns as the GPU memory can 

be smaller compared to a system memory (RAM). However, many batch operations or 

segmented operations can be designed to work around this limitation and still achieve 

significant speedup.

Figure 11-6.  CuPy and NumPy comparison with varying array sizes for a linear 
system solve
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Next, let’s tackle the problem of singular value decomposition (SVD) using a 

randomly generated square matrix (drawn from a normal distribution) of varying sizes. 

I won’t repeat the code block here but just show the result for brevity (Figure 11-7). Note 

that the CuPy algorithm does not show markedly superior performance to that of the 

NumPy algorithm in this problem class. Perhaps this is something to be taken up by the 

CuPy developers to improve upon.

Figure 11-7.  CuPy and NumPy comparison with varying matrix sizes for SVD

Next, let’s go back to the basics and consider the fundamental problem of matrix 

inversion (used in almost all machine learning algorithms). The result again shows a 

strongly favorable performance gain by the CuPy algorithm over that from the NumPy 

package (Figure 11-8).
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Figure 11-8.  CuPy and NumPy comparison for matrix multiplication tasks

�CuDF vs. pandas
Let’s use the same Saturn Cloud instance and spin up a new Jupyter notebook for doing 

this exercise. The idea is to show some basic operations with CuDF and to demonstrate a 

simple computing speed comparison with pandas.

�Data Reading from an URL
Let’s read a dataset from an URL hosted on my personal GitHub:

import numpy as np, cupy as cp, cudf

import pandas as pd

<more imports...>

url = "https://raw.githubusercontent.com/tirthajyoti/Machine-Learning-with-

Python/master/Datasets/College_Data"

content = requests.get(url).content.decode('utf-8')

cdf = cudf.read_csv(StringIO(content))
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So you read a CSV file over the Internet and load it into a CuDF DataFrame. You can 

use the familiar .head() method to examine the first few entries:

cdf.head()

This produces the output shown in Figure 11-9.

Figure 11-9.  CuDF DataFrame first few entries after loading the data from a URL

�Indexing, Filtering, and Grouping
The indexing, column naming, and filtering works just like the pandas API. First, rename 

the Unnamed: 0 column to something more meaningful:

cdf.rename(columns={"Unnamed: 0": "College"}, inplace=True)

Then you can see a selective portion of the data:

cdf[['F.Undergrad','P.Undergrad']][2:4]

This produces the output in Figure 11-10.

Figure 11-10.  CuDF DataFrame indexing selected columns and rows
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Now try a somewhat complicated filtering operation to extract and list colleges with 

a decent student-faculty ratio (under 10) but with low tuition expenditure (under $8000) 

as well:

filter_1 = cdf['S.F.Ratio']< 10

filter_2 = cdf['Expend'] < 8000

cdf[filter_1 & filter_2 ][['College','S.F.Ratio','Expend']]

The results are shown in Figure 11-11.

Figure 11-11.  Multiple filtering operation on the CuDF DataFrame
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A groupby operation, followed by an aggregation, works just like pandas too 

(Figure 11-12).

Figure 11-12.  Groupby and averaging operations on the CuDF DataFrame

�NumPy Array Conversion
For many purposes, especially for plotting and visualization, you may need to convert 

the CuDF data fields to standard NumPy arrays. In these cases, just using the standard 

.values attribute will yield a CuPy array only. To get to the NumPy array, you need to use 

the .get() method on top of it.

Here is what you get with .values only:

phds=cdf['PhD'].values

type(phds)

>> cupy._core.core.ndarray

Using the .get method, you get the NumPy array and can plot a histogram of the 

number of PhDs (Figure 11-13).

phds=cdf['PhD'].values.get()

plt.title('Histogram of PhD',fontsize=15)

plt.hist(phds,edgecolor='k')

plt.show()
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Figure 11-13.  Histogram of PhDs from the CuDF DataFrame after NumPy array 
conversion

�Simple Benchmarking of Speed
You can show the improvement in the computation performance (by using the T4 GPU, 

of course) with CuDF with a very simple benchmarking exercise.

Construct a NumPy array with 1 million rows and 100 columns with random 

numbers (drawing from a Gaussian distribution), and convert that to a pandas 

DataFrame first and a CuDF DataFrame next:

data = np.random.normal(size=(1000_000,100))

df = pd.DataFrame(data)

cdf = cudf.DataFrame.from_pandas(df)

Here, the .from_pandas method converts an existing pandas DataFrame to a CuDF 

DataFrame quickly and painlessly.

A simple mean calculation on the first column gives the following output for the 

pandas DataFrame:

%timeit -n10 -r10 df[0].mean()

>> 15 ms ± 1.16 ms per loop (mean ± std. dev. of 10 runs, 10 loops each)

The same exercise the CuDF DataFrame yields a much faster result:

%timeit -n10 -r10 cdf[0].mean()

>> 504 μs ± 52.7 μs per loop (mean ± std. dev. of 10 runs, 10 loops each)
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Extending this exercise further, you run a loop by selecting an increasing number 

of columns each time and see how the computation time scales with the number of 

columns and how the benchmark comparison between pandas and CuDF looks:

for i in range(2,11):

    t1=time.time()

    df[[j for j in range(i)]].mean()

    t2=time.time()

    del_t = round(1000*(t2-t1),3)

    print(f"Calculation with {i} columns took {del_t} ms")

>>

Calculation with 2 columns took 3.333 ms

Calculation with 3 columns took 2.835 ms

Calculation with 4 columns took 2.878 ms

Calculation with 5 columns took 3.269 ms

Calculation with 6 columns took 3.589 ms

Calculation with 7 columns took 4.11 ms

Calculation with 8 columns took 4.606 ms

Calculation with 9 columns took 4.99 ms

Calculation with 10 columns took 5.478 ms

For the CuDF DataFrame, the calculation times are much shorter and it scales 

much slower:

Calculation with 2 columns took 3.333 ms

Calculation with 3 columns took 2.835 ms

Calculation with 4 columns took 2.878 ms

Calculation with 5 columns took 3.269 ms

Calculation with 6 columns took 3.589 ms

Calculation with 7 columns took 4.11 ms

Calculation with 8 columns took 4.606 ms

Calculation with 9 columns took 4.99 ms

Calculation with 10 columns took 5.478 ms
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�Dask Integration, User-Defined Functions, 
and Other Features
CuDF plays nicely with a Dask cluster where the power of multiple GPUs can be 
utilized for massively parallelized data processing. It also natively supports complex 
user-defined functions (UDFs, as they are called) to be applied over selected axes or 

columns. These functions work block by block (pertaining to the internal representation 

of the data in the GPU memory) and exhibit a much faster computation speed than what 

would have been possible with a CPU-based pandas workflow. For the sake of brevity, I 

won’t cover all these features, but you are encouraged to check out the excellent tutorials 

provided on the RAPIDS portal at https://docs.rapids.ai/api/cudf/stable/user_

guide/10min.html.

�CuML vs. scikit-learn
After covering the basic usage of CuPy and CuDF and showing comparative benchmarks 

with NumPy and pandas, it makes sense to move up to the next stage of a data science 

pipeline and discuss about the GPU-powered equivalent of scikit-learn: CuML.

As most instances of conventional usage of GPU-powered hardware have been 

squarely in the machine learning domain, it is important to clarify what this comparative 

discussion is about. Here, we are focusing solely on the non-deep-learning aspects 

of the machine learning world (i.e., instances where a data scientist would apply out-

of-the-box algorithms borrowing from the scikit-learn API). The point is that, in such 

circumstances, if the data scientist has access to a GPU-based system, they can improve 

the computing performance significantly without spending any time or effort on 

tweaking the code or learning about GPU programming. These are the situations where 

TensorFlow is not required, yet the power of GPU must be fully utilized.

�Classification with Random Forest
In this exercise, you will use a scikit-learn Random Forest classifier to train with a 

synthetic dataset and compare the performance and speed with a similar classifier from 

the CuML API. First, you create some synthetic data with 10,000 samples and 20 features:

NUM_ROWS = 10000

NUM_FEATURES = 20
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from sklearn.datasets import make_classification

X,y = make_classification(n_samples=NUM_ROWS,

                               n_classes=2,

                               n_features=NUM_FEATURES,

                               n_informative=NUM_FEATURES,

                               n_redundant=0,

                               n_repeated=0)

You have imported the necessary functions and classes from the respective APIs. 

However, for such a comparative study, you need to be careful about the naming 

as the class and function names are largely identical between scikit-learn and 

CuML. Therefore, you can create your own versions while importing:

from sklearn.model_selection import train_test_split as sk_tts

from cuml.model_selection import train_test_split as cuml_tts

from sklearn.ensemble import RandomForestClassifier as SKRF

from cuml.ensemble import RandomForestClassifier as CURF

Note that you are importing not only the classifier but also the train/test splitting 

utility from CuML. As a general practice, you should use every bit of the API that is 
offered by CuML when you are utilizing the power of a GPU.

For proper comparison and data protection, you build two separate functions, one with a 

scikit-learn pipeline and another with the CuML API. Here is the scikit-learn version:

def sklearn_pipeline(X,y,n_estimators=100):

    """

    Executes Sklearn-based pipeline

    """

    t1 =time.time()

    X_train, X_test, y_train, y_test = sk_tts(X,y, test_size=0.3)

    model = SKRF(n_estimators=n_estimators)

    model.fit(X_train,y_train)

    t2 =time.time()

    del_t = round(1000*(t2-t1),3)

    score = round(model.score(X_test,y_test),3)

    return (score, del_t)
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The code below is the CuML version. Note that to be compatible with certain GPU 

calculations, the data type is changed to np.float32 (i.e., 32-bit floating point precision 

for the CuML). Also, CuML API works with CuPy arrays only, and that’s where the 

NumPy-to-CuPy conversion is required. Nonetheless, you measure the entire time taken 

by this pipeline, not just the training/fitting part. The function returns a tuple for the 

classification score (on the test set) and the time taken to execute.

def cuml_pipeline(X,y,n_estimators=100):

    """

    Executes CuML-based pipeline

    """

    t1 =time.time()

    X = cupy.array(X,dtype=np.float32)

    y = cupy.array(y,dtype=np.float32)

    X_train, X_test, y_train, y_test = cuml_tts(X,y, test_size=0.3)

    model = CURF(n_estimators=n_estimators)

    model.fit(X_train,y_train)

    t2 =time.time()

    del_t = round(1000*(t2-t1),3)

    score = round(model.score(X_test,y_test),3)

    return (score, del_t)

Then you just run these pipelines one after another. For the scikit-learn case, here 

are the results:

score_sk, t_sk = sklearn_pipeline(X,y)

print("Sklearn pipeline score: ",score_sk)

print("Sklearn pipeline time (ms): ",t_sk)

>>

Sklearn pipeline score:  0.937

Sklearn pipeline time (ms):  2132.17
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For the CuML pipeline, here are the results:

score_cuml, t_cuml = cuml_pipeline(X,y)

print("CuML pipeline score: ",score_cuml)

print("CuML pipeline time (ms): ",t_cuml)

>>

CuML pipeline score:  0.936

CuML pipeline time (ms):  100.471

You can observe a massive speed-up for the CuML pipeline with the identical data 

input. The accuracy scores of both pipelines are almost identical, with the CuML score 

differing at the third decimal place, perhaps due to the 32-bit floating point precision 

conversion. But the speed improvement compensates for that miniscule accuracy 

change many times over.

Note that while running the code (or associated Jupyter notebook), the first time 
you may get a result that may show the scikit-learn pipeline is faster than the 
CuML pipeline. This is related to how the GPU memory is prefetched and cached 
with code and data, and it only happens for the very first run. This should be 
ignored. If you run the code again, you should get the same trend as shown in the 
results here.

Extending this further, let’s investigate whether the model complexity factors into 

this relative improvement over scikit-learn when you use CuML. Fit the same data to 

the Random Forest models of increasing complexity (i.e., increasing number of root 

estimators/trees). The result shown in Figure 11-14 clearly demonstrates the fact that 

CuML and its parallelized (GPU-powered) operation helps ensemble classifiers like 
Random Forest in a significant manner as the model complexity grows. While the 

computing time goes up for both classifiers, the pace of growth is miniscule for CuML as 

compared to that of scikit-learn. There are some minor differences in the accuracy scores 

but the payoff in terms of the computation efficiency is much more significant. 
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Figure 11-14.  Varying Random Forest classfier complexities with scikit-learn 
and CuML

�K-Means Clustering
Next, consider an unsupervised learning problem of clustering using the all-too-familiar 

k-means algorithm. Here, you are again comparing a CuML function with an equivalent 

estimator from the Scikit-learn package. Just for reference, Figure 11-15 shows the API 

comparison between these two estimators. They look virtually identical, except the 

CuML uses something called “scalable-k-means++” as the initialization parameter. The 

CuML k-means estimator also accepts a max_samples_per_batch argument that allows 

controlled batch training.

