Productive and
Efficient Data
Science with
Python

With Modularizing, Memory Profiles, and
Parallel/GPU Processing

Dr. Tirthajyoti Sarkar

Apress:

Productive and Efficient
Data Science with Python

With Modularizing, Memory Profiles,
and Parallel/GPU Processing

Dr. Tirthajyoti Sarkar

Apress®

Productive and Efficient Data Science with Python: With Modularizing, Memory
Profiles, and Parallel/GPU Processing

Dr. Tirthajyoti Sarkar
Fremont, CA, USA

ISBN-13 (pbk): 978-1-4842-8120-8 ISBN-13 (electronic): 978-1-4842-8121-5
https://doi.org/10.1007/978-1-4842-8121-5

Copyright © 2022 by Dr. Tirthajyoti Sarkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Aditee Mirashi

Copy Editor: Mary Behr

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub (https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-with-Python). For
more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8121-5

Dedicated to the memory of my loving parents, Jyotirindra Nath
Sarkar and Sarmistha Sarkar, who instilled in me the quest for
knowledge and taught me the most valuable lessons of life

Table of Contents

About the AULROFccciimmmiimsinsn s XV
About the Technical ReVIEWETccussesssssssassssassssnsssassssassssnssssnsssasssssssssnsssansssannsas xvii
AckNOWIEdgmMENTScuuiiiismmnmmssssnnnmmsssssnnnmssssnnnsessssnnnsesssssnnssssssnnnnsssssnnnnssssnnnnssssnnns Xix
L1 T 11T] XXi
Chapter 1: What Is Productive and Efficient Data Science?ccccusssssmmnnnnnnnsssssnns 1
ATypical Data SCIeNCe PIPEIINEccccvevrrririerers s s se s snes 1
Typical Examples of Inefficient Practices in Data SCIENCE.........ccvvvrveriernrenrerieresessereresessesenaens 3
Iterating Over a pandas DataFrame.........c..ccvvvrerevenrinreriene s s s s e s s s sse e s e ssesnes 3
Scatterplot Everything in a Large Dataset........cccovvrvririennsnienne s serese s sessesse e sessessesnens 4
Writing Similar Plotting Code MUItiple TIMESccvcevvvrrreriererererrere e sessesse e sessessessessssessessees 6

NOt Writing A TESt MOTUIE........ccveerrerrrreriererieresrere s sssses e ssessessesessessesessessesaesssssssessesaessssensesaens 8
S0ME PitfallS 10 AVOIdcccueeerererrrecserere s 8
Don’t Live in Ignorance. Measure EffiCIENCY.ccevverirvnirsenircersee s s sses e sensenns 8
Don’t Leave Your Code as Orphans. Modularize TREM.ccevvvrererersenseressssessessessessssessesaens 9

Don’t Be Limited by Hardware or Traditional TOOISc.cceeervrvrrnnenierin e seres e 10
Efficiency and Productivity Go Hand in Hand............cccovvnvnincncn s 12
Measuring Efficiency Goes a Long Way ... sessessessssessessens 12
Testing Reduces the Chance of REWOIK ..o 13
Planning ML Model Development..........cconnnnnninensinse s sessesse s 13
Knowledge of GUI Programming/Web App Development Is Quite Helpfulccccovimnennene. 14
Skills and Attitude for Practicing Productive Data SCIENce..........c.ccoverererernsesesenesesesensesenenens 15
SUMIMAIY....etierieesere e e e R s e e e e R e e R e e sen e e s Re e b e e nen e e nnnnnns 16

TABLE OF CONTENTS

Chapter 2: Better Programming Principles for Efficient Data Science..........cccuruus 17
The Concept of Time and Space Complexities plus Big-0 Notation............cccceoverivvevnicnrcccnnnne. 18
A Simple Example: Searching for an Elementccccoievrnvnnienncc e 18
The Big-0 NOLAtioNc.ccceicerrecirc ettt snsae e 19
Complexities: Linear, Logarithmic, Quadratic, and MOre..........cccevrererrrierieresensenseresessensessens 20
Why Complexity Matters for Data SCIENCE...........ccorererercrrerere e 22
Image Data: Cubic-Complexity AIgOrithms ... 22
Best Regression Model: Exponential CompleXity.........ccovrernnnnniennnnnnsenesssessessessssessessenns 23
Relative Growth COMPANISONc.ccciiriiernrrsre e e 24

Al ls Intractable, DUt EWOIKS........ccooeeerererree e rerer s s s s e e s s e e e sne e eae s 25
Inefficient Programming in Data SCIENCEccoveerrerernnernesers s 27
Canonical EXAMPIESc..covvirvrereninsinese s se s sbe st s st s s s se s e nnens 28
Lessons Learned from the EXAMPIES ... ssssessessens 35
Measuring Code EXeCUtion TIMIiNG.......ccccuueerurmrnsesmmessssse s sssse s ssssesssssssssssessssesens 36
Python’s time Module IS YOUF FrENdccoucrnnninensse s s sessssessanes 37
Jupyter/IPython Magic Commandccccvvvmnrenmnenesse s senns 43

E 1] 14 7R 45

Chapter 3: How to Use Python Data Science Packages More Productively............ 47

Why NumPy Is Faster Than Regular Python Code and By How MUCHc.cccccvvvervenerenensensennens 48
NumPy Arrays are DIifferent..........ccccccvvrinninininsin e 49
NumPy Array vs. Native Python Computation...........ccceveerevnsnieniensnensensesessssessessessssessessenes 50

Using NUMPY EffiCiently ..o 53
Conversion First, Operation Laterccccorerrecrniennisscrs s seses e sesessesenns 53
Vectorize Logical Operationscccccveccrnererencnnscrinesese s sssse s sessesesesessesesessesssssnens 54
Use the Built-In Vectorize FUNCLION ..o 55
Avoid Using the .append Method...........ccoiviinininnsnsn s 56
Utilizing NumPy Reading ULIlitiesccovvrvniniinnsnc s sensesnens 57

Using pandas ProdUCLIVEIY.........ccccvcrviinienenn s s sn s s se s s sre e snes 60
Setting Values in @ New DataFrame ... ss e snes 60
Specify Data Types Whenever POSSIDIE ... sees 62

TABLE OF CONTENTS

Iterating Over @ DAtaFIameccovvvverernrernerese e sa s sae s e e s e saesnesasnensesnens 64
Using Modern, Optimized File FOrMats.........ccccvvrernrnienennnensenesessssessessesssssssessessessssessessens 65
Other MiSCEllaNEOoUS IUEAScceererererrneiese s Al
Efficient EDA with Matplotlib and Seaborn ... 73
Embrace the Object-Oriented Nature of Matplothib ..o, 73
Set and Control Image QUAliycovceereirncrnrr e e 78
TriCKS With SEADOIN........ecececeerer e 81
SUIMIMAIY.....e et e s esae e e e e e e e e s Re e s ae e ne e e e nRe e nse e nennnnnnenens 83
Chapter 4: Writing Machine Learning Code More Productively.......cc.cccsnmmsssnnnnsaans 85
Why (and How) to Modularize Code for Machine Learningcoevevsseressesesssessnsesessesessenesennes 86
QuESHIONS 10 ASK YOUISEITcoevieeecrererrssssese e s s s snas 86
Start Simple with a Standard Data Science FIOW ... 87

A Scikit-learn Task FIOW EXAMPIE.......ccovverniererinernsesisessssse s ss s e sessessssssessnses 88
The MonolithiC EXAMPIEccoveieieiereerinesenese e s ss s ssssssssesens 89
Little BOXES, LittIe BOXES... ..cvevverierirererierieessesesesssessesessesssessessesssssssssesasssssssessesssssssssesnesnsnnes 90
How 10 Use the Modular COdec.cucevrenerenrnesinesess s ssnnes 93
Systematic Evaluation of ML Algorithms in an Automated Fashion...........cccccevvvnvnceriervsensennens 96
LiSt Of CIASSITIEISccrereircciise i s 96
Function to Automate Model Fittingcccovvrvririnnnrri e 97
How Does AUtomMation HEIP?ccoevecrverennrirere e sese s sse e s saessssessesaessssessesneees 99
Decision Boundary ViSUAlIZAtionccucerreneninininne s ssesses e sesses s ssesessessssssessesaenns 102
The CUSTOM FUNCLION........ccoceeirririeciris s 103
EXamPpIe RESUIScocvciereririr e s a e s s s 104
Parametric EXxperimentation...........cccvvvnnnininsn s 107
Other Scikit-learn Utilities and TEChNIQUES........cccoreeerecrrc e 108
Hyperparameter Search ULIlILIESccovvevrienrnccrr sttt 108
Parallel JOb BUNNET ...t 109
Out-of-the-box Visualization Methods............cocorreennnnnnnessesss e 110
Synthetic Data GENErators........coccorecrnce e 110

£ 0T 7 T 111

vii

TABLE OF CONTENTS

Chapter 5: Modular and Productive Deep Learning Code........ccussuemrrrsssnnnssssssnnnnss 113
Modular Code and Object-Oriented Style for Productive DL..........ccccocvveverrcrnicnnsenerecerenenenns 114
Example of a Productive DL Task FIOWcccvriininienesn s ses s 114
Wrappers, Builders, CallDaCKS...........cccueeerrrernienirerere s ses e sesse s ssssesessesesnenens 116
Modular Code for Fast Experimentation............ccccvrninnnininnsnisiesssssessess s sesesaens 117
Business/Data SCience QUESHION.........c.cocvrermrerereserrese e 118
Inherit from the Keras CallDACK..........ccocoerererernerererereseressese e 119
Model Builder and Compile/Train FUNCHONS.........ccoucvvnininnsnncr e 121
Visualization FUNCHION...........cccco e 122
Final Analytics Code, Compact and Simple........cccocucrvrinnnninnnnnnneses e 123
Turn the Scripts into a Utility ModUle ... 126
Summary of GO0 PraCliCeSccorererrecrerese e 127
Streamline Image Classification Task FIOW...........cccooeerenrnsenncnens s sesesenns 128
THE DALASELcceeveerreereresese s r e e nr e e s e nne s 129
Building the Data Generator ODJECL..........cocueeeererernsesneser s 131
Building the Convolutional Neural Net Model...........ccovovrenrnnnnsesenessese e 133
Training with the fit_generator Method............ccoveirerrnssnscs s 134
Encapsulate All of This in @ Single FUNCHION.........cocoovvevneserese s 135
Testing the Utility FUNCHION ..o e snenens 137
Does It Work (Readily) for Another Dataset?.........cccovvrevrenerssesnsesessesesese s sessesesennes 138
Other EXTENSIONScoeeoereecrereserreseressesesesessesesesesessesessssesessessssssessssesessssnssssssssessnssssnssnsnsnnes 141
Activation Maps in @ Few Lines 0f COUEc.ccverimrririnieninsinrene s ses e ssesessessessens 141
ACHIVALION MAPSciueiieirsirere s e b e 142
Activation Maps with a Few Lines of COUE..........cuccvvriernrnnnienenn e sesessesees 143
How Is This Productive Data SCIENCE?ccccvvrrnrnnrennnesess e senss 147
Hyperparameter Search with SCIKIt-1arncccocvvvrvnininn s 147
Scikit-learn Enmeshes With Keras ... 148
Data and (Preliminary) Keras MOGEL...........ccucrverernnennnieresensesesessssesesse s sessessesaesessessesas 148
The KerasClassifier Class ... s sssssssens 149
Cross-Validation with the Scikit-1earn APL.............ccccvvnininnn s 150
Grid Search with a Updated MOMEL...........ccccrvrereninsriere e sss e e sne s 150

£ 11134 7R 156

viil

TABLE OF CONTENTS

Chapter 6: Build Your Own ML Estimator/Package.........ccusssemrrnssssnnnsssssssnssssssnnnnss 157
Why Develop Your OWn ML PaCKage?.........cccveeerreverinierenesesiesesesesessesessssessssesessssessssessssessssenens 158
A Data Scientist’s EXaMPIE ... 160

An Arithmetic EXAMPIEccoevriiirirere s e s st 160
Data Scientists Use O0P All the TIMEc.cccomeerererrreserese e 161
a0 E Y T L T 163
Linear Regression Estimator—with @ TWiSt..........ccoouevninmnennnssnsesese s 164
How Do You Start Building THiS?cccvivvermernisernsessese s ssss s sesssssse s sessesenns 165
Base Class Definition.........ccouveererninnnsessesse s s ssn s 165
Adding USeful MEthOMS.........ccvierieninenerese s se e sr s ssssesesssssssenens 166
Adding Utility Methodscccveceriieninesernse s s ssssenens 171
Do More in the O0P STYIE.......cvcrcriererrerere e s sr s e s ae e saesne e e e nne e 175
Separate Plotting ClasSeS.......ccuuirrerierierinnerserese s s s ssesessessessesessessessessesessessesssssssessessens 175
More Supporting Classes and Syntactic SUGArc.cccvevninieniennsniense s sessessenees 179
Modularization: Importing the Class as a Modulec.ccocevvvrrerennrnsenenn e sesennes 180
Publishing It as @ Python PaCKage..........cccvvevririerieniinne s ssss e e e s s ssessssssessesaenns 181
Special Instructions for PYPl HOSEING.........ccucriernrerrenienienssissesesesessesessessssessessessessssessessens 181
GItHUD INTEQration.......ccoevecrcere s s sa e e sne s 182
£ 1T 1117 OO 183

Chapter 7: Some Cool Utility PAackages.....c..cccussamrmssansmsssnsesssnsssssnsssssnnssssnnssssnnssssas 185

Build Pipelines USiNg PUPIPE.ccccvriniirnienn s se s se s s se s s st sessesnens 186
THE DALASELeoveereecrercrere e s s e s e ne e e nne e 186
Start Laying PIPeS.....ccoiviiiiiinisnsine st 188
scikit-learn and NLTK STAgeSccccvriirinnininsin s sse s ses s s ssssessessens 191
Al TOGEINET ... e s e e e bbbt nn 194

Speeding Up NUMPY and pandas...........cccvirinninnnnnnnesess s s s sessessessssessessesnes 194
What IS ThiS LIDFary?ccccueeresernsesesesesssesessesesssssssssssessssssssssssssssssssssssssssssnsssssssssssssssenens 194
SPEEUING I UP .t s p e e e s e e nne s 195
The pandas eval Method ... 199
How It Works, Supported Operators ... s sssssssessesses 201

ix

TABLE OF CONTENTS

Discover Best-Fitting Distributions QUICKIY...........ccoovvvnienninnnic s 202
Simple Fitting EXAMPIE.......cccvevirrirererisserese s sesessessesessessessessssessessessssessessesssssssessessens 203
o101 =T 0 IS VT 111 204
Be Careful with Small Datasets............ccoerevrrnnnnnninnn e 206
O0ther ThiNgS YOU Gan DOccveveverierieressssessessessesessessessessssessessesssssssessesaessssssessesssssssessees 208

£ 1T 117 OO 209

Chapter 8: Memory and Timing Profile......ccccusssssrmssssnnsssssssnnssssssssnsssssssssssssssnnnnss 211

Why Profile MemMOry USAQETYccocoerueeererrerereereeesesesessesesseesessesessesessssesessessssssessssssesssssssenens 212
A COMMON SCENANIO ...c.eeueereeereeereresesseessesesesesessese e ses e ses e e sse e sessesessesessssessesesessessssenens 212
It's Not the Model Size (0r COMPIrESSION)coceeceeruererrererersereresesseesesesessesessesesesesesseessnses 213

Scalene: A Neat Little Memory Profilerccovevrinnenrnsesnsesesssesessesssssess s sessesenns 214
BASIC USAQE......crerueerremrreesrsseseseses s s sssse e e ses e ses e s e s sessssessssnssssssssssssnssssnsssessnnes 214
T 1T TS 215
A Concrete Machine Learning EXample........c.coccoverrenernsmsensssssssessssssessesessssessssesesssssssenens 216
Key Approaches and AGVICEcccevrvrereniniinsesese s s st sss e s sasssssessesnes 220

Timing Profile With CPrOfile........ccuuciicriesrcse e 223
BASIC USAQE.......erriuerrrriirree s s s s se s p e e e ra s 223
With a Function as an Argument ... sessessssesens 224
USing the Profiler Classc.cuuerererneninisernesssessss s s sssss s sesssssssssessases 226
Data Science WOrkflow Profilingccoucvvrenninennnesnesssesess s sssse e sennes 227

£ 11134 7R 228

Chapter 9: Scalable Data SCI€NCe......ccccrrrrrrmmmmsssmmnsnnnmmmmsssssssss s 229

Common Problems for SCalability.........ccvvevrevrrerierierienensrsese s sss s ssessesessessesses 230
Out-of-Core (a.K.a. Out 0f MEMOIY)....cccvvevieverierere st se e s sa e e snesne s 230
Python Single TRIEAdING.......ccccvierererreriererersere s s s ss e sae s e e e saesaesas e snesnes 232

What Options Are QUL TREIE?ccuecericcrircrire sttt se e e e se e 233
ClOUT INSTANCEScucerererreecere e e 233
6T To T [T 0] - 1 OO 234
PaNdas-SPECIfiC THCKScovererererrierire st ne s 236
Libraries for Parallel ProCesSing........cccocvvirvnennnnnnse s sesses s s s ssessessssessesneens 239

TABLE OF CONTENTS

Libraries for Handling Out-0f-Core Datasetsc.ccvvvierierernenserernsensessesessssessessessssessessenes 240

A Note About the Preferred 0S ... sssssssens 240
Hands-0n Example With VaeX ... ssessesssssssesnens 240
Features @t @ GIANCE.........covveeecrerere e 241
Basic Usage EXAMPIEcoecercererininsire s s s s 241

No Unnecessary Memory COPYING.......ccoveererererenernserensesesesessesessssesessesessssessssessssensssssesssnes 243
Expressions and Virtual COIUMNScc.cccvrerrrnrns s se e seeas 244
Computation on @ Multidimensional Gridccceceerrrrnrennesrin e 245
Dynamic Visualizations Using Widgets and Other Plotting Librariescccoeevvvevrvccnnne. 247
Vaex Preferred HDFS FOrMaL ... 248
Hands-0n Examples With Modin..........cccvininin e sesnens 250
Single CPU Core 10 MUII=COre........ccoeoereecrereereereeenese e 250
OUt-0f-CO0re PrOCESSINGcoveueereeereeererereereserenesessesesseseses e se e ses e sse e se e sen e e sasessens 251
Other Features of MOdiN..........coeoreeeeerererer e 254
B30T 1117 o S S 255
Chapter 10: Parallelized Data SCIi€NCe.......cccrrsssmmmrrssssnnnnmsssssnnsssssssnnsssssssnsssssssnnnnss 257
Parallel Computing for Data SCIENCEcccvreeerrirrnserine s 258
Single Core t0 Multi-Core CPUScccvvierrnenensnerisesssesessssessssesssesesss s e ssssessssssessssssenns 259
What Is Parallel in Data SCIENCE?.......c.cccrirernrerinesissse s s ssssenens 261
Parallel Data Science With DAsK..........cccccvrrinnnnn s 263
How Dask Works Under the HOOd............ccvrmnnnn s 264
BasiC USAQe EXAMPIEScoveververerierirseresesessesessessssessessesaesessessessessssessessesssssssessesasssssessesses 268
Dask Distributed ClENt...........cccociviiir e 279
Dask Machine Learning MOGUIEccuceverrrerreriernnensenesesessesessessssessessessssessessesasssssessesses 285
Parallel Computing With RAY........ccverernnmierienrnsensesessssessessessessssessessesssssssessesssssssessessesssssssessens 288
Features and ECoSystem 0f RaY ..o s s ses s ssessens 288
Simple Parallelization EXAMPIEccvcevevnrerieriennnensersesessssessesessessssessessesssssssessesssssssessessens 290
Ray Dataset for Distributed Loading and COMPULE.......c.cceevverreriererensenserensssessesessesessessenaes 293

£ 111117 OO 298

xi

TABLE OF CONTENTS

Chapter 11: GPU-Based Data Science for High Productivity.........ccorrrssnnnnrssssnnnnns 299
The RAPIDS ECOSYSIBM.......ccciieerirecereerir et se s st se s e st sesae e ss e se s sesnenens 301
1 OO 302
CUDF ... e e b b e e e e e e 303
CUIIL ..ot b e e e e e e e 304
167 T OO 304
HArAWAre STOTY.......covueeeeeecr st se s st et e e e ep s 305
Choice of Environment and SEIUPcccoveerrvnrc s et 306
CUPY VS. NUMPY ... e n e ne e 310
Looks and Works Just LiKe NUMPY.........cccerrrerrerereerer e s 310
Much Faster Than NUMPY.........ccco e 311
Data (Array) Size MALEIS........ccovererererrrere e 311
CUDF VS. PANUAS ...cveviircrerie ittt bt s e e s b et nns 314
Data Reading from @n URLccccvivnmrnnennnesmnnnesssesesesesssse s sessssessssessssessssesssssssssssessnnes 314
Indexing, Filtering, and GroUPING.......c.cucveerermrnsesesesesese s s sesse s sessesessssessenes 315
NUMPY Array CONVEISIONcccorrererrenerrssesesesessssessssssessesssssssssssesssssssssssssssssssssssssssnssssssssnses 317
Simple Benchmarking of SPEEdccouvviiirinnnnnnnr e snens 318
Dask Integration, User-Defined Functions, and Other Features..........ccccevvvvnvnininnnicnenne, 320
CUML VS. SCIKIT=@AINcvecerrrrererreserisesese s r s 320
Classification with RaNdom FOrest.........ccoouernvnnennissnsesne s ssanes 320
K-MEaNS CIUSTEIINGccoeeerrierrrrereresesrsse s s s sr s e se s e sn s sss s e s e nsnss 324

£ 11134 R 326
Chapter 12: Other Useful Skills to Masteruuvvemmmmmmnmmmmmmssssssssnnnmmssmsssssssssssnns 327
Understanding the Basics of Web Technologies.........ccccvvvvrvnnnininne s sesenenns 328
A CONSUMET-FACING LAYETeoveeriererrerieserseressessssessessessssessessessessssessessessssssssssessesssssssessesses 328

All Useful Data Science Is Delivered Through Web APpPSccccveverrrrererenessensesessssessessenes 329
What Are Some Pathways £0 LEArn?cccvcvvvrinrenievnnensensesessssessessessessssessessesssssssessesses 331
Building Simple Web Apps for Data SCIENCE.........cccvcvrerererernce e 332
Hands-0n Example With FISK...........cccoririrnnrrns et ses e sennes 332
Hands-0n Example with PYWEDIO ...ttt seeas 339
Other Options and GUI-BUIIAING TOOIS..........cccorvererennrrcrrrerre s seenes 344

xii

TABLE OF CONTENTS

Going from Local £0 the CIOUM........c.cevvirieriererserrere s sere e ses e sse e sse e sessessessssessessessssessessesnes 345
Many Types of Cloud Services for Data SCIENCE........c.ccvrerererreriererssrerseresssses e ssesessessesaes 346
Bringing Cloud Power to a Local ENVIrONMENtccccvveverenrersenensssenesessssessessesssssssessenses 347

Low-Code Libraries for Productive Data SCIBNCE...........cccceererrrrreneserererneseseseressse e sessssenenes 349
What Are These Low-Code LiDrari€S?.........ccoerernererereresnssssesessssssssesessssssssssesesssssssssesens 349
Example With PYCaret.........covcevriircccrre sttt se s ssens 349

£ T 354

Chapter 13: Wrapping It UPcccovisemmmmmnsssnmmmmsssssnnmsssssssnssssssssnssssssnnnssssssnnssssssnnnnss 357

CRAPTEE T .o ———————————————— 357

CRAPTEE 2 ... e e e p e 357

{181 0 (T R 358

{181 0 (T 7 R 358

{182 T 1T O 359

(081 o (T OSSOSO 360

CRAPIEE 7 .o —————————————— 360

CRAPTEE 8 ...t e r e 361

{181 0 (T R 361

{01 0 (T o P 362

{08121 11 OO 362

CRAPIEE T2 ... e nan 363

What Was Not Discussed in ThiS BOOK.........cuouuererernsmsessesmsssesesssssssssessssessssssssssssssssessssessssenens 364
MLOPS and DAtA0PScceevreririirererinsire s s s st s s s e e 364
Container TECANOIOGIEScccoerrererrrerrresesese s s 365
Database TeChNOIOGIES.......c.veererererenrrnserese e 365

General Advice for Upcoming Data SCIentistS........cuccurvrrnnennesenns s sens 366
Ask Questions and Learn Constantly...........ccoucevmenninennsennsessnese s s sessessssenens 367
Distinguish Yourself at @ JOb INtEIrVIEWcccvvcerncrnienrese s 370
S0ME USETUI RESOUICES.......coveiereeeriese e se e sr s s sn s 371

BEgin @ NEW JOUIMBYccevceruerrriirereriesessesessessssesessessessssessesaesessessessesssssssessesssssssessessesssssnsesaens 375

T .. ¥ |

xiii

About the Author

Dr. Tirthajyoti Sarkar lives and works in the San Francisco
Bay area, California. He currently serves as the Senior
Director, AI/ML Platform at Rhombus Power Inc. where he
builds solutions for problems of vital national and global
importance using Al, data, and mathematics.

Most recently, he worked as a Data Science Manager
at a startup developing an edge-computing platform
for the semiconductor manufacturing industry. Before

that, he spent more than a decade in the semiconductor

and electronics industries where he developed power
semiconductor technology and applied artificial intelligence and machine learning
techniques for design automation and product innovation. Dr. Sarkar regularly publishes
Al and data science articles on top online platforms and teaches machine learning in
various workshops and forums. He has published 30+ papers in IEEE and holds multiple
US patents. He has authored two data science books. Dr. Sarkar is a Senior Member

of IEEE, a former Chair of the Semiconductor Committee of the PSMA (the world's
largest power supply organization consortium), and an Industry Advisory Member for
ValleyML, a non-profit AI/ML organization. He holds a Ph.D. in Electrical Engineering
from the University of Illinois at Chicago and an MS in Data Analytics from Georgia Tech.

About the Technical Reviewer

Joos Korstanje is a data scientist with over five years of industry experience in developing
machine learning tools, a large part of which are forecasting models. He currently works
at Disneyland Paris where he develops machine learning for a variety of tools.

Xvii

Acknowledgments

This book has been a great journey for me, and it will not be complete without
acknowledging some of the people who helped me in this quest.

First, I would like to thank my editor, Aditee Mirashi, who guided me patiently on the
authoring process and its specifics as this is my first collaboration with Apress. She has
been unfailingly helpful and understanding while I navigated through the chapters and
technical reviews.

I would like to acknowledge some of the open-source developers and data science
communicators whose work I have cited or used in various chapters, with their kind
permissions. Khyuen Tran has contributed greatly to the community by publishing
efficient data science tricks (with Python) and I have had the pleasure of discussing
these ideas with her. Her work is cited in Chapter 13. Moez Alj, the creator of the low-
code AutoML library PyCaret, has graciously allowed me to use some portions of his
documentation when I cite low-code libraries in Chapter 12. I have also interacted
with Helin Cao, the maintainer and chief evangelist for the wonderful PyWeblO library
that I demonstrate in Chapter 7, for many illuminating discussions. The folks at Saturn
Cloud kindly offered me quick help and support when I used their amazing service in a
RAPIDS-based demonstration in Chapter 11.

My wife, Chitrita Chakravarti, an accomplished DataOps Solutions Architect herself,
has provided support both professionally and personally while I was working on this
book. She deserves my sincere gratitude.

Lastly, I am eternally grateful to all my friends and professional connections,
especially on LinkedIn, who always had kind and encouraging words for me when I
described the painstaking process of working through this project. Their support and
words have been a primary source of motivation.

Xix

Introduction

Data science and machine learning can be practiced with various degrees of efficiency
and productivity. This book focuses specifically on Python-based tools and techniques
to help data scientists, beginners and seasoned professionals alike, become highly
productive at all aspects of typical data science tasks.

This book is specifically intended for those who wish to leapfrog beyond the
standard way of performing data science and machine learning tasks, and utilize the full
spectrum of the Python data science ecosystem for a much higher level of productivity.
You will be taught how to look out for inefficiencies and bottlenecks in the standard
process and how to think beyond the box. Automation of repetitive data science tasks
is a key mindset that you will develop from reading this book. In many cases, you will
also learn how to extend existing coding practices to handle larger datasets, with high
efficiency, with the help of advanced software tools that already exist in the Python
ecosystem but are not taught in any standard data science book.

This is not a regular Python cookbook that teaches standard libraries like NumPy
or Pandas. Rather, it focuses on useful techniques such as how to measure the memory
footprint and execution speed of ML models, modularize a data science or deep learning
task, write object-oriented code for a data science library or web app development, and so
on. It also covers Python libraries, which come in handy for automating and speeding up the
day-to-day tasks of any data scientist. Furthermore, it touches upon tools and packages that
help a data scientist tackle large and complex datasets in a far more optimal way than what
would have been possible by following standard Python data science technology wisdom.

If you take away a mentality of probing and measuring inefficiency in your data
science code, and you learn tricks to discover effective solutions for those productivity
issues, I will consider this book to be successful. This will be an immense reward for me.

Source Code

All source code used in this book’s examples can be downloaded from
https://github.com/Apress/Sarkar Productive-and-Efficient-Data-Science-
with-Python

xxi

﻿https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-with-Python﻿
﻿https://github.com/Apress/Sarkar_Productive-and-Efficient-Data-Science-with-Python﻿

CHAPTER 1

What Is Productive
and Efficient Data
Science?

The goal of this chapter is to introduce you to the benefits of performing data science
tasks efficiently and productively. I also illustrate some potential pitfalls in the everyday
work of a regular data scientist to drive home the point of efficient data science.

Like any other computing (and non-computing) task in life, data science (DS)
and machine learning (ML) can be practiced with varying degrees of efficiency and
productivity. This book focuses specifically on Python-based tools and techniques
to help a data scientist, beginner and seasoned professional alike, become highly
productive at all aspects of typical DS stacks (e.g., statistical analysis, visualization,
model selection, feature engineering, code quality testing, modularization, parallel
processing, and even easy web app deployment).

But why strive to achieve efficiency in data science? What could go wrongin a
regular data science pipeline if these aspects of efficiency and productivity are not kept
in mind and practiced with diligence?

To understand these issues, you need to examine a typical data science pipeline first.
Let me take you through that journey.

A Typical Data Science Pipeline

Data science is a vast and dynamic field. In the modern business and technology space,
the discipline of data science has assumed the role of a truly transformative force.
Every kind of industry and socio-economic field from healthcare to transportation and
from online retail to on-demand music uses DS tools and techniques in myriad ways.

© Dr. Tirthajyoti Sarkar 2022
T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_1

https://doi.org/10.1007/978-1-4842-8121-5_1

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

Every day exabytes of business and personal data flow through increasingly complex
dataflow pipelines architected by sophisticated DataOps architectures to be ingested,
processed, and analyzed by database engines or machine learning algorithms, leading to
insightful business decisions or technological breakthroughs.

However, to illustrate the point of efficient data science practices, let’s take the
generic example of a typical data science task flow shown in Figure 1-1. You may
have encountered this in your introductory data science course or practiced it in your
everyday work.

Data “Data science”

[
Feature Machine
engineering learning

= B

Figure 1-1. A typical data science pipeline showing various stages of ingestion,
wrangling, visualization, modeling, and even MLOps

You are probably suspecting that there could be a high chance of writing
inefficient code in the data wrangling or ingesting phase. However, you may wonder
what could go wrong in the machine learning/statistical modeling phase as you may be
using the out-of-the-box methods and routines from highly optimized Python libraries
like Scikit-learn, Scipy, or TensorFlow. Furthermore, you may wonder why tasks like
quality testing and app deployments should be included in a productive data science
pipeline anyway.

In the next section, I will answer these questions through simple examples.

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

Typical Examples of Inefficient Practices
in Data Science

Some modules of the DS pipeline in Figure 1-1, such as data wrangling, visualization,
statistical modeling, ML training, and testing, are more directly impacted by inefficient
programming styles and practices than others.

Let me show some simple examples and take you through some data science stories.

Iterating Over a pandas DataFrame

As data scientists, all of us have been there.

We are given a large pandas DataFrame and asked to check some relationships
between various fields in the columns, in a row-by-row fashion. It could be a logical
operation or a sophisticated mathematical transformation on the raw data.

Essentially, it is a simple case of iterating over the rows of the DataFrame and
doing some processing at each iteration. However, it may not be that simple in terms
of choosing the most efficient method of executing this apparently simple task. For
example, you can choose from the following approaches.

Brute-Force for Loop

The code for this naive approach will go something like this:

for i in range(len(df)):
if (some condition is satisfied):
<do some calculation withy df.iloc[i]

Essentially, you are iterating over each row (df.iloc[1i]) using a generic for loop
and processing it one at a time. There’s nothing wrong with the logic and you will get the
correct result in the end.

But this is guaranteed to be inefficient. If you try this approach with a DataFrame
with a large number of rows, say ~1,000,000 (1 million) and 10 columns, the total
iteration may run for tens of seconds or more (even on a fast machine).

Now, you may think that being able to process a million records in tens of seconds
is still acceptable. But, as you increase the number of columns or the complexity of
the calculation (or of the condition checking done at each iteration), you will see that
they quickly add up and this approach should be avoided as much as possible when

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

building scalable DS pipelines. On top of that, if you have to repeat such iteration
tasks for hundreds of datasets on a regular basis (in a standard business/production
environment), the inefficiencies will stack up over time.

Better Approaches: df.iterrows and df.values

Depending on the situations at hand, you may have choices of two better approaches for
this iteration task.

o The pandas library has a dedicated method for iterating over rows
named iterrows (), which might be handy to use in this particular
situation. Depending on the DataFrame size and the complexity of
the row operations, this may reduce the total execution time by ~10X
over the for loop approach.

o pandas offers a method for returning a NumPy representation of the
DataFrame named df.values(). This can significantly speed things
up (even better than iterrows). However, this method removes the
axis labels (column names) and therefore you must use the generic
NumPy array indexing like 0, 1, to process the data.

Scatterplot Everything in a Large Dataset

Often, at the beginning of a data analysis task, we are tempted to visualize the pairwise
interrelationships between all kinds of numeric features that are present in the given
dataset. This is often a necessary step for exploratory data analysis (EDA; see
https://en.wikipedia.org/wiki/Exploratory data_analysis) and can reveal
significant insights about the general pattern of the dataset. However, for large datasets
with hundreds of features (columns), this may put extreme pressure on the visualization
routine, leading to poor plots and a slow response.

Combinatorial Explosion

It is easy to explain why this apparently simple (pairwise) scatter plot task can become
quickly intractable. The reason is combinatorial explosion (https://en.wikipedia.org/
wiki/Combinatorial explosion). Essentially, you are trying to plot all combinations of
two-way relationships and therefore you have "C, possible combinations to plot where n

https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Combinatorial_explosion
https://en.wikipedia.org/wiki/Combinatorial_explosion
https://en.wikipedia.org/wiki/Combinatorial_explosion

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

is the number of numeric features and C denotes the combinatorial sign. Some concrete
examples will help.

e *C,=6soyou have 6 plots for pairwise plotting 4 features in a dataset

e °%C,=15s0you have 15 plots for pairwise plotting 6 features in
a dataset

e 10C, =45 soyou have 45 plots for pairwise plotting 10 features in
a dataset

e 2°C, =190 so you have 190 plots for pairwise plotting 20 features in
a dataset

As you can see in Figure 1-2, the number of plots increases rather quickly! On top
of that, if you have a large dataset (with millions of samples), then each plot needs to
have millions of data points rendered on the screen. It is computationally prohibitive to
render millions of points on a web browser for hundreds of plots.

The combinatorial explosion of plots

w
=]
o

[}

L

(=]
4

200 A

150 +

100 -

Number of 2D combination of plots
w
(=]

[=]
s

5 10 15 20 25
Number of dimensions/features in dataset

Figure 1-2. How the combinatorial explosion leads to a large number of possible
two-dimensional plots for even a modest dataset

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

WHY DID | MENTION A WEB BROWSER?

Jupyter notebook is the most popular choice for data scientists to do these exploratory data
analyses (and advanced machine learning in many cases). At its core, the Jupyter notebook
system runs a web server which lets you write code, markdown text, and render plots in

a browser window (using JavaScript code in many cases). Therefore, if you try to render
hundreds of plots with millions of points, your browser memory may be taxed and it can crash!

Writing Similar Plotting Code Multiple Times

This is a very common practice by data scientists: to copy-paste the same plotting code
(using, for example, the Matplotlib or Seaborn library) repeatedly in an analysis Jupyter
notebook. While, inherently, this may not increase the total running time of the code,
this is a bad software engineering practice that violates the principle of DRY (don’t
repeat yourself; https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).

Essentially, you are giving up the opportunity of code refactoring
(https://en.wikipedia.org/wiki/Code_refactoring) when you copy-paste the same
plotting code in multiple places, thereby increasing the chance of introducing bugs and
making the code difficult to read and maintain in the long term.

Write a Generic Function Instead

Instead, you should try to write a generic function that can produce the desired plot with
the right styling that you need and then just pass variables to this function for plotting. A
pseudo-code example would be something like this:

def plot linechart(x):

Plots line chart of given 'x' variable from dataframe df
Extracts the values from the dataframe as Numpy array
x_array = df[x].values

Mean and upper and lower limits calculations

X_mean = x_array.mean()

https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Code_refactoring

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

X_upper = x_mean+2*x_array.std()

x_lower = x_mean-2*x_array.std()

Data length

data_len = len(x_array)

Size and title

plt.figure(figsize=(15,3))

plt.title(x,fontsize=15)

Main plot

plt.plot(x_array,color="blue',alpha=0.6)

Mean, upper limit, lower limit horizontal lines

plt.hlines(y=x_mean,xmin=0,xmax=data len,
linestyle="--",color="k',linewidth=4)

plt.hlines(y=x_upper,xmin=0,xmax=data_len,

linestyle="--",color="red',linewidth=2.5)
plt.hlines(y=x_lower,xmin=0,xmax=data len,
linestyle="--',color="red"',linewidth=2.5)
Show
plt.show()

Here, there is already a pandas DataFrame df in the workspace. This function just
plots various columns from that DataFrame as a line chart along with showing the mean,
upper limit, and lower limit lines. The column name is passed as the only argument of
the function.

IS THIS A COMMON SCENARIO?

This is a typical data analytics scenario with, perhaps, some manufacturing process or quality
testing data where you may have a tabular dataset of a large number of parameters (i.e., a
dataframe with a number of columns) and you want to plot multiple line charts side by side
or on top of each other to compare the performance or investigate some pattern. You avoid
inefficient and error-prone code by writing a well-planned function first and then refactoring
that again and again

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

Not Writing A Test Module

Testing improves the delivery, performance, and long-term profitability of any software
product/service for all kinds of businesses and industries. It should be, therefore, a no-
brainer that data science and machine learning should also embrace this habit of
testing every important piece of code.

We are increasingly expecting a high-quality and robust software framework behind
various ML services that predict favorite restaurants or guide us when we are lostin a
new city. Trust in these services, which often seem magical, can only come if we know
that the software behind the scenes was tested using a proven and robust methodology.

In many cases, the pace of the development of these new types of services is even
higher than that of traditional software products. Hastening the development of a
product often comes at the price of compromising its quality. A good software testing
strategy can help offset this trade-off.

Put another way, a sound testing strategy can save a lot of development time
in the long term for a data science task flow while guaranteeing a high quality of
the finished product. Saving time in the coding and software engineering stages is an
inherently productive and efficient endeavor.

Some Pitfalls to Avoid

It is clear from the previous sections that a data scientist can fall into the trap of
inefficient data science practices in myriad ways. It is almost impossible to capture all of
these ways, but here I list some common pitfalls to avoid while working on a data science
task for your business or scientific exploration.

Don’t Live in Ignorance. Measure Efficiency.

How fast or efficient is your code? Don’t leave it to guesswork. Without a solid metric,
you cannot compare multiple coding styles or options and choose the best one. In
short, without some sort of measurement of efficiency, you can never even start to
improve.

Therefore, always try to include some sort of timing/speed measurement code
in your analysis or test module so that you can test and measure various DS tasks or
function blocks on how efficient they really are. We will revisit this topic in more detail in
Chapter 2.
8

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

Don’t Leave Your Code as Orphans. Modularize Them.

If you focus on building a modularized and expressive data science pipeline, it will pay
you back in terms of improved productivity. But what can prevent you from doing so?
Surprisingly, it may be the very programming language that we all have come to adopt
and appreciate for its power and simplicity: Python.

The Python-Powered Data Science Legacy May Have a Problem

We use Python a lot for our data science work. Why? Because it's awesome for ML and
the data science community. It is on its way to becoming the fastest-growing major
language for modern data-driven analytics and artificial intelligence (AI) apps. It is
also used for simple scripting purposes, to automate stuff, to test a hypothesis, to create
interactive plots for brainstorming, to control lab instruments, and so on.

However, Python for software development and Python for scripting are not the
same beast, at least in the domain of data science. Scripting is (mostly) the code you
write for yourself. Software is the assemblage of code you (and other teammates)
write for others.

It's wise to admit that when (a majority of)) data scientists, who do not come from
a software engineering background, write Python programs for AT/ML models and
statistical analysis, they tend to write such code for themselves. They just want to get to
the heart of the pattern hidden in the data. Fast. Without thinking deeply about normal
mortals (users). They write a block of code to produce a rich and beautiful plot. But they
don’t create a function out of it to use later. They import lots of methods and classes from
standard libraries. But they don’t create a subclass of their own by inheritance and add
methods to it for extending the functionality.

Embrace OOP Principles As Much As You Can

Functions, inheritance, methods, classes: they are at the heart of robust object-oriented
programming (OOP; www.educative.io/blog/object-oriented-programming) but they
are somewhat avoidable if all you want to do is create a Jupyter notebook with your data
analysis and plots.

You can avoid the initial pain of using OOP principles but this almost always renders
your Notebook code non-reusable and non-extensible. In short, that piece of code serves
only you (until you forget what logic exactly you coded) and no one else.

http://www.educative.io/blog/object-oriented-programming

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

But readability (and thereby reusability) is critically important. That is the true test of
the merit of what you produced. Not for yourself. But for others.

Therefore, don’t fall into this trap of writing disjoint code pieces with the aim of
doing a quick and dirty analysis. Try to put your code into well-planned functions and
modules (class and subclass) as much as possible. We will revisit this topic in much
more detail and with actual code examples in Chapters 5 and 6.

Don’t Be Limited by Hardware or Traditional Tools

Many data scientists feel somewhat helpless in the face of large-scale data, say on the
order of hundreds of gigabytes (GB) or multiple terabytes (TB). While enterprise-grade
software solutions routinely handle this kind of data volume every day, individual data
science practitioners may still run into scalability and execution issues with this kind of
dataset. This, of course, impacts their overall productivity.

Local Hardware Memory Limitation Is a Real Issue

Most data science tasks, especially the initial data ingestion, wrangling, exploratory
analysis, statistical modeling, and feature engineering, happen on the local hardware of
a single data scientist (or a team). This is a fact of the way this enterprise works. With the
advent of AutoML tools and the emphasis on the “citizen data scientist,” individuals are
more and more encouraged to take up data science tasks and start the ball rolling on the
analytics workload that is in high demand for every conceivable business today.

This has great potential to revolutionize the whole field and to propel it to greater
heights. However, it also comes with the caveat that, in many cases, an individual data
scientist may run into the back wall of local hardware memory or compute limit when
dealing with a terabyte (or even multi-gigabyte) scale dataset.

Individual laptop memory (RAM) runs up to 16 GB or 32 GB at best, thereby limiting
the size of a dataset that can be loaded into the working memory in its entirety. Even
for a dataset of a modest 10 GB size, traditional analytics tools like pandas can become
excruciatingly slow when you load the entire data into a single DataFrame object.

Many of these widely used Python data science packages do not support parallel
computing at all.

10

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

Note A gigabyte (GB) is ~10° bytes or 1,000 MB. A terabyte (TB) is 1,000GB or
~10'? bytes. A petabyte (PB) is 1,000TB or ~10' bytes. It is estimated that the
entire collection of the Library of Congress including photos, sound recordings, and
movies might take ~3,000TB of storage.

GPU-Accelerated Computing Has Not Focused on Data Science
as a Whole

From a compute perspective, GPUs have been a blessing for advanced machine learning
with big datasets. However, they are much more discussed and practiced for deep
learning tasks than anything else. As great a success story as deep learning may be for
the rise of Al and ML, a majority of data science and analytics workflows still have little
use for GPUs.

Therefore, it is a common scenario that a data scientist has access to a GPU-powered
workstation or a multi-GPU cloud computing instance but cannot utilize those hardware
resources effectively for the analytics tasks that they want to accomplish (Figure 1-3).

| have a powerful GPU
workstation, but | just run data
processing and analytics. No
deep learning. Can | use the
power of the GPU?

Figure 1-3. GPU-based accelerated computing needs to become an essential
component of mainstream data analytics (even without any deep learning
component)

11

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

Always Explore Alternative Libraries/Frameworks

It is, therefore, clear from the discussion above that to practice productive and efficient

data science, practitioners must learn

How to handle large and complex datasets efficiently (which
would have been difficult with traditional DS tools) with libraries
that support parallel computing and multi-tasking out of the box

How to fully utilize GPU and multi-core processors for all kinds of
data science and analytics tasks, and not just for specialized deep

learning modeling

We will discuss many of these issues at length and show some emerging (and
exciting) alternatives to the traditional tools and frameworks in Chapters 10-12.

Efficiency and Productivity Go Hand in Hand

This is one of the poorly understood and less appreciated facts about data science, or about
any technical enterprise for that matter: being efficient and tidy and avoiding bugs and
errors directly leads to productivity in all aspects of professional life. While some of the
connections are easy to spot, others are less obvious. Therefore, in this section, I provide key
examples of techniques for high efficiency with regard to the practice of data science.

Measuring Efficiency Goes a Long Way

As discussed in the preceding section, if you develop a habit of measuring the efficiency
of your code or function, you will automatically create an environment where you are
keeping track of those metrics and how you are improving over time. In this way, you can
become much more productive in your daily tasks as they can be probed and improved
upon with clear targets when they start showing any sign of lag. Measuring the memory
and compute footprint is one prominent example; I talk about this in detail in Chapter 9.

This habit helps to increase productivity at a large enterprise scale, too. For example,
you may feel confident before committing a large piece of ML prediction code that was
written by you or your team only when you know that your team has measured the
code execution efficiency thoroughly and ensured that the code won’t blow up the API
endpoint in the face of gigabytes of real-time streaming data.

12

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

Testing Reduces the Chance of Rework

The more unit or functional testing modules are planned and written at the development
stage of a data science pipeline or ML predictive framework, the fewer chances of
discovering critical bugs at the deployment stage. While for pure exploratory analysis,
testing has less impact on the overall speed of the development cycle, the productivity of
any real-life deployment will depend on building this habit.

However, traditional software testing best practices may not be 100% applicable
to data science and ML code testing since they involve a lot of probabilistic features
or randomized input/output patterns. Therefore, careful planning and a deep
familiarity with the stochastic nature of these systems are essential ingredients for
building a high-performance testing framework. This necessitates some sort of data
science expertise on the part of the test engineering team as well.

Planning ML Model Development

ML model development and tuning is often done in an ad-hoc manner, with the
sole focus of obtaining the highest accuracy or some similar model performance
metric. Long-term productivity improvement is not considered a major goal of such
experimentation and model iteration.

However, making small changes to the process like logging hyperparameters and
metrics properly, or creating a model iteration routine that systematically stores and
visualizes the tuning process, can go a long way to reducing waste in repeatable work. I
talk about some of these best practices in Chapter 4.

Itis important, however, to identify the productivity of a complete ML platform in
a holistic manner which places greater emphasis on the overall system productivity
rather than on the speed of developing individual models. Incorporating model
tracking, logging, and visualization code certainly places some overhead on the
individual modeling components, but the benefit is realized in the longer run in a
system-wide manner. This must be realized and supported by the higher management
for the data science team to execute with confidence.

13

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

Knowledge of GUI Programming/Web App Development Is
Quite Helpful

This may sound counterintuitive but learning a bit of GUI/API programming can often
lead to overall productivity improvement for your data science pipeline. This happens,
of course, when you use that knowledge to wrap the GUI around a piece of ML model or
data analytics code to make it presentable to a wide user base.

Let me illustrate with a concrete example. Often, the essential first step in getting
approval for a large-scale ML platform development is to produce a working prototype
for the internal users or stakeholders such as higher management or the Sales and
Marketing departments. This audience will understand the purpose and utility of the
prototype much better if they see it in a visual manner and, even better, if they can play
around with the platform (Figure 1-4).

A bit of qUl/app A visually
programming interactive demo

Data science

backend \/_

Quick approval, higher productivity

Figure 1-4. A quick demo of working data science prototypes to higher
management often increases the overall productivity of the team

This requires not only the back-end development of the ML models and data
analytics pipeline but a front-end app demonstrating the inner workings in as visually
intuitive and interactive manner as possible. A data science team may not write the exact
code for creating this demo app, but a deep knowledge of how those front-end elements
and components should be designed and integrated into the back-end ML platform will
go a long way towards faster development of the prototype. Reducing the time gap in
this phase automatically means a quicker decision timeline and overall improvement
in the time-to-market and productivity of the whole team. Web/browser-based apps are

14

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

a natural choice for this type of task, and I discuss some of these tools (that can quickly
create a web app to showcase your data science work) in Chapter 12.

Skills and Attitude for Practicing Productive
Data Science

It goes without saying that you must work consciously towards developing the specific
set of skills and aptitude to move into the realm of productive and efficient data science.
By its very nature, data science welcomes and embraces professionals from all kinds of
technical backgrounds and professional training. While this is a wonderful thing for the
field in general, it also means that anybody who wants to break the cycle of inefficiency
must make a focused effort to develop these skills.

No book or course can cover the entire spectrum of possible skills and topics that
need to be taught to propel a data scientist towards the path of productive and efficient
data science. However, if I had to imagine some specific components for such an ideal
book, I would expect it to

Teach how to look out for inefficiencies and bottlenecks in the
standard data science code and how to think beyond the box to
solve those problems.

Teach how to write modularized, efficient data analysis and
machine learning code to improve productivity in a variety of
situations such as exploratory data analysis, visualization, deep
learning, and more.

Cover a wide range of side topics such as software testing, module
development, GUI programming, and ML model deployment as a
web app, which are invaluable skillsets for budding data scientists
to possess.

Teach how to whip up quick GUI apps for the demo of a data
science/ML idea or model tuning, or how to easily (and quickly)
deploy ML models and data analysis code at a web app endpoint.

Cover parallel computing, out-of-core (larger than the system
memory) scalability, and GPU-powered data science stack with
hands-on examples.

15

CHAPTER 1 WHAT IS PRODUCTIVE AND EFFICIENT DATA SCIENCE?

Expose and guide the readers to a larger and ever-expanding
Python ecosystem of data science tools that are connected to the
broader aspects of software engineering and production-level
deployment.

And, above all, instill and reinforce the sense of inquisitiveness
about the efficiency of one’s data science pipeline so that the
practitioner can continuously research and develop their own
methods and best practices for probing the code and systems they
are working with.

Summary

In this introductory chapter, I covered a lot of ground to give you a fairly detailed idea
about the emerging concepts of productive and efficient data science. I talked about
what it means from a technical point of view and how it helps the organization as a
whole. I pointed out that inefficiencies can seep into any stage of a typical data science
pipeline: ingestion, wrangling, visualization, EDA, ML modeling, or even the demo stage.

I delved deeply into some concrete examples that appear frequently in a typical
data science task such as iteration over a large dataset or visualization practices with
a complex dataset. In particular, I talked about embracing good OOP principles and
developing the mentality of a test engineer while working on DS tasks.

I described common pitfalls to avoid in these aspects. I placed special emphasis on
not limiting yourself with local hardware or traditional tools while dealing with large
terabyte-scale datasets. GPU-accelerated computing, which has not received much
attention beyond deep learning, was discussed. I also touched upon parallel computing
ideas that will be explored in more detail later in this book.

Next, I showed, with concrete examples, how productivity and efficiency go hand in
hand in typical data science tasks or platforms. The use of GUI/app development as a
tool to accelerate the decision-making process was discussed in this regard.

Finally, I talked about the ideal skills and aptitudes to develop in order to embrace
the habit of productive data science. You will explore these ideas with hands-on
examples in the following chapters.

16

CHAPTER 2

Better Programming
Principles for Efficient
Data Science

The goal of this chapter is to introduce you to the concepts of certain programming

styles and habits that play an essential part in developing efficient data science (DS) and
machine learning (ML) systems and pipelines. I will illustrate the concepts through brief
examples (or pseudo-codes wherever applicable) and talk about how to measure or track
inefficiency.

I will start by introducing the concepts of time and space complexities
(https://levelup.gitconnected.com/time-and-space-complexity-725dcba31902)
in programming and algorithms. You will also get to see Big-O notation
(https://en.wikipedia.org/wiki/Big O notation) used in this context. These are
foundational concepts for analyzing the runtime or efficiency of any algorithm and
can be used to measure and describe the efficiency of standard ML algorithms, as an
example. I will also talk briefly about why complexity measures matter for data science
tasks in particular.

Then I will demonstrate practical examples of common, inefficient data science and
ML coding practices. This is by no means meant to be an exhaustive illustration of every
kind of inefficient data science programming. However, I will try to give you a glimpse
of typical inefficient code snippets that do not scale well or make some aspects of the
overall system design inefficient. Hopefully, you can internalize these examples and
apply the same thought process to your own analytics work to become more productive.

In most of these cases, I will also show some more examples of what can be
done instead, such as how you can improve the efficiency of the same task using a
better programming style or choice of a different tool or function (within the Python
ecosystem).

17
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_2

https://levelup.gitconnected.com/time-and-space-complexity-725dcba31902
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://doi.org/10.1007/978-1-4842-8121-5_2

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

Finally, I will introduce tools and techniques to measure the execution time of your
code or function blocks. I will cover both generic Python modules and Jupyter magic
commands in this regard.

The Concept of Time and Space Complexities plus
Big-0 Notation

The time and space complexities of an algorithm are related to the worst-case (generally)
execution time and the memory/storage space it takes to run that algorithm for a given
input. Because the time and space almost always depend on the size of the input

(for example, number of elements in an array), these complexity measures are expressed
as functions of the input size, thus f{n) or g(n) for the n-element array where for g denote
the time and space complexities, respectively.