Figure 11-15.  API comparison between scikit-learn and CuML K-means 
estimators
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Figure 11-16 shows the result for a dataset with 10 features/dimensions.

Figure 11-16.  K-means clustering speed comparison for 10 features

Figure 11-17 shows the result of another experiment with a 100-feature dataset. 

Clearly, both the sample size (number of rows) and dimensionality (number of columns) 

matter in how the GPU-based acceleration performed so well.

Figure 11-17.  K-means clustering speed comparison for 100 features
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Further discussion and results on a linear regression problem can be found in this 

article by me: https://medium.com/dataseries/gpu-powered-data-science-not-

deep-learning-with-rapids-29f9ed8d51f3. You are encouraged to check it out.

�Summary
This chapter focused on the usage and application of GPU-based hardware systems for 

data science tasks that do not necessarily involve deep learning models or inferencing, 

but still can benefit significantly from hardware-centric optimizations.

I introduced you to the fantastic ecosystem of RAPIDS, a GPU-centered data science 

framework with separate libraries for numerical computing, tabular data analytics, 

classical machine learning, graph analysis, and even signal processing. This framework 

is powered by CUDA-accelerated libraries and takes full advantage of NVIDIA GPUs 

(above a certain generation of GPU class and compute capability).

However, the best feature is that all of these modules try to mimic their non-GPU, 

pure-Python counterparts like NumPy, pandas, and scikit-learn. Therefore, for data 

scientists, the learning curve is short and (almost) drop-in code replacements can work 

most of the time. Following this principle, next you saw multiple hands-on examples 

of the basic usage of these libraries using a Tesla T4 GPU powered hosted runtime (on 

the cloud). I also showed benchmark comparisons of computation performance of 

equivalent operations and ML algorithms to clearly demonstrate the advantage of GPU-

accelerated data science.
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CHAPTER 12

Other Useful Skills 
to Master
As you progress towards the end of the grand journey of productive and efficient data 

science that you took in this book, I would like to dedicate one complete chapter to 

the set of various disparate useful skills that a data scientist should strive to master to 

enhance their productivity. Unlike the previous chapters, where you examined similarly 

grouped skills (e.g., memory profilers or distributed computing tools), the tools and skills 

you’ll explore in this chapter may look somewhat disjointed from each other. It is true 

that they do not fall under one unifying class but taken as a whole, they truly aid any data 

scientist in performing their tasks with higher productivity.

I start with a discussion on the importance of learning basic web technologies such 

as HTML, CSS, and JavaScript. Building on the same concepts, next I discuss the utility 

of creating a simple web app for a data science project. I show a hands-on example with 

two Python libraries, Flask and PyWebIO. Thereafter, I talk about cloud technologies 

such as Amazon Web Service and show (with lined resources) the simple process of 

bringing the power of the cloud to a local data science workflow. Finally, I switch gears 

and discuss how, in many cases, using a so-called “low-code” framework can be useful 

and productive for a data science task. I demonstrate PyCaret, a popular low-code 

Python library in this regard.

As you can observe from this description, unlike previous chapters, this chapter 

is not focused on one (or a small number of) Python tools/libraries. While I may be 

discussing a few useful Python libraries in some sections, elsewhere I may be discussing 

general technology features without any reference to a specific Python tool. In those 

sections, I may have general suggestions for what topics to learn and how to go 

about that.
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�Understanding the Basics of Web Technologies
You may be wondering why a data scientist needs to understand the nuts and bolts of 

web apps or general web technologies. The answer lies in the simple fact that a data 

scientist’s responsibility should not just be limited to statistical analysis or building 

ML models. Above all, the job of a data scientist is to solve a business or scientific 

problem using data in a scientific manner. Communicating the result and presenting 

the modeling and analysis to the external world in an accessible (or even interactive) 

manner is a necessary goal of any reasonable data science job.

�A Consumer-Facing Layer
In other words, while analyzing datasets, finding hidden patterns, and building 

predictive models are rightfully considered the primary skills for a data scientist, it is 

equally important to communicate the key insights gleaned from those analyses and/

or to build some sort of interactive layers on top of those models that works as the touch 

point for the external consumers. These aspects can be especially important if a data 

scientist is thinking about building a consumer-facing product or even starting their own 

business powered by data science methods.

To build a functioning consumer-facing interactive layer on top of a data science 
core, creating a web app is an obvious choice. In the early days of personal computing 

(until around the turn of the 21st century), building a standalone desktop app could 

have been sufficient. The technology and tools for such an app are quite different from 

the tools used in building a web app. However, in today’s world, a web app is expected 

for any sort of computing or information technology product and data science is no 

exception in this regard. Therefore, it makes sense for a data scientist to understand the 

basics of building such an app. All the usual data science tools and technologies are still 

fully used, only to find a presentable outlet or user-interaction layer through a web app, 

as shown in Figure 12-1.
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Figure 12-1.  A well-rounded data science project with a consumer-facing layer of 
a web application at the front end

�All Useful Data Science Is Delivered Through Web Apps
Observing from the side of consumer, we realize that almost all useful data science 

is delivered to us through some web app or another. If we watch a suggested movie 

on Netflix or buy a product on Amazon, there is a recommendation engine and a 

sophisticated ML algorithm powdered by petabytes of data about ourselves and our 

buying/watching habits and choices behind that. But ultimately, the cumulative result 

of all that sophisticated data science work is presented through a simple web interface 

showing a movie or product link for us to click and enjoy.

Now, it is quite likely that in any reasonably sized organization, the web app 

developer is a person (or a team) who is separate from the data science team. However, it 

is extremely beneficial for the data scientists to know the details (to a reasonable degree) 

about the full technology stack that starts with the raw data (with their team) and ends 

with a nice, shiny web app developed by other software engineers using a different set of 

technologies. This kind of knowledge facilitates conversations and brainstorming for 
solving existing problems (both on the data side and the web app side) and promotes 
innovative ideas.
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There are many dimensions to this kind of conversation, which facilitates problem 

solving and product innovation. Some typical examples are shown below. Let’s assume 

a typical scenario of a data science pipeline running at the back end (along with some 

database integration) and a web app serving the results of that pipeline to users who may 

be logging on to a portal and even paying to use some of the services.

Is the web app easy to scale with the existing data science/

processing pipeline? What are the challenges and how can the 

data science team help?

What portion of visualization should be done on the data science 

(for example, using Python frameworks) back end vs. front-end 

JavaScript rendering? What JavaScript library works better with 

Python data objects? What are the caveats to watch for?

Where are the exact touch points between the data science and 

the deployment layers? What about the interactive user inputs and 

their impact on the data science pipeline?

How should the data science tasks be organized and managed 

to help the web app? How about containerization of various 

services? Will that help the app in terms of service quality and 

latency?

What should be the strategies around data storage and databases 

that play equally well with the data science back end and web app 

front end?

What (if any) other back-end services (e.g., user authorization, 

financial transactions) must play well with the data science 

service? What are the dependencies?

Clearly, to have meaningful impact on the overall business operations, the data 

science team must have a good grasp of the full stack of tools and technologies used 

(HTML, CSS, JavaScript, PHP, Ruby on Rails, Docker, Kubernetes, to name a few 

common ones). Other back-end services that operate very close to the data science 

services (using Python) and that may even consume the output of the data science 

pipeline somehow (before it is sent to the front end) may be written in languages like Go 

or Rust.
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The point here is that a data scientist need not become an expert in all these tools 

and technologies. But they must have the curiosity to know more about them and the 
inclination to see the complete technology stack as a holistic data-oriented enabler. 

Python-based data science is a critically important piece of this enterprise, but it is 

the whole stack that delivers the final value to the customer and brings revenue to the 

organization.

�What Are Some Pathways to Learn?
Web apps (and full web-based services) development, and the associated tools and 

technologies, perhaps constitute the largest domain of knowledge in the universe of 

software engineering and information technology. There are dizzying number of choices 

and varieties, standards and protocols, languages and frameworks, and practices both 

good and bad. It is neither within the scope of this book nor within the expertise of the 

author to try to teach you about these technologies. However, I feel that some typical 

example-based suggestions can encourage you explore these areas along with your data 

science journey. They may include but are not limited to the following examples:

Learning to build and deploy a simple web application based on 

a data analysis project, complete with exploratory visualizations 

and a simple predictive model

Learning deeply about a Python-based web microframeworks 

such as Flask or FastAPI and how to serve a machine learning 

model using them

Learning a front-end framework that is meant for visual analytics 

such as D3.js. Pursuing this kind of knowledge gives you a solid 

grasp of fundamental JavaScript programming while keeping 

you motivated by showing the power of visual data analysis 

on the Web

Learning markdown language and acquiring basic CSS skills 

with the goal of creating attractive-looking Readme documents for 

GitHub repositories and open-source data science projects and 

packages that you have developed

Learning about and implementing database integration with 

Python data science services with a live web application in mind
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Learning about container technologies and how they enrich 

modern web applications and how they enable organizations 

to move away from the older-generation monolithic software 

building practice

It is clear from these suggestions that they are specifically meant for data scientists 
who hail from a non-software or non-web-development background. There are, 

in fact, many web developers who are extremely enthusiastic about data science and 

gradually transitioning into that kind of role. They, of course, are already deeply familiar 

with these tools. It is the other section of data science practitioners, coming from diverse 

backgrounds of physics, economics, statistics, and social sciences, that do a great service 

to themselves when they add web-related technologies to their repertoire. Having such 

well-rounded knowledge and a holistic view of the application will help them prosper in 

their jobs and prepare for newer challenges too.

�Building Simple Web Apps for Data Science
In this section, I demonstrate how to build a simple web app backed by a few data 

science tasks and services. First, I will showcase a ML model prediction example using 

one of the most popular Python web frameworks, Flask. This will require you to write a 

Python script and an HTML script that will be rendered on the web page. In the parlance 

of web app development, Python is the back end (that performs the data science tasks 

such as machine learning) whereas the HTML is the front-end technology for this app.

Next, I will showcase another Python library that abstracts away the front-end 

programming part even more and lets data scientists focus on the data science part 

while allowing them to build a useful web app with a minimal learning curve.

�Hands-On Example with Flask
Flask is a powerful yet lightweight web framework for Python that can be used to build 

fast-response web apps. It is particularly popular with the data science community as it 

presents a reasonably easy learning curve, while providing a lot of flexibility for building 

useful web apps for presenting their data science work (models or analysis). It effectively 

takes care of a lot of the environment and project setup involved in a web application. 

Consequently, the developer, a data scientist in this case, can focus on the real data 

science code and methods while Flask takes care of HTTP, routing, assets, and so on.
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There are a lot of wonderful learning resources about Flask on the Internet that you 

are encouraged to find if you are interested in learning about this library. I will not get 

into those details here. Instead, I will present the code and the results directly for a small 

web app featuring predictions from an ML model.

There are two main files/scripts in a folder: a Python script (with Flask code) and 

a HTML file that is used as the front end for the app. Both files are supplied with the 

book. The Python script loads a pretrained ML model that is trained on the famous 

adult income dataset (https://archive.ics.uci.edu/ml/datasets/adult) for a 

classification task using a simple logistic regression model.

I will not go into the details of the HTML file as that is not the focus of this book. 

Instead, I will just show the output of the HTML, which is the page it produces 

(Figures 12-2 through 12-4). You can see textboxes that accept numerical input and 

drop-down boxes with category options. The ML model is trained to work with both 

input types. However, the Flask-based script must carefully convert and encode the input 

received from the HTML page for seamless processing with the ML model.

Figure 12-2.  Income range prediction model app page
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Figure 12-3.  Marital status dropdown choices shown on the app

Figure 12-4.  Race dropdown choices shown on the app

Next, here’s the Flask app code piece by piece:

from flask import Flask, render_template, request

import pickle

import numpy as np

app = Flask(__name__)
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# Load model and scaler objects (from pickle dumps)

model = pickle.load(open(‘income_model.pkl’,’rb’))

scaler = pickle.load(open(‘income_model_scaler.pkl’,’rb’))

Here, you create the app object as a Flask class and load two objects from pickled 

dumps: the pretrained ML model called model and a scikit-learn scaling object called 

scaler. This scaler is an instance of the MinMaxScaler class used to scale the input data 

while training the model. For proper predictions, this needs to be saved and loaded 

into the app. The training of the model was done separately and is shown in a Jupyter 

notebook that is also supplied with this book.