A Simple Example: Searching for an Element

Let’s demonstrate this using a simple example. Consider the following Python program
for searching for a given element inside a list. Note that you could have written the code
in more Pythonic way with if ele in lst, but for demonstration purpose, let’s write it

using naive list traversing code:

def ele in lst(ele,lst):
len 1st = len(1lst)
for i in range(len 1st):
if 1st[i] == ele:
return True
return False

If you test this function with the following input, you get True:

ele in 1st(ele=2,1st=[3,4,5,2,9])
>> True

But if you test with the following input, you get False:

ele_in_lst(ele=2,1st=[3,4,5,5,9,11,3,4,-1,3,5,7,12,15])
>> False

18

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

In the second example above, the loop is traversed entirely, so the equality check
operation of if 1st[i] == eleis done 14 times (the length of the list). This is the core
operation of the program, which is performed by the CPU and factors into the time
complexity of the code.

So, what is the time complexity of this search method? It is clear that in the worst
case, where the ele is not in the given 1st, the time taken will always be proportional
to the length of the 1st (if we assume that each equality operation takes a constant
time to perform). This is denoted by the function O(n) where n denotes the number of
elements in the input array.

The Big-0 Notation

This notation of O in the function O(n) is called the Big-O notation. As per Wikipedia,

“it describes the limiting behavior of a function when the argument tends towards a
particular value or infinity” (https://en.wikipedia.org/wiki/Big O notation).

In particular, this is an example of the worst-case time complexity for this situation
(because the element is not present in the given list), but in the limiting case, this is what
every computer programmer should be concerned about.

One may wonder why we are not calculating the average case time complexity. As
it turns out, in most cases, it is quite difficult to calculate or even estimate what that
average case looks like, whereas the worst case is generally defined and understood
in a much simpler manner. Furthermore, the notation of O(#) is understood in an
asymptotic sense, thus the worst-case time taken will not deviate from this linear trend
when n becomes large.

Why linear trend? Because O(n) denotes the first power of n. Similarly, we have
algorithms of O(#?) or O(n?®) complexities that show quadratic or cubic trends. In
other words, the time taken will grow looking like a quadratic or cubic function of the
problem size n.

The origin of this Big-O notation is deeply rooted in the more advanced mathematics
of analytic number theory (https://en.wikipedia.org/wiki/Analytic_number theory),
and it shows up in discussions of many mathematical theorems as well. But, in the
context of computer science and programming, this is the standard notation to denote
the time/space complexity of a given algorithm.

19

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Analytic_number_theory
https://en.wikipedia.org/wiki/Analytic_number_theory

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

Complexities: Linear, Logarithmic, Quadratic, and More

So, if this is O(n), can the search be made better? Yes, as it turns out, the search can be
made to run as fast as O(log,(n)) if the list is presorted. The specific algorithm to be
used in that case is called the binary search. And, as you can guess, the naive algorithm
that we wrote above is called the linear search.

How Much Faster?

And just how much faster is O(log,(n)) than O(rn), anyway? We can find that out by
simply plotting the two functions f(n) = n and g(n) = log,(n) as the number » grows. For
a better illustration, see Figure 2-1. It contains two plots: one with the direct comparison
between these two functions and another where the logarithmic function is multiplied
by a large constant number like 25.

What does the second case in Figure 2-1 represent? It is for a situation where we are
using a O(log.(n)) algorithm but we also have a large overhead for the unit computation,
so where the fundamental unit of computing is much slower than the corresponding
unit operation with the O(n) linear algorithm.

The comparison between fin) = n and g(n) = logzn growth The comparison between fin) = n and gi(n) = 25 * log.n growth

19991 Linear time 19991 — Linear time

wol — Logarithmic time | Logarithmic time with 25X constant multiplier
kY
2
T 600 600 1
5
t‘:; 400 400 1
Z

200 200

0 0
o 100 200 300 400 500 600 700 800 900 /] 100 200 300 400 500 E00 o0 B0O 900
Number of elements Number of elements
(a) (b)

Figure 2-1. Function value growth comparison between logarithmic and linear-
time complexity algorithms. In (a), both have the constant multiplier 1. In (b), the
log algorithm has a multiplier of 25

What is abundantly clear from Figure 2-1 is that no matter the constant multiplier
(1 or 25), the O(log,(n)) algorithm becomes much faster than the O(rn) algorithm as n
grows, so the function value, which represents the time taken by the algorithm, grows
much slower with n. Therefore, we should always use a logarithmic complexity
algorithm in place of a linear complexity algorithm for the same task (if we can get
our hands on such an algorithm).

20

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

For the search example, this needs presorting of the list, which has its own
algorithmic complexity (see sorting algorithms complexity at www. geeksforgeeks.org/
time-complexities-of-all-sorting-algorithms). But this is often done given that, in
a typical application scenario, you might have to sort the list much less frequently than
you have to search through it.

What’s Beyond Linear?

Although the linear-time complexity looked worse compared to the logarithmic-time
one, it is, in fact, a remarkably efficient algorithm in the context of common computing
algorithms that we generally encounter (both in data science and non-data-science
work). As you can guess, complexities with higher powers of n are pretty common and
are denoted accordingly:

O(n?) for quadratic-time complexity
O(n?) for cubic-time complexity

0(2") for exponential-time complexity (yes, those hellish
things exist!)

Let me show you quick (and naive) examples of O(n?) and O(n?) algorithms. Here is
a simple algorithm iterating over the dimensions of a given NumPy array and counting
the elements that are greater than zero (you surely know about the NumPy library and
arrays at https://numpy.org/doc/stable/user/whatisnumpy.html if you are interested
in data science, don’t you?):

import numpy as np
array 2D = np.random.normal(size=(5,5))

def count positives(array):

Counts positives in a random 2-D array

m,n = array.shape
count = 0
for i in range(m):

21

http://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms
http://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

for j in range(n):
if array[i][j] > o.o0:
count+=1

return count

How many times is the core unit of computation (if array[i][j] > 0.0)
performed? Clearly, it is done 5 x 5 = 25 times here for this 2D array of dimension (5, 5).
If we change the code for the dimension to be (100, 100) then the computation will be
performed 100 x 100 = 10,000 times!

Therefore, the time-complexity here is O(mxn) where (m, n) are the dimensions of
the 2D array. For square arrays, it is roughly equivalent to our familiar O(#?).

Why Complexity Matters for Data Science

All these discussions about algorithmic complexity may make you wonder how you
might utilize this knowledge in your data science work, especially for productive data
science. To answer that, first you need to see some common examples of data science
tasks that may have high algorithmic complexity. I covered the linear, logarithmic,
and quadratic ones in the last section. Let me show you two more (worse) complexity
examples in the context of data science tasks.

Image Data: Cubic-Complexity Algorithms

As a natural progression to the code example from the O(#?) case, if we increase the
number of loops to 3, as in a 3D array, then the time complexity becomes O(#3). A
prominent example of a 3D array, specifically in the context of data science, is image
data where a 2D array represents the coordinates of the pixel, and in each pixel, there
is another number representing the color depth (https://en.wikipedia.org/wiki/
Color_depth) or the grayscale value (examples shown in Figure 2-2).

Since you may have to work frequently with image data as a data scientist, you have a
high chance of running into O(#?) algorithms. In fact, you may be facing a more complex
computing task at each pixel, as it can be a vector of multiple color values (e.g., RGB)
instead of a single floating-point number.

22

https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Color_depth

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

24 bi png £ bitpng 4 biLprg 2 bipng
16.777.216 colors 256 colors 16 colors 4 colors
88 K8 37 KB (-62%) 13 KB (-B7%) 6 KB (~34%)

1bitprg
2 celors.
A KB (-95%)

Figure 2-2. Color-depth and grayscale images example (Source: Wikimedia, GNU
Free Documentation License)

Best Regression Model: Exponential Complexity

What about the dreaded 0(2") complexity? Do you really encounter them in everyday
data science work? Yes, it turns out that there is a simple data science example for
that too.

Consider the exercise of determining the best linear regression model for a
large dataset with many features. All of the features may not be impactful or equally
important. Only a specific subset of features is optimum for most practical cases.
Determining that optimum set sounds like a common data science task.

As we know, adding more features to the model will increase the simple R*
coefficient but when we take into consideration advanced metrics such as adjusted-R2
(www.statisticshowto.com/probability-and-statistics/statistics-definitions/
adjusted-r2/) or AIC criterion (https://en.wikipedia.org/wiki/

Akaike information criterion), then we need to experiment with multiple
combinations of features to find out the best combination. In short, we need to search
through the space of all possible combinations of features, build a regression model
for each combination, calculate the desired performance metric, and pick the best one at
the end (e.g., for which the performance metric is highest).

23

https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/
http://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/
http://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

In more mathematical terms, this translates to finding the best subset among all
subsets of a given set. This is an exponentially hard problem to compute. This means
that the algorithmic complexity is O(2"). Moreover, this is just for building the set of all
subsets of the feature space, not even considering the computational cost of building the
actual regression model for each combination.

Why? Because of this simple equation that we may remember from high school
math. Basically, the sum total of all combinations taken 1, 2, 3, ..., n from n possible
items is 2. In the context of our regression problem, we are choosing 1, 2, 3, or more

features at a time and building the models.

Z(C”1 +C", +... +C”n)=2"

This is the reason exhaustive search is almost never encouraged for a regression
model optimization. Instead, we have greedy search (https://en.wikipedia.org/
wiki/Greedy algorithm)methods such as forward- and backward-selection algorithms
(https://quantifyinghealth.com/stepwise-selection/), which cut down the search

time drastically and yet find a reasonably good solution for almost all practical cases.

Relative Growth Comparison

To illustrate the benefit (or disadvantage) of having algorithms with various complexity
orders, we can draw the kind of simple chart shown in Figure 2-3. It is clear that the
logarithm-time algorithm grows slowest, followed by the linear-time one. Algorithms
with higher powers grow quickly and the exponential type just takes off like a ballistic

missile!

.
o

ola~n)
o™ 2), O3, ete.

O(\]o? n)

Time Token by the nl&oh‘thm

v

As n grows

Figure 2-3. Relative growth of various time-complexity algorithms (not to scale)

24

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Greedy_algorithm
https://quantifyinghealth.com/stepwise-selection/

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

It is also noteworthy to state that, because these complexity measures and the Big-O
notation are really defined in an asymptotic sense, as in the limit of large values of n,
they really need to be treated as belonging to entirely separate classes of computing
difficulty. This means no matter what actual complexity function a particular algorithm
may be reduced to, if it is cubic, then it is always worse than a linear or quadratic
algorithm in the long run.

The quickest way to judge is to look at the highest degree of the algorithm and
determine the rank. Exponentials are always worse than polynomials, and polynomials
are always worse than linear. Some quick examples are as follows:

An algorithm of 0(200*n+3) complexity is better than one with
0(0.1*n%+12).

An algorithm of O(3*n3+2"+5) complexity is worse than one with
0(100*n2+12).

An algorithm of O(4%'") complexity is worse than one with
0(100*1'*).

The last one in the above list must have surprised you! You are encouraged to
calculate these two functions starting from small to large values of nand overlay
them to get an understanding of how the first function overtakes the second one
at large values of n. Therefore, judging from an asymptotic sense, you should
still prefer the polynomial-degree algorithm (even with a term like n'®) over the
exponential one (4°17).

Al Is Intractable, but It Works

Deep learning networks have been trained to recognize speech, caption
photographs, and translate text between languages at high levels of perfor-
mance. Although applications of deep learning networks to real-world
problems have become ubiquitous, our understanding of why they are so
effective is lacking. These empirical results should not be possible
according to sample complexity in statistics and nonconvex optimiza-
tion theory.

25

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

Terrence J. Sejnowski (www. salk.edu/scientist/terrence-sejnowski/),
“The unreasonable effectiveness of deep learning in artificial intelligence”
(www.pnas.orq/doi/10.1073/pnas.1907373117), PNAS, December 2020

It is a big jump, going from simple searching and sorting algorithms to the world of
gradient descent and backpropagation (https://blog.paperspace.com/
intro-to-optimization-in-deep-learning-gradient-descent/) used in deep
learning, but it’s necessary to make the point of Al algorithms being intractable yet
manageable.

So, what is intractability? It is a whole new subject in itself, beyond the scope of
this book, albeit closely related to the topic of algorithmic complexity discussed in the
previous subsections. Simply put, intractable problems are computational problems
for which no efficient algorithm (that solves them) can be found. Here, the term
efficient means, under most circumstances, polynomial-time algorithms, so algorithms
with complexities at most O(#*) but not the ones with 0(2") or O(n!).

Unfortunately, in the field of Al, most of the common problems can be shown to be
intractable in theory. In particular, for Al problems, their most optimum solution needs
some kind of algorithm that searches through a space that is exponential in nature, such
as the number of all possible trees (and branches) in a decision tree or the number of
all possible models in a simple multivariate regression. As these traditional ML tasks fall
into the realm of intractability, it is no surprise that deep learning networks will also be
plagued by the same computational difficulty.

However, despite the theoretical impossibility (of finding the best possible solution),
common ML algorithms and solutions work for almost all practical situations by
employing clever techniques such as greedy search (www.programiz.com/dsa/greedy-
algorithm), heuristics (https://en.wikipedia.org/wiki/Heuristic_(computer
science)), dynamic programming (www.programiz.com/dsa/dynamic-programming),
randomized algorithms (https://en.wikipedia.org/wiki/Randomized algorithm),
and more. Concretely, the practical techniques do not seek to find the absolute
best solution but a “good enough” solution that can be found efficiently and with
reasonable computing resources. They also utilize domain knowledge and inductive
bias heavily to trim the search space of potential solutions.

26

http://www.salk.edu/scientist/terrence-sejnowski/
http://www.pnas.org/doi/10.1073/pnas.1907373117
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
http://www.programiz.com/dsa/greedy-algorithm
http://www.programiz.com/dsa/greedy-algorithm
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://www.programiz.com/dsa/dynamic-programming
https://en.wikipedia.org/wiki/Randomized_algorithm

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

Heuristic search techniques are often called informed search as they tend to use
additional information about the problem and the environment (that an Al agent
may be in). Imagine you are in a foreign country and don’t have access to Google
Maps! You have a choice of driving to a few cities from the place you are currently
in, as the first step of the journey to reach your ultimate destination. You may not
know the exact driving distance of these cities, but you may have heard from your
friend that it took her less time for a train journey to city A than it took to travel to
city B. This is additional information about the environment and, although it does
not guarantee that the actual driving distance to City Ais less than that to City B,
there is a good chance of it being true. It’s called a heuristic and you can use it to
determine the optimal path to take on your journey. A great many Al algorithms use
this technique for efficient search.

Therefore, to summarize, the intent of the preceding sections on computational
complexity and Big-O notation was to introduce the idea of efficiency of common
algorithms and to illustrate that there are, indeed, separate classes of algorithms that
perform quite differently when the input size grows. This was done to instill a sense
of probing in your mind, to check your code and implementation for weakness, even
if you are not required to rigorously analyze and mathematically derive the exact Big-
O function for a particular solution. Moreover, this is also to assure you that clever
solution techniques exist to handle even seemingly intractable problems with big
data, and you should explore them at every chance.

Inefficient Programming in Data Science

Data science code can be plagued by inefficient practices and design patterns in
countless ways. One of the major reasons for this happening is that data scientists often
come from diverse backgrounds (e.g., physics, biology, economics, statistics, electrical
engineering, etc.) and they don’t follow the well-established software engineering design
patterns (https://en.wikipedia.org/wiki/Software_design pattern) all the time.
Data science boot camps, workshops, and online courses, which are often the places
where a lot of budding data scientists get their training from, teach a plethora of topics
covering Python coding, statistics, and machine learning but not necessarily these high-
efficiency programming techniques.

27

https://en.wikipedia.org/wiki/Software_design_pattern

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

However, it is to be noted at the outset that this book is not a primer on software
engineering for data science. In particular, the goal of this chapter is to showcase some
of the most obvious and widely repeated inefficient programming patterns that are
found in data science tasks so that you can recognize and learn from these examples.
This is precisely what I set forth to do in the next sections. Also, for good measure, I show
workarounds and alternatives that are supposed to be more efficient.

Canonical Examples

In this section, I show some examples of inefficient programming patterns that occur
frequently in regular data science workflow. I follow an approach that is practical and
hands-on rather than pedagogical. That means I am not taking a rigorous mathematical
approach to calculate and prove the algorithmic complexities of various functions and
code snippets. Instead, you are encouraged to measure the execution times of code
snippets using various tools and explore possible improvement strategies on your own.
There is no one right answer on how to improve upon these snippets.

It is to be noted that I am not talking about specific libraries like NumPy or
pandas in this section. In fact, I will discuss efficient best practices with these libraries
in the next chapter. Here, I am showing examples of basic Python coding patterns that
you can utilize for many situations (data science and beyond).

A note to the reader: | intend to keep the code snippets compact and therefore |
am not making them self-contained and exhaustive. This means code snippets
are not meant to be run on their own. Accompanying notebooks will have the full
runnable code.

Use a Filter Instead of a for Loop

There are countless articles written about avoiding a for loop for simple repetitive tasks
that can be cast with some other form of mathematical logic. Now, for many complicated
logic and iteration situations, you cannot avoid for loops. However, in many situations
you can use alternate methods and you should be on the lookout for them. Python
provides some built-in methods to be used in specific situations like data filtering.

28

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE
Consider the following code block with three function definitions:
ONE_MILLION = list(range(int(1e6)))

def for loop():
result = []
for ele in ONE_MILLION:
if not ele % 3:
result.append(ele)
return result

def list comprehension():
return [num for num in ONE_MILLION if not num % 3]

def filter fn():
return filter(lambda x: not x % 3, ONE_MILLION)

The first function contains a plain vanilla for loop and list appending. The second
one is much cleaner and uses Python’s list comprehension (https://realpython.com/
list-comprehension-python/). Finally, the third function uses the built-in filter
function and the lambda expression (https://realpython.com/python-lambda/) to
achieve the same goal.

Let’s use Jupyter Notebook’s built-in magic command (https://stackoverflow.
com/questions/29280470/what-is-timeit-in-python) %%timeit to measure the
execution speed.

For the for_loop function,

%%ktimeit -120 -n5
for loop()
>> 56.6 ms + 3.03 ms per loop (mean + std. dev. of 20 runs, 5 loops each)

For the list_comprehension function,

%ktimeit -120 -n5
list comprehension()
>> 44.2 ms + 2.21 ms per loop (mean + std. dev. of 20 runs, 5 loops each)

29

https://realpython.com/list-comprehension-python/
https://realpython.com/list-comprehension-python/
https://realpython.com/python-lambda/
https://stackoverflow.com/questions/29280470/what-is-timeit-in-python
https://stackoverflow.com/questions/29280470/what-is-timeit-in-python

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE
For the filter fn function,

%ktimeit -r20 -n5
filter fn()
>> 440 ns + 93.6 ns per loop (mean + std. dev. of 20 runs, 5 loops each)

The list comprehension is slightly faster than the plain for loop whereas the filter-
based method is much faster. Clearly, for this kind of situation, where you are essentially
doing data filtering (by iterating over a list and creating a new list based on whether each
element meets a specific criterion), you should try the filter function whenever possible.

One thing to remember about these examples, strewn throughout this book, is that
the exact numerical result of a timing measurement will vary wildly from machine
to machine, or even from one execution to the next. The timing profile is a tricky
subject and difficult to standardize. You may get a totally different result depending
on the hardware you are using and local software settings. Nonetheless, (in most
cases) the overall trend will be apparent from the examples.

Use Sets to Find Unique Elements

Sets are a powerful data structure (https://realpython.com/python-sets/) in Python,
and they can be used creatively for situations where you want to find the unique
elements from a long list or array. Consider the following code with two function
definitions:

import random
random 1lst = [random.randint(1,100) for _ in range(100000)]

def unique for loop():
unique_elements = []
for ele in random lst:
if ele not in random 1lst:
unique_elements.append(ele)
return unique_elements

def unique_set():
return list(set(random 1lst))

30

https://realpython.com/python-sets/

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

As usual, you run tests using the Jupyter %%timeit command and get the following
with the for loop function:

%ktimeit -120 -n5
unique for loop()
>> 109 ms + 4 ms per loop (mean + std. dev. of 20 runs, 5 loops each)

You get the following result using set:

%ktimeit -1r20 -n5
unique_set()
>> 788 ps + 181 ps per loop (mean + std. dev. of 20 runs, 5 loops each)

The method with set is much faster! Therefore, it makes sense to use it any time you
have a situation involving finding unique elements in a long array.

Furthermore, the in operator is designed to be very fast when working on sets.
Therefore, if you want to check the membership of an element in a long list (i.e., check if
that element exists in the list), and you have reason to believe that the list contains many
duplicate entries, then you can reduce the search time significantly by first removing all
the duplicates and creating a set out of that list. A pseudo-code will look something like

a_long list = ...
duplicates removed = set(a_long list)
ele = ...
if ele in duplicates_removed:
print(f"The element {ele} exists in the 1list")

The method shown above is not a fundamental principle of changing the
algorithmic complexity of the search operation (as discussed in the previous
section). It is a trick to take advantage of in specific situations using the
built-in data structures of Python and their optimized methods and operators.
In data science tasks (or, in general, with programming), you should keep your
eyes open for these sorts of tricks as they can be found everywhere and in every
programming language.

31

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

Use a Specialized Data Structure for Counting

In many situations, you may need to count the frequency of variables or elements from
a large corpus of text or blob of data. One natural instinct is to construct a dictionary
where the variables are stored as keys and their corresponding count as the integer
values. A simple way to do this is to write a function like this:

def word counts(text):
dict words = {}
for w in text.split(' '):
if w in dict words.keys():
dict words[w]+=1
else:
dict words[w] = 1
return dict_words

Run it on a text sample (from the familiar A Tale of Two Cities):

text = """It was the best of times, it was the worst of times,

it was the age of wisdom, it was the age of foolishness,

it was the epoch of belief, it was the epoch of incredulity,

it was the season of Light, it was the season of Darkness,

it was the spring of hope, it was the winter of despair,

we had everything before us, we had nothing before us,

we were all going direct to Heaven, we were all going direct the other

way - in short, the period was so far like the present period, that some of
its noisiest authorities insisted on its being received, for good or for
evil, in the superlative degree of comparison only

You get the following result:

%ktimeit -r1000 -n10

word_counts(text)

>> 28.6 ps + 13.9 ps per loop (mean + std. dev. of 1000 runs, 10
loops each)

32

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

For this kind of situation involving counting, you can use a specialized data structure
called Counter from the collections module (https://docs.python.org/3/1library/
collections.html#collections.Counter) of Python. You will see that by using this
built-in data structure, you can make the code compact, organized, and faster.

Here is the single-line code to create a Counter object from the given text:

counter words = Counter(text.split(' '))

This counter words object has a dictionary-like APT just like the dict words object
returned by the word_counts function. For example, you can easily print the counts (of
each unique word) using the . items() method:

counter words.items()

>> dict_items([('It', 1), ('was', 11), ('the', 14), ('best', 1), ('of', 12),
("times,"', 2), ('it", 5), ('worst', 1), ('\nit', 4), ('age', 2),
('wisdom,', 1), ('foolishness,', 1), ('epoch', 2), ...

Truncated output to save space

Observe that counter_words has more useful built-in methods than the regular
dictionary dict_words. For example, one of the most common data science tasks (used
repeatedly in Natural Language Processing or NLP pipelines) is to list the top 5 (or 10)
most common words. If you were to use the native Python dictionary approach, then you
would have to write a small additional code to get that list:

dict words = word counts(text)
top 5 = sorted([(v,i) for i,v in dict words.items()], reverse=True)[:5]

This would get you the list of tuples with the five most frequently appearing words:
[(14, 'the"), (12, 'of'), (11, 'was’), (5, 'it'), (4, "\nit")]

But you can get the same result using the built-in most_common () method, which
takes a single argument of the number of top words you want to extract:

counter words.most_common(5)
>> [("the', 14), ('of', 12), ('was', 11), ('it', 5), ('\nit', 4)]

Not only is this approach faster (you are encouraged to measure the execution speed
using the Jupyter magic command) but also it is cleaner and less error-prone because
you don’t have to write your own code with a separate list variable like top 5. You just

pass on the number as an argument to the built-in method and get back a list.
33

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

Use the itertools Library for Combinatorial Structures

Suppose you are working on a machine learning model with a dataset that has four
numerical and four categorical features. You want to build all combinations of two
feature models combining one numerical and one categorical feature and compare the
performance of all such models.

A naive way to build a list combining numerical and categorical features would be
using nested for loops, like so:

1st features = []
for i in num_features:
for j in cat_features:
1st_features.append((i,j))

The resulting list may look like this:

[('num_feature-1', 'cat feature-1'),
("num_feature-1', 'cat feature-2'),
('num_feature-1', 'cat feature-3'),
("'num_feature-1', 'cat feature-4'),
("num_feature-2', 'cat feature-1'),
('num_feature-2', 'cat feature-2'),
("num_feature-2', 'cat feature-3'),
('num_feature-2', 'cat feature-4'),
('num_feature-3', 'cat feature-1'),
('num_feature-3', 'cat feature-2'),
('num_feature-3', 'cat feature-3'),
('num_feature-3', 'cat feature-4'),
("num_feature-4', 'cat feature-1'),
('num_feature-4', 'cat_feature-2'),
("num_feature-4', 'cat_feature-3'),
("num_feature-4', 'cat feature-4')]

For such combinatorial data structures, you can use the itertools module (built-in
Python). You can get the same result as above by using the product function from the
library. Here is the single-line code:

1st features = list(product(num features, cat features, repeat=1))

34

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

You are encouraged to measure the timing on these two approaches. It is highly
likely that the itertools function will run faster.

Furthermore, you may want to build all combinations of five-feature models by
mixing the numerical and categorical features together. Again, one line of code is
sufficient to build the whole combination using the combinations function from the
library. Note the argument r=5 in the function denoting that you want a five-feature
combination:

comb_features = list(combinations(num features+cat features, r=5))
It looks like following (truncated output):

Model 0: num_feature-1, num feature-2, num_feature-3, num_feature-4,
cat_feature-1,
Model 1: num feature-1, num feature-2, num feature-3, num_feature-4,
cat_feature-2,
Model 2: num_feature-1, num_feature-2, num feature-3, num_feature-4,
cat_feature-3,
Model 3: num_feature-1, num feature-2, num_feature-3, num_feature-4,
cat_feature-4,
Model 4: num feature-1, num feature-2, num feature-3, cat feature-1,
cat_feature-2,
Model 5: num_feature-1, num_feature-2, num feature-3, cat feature-1,
cat_feature-3,

Lessons Learned from the Examples

In the examples above, you covered important computing tasks such as
o Filtering
¢ Finding unique elements
o Counting the frequency of occurrence and most common elements

o Building combinatorial data structures

35

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

In all of these cases, I first showed a somewhat naive way of accomplishing the task
using Python code and then demonstrated a faster and cleaner way to accomplish the
same task using specialized data structures or built-in functions in Python. Although
these examples cover a lot of common tasks in any data science workflow, there are so
many more situations where you can apply the lessons learned here.

So, what are the core lessons learned? Here is a short list.

Always look for an optimum data structure to use to store and
manipulate your data. For different situations, different data
structures can be optimal.

No need to restrict yourself to just the default containers like
lists, sets, tuples, and dictionaries. Python has other modules with
specialized containers and data structures which can come in
handy in many situations and deliver faster performance.

Cleaner code is efficient and productive code. A clean and
compact single-line code may not be faster than the five lines
of code it replaces, but it enhances the maintainability and
readability of the overall codebase. This leads to increased
productivity and higher efficiency in the long run.

Always take care to measure the execution time and experiment
with various options (as listed above) to determine the best one
for your particular situation. Without measuring, you cannot say
anything for certain.

Measuring Code Execution Timing

You saw in the examples in the preceding section the importance of measuring the
execution time and speed of your code and functions. But what are some of the standard
methods to accomplish this? In this section, I will cover a few approaches (Figure 2-4).

36

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

kil

Figure 2-4. Measuring the execution speed is the first essential step towards
making your data science code more efficient and productive

Python’s time Module Is Your Friend

For almost any timing measurement situation, you can use functions from the time
module of Python. It has a few different functions to offer, and you should utilize them in
a certain way to get accurate results.

Basic Usage Example

One of the fundamental functions in the time module is also named time() and it gives
back the current system time. Here is a simple code example to illustrate its usage:

from time import time, sleep

Function which just sleeps for 2 seconds
def sleep fn():
sleep(2)

The main timing block
t1 = time()
sleep fn()
t2 = time()

print("Elapsed time: ", t2-t1)
You may get the following:

Elapsed time: 2.0102791786193848

37

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

You could have any piece of code (however long and complex) in place of sleep fn
in the code above and the timing block would have measured t1 and t2 before and
after the code executes. From those measurements, you would get the difference or the
runtime of the code. Therefore, this is the basic usage pattern:

t1 = time()
<data science code or function>
t2 = time()

time delta = t2-t1

It looks simple, doesn’t it? However, there are a few caveats which I discuss next.

Many Loops Needed for a Fast Code Block

The returned value in the function time is in seconds, so it may return zero if you are
trying to measure a fast code block. For example,

t1 = time()
s = sum([1i for i in range(10)])
t2 = time()

print("Sum: ", s)
print("Elapsed time: ", t2-t1)

You will get the correct sum, but the elapsed time will show up as zero. It is that fast.

Sum: 45
Elapsed time: 0.0

So, what can you do? Just run the same code many times so that the total time is in
the range of at least milliseconds. Then, calculate the average.

NUM_LOOPS = 10000
t1 = time()
for _ in range(NUM_LOOPS):
s=sum([i for i in range(10)])
t2 = time()
print("Sum: ", s)
print("Elapsed time: ", t2-t1)
print("Average time: ", (t2-t1)/NUM_LOOPS)

38

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE
You may get something like:

Sum: 45
Elapsed time: 0.006996631622314453
Average time: 6.996631622314453e-07

So, you ran the summation code 10,000 times and found out that it takes
approximately 0.7 microseconds or 699 nanoseconds to sum numbers 1 through 10.
As you can surely appreciate, averaging the measurements for 10,000 runs also
eliminated any kind of variance and provided a stable measurement.

A Timing Decorator

Writing the timing code as above is fine but in the spirit of refactoring and the DRY
principle of software engineering (https://thevaluable.dev/dry-principle-cost-
benefit-example/) it would be great to avoid writing the same code again and again.
Instead, it’s better to have a mechanism at which you can throw any data science
function and it will tell you the execution time. Needless to say, this mechanism
should be able to accept functions with arbitrary arguments and keywords (Figure 2-5).

A Python function U 7= XY

with arbitrary
arguments and 4

keywords

Execution time of
the function

A mechanism

Figure 2-5. A mechanism to measure the execution time of any arbitrary Python
function

Fortunately, Python provides a couple of clever constructs to accomplish just that.
You can use Python decorators and wrapping constructs from the functools module to
get what you want.

Here is the boilerplate code for your reference:

from functools import wraps
from time import time

39

https://thevaluable.dev/dry-principle-cost-benefit-example/
https://thevaluable.dev/dry-principle-cost-benefit-example/

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

def timing(func):

@wraps(func)

def wrap(*args, **kw):
ts = time()
result = func(*args, **kw)
te = time()
print (f"Function '{func. name_}' with arguments {args},
keywords {kw} took {te-ts} seconds to run")
return result

return wrap

This code basically allows you to define any function func with arbitrary arguments
and keywords and to measure its execution time. Here is a simple example where you
use the @timing as the decorator to the function std_dev, which takes a large integer n
as input, generates that many random numbers using the NumPy library, and calculates
their standard deviation:

import numpy as np

@timing

def std dev(n=10000):
a = np.random.randint(1,1000,size=n)
s = a.std()
return s

Once decorated by @timing, whenever you run the function, you may get output like
the following:

std_dev(n=1000000)
>> Function 'std dev' with arguments (), keywords {'n': 1000000} took
0.012999773025512695 seconds to run

If you rerun the function with 10 million as argument (n=10000000), you get

std_dev(n=10000000)
>> Function 'std dev' with arguments (), keywords {'n': 10000000} took
0.1154332160949707 seconds to run

It took almost 10X time for an input 10X larger. So, the timing calculation is
automatic and updated with every instance of the function execution.

40

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

The topic of Python decorators is a vast one and merits its own mini-book or
course. You can utilize them in various ways for productive data science work. Go
to https://realpython.com/primer-on-python-decorators/ fora quick
introduction. You should also look at the functools module and to explore what
it can do.

Using the Decorator to Measure Complexity

Let me show a quick example of how to use the timing decorator to measure the time
complexity of a particular piece of code. Suppose you want to measure the complexity
of the matrix multiplication method of your favorite NumPy package. This is, of course,
because you use that algorithm or function (numpy .matmul) in many places of your
machine learning code. You may just wonder how much time it takes for the function to
execute as the size of matrices go up.

The following code wraps a test function with the timing decorator:

def gettime(func):
@wraps (func)
def wrap(*args, **kw):
ts = time()
result = func(*args, **kw)
te = time()
tdelta= round(1000*(te-ts),3)
return tdelta
return wrap
@gettime
def matrix mult(n=100):
matrix 1 = np.random.normal(size=(n,n))
matrix 2 = np.random.normal(size=(n,n))
result = np.matmul(matrix_1,matrix 2)
return result

Note that you are returning the time difference (tdelta) after multiplying it by
1,000 to turn the result in milliseconds and rounding it off to three decimal places
(round(1000*(te-ts),3)) for better readability. Your test function generates two 2D

41

https://realpython.com/primer-on-python-decorators/

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

matrices (size=(n,n)) with random Gaussian numbers (np.random.normal) to perform
the matrix multiplication. Now you can just invoke matrix_mult() with a size parameter
n to get the time (in milliseconds) it takes for the multiplication operation.

Refer to the accompanying Jupyter notebook with this book for the details of
the plotting code. When you calculate the execution times for a range of matrix size
from 1,000 to 10,000, you get the result shown in Figure 2-6. The curve does look like
a polynomial function of n, doesn’t it? Is it following O(n?) complexity? You are also
encouraged to experiment with 3D matrices and see what happens to the computational
complexity. Will it become O(#?) as we talked about in the previous chapter for image
processing tasks?

Matrix multiplications are so fundamental and ubiquitous for machine learning
tasks that their execution time and performance often determine the computational
efficiency of the overall machine learning pipeline. Even the simple-looking linear
regression uses matrix multiplication (and inverse) to obtain the best coefficients
when using an ordinary-least-square solution technique. For a simple article
explaining this method, go to www. kdnuggets.com/2016/11/1inear-
regression-least-squares-matrix-multiplication-concise-
technical-overview.html. When you move into the realm of deep learning,
matrix multiplications are pervasive and everywhere. In fact, it is hard to improve
the algorithmic complexity beyond what has already been done, thus current
emphasis is on designing hardware architectures that are optimized for matrix
multiplication (go to https://maitrix.com/dsr-modular-computation/
hardware-matrix-multiplication/). These novel hardware solutions are
finding increasing use in AlI/ML applications in the form of Al-optimized ICs or
processors.

42

http://www.kdnuggets.com/2016/11/linear-regression-least-squares-matrix-multiplication-concise-technical-overview.html
http://www.kdnuggets.com/2016/11/linear-regression-least-squares-matrix-multiplication-concise-technical-overview.html
http://www.kdnuggets.com/2016/11/linear-regression-least-squares-matrix-multiplication-concise-technical-overview.html
https://maitrix.com/dsr-modular-computation/hardware-matrix-multiplication/
https://maitrix.com/dsr-modular-computation/hardware-matrix-multiplication/

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

Two-dimensional matrix multiplication complexity

25000 -

20000 -

15000 -

10000 -

5000 -

Time taken (milliseconds)

2000 4000 6000 8000 10000
Number of dimensions

Figure 2-6. Two-dimensional matrix multiplication time with a NumPy function

Jupyter/IPython Magic Command

The Jupyter notebook came out of the IPython (or Interactive-Python) project (https://
ipython.org/), which also provides the core kernel behind the Jupyter front end.
With its language-agnostic notebook format and seamless support for code, graphics
rendering, and markdown texts, Jupyter Notebook (and, more recently, Jupyter Lab)
quickly became the de-facto standard and prototyping tool for data scientists.

Among its powerful features, a set of magic commands (www.tutorialspoint.com/
jupyter/ipython _magic_commands.htm) is worth mentioning. They can do many useful
things like

e Execute system commands (change directory, show present
directory, etc.)

e Open a default text editor from a Jupyter cell
o List environmental variables

The particular set of magic commands (%timeit and %%timeit) can also help
measure the code execution time. You have already seen these commands in this book
for measuring the efficiency of various pieces of code within the Jupyter notebook
environment.

43

https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/
http://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm
http://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

%timeit: Execution Time for Single-Line Code

This magic command is also called a “line command” as it is used in single-line

command situations. For example,

%timeit sum(range(100000))
>> 2.25 ms + 199 ps per loop (mean + std. dev. of 7 runs, 100 loops each)

It measures the time taken to sum numbers 0 through 99999. Because the core
operation is quite fast, it runs 100 loops of 7 runs and calculates the average and variance
as well.

This kind of magic command is particularly useful to showcase the distinct
improvement you can get by using specialized numeric computing packages like NumPy
over native Python functions. For the same task as above, you can use %timeit with
NumPy code to get the following result:

%timeit np.sum(np.arange(100000))
>> 91.6 ps + 3.47 ps per loop (mean + std. dev. of 7 runs, 10000
loops each)

Note how %timeit automatically increased the number of loops to calculate the
individual code runtime accurately as the np. sum runs much faster than the built-in
Python sum function.

%%timeit: Measuring Execution Time for a Block of Code
in a Cell

These magic commands are also called “cell magic” because they apply to the contents
of a complete Jupyter notebook cell (which is usually a multi-line code block, rather than
a single line of code). You used one earlier in this book. In fact, they are the preferred tool
to measure the performance of a function or logic conditional loop.

Following the same summation example as above, this would look like

%rtimeit

s =0

for i in range(100000):
s+=1

>> 5.08 ms + 724 ps per loop (mean + std. dev. of 7 runs, 100 loops each)

44

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

Note, however, that there are no print statements in this piece of code. This is
because including one will alter the total time slightly because of the additional
function call.

This is important to remember and practice: when you are measuring the
performance of a piece of code, focus on measuring the time taken for that exact
code, no more and no less. This means you should only be interested in the timing
measurement and not the actual computation result.

While the %%timeit command automatically adjusts the number of loops
intelligently, you may want to control that for comparison among different functions that
may vary in speed. All you have to do is insert a couple of extra runtime arguments in the
command. For example, the following code will time the same summation code with 50
loops and 10 runs each. Note the command line arguments -n50 and -110, denoting the
number of loops and runs, respectively:

%%timeit -n50 -r10

s =0
for i in range(100000):
s+=1

Summary

In this chapter, I started with a discussion of the concepts of algorithmic complexity
and the asymptotic behavior of common algorithms (for example, searching or sorting)
in terms of the size of the input. In that regard, I introduced the concept of the Big-O
notation and what it means for comparing and analyzing the relative performance of
algorithms and computing tasks in general.

Thereafter, I talked about why this concept is important for common data science
tasks as I drew on examples of polynomial-degree and exponential complexities from
regular data science jobs like image data analysis and evaluating the best regression
model for a feature-rich dataset. I gave a sneak peek of how quickly exponential growth
occurs as compared to polynomial-time growth and why an exhaustive search for the
best model is almost never done. In this context, I further discussed the intractability
of Al algorithms in general, and why their practical applications are hugely successful
these days.

45

CHAPTER 2 BETTER PROGRAMMING PRINCIPLES FOR EFFICIENT DATA SCIENCE

Next, Iillustrated the idea of inefficient programming patterns in data science with
Python code snippets in the context of common tasks like filtering, searching, and
counting. I showed more efficient alternatives, which I hope will generate new ideas in
your mind.

Finally, I dealt with the matter of measuring inefficiency itself with the help of timing
tools and commands. I explored in detail the various usages of the time module that
comes built-in with Python. In particular, I showed how to create a timing decorator to
measure the execution time of any generic function. Jupyter magic commands constitute
a second set of tools in this regard, and they were also discussed with simple examples. I
will revisit the topic of time profiling with the help of dedicated tools in Chapter 8.

This chapter had the central objective of instilling a sense of probing into your mind,
which you can use anywhere and everywhere in their codebase, fo dig deep and probe
the efficiency of your implementations and compare among alternative solutions. I hope
that such efforts were successful in that regard.

46

CHAPTER 3

How to Use Python Data
Science Packages More
Productively

Python is, without any doubt, the most used and fastest growing programming language
of choice for data scientists (and other related professionals such as machine learning
engineers or artificial intelligence researchers) all over the world. There are many
reasons for this explosive growth of Python as the lingua franca of data science (mostly
in the last decade or so). It has an easy learning curve, it supports dynamic typing, it can
be written both script-type and in object-oriented fashion, and more.

However, probably the most important reason for its growth is the amazing open-
source community activity and the resulting ecosystem of powerful and rich libraries
and frameworks focused on data science work. The default, barebone installation of
Python cannot be used to do any meaningful data science task. However, with minimal
extra work, any data scientist can install and use a handful of feature-rich, well-tested,
production-grade libraries that can jumpstart their work immediately.

Some of the most popular and widely used among these jump-starter packages are
the following:

e NumPy for numerical computing (used as the foundation of almost all
data science Python libraries)

e pandas for data analytics with tabular, structured data

o Matplotlib/Seaboxn for powerful graphics and statistical
visualization

47
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_3

https://doi.org/10.1007/978-1-4842-8121-5_3

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

However, just because these libraries provide easy APIs and smooth learning curves
does not mean that everybody uses them in a highly productive and efficient manner.
One must explore these libraries and understand both their powers and limitations to
exploit them fully for productive data science work.

This is the goal of this chapter: to show how and why these libraries should be used
in various typical data science tasks for achieving high efficiency. You'll start with the
NumPy library as it is also the foundation of pandas and SciPy. Then you'll explore the
pandas library, followed by a tour of the Matplotlib and Seaborn packages.

It is to be noted, however, that my goal is not to introduce you to typical features
and functions of these libraries. There are plenty of excellent courses and books for that
purpose. You are expected to have basic knowledge of and experience with using some,
if not all, of these libraries. I will show you canonical examples of how to use these
packages to do your data science work in a productive manner.

You may also wonder where another widely used Python ML package named scikit-
learn fits in this scheme. I cover that in Chapter 4. Additionally, in Chapter 7, I cover how
to use some lesser-known Python packages to aid NumPy and pandas to use them more
efficiently and productively.

Why NumPy Is Faster Than Regular Python Code
and By How Much

NumPy (or Numpy), short for Numerical Python, is the fundamental package used for
high-performance scientific computing and data analysis in the Python ecosystem. It is
the foundation on which nearly all of the higher-level data science tools and frameworks
such as pandas and Scikit-learn are built.

Deep learning libraries such as TensorFlow and PyTroch use, as their fundamental
building block, NumPy arrays, on top of which they build their specialized Tensor
objects and graph flow routines for deep learning tasks. Most of the machine learning
algorithms make heavy use of linear algebra operations on a long list/vector/matrix of
numbers for which NumPy code and methods have been optimized.

48

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

NumPy Arrays are Different

The fundamental data structure introduced by NumPy is the ndarray or N-dimensional
numerical arrays. For beginners in Python, sometimes these arrays look similar to
a Python list. But they are anything but similar. Let’s demonstrate this using a simple
example.

Consider the following code which creates two Python lists. When you use the +
operator on them, the second list gets appended to the first one.

1st1 = [i for i in range(1,11)]

1st2 = [i*10 for i in range(1,11)]

print(lst1+lst2)

>> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

The treatment of the elements in the lists feel object-like, not very numerical, doesn’t
it? If these were numerical vectors instead of a simple list of numbers, you would expect
the + operator to act slightly different and add the numbers from the first list to the
corresponding numbers in the second list element-wise.

That’s precisely what the NumPy array version of these lists does:

import numpy as np

arrl = np.array(lsti)

np.array(lst2)

arri+arr2

>> array([11, 22, 33, 44, 55, 66, 77, 88, 99, 110])

arr2

What is np.array? It is nothing but the array method called from the NumPy module
(the first line of the code did that with import numpy as np).

Perhaps the easiest way to see the richness of this array representation is to check
the list of all methods associated with the data structure. You can do that using the dir
function like this:

for p in dir(lsti1):
if ' ' not in p:
print(p, end=", ")
>> append, clear, copy, count, extend, index, insert, pop, remove,
reverse, sort,

49

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

If you run similar code for the arr1 object, you will see the following output:

>> T, all, any, argmax, argmin, argpartition, argsort, astype, base,
byteswap, choose, clip, compress, conj, conjugate, copy, ctypes, cumprod,
cumsum, data, diagonal, dot, dtype, dump, dumps, fill, flags, flat,
flatten, getfield, imag, item, itemset, itemsize, max, mean, min, nbytes,
ndim, newbyteorder, nonzero, partition, prod, ptp, put, ravel, real,
repeat, reshape, resize, round, searchsorted, setfield, setflags, shape,
size, sort, squeeze, std, strides, sum, swapaxes, take, tobytes, tofile,
tolist, tostring, trace, transpose, var, view,

There are so many more (and different looking) functions and attributes available
with the NumPy array object. In particular, take note of methods such as mean, std, and
sum, as they clearly indicate a focus on numerical/statistical computing with this kind
of array objects. And these operations are fast too. How fast? You will see that now.

NumPy Array vs. Native Python Computation

NumPy is much faster due to its vectorized implementation and the fact that many

of its core routines were originally written in the C language (based on the CPython
framework). NumPy arrays are densely packed arrays of homogeneous types. Python
lists, by contrast, are arrays of pointers to objects, even when all of them are of the same
type. So, we get the benefits of the locality of reference.

Many NumPy operations are implemented in the C language, avoiding the
general cost of loops in Python, pointer indirection, and elementwise dynamic
type checking. In particular, the boost in speed depends on what operation you are
performing. For data science and ML tasks, this is an invaluable advantage because it

avoids looping in long and multi-dimensional arrays.

Locality of reference (www.geeksforgeeks.org/locality-of-reference-
and-cache-operation-in-cache-memory/) is one of the main reasons
behind NumPy arrays being much faster and more efficient than Python list
objects. Spatial locality in memory access patterns results in performance gains
notably due to the CPU cache operations. The cache loads bytes in chunks from
RAM to the CPU registers (the fastest memory in a computer system, located next
to the processor). Adjacent items in memory are then loaded very efficiently.

50

https://www.geeksforgeeks.org/locality-of-reference-and-cache-operation-in-cache-memory/
http://www.geeksforgeeks.org/locality-of-reference-and-cache-operation-in-cache-memory/
http://www.geeksforgeeks.org/locality-of-reference-and-cache-operation-in-cache-memory/

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

NumPy and Native Python Implementation

Let’s illustrate this using the familiar @t iming decorator from the last chapter. Here is
a code wrapping the decorator around two functions, std_dev and std_dev_python,
implementing the calculation of standard deviation of a list/array with NumPy and
native Python code, respectively.

@timing
def std dev(a):
if isinstance(a,list):
a = np.array(a)
s = a.std()
return s

from math import sqrt
@timing
def std dev_python(1lst):
s = sum(1lst)
av = s/len(1lst)
sumsq = 0
for i in lst:
sumsq+=(i-av)**2
sumsq_av = sumsq/len(lst)
result = sqrt(sumsq_av)
return result

Next, you define two objects, a NumPy array and a Python list, of the same length
(1,000,000) and calculate the time it takes for the standard deviation computation:

a = np.arange(1000000)
1st = [i for i in range(1000000)]

For the NumPy function,

std_dev(a)
>> Function 'std_dev' took 8.996 milliseconds to run
>> 288675.1345946685

51

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY
For the Python function,

std _dev_python(1lst)
>> Function 'std dev_python' took 212.995 milliseconds to run
>> 288675.1345958226

So, the NumPy implementation is much faster and should be used for data science
tasks by default.

Conversion Adds Overhead

If you look at the code for the NumPy function, you will notice a small but significant
code for type checking and coercion at the beginning. This to handle the situation of a
NumPy function receiving a list object instead of the NumPy array it was expecting.

if isinstance(a,list):
a = np.array(a)

If you pass the 1st object to std_dev function, you may see something like this:

std dev(1st)
>> Function 'std dev' took 84.004 milliseconds to run
>> 288675.1345946685

This is interesting. The operation is still quite a bit faster than the native Python
implementation, but definitely much slower than the case where a NumPy array was
passed into the function. The result is also slightly different (only after five decimal
places though). This is because of the conversion of the 1st object to the NumPy array
type inside the function that takes the extra time. The conversion also impacts the
numerical precision leading to the slightly different result.

Therefore, although type-checking and conversion should be part of your code,
you should focus on converting numerical lists or tables to NumPy arrays as soon as
possible at the beginning of a data science pipeline and work on them afterwards, so
that you do not lose any extra time at the computation stage.

52

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Using NumPy Efficiently

NumPy offers a dizzying array of functions and methods to use on numerical arrays
and matrices for advanced data science and ML engineering. You can find a plethora of
resources going deep into those aspects and features of NumPy.

Since this book is about productive data science, I am focusing more on the
fundamental aspect of how to use NumPy for building efficient programming pattern in
data science work. I prefer to illustrate that by showing typical examples of inefficient
coding style and how to use the NumPy-based code correctly to increase your
productivity. Let’s start on that path.

Conversion First, Operation Later

Although not a guaranteed outcome, it is almost always better to vectorize your data
first (Figure 3-1). In other words, convert it to NumPy arrays as early as possible and run
the mathematical operations on those array objects rather than running native Python
functions and then converting them to an array.

conversion Operation
first later

Figure 3-1. NumPy is best taken advantage of when you vectorize your data first
and then do the necessary operations

Here’s a list of numbers and a mathematical operation function:
1st of nums = [i for i in range(100000)]

def calc_nums(x):
return (x+1)/(x+1000)

53

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

It is a bad practice to do the following, yet this kind of code pattern is ubiquitous in
the data science world:

result 1st = []
for i in 1st of nums:

result lst.append(calc_nums(i))
result array = np.array(result lst)

Instead, first convert to the array format and then apply the mathematical operations
directly on the array. You don’t even need to write a separate Python function.

array of nums = np.array(lst of nums)
result array = (array of nums+1)/(array of nums+1000)

If you test the execution time, you will see the second option is 2X to 3X faster for this
data. For a bigger data size, this much improvement may prove significant.

Data in real-life situations comes from business operations and databases. Data
comes either in streaming or batch mode. Data can also come in web APIs in the
format of JSON or XML. It almost will never come in a nicely NumPy-formatted
manner. This is why it is so important to understand the pros and cons of array
conversion, operations like appending to and updating an array, back conversion to
a Python list in case you must stream the data back to another API through a JSON
interface, and so on.

Vectorize Logical Operations

You can also vectorize a list where you need to check for logical condition before doing
the mathematical operation directly with NumPy. Suppose from the previous example
you want to apply the function only to the numbers that are integral multiples of 7. You
may be tempted to write this code:

result 1st = []
for i in 1st of nums:
if i%7==0:
result lst.append(calc_nums(i))
result array = np.array(result 1lst)

54

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Instead, you should use the NumPy operations directly in this manner:

array of nums = np.array(lst of nums)
array div7 = array of nums[array of nums%7==0]
result array = (array div7+1)/(array_div7+1000)

The second line of this code uses the Boolean indexing with NumPy where you
create a Boolean NumPy array with array of nums%7==0 and then use this array as an
index of the main array. This effectively creates an array with only the elements that are
divisible by 7. Finally, you run your operation on this shorter array div7.In a way, this
is a filtering operation too where you filter the main array into a shorter array based on a
logical check.

Use the Built-In Vectorize Function

NumPy provides a built-in vectorizing function to help many user-defined functions
to be vectorized as easily as possible. The exact improvement in speed and efficiency
depends on the type and complexity of the specific function in question. Here is an
example of a function that works on two floating point numbers and performs certain
math operation based on their mutual relationship:

from math import sin
def myfunc(x,y):
if (x>0.5*y and y<0.3):
return (sin(x-y))
elif (x<0.5*y):
return O
elif (x>0.2*y):
return (2*sin(x+2%*y))
else:
return (sin(y+x))

In such situations, you can almost mechanically apply the numpy.vectorize method
in the following way:

vectfunc = np.vectorize(myfunc,
otypes=[np.float64],
cache=False)

result array=vectfunc(lst x,1lst y)

55

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Here you pass on the custom function object myfunc as the first argument in the np.
vectorize and define the object types it should expect by the otypes parameter. The
great thing is that although the main myfunc works on individual floating point numbers
x and y, the resulting vectfunc can accept any array (or even a Python list) with the np.
float64 data type (or even native Python floating point data, which will be coerced into
the np.float64 type automatically).

Avoid Using the .append Method

Appending new or incoming data to an array is a common data science operation.
Often the situation is that the data is generated by a stochastic or random process (e.g.,
a financial transaction or a sensor measurement) and it has to be recorded in a NumPy
array (for later use in an ML algorithm, for example).

NumPy has an append method but it is quite inefficient because of its behavior of
copying the entire data array into memory every time the update happens. You have two
choices for appending this kind of random data to an NumPy array:

o Ifyou know the final length of the array, then initialize an empty
NumPy array (with the numpy.empty method) or an array of zeroes/
ones and just put the new piece of data in the present index while
iterating over the range.

o Alternatively, you can use a Python list, append to it, and then
convert to a NumPy array at the end. You can use this with awhile
loop until the random process terminates, so you don’t need to know
the length beforehand.

You can see this is directly contrary to what we discussed in the subsection
“Conversion First, Operation Later” However, the situation is subtly different here
because, in this case, you are updating the array with incoming data that results from an
unknown process, so you don’t know what precise mathematical operation to perform
on the array.

As an example, the following code initializes an empty NumPy array with a known
shape (equal to the known data length of 1,000), records a Gaussian random number
1,000 times, and puts the square of that number in the array:

desired length = 1000
results = np.empty(desired length)

56

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

for i in range(desired length):
sample = np.random.normal()
results[i] = sample**2

The following code emulates a situation when the length of the data is itself
uncertain. The process terminates when the variable TERMINATE itself goes over 2.0.