The next piece of code just creates two routes (or endpoints) with the @app.route 

decorator. The noteworthy point here is the render_template function used in the home 

function definition where you pass in the name of the HTML file. This file must be stored 

under a folder called templates inside the same directory where the Flask app script is 

located. A typical arrangement of files/resources is shown in Figure 12-5.

The prediction route decorates the main prediction function predict, which is not 

shown in this snippet. In this route, you define the methods argument that basically lists 

the URL methods that are allowed for this route: GET and POST. These are operations that 

can be performed on this route by the browser (on the client side). These methods are 

basically the fundamental data exchange methods between the client (front end) and the 

server (back end) sides for any web application.

# Home page

@app.route("/")

def home():

    return render_template('ml1.html')

@app.route("/predict", methods=['GET','POST'])

# Prediction function

def predict():
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…Figure 12-5.  Typical Flask app files and resources arrangement

Next, here’s the prediction function in detail:

def predict():

    if request.method == 'POST':

        # Access the data from form

        age = int(request.form["age"])

        education_num = int(request.form["education-num"])

        marital_status = request.form["maritalstatus"]

        race = request.form["Race"]

        # Convert marital status and race to numbers

        marital_status = marital_encoder(marital_status)

        race = race_encoder(race)

        # Arrange input features in an array

        X = np.array([age, education_num,

                      marital_status, race])

        X = scaler.transform(X.reshape(1,-1))

        # Prediction

        prediction = model.predict(X)

        # Output formatting
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        output_fn = lambda x: 'below $50k' if x==0 else 'above $50k'

        output = output_fn(int(prediction))

        return render_template("ml1.html",

                               �prediction_range='Your predicted annual 

income is {}'.format(output))

Here, you are receiving the data payload from the HTML form with the POST 
method and parsing it for extracting the individual input features such as variables 

like age, education_num, marital_status, and race. A couple of these variables need 

to be converted/encoded into numerical features using helper functions (not shown in 

this code) as they are received in the payload as text strings from the HTML form. In fact, 

age and education_num are also read as text and converted to integer types using the int 

type conversion function.

Thereafter, you prepare the input feature vector, use the scaling transformer, and 

pass it on to the model object for prediction. The output prediction is also converted into 

a string object using a lambda function and that is what is printed as the final output. 

Also noteworthy is the use of the render_template function in the return statement. 

You basically return a formatted string that contains the output from the model and 

places it in the HTML element/tag with an id of prediction_range.

The placement of this prediction_range element in the HTML code is at the 

botttom of the page below the Submit button (that has an identifier of “Predict income 

range”). It has a H2 (header level 2) tag as well to make it prominent on the page.

<button type="submit" class="btn btn-primary btn-block btn-large">Predict 

income range</button>

    </form>

    <br>

    <br>

    <h2>

    {{ prediction_range }}

The last part of the app code is for starting the web app using the app.run() method:

if __name__ == "__main__":

    app.run(debug=True)
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You start this app by simply running the Python app on command line:

python app.py

This will start a web server and expose a particular port. You can simply go to the 

localhost:5000 on the local browser and see the web app (i.e., the homepage rendered 

by the HTML file).

When you first load the web app, this won’t be visible as it is coded as a Jinja 

template variable (with “{{ ... }}”). Jinja is a helper Python library for Flask that 
takes care of all the HTML/CSS rendering for Flask scripts with some predetermined 

encoding of variables and loop statements. Here, the {{ ... }} essentially holds a 

Python variable that comes from the Flask app script (through the return statement of 

the predict function).

Here is a recap of the whole process sequence. After a user clicks on the button 

Predict income range (shown in Figure 12-2), the input will be submitted through the 

HTML form (with textboxes and drop-down menu selections), the ML prediction will 

happen at the app.py level, and the result will be returned back to be rendered at the 

bottom of the page through this Jinja placeholder (Figure 12-6). Note the large font for 

the result string as it has the HTML H2 tag assoociated with it.

Figure 12-6.  Rendering the final result for the Flask ML prediction app
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Although this example used a very simple data flow and a small ML model, it 
showcased all the essential components of a Flask-based Python project that are 

needed to build a powerful web application. For example, the data submission can be 

manual user input or reading from an online resource or a back-end database; the ML 

algorithm could be a simple logistic regression or a complex deep learning; there could 

be a large data wrangling and preprocessing pipeline before the features are extracted 

from the input layer; and the output could be a simple text rendering or a JavaScript-

based fancy visualization. Whatever components the web app might feature, the core 

connection between them will follow the glue that is Flask and its resources.

�Hands-On Example with PyWebIO
PyWebIO is another helper library for building quick web apps without the need to know 

anything about HTML/CSS/JavaScript. PyWebIO provides a diverse set of imperative 

functions to obtain user input and output content on the browser, essentially turning the 

browser into a rich text terminal. Using PyWebIO, data scientists can build simple web 

applications just by writing Python scripts and inserting web-based GUI elements inside 

those scripts as they are required. Additionally, it supports file handling and image/plot 

generation natively to make the data scientists’ life easier.

The full code for the app is supplied along with this book. Here, I just show the main 

function to highlight a few features (that are also different than what you saw in the Flask 

example):

def app():

    """

    Main app

    """

    put_markdown("""# A utility for analyzing a CSV file

## [Dr. Tirthajyoti Sarkar](https://www.linkedin.com/in/tirthajyoti-

sarkar-2127aa7/)

You can upload a data file (CSV) and,

- display histograms of the data coulmns

- download the summary statistics as a file.

    """)
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    �data = input_group("Input data",[file_upload(label='Upload your CSV 

file', accept='.csv',name='file'),

     radio('Display data?',['Yes','No'], name='display_data',value='No'),

     radio('Display plots?',['Yes','No'], name='display_plot',value='No'),

                              ])

    file = data['file']

    display_data = data['display_data']

    display_plot = data['display_plot']

    content = file['content'].decode('utf-8').splitlines()

    df = content_to_pandas(content)

    if display_data=='Yes':

        show_data(df)

    if display_plot=='Yes':

        show_plots(df)

    show_stats(df)

Note the use of the function put_markdown() that helps display simple markdown 

content on the web app. This largely eliminates the need of coding a lot of HTML/CSS 

content as templates or static files, as in the Flask example. Further, the input_group 

object and other elements like radio create corresponding radio button elements on 

the web app page, again eliminating the need to code them using HTML. Basically, 

PyWebIO does not require a data scientist to do anything else other than work on a 
single Python script, yet enables them to create a nice-looking web app.

I named this script csv-analysis.py as it accepts a CSV file (through a file uploading 

function) from the user, internally creates a pandas DataFrame representation, and 

shows some basic plots of the numeric variables. The app function, shown above, calls 

other helper functions like show_data() and show_stats() that accept the pandas 

DataFrame and display the raw data or descriptive statistics on the web page.

The last bit of code of the script looks quite similar to what you saw with the Flask 

example:

if __name__ == '__main__':

    start_server(app,port=9999,debug=True)
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It basically starts a web server and exposes it through the port 9999. When you run 

this on a command line:

python csv-analysis.py

you see the following output on the command line:

Running on all addresses.

Use http://10.0.0.55:9999/ to access the application

So, you go to this address on the local browser (http://10.0.0.55:9999/) and see 

this neat little web app popping up (Figure 12-7). Note how the markdown content you 

coded in the Python script is rendered nicely on the web page with headers, hyperlinks, 

and bullets. The input data section is nicely grouped as well, complete with a file upload 

box and radio buttons for selecting the choice of data display or statistics display.

Figure 12-7.  CSV analysis web app created by PyWebIO with just a single 
Python script
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Overall, this presents a HTML form (much like what you saw with the Flask example 

earlier) that accepts user input, does background Python processing, and presents the 

processed data back to the user. All the user needs to do is upload a file and press the 

Submit button.

The file upload functionality exposes the local filesystem for searching and choosing 

any file that the user wants to select. Figure 12-8 shows the state of the app after the user 

presses the Browse button on the file upload box.

Figure 12-8.  The user chooses the file they want to analyze with the PyWebIo app

After pressing the Submit button, the back-end processing happens and the page 

elements and states are updated to show the output in the bottom frame. Figure 12-9 

shows the result. Note that here both the raw data table and plots section are truncated 

for intelligibility purposes.
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Figure 12-9.  Typical output from the CSV analysis web app
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At the bottom of the page, the descriptive stats, calculated from the CSV file data, are 

also displayed and a download option is presented to the user (Figure 12-10).

Figure 12-10.  More output from the CSV analysis app including a 
download option

Although you saw a very simple data analysis task, this example demonstrates the 

essential features and advantages of PyWebIO for this kind of workflow: user uploads of 

data files, background data transformations and visualizations, displaying the results, 

and a download option for the transformed data. You can create such an app just by 

coding a single Python script and abstracting away all the HTML/CSS/JavaScript front-

end details using PyWebIO methods and utilities. This enhances your productivity and 

helps you present the result of your data science exploration in a nicely organized 
visual manner to external stakeholders within a short span of time.

�Other Options and GUI-Building Tools
Although I demonstrated the PyWebIO library in this section, there are quite a few 

options for a similar task: going from a Python script or Jupyter notebook to a full-

fledged web app. Streamlit is one of the most prominent and widely used options. 

Interested readers can refer to this article that I wrote about working with Streamlit: 

https://towardsdatascience.com/data-analytics-to-web-app-streamlit-made-

easy-ed687266f0e8.
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There is a recently developed tool called mljar-mercury that lets you convert Jupyter 

notebooks into web apps with the minimal addition of some YAML config code. With 

this library, you define interactive widgets for the notebook with a YAML header, and 

the end users can change the widgets’ values, execute the notebook, and save the results 

(as an HTML file). You can also hide the code to abstract the complexity from any non-

technical collaborators. The library makes it easy to deploy the app to any server such 

as AWS or Heroku. For more information, please see the GitHub site (https://github.

com/mljar/mercury) or the documentation (https://mljar.com/mercury/).

In many cases, building a stand-alone GUI app (not necessarily running on a web 

browser) may also be required to quickly demonstrate and disseminate some data 

science work or model. There are a host of options for doing that. Interested readers can 

check out this article that I wrote about a framework called PySimpleGUI and how to use 

it to build simple data science GUI apps: https://towardsdatascience.com/building-

data-science-gui-apps-with-pysimplegui-179db54a9a15.

�Going from Local to the Cloud
Cloud technology, with any doubt, has ushered in the biggest revolution in both the 

personal and enterprise computing spaces in the modern era. It takes full advantage of 

the improved infrastructure of the global high-speed internet backbone that continues to 

reach an ever-expanding section of human society every day. And, with that advantage, 

it has democratized and commoditized the process of delivering goods and services of 

every kind imaginable, virtual and physical.

Data science is no exception in this regard. While a great many data scientists prefer 

to work and explore ideas on their local machines, for various reasons they may need to 

transport their workflow seamlessly on to cloud resources, or at least have the skills to do 

so at a moment’s notice when the need arrives.

Some typical example scenarios include but are not limited to the following:

Need to analyze a multi-terabyte-sized dataset that they cannot 

store properly on their local machine

Large in-memory analytics requirements for which their local 

system memory is awfully inadequate

Fast, distributed computing requirement with a cluster of CPU/

GPU resources
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Need to use highly specialized libraries, frameworks, and 

specially designed environments that come only with a prebuilt 

container/image that is difficult and time-consuming to set up on 

a local machine

In all these cases, the ability to quickly spin up a cloud resource and connect 

the existing data science codebase to that infrastructure determines the ultimate 

productivity and efficiency of the data science pipeline.

�Many Types of Cloud Services for Data Science
There is no denying the fact that a dizzying variety of cloud services exist that can be 

used to enhance the productivity and efficiency of regular data science work. Some 

of them fall under the category of Infrastructure-as-a-Service (IaaS), where the end 

users rent the raw compute/storage power that exists in the cloud environment and just 

transport their local codebase to that layer. The typical usage scenarios in the previous 

section are applicable for this IaaS case. A specific example is to rent an EC2 compute 

node on AWS, connect it to some S3 storage bucket, and start doing large-scale data 

science work on this “rented” infrastructure that would not have been possible with 

limited local compute power.

�Platform-as-a-Service

A variety of new startups (and new service organizations of established corporations) are 

also working on services that can be classified as Platform-as-a-Service (PaaS). Here a 

host of modules and submodules run on top of an IaaS layer (that is not chosen or entirely 

visible to the end user). These modules can perform all the necessary and expected tasks 

of a typical data science pipeline (data ingestion, transformation, machine learning, 

visualization, model deployment, long-term data and logs storage, etc.). Users may choose 

all or a mix of the modules/services that are part of a PaaS offering.