TERMINATE = np.random.normal()
result 1st = []
while TERMINATE < 2.0:
sample = np.random.normal()
result lst.append(sample**2)
TERMINATE = np.random.normal()
result array = np.array(result 1lst)

As discussed, because of the uncertainty in the length of the data or the process
that generates it, it is advisable to use a Python list to append the data as it comes in.
When the data collection is finished, go back to the “conversion first, operation later”
principle and convert the Python list to a NumPy array before doing any sophisticated
mathematical operation over it.

When does TERMINATE become greater than 2.0? In the code above, since

the variable TERMINATE is generated from a normal distribution with a zero

mean and a unity standard deviation, any value greater than 2.0 will be located
more than two standard deviations from the mean. That means it will have ~5%
chance of producing a value greater than 2.0 at each iteration. If you run this code
repeatedly, you will have a new NumPy array of a different length each time you
rerun the code.

Utilizing NumPy Reading Utilities

How would you read a text file where numerical data is stored in a CSV format into a

NumPy array? This situation is extremely common in a regular data science pipeline

as CSV (comma-separated value) remains one of the most popular file formats in use
across all platforms (Windows, Linux, Mac OS, etc.).

57

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Of course, you can use the csv module that comes with Python and read line by line.
But, conveniently enough, NumPy provides many utility functions to read from file or
string objects. Using them makes the code cleaner and thereby more productive. These
routines are well-optimized for speed too, so your code remains efficient.

Reading from a Flat Text File

The method numpy . fromfile can be used for this purpose. It is a highly efficient way of
reading binary data with a known datatype, as well as parsing simply formatted text files.
For example, you may be reading a bunch of numeric data written on a text file with a
comma separator:

with open('fdata.txt') as f:
data = f.readline()
data = data.split(',")
fr = np.array(data[:-1],dtype=float)

Note that when you use the native Python readline with an opened file, you get a
string object. So, you need to split the string with the comma separator and then read the
resulting list as a NumPy array with the dtype set to float. You can do the same reading
with just one line of code:

fr = np.fromfile('fdata.txt',sep=",")

It is clear that there is less chance of bugs and errors in this approach than the native
Python file-reading code.

Utility for Tabular Data in a Text File

Numpy offers another similar text-reading utility called loadtxt, which is even more
powerful and feature-rich. It works with text file where data is written in tabular
format (i.e., in rows and columns) and loads data directly into a multi-dimensional array
as long as the number of entries in each row remains same. Figure 3-2 illustrates this.

58

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

The loadtxt A complete
utility ndarray

A
e -
loadtxt

Figure 3-2. Showing how the loadtxt utility works in NumPy

For example, suppose you have a CSV text file with three rows and three columns of

data, as shown in Figure 3-3.

sy

_J] npread.txt - Notepad

File Edit Format View Help
9:,2,27.1,-33.6
6.4,2.3,-5.4
12.2,4.5,7 .2

Figure 3-3. A simple text file with tabulated comma-separated data to be read

One line of code can read the contents of this file into a 3x3 NumPy array/matrix:

np.loadtxt('npread.txt',delimiter=",")
>> array([[9.2, 22.1, -33.6],

[6.4, 2.3, -5.4],

[12.2, 4.5, 7.2]])

You can even read selective columns from the file. This is particularly useful if you
always get a massive data file from a customer, but you know that only certain specific
columns are useful for your data science work. Then, you can load only selective data
into memory and make your pipeline fast and efficient.

59

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

np.loadtxt('npread.txt',delimiter=",",usecols=(0,2))
>> array([[9.2, -33.6],

[6.4, -5.4],

[12.2, 7.2]])

Imagine the amount of custom text-reading code you would have to write if you did
not have this utility function from NumPy. In the spirit of productive data science and
keeping your code clean and readable, use these utilities whenever possible.

Using pandas Productively

After covering some of the best practices and productive utilities of the NumPy library,
let’s now look at the most widely used data analytics package in the Python ecosystem:
pandas. This package is used by almost every data scientist and analyst that you may
come across.

pandas uses NumPy at its foundation and interfaces with other highly popular
Python libraries like Scikit-learn so that you can do data analytics and wrangling work in
pandas and transport the processed data seamlessly to an ML algorithm. It also provides
arich set of data-reading options from various kinds of common data sources (e.g., a
web page, HTML, CSV, Microsoft Excel, JSON formatted object, and even zip files) which
makes it invaluable for data wrangling tasks.

However, it is a large library with many methods and utilities that can be used in
myriad ways to accomplish the same end goal. This makes it highly likely that different
data scientists (even within the same team) are using different programming styles and
patterns with pandas to get the same job done. Some of these patterns yield faster and
cleaner execution than others and should be preferred. In this subsection, I cover a few
of these areas with simple examples.

Setting Values in a New DataFrame

pandas provides a variety of options to index, select particular data, and set it to a given
value. In many situations, you will find yourself with a Python list or NumPy array that
you want to set at a particular position (row) in your DataFrame.

60

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

For demonstration, let’s define a simple list with six values:
— First name (a Python string object)
— Last name (a Python string object)
— Age (a Python integer object)
— Address (a Python string object)
— Price (a Python float object)

— Date (a Python datetime object)
profile data = ['First name', 'Last name', 30, 'An address', 25.2, today]

You have a few options to insert this data to the rows of a DataFrame. Note that in
reality you will have a dictionary or a few thousand such lists (all different). Just for the
speed demonstration, I show inserting the same list data in the DataFrame.

You can create an empty DataFrame like this, defining the column names explicitly:

df = pd.DataFrame(columns = ['FirstName', 'LastName', 'Age', 'Address’,
'Price', 'Date'])

Now comes the part where you iterate and insert the data into one row after another.

The .at or .iloc Methods Are Slow

A lot of data scientists use the .at or .iloc methods for indexing and slicing data once
they start working with a DataFrame. They are very useful methods to have at your
disposal, and they are fine to use for indexing purpose. However, try to avoid them for
inserting/setting data when you are building a DataFrame from scratch.

SetN = 2000 for the speed test and run the following code to measure the speed of
setting data with these methods:

%%ktimeit -n5 -r10
for i in range(N):
df.at[i] = profile data
>> 207 ms + 58.6 ms per loop (mean * std. dev. of 10 runs, 5 loops each)

61

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY
and

%%ktimeit -n5 -r10
for i in range(N):
df.iloc[i] = profile data
>> 116 ms + 5.63 ms per loop (mean * std. dev. of 10 runs, 5 loops each)

In this instance, the .iloc method is slightly faster, but this depends on the type
of the data and other aspects. In general, inserting data this way should be avoided as
much as possible.

Use .values to Speed Things Up Significantly

The method pandas.DataFrame.values returns a NumPy representation of the
DataFrame and therefore is optimized for speed in the best possible manner. So, if you
run the following code, you get much faster execution time:

%ktimeit -n5 -r10
for i in range(N):
df.values[i] = profile data
>> 12 ms + 2.63 ms per loop (mean + std. dev. of 10 runs, 5 loops each)

Note that for this to work, you must have a pre-existing DataFrame with 2,000
rows. Now, with this code you can set new values much faster than using .at or .iloc
methods. This won’t work on a newly created, empty DataFrame.

Specify Data Types Whenever Possible

Making pandas guess data types is one of the most frequent inefficient code patterns and
it happens with almost all data scientists. It is inefficient because when you import data
into a DataFrame without specifically telling pandas the datatypes of the columns, it will
read the entire dataset into memory just to figure out the data types. Quite naturally, it
hogs the system memory and results in a highly wasteful process that can be avoided
with more explicit code.

So, how do you do it as a standard practice? Reading data from the disk is often done
with some sort of plain text file like a CSV. You can read just the first few lines of the CSV
file, determine the data types, create a dictionary, and pass it on for the full file read,

62

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.values.html

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

or use it repeatedly for reading similar files (if the column types are unchanged). You
can use the dtype parameter in various pandas reading functions to specify the expected
data types.

Here is boilerplate code for accomplishing this task. The function csv_read()
accepts a filename (string) argument and returns a DataFrame. Internally, it does so by
first reading a sample data of the first 20 rows (nrows=20), determining the data types
(df_sample.dtypes), creating a dictionary of those types, and then reading the full
dataset with explicit type mention by passing that dictionary (dtype = dt):

def csv_read(filename):

Reads a CSV file with explicit data types

Reads only the first 20 rows

df sample = pd.read csv(filename, nrows=20)

Constructs data type dictionary

dt = {}

for col,dtyp in zip(df sample.columns, df sample.dtypes):
dt[col] = dtyp

Full read with explicit data type

df1 = pd.read _csv(filename, dtype = dt)

return df1

Figure 3-4 shows a visual illustration of the idea of reading sample data first,
determining the data type, and then utilizing it for the full reading of the data.

.
SHRs dictionary

Pandas read
function

Figure 3-4. Reading large data files in pandas first by determining the data types
and then specifying them explicitly while reading

63

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

As a practical example, imagine that every morning your data processing
pipeline must read a large CSV file from all the business transactions that were put
into a data warehouse last night. The column names and types are unchanged, and
only the raw data changes every day. You do a lot of data cleaning and processing
on the new raw data every day to pass it on to some cool machine learning
algorithm. In this situation, you should have your data type dictionary ready and
pass it on to your file reading function every morning. You should still run an
occasional check to determine if the data types have changed somehow (e.g., int
to float, string to Boolean).

Iterating Over a DataFrame

It is a quite common situation where you are given a large pandas DataFrame and are
asked to check some relationships between various fields in the columns, in a row-
by-row fashion. The check could be some logical operation or some conditional logic
involving a sophisticated mathematical transformation on the raw data.

Essentially, it is a simple case of iterating over the rows of the DataFrame and doing
some processing at each iteration. You can choose from the following approaches.
Interestingly, some of the approaches are much more efficient than others.

Brute-Force For Loop

The code for this naive approach will go something like this:

for i in range(len(df)):
if (some condition is satisfied):
do some calculation with df.iloc[i]

Essentially, you are iterating over each row (df.iloc[i]) using a generic for loop
and processing them one at a time. There’s nothing wrong with the logic and you will get
the correct result at the end.

But this is quite inefficient. As you increase the number of columns or the complexity
of the calculation (or of the condition checking done at each iteration), you will see that
they quickly add up. Therefore, this approach should be avoided as much as possible for
building scalable and efficient data science pipelines.

64

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Better Approaches: df.iterrows and df.values

Depending on the situations at hand, you may have choices of two better approaches for
this iteration task.

pandas offers a dedicated method for iterating over rows called iterrows()
(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
DataFrame.iterrows.html), which might be handy to use in this particular situation.
Depending on the DataFrame size and complexity of the row operations, this may
reduce the total execution time by ~10X over the for loop approach.

You already saw the pandas method for obtaining a NumPy representation of the
DataFrame: df.values(). This can significantly speed things up (even better than
iterrows). However, this method removes the axis labels (column names) and so you
must use the generic NumPy array indexing like 0, 1 to process the data. The pseudocode
will look like the following:

for row in df.values:
if function(row) satisfies some condition:
do some calculation with row

A clear, worked-out example on this topic of comparing the efficiencies of multiple
pandas methods can be found in the article cited below. It also shows how the
speed improvement depends on the complexity of the specific operation at each
iteration. “Faster Iteration in pandas,” (https://medium.com/productive-
data-science/faster-iteration-in-pandas-15cac58d8226), Towards
Data Science, July 2021.

Using Modern, Optimized File Formats

CSV is a flat-file format used widely in data analytics. It is simple to work with and
performs decently in small to medium data regimes. However, as you do data processing
with bigger files (and also, perhaps, pay for the cloud-based storage of them), there are

65

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iterrows.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iterrows.html
https://medium.com/productive-data-science/faster-iteration-in-pandas-15cac58d8226
https://medium.com/productive-data-science/faster-iteration-in-pandas-15cac58d8226

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

some excellent reasons to move towards file formats using the columnar data storage
principle (www.stitchdata.com/columnardatabase/). The basic idea of columnar data
storage (vs. the traditional row-based storage) is illustrated in Figure 3-5.

D Name Address ZIPcode # transactions

Row-based
LL |l || II l[|| data store

Columnar
data store

Figure 3-5. Columnar (vs. traditional row-based) data format illustration

Apache Parquet is one of the most popular of these columnar file formats. It’s an
excellent choice in the situation when you have to store and read large data files from
disk or cloud storage. Parquet is intimately related to the Apache Arrow framework. But
what is Apache Arrow?

As per their website, https://arrow.apache.oxrg/, “Apache Arrow is a development
platform for in-memory analytics. It contains a set of technologies that enable big data
systems to process and move data fast. It specifies a standardized language-independent
columnar memory format for flat and hierarchical data, organized for efficient analytic
operations on modern hardware.”

Therefore, to take advantage of this columnar storage format, you need to use
some kind of Python binding or tool to read data stored in Parquet files into the system
memory and possibly transform that into a pandas DataFrame for the data analytics
tasks. This can be accomplished by using the PyArrow framework.

66

http://www.stitchdata.com/columnardatabase/
https://arrow.apache.org/

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Impressive Speed Improvement

PyArrow is a Python binding (API) for the Apache Arrow framework. Detailed coverage
of Apache Arrow or PyArrow (https://arrow.apache.org/docs/python/) is far beyond
the scope of this book, but interested readers can refer to the official documentation at
https://arrow.apache.org/ to get started.

Using the PyArrow function read_table, you can demonstrate considerable
improvement of the reading speed of large data files over the commonly used pandas
read csv method. For example, Figure 3-6 shows the ratio of pandas and PyArrow
reading times of the same data, stored in CSV and Parquet, respectively. The ratio goes
up as the data size increases; PyArrow performs considerably better with larger file sizes.

Ratio of Pandas to Arrow time to read files with increasing size

e

v s
£ 101 s
- "/
T
g ’
— S
- ’,..,, II
e s Sso ,1
g .~ L anE S /
s I ~—
© 4 j A hJ
= ’
5 .
‘ﬂ-" ".
o -

"

10 20 30 40 50 60 70 80 90 100

Size (MB)

Figure 3-6. pandas vs. PyArrow reading time ratio for CSV (and Parquet)
files. Source: https://towardsdatascience.com/how-fast-is-reading-
parquet-file-with-arrow-vs-csv-with-pandas-218095722e94, author
permission granted

This is something truly astonishing to ponder. pandas is based on the fast and
efficient NumPy arrays, yet it cannot match the file-reading performance shown
by the Parquet format. If we think about it deeply, the reason becomes clear that
the file-reading operation has almost nothing to do with how pandas optimize the
in-memory organization of the data after it is loaded into the memory. Therefore,
while pandas can be a fast and efficient package for in-memory analytics, we

67

https://arrow.apache.org/docs/python/
https://arrow.apache.org/
https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94
https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

don’t have to stay dependent upon traditional file formats like CSV or Excel to work
with pandas. Instead, we should move towards using more modern and efficient
formats like Parquet.

Read Only What Is Needed

Often, you may not need to read all the columns from a columnar storage file. For
example, you may apply some filter on the data and choose only selected data for the
actual in-memory processing. With CSV files or regular SQL databases, this means you
are choosing specific rows out of all the data. However, for the columnar database, this
effectively means choosing specific columns. Therefore, you do have an advantage in
terms of reading speed when you are reading only a small fraction of columns from the
Parquet file.

Figure 3-7 shows the reading advantage as the number of columns increases for the
same CSV vs. Parquet comparison. When you read a very small fraction of columns,
say < 10 out of 100, the reading speed ratio becomes as large as > 50 (i.e., you get 50X
speedup compared to the regular pandas CSV file reading). The speedup tapers off for
large fractions of columns and settles down to a stable value.

68

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Rag‘i]o of Pandas to Arrow time to read a 100MB CSV file with increasingnumber of columns

4
w n
£ I
S 60 4 (2]
E 1
o P
= 1
571 4 & ?
§ 1 of i
] 4 LI 1 \
g Vi ., ;' ’ v
= o \s ‘1 ! [} % ’. f
E ‘ L] \ f Ii B] o9 '.‘ N}] .‘
5 3 L& 'lfk.; o V7 ® HERW. fote)
2 Moo ¢ \se! ¢ %e®ee *
© d e | ¥
= 20 'S \‘

0 10 20 30 40 50 60 70 80 90

Number of columns

Figure 3-7. pandas vs. PyArrow reading time ratio for CSV (and Parquet)
files as the number of columns vary. Source: https://towardsdatascience.
com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-
pandas-218095722e94, author permission granted

Reading selected columns from a large dataset is an extremely common
scenario in data analytics and machine learning tasks. Often, subject matter
experts advise data scientists with domain knowledge and can preselect a few
features from a large dataset although the default data collection mechanism may
store a file with many columns/features. In these situations, it makes logical sense
to read only what is needed and process those columns for the ML workload.
Storing the data in a columnar data format like Parquet pays handsomely for
these cases.

PyArrow to pandas and Back

While the results shown above are impressive, the central question is about how to take
advantage of this fast and efficient file format for pandas-based data analytics tasks. This
has been made extremely simple by PyArrow utility methods, as this simple boilerplate
code illustrates:

import pyarrow as pa
import pandas as pd

69

https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94
https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94
https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

df = pd.DataFrame({"a": [1, 2, 3],
"b":[2.7,-1.2,5.4],
"c": ['abc', 'xyz', 'pgr']})
Convert from pandas to Arrow
table = pa.Table.from_pandas(df)
Convert back to pandas

df new = table.to_pandas()

So, there are ready functions to convert PyArrow tables and pandas DataFrame back
and forth. You can take advantage of this in the scenario illustrated in Figure 3-8.

CSV format

R - B

1010

Parquet format
1010

A\ l l . PyArrow ' PyArrow to ' A
l l . read Pandas .

This pipeline may have more steps, but is often much
faster for large datasets

Figure 3-8. Storing large datasets in Parquet (vs. CSV) may offer overall speed
advantage for many processing tasks with pandas

Suppose you have a large CSV file of numeric quantities with ~1 million rows and
14 columns, and you want to calculate the basic descriptive stats on this dataset. Not
so surprisingly, if you only use pandas code, the majority of the time will be taken
by the file reading operation, not by the statistical calculation. You can make this
task efficient by storing the file in the Parquet format instead of CSV, reading it using
the read_table method, converting to pandas using the to_pandas method, doing
the statistical calculation, and then just storing the result back in CSV or Parquet. The
output consists of only a few rows/columns as it is just the descriptive stats, so the file
format does not matter much. A demo example with speed comparison is shown in the
accompanying Jupyter notebook with this book.

70

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Other Miscellaneous Ideas

pandas is such a vast and storied library that there are thousands of ways to improve
upon inefficient and non-productive code patterns while using it. A few miscellaneous
suggestions are mentioned here.

Remove Orphan DataFrames Regularly

A very common programming pattern is the following:
e Create a DataFrame from an in-memory object or a file on the disk.
e Drop or fill Null or NaN values.
e Apply a user-defined function on certain columns.
e Group the final dataset by some specific column.
o Further processing on the grouped object...

Often, data scientists create intermediate DataFrames while executing this pipeline
and don’t remove them from the active memory space, thereby piling up orphan or
unused DataFrames as large memory-hogging garbage.

df1 = pd.read csv("A large file")

df2 = dfi.dropna()

df3 = df2.apply(user function, columns = [...])
df4 = df3.groupby([column_1, column 2])

df final = ...

If the only in-memory object that matters is df_final, then you must actively track
and delete all intermediate DataFrames as soon as their utility is over:

df1 = pd.read_csv("A large file")

df2 = df1.dropna()

del(df1)

df3 = df2.apply(user function, columns = [...])
del(df2)

df4 = df3.groupby([column_1, column 2])
del(df3)
df final = ...

71

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Chaining Methods

Continuing from the example above, it makes perfect sense to let the system handle

all the active tracking and deleting of intermediate DataFrame objects for a productive
codebase. pandas allows chaining methods, which makes this a relatively easy approach
to implement. The code can read something like this:

df final = pd.read csv("A large file").dropna().apply(user function,
columns = [...]).groupby([column 1, column 2])

As long as the methods and the chained code are readable, this is a perfectly sensible
approach.

Using Specialized Libraries to Enhance Performance

There are, in fact, quite a few external libraries that can help speed up pandas tasks
significantly. They include, but are not limited to, the following:

Using a specialized pipeline building library

Using libraries to utilize just-in-time compilation (https://
en.wikipedia.org/wiki/Just-in-time_compilation) and other
numerical tricks

Using parallel processing and Big Data helper frameworks to
spread the pandas workload over multiple computing cores and
in out-of-memory spaces

Use GPU-accelerated computing (https://medium.com/
dataseries/gpu-powered-data-science-not-deep-learning-
with-rapids-29f9ed8d51f3as) an alternative to pandas with
minimal changes in API and codebase

Each of these ideas needs a significant space to discuss at any reasonable details.
Therefore, I cover them separately in later chapters.

72

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3as
https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3as
https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3as

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Efficient EDA with Matplotlib and Seaborn

Matplotlib and Seaborn are two widely used visualization libraries for data science tasks
in the Python ecosystem. Together, they offer unparalleled versatility, rich graphics
options, and deep integration with the Python data science ecosystem for doing any kind
of visual analytics you can think of.

However, there are a few common situations where you can end up using these
fantastic packages in an inefficient manner. Additionally, you may also waste valuable
time writing unnecessary code or using additional tools to make your visual analytics
end products more presentable, which could have been accomplished with simple
modifications in the settings of Matplotlib and Seaborn. In this section, I cover tips and
tricks that can come handy to make your data science and analytics tasks productive
when using either of these libraries.

Embrace the Object-Oriented Nature of Matplotlib

Matplotlib is built in a thoughtful manner (www.aosabook.org/en/matplotlib.html)
following multiple layers of abstractions and object-oriented design hierarchy (as shown
in Figure 3-9). Almost always, a data scientist deals with the scripting layer to draw quick
plots (e.g., plt.scatter(x,y)) and change the look and feel of that graphical output
(e.g., plt.xlabel("The x-axis variable", fontsize=15)).Sometimes, they venture
into the middle artistic layer, creating custom Axes and setting the properties of Figure
objects. Usually, a data scientist does not need to work directly with the backend layer

for regular data analytics tasks.

* Utilities
* High-level functions

* Composites — Figure, Axes
* Primitives

* FigureCanvas

Bac kend ; ,G_.;. * Renderer

* Event

Figure 3-9. Matplotlib layers and core abstractions/objects

73

http://www.aosabook.org/en/matplotlib.html

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

However, it is a great education for a data scientist to have deep knowledge about
this layered architecture and follow the best practices that leverage the strength of a solid
object-oriented design. In particular situations such as those involving subplots, this

becomes prominent.

Two Approaches for Creating Panels with Subplots

A simple example of a good practice is to not to use the following old style of code to
create two subplots or panels stacked vertically:

Create the main figure

plt.figure()

The first of two panels

plt.subplot(2, 1, 1) # (rows, columns, panel number)
plt.plot(x, np.sin(x))

The second panel

plt.subplot(2, 1, 2)

plt.plot(x, np.cos(x));

A better alternative is to use the following code:

Create an array of two Axes objects

fig, ax = plt.subplots(2)

Call plot() method on the appropriate object
ax[0].plot(x, np.sin(x))

ax[1].plot(x, np.cos(x))

They produce identical graphical output, as shown in Figure 3-10.

74

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

=1 1

0.0 25 5.0 75 100 125 150 175 200

Figure 3-10. Matplotlib subplots panel example

But why is the second approach better or more productive? Think about the cognitive
load you might have to carry if it were 5 or 15 plots instead of 2 and the chances of bugs
that could have been introduced writing code like p1t.subplot(3, 1, 3) orplt.
subplot(4, 4, 13).How would you keep track of all those parameters inside the plt.
subplot() function? The second approach frees you from these considerations by
allowing it to pass in a single number like 2 or 15 and repeat the plot statement that
many times.

However, an even better approach is to put this code in a proper function that has
a little more intelligence to handle any number of plots and that refactors the plotting
statements using a loop.

A Better Approach with a Clever Function

Consider the following code defining a function that can produce a panel with an
arbitrary number of plots (always in a three-column format respecting the natural width
of the webpage or a book), dynamically adjusting the number of rows with the number
of total subplots:

def plot panels(n):

Produce a panel consisting of variable number of rows and 3 columns

if n%3==0:
nrows = int(n/3)
75

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

else:
nrows = n//3+1
ncols = 3
fig, ax = plt.subplots(nrows, ncols, figsize=(15,nrows*3))
axes = ax.ravel()
for i in range(n):
axes[i].plot(x, np.sin(x))

Here, you can change the variable n to any value. Internally, the function will always
calculate the appropriate number of rows with the logic in the code and set ncols = 3.
Here, ax is a (multi-dimensional) list of Matplotlib Axes objects (https://matplotlib.
org/stable/api/axes_api.html) and therefore can be indexed with axes[i] within a
loop after you flatten the list with an axes = ax.ravel() statement.

When you call this function with plot_panels(5), you get the result shown in

Figure 3-11.
10 10 10
0s 05 0s
00 00 0o
-05 05 4 -05
-10 -10 1 -10
0 5 10 15 0 0 5 bt 15 P 0 5 10 15 0
10 10 4 10
08
0s 05
06
00 00 {
04
-05 -05
02
AL : . . . =L . . . y 00 . . ; |
0 5 10 15 0 0 5 10 15 0 00 a2 04 06 08 10

Figure 3-11. Matplotlib panel function output with five plots

Note the blank canvas in the last row. This is because the plots must be arranged in a
rectangular grid and for placing five plots on a 3 x 2 grid, so the last one will be left blank.
When you call the same function with plot_panels(15), you get the result shown in
Figure 3-12.

76

https://matplotlib.org/stable/api/axes_api.html
https://matplotlib.org/stable/api/axes_api.html

10

05

00

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

10

10

05 0s
00 00
-05 -05
T T T T T -10 T T T T T -lo T T T T T
0 5 10 15 b [5 10 15 2 0 H 10 2
10 10
0s 0s
00 00
-05 -05
-10 -10
0 5 10 15 P 0 5 10 15 2 0 H 10 2
10 10
05 05
00 00
-0.5 -05
T T T T T _l o T T T T T _la T T T T T
0 H 10 15 2 [5 10 15 20 0 H 10 2
10 10
0s 0s
00 00
-0.5 -05
T T T T T -ln T T T T T -lo T T T T A
0 5 10 15 2 [5 10 15 2 0 H 10 2
10 10
0s 05
00 00
-05 -05
-10 -10
0 5 10 15 2 [5 10 15 20 0 5 10 2

Figure 3-12. Matplotlib panel function output with 15 plots

function definition that resulted in this scalable and efficient mechanism of generating

It is the object-oriented style of programming pattern you embraced in your

any number of plots without worrying about potential bugs. This type of practice makes

the codebase productive in the long run.

~J

7

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Set and Control Image Quality

Matplotlib interacts with the user’s graphical output system (web browser or stand-alone
window) in a complex manner and optimizes the output image quality with a balanced
set of internal settings. However, it is possible to tweak those settings as per the user’s
preference to get the most optimum quality that they desire.

This becomes particularly important for using Matplotlib in the Jupyter notebook
environment, which is an extremely common scenario. The quality of the default image,
rendered in a Jupyter notebook web browser, may not be good enough for publication
in a book or further processing. Data scientists often spend additional time and effort
enhancing the quality of the visualizations they produce as part of the data science
tasks. However, Matplotlib provides a simple and intuitive workaround to accomplish
the same.