For example, AWS has many components (Amazon QuickSight (business analytics 

service), Amazon RedShift (data warehousing), AWS Data Pipeline, AWS Data 
Exchange, Amazon Kinesis (real-time data analysis), Amazon EMR (big data processing 

using map-reduce)) that can be used as per the requirements of the end user’s data 

science workflow. Google Cloud also provides a host of similar services (BigQuery 

(data warehouse), Dataflow (streaming analytics), Dataproc (running Apache Hadoop, 

Apache Spark clusters), Looker (business intelligence and analytics), Google Data 
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Studio (visualization dashboards, data reporting), Dataprep (data preparation for 

analytics)) for the end user to pick and choose. At the other end of this spectrum, 

these services can be highly specialized, focusing on a single type of AI/ML job. AWS 

Sagemaker and Google Vertex AI are examples in this regard.

�Data-as-a-Service

Data-as-a-Service (DaaS) is also becoming a popular concept with the advent of cloud-

based data services. DaaS is provided by a host of new and established cloud vendors 

that use cloud computing to provide data storage, data processing, multi-domain data 

sources integration, and advanced data analytics to clients using distributed network 

infrastructure. They have proper security and identity management layers integrated 

and their focus is on AI/ML and data analytics without a limit on scaling. This kind of 

service can be used by any organization to rapidly improve their business process and 

create long-term value using the power of data. Some prominent examples of service 

providers in this field include Databricks and H2O.ai.
There are also cloud services focusing on providing specialized data science coding 

and programming environments for end users. An example that you have already seen 

in this book is the Saturn Cloud service that you used in Chapter 11 to spin up a GPU-

powered cloud instance with the RAPIDS framework preinstalled and configured. All 

you had to do was to click a few buttons and within minutes you could connect to a 

Jupyter notebook with access to all the RAPIDS libraries from your local browser.

Paperspace Gradient is another such successful hosted service provider for ML 

tasks. Without a doubt, these services enhance the productivity of data scientists by 

reducing the barrier of entry to environments that need special setup or a dedicated 

hardware configuration.

�Bringing Cloud Power to a Local Environment
There are a plenty of excellent resources to learn about cloud computing technologies 

and how they can help various data science tasks and projects. In fact, knowledge 

and basic experience of such technologies are becoming standard requirements for 

getting into the field of data science as a professional. This means, apart from studying 

programming languages, algorithms, machine learning theory and practices, and 

statistics concepts, a data scientist also needs to acquire skills and basic experience in 

cloud computing for prospective job interviews or career progression.

Chapter 12  Other Useful Skills to Master



348

Therefore, a related question is, how can you bring the power of cloud computing 

(mostly the infrastructure part, as mentioned in the previous section) to a local 

environment?

This basically entails the following tasks:

•	 Spin up a EC2 instance on AWS.

•	 Set up a Python data science environment on that instance (basically 

a computer in the cloud).

•	 Start a Jupyter server.

•	 Securely connect to that server through a local browser.

If these tasks are completed successfully, a data scientist will have a Jupyter 
notebook running on their local browser that is powered by the cloud computing 
instance. Local files and existing code can be ported into an environment that is no 

longer restricted by the hardware limitations of a single system.

Fortunately, many excellent step-by-step tutorials on this topic are available on the 

Internet. Instead of repeating the steps from those articles, I will provide links so you can 

follow them directly. Many of these tutorials feature low-resource EC2 instances (e.g., t2-

micro) to keep the cost of the AWS service minimal or even zero. However, the concept 
is extendable to almost any kind of EC2 instance, and the data scientist can spin 
up as large and powerful cloud computing resource as needed by the data science 
workflow. If it is a CPU-intensive data science task, a 32- or 64-core CPU instance can be 

chosen. It is a memory-intensive job, specialized high-memory instances can be used.

Additionally, the following links also include a guide for accomplishing the same 

goal with a Google Cloud Platform (GCP), which is a competitor and equivalent service 

to what AWS offers. GCP is powered by the vast distributed computing resource of 

Google and runs the familiar Jupyter notebook on a GCP computing node; it could be 

the first step towards extending your local data science pipeline to the amazing world of 

cloud computing. Furthermore, the similarity of the overall process in these two articles 

will prove that the fundamentals of this local-to-cloud connection remain exactly 
same regardless of the cloud service adopted.

Article/guide about AWS: “JupyterLab on AWS EC2” (https://medium.com/

analytics-vidhya/jupyterlab-on-aws-ec2-d6b2cb945e54)

Article/guide about GCP: “"Setting up Jupyter Lab Instance on Google Cloud 

Platform” (https://medium.com/analytics-vidhya/setting-up-jupyter-lab-

instance-on-google-cloud-platform-3a7acaa732b7)
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�Low-Code Libraries for Productive Data Science
Low-code libraries are becoming some of the most promising gateways for professionals 

who come from a diverse background such as web developers, business analysts, and 

even academic researchers in parallel fields and want to enter the world of data science 

and leverage its full power for their profession or daily work. In this section, I discuss the 

essential nature of low-code libraries and show a popular example.

�What Are These Low-Code Libraries?
At their core, these libraries are built atop the traditional data science ecosystem (e.g., 

programmatic frameworks with languages like Python, R, or Julia) with the goal of 

abstracting away the coding portion of data science as much as possible while 
keeping the technical rigor largely intact.

Naturally, these libraries act as thin wrapper layers on established coding-

oriented libraries and frameworks. They provide easy and intuitive APIs and may even 

incorporate a lot of attractive visual elements and dashboard analytics tools to make the 

data science work ever more approachable and presentable.

In many cases, they incorporate some Auto-ML bells and whistles that help run a 

series of data science/machine learning experiments and tuning exercises with only a 

few lines of codes (or at the click of a button). When such a low-code library abstracts 

away all its direct programmatic APIs into a GUI-oriented, interactive front end, then it 

can also be called a No-code data science library.

�Example with PyCaret
As its website (https://pycaret.org/) says, “PyCaret is an open-source, low-code 

machine learning library in Python that automates machine learning workflows” 

(Figure 12-11). Although the emphasis on machine learning is heavy in this statement, it 

can support all the usual stuff in a typical data science pipeline, like

•	 Exploratory data analysis

•	 Data wrangling and preprocessing

•	 Model training and tuning

•	 Basic model explainability and model management (MLOps)
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Figure 12-11.  PyCaret, a low-code, open source data science/ML library

Here is a simple classification example with PyCaret to demonstrate the idea of low-

code data science. First, install the library via pip:

pip install pycaret

PyCaret offers friendly data loading functions that can be used to import popular ML 

datasets, one of them being the diabetes dataset (https://archive.ics.uci.edu/ml/

datasets/diabetes):

from pycaret.datasets import get_data

data = get_data('diabetes')

The next steps are almost magical! With a single function call (setup), the data is 

examined and set up (i.e., prepared for an ML experiment):

from pycaret.classification import *

s = setup(data, target = 'Class variable')

The inference algorithm embedded (and largely abstracted from the general user) 

inside PyCaret will automatically infer the data types for all features based on certain 

properties. If the inference is not 100% correct, PyCaret handles this by displaying a user 

prompt and asking for a confirmation of data types when the setup function is executed. 
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You can press Enter if the data types are correct, or type quit to exit the setup. Ensuring 

the correct data types is critically important in PyCaret as it automatically performs 

multiple type-specific preprocessing tasks that are imperative for accurate ML modeling.

The next step is equally magical in its simplicity and power. One function call of 

compare_models() trains and evaluates the performance of all the ML estimators 

available in the model library using cross-validation (CV). The output is a scoring grid 

with average cross-validated scores. CV metrics can be accessed with the get_metrics 

function and customized metrics can be added or removed using the add_metric and 

remove_metric functions, respectively.

Best = compare_models()

print(best)

Figure 12-12 shows the results.

Figure 12-12.  One function call trains a handful of ML estimators and displays 
the CV metrics of all kinds. Image from https://pycaret.gitbook.io/docs/ 
get-started/quickstart, used with permission from the PyCaret creator

Chapter 12  Other Useful Skills to Master

https://pycaret.gitbook.io/docs/get-started/quickstart
https://pycaret.gitbook.io/docs/get-started/quickstart


352

Next, you can analyze the performance of the trained model on the test set, again 

with a single function call. This actually gives you a choice of many types of plots, and 

you can select any one of them.

evaluate_model(best)

A typical result is shown in Figure 12-13 where the user has chosen to see a feature 

importance plot.

Figure 12-13.  One function call analyzes the trained model against the test set 
and produces various plots. Image from https://pycaret.gitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

Note that evaluate_model can only be used in a Jupyter notebook session since it 

uses ipywidget (to interactively show the user all the plot options). You can also use the 

following code to generate plots individually:

plot_model(best, plot = 'auc')
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This produces the plot shown in Figure 12-14 showing the area-under-the-curve. 

Figure 12-14.  Individual plot. Image from https://pycaret.gitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

Prediction is, as expected, one line of code. The evaluation metrics are calculated on 

the test set.

predict_model(best)

And finally, saving a model (the full pipeline, actually) and loading it back is simple, 

too (Figure 12-15).

save_model(best, 'my_best_pipeline')

loaded_model = load_model('my_best_pipeline')
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Figure 12-15.  Saved model. Image from https://pycaret.gitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

It is clear from this hands-on demo that one of the primary goals of these libraries is 

to save time for the data science practitioner by simplifying the front API, reducing the 

lines of the raw coding needed, and even helping run multiple ML experiments in an 

autopilot mode. All these goals line up very well with that of the productive data science 

and therefore I strongly believe that low-code libraries are going to be an important 
part of this initiative in the future ahead.

�Summary
This chapter was not about a particular topic or a specific type of Python framework. It 

was an ensemble of topics and skills that often need to be studied and acquired by data 

scientists parallel to practicing a productive data science agenda. Although these skills 

do not feature directly in a data science pipeline as explicit components, they often 

provide additional value and foundation bedrock. Learning them can truly amplify the 

power and efficiency of a standard data science task flow.
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In that spirit of learning, I started with a discussion on the importance of learning 

basic web technologies (HTML, CSS, and JavaScript). Next, I touched upon the utility of 

creating web apps for data science projects and made the point that the ultimate success 

of a data science task depends critically on communicating the insights that it generates 

and how this can be done best with an interactive web app. I showed how to build 

simple web apps with Python libraries of two distinct flavors, Flask and PyWebIO.

Almost invariably, web apps are supported by the cloud infrastructure that is the 

backbone of modern high-tech society. In the context of data science, I also talked about 

cloud technologies such as Amazon Web Service and Google Cloud Platform and data-

focused platforms such as Databricks and Saturn Cloud. I also provided pointers to the 

simple process for bringing the power of cloud computing power to a local data science 

environment.

Finally, I switched gears and discussed how in many cases using a “low-code” 

framework can be useful and productive for a data science task. I demonstrated a ML 

classification task with PyCaret, a popular Python library in this genre, and showed how 

the low-code-focused abstraction made the whole affair of doing data science highly 

productive, faster, and intuitively simple.
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CHAPTER 13

Wrapping It Up
You underwent a long and arduous journey over the course of the last 12 chapters. As 

you begin the last phase of this book, let’s summarize the key takeaways and salient 

points of those chapters. This is important because one of the main things that I 

will focus on in this chapter is the topic of what was not covered. Naturally, you will 

appreciate the treatment of what was not by examining and recollecting what was 

covered.

�Chapter 1
Like any other computing (and non-computing) task in life, data science and machine 

learning can be practiced with various degrees of efficiency and productivity. Therefore, 

the goal of Chapter 1 was to introduce you to the benefits of performing data science 

tasks efficiently and productively. I also illustrated potential pitfalls in the everyday work 

of a regular data scientist to drive home the point of efficient data science.

�Chapter 2
The goal of Chapter 2 was to introduce you to the concepts of certain programming 

styles and habits that play an essential part in developing efficient data science systems 

and pipelines. I illustrated the concepts through brief examples and talked about how to 

measure or track inefficiency. Concepts of time and space complexities in programming 

and algorithms were introduced, as was the Big-O notation. Then I demonstrated 

practical examples of common, inefficient data science and ML coding practices to show 

you a glimpse of typically inefficient (but commonly used) coding patterns that do not 

scale well or make some aspects of the overall system design inefficient.
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�Chapter 3
In Chapter 3, I came close to the root of this book in a sense. This is a book based on 

exploring productive data science with the Python programming language. The choice 

of this language is almost self-explanatory. Python is, without any doubt, the most used 

and fastest growing programming language of choice for data scientists (and other 

related professionals such as ML engineers or artificial intelligence researchers) all 

over the world. One of the primary reasons for this popularity is the availability of high-

quality and powerful yet easy-to-learn libraries focused on data science.

However, just because these libraries provide easy APIs and smooth learning 

curves does not mean that everybody uses them in a highly productive and efficient 

manner. You must explore these libraries in depth and understand both their power and 

weaknesses to exploit them fully for productive data science work.

This was precisely the goal of this chapter: to show how and why these libraries should be 

used in typical data science tasks for achieving high efficiency. You started with the Numpy 

library as it is also the foundation of Pandas and Scipy. Then you explored the Pandas 

library, followed by a tour of the Matplotlib and Seaborn visualization packages.

�Chapter 4
This chapter built on the connection between data scientists and the Python 

language that was discussed in the previous chapter. Data scientists often come from 

a background that is quite far removed from traditional computer science/software 

engineering, one of physics, biology, statistics, economics, and electrical engineering, 

and they also use Python a lot for their work. While Python is the most widely used 

major language for modern data-driven analytics and AI apps, it is also used for simple 

scripting purposes, to automate stuff, and to build a web framework back end. It turns 

out that Python for data science work and Python for scripting and general software 

development can be quite different in style and temperament.

Scripting is (mostly) the code you write for yourself. Software is the assemblage of code 

you (and other teammates) write for others. It has been widely observed that when (a 

majority of) data scientists who do not come from a software engineering background 

write Python programs for AI/ML models and statistical analysis, they tend to write such 

code mostly for themselves. Writing high-quality, production level code is a skill to be 

learned and honed over a lifetime. It is the bread and butter of software engineers and 

Chapter 13  Wrapping It Up



359

developers. Not all data scientists will have the motivation and drive to acquire these 

skills. However, some good practices can be learned and applied in your everyday work. 

This chapter provided some pointers in the context of productive data science.

�Chapter 5
Functions, inheritance, methods, classes: they are at the heart of robust object-oriented 

programming. But a typical data scientist may not delve deeply into them if all they want 

to do is to create a Jupyter notebook with exploratory data analysis and plots. Therefore, 

they can avoid the initial pain of using OOP principles, but that almost always renders 

the Notebook code non-reusable and non-extensible. More precisely, that piece of code 

serves only the individual (until that individual forgets what exact logic was coded) and 

no one else.

But readability (and thereby reusability) is critically important for any good software 

product/service. Following a discussion about modular, readable, reusable coding 

practices in Chapter 4, this chapter focused on examples of such practices in the domain 

of deep learning. These days, powerful and flexible frameworks like TensorFlow or 

PyTorch make the actual coding of a complex neural network architecture relatively 

simple and brief. However, if the overall data science code is not modularized and well 

organized, then it can be plagued by the same issues of non-reproducibility and non-

reusability.

Specifically, I discussed wrapping up the most essential tasks in a DL-based 

workflow, such as building and compiling a classification or regression model, creating 

targeted visual analytics, creating proper docstrings inside custom functions, and using 

them as the core building blocks of the main data science pipeline. Additionally, you can 

wrap up the task related to data formatting/transformation and prediction/inference 

in a similar fashion. Apart from simple functional wrappers, I also discussed a powerful 

construct called callback that caters to the dynamic nature of training a deep neural 

network. I showed how to extend this approach all the way to the full OOP paradigm, 

to build out classes and utility modules incorporating all these wrappers as special 

methods. I called this a DL utility module that can be called from any data science task.
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�Chapter 6
In the previous two chapters, I showed that data scientists must learn how to write 

machine learning code (whether it is the final model or just some experimental 

prototype) efficiently. There must be proper organization and modularization in the 

code so that it can interface well with the standard software engineering tools and 

techniques. There must be some amount of automation in the code to reduce the time 

to explore, evaluate, and experiment with data and models. Data scientists must be 

comfortable with writing functional and module tests, incorporating object-oriented 

principles, and so on. And finally, data scientists must also develop the habit of 

producing good documentation for their code so that it can be reusable and readable by 

other developers.

This chapter took you through the journey of developing a lightweight but useful 

ML package of your own so that you can experience many aspects of producing a 

complete piece of software for data science. In my experience, this exercise of writing 

(and publishing) an ML package teaches several valuable lessons to any upcoming data 

scientist.

�Chapter 7
Python has an amazing ecosystem for data science work, starting from numerical 

analysis and going all the way to advanced deep learning or reinforcement learning, with 

statistical modeling and visualization thrown in the mix. A great open-source culture 

keeps new and exciting developments coming and thriving. Data scientists can learn, 

contribute code, share their experience, help debug, and support each other in this 

environment.

There are some predominant libraries and packages in this ecosystem that are used 

by almost all data scientists in their daily job: Pandas, NumPy, and Scikit-learn are three. 

However, there are also some little-known Python packages that can help you do some 

common data science jobs faster and more efficiently. These are not general-purpose 

large projects like Numpy or Pandas. Instead, they focus on niche aspects of similar data 

science tasks and do them really well.

In this chapter, I touched upon a few such nifty packages and showed hands-on 

examples of efficient data science. The goal was to induce the idea of exploration in your 

mind so that you can take full advantage of the great Python data science zoo.
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�Chapter 8
Data science tasks come with a wide variety of computational costs of both space and 

time. Data wrangling jobs may need the support of large storage, while advanced ML 

algorithms need high intensity computing speed. Some ML algorithms work better with 

the support of large local memory (RAM) and cannot perform well with data situated far 

from the CPU on a hard disk, while others are optimized to perform well with distributed 

data storage.

Furthermore, the nature of the data may change slowly or frequently, depending on 

the application. Some models and data science code scale gracefully with increasing 

size and complexity of the input data, some do not. When their scaling is not properly 

planned or baked into the code, the performance can suffer, even leading to possible 

catastrophic failure in time.

To plan for such a situation or to design data science code robustly, you must start 

with the basic measurement of the efficiency of the code in terms of memory usage 

or profile. There are many tools and techniques for such measuring depending on the 

code and the underlying hardware. In this chapter, I introduced tools (with hands-on 

examples) that can be used to measure the memory usage profile of data science and 

ML code.

�Chapter 9
Data science tasks may cover a wide variety of dataset sizes, ranging from kilobytes to 

petabytes. Some datasets can have many rows and a small number of columns while 

others (e.g., genomic assay) may be extremely high-dimensional and consist of a few 

rows but millions of columns as feature dimensions. Even within the same organization 

or data science team, there can be multiple pipelines dealing with different types of 

input and they may face wide variation in the dataset size and complexity.

It is often a natural practice for data scientists to build a scaled prototype of a data 

science job (such as combining data wrangling, a ML algorithm, and some prediction 

functions). To support this quick analysis and prototyping, a data scientist must be able 

to quickly scale across a wide variety of dataset sizes and complexity as the need arises. 

They should not run into issues like out-of-memory while prototyping on their laptop.

This chapter talked about the common problems and limitations that arise while 

scaling out to larger datasets and what tools exist to address those issues. Specifically, 
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you explored some of the limitations that arise while doing analysis with a large dataset 

using the most common data analysis library, Python Pandas, and discussed two 

alternative libraries or add-ons that can be used to overcome those limitations.

�Chapter 10
In almost all real-life scenarios, the success of a data science pipeline (and its value 

addition to the overall business of the organization) may depend on how smoothly and 

flawlessly it can be deployed at scale, such as how easily it can handle large datasets, 

faster streaming data, rapid changes in the sampling or dimensionality, and so on. This 

aspect of scalability is also closely related to the ability to do parallel processing of large 

data. Therefore, the theme of Chapter 9 was continued in this chapter where I discussed 

Python libraries that support parallel processing natively for data science tasks.

Much like the last chapter, I discussed limitations that arise while doing analysis 

with large and complex datasets using the most common data analysis and numerical 

computing libraries like Pandas or Numpy and I discussed some alternative libraries 

to help with those tasks. However, this chapter does not focus on an exhaustive 

discussion about the general parallel computing tricks and techniques with Python. 

It purposely avoids detailed treatment of the topics that often come up in a standard 

Python parallel computing tutorial or treatise such as working with built-in modules like 

multiprocessing, threading, or asynco. The focus, like any other chapter in this book, 

is squarely on data science, so I covered two libraries named Dask and Ray that truly add 

value to any data science pipeline where the user wants to bring in the power of parallel 

computing to their tasks.

�Chapter 11
Productivity in data science is often directly related to the speed of execution of various 

tasks including numerical processing, data wrangling, and feature engineering. When it 

goes to the advanced machine learning stage, depending on the modeling complexity, 

the matter of speed and performance assumes a critical role. It is now well established 

that the unprecedented success of modern ML systems has been critically dependent 

on their ability to process massive amounts of raw data in a parallel fashion using task-
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optimized hardware. The history of machine learning has clearly demonstrated that the 

use of specialized hardware like GPUs played a significant role in the early success of ML.

While the use of GPUs and distributed computing is widely discussed in academic 

and business circles for core AI/ML tasks, there is less coverage when it comes to their 

utility for regular data science and data engineering tasks. So, the important question 

is, can we leverage the power of GPUs for regular data science jobs (e.g., data wrangling, 

descriptive statistics) too? The answer is not trivial and needs some special consideration 

and knowledge sharing. In this chapter, I focused on a specialized suite of tools called 

RAPIDS that help any data scientist take advantage of GPU-based hardware for a wide 

variety of data science tasks (not necessarily deep learning or advanced ML). You 

explored how by utilizing the inherent parallel processing power of GPUs, you can 

enhance the productivity of such common data science tasks significantly.

�Chapter 12
I dedicated this complete chapter to the set of various disparate useful skills that a data 

scientist should strive to master to enhance their productivity. Unlike previous chapters 

where I examined and discussed similarly grouped skills (e.g., memory profilers or 

distributed computing tools), the tools and skills discussed in this chapter might have 

looked somewhat disjointed from each other. They do not fall under one unifying class, 

but taken as a whole, they can truly aid a data scientist in enhancing productivity.

I started with a discussion on the importance of learning basic web technologies 

such as HTML, CSS, and JavaScript. Building on the same concepts, next I discussed 

the utility of creating a simple web app for a data science project. You saw a hands-

on example with two Python libraries, Flask and PyWebIO. Then I moved on to cloud 

technologies such as Amazon Web Services and showed (with lined resources) the 

simple process for bringing the power of the cloud to a local data science workflow. 

Finally, I switched gears and discussed how, in many cases, using a so-called “low-code” 

framework can be useful and productive for a data science task. I demonstrated PyCaret, 

a popular low-code Python library in this regard.
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�What Was Not Discussed in This Book
Often, the most important thing that an author can (and should) discuss at the end of a 

book is not a running list of all the topics that were covered in the book, but what was not 

covered. In that spirit, in the following subsections, I identify some key topics that should 

be pointed out to you, the reader, for self-learning and exploring beyond this book. 

These topics should help you equip yourself with productive data science techniques.

�MLOps and DataOps
A typical (or traditional) software development lifecycle goes from requirement 

elicitation, to designing, to development, to testing, to deployment, and all the way 

down to maintenance. For many years, these practices were firmly in the realm of so-

called DevOps.

As business and technological enterprises incorporate more and more data 

science and machine learning into their products and services, the new requirement of 

building ML systems modifies these time-tested principles of the SDLC to give rise to 

a new engineering discipline called MLOps (a handshake between ML practices and 
traditional DevOps). One of the most popular and widely used Python libraries for 

getting started with basic MLOps is MLFlow.

While MLOps deals primarily with ML models and artifacts, a similar and related 

concept is DataOps, which focuses data (and the various transformations, techniques, 

and systems associated with the processing and flow of data) as main artifacts. Like 

MLOps, this modern discipline tries to blend the newer set of demands created by the 
unprecedented scale and complexity of data processing with traditional DevOps tool 
chain and produce a homogenized pipeline that delivers value to any organization that 

wants to take advantage of the power of data science.

These are newly emerging disciplines with ever-changing standards and golden 

practices. To be productive and efficient, a data scientist must keep abreast of these 

developments. There are conferences exclusively dedicated to these spaces, and 

excellent books and blogs are being produced all the time. You are highly encouraged to 

start exploring these avenues to get a firm grasp of these concepts.
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�Container Technologies
Containers have become an essential part of any modern software technology stack. 

Fundamentally, they enable packaging software code and services with all the necessary 

components like libraries, frameworks, and other dependencies so that they are 

“contained” and “isolated” in their own private space. This results in the ability of the 

software or application within the container to move across and run consistently in 
any environment and on any infrastructure, independent of that environment or 

infrastructure’s operating system.