Setting DPI Directly in plt.figure()

Setting the dots per inch is easily done with just one parameter:

plt.figure(figsize=(6,4),dpi=150)
plt.plot(x,y)

In a Jupyter notebook, the default DPI value is quite low. Depending on your system
settings, it is generally between 70 and 100. When you increase it, your figure also gets
bigger, so you have to be mindful of not clipping the image in your browser window.

Setting DPI and Output Format for Saving Figures

In addition to, or alternatively, you may also want to save the plot as a file object on your
local disk for later use. You can choose the DPI and output format:

plt.figure(figsize=(6,4))
plt.plot(x,y)
plt.title("Parabola", fontsize=16)
plt.xlabel('x-axis")
plt.ylabel('y-axis")
plt.savefig("Parabola.png",

dpi=300,

format = 'png')

78

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

When you choose JPEG as the output format, you can control a host of other
settings related to the JPEG compression. However, PNG or PDF are better in terms of
publication-worthy quality since they are lossless formats.

What is a good DPI to choose? It depends on the intended usage, of course.
For print, 150dpi is considered low-quality printing, even though 72dpi is
considered the standard for the web (which is why it’s not easy printing quality
images straight from the web). Low-resolution images will have blurring and
pixelation (https://en.wikipedia.org/wiki/Pixilation) after printing.
Medium-resolution images have between 200dpi - 300dpi. The industry standard
for quality photographs and image is typically 300dpi.

Adjust Global Parameters

The Matplotlib back end provides the ultimate flexibility in terms of setting global
parameters that control the look and feel of your visualization. The rcParams

settings (https://matplotlib.org/stable/api/matplotlib_configuration_api.
html#matplotlib.RcParams) have all the possible varieties you can think of. Here is a
code example:

import matplotlib as mpl

Data
X = np.arange(-10,10,0.1)
y = x**2

Set all backend parameters
mpl.rcParams['lines.linewidth'] = 3
mpl.rcParams['text.color'] = 'red'

‘lines.linestyle'] = '--

mpl.rcParams
mpl.rcParams
mpl.rcParams

axes.facecolor'] = '#c3e2eb’
figure.dpi'] = 120
‘font.style'] = "italic'
"font.weight'] = "heavy'

mpl.rcParams
mpl.rcParams
Plot

plt.plot(x,y)

L T e T s T s Y e B |

79

https://en.wikipedia.org/wiki/Pixilation
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

plt.title("Parabola", fontsize=16)
plt.xlabel('x-axis")
plt.ylabel('y-axis")

Note how you had to import the Matplotlib module itself with the statement import
matplotlib as mpl and notjust use the matplotlib.pyplot as plt. Also note the
figure.dpi as one of the many settings you set in this code. A typical result from this
setting is shown in Figure 3-13.

If you have decided on a set of image quality and styling settings, you can store them
in alocal config file and just read the values at the beginning of your Jupyter notebook or
Python script while importing Matplotlib. That way, every image produced by that script
or in that Jupyter session will have the same look and feel. The output of the code above
should look something like Figure 3-13.

Parabola

100 - \

so{ \ /

y-axis
-
~

-10.0 -7.5 -5.0 -25 0.0 25 5.0 7.5 10.0
X-axis

Figure 3-13. Matplotlib global rcParams change illustration

Did you notice that the axes.facecolor was set to a hex string #c3e2e6 in the
code above? Matplotlib accepts regular color names like red, green, or blue, or hex
strings in its various internal settings. You can simply use an online color picker
tool (https://imagecolorpicker.com/) and copy-paste the hex code for
better styling of your image.

80

https://imagecolorpicker.com/

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Tricks with Seaborn

Seaborn is a Python library built on top of Matplotlib with a concentrated focus on
statistical visualizations like boxplots, histograms, and regression plots. Naturally, for
data scientists, it is a great tool to use in a typical exploratory data analysis (EDA) phase.
However, using Seaborn with a couple of simple tricks can improve the productivity of
your EDA tasks.

Use Sampled Data for Large Datasets

Seaborn provides excellent APIs/methods to generate beautiful visualizations on all
features/variables of your dataset:

o Pairwise plots (relating every variable in a dataset to another one)
o Histograms
e Boxplots

It might be tempting to generate all these plots for all the features and their pairwise
combination (for the pair plot). However, depending on the amount of data and
possible combination for the pairwise plot, the number of raw visual elements can be
overwhelming for your system to handle.

One quick fix to this situation is to use random sample (a small fraction) of the
dataset for generating all these plots. If the data is not too skewed, then by looking at a
random sample (or a few of them), you should get a good feeling about the pattern and
distributions from a typical EDA anyway.

A boilerplate code will look like the following:

N = 100

df sample = df.sample(N)
plot seaborn(df sample)
<more code ...>

Here you pass on only 100 samples from the original DataFrame to the plotting
function. Note that to maintain readability and data structure integrity, you should not
randomly sample 100 rows from the DataFrame but use a built-in function to return
another DataFrame and pass that along to the plotting function.

81

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Use pandas Correlation with Seaborn heatmap

This is a trick to quickly visualize the correlation strengths between multiple features
of your dataset with just two lines of code. This kind of trick should be standard part of
your efficient data science toolkit.

Here is a code snippet:

df mpg = sns.load dataset('mpg')

mpg_corr = df mpg.corr()
sns.heatmap(mpg_corr,cbar=True,cmap="plasma")
plt.show()

This loads the famous Auto MPG dataset (https://archive.ics.uci.edu/ml/
datasets/auto+mpg) and produces the correlation heatmap shown in Figure 3-14,
demonstrating the positive and negative correlation strengths between various
numerical features of the dataset. The bright colors and italic/bold axis names of this
plot are the result of the Matplotlib style settings you did in the previous section. Unless
you change them explicitly or start a new Jupyter notebook session, they remain in effect.

-1.00
mpg -
-0.75
cylinders
-0.50
displacement
0.25
horsepower
0.00
weight —0.25
acceleration —0.50
model_year - _0.75
=] a e [
g 5 g
g g Le
- @
. g

horsepower

acceleration -

-
c
o
S
o

=
o
w

5

Figure 3-14. Using the pandas correlation function with a Seaborn heatmap to
get the correlation visualization quickly for any dataset

82

https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/auto+mpg

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

Use Special Seaborn Methods to Reduce Work

Seaborn provides some special method/plotting utilities that can reduce the work for a
data scientist in common tasks and thereby improve productivity. These utilities should

be put to use at every opportunity. Examples include

e Doing alinear regression and creating the plots of residuals with
residplot

o Counting the occurrence of categorical variables and plotting them
using countplot

o Using clustermap to create a hierarchical colored diagram from a

matrix dataset

Summary

In this chapter, I started by describing how NumPy is faster than native Python code and
enumerated its speed efficiency in simple scenarios. I talked about the pros and cons of
converting Python objects like lists and tuples to NumPy arrays before doing numerical
processing. Then, I discussed the importance of vectorizing operations as much as
possible for efficient data science pipelines. I also discussed some of the reading utilities
that NumPy offers and how they can make your code compact and productive.

Next, I delved into the efficient use of the pandas framework by discussing various
methods to iterate over DataFrames and accessing or setting values. Usage of modern,
optimized file storage formats like Parquet (in the context of Apache Arrow and column-
oriented data storage) were discussed at length. Some miscellaneous ideas like chaining
and cleaning up orphan DataFrame were talked about next.

Finally, I showed some tips and tricks to be used with popular visualization libraries
Matplotlib and Seaborn. The object-oriented layered structure of Matplotlib was shown
to be a strong foundation for building efficient data science code for plotting. I also
demonstrated various methods of controlling image quality and plot settings in a global
manner (i.e., for a Python or Jupyter session). Sampled data was discussed as an idea to
control the explosion of plots that can happen with large datasets.

83

CHAPTER 3 HOW TO USE PYTHON DATA SCIENCE PACKAGES MORE PRODUCTIVELY

These kind of tips and tricks are developed over time based on data analysis,
numerical computing, and exploratory data visualization needs that arise from handling
real-life datasets in projects that need to be efficient and productive from time and
computing resources points of view. As a regular practitioner of data science, you will
also develop your own tricks and make your data analysis and modeling code efficient.
The ideas in this chapter are just introductory guiding pointers to get you to think in that

direction.

84

CHAPTER 4

Writing Machine Learning
Code More Productively

Data scientists often come from a background quite far removed from traditional
computer science/software engineering, such as physics, biology, statistics, economics,
and electrical engineering. Unfortunately, there are not a lot of tutorials geared towards
data scientists and machine learning practitioners who do not come from a software
engineering background.

Data scientists use Python a lot for their work. Why? Because it’s awesome for ML
and the data science community. It is the most widely used major language for modern
data-driven analytics and artificial intelligence apps. However, it is also used for simple
scripting purposes, to automate stuff, to test a hypothesis, to create interactive plots
for brainstorming, to control lab instruments, and so on. But Python for software
development and Python for scripting are not the same beast, at least in the domain of
data science.

Scripting is (mostly) the code you write for yourself. Software is the assemblage
of code you (and other teammates) write for others. It’s wise to admit that when (a
majority of) data scientists who do not come from a software engineering background
write Python programs for AI/ML models and statistical analysis, they tend to write such
code mostly for themselves.

Writing high-quality, production-level code is a skill to be learned and honed over
a lifetime. It’s the bread and butter of software engineers and developers. Not all data
scientists will have the motivation and drive to acquire these skills. However, some
simple good practices can be learned and applied in your everyday work.

This chapter will take you through that journey with some hands-on examples using
the scikit-learn library. Chapters 5 and 6 will build on and expand the same concept.

85
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_4

https://doi.org/10.1007/978-1-4842-8121-5_4

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Why (and How) to Modularize Code
for Machine Learning

Writing modular and well-organized code almost always comes with long-term rewards.
This habit can save you time and cognitive effort when debugging and troubleshooting.
Well-planned, modular code looks elegant. It is often simple to read, and it automatically
welcomes other team members to help you and contribute to your work in a
collaborative fashion. This, of course, improves the overall quality and robustness of the
product/service.

But how do you decide what to modularize? How do you even start thinking about
it? Here are some questions that you can ask yourself while working on any data science
project.

Spaghetti code is to be avoided at all costs Hastily written code that gets
the job done but does not scale properly, is the prime example of ‘bad code’ or
‘spaghetti code’ that is littered everywhere in data science practice. This type of
code can also result from poor planning, not following well-designed coding style,
non-adherence to any object-oriented programming pattern, etc. Fundamentally,
such spaghetti code is error-prone, extremely difficult to scale and debug, and
counter-productive for production-level usage.

Questions to Ask Yourself

Even if you have never had a software engineering course in your life, some ideas may
come naturally to you. All you have to do is to put yourself in someone else’s shoes and
think about how that person will use your code in a constructive manner.

o Ifyou have a code block that appears more than once in your analysis
(in the exact same form or in slight variations), can you make a
function out of it?

e When you make such a function, which parameters will be passed
on? Which can be optional? What are the default values?

86

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

« Ifyou encounter a situation where you don’t know how many
parameters need to be passed on, are you using the *args and
**kwargs that Python offers?

o Did you write a docstring for that function to let others know what
the function does and what parameters it expects as well plus an
example?

e When you have collected a bunch of such utility functions, are you
still working on the same notebook, or switching over to a new, clean
notebook and just calling from my utility script import funci,
func2, func3?(Didyou createamy utility script asasimple
Python file rather than a Jupyter notebook?)

e Didyouputthemy utility scriptinadirectory, putan _init .
py file (even a blank one) in the same directory, and make it a
Python module to be importable just like NumPy or Pandas?

e Areyou thinking about not merely importing classes and methods
from packages like NumPy and TensorFlow but adding your own
methods to them and extending their functionality?

Start Simple with a Standard Data Science Flow

For starters, let’s consider a standard data science task flow so you can organize your
coding approach to follow modularization thinking. Even before writing a single line of
code, you can mentally organize (modularize) the tasks and plan for separate modules,
as shown in Figure 4-1.

87

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Figure 4-1. A standard data science flow organized in a modular fashion (in your
head) to be implemented in your code

Why those three colors (orange, blue, and green)? They simply represent the three
main flavors of the tasks: data-related, algorithm-related, and deployment-related,
respectively. The deployment portion is highly compressed and represented with this
single model saving task here. In a real-life production scenario, there will be a host of
modules related to it but all of them can start with this module, where you can save and
output the validated model as a software artifact (e.g., a Python pickle).

The main idea of Figure 4-1 is, however, to emphasize the scope and need for
modularization of these tasks. As data science practitioners, you perform these tasks
regularly inside a Jupyter notebook. To embrace productive data science, you need to
organize and even think beyond the notebook towards this modularization.

Let’s see how with a familiar scikit-learn example.

A Scikit-learn Task Flow Example

In this example, you will work with the famous breast cancer dataset (https://archive.
ics.uci.edu/ml/datasets/breast+cancer) and build a simple logistic regression
classifier for the same. The task is simple, but the key learning will be how to approach
the flow with a modularized coding practice.

88

https://archive.ics.uci.edu/ml/datasets/breast+cancer
https://archive.ics.uci.edu/ml/datasets/breast+cancer

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

The Monolithic Example

The opposite to modular code is monolithic code: all code in a single file or Jupyter
notebook. You could have written this monolithic code in a single shot:

from sklearn.datasets import load breast cancer
from sklearn.linear _model import LogisticRegression
<oudd

Data load
data = load breast cancer()
X, y = data['data'], data['target']

Some visual exploration
features avg = []
for i in range(30):
features_avg.append(X[:,1i].mean())
plt.figure(figsize=(4,6),dpi=100)
plt.barh(y=["'Feature-"+str(i) for i in range(30)],width=features avg)
plt.xlabel("Feature average")
plt.show()

Model build
clf = LogisticRegression(random state=0,

max_iter=500,

class weight="balanced").fit(X, y)
clf.score(X, y)

Cross-validation
scores = cross val score(clf, X, y, cv=5)
scores

print(f"Accuracy {scores.mean()} with a standard deviation of {scores.

std()}")

Model save
<oodd

89

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Everything is kind of mixed in the monolithic code above: import, data loading,
model building, validation, and saving. It has some standalone code like c1f.score(X, y)
that makes sense only inside a Jupyter notebook cell. It has a print statement, which
is fine for the exploration and experiment phase but may not be suitable for an efficient
codebase. It runs fine in a notebook but is hard to troubleshoot if bugs creep in or the
model needs tuning.

Let’s see how to clearly compartmentalize the code and build a modular code base
for the same task.

Little Boxes, Little Boxes...

Compartmentalizing or boxing is important for software development. This also
increasingly applies to productive data science work as well. For the code snippet above,
you can make these boxes easily. You start by copying the code blocks for different tasks
into separate Python scripts or standalone files from the Jupyter notebook. The idea is
shown in Figure 4-2.

—_— e
—)
- —_—
L
Monolithic code L?t'tle boxes

Figure 4-2. From monolithic code to constructing little boxes

To start, this code is for data loading only:
from sklearn.datasets import load breast cancer

def load data():

Loads the data and returns Numpy arrays

90

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

data = load breast cancer()

X = data['data']
y = data['target’']
return X,y

That’s it. A single function to do only one job. It is saved in a file called load_data.
py. Modularizing code highly encourages the use of single-purpose functions instead of
standalone code statements in the script. This is what is demonstrated here.

Next, data splitting into test and training sets:

from sklearn.model selection import train test split

def data_split(X,y,
test size=0.3,
random_state=42):
Randomly splits in test and train sets
and returns them as Numpy arrays
X _train, X test, y train, y test = train test split(
X, y, test size=test size, random state=random state)

return X train, X test, y train, y test

Note the use of default variables test size and random_state in case you want to
play with a test set fraction or different random initializations for experimental purposes.

Next, model fitting code:

from sklearn.linear model import LogisticRegression
import numpy as np

def model fit(X train,y train,
max_iter=500):
Fits the model with training data.
Returns the fitted estimator.

91

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

class_zero, class_one = np.bincount(y_train)
class_ratio = class_zero/class_one

if class_ratio > 1.25 or class_ratio < 0.8:

clf = LogisticRegression(max_iter=max_iter,
class_weight="balanced")
else:
clf = LogisticRegression(max_iter=max_iter)

clf.fit(X _train,y train)
return clf

You have to do some cross-validation with the test set data before you save this fitted
model. So, the cross-validation code is as follows:

from sklearn.model selection import cross val score

def cross validate(clf,X train,y train,cv=10):
Cross validates the model.
Returns an array of scores.
scores = cross_val score(clf,X train,y train, cv=cv)
return scores

You get back a NumPy array of cross-validation scores. Finally, you have to save/
package the model. But you may want to save the model only if the average of the cross-
validated scores is above a certain threshold. Otherwise, you can go back to tune the
model or look for more data (the dataset is fixed in this example, but the general idea
is valid).

Therefore, your final model saving code looks like the following:

from joblib import dump, load

def model save(clf,scores,threshold=0.9):

Saves a model depending on the CV scores

92

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

if scores.mean() > threshold:
dump(clf, 'logistic_model.joblib")
return 1

else:
return O

Note that instead of using pickle, you use the joblib library for more efficient and
compact storage of the scikit-learn estimator. This is described here: https://scikit-
learn.org/stable/model persistence.html.

OK, you created modularized code for your data science task. Now what?

How to Use the Modular Code

After creating these modules, the directory structure may look like Figure 4-3. Note
the Jupyter notebook at the bottom (circled). This is what you get as the fruit of the
modularization of your code.

Your notebook looks much cleaner and more readable than the spaghetti code you
had earlier. If you examine that Jupyter notebook, you may see something like Figure 4-4.

Your dkegtony

load_data.py

data_split.py

model_fit.py

cross_validate.py

model_save.py

Jupyter sklearn-modular.ipynb

L

Figure 4-3. Python script/modules in the directory for various ML tasks
93

https://scikit-learn.org/stable/model_persistence.html
https://scikit-learn.org/stable/model_persistence.html

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Imports (your own modules)

Importing your modules

from load_data import load_data

from data_split import data_split

from model _fit import model fit

from cross_validate import cross_validate
from model_save import model_save

Loading data

: X, y = load_data()

Splitting data

]: X_train, X_test, y_train, y_test = data_split(X,y,
random_state=101)

Fitting model

fitted_model = model_fit(X_train,y_train,
max_iter=50e@)

type(fitted_model)

sklearn.linear_model._logistic.LogisticRegression

Cross-validation scores
: scores = cross_validate(fitted_model,X test,y test)

© scores

array([0.94444444, 2.94117647, ©.88235294, @.94117647, ©.94117647,
1. , ©.88235204, 0.94117647, ©.94117647, ©.82352041])

Could the model be saved?

With a high threshold of 0.95

if model_save(fitted_model,scores,threshold=0.95):
print(“Model saved successfully")

else:
print(“Model did not pass cross-validation™)

Model did not pass cross-validation

With a lowered threshold of 0.9

: if model_save(fitted_model,scores,threshold=9.9):
print(“Model saved successfully”)
else:
print("Model did not pass cross-validation")

Model saved successfully

Figure 4-4. Typical Jupyter notebook (cleaner and compact) after modularizing
the code

94

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

The key benefit of this approach is that you can play with the following aspects of the

task independently and without touching the main notebook code:

Data source (just modify the load data.py file)
Data splitting options (just modify the data_split.py file)

Choice of model and hyperparameters (just modify the
model fit.py file)

Cross-validation strategy and options (just modify the
cross_validate.pyfile)

The decision to save the model (just modify the model save.py file)

Also, note how the input and output of each module is controlled through a focused

and targeted function definition. This gives you the opportunity to validate and check

the expected outcome from each of the modules. This means if for some reason the

data or model is corrupted, you can catch it mid-flight before it goes to the model fitting

or saving stage. This saves infrastructure costs and enhances the robustness of the ML

platform as a whole.

Figure 4-5 demonstrates the idea of separate test/validation blocks for each

of the core modules. It also shows a system_config. json file that may store the

cross-validation threshold and the model_save.py file to check the current model’s

performance against that criterion before saving the model.

Can you imagine all this flexibility and possibilities with a monolith Jupyter

notebook?

95

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

data_split.py

cross_validate.py

Validated?
J

model_save.py

LI

system_config. json

Figure 4-5. Modular code used along with data/model validation checks and
system configuration files

Systematic Evaluation of ML Algorithms
in an Automated Fashion

As discussed in the beginning of this chapter, apart from modularization, another central
pillar of efficient data science code is automation. We often write repetitive code that can
introduce bugs and inefficiency.

One of the most common tasks for a typical DS workflow is to run the same
data through multiple ML algorithms and choose the best one (according to some
predetermined metric). In this section, you will examine a hands-on example of

automating this evaluation task.

List of Classifiers

At the beginning, you have to pick the scikit-learn estimators (along with their
hyperparameters) for this evaluation. You can define a list with these objects:

classifiers = [
LogisticRegression(C=0.1,n jobs=-1),
KNeighborsClassifier(10,n_jobs=-1),
SVC(kernel="linear", C=0.1),
SVC(gamma="scale', C=1),

96

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

DecisionTreeClassifier(max_depth=10,min_samples leaf=10),
RandomForestClassifier(max_depth=3, n_estimators=50, max_features=5,
min_samples leaf=10,n_jobs=-1),
MLPClassifier(hidden_layer_ sizes=(50,50),alpha=0.2,activation="relu’,
max_iter=200,learning rate_init=0.01,learning rate='adaptive’,
early stopping=True,validation fraction=0.2),
AdaBoostClassifier(base estimator=DecisionTreeClassifier(max_depth=3),
n_estimators=50,learning rate=0.1),
BaggingClassifier(base estimator=DecisionTreeClassifier(max_depth=3),
n_estimators=50, max_features=5,n jobs=-1),

GaussianNB(),
QuadraticDiscriminantAnalysis(reg param=0.1)]

You can also define a list of names (strings) for plotting and enumeration purposes:

names = ["Logistic Regression”,"Nearest Neighbors", "Linear SVM",
"RBF SVM", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost",

"Bagging","Naive Bayes", "QDA"]

Function to Automate Model Fitting

At the heart of this approach is the function that runs through the given list of estimators

and fits the data to them one by one. It also encapsulates the usual data splitting and

scorekeeping. Optionally, you can also record the time it takes to fit each model so that

you can do a trade-off analysis of model performance and computational cost later on.
So, the function starts like this:

def run_classifiers(X,y,
clf 1st = [LogisticRegression(C=0.1,n jobs=-1)],
names=None,
num_runs=10,
test frac=0.2,
scaling=True,
metric="accuracy',
runtime=True,
verbose=0):

97

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Runs through the list of classifiers for a given number of times.
Returns a DataFrame with scores (and, optionally, running times).

Note that it only needs some training data (X and y vectors) to run. Everything else
is optional and has default values, even the classifier list. It features essential arguments
like test_frac for the training/test set split, scaling for deciding whether to scale the
training data, metric for comparing the algorithms against a single performance metric,
and runtime to record computation time for each algorithm’s run.

However, the most important argument is num_runs, which ensures that the ML
algorithms run multiple times and all the performance metrics and running times
are saved to a Pandas DataFrame. This is the final DataFrame that is returned by the
function.

For example, if scaling is True, then it performs scaling:

if scaling:
X _train= StandardScaler().fit transform(X train)
X test = StandardScaler().fit transform(X test)

If the runtime Boolean is enabled, then it computes and stores the running times:

if runtime:
t1 = time.time()
clf.fit(X train, y train)
t2 = time.time()
delta t = round((t2-t1)*1000,3)
rt.append(delta t)

Finally, it returns either a single DataFrame of scores or two DataFrames if the
runtime is also asked for:

if runtime:

return df_scores, df runtimes
else:

return df _scores

The complete code for the function and other details are provided in the
accompanying Jupyter notebook.

98

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

How Does Automation Help?

Fundamentally, the automation approach makes your exploration and experimentation
code cleaner and compact. You can start a Jupyter notebook, load some data into

two vectors, X and y, and execute the function right away. You can get all the results
(accuracy scores) at the same time with a single execution, as shown in Figure 4-6.

0 1 2 3 4

LogisticRegression 0.585000 0.614634 0.600985 0.636132 0.587065
KNeighborsClassifier 0.751295 0.733154 0.747253 0.748052 0.744304
SVC 0579345 0.621212 0.583541 0.585752 0.604167

SVC_1 0816832 0.823834 0.789610 0.811594 0.797927
DecisionTreeClassifier 0.583176 0.627160 0.556150 0.668305 0.649077
RandomForestClassifier 0.5648101 0.625954 0.602041 0.613811 0.635870
MLPClassifier 0.734584 0.785542 0.785714 0.77669¢ 0.757033
AdaBoostClassifier 0.647343 0.716346 0.655340 0.656934 0.671835
BaggingClassifier 0.653061 0.607595 0.64928% 0.652174 0.632432
GaussianNB 0.586735 0.646914 0.625917 0.643216 0.621891
QuadraticDiscriminantAnalysis 0.828283 0.814070 0.794595 0.819588 0.812500

Figure 4-6. Typical DataFrame output of an automated run of multiple ML
algorithms

d1 = run_classifiers(X,y,
clf lst=classifiers,
metric="f1",
num_runs=5,
runtime=False,
verbose=1)

99

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Since you have verbose=1, you will see this kind of status message printed:

Finished 5 runs for LogisticRegression algorithm

Thereafter, with simple plotting code, you can visualize the average performance of
all of the algorithms and their variances (Figure 4-7).

Mean accuracy score of algorithms Std.dev of the accuracy scores of algorithms
QuadraticDiscriminantAnalysis SN QuadraticDiscriminantAnalysis N
GaussianNB GaussianNB N
BaggingClassifier I BaggingClassifier I
AdaBoostClassifier I AdaBoostClassifier I

MLPClassifier R MLPClassifier G

RandomForestClassifier RandomForestClassifier TG
DecisionTreeClassifier " DecisionTreeClassifier I
SvC_] e] svc_1 I
svC - svc
KNeighborsClassifier Sm—— KNeighborsClassifier N
LogisticRegression I LogisticRegression I
00 02 04 06 08 000 001 002 003 004

Figure 4-7. Mean accuracy scores and their standard deviation for an automated
run of multiple ML algorithms

100

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Note that you had two support vector classifiers with a different kernel and penalty
coefficients, and they are recorded as SVC and SVC_1 in the table.

You can experiment with various hyperparameter tuning with minimal code change.
For example, to record decision tree performance for various tree depths, you can
create a list:

clf 1st = [DecisionTreeClassifier(max_depth=i) for i in range(2,16)]

You can then pass this list to the automation function. You get the DataFrame back
and simple averaging of the results yields the plot shown in Figure 4-8.

0.62 |

e
o
IS}

I
w
ow

0.56 1

0.54 4

Accuracy score (average)

0.52 1

T T T

2 4 6 8 10 12 14
Tree depth

Figure 4-8. Mean accuracy scores of decision tree classifiers with varying depth
Basically, once you have an automated way to run a multitude of ML algorithms

in a single shot and compare their performance, you can think of a host of practical
applications for this utility in the experimental and production phases.