Although the core idea of such process isolation has been around for years, in 

2013, Docker introduced Docker Engine, which set a standard for container use with 

easy-to-use tools and pioneered a universal approach for packaging. This accelerated 

the adoption of container technology with breakneck speed, leading to container 

orchestration tools like Kubernetes (developed and open sourced by Google). Today, 

developers can choose from a large selection of containerization platforms and tools that 

support the Open Container Initiative standards pioneered by Docker.

In fact, the adoption of containerization has pushed software development from 

being monolithic (where all services and components use the same language or a 

fixed set of technology) towards a much more diversified situation (each individual 

service is written in the best programming language for the task and then run as pods 

with a container orchestration tool like Kubernetes). Naturally, an increasing number 

of modern data science and ML services and platforms are also being built with 

containerization at their core. To take advantage of this mega-trend and to make it work 

for productive data science, you should familiarize yourself with the basic principles, 

workings, and features of container tools such as Docker and Kubernetes.

�Database Technologies
Database and related technologies have been around for much longer than modern data 

science and machine learning, going back to the early 1960s. For the longest time, they 

centered around relational database management systems or RDMBS. These systems 

mainly dealt with “structured data” such as business transactional records or tabular 

data coming from inventory, quality control, production, or other business processes of 

a similar nature. Structured Query Language or SQL (and the many variants it spawned) 

has been the mainstay of querying large databases with amazing speed and accuracy for 

more than five decades.
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It is imperative for any aspiring data scientist to acquire at least a rudimentary 
knowledge of databases and SQL and to constantly practice and upgrade that 

knowledge. Almost every web app, platform, and enterprise software makes use of 

multiple databases in some form or another. In real-life scenarios, it is extremely likely 

that the raw data for a data science pipeline must come from a legacy database (or a 

combination of multiple such databases). Therefore, the data scientists in charge need to 

be proficient in SQL to perform those queries to extract raw data from the databases.

SQL, being a declarative language (https://365datascience.com/tutorials/sql-

tutorials/sql-declarative-language/), does not necessarily have a steep learning 

curve. But a solid knowledge of database design and optimization can go a long way 

towards performing optimized queries for data extraction that enhances the efficiency 

of the entire data science pipeline. There are, in fact, many database bindings or 
connector libraries in Python that allow data scientists to build tight coupling with 

existing databases and extract data even from within a Python environment.

However, SQL and RDBMS are just the tip of the iceberg. With the growing 

importance of unstructured data such as images, videos, audio, natural language, 

handwritten notes, and streaming output from digital sensor networks, particularly in 

the field of data science and ML, there is a fresh revolution in database technologies 

leading to the development of NoSQL technologies. These tools and languages are 

generally designed and optimized for dealing with unstructured or semi-structured 

datasets.

You are duly encouraged to update your database knowledge, invest time in building 

solid fundamentals in SQL, and keep abreast of developments in the latest database 

trends and technologies. No matter what background you come from or what kind of 

business or scientific application you are working on, this knowledge will help you 

become highly productive and efficient with maximum impact.

�General Advice for Upcoming Data Scientists
It is not hard to imagine that the following question comes up often when a few data 

scientists gather for a drink, after work: how can you distinguish yourself from 
hundreds of other data science practitioners/candidates at work or in a job 
interview?

Why is this question important to ponder?
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Because there is a tremendous amount of competition to get a job as a data scientist 

(www.kdnuggets.com/2020/10/getting-data-science-job-harder.html). Because 

there is a mad rush. Every kind of engineer, scientist, and working professional is calling 
himself or herself a data scientist (www.linkedin.com/pulse/why-so-many-fake-

data-scientist-bernard-marr/). Because, as an aspiring data scientist, you may not be 

sure if you can cut your teeth in this field. The so-called imposter syndrome is alive and 

well in data science (https://towardsdatascience.com/how-to-manage-impostor-

syndrome-in-data-science-ad814809f068).

I neither claim to have ready answers nor do I know whether you can truly 

distinguish yourself, but I will list a few pointers.

�Ask Questions and Learn Constantly
Ask yourself the following questions and count the number of YES answers. The more 

you have done, the more you can separate yourself from the masses.

�If You Are a Beginner

Have you published your own Python/R (whatever you code in) 

package?

If yes, have you written extensive documentation for it to be used 

easily by everyone else?

Have you taken your analysis from a Jupyter notebook to a fully 

published web app? Or have you investigated tools that help you 

do so easily?

Have you written at least a few high-quality, detailed articles 

describing your hobby project?

Do you try to practice the Feynman method of learning, which 

is to teach a concept you want to learn about to a student in the 

sixth grade?

�At a More Advanced Phase

If you consider yourself to be at a somewhat mature stage as a data scientist, answer 

these questions:
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Do you consciously try to integrate good software engineering 
practices (e.g., object-oriented programming, modularization, 

unit testing) in your data science code at every chance you get?

Do you make it a point to not stop at the scope of the immediate 

data analysis required but imagine what would happen for 100X 

data volume or 10X cost of making the wrong prediction? In other 

words, do you think consciously about data or problem scaling 

and its impact?

Do you make it a point to not stop at the traditional ML metrics, 

but also think about the cost of data acquisition and business 
value resulting from applying ML?

�Learn a Diverse Set of Skills

I particularly would like to advise you to not spend all of your time and energy analyzing 

larger and larger datasets or experimenting with the latest deep learning model. As well-

rounded data scientists, we should set aside at least a quarter of our time learning to do a 

couple of things that are valued everywhere, in every organization, in all situations.

Build a small but focused utility tool for your daily data analysis. 

Your creative juices will flow freely in this exercise. You are 

creating something that may not have thousands of immediate 

users, but it will be novel, and it will be your own creation.

Read and create high-quality documentation related to new 

tools or frameworks or the utility tool you just built (see above). 

This will force you to learn how to communicate the utility and 

mechanics of your creation in a manner that is intelligible to a 

wide audience.

As you can see, these habits are easy to develop and practice. They do not require 

backbreaking work, a years-long background in statistics, or advanced expertise in deep 

machine learning knowledge. But, surprisingly, not everybody embraces them. So, here’s 

your chance to distinguish yourself from a set of large number of candidates either at a 

new job or at an interview (Figure 13-1).
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Figure 13-1.  Building data science tools (apps) and high-quality documentation 
could distinguish yourself from others. Image source: “How Can You Distinguish 
Yourself from Hundreds of Other Data Science Candidates?” by Tirthajyoti Sarkar 
(https://towardsdatascience.com/how-to-distinguish-yourself-from-
hundreds-of-data-science-candidates-62457dd8f385)

�Read About Broad Topics at Every Chance

Aspiring data scientists often spend a disproportionate amount of time reading about 

the latest deep learning trick or blog posts about the latest Python library. While these 

are positive attributes, in order to be productive and efficient, you should also allocate 

some time for reading broader topics in data science or artificial intelligence in general. I 

encourage you to read about broad and diverse topics in the industry’s top forums and in 

good books. Figure 13-2 shows some of the books and forums that I enjoy.
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Figure 13-2.  Some high impact blogs, forums, and books on broad topics related 
to data science, machine learning, and artificial intelligence

�Distinguish Yourself at a Job Interview
Following the goal of distinguishing yourself at a job interview, imagine yourself to be 

in such a situation. If you did have many YES answers to the questions above, you can 

mention something like the following to your interviewer:

•	 “Hey, check out the cool Python package I built for generating synthetic 

time-series data at will.”

•	 “I also wrote a detailed documentation which is hosted at MyApp.

readthedocs.io website. It’s built with Sphinx and Jekyll.”

•	 “I write data science articles regularly for the largest online platform, 

Towards Data Science. Based on those articles, I even got a book 

publishing offer from a well-known publisher like Packt or Springer.”

•	 “Everybody can fit an ML model in a Jupyter notebook. But I can hack 

out a basic web app demo of that Scikit-learn function where you can 

send data through a REST API and get back the prediction.”
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•	 “I can help in the cost-benefit analysis of a new machine learning 

program and tell you if the benefit outweighs the data collection effort 

and how to do it optimally.”

Imagine how different you will sound to the interview board from all the other 

candidates who do well on regular questions of statistics and gradient descent but do not 

offer demonstrable proof of all-around capabilities.

This shows that you are inquisitive about data science problems. This shows 

that you read, you analyze, and you communicate. This shows that You create and 

document for others to create. This shows that your thinking goes beyond notebooks 

and classification accuracy to the realm of business value addition and customer 
empathy. This is the secret sauce of being truly productive and efficient.

What company wouldn’t love this kind of candidate?

�Some Useful Resources
There are so many great tools and resources for acquiring and practicing these skills. It is 

impossible to even list a good fraction of them in the space of a single chapter, but below 

I list some representative examples. The key idea is to instill the idea of exploring along 

these lines and discovering such learning aids for yourself.

�A Data Scientist’s Amazing, Curated List of Useful Tricks 
and Tools

Khuyen Tran is a data science writer at NVIDIA and a data science intern at Ocelot 

Consulting. She has written over 200 data science articles and hundreds of daily data 

science tips at Data Science Simplified (https://mathdatasimplified.com/). Her 

current mission is to make open source more accessible to the data science community. 

She has curated a list of efficient Python tricks and tools that can act as a perfect 

supplement to this book. Check out the open-source book Efficient Python Tricks 

and Tools for Data Scientists (Figure 13-2) at https://khuyentran1401.github.io/

Efficient_Python_tricks_and_tools_for_data_scientists/intro.html.
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�Build Installable Software Packages Using Only 
Jupyter Notebooks

This tool comes from the developers of FastAI, a popular deep learning framework and 

learning resource. They experimented with the idea that one can build an installable 

Python package right from the Jupyter notebook code and came up with this tool. Of 

course, the Jupyter notebook is where data scientists are mostly at ease and this kind of 

tool lets them publish packages right from their preferred coding and experimentation 

environment. Here are the details about this project: www.fast.ai/2019/12/02/nbdev/.

�Learn How to Integrate Unit Testing Principles

Testing software modules enhances robustness and trust in the final product/service. 

The importance of high-quality testing cannot be emphasized enough in any software 

development. The same argument goes for your data science pipeline. Even if you are 

developing a data science codebase mainly for prototyping and research, it’s a good idea 

to know how to write basic testing modules to check if the functions and classes you are 

developing are working as expected.

It is often not about checking the input data type but about checking whether your 

data science pipeline can handle it. It is not only just randomly throwing out-of-range 

variables at the function but also about checking whether the response is as expected.

To get you started, here are references to a couple of useful articles in this regard. In 

these short articles, I looked at an example of a typical data science pipeline (consisting 

of small, dedicated functions) instead of a monolith, and showed how to write a Pytest 

module for it. I also looked at why writing test modules for data science can be slightly 

different from what software engineers or Quality Assurance folks do every day.

“PyTest for Machine Learning” (https://towardsdatascience.com/pytest-for-

machine-learning-a-simple-example-based-tutorial-a3df3c58cf8)

“How to Write Test Code for a Data Science Pipeline” (https://heartbeat.comet.

ml/how-to-write-test-code-for-data-science-pipeline-4ee35956c513)

�Write Whole Programming and Technology Books Right 
from Your Jupyter Notebook

This is an awesome open-source project to help develop code-oriented, quick-read 

books and booklets: “Books with Jupyter” (https://jupyterbook.org/intro.html).
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�Get Started with MLOps

As discussed, MLOps was not covered in this book, and yet it deserves the full attention 

of aspiring data scientists to succeed professionally and be productive in today’s 

business environment. Check out this high-quality introductory guide: “What is 

MLOps – Everything You Must Know to Get Started” (https://towardsdatascience.

com/what-is-mlops-everything-you-must-know-to-get-started-523f2d0b8bd8).

�Understand the Multi-Faceted Complexity of a Real-Life 
Analytics Problem

Check out the following article to understand the multi-faceted complexities of a real-

life analytics problem: “Why a Business Analytics Problems Demands all of your Data 

Science Skills” (https://medium.com/analytics-vidhya/why-a-business-analytics-

problem-demands-all-of-your-expertise-at-once-1290170808c4). In this case 

study example, I describe in detail what could be a good analytics pipeline for a power 

company that wants to run a power shut-off campaign (for non-payment of electric 

bills), shown in Figure 13-3. Specifically, I analyzed

•	 What data needs to be collected and how it needs to be cleaned and 

prepared using wrangling techniques

•	 What the main components of the pipeline need to be

•	 What subcomponents or specific modeling technique may be used

•	 How to formulate the optimization problem

•	 What business and social factors to consider

•	 When to apply stochastic simulations and what kind of simulation 

runs need to be conducted
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Figure 13-3.  Khuyen Tran’s ebook on efficient Python tricks and tools for 
data science
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Figure 13-4.  An example of a real-life business analytics problem incorporating 
data science tools of all kinds, such as classification, simulation, time-series, 
risk and cost modeling, randomized (stochastic) analyses, optimization, etc. 
Image source: “Why a Business Analytics Problem Demands all of your Data 
Science Skills” by Tirthajyoti Sarkar (https://medium.com/analytics-vidhya/
why-a-business-analytics-problem-demands-all-of-your-expertise-at-
once-1290170808c4)

You will appreciate, after reading this article, how the modern practice of 
data-driven analytics, when applied to a real-life business problem, is always 
a complicated mixture of multiple techniques and frameworks including data 

wrangling, machine learning, business logic, and even ethical choices.

�Begin a New Journey
Well, that’s the end for this journey with this book. My goal was simple: to illustrate the 

concept of productive data science and introduce you to a few tools and techniques 

(all using the Python language and its rich ecosystem) that can help you achieve higher 

productivity (and efficiency) in your data science work. With that goal in mind, I covered 
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a wide array of topics in the span of 13 chapters. Some of those topics dealt directly with 

the efficiency of the data science code and programming patterns, while others covered 

concepts that may play critically important roles in practical data science pipelines. 

There were discussions on as diverse topics as modularity, code packaging, memory and 

time profiling, GPU processing, parallel computing, web technologies, and everything in 

between.

I sincerely hope that this medley was useful and illuminating to you, and that you 

gained an insight or two about productive data science practices by making the journey 

through these chapters, either by following every example diligently or just browsing 

casually. As expected from a book on such a mixed topic, not everything that I know 

to be important for practicing productive data science could be covered within these 

chapters. Whenever possible, I encouraged you to explore those topics and concepts on 

their own.

Those explorations will surely lead to newer adventures, professional success, 

and pure joy for the practitioners of the wonderful enterprise (and transformative 

technology) that is data science. With this hope, I signal the start of that newer and future 

journey.

Chapter 13  Wrapping It Up



377

Index

A
Activation maps, 142

activation, 144–146
training, 143
web-based UI, 147

AI/ML models, 9, 85, 358
Algorithmic complexity

deep learning network, 25, 26
image data, cubic-complexity, 22
regression model, 23, 24
relative growth comparison, 24, 25

Apache Arrow columnar memory 
format, 303

Artificial intelligence (AI), 9, 47, 85,  
300, 358, 370

Aspiring data, 369, 373
.at or .iloc methods, 61
AutoML tools, 10

B
Back-end processing, 342
Base class, 119, 165, 166, 173, 175
Basic web technologies, 327, 355, 363
Best-matching distribution

datasets, 206, 207
plot, 204
simple fitting, 203, 204

Binary search, 20
Boolean filters, 197
Business and technological 

enterprises, 364

C
Cell magic, 44
Classification score, 322
Client-scheduler-worker, 264, 265
Cloud computing  

technologies, 347
Cloud instance, 233, 234, 261, 282, 

314, 347
Cloud technology, 345
Colab Pro, 236
ColDrop method, 189, 191
Computing, 212, 235, 254, 357
Containers technologies, 365
Convolutional neural  

network (CNN), 119, 138
cProfile library

array operations, 225
data science workflow, 227
Profiler class, 226, 227
usage, 223

cProfile.run function, 223, 224
Cross-validation (CV), 92, 95,  

148, 150, 351
CSV analysis app, 344
CSV analysis web app, 341, 343
CUDA programming, 303, 304
CUDA version, 309
CuDF DataFrame, 315, 317, 319
CuDF vs. pandas, 314
CuGraph, 304–305
CuML pipeline, 323
CuML version, 322

© Dr. Tirthajyoti Sarkar 2022 
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5

https://doi.org/10.1007/978-1-4842-8121-5


378

CuPy algorithm, 304, 311, 313
NumPy comparison, 312
interface, 303
usage, 310

D
Dask, 263, 264

array, 265
bag, 266, 277–279
clusters, 268, 308, 320
dashboard, 285
DataFrame, 266, 274–277
distributed client, 279–283
hood, 264, 265
ML, 285
tasks, 267

Dask Future, 284
dask-ml library, 287
Data-as-a-Service (DaaS), 347
Database technologies, 365
Database knowledge, 366
DataOps architectures, 2
Data/problem scaling, 368
Data repository, 301
Data scaling challenge, 286
Data science, 147, 211, 345, 354, 361

brute-force for loop, 3
combinatorial sign, 5
definition, 1
generic function, 6, 7
inefficient programming

canonical example, 28–35
computing tasks, 35, 36

iterrows(), 4
pandas DataFrame, 3
pitfalls

GUI programming/web app 
development, 14

hardware/traditional tools, 10–12
measure efficiency, 8
measuring efficiency, 12
ML model development, 13
modularized and expressive data 

science pipeline, 9
OOP, 9
productive data, 15
Python, 9
unit/functional testing, 13

plotting code, 6
Python libraries, 2
scatterplot, 4
task flow, 2
test module, 8
tools, 328
workflow stages, 228

Data science methods, 328
Data science pipeline, 13, 230, 239, 257, 

301, 349, 354, 362, 372
Data scientist

arithmetic, 160, 161
OOP, 161–163

Datasets, 129, 130, 262
Decision boundary visualization, 102–108
Deep learning (DL), 11, 15, 26, 48, 114, 

116, 147, 220
Deep neural network (DNN), 114, 216, 

299, 359
DevOps, 364
distfit library, 202, 208
Docker Engine, 365

E
Elastic Compute (EC2) instance, 233
eval method, 199
Evaluation metrics, 353
Execution time

INDEX



379

Jupyter/IPython magic 
command, 43–45

Pythons time module, 37–41, 43
Extend class functionality, 128

F
Filtering operation, 55, 198, 243, 316
fit_generator method, 134, 135
fit_transform method, 203, 205
Flask, 332
Flask app files, 336
Flask ML prediction app, 338

G
Gigabytes (GB), 10
Global Interpreter Lock (GIL), 230
Goodness-of-fit (GOF), 175, 202
Google Cloud Platform (GCP),  

348, 355
Google Colaboratory, 234
GPU-accelerated data science, 326
GPU memory, 235, 312, 320
GPU-powered hardware, 320
Graphics processing unit (GPU), 299
GUI/app development, 16

H
Hardware story

AI and ML solutions, 305
hardware development, 305

Hidden gems, 185
Hyperparameter

cross-validation, 150
data/keras model, 148, 149
grid search, 150, 152–155

kerasClassifier class, 149
scikit-learn library, 148

I
Image classification

CNN, 133, 134
data generator object, 131, 132
dataset, 129, 130
encapsulate, 135–137
extensions, 141
fit_generator method, 134, 135
image dataset, 138–140
simplifying, 129
testing utility function, 137

Imposter syndrome, 367
Income range prediction model, 333
Informed search, 27
Infrastructure-as-a-Service (IaaS), 

234, 346

J
JavaScript library, 330
Job interview, 347, 370–371
Jump-starter packages, 47
Jupyter magic commands, 33, 46
Jupyter notebook, 6, 9, 29, 42, 78, 88, 98, 

114, 147, 159, 180, 216, 240, 247, 
270, 280, 307, 335, 348, 372

K
Keract, 143
Keras callback class, 119, 120
k-means algorithm, 324
K-means clustering, 325
K-nearest neighbor (KNN), 104, 106
Kubernetes, 365

INDEX



380

L
Linear regression algorithm, 163, 164, 311
Linear search, 20
Line command, 44
Low-cardinality data, 238
Low-code libraries, 101, 349, 354

M
Machine learning (ML), 1, 17, 213, 216

algorithms, 326
data scale, 219
deep learning, 220
experiments, 354
final validation, 222
key advice, 221
linear regression, 216–218
modular code, 86
standard data science task  

flow, 87, 88
systematic evaluation, 96
systematic evaluation, 

automation, 96–101
Mathematical operators, 201
Matplotlib and Seaborn, 6, 47, 

73–75, 77–83
Memory profile, 212, 213, 222
mljar-mercury, 345
MLOps, 364, 373
Model compression, 213
Model scaling challenge, 286
Modern data science, 263, 365
Modern ML systems, 299
Modin, 250

features, 254
out-of-core processing, 251–254
single CPU, 250, 251

Modular Code

fast experimentation
business/data science, 118
compile/train functions, 121
final code, 124–126
keras callback, 119, 120
utility functions, 126
visualization function, 123

OOP
builders, 116
callbacks, 116
DL task, 114, 116
wrapper, 116

Multiple terabytes (TB), 10

N
Natural language processing (NLP), 33, 

193, 305
N-dimensional numerical arrays, 49
ne.evaluate() function, 196
Neural network model, 212, 216, 220
NLTK tokenizer method, 194
NoSQL technologies, 366
Numerical Python, 48
Numexpr method, 197
Numexpr package, 194, 195
NumPy, 47, 194, 358

.append method, 56, 57
arithmetic, 196
arrays, 49, 268–272, 274, 317, 318
array size, 198, 199
arrays vs. native python 

computation, 50–52
Boolean filters, 197
built-in vectorize function, 55, 56
chaining methods, 72
complex numbers, 198
complex operation, 196, 197

INDEX



381

conversion first/operation later, 53
definition, 48, 83
libraries, 72
logical operators, 197
pandas productivity, 60–70
reading utilities, 57–59
remove orphan dataframes, 71
vectorize logical operations, 54, 55

NumPy operations, 310, 311
NumPy package, 41, 310, 313

O
Object-oriented programming (OOP),  

9, 114
modularization, 180
separate plotting classes, 175–178
supporting classes, 179

Out-of-core datasets, 230, 231, 240, 
251–254, 285

P
Pandas, 47, 186

DataFrame, 200
documentation, 199
eval method, 199

Pandas-specific tricks
column-specific functions, 237
convert data, 238, 239
loading function, 236

Paperspace Gradient, 347
Parallel computing, 257, 288

data science, 258, 261, 262
single core, 259–261

Parallel processing, 240, 252, 262, 290, 300
pd.eval() method, 200
pdpipe

dataset, 186–188
laying pipes

chain stages, 189
dropping rows, 190, 191
NLTK, 192–194
scikit-learn, 191, 192

pip command, 159, 181, 194
Platform-as-a-Service (PaaS), 346
plot command, 204
predict method, 164, 170
Productive data science work, 41, 48, 90, 

110, 358, 359
PyArrow, 67, 69–70
PyCaret, 349–351, 355
PyPi installer package

code organizational thinking, 159
GitHub, 159
unit/functional tests, 159
writing docstrings, 159

Python app, 47, 338, 360
Python-based data science, 262, 331
Python data science ecosystem, 73, 185
Python language, 182, 232, 301, 358, 375
Python libraries, 2, 60, 147, 193, 223, 240, 

327, 332, 364
Python package, 48, 372

GitHub integration, 182
instructions, 181

Python processing, 342
Python programs, 85, 358
Python script, 80, 90, 93, 165, 180, 214, 

220, 333, 341, 344
PyWebIO library, 327, 339, 344, 355

Q
Quantile-quantile plot, 178
Quiver, 147

INDEX



382

R
Race dropdown choices, 334
Random Forest, 286, 320–324
RAPIDS ecosystem

advantage, 306
CUDA, 302
data preparation and wrangling 

tasks, 301
data processing, 302
fantastic ecosystem, 326
internal support, 302
Jupyter server, 308
libraries and APIs, 301
parallelism, 301

RAPIDS environment, 307
Ray, 288

data science, 289
dataset, 291–297
distributed data transformations, 293
ecosystems, 288
VM, 290

Real-life analytics problem, 373
Residuals, 174

S
Saturn Cloud platform, 307, 314, 347
Scalability problems, 230
Scalene, 214

CLI, 222
features, 215
output, 215
usage, 214

Scikit-learn, 286, 287
hyperparameters, 108, 109

out-of-box visualization methods, 110
parallel job runner, 109
synthetic data generators, 110

Scikit-learn Task Flow, 88–96
Scripting, 9, 73, 113
Single-threaded programs, 232
Singular value decomposition (SVD), 

303, 313
Software engineering practices, 368
Static snapshot, 285
Support Vector Machine (SVM), 102

T
Task scheduling, 267
Testing software modules, 372
Time and space complexities

Big-O notation, 19
binary search, 20
linear time, 21, 22
searching element, 18
worst-case, 18

U
Useless class

fitting method, 166, 168
prediction method, 170
testing method, 168, 169
testing prediction, 170

Utility functions, 58, 87, 126, 127, 165
Utility method

error metrics, 173, 174
plotting true vs. predicted 

values, 171–173

INDEX



383

V
Vaex library, 241

dynamic visualizations, 247, 248
expressions/virtual columns, 244
features, 241
HDF5 format, 248, 249
memory copying, 243, 244
multidimensional grid, 245, 246
usage, 241, 242