Automation and modularization naturally lead to a low-code environment

In Chapter 12, we talk about low-code libraries and frameworks that abstract
away a lot of manual data science work and generate results with only a few lines
of code. One of the main driving forces behind such low-code tools is the kind of
modularization that you did here. Effectively, you reduced the code for repeated
experimentation to only a few lines by utilizing the custom modules. This makes
the overall codebase leaner and more efficient to maintain and debug.

101

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Decision Boundary Visualization

For many classification problems in the domain of supervised ML, you may want to go
beyond the numerical prediction (of the class or of the probability) and visualize the
actual decision boundary between the classes. This is, of course, particularly suitable for
binary classification problems and for a pair of features: the visualization is displayed on
a 2D plane. For example, Figure 4-9 shows a visualization of the decision boundary for

a Support Vector Machine (SVM) tutorial from the official scikit-learn documentation
(https://scikit-learn.org/stable/modules/svm.html).

SVC with linear kernel LinearSVC (linear kernel)

Sepal width
Sepal width

o

o

Sepal length Sepal length

SVC with RBF kernel SVC with polynomial (degree 3) kernel

Sepal width
Sepal width

Sepal length Sepal length
Figure 4-9. Decision boundaries are visualized for SVMs with different kernels
Now the problem is that scikit-learn does not offer a ready-made, accessible method
for doing this kind of visualization. However, you can create custom code to achieve this

so that the data science task can be more efficient when it comes to visualizing decision
boundaries.

102

https://scikit-learn.org/stable/modules/svm.html

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

The Custom Function

The full description and the code for the function are provided in the accompanying
Jupyter notebook. The code starts like this:

def plot decision boundaries(X, vy,
model class,
**model params):
Function to plot the decision boundaries of a classification model.
This uses just the first two columns of the data for fitting the model as
we need to find the predicted value for every point in scatter plot.

Arguments:
X: Feature data as a Numpy-type array.
y: Label data as a Numpy-type array.
model class: A Scikit-learn ML estimator class
e.g. GaussianNB or LogisticRegression
**model_params: Model parameters to be passed on to the ML
estimator

Note the use of the **model params unpacking operator to allow the user to pass on
any number and variety of parameters to the function corresponding to the model in
question. Internally, it works by creating a 2D mesh grid and plotting colored contour
regions corresponding to the predicted classes.

Here the model class denotes the exact scikit-learn estimator class that you call in
to instantiate your ML estimator object. Note that you don’t have to pass on the specific
ML estimator that you are working with. Just the class name will suffice. This function
will internally fit the data and predict to create the appropriate decision boundary
(considering the model parameters that you also pass on).

What is this unpacking operator? You might have seen the arguments *args
and **kwargs in the API documentation of many functions. They allow you to pass
multiple arguments or keyword arguments to a function when you don’t even know
the precise number and order of the arguments beforehand and must decide that
dynamically, at runtime. This article presents an excellent tutorial.

103

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Example Results

For the demonstration, let’s use a divorce classification dataset. This dataset is about
participants who completed the personal information form and a divorce predictors
scale. The data is a modified version of the publicly available data at the UCI portal
(https://archive.ics.uci.edu/ml/datasets/Divorce+Predictors+data+set) after
injecting some noise. There are 170 participants and 54 attributes (or predictor variables)
that are all real-valued.

You'll compare the performance of multiple ML estimators on the same dataset:

e Naive Bayes
o Logistic regression
e K-nearest neighbor (KNN)

Because the binary classes of this dataset are easily separable, as shown in
Figure 4-10, all the ML algorithms perform almost equally well. However, their respective
decision boundaries look different from each other and this is what you are interested in
visualizing through this utility function.

Figure 4-10. Class separability of the divorce dataset
104

https://archive.ics.uci.edu/ml/datasets/Divorce+Predictors+data+set

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

The decision boundary from the Naive Bayes algorithm is smooth and slightly
nonlinear, as shown in Figure 4-11. You achieve this with only four lines of code:

plt.figure()

plt.title("Naive Bayes decision boundary",fontsize=16)
plot decision boundaries(X train,y train,GaussianNB)
plt.show()

Naive Bayes decision boundary

Feature-2

-2 0 2 4 6 8
Feature-1

Figure 4-11. Decision boundary of the Naive Bayes algorithm

As expected, the decision boundary from the logistic regression estimator is
visualized as a linear separator, as shown in Figure 4-12.

Logistic regression decision boundary

Feature-2

2

Feature-1

Figure 4-12. Decision boundary of the logistic regression algorithm

105

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

The K-nearest neighbor decision boundary comes up as nonlinear and non-smooth,
as shown in Figure 4-13. This is because KNN is an algorithm based on the local

geometry of the distribution of the data on the feature hyperplane (and their relative
distance measures).

K-nearest neighbor decision boundary

Feature-2

-2 0 2 4 6 8
Feature-1

Figure 4-13. Decision boundary of the KNN algorithm

The function works with any scikit-learn estimator, even a neural network. Here is
the decision boundary with the MLPClassifier estimator of scikit-learn, which models a
densely connected neural network with user-configurable parameters (https://scikit-
learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.
html). Note that in the code, you pass on the hidden layer settings, the learning rate, and
the optimizer (Stochastic Gradient Descent or SGD; https://towardsdatascience.
com/stochastic-gradient-descent-clearly-explained-53d239905d31). The decision
boundary generated by the code is shown in Figure 4-14.

106

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

plot_decision_boundaries(X_test,y_test,MLPClassifier,hidden_layer sizes=(5,2),

solver='sgd’',learning_rate_init=0.001,max_iter=1000)
plt.show()

Feature-2

Feature-1

Figure 4-14. Decision boundary and code for the MLP algorithm

Parametric Experimentation

As mentioned, you can pass on any model parameters that you want to the utility
function. In the case of the KNN classifier, as you increase the number of neighboring
data points, the decision boundary becomes smoother. This can be readily visualized
using this utility function, as shown in Figure 4-15.

107

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

KNN decision boundary with neighbros: 5

KNN decision boundary with neighbros: 20

Feature-2

Feature-1
KNN decision boundary with neighbros: 10

Feature-2

Feature-2

Feature-1

Feature-1

Figure 4-15. Decision boundary of KNN with different neighbor counts -
experimentation with the algorithm

Other Scikit-learn Utilities and Techniques

Scikit-learn provides many other tools and utilities to make your ML code more
productive. An exhaustive treatment of them is beyond the scope of this book. However,

here I briefly mention some of the most useful ones that you can readily utilize in your
data science code.

Hyperparameter Search Utilities

In scikit-learn, hyperparameters are passed as arguments to the constructor of the
estimator classes. They often need to be tuned meticulously in order to achieve good
ML model performance. However, this task can be exhaustive and inefficient if done
manually or without a systematic plan. Fortunately, scikit-learn provides efficient grid
search utilities that behave similarly to standard ML estimators and let you run a large
number of experiments (with varying hyperparameters) with just a few lines of code.

108

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

A search consists of the following:
e An estimator (a regressor or classifier such as sklearn.svm.SVC())
e A parameter space
e A method for searching or sampling candidates
e Across-validation scheme
e Ascore function

Check out the official documentation of scikit-learn at https://scikit-learn.org/
stable/modules/grid search.html to see the options and their usage. For increasing
the productivity of your data science code, they can come in handy.

Parallel Job Runner

Not all scikit-learn estimators can take advantage of multi-core CPUs natively, but
some do have the ability to parallelize costly numerical operations using the backend
supporting libraries:

o Usingthe joblib library. In this case, the number of threads or
processes can be controlled with the n_jobs parameter.

e Using OpenMP, used in C or Python code.

Joblib is able to support both multiprocessing and multithreading. Whether joblib
chooses to spawn a thread or a process depends on the back end it’s using. You can make
the choice in the code as follows:

from joblib import parallel backend

with parallel backend('threading', n_jobs=2):
estimator.fit(X,y)
<uee

Generally, joblib uses the locy back end. But there are other, more powerful
alternatives. For example, Dask can scale scikit-learn algorithms out to a cluster of
machines by providing an alternative joblib back end:

from dask.distributed import Client
import joblib

109

https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

client = Client(processes=False) # create local cluster
or connect to remote cluster
client = Client("scheduler-address:8786")

with joblib.parallel backend('dask'):
Scikit-learn code

In general, this type of parallel processing is highly suitable for ML models that
match the parallelism natively (e.g., Random Forest with multiple trees or AdaBoost
with multiple base estimators). We will revisit this in more detail in Chapter 11 when we
discuss Dask-based parallelism.

Out-of-the-box Visualization Methods

Visualization of ML models’ output and performance metrics is a vast and complex
topic. Every data scientist has their own choice and style of visualizing data and model
outputs. However, for efficient data science practice, it is often beneficial to have a set of
out-of-the-box routines that can take an ML model and output standard visualizations
such as a ROC curve, learning curve, precision-recall curve, and confusion matrix.

Scikit-learn provides a uniform API than can accept an estimator object, test or
predicted data, and draw out these visualizations using the Matplotlib back end. This
comes in handy for quick prototyping and productive data science workflow.

More details can be found on the scikit-learn visualization API's page at https://
scikit-learn.org/stable/visualizations.html#visualizations.

Synthetic Data Generators

Scikit-learn provides a host of synthetic data generators for quickly evaluating and
experimenting with ML algorithms. While a data science problem with a real dataset does
not directly benefit from these generators, they often come in handy to gauge the relative
strength and weakness of various ML algorithms and test out various coding approaches.

A somewhat detailed discussion about these methods can be found in this article
along with a list of benefits for synthetic data generation in general: “Synthetic data
generation — a must-have skill for new data scientists” (https://towardsdatascience.
com/synthetic-data-generation-a-must-have-skill-for-new-data-scientists-915
896c0c1ae).

110

https://scikit-learn.org/stable/visualizations.html#visualizations
https://scikit-learn.org/stable/visualizations.html#visualizations
https://towardsdatascience.com/synthetic-data-generation-a-must-have-skill-for-new-data-scientists-915896c0c1ae
https://towardsdatascience.com/synthetic-data-generation-a-must-have-skill-for-new-data-scientists-915896c0c1ae
https://towardsdatascience.com/synthetic-data-generation-a-must-have-skill-for-new-data-scientists-915896c0c1ae

CHAPTER 4 WRITING MACHINE LEARNING CODE MORE PRODUCTIVELY

Summary

In this chapter, you started by learning about the utility and benefits of modularizing
ML code. You took a typical data science workflow of building out a classification model
with a well-known dataset and applied this principle of modular code. You compared
the monolithic (or spaghetti) code in a Jupyter notebook to the short Python scripts/
modules you wrote and saw the utility of the approach in a cleaner Jupyter notebook.
You also saw how this approach played well with software testing and platform-level
decision making.

Next, you explored an approach of systematic evaluation of ML algorithms with
automation code where you constructed a function that can run through a list of any
scikit-learn estimators, fit models, evaluate performance metrics and running times, and
save everything in a nice dataset for later evaluation. This kind of automation is the first
step towards learning how to do large-scale ML experimentation in a systematic and
productive manner.

Next, you explored another productive technique of visualizing decision boundaries
for arbitrary classification models using a unified function. This leads to efficient visual
analytics of classification boundaries when you need to examine such characteristics.

Finally, you learned utilities and techniques embedded in the scikit-learn library
that can improve the efficiency of your ML code and data science tasks. This included
hyperparameter search, parallel job running, ready-made visualization routines, and
synthetic data generators.

In the next chapters, you will build upon the concept of modular and object-oriented
coding approaches and explore their utility and application for deep learning and
classical ML tasks.

111

CHAPTER 5

Modular and Productive
Deep Learning Code

In the previous chapter, I explored the idea that most data scientists often come from

a background that is quite far removed from traditional computer science/software
engineering. Consequently, they produce code that is perfectly suitable for great
exploratory data analysis, statistical modeling, or innovative ML experiments but not
robust enough for the production phase of a large business platform. Data scientists
often think in terms of the next analysis script but not along the lines of the next software
module that integrates into a larger system.

Scripting is (mostly) the code you write for yourself. Software is the assemblage of
code you (and other teammates) write for others. It is an undeniable fact that most data
scientists, not having a traditional software development background and training, tend
to write AI/ML analysis code mostly for themselves.

They just want to get to the heart of the pattern hidden in the data. Fast. Without
thinking deeply about normal mortals (users). They write a block of code to produce a
rich and beautiful plot. But they don’t create a function out of it to use later. They import
lots of methods and classes from standard libraries. But they don’t create a subclass of
their own by inheritance and add methods to it for extending the functionality.

In the previous chapter, you explored some of these issues through scikit-learn code
and a typical classical ML task, fitting a logistic regression model. In this chapter, you
will explore how similar principles can help you write better code for deep learning tasks
with some hands-on examples using Keras/TensorFlow.

113
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_5

https://doi.org/10.1007/978-1-4842-8121-5_5

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Modular Code and Object-Oriented Style
for Productive DL

Functions, inheritance, methods, classes: they are at the heart of robust object-oriented
programming (OOP). But you may not want to delve deeply into them if all you want to
do is create a Jupyter notebook with your exploratory data analysis and plots.

You can avoid the initial pain of using OOP principles, but this almost always renders
your notebook code non-reusable and non-extensible. More precisely, that piece of
code serves only you (until you forget what exact logic you coded) and no one else.

But readability (and, thereby, reusability) is critically important for any good software
product/service. That is the true test of the merit of what you produce. Not for yourself.
But for others.

Data science involving deep learning models and code is no exception. These days,
powerful and flexible frameworks like TensorFlow or PyTorch make the actual coding of
a complex neural network architecture relatively simple and brief. However, if the overall
DS code is not modularized and well-organized (following much of the style discussed
in Chapter 4 in the section “Why (and How) to Modularize Code for Machine Learning”),
then it is plagued by the same issues of non-reproducibility and non-reusability. Let’s
see some examples of how you can organize and modularize DL code in your data
science work.

Example of a Productive DL Task Flow

Deep learning makes it easy to train ML models for highly nonlinear (and even noisy)
datasets and phenomena. Modern frameworks like Keras/TensorFlow/PyTorch offer
powerful and flexible APIs to build these models with relative ease and a surprisingly
small amount of code. However, an end-to-end DS flow can be made much more
productive if you follow some simple guidelines on how you build, manage, and utilize
DL code. An approach of building compact modules and a systematic flow (shown in
Figure 5-1) can help. Some examples of related guidelines are discussed below in the
form of questions.

One of the most common and repetitive tasks for DL analysis is to
build out a deep neural network (DNN) object. Data scientists
routinely use non-modularized code to just add layers (e.g., from
Keras (https://keras.io/api/layers/) or PyTorch https://

114

https://keras.io/api/layers/
https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

pytorch.org/tutorials/recipes/recipes/defining a neural
network.html) APIs) and build this as a local variable in their
Jupyter notebook. Wouldn’t it be a much better idea to create a
custom function for this task?

After building an (untrained) model, you must compile (set
learning rate, batch size, etc.) and run the model with data. Would
a custom function help make this task modularized as well?

When you make such a DNN builder function, which parameters
will be passed on? Which ones can be optional? What are the
default values? If you encounter a situation where you don’t know
how many parameters need to be passed on, are you using the
*args and **kwargs that Python offers?

Did you write a docstring for that function to let others know
what the function does and what parameters it expects plus an
example?

Can you also modularize the code used to create the visual
analytics based on the output of those model functions?

115

https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html
https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Modularized
Dota

transformation < l >

Data connectors
and wrangling

Modularized

:0 ; . Mo;le_[

':. :‘ builchin i
. 200", of Architecture
“ . l <l > | options

Modularized
Model comp?le
and run < > | Runtime

options

| | Modularized
n |Visual analytics Visualization
L_ and p[o‘ts <l> | options

Figure 5-1. Deep learning task flow organized in modular fashion

|
|
o
06 s %
bl
| e
o, o

Wrappers, Builders, Callbacks

Fundamentally, in the subsection above I described wrapping up the most essential
tasks in a DL-based workflow inside custom functions and using them as the core
building blocks of your data science code. Additionally, you can wrap up the tasks
related to data formatting/transformation and prediction/inference in a similar fashion.

It is to be noted that wrapper functions for regression and classification tasks can
have separate sets of architecture and parameters. So, it makes sense to keep their build
customized. The choice of the default parameter values in the wrapper functions is of
critical importance, too.

Apart from a simple functional wrapper, you can also utilize a powerful construct
called a callback that caters to the dynamic nature of DNN training. Essentially, a
callback is an object that can perform actions at various stages of DNN training (e.g., at
the start or end of an epoch or before starting a single batch). You can use callbacks for
various scenarios, including but not limited to the following:

116

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

o Early stopping based on some error or computation criterion

o Periodically saving the model to disk (making the system robust
against unexpected failure)

e Obtaining an overview on various internal states and statistics of a

model in mid-flight (i.e., while the training is going on)

Finally, if you want to extend this approach all the way to the full OOP paradigm,
you can build out classes and utility modules incorporating all these wrappers as special
methods. You can call this a DL utility module, which you can call upon in any data
science task where supervised ML modeling is needed.

Modular Code for Fast Experimentation

Let’s demonstrate the ideas discussed above using a simple case: a DL image
classification problem with the Fashion MNIST (https://github.com/
zalandoresearch/fashion-mnist) dataset. The core ML task is simple: build a classifier
for this dataset, which is a funny spin on the original famous MNIST hand-written digit
dataset. Fashion MNIST consists of 60,000 training images of 28 x 28-pixel size of objects
related to fashion (e.g., hats, shoes, trousers, t-shirts, dresses, etc.). It also consists of
10,000 test images for model validation and testing. A slice of the dataset is shown in
Figure 5-2 for illustration.

117

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

CHAPTER 5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

i

Cak

D i R B e B
ik i i s P il A i S P B gl i -

‘ Rt]]

Figure 5-2. A slice of the Fashion MNIST dataset

Business/Data Science Question

The basic ML task for this dataset seems straightforward. But what if there is a higher-
order optimization or visual analytics question around this core ML task: how does the
model architecture complexity impact the minimum epochs it takes to reach the desired
accuracy?

It should be clear to you why we even bother about such a question: because this
is related to the overall business optimization. Training a neural net is not a trivial
computational matter (www. technologyreview.com/s/613630/training-a-single-ai-
model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/). Therefore, it
makes sense to investigate what minimum training effort must be spent to achieve a
target performance metric and how the choice of architecture impacts it.

The image classification accuracy could be related to a broader business outcome
such as a fashion recommendation or clothing identification in a store. The core data
science task helps optimize the cost of running that business task—to use the image
database with the optimal expenditure of computing resources using the ML code as the
underlying nuts and bolts.

118

http://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
http://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

In this example, you will not even use a convolutional neural network (CNN;
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53), which are commonly used for image
classification tasks. This is because, for this dataset, a simple densely connected neural
net can accomplish reasonably high accuracy, and, in fact, a sub-optimal performance
is required to illustrate the main point of the higher-order optimization question
posed above.

So, you must solve two problems:

o What the minimum number of epochs for reaching the desired
accuracy target and how do you determine this?

o How does the specific architecture of the model impact this number or
training behavior?
To achieve the goals, you will use two simple OOP principles:

o Creating an inherited class from a base class object

o Creating utility functions and calling them from a compact code
block that can be presented to an external user for higher-order
optimization and analytics

Inherit from the Keras Callback

You inherit a Keras callback class (as the base) and write your own subclass by adding
a method that checks the training accuracy and takes an action based on that value.
The code snapshot and some explanations are shown in Figure 5-3. More details on
this can be found in the official TensorFlow article “Writing your own callbacks” at www.
tensorflow.org/guide/keras/custom_callback.

119

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://www.tensorflow.org/guide/keras/custom_callback
http://www.tensorflow.org/guide/keras/custom_callback

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Keras method, used as a base class -
inheritance of methods

class myCallback(tf.keras.callbacks.Callback):

wan

User can pass on the desired accuracy threshold while creating an instance of the class

def __init_ (self,acc_threshold=0.9,print_msg=True):| _ jnit__ to allow the user
self.acc_threshold=acc_threshold \ pOSS on a accuracy fﬂr‘ge‘r
self.print_msg = print_msg

def on_epoch_end(self, epoch, logs={}): A simple switch to turn of f the print later
if(logs.get('acc')>self.acc_threshold): when it will be used in an optimization loop

if self.print_msg:
print(“”\nReached 98% accuracy so cancelling the training!")

self.model.stop_training = True : . : .
bt = Using the inherited method to dynamically

5 e stop training upon reaching the accuracy target

print(”\nAccuracy not high enough. Starting another epoch...\n")

Figure 5-3. A custom class built on top of a Keras callback

Basically, this simple callback results in dynamic control of the epochs; the training
stops automatically when the accuracy reaches the desired threshold. Figure 5-4 shows a
snapshot of an example run.

68eee/ce0e0 [] - 55 89%us/sample - loss: ©.2954 - acc: ©.8980
Epoch 6/1@
59360/60000 [>.] - ETA: 8s - loss: ©.2816 - acc: ©.8978
Accuracy not hi i och...

I rint message to indicate accuracy not high enough yet
6eee0/coe0e0 [- B5 970573 - T B, - acc: ©.8968
Epoch 7/1@
59584 /60000 [».] - ETA: @s - loss: ©.2699 - acc: ©.908@

Accuracy not high enough. Starting another epoch...

saaaefﬁaaae [} &c ﬂ‘lu—(f—-u-:'|n locc: 8 3781 acc: B Q000

| The code asked for 10 epochs of training but callback stopped it at 8
z >.] - ETA: @s - loss: ©.2580 - acc: @.9048

Reached 90% accuracy so cancelling the training!

60000/60000 [¢] - 6s 93us/sample - loss: ©.2585 - acc: ©.9046

<tensorflow‘python‘ker‘Js‘callbacks.History at 8x297567e9288>
| Print message to indicate accuracy reached target |

Figure 5-4. Snapshot of an example run with the callback enabled

120

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Model Builder and Compile/Train Functions

Next, you put the Keras model construction code in a utility function so that a model of
an arbitrary number of layers and architecture (as long as they are densely connected)
can be generated using simple user input in the form of some function arguments. The
code snapshot and the associated explanations are shown in Figure 5-5.

Define a function which generates a Keras model from some user input

def build_model(num_layers=1, architecture=[32],act_func='relu',
input_shape=(28,28), output_class=18):
Builds a densely connected neural network model from user input
num_layers: Number of hidden layers
architecture: Architecture of the hidden layers (densely connected)
act_func: Activation function. Could be 'relu’', 'sigmoid', or 'tanh’'.

input_shape: Dimension of the input vector DocsTr‘ing with detailed
output_class: Number of classes in the output vector descr'ipﬁon and explanaﬁon Of

o expected arguments

layers=[tf.keras.layers.Flatten(input_shape=input_shap
if act_func=="relu':
activation=tf.nn.relu
elif act_func=='sigmoid':
activation=tf.nn.sigmoid
elif act_func=="tanh':
activation=tf.nn.tanh

Any number of hidden layers with arbitrary
number of neurons (and choice of activation
for i in range(num_layers): fUﬂCﬂOh) can be added

layers.append(tf.keras.layers.Dense(architecture[i], activation=tf.nn.relu))
layers.append(tf.keras.layers.Dense(output_class, activation=tf.nn.softmax))

Figure 5-5. Snapshot of a model builder function

You also put the compilation and training code into a utility function to use those
hyperparameters in a higher-order optimization loop conveniently. The code snapshot
and the associated explanations are shown in Figure 5-6.

121

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Before going further, we define a simple function to compile and train a given
model go use later)

def compile_train_model(model,x_train, y_train, callbacks=None,
learning_rate=8.801,batch_size=1,epochs=10,verbose=0):

Compiles and trains a given Keras model with the ,l'\l:y?r‘n the lhyp?rpammete:shlnfohargurnerbﬂs
Assumes Adam optimizer for this implementation. an Uh ITY unction so that t ey can be
used in higher order analytics

learning_rate: Learning rate for the optimizer fcam

batch_size: Batch size for the mini-batch eptim._zaticDOCSTring with detailed
epochs: Number of epochs to train description and explanation of
verbose: Verbosity of the training process gxped-ed quumenfs

wun

When you are modifying an argument,
model_copy = modelit’s best to make a copy and work on it
model_copy.compile(optimizer=tf.keras.optimizers.Adam(lr=1learning_rate),

loss='sparse_categorical_crossentropy',
metrics=["accuracy'])

model_copy.fit(x_train, y_train, epochs=epochs, batch_size=batch_size,
callbacks=[callbacks],verbose=verbose)
return model_copy

Figure 5-6. Snapshot of a model compiling and training function

Visualization Function

Next, it’s time for visualization. Generic plot functions take raw data as input. However,
if you have a specific purpose of plotting the evolution of training set accuracy (and
showing how it compares to the target), then your plot function should just accept the
(trained) deep learning model as the input and generate the desired plot. The code
snapshot and the associated explanations are shown in Figure 5-7.

122

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Let's define a plot utility function to use it la Accepts a Keras model
object as argument
def plot_loss_acc(modeX;Target_acc=0.9, title=None): A custom ‘ri1‘|e. op1‘ion for.

proper display when you
Users can supply a title if needed run hlghe.r‘ order CmﬂIYTICS

target_acc: The desired/ target acc. This parameter is needed for this function to show a horizontal bar

Takes a deep learning model and plots the loss ans accuracy over epochs

e=np.array(model.history.epoch)+1l # Add one to the list of epochs which is zero-indexed
l=np.array(model.history.history['loss']
a=np.array(model.history.history[‘acc'])

Tt extracts the relevant metrics from the model
object and uses them in the generic plotting method

fig, axl = plt.subplots()

color = 'tab:red’
axl.set_xlabel('Epochs’,fontsize=15)
axl.set_ylabel('Loss', color=color,fontsize=15)
axl.plot(e, 1, color=color,lw=2)

e AEal = AR S R e G [0 Ees, R PR, PR

Figure 5-7. Snapshot of the visualization function

A typical result (loss-accuracy plot) is shown in Figure 5-8.

0.50
045 i

))
0.40 v
v B al M
v ':
Q _ =3
sl 086 O
0.35 b
.rq

0.25 = : , ; ; T ; ;

1 2 3 4 5 6 7 8

Epochs

Figure 5-8. A typical loss-accuracy plot from the trained DL model

Final Analytics Code, Compact and Simple

Thus far you have modularized the core DL code. Now you can take advantage of all the
functions and classes you defined earlier and bring them together to accomplish the
higher-order optimization task. Consequently, your final code will be highly compact,
but it will generate the same interesting plots of loss and accuracy over epochs for a
variety of accuracy threshold values and DNN architectures (neuron counts).

123

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

This will give you the ability to use a minimal amount of code to produce visual
analytics about the choice of performance metric (classification accuracy in this case)
and DNN architecture. This is the first step towards building an optimized machine
learning system.

Generate a few cases for investigation:
from itertools import product

accuracy desired = [0.85,0.9,0.95]
num_neurons = [16,32,64,128]
cases = list(product(accuracy desired,num_neurons))

print("So, the cases we are considering are as follows...\n")

for i,c in enumerate(cases):
print("Accuracy target {}, number of neurons: {}".format(c[0],c[1]))
if (i+1)%4==0 and (i+1)!=len(cases):
print("-"*50)

This code generates the cases shown in Figure 5-9.
So, the cases we are considering are as follows...