ValDrop method, 191

Vector registers, 201
Virtual machine (VM), 201, 240, 290
Visualization function, 122–123

W, X, Y, Z
Web apps, 328, 329, 331, 345, 355
Windows OS, 240
Wrapper functions, 116
Wrapping up, 116, 359

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is Productive and Efficient Data Science?
	A Typical Data Science Pipeline
	Typical Examples of Inefficient Practices in Data Science
	Iterating Over a pandas DataFrame
	Brute-Force for Loop
	Better Approaches: df.iterrows and df.values

	Scatterplot Everything in a Large Dataset
	Combinatorial Explosion

	Writing Similar Plotting Code Multiple Times
	Write a Generic Function Instead

	Not Writing A Test Module

	Some Pitfalls to Avoid
	Don’t Live in Ignorance. Measure Efficiency.
	Don’t Leave Your Code as Orphans. Modularize Them.
	The Python-Powered Data Science Legacy May Have a Problem
	Embrace OOP Principles As Much As You Can

	Don’t Be Limited by Hardware or Traditional Tools
	Local Hardware Memory Limitation Is a Real Issue
	GPU-Accelerated Computing Has Not Focused on Data Science as a Whole
	Always Explore Alternative Libraries/Frameworks


	Efficiency and Productivity Go Hand in Hand
	Measuring Efficiency Goes a Long Way
	Testing Reduces the Chance of Rework
	Planning ML Model Development
	Knowledge of GUI Programming/Web App Development Is Quite Helpful

	Skills and Attitude for Practicing Productive Data Science
	Summary

	Chapter 2: Better Programming Principles for Efficient Data Science
	The Concept of Time and Space Complexities plus Big-O Notation
	A Simple Example: Searching for an Element
	The Big-O Notation
	Complexities: Linear, Logarithmic, Quadratic, and More
	How Much Faster?
	What’s Beyond Linear?


	Why Complexity Matters for Data Science
	Image Data: Cubic-Complexity Algorithms
	Best Regression Model: Exponential Complexity
	Relative Growth Comparison
	AI Is Intractable, but It Works

	Inefficient Programming in Data Science
	Canonical Examples
	Use a Filter Instead of a for Loop
	Use Sets to Find Unique Elements
	Use a Specialized Data Structure for Counting
	Use the itertools Library for Combinatorial Structures

	Lessons Learned from the Examples

	Measuring Code Execution Timing
	Python’s time Module Is Your Friend
	Basic Usage Example
	Many Loops Needed for a Fast Code Block
	A Timing Decorator
	Using the Decorator to Measure Complexity

	Jupyter/IPython Magic Command
	%timeit: Execution Time for Single-Line Code
	%%timeit: Measuring Execution Time for a Block of Code in a Cell


	Summary

	Chapter 3: How to Use Python Data Science Packages More Productively
	Why NumPy Is Faster Than Regular Python Code and By How Much
	NumPy Arrays are Different
	NumPy Array vs. Native Python Computation
	NumPy and Native Python Implementation
	Conversion Adds Overhead


	Using NumPy Efficiently
	Conversion First, Operation Later
	Vectorize Logical Operations
	Use the Built-In Vectorize Function
	Avoid Using the .append Method
	Utilizing NumPy Reading Utilities
	Reading from a Flat Text File
	Utility for Tabular Data in a Text File


	Using pandas Productively
	Setting Values in a New DataFrame
	The .at or .iloc Methods Are Slow
	Use .values to Speed Things Up Significantly

	Specify Data Types Whenever Possible
	Iterating Over a DataFrame
	Brute-Force For Loop
	Better Approaches: df.iterrows and df.values

	Using Modern, Optimized File Formats
	Impressive Speed Improvement
	Read Only What Is Needed
	PyArrow to pandas and Back

	Other Miscellaneous Ideas
	Remove Orphan DataFrames Regularly
	Chaining Methods
	Using Specialized Libraries to Enhance Performance


	Efficient EDA with Matplotlib and Seaborn
	Embrace the Object-Oriented Nature of Matplotlib
	Two Approaches for Creating Panels with Subplots
	A Better Approach with a Clever Function

	Set and Control Image Quality
	Setting DPI Directly in plt.figure()
	Setting DPI and Output Format for Saving Figures
	Adjust Global Parameters

	Tricks with Seaborn
	Use Sampled Data for Large Datasets
	Use pandas Correlation with Seaborn heatmap
	Use Special Seaborn Methods to Reduce Work


	Summary

	Chapter 4: Writing Machine Learning Code More Productively
	Why (and How) to Modularize Code for Machine Learning
	Questions to Ask Yourself
	Start Simple with a Standard Data Science Flow

	A Scikit-learn Task Flow Example
	The Monolithic Example
	Little Boxes, Little Boxes...
	How to Use the Modular Code

	Systematic Evaluation of ML Algorithms in an Automated Fashion
	List of Classifiers
	Function to Automate Model Fitting
	How Does Automation Help?

	Decision Boundary Visualization
	The Custom Function
	Example Results
	Parametric Experimentation

	Other Scikit-learn Utilities and Techniques
	Hyperparameter Search Utilities
	Parallel Job Runner
	Out-of-the-box Visualization Methods
	Synthetic Data Generators

	Summary

	Chapter 5: Modular and Productive Deep Learning Code
	Modular Code and Object-Oriented Style for Productive DL
	Example of a Productive DL Task Flow
	Wrappers, Builders, Callbacks

	Modular Code for Fast Experimentation
	Business/Data Science Question
	Inherit from the Keras Callback
	Model Builder and Compile/Train Functions
	Visualization Function
	Final Analytics Code, Compact and Simple
	Turn the Scripts into a Utility Module
	Summary of Good Practices

	Streamline Image Classification Task Flow
	The Dataset
	Building the Data Generator Object
	Building the Convolutional Neural Net Model
	Training with the fit_generator Method
	Encapsulate All of This in a Single Function
	Testing the Utility Function
	Does It Work (Readily) for Another Dataset?
	Other Extensions

	Activation Maps in a Few Lines of Code
	Activation Maps
	Activation Maps with a Few Lines of Code
	Training
	Activation
	Another Library for Web-Based UI

	How Is This Productive Data Science?

	Hyperparameter Search with Scikit-learn
	Scikit-learn Enmeshes with Keras
	Data and (Preliminary) Keras Model
	The KerasClassifier Class
	Cross-Validation with the Scikit-learn API
	Grid Search with a Updated Model

	Summary

	Chapter 6: Build Your Own ML Estimator/Package
	Why Develop Your Own ML Package?
	A Data Scientist’s Example
	An Arithmetic Example
	Data Scientists Use OOP All the Time
	How Was It Made?

	Linear Regression Estimator—with a Twist
	How Do You Start Building This?
	Base Class Definition
	Adding Useful Methods
	The Fitting Method
	Testing the Method
	Prediction Method
	Testing Prediction

	Adding Utility Methods
	Method for Plotting True vs. Predicted Values
	All Kinds of Error Metrics


	Do More in the OOP Style
	Separate Plotting Classes
	More Supporting Classes and Syntactic Sugar
	Modularization: Importing the Class as a Module

	Publishing It as a Python Package
	Special Instructions for PyPI Hosting
	GitHub Integration

	Summary

	Chapter 7: Some Cool Utility Packages
	Build Pipelines Using pdpipe
	The Dataset
	Start Laying Pipes
	Chain Stages of Pipeline Simply by Adding
	Dropping Rows Based on Their Values

	scikit-learn and NLTK Stages
	Scaling Data with a scikit-learn Method
	Tokenizer from NLTK

	All Together

	Speeding Up NumPy and pandas
	What Is This Library?
	Speeding It Up
	Arithmetic Involving Two Arrays
	A Somewhat More Complex Operation
	Logical Expressions/Boolean Filtering
	Complex Numbers
	Impact of the Array Size

	The pandas eval Method
	How It Works, Supported Operators

	Discover Best-Fitting Distributions Quickly
	Simple Fitting Example
	Plot and Summary
	Be Careful with Small Datasets
	Other Things You Can Do

	Summary

	Chapter 8: Memory and Timing Profile
	Why Profile Memory Usage?
	A Common Scenario
	It’s Not the Model Size (or Compression)

	Scalene: A Neat Little Memory Profiler
	Basic Usage
	Features
	A Concrete Machine Learning Example
	Linear Regression Model
	What Happens as the Model and Data Scale?
	Deep Learning Model

	Key Approaches and Advice
	Key Advice
	Other Things You Can Do with Scalene
	Final Validation Is Sometimes Necessary


	Timing Profile with cProfile
	Basic Usage
	With a Function as an Argument
	Using the Profiler Class
	Data Science Workflow Profiling

	Summary

	Chapter 9: Scalable Data Science
	Common Problems for Scalability
	Out-of-Core (a.k.a. Out of Memory)
	Python Single Threading

	What Options Are Out There?
	Cloud Instances
	Google Colab
	pandas-Specific Tricks
	Load Only the Columns You Need
	Column-Specific Functions (If Applicable)
	Explicitly Specify/Convert Data Types

	Libraries for Parallel Processing
	Libraries for Handling Out-of-Core Datasets
	A Note About the Preferred OS

	Hands-On Example with Vaex
	Features at a Glance
	Basic Usage Example
	No Unnecessary Memory Copying
	Expressions and Virtual Columns
	Computation on a Multidimensional Grid
	Dynamic Visualizations Using Widgets and Other Plotting Libraries
	Vaex Preferred HDF5 Format

	Hands-On Examples with Modin
	Single CPU Core to Multi-Core
	Out-of-Core Processing
	Other Features of Modin

	Summary

	Chapter 10: Parallelized Data Science
	Parallel Computing for Data Science
	Single Core to Multi-Core CPUs
	What Is Parallel in Data Science?

	Parallel Data Science with Dask
	How Dask Works Under the Hood
	Dask Array
	Dask DataFrame
	Dask Bag
	Dask Task Graph
	Works on Many Types of Clusters

	Basic Usage Examples
	Array
	DataFrames
	Dask Bags

	Dask Distributed Client
	Dask Machine Learning Module
	What Problems Does It Address?
	Tight Integration with scikit-learn


	Parallel Computing with Ray
	Features and Ecosystem of Ray
	Simple Parallelization Example
	Ray Dataset for Distributed Loading and Compute

	Summary

	Chapter 11: GPU-Based Data Science for High Productivity
	The RAPIDS Ecosystem
	CuPy
	CuDF
	CuML
	CuGraph
	Hardware Story
	Choice of Environment and Setup

	CuPy vs. NumPy
	Looks and Works Just Like NumPy
	Much Faster Than NumPy
	Data (Array) Size Matters

	CuDF vs. pandas
	Data Reading from an URL
	Indexing, Filtering, and Grouping
	NumPy Array Conversion
	Simple Benchmarking of Speed
	Dask Integration, User-Defined Functions, and Other Features

	CuML vs. scikit-learn
	Classification with Random Forest
	K-Means Clustering

	Summary

	Chapter 12: Other Useful Skills to Master
	Understanding the Basics of Web Technologies
	A Consumer-Facing Layer
	All Useful Data Science Is Delivered Through Web Apps
	What Are Some Pathways to Learn?

	Building Simple Web Apps for Data Science
	Hands-On Example with Flask
	Hands-On Example with PyWebIO
	Other Options and GUI-Building Tools

	Going from Local to the Cloud
	Many Types of Cloud Services for Data Science
	Platform-as-a-Service
	Data-as-a-Service

	Bringing Cloud Power to a Local Environment

	Low-Code Libraries for Productive Data Science
	What Are These Low-Code Libraries?
	Example with PyCaret

	Summary

	Chapter 13: Wrapping It Up
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	What Was Not Discussed in This Book
	MLOps and DataOps
	Container Technologies
	Database Technologies

	General Advice for Upcoming Data Scientists
	Ask Questions and Learn Constantly
	If You Are a Beginner
	At a More Advanced Phase
	Learn a Diverse Set of Skills
	Read About Broad Topics at Every Chance

	Distinguish Yourself at a Job Interview
	Some Useful Resources
	A Data Scientist’s Amazing, Curated List of Useful Tricks and Tools
	Build Installable Software Packages Using Only Jupyter Notebooks
	Learn How to Integrate Unit Testing Principles
	Write Whole Programming and Technology Books Right from Your Jupyter Notebook
	Get Started with MLOps
	Understand the Multi-Faceted Complexity of a Real-Life Analytics Problem


	Begin a New Journey

	Index