Accuracy target
Accuracy target

.85, number of neurons: 16

.85, number of neurons: 32
Accuracy target 0.85, number of neurons: 64
Accuracy target 0.85, number of neurons: 128
Accuracy target .9, number of neurons: 16
Accuracy target 0.9, number of neurons: 32
Accuracy target 0.9, number of neurons: 64
Accuracy target 8.9, number of neurons: 128
Accuracy target
Accuracy target
Accuracy target
Accuracy target

.95, number of neurons: 16
.95, number of neurons: 32
.95, number of neurons: 64
.95, number of neurons: 128

Figure 5-9. Some representative cases are generated for the optimization task

124

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

The final analytics/optimization code is succinct and easy to follow for a high-
level user who does not need to know the complexity of Keras model building or
callbacks classes. This is the core principle behind OOP, the abstraction of the layers of
complexity, which you are able to accomplish for your deep learning task.

Note how you pass on the print_msg=False to the class instance. While you need
basic printing of the status for the initial check/debug, you should execute the analysis
silently for the optimization task. If you did not have this argument in your class
definition, you would not have a way to stop printing debugging messages:

for c in cases:
A mycallback class with the specific accuracy target
callbacks = myCallback(c[0], print msg=False)

Build a model with a specific number of neurons
model = build_model(num layers=1,architecture=[c[1]])

Compile and train the model with the callback class.

Choose suitable batch size and a max epoch limit

model = compile_train_model(model, x train,y train,callbacks=callbacks,
batch_size=32,epochs=30)

A suitable title string
title = "Loss and accuracy over the epochs for\naccuracy threshold \
{} and number of neurons {}".format(c[0],c[1])

Use the plotting function, pass on the accuracy target,
trained model, and the custom title string
plot_loss_acc(model,target acc=c[0],title=title)

Some representative results are shown in Figure 5-10; they are automatically
generated by executing the code block above. It clearly shows how with a minimal
amount of high-level code you can generate visual analytics to judge the relative
performance of various neural architectures for various levels of performance metrics.
This enables a user, without tweaking the lower-level functions, to easily make a
judgment on the choice of a model as per the desired accuracy and complexity.

125

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Loss and accuracy over the epochs for
Loss and accuracy over the epochs for
accuracy threshold 0.85 and number of neurons 16 accuracy threshold 0.9 and number of neurons 32

Takes 14 epochs for
a higher target with
N 32 neurons

10 12 14

/ Reaches target in
only 3 epochs

Accuracy
Loss

Accuracy

Loss

100 125 150 175 200 225 250 275 300 2 4 6

B
Epochs Epochs

Loss and accuracy over the epochs for Loss and accuracy over the epochs for
accuracy threshold 0.95 and number of neurons 16 accuracy threshold 0.95 and number of neurons 128

T e s e e]] i . . 7 o P m— I (e R [
»s| ||For a stiff target, 16 neurons || ... - / _
are awfully inadequate | 4 o
0.50 | - FFIE .
A Loss & | 03 ven 128 neurons barely <
2 04s 518 030 makes it! oo} 3
| L) U3 . o i1
0.40 x| e "
0 5 10 15 20 3 30 0 5 10 15 2 % 0
Epochs Epochs

Figure 5-10. Representative results for various model architecture (neuron counts
per hidden layer) and accuracy targets

Also, note the custom titles for each plot. These titles clearly enunciate the target
performance and the complexity of the neural net, thereby making the analytics easy. It was
a small addition to the plotting utility function, but this shows the need for careful planning
while creating such functions. If you had not planned for such an argument to the function,
itwould not have been possible to generate a custom title for each plot. This careful
planning of the API (application program interface) is part and parcel of good OOP.

Turn the Scripts into a Utility Module

So far, you may be working with a Jupyter notebook, but you may want to turn this
exercise into a neat Python module that you can import from any time you want. Just
like you write from matplotlib import pyplot, you canimport these utility functions
(Keras model build, train, and plotting) anywhere. The idea is shown in Figure 5-11.

126

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

/ DL_utils.py \

Inherited class,

Keras model generation
function,

training function,

Could be is file is needed to
complefely | turn this directory into a
blank) thon module/package.

plotting utility
J J
You can keep on adding more utility
Imp‘ functions to this directory/script. This is
your own custom Python module for
analyzing DL models.

Werite your short analytics script with
« Import statements

= Load MNIST dataset

» (Generate cases

= Run the analysis for each case

Figure 5-11. Building a deep learning utility module (for your own use)

Summary of Good Practices

You just learned some good practices, borrowed from OOP, to apply to a DL analysis
task. Almost all of them may seem trivial to seasoned software developers. However,
this chapter is designed for budding data scientists who may not have that structured
programming background but need to understand the importance of imbuing these
good practices in their ML workflow.

At the risk of repeating myself, let me summarize the good practices here:

Whenever you get a chance, turn repetitive code blocks into utility
functions.

Think very carefully about the API of the function (i.e., the
minimal set of arguments required and how they will serve a
purpose for a higher-level programming task).

Don’t forget to write a docstring for a function, even if it is a one-
liner description.

If you start accumulating many utility functions related to the
same object, consider turning that object to a class and the utility
functions as methods.

127

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Extend class functionality whenever you get a chance to
accomplish complex analysis using inheritance.

Don’t stop at Jupyter notebooks. Turn them into executable scripts
and put them in a small module. Build the habit of modularizing
your work so that it can be easily reused and extended by anyone,
anywhere.

In the next chapter, you will try your hand at building your own ML estimator class
based on these principles. For a taste of DL utility functions and a neural net trainer
class, please read “Deep learning with Python” at https://github.com/tirthajyoti/
Deep-learning-with-Python/tree/master/utils.

Streamline Image Classification Task Flow

Image classification is one of the most common tasks in a data science workflow
involving deep learning tools. Streamlining or automating such a task is, therefore,
a prime example of the automation and modularization that I have been preaching
thus far.

For this specific task, a data scientist may desire a single function to automatically
pull images from a specified directory on the disk (or from a network address) and
give back a fully trained neural net model, ready to be used for prediction. Therefore,
in this section, you will explore how to use a couple of utility methods from the
Keras (TensorFlow) API to streamline the training of such models (specifically for a
classification task) with built-in data preprocessing.

Put simply, you want to

e Grab some data.
o Putitinside a directory/folder arranged by classes.
e Train a neural net model with minimum code/fuss.

In the end, you aim to write a single utility function that can accept just the name/
address of the folder where the training images are stored and give back a fully trained
CNN model. The idea is visually illustrated in Figure 5-12.

128

https://github.com/tirthajyoti/Deep-learning-with-Python/tree/master/utils
https://github.com/tirthajyoti/Deep-learning-with-Python/tree/master/utils
https://github.com/tirthajyoti/Deep-learning-with-Python/tree/master/utils
https://github.com/tirthajyoti/Deep-learning-with-Python/tree/master/utils

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Grab some datal

Put them ina
folder!

ER i § Iak

7 g) BB o / .
mi‘zy.—’?ﬂmﬂu PralrEipn Bomn ‘-.‘-1 y . = ds;..l‘.
: [-ler sl ST | | > H= r AV

Comvelution Pooling Convolution Pooling Fullv-coanecied

Train a neural net model.

Figure 5-12. Streamlining (and simplifying) the image classification task

The Dataset

Let’s use a dataset consisting of 4000+ images of flowers for this demo. The dataset can
be downloaded from the Kaggle website here: . The data collection is based on Flickr,
Google, and Yandex images. The pictures are divided into five classes:

e Daisy
e Tulip
e Rose

¢ Sunflower
e Dandelion

For each class, there are about 800 photos. The photos are not particularly high
resolution (about 320 x 240 pixels each). They are not reduced to a single size since they
have different proportions. However, they come organized neatly in five directories
named with the corresponding class labels. You can take advantage of this organization
and apply the Keras methods to streamline the training of your convolutional network.

The full Jupyter notebook is in the GitHub repository. I will use selected snapshots of
the code in this section to show the important parts for illustration.

129

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Should you use a GPU? It is recommended to run this script on a GPU. You will
build a convolutional neural net (CNN) with five convolutional layers; consequently,
the training process with thousands of images can be computationally intensive
and slow if you are not using some sort of GPU. For the Flowers dataset, a single
epoch took ~1 minute on my laptop with a NVidia GTX 1060 Ti GPU (6GB Video
RAM), Core i-7 8770 CPU, and 16GB DDR4 RAM.

For illustration, Figure 5-13 shows how they are stored on a local hard disk. Some
sample images are in Figure 5-14.

Data > flowers-recognition v O Search flowers-recc

rose

sunflower

Figure 5-13. Stored Flowers image data

130

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Daisy flower
images

Rose flower
images

Figure 5-14. Sample flower images. Note the difference is shape and resolution

Building the Data Generator Object

This is where the actual magic happens. The official description of the
ImageDataGenerator class says "Generate batches of tensor image data with real-time
data augmentation. The data will be looped over (in batches)."

Basically, it can be used to augment image data with a lot of built-in preprocessing
such as scaling, shifting, rotation, noise, whitening, etc. Right now, you'll just use the
rescale attribute to scale the image tensor values between 0 and 1. Here is a useful
article on this aspect of the class: “How to increase your small image dataset using Keras
ImageDataGenerator”(https://medium.com/@arindambaidya168/https-medium-com-
arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad).

But the real utility of this class for the current demonstration is the super useful
method named flow_from directory, which can pull image files one after another from
the specified directory. Note that this directory must be the top-level directory where
all the subdirectories of individual classes can be stored separately. The flow_from_
directory method automatically scans through the subdirectories and sources the
images along with their appropriate labels.

131

https://medium.com/@arindambaidya168/https-medium-com-arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad
https://medium.com/@arindambaidya168/https-medium-com-arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad
https://medium.com/@arindambaidya168/https-medium-com-arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad
https://medium.com/@arindambaidya168/https-medium-com-arindambaidya168-using-keras-imagedatagenerator-b94a87cdefad

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

You can specify the class names (as you did here with the classes argument) but this
is optional. However, you will later see how this can be useful for selective training from
a large trove of data.

Another useful argument is the target size, which lets you resize the source images
to a uniform size of 200 x 200, no matter the original size of the image. This is some cool
image-processing right there with a simple function argument.

You can also specify the batch size. If you leave batch_size unspecified, by default,
itwill be set to 32. Choose the class_mode as categorical since you are doing a multi-
class classification here. Here is the code snippet:

batch_size = 128
from tf.keras.preprocessing.image import ImageDataGenerator

All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1/255)

Flow training images in batches of 128

All images will be resized to 200 x 200

train_generator = train_datagen.flow_from directory(
'../Data//flowers-recognition’,
target_size=(200, 200),
batch _size=batch size,
classes = ['daisy', 'dandelion’, 'rose', 'sunflower', 'tulip'],
class_mode="categorical)

When you run this code, the Keras function scans through the top-level directory,
finds all the image files, and automatically labels them with the proper class (based on
the subdirectory they were in). The working of this utility is shown in Figure 5-15 with
respect to the flowers’ dataset.

132

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Image files on disk))) In-memory data structure
= n—— =1 3
E ‘a’ ImageDataGenerator

daisy dandelion

.flow_from_directo

T‘E E ry()

san v tulip

"L1LL

-7y
|
=

Figure 5-15. The ImageDataGenerator object working on the Flower dataset

What'’s more interesting is that this is also a Python generator object (https://
realpython.com/introduction-to-python-generators/). That means it will be used
to yield data one by one during the training. This significantly reduces the problem of
dealing with a very large dataset whose contents cannot be fitted into memory at one go.

Building the Convolutional Neural Net Model

For the sake of brevity, I will not delve deep into the code behind the CNN model. In
brief, it consists of five convolutional layers/max-pooling layers and 128 neurons at the
end followed by a 5-neuron output layer with a SoftMax activation for the multi-class
classification. You use the RMSprop optimizer with an initial learning rate of 0.001. The
model summary is shown in Figure 5-16. It has in excess of 200,000 trainable parameters.

133

https://realpython.com/introduction-to-python-generators/
https://realpython.com/introduction-to-python-generators/

CHAPTER 5

MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Layer (type) Output Shape Param #
:vazd_l (Conv2D) (None, 198, 198, 16) 448
max_pooling2d 1 (MaxPooling2 (None, 99, 99, 16) 0
conv2d_2 (Conv2D) (None, 97, 97, 32) 4640
max_pooling2d 2 (MaxPooling2 (None, 48, 48, 32) 0
conv2d_3 (Conv2D) (None, 46, 46, 64) 18496
max_pooling2d_3 (MaxPooling2 (None, 23, 23, 64) 2}
conv2d_4 (Conv2D) (None, 21, 21, 64) 36928
max_pooling2d 4 (MaxPooling2 (None, 10, 10, 64) 2}
conv2d_5 (Conv2D) (None, 8, 8, 64) 36928
max_pooling2d 5 (MaxPooling2 (None, 4, 4, 64) 2}
flatten_1 (Flatten) (None, 1024) 2]
dense_1 (Dense) (None, 128) 131200
dense_2 (Dense) (None, 5) 645

Total params: 229,285

Trainable params: 229,285
Non-trainable params: ©

Figure 5-16. Summary of the CNN model used for flower classification

Training with the fit_generator Method

I discussed the cool things the train_generator object does with the flow_from_

directory method and with its arguments. Let’s utilize this object in the fit_generator

method of the CNN model, defined above.
Note the steps_per epoch argument to fit generator. Since train_generator

is a generic Python generator, it never stops and therefore the fit generator will not

know where a particular epoch ends and the next one starts. You have to let it know the

steps in a single epoch. This is, in most cases, the length of the total training sample

divided by the batch size. In the previous section, you found out the total sample size

134

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

as total sample. Therefore, in this particular case, the steps _per epoch is set to
int(total sample/batch_size), which is 34, so you will see 34 steps per epoch in the

training log below.

history = model.fit generator(
train_generator,
steps_per epoch=int(total sample/batch size),
epochs=epochs,
verbose=1)

When you execute, the model trains and you can check the accuracy/loss with the

usual plot code (Figure 5-17).

Training loss with epochs

Training accuracy with epochs

0.9
208
307

ac

206

inin

S 0.5

Tr

0 5 10 15 20 25 0 5 10 15 20 25
Training epochs Training epochs

Figure 5-17. Representative loss/accuracy plots of the CNN training task

Encapsulate All of This in a Single Function

What have you accomplished so far?

You have been able to utilize the Keras ImageDataGenerator and fit_generator
methods to pull images automatically from a single directory, label them, resize and
scale them, and flow them one by one (in batches) for training a neural network.

Can you encapsulate all of this in a single function?

One of the central goals of making useful software/computing systems is abstraction
(i.e., hiding the gory details of internal computation and data manipulation, and
presenting a simple and intuitive working interface/API to the user). Towards that goal,
let’s encapsulate the process you followed above into a single function. Figure 5-18

shows the idea.

135

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Keras utility
organized method
in folders pulling images

building

Supply a folder name Get back a trained model

Figure 5-18. Encapsulate the core components in a single function. The user
supplies a directory name and gets back a trained model

When you are designing a high-level API, you should aim for more generalization
than what is required for a particular demo. With that in mind, you can think of
providing additional arguments to this function to make it applicable to other image
classification cases (you will see an example soon).

Specifically, you provide the following arguments in the function:

e train directory: The directory where the training images are stored
in separate folders. These folders should be named as per the classes.

o target size: Target size for the training images. A tuple such as
(200,200).

e classes: A Python list with the classes for which you want the
training to happen. This forces the generator to choose specific files
from the train_directory and notlook at all the data.

e batch_size: Batch size for training
e num_epochs: Number of epochs for training
e num_classes: Number of output classes to consider

o verbose: Verbosity level of the training, passed to the fit_
generator method

Of course, you could have provided additional arguments corresponding to the
whole model architecture or optimizer settings. This chapter is not focused on such

136

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

issues, so let’s keep it compact. The full code is in the GitHub repo. Figure 5-19 shows the
docstring portion to emphasize on the point of making it a flexible API.

def train CNN(train_directory,target size=(2ee,200), classes=None,
batch_size=128,num_epochs=20,num_classes=5,verbose=0):

Trains a conv net for the flowers dataset with a 5-class classifiction output
Also provides suitable arguments for extending it to other similar apps

Arguments:

train_directory: The directory where the training images are stored in separate folders.

These folders should be named as per the classes.

target_size: Target size for the training images. A tuple e.g. (260,2608)

classes: A Python list with the classes

batch_size: Batch size for training

num_epochs: Number of epochs for training

num_classes: Number of output classes to consider

verbose: Verbosity level of the training, passed on to the ~fit_generator™ method
Returns:

A trained conv net model

from tensorflow.keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
from tensorflow.keras.optimizers import RMSprop

Figure 5-19. Snapshot of the single utility function that streamlines the
classification task

Testing the Utility Function

You test the train_CNN function by simply supplying a folder/directory name and getting
back a trained model that can be used for predictions. Suppose that you want to train
only for daisy, rose, and tulip classes and ignore the other two flowers’ data. You
simply pass on a list to the classes argument. In this case, you must set the num_classes
argument to 3.

You will notice how the steps per epoch are automatically reduced to 20 as the
number of training samples is less than the case above. Also, note that verbose is setto 0
by default in the function above, so you need to specify explicitly verbose=1 if you want
to monitor the progress of the training epoch-wise.

Basically, you can get a fully trained CNN model with two lines of code now!

Define the folder
train _directory = "../Data//flowers-recognition/"

Get the model

137

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

trained model=train CNN(train directory=train directory,
classes=["daisy"', 'rose’, "tulip'],
num_epochs=30,
num_classes=3,
verbose=1)

Does It Work (Readily) for Another Dataset?

This is an acid test for the utility of such a function: can we just take it and apply to
another dataset without much modification? Let’s find out.

Arich yet manageable image classification dataset is Caltech-101 (www.vision.
caltech.edu/Image Datasets/Caltech101/). By manageable, mean not as large
as the famous ImageNet (www. image-net.org/about.php) database, which requires
massive hardware infrastructure to train (and is therefore out of bounds for testing
ideas quickly on your laptop), yet diverse enough for practicing and learning the tricks
of convolutional neural networks. It is an image dataset of diverse types of objects
belonging to 101 categories. There are 40 to 800 images per category. Most categories
have about 50 images. The size of each image is roughly 300 x 200 pixels. Some categories
are shown in Figure 5-20.

OMPUTATIONAL YISION AT C, cH

Caltech 101
8% Caltech256 i

[Deseription][Dawnload][Discussion [Other Datasets]

@ S L]

Figure 5-20. The Caltech-101 image dataset

Who built Caltech-101? The Caltech-101 dataset was built by none other than
famous Stanford professor Dr. Fei Fei Li (https://profiles.stanford.edu/
fei-fei-1i) and her colleagues (Marco Andreetto and Marc Aurelio Ranzato)

at Caltech in 2003 when she was a graduate student there. We can surmise,
therefore, that Caltech-101 was a direct precursor for her work on ImageNet.

138

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.image-net.org/about.php
https://profiles.stanford.edu/fei-fei-li
https://profiles.stanford.edu/fei-fei-li

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Download the dataset and uncompress the contents in the same Data folder as
before. The directory should look like Figure 5-21.

accordion airplanes anchor ant BACKGROUND_G barrel bass beaver
oogle
binocular bonsai brain brantosaurus buddha butterfly camera cannan
car_side ceiling_fan cellphone chair chandelier cougar_body cougar_face crab

Figure 5-21. Directory of the stored Caltech-101 images

So, you have what you want: a top-level directory with subdirectories containing
training images. And then, the same two lines as before:

Define the folder
train _directory = "../Data/101_ObjectCategories/"

Get the model

model caltech101 = train CNN(train directory=train directory,
classes=["'crab', 'cup'],
batch_size=4,
num_epochs=25,
num_classes=2,
verbose=1)

All you did is to pass on the address of this directory to the function and choose the
categories of the images you want to train the model for. Let’s say you want to train the
model for classification between cup and crab. You can just pass their names as a list to
the classes argument as before.

Also, note that you may have to reduce the batch_size significantly for this dataset
as the total number of training images will be much lower compared to the Flowers
dataset, and if the batch_size is higher than the total sample, you will have steps_per_

epoch equal to 0 and that will create an error during training.
139

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Voila! The function finds the relevant images (130 of them in total) and trains the
model, 4 per batch, so 33 steps per epoch. The result is shown in Figure 5-22.

Found 130 images belonging to 2 classes.

Epoch 1/25

33/33 [========== ============== =] - 1s 26ms/step - loss: 0.7573 - acc: 0.5769
Epoch 2/25

33/33 [======================= =] - @s 9ms/step - loss: ©.6901 - acc: ©.5538
Epoch 3/25

33/33 [========== = =] - os 9ms/step - loss: ©.6779 - acc: ©.6231
Epoch 4/25

33/33 [========== ======== ===] - @s 9ms/step - loss: ©.6212 - acc: ©.7538A:
Epoch 5/25

33/33 [==============s====s=ss=ss==e= =] - @s 9ms/step - loss: ©.5458 - acc: ©.7923

Crnnrh & /7K

Figure 5-22. Training happening with Caltech-101 images (two classes, cup
and crab)

You saw how easy it was to just pass on the training images’ directory address to the
function and train a CNN model with your chosen classes. But is the model any good?
Let’s find out by testing it with random pictures downloaded from the Internet. Let’s say
you downloaded images of crabs and cups. You do some rudimentary image processing
(resizing and dimension expansion) to match the model and get the output objects,
img_crab and img_cup. Then you test the model with these images.

model caltech101.predict(img crab)
>> array([[1., 0.]], dtype=float32)

The model predicted the class correctly for the crab test image.
And for the cup image,

model caltech101.predict(img cup)
>> array([[0., 1.]], dtype=float32)

You can download any random image and test the performance of your model. If not
satisfied, you should train the model by changing the architecture and hyperparameters
using the modularized function.

The main point, however, is that you were able to train a CNN model with just
the same two lines of code for a completely different dataset than you started with.
This is the power of modularizing code and building a generic API that works with a
wide variety of data sources. This saves valuable time and makes the code reusable. The
edifice of productive data science stands on these foundational elements.

140

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Other Extensions

So far, inside the fit_generator you only had a train_generator object for training. But
what about a validation set? It follows exactly the same concept as a train_generator.
You can randomly split from your training images a validation set and set it aside in a
separate directory (the same subdirectory structures as the training directory) and you
should be able to pass that on to the fit_generator function.

Want to directly work with a pandas DataFrame that stores your image? No problem.
There is a method called flow_from dataframe for the ImageDataGenerator class where
you can pass on the names of the image files as contained in a pandas DataFrame and
the training can proceed.

You are strongly encouraged to check out and extend these ideas as you see fit for
your applications.

Activation Maps in a Few Lines of Code

DL models use millions of parameters and create extremely complex and highly
nonlinear internal representations of the images or datasets that are fed to these

models. They are, therefore, often called the perfect black-box ML techniques (Www.
wired.com/story/inside-black-box-of-neural-network/) (Figure 5-23). We can

get highly accurate predictions from them after we train them with large datasets, but

we have little hope of understanding the internal features and representations (wWww.
technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/) of the data
that a model uses to classify a particular image into a category. In short, the black-box
problem of deep learning is a powerful predictive power without an intuitive and easy-to-
follow explanation.

Black Box

Input

Figure 5-23. The black-box problem of deep learning (source: CMU ML blog,
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-
variational-information-bottleneck-approach/).

141

http://www.wired.com/story/inside-black-box-of-neural-network/
http://www.wired.com/story/inside-black-box-of-neural-network/
http://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/
http://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

This does not bode well because we humans are visual creatures (www.seyens.
com/humans-are-visual-creatures/). Millions of years of evolution have gifted us
an amazingly complex pair of eyes (www.relativelyinteresting.com/irreducible-
complexity-intelligent-design-evolution-and-the-eye/) and an even more
complex visual cortex (www.neuroscientificallychallenged.com/blog/know-your-
brain-primary-visual-cortex), and we use these organs to make sense of the world.
The scientific process starts with observation, and that is almost always synonymous
with vision. In business, only what we can observe and measure can we control and
manage effectively. Seeing/observing is how we start to make mental models (https://
medium.com/personal-growth/mental-models-898170438075) of worldly phenomena,
classify objects around us, separate a friend from a foe, and so on.

Activations maps have been proposed to help visualize the inner workings of
complex CNN models. Let’s talk about them.

Activation Maps

Several approaches for understanding and visualizing CNNs have been developed in the
literature, partly as a response to the common criticism that the learned internal features
in a CNN are not interpretable. The most straightforward visualization technique is to
show the activations of the network during the forward pass.

At a simple level, activation functions help decide whether a neuron should be
activated. This helps determine whether the information that the neuron is receiving
is relevant for the input. The activation function is a non-linear transformation that
happens over an input signal, and the transformed output is sent to the next neuron.

Activation maps are just a visual representation of these activation numbers at
various layers of the network as a given image progresses through as a result of various
linear algebraic operations. One can deduce the workings of the network and design
limitations from these maps. For ReLU activation-based networks, the activations
usually start out looking relatively blobby and dense, but as the training progresses the
activations usually become sparser and more localized. One design pitfall that can be
easily caught with this visualization is that some activation maps may be all zero for
many different inputs, which can indicate dead filters and can be a symptom of high
learning rates.

142

http://www.seyens.com/humans-are-visual-creatures/
http://www.seyens.com/humans-are-visual-creatures/
http://www.relativelyinteresting.com/irreducible-complexity-intelligent-design-evolution-and-the-eye/
http://www.relativelyinteresting.com/irreducible-complexity-intelligent-design-evolution-and-the-eye/
http://www.neuroscientificallychallenged.com/blog/know-your-brain-primary-visual-cortex
http://www.neuroscientificallychallenged.com/blog/know-your-brain-primary-visual-cortex
https://medium.com/personal-growth/mental-models-898f70438075
https://medium.com/personal-growth/mental-models-898f70438075

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

However, visualizing these activation maps is a non-trivial task, even after you have
trained your neural net well and are making predictions out of it. How do you easily
visualize and show these activation maps for a reasonably complicated CNN with just a
few lines of code?

Activation Maps with a Few Lines of Code

In the previous section, I showed how to write a single compact function to obtain a fully
trained CNN model by reading image files one by one automatically from the disk. Now
you'll you use this function along with a nice little library called Keract, which makes the
visualization of activation maps very easy. It is a high-level accessory library of Keras to
show useful heatmaps and activation maps on various layers of a neural network.

Therefore, for this code, you need to use a couple of utility functions from the
module you built earlier, train_CNN_keras and preprocess_image, to make a random
RGB image compatible for generating the activation maps.

You'll use the same Caltech-101 dataset discussed in the last section. However, you
are training only with five categories of images: crab, cup, brain, camera, and chair.

Training
Training is done with a few lines of code only:

train_directory = "../Data/101_ObjectCategories/"
target size=(512,512)

batch size=4

classes = ['crab','cup', 'brain’, 'camera’, 'chair']
num_classes = len(classes)

num_epochs=10

model = train CNN_keras(train directory=train directory,
num_epochs=num_epochs,
target_size=target size,
classes = classes,
batch_size=batch size,
num_classes=num_classes)

To generate the activations, you can choose a random image of a human brain from
the Internet or any other source. Store the test image as the file brain-1. jpg.

143

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Activation

Another couple of lines of code generate the activation:

from keract import get activations

The image path

img_path = '../images/brain-1.jpg’

Preprocessing the image for the model

img = preprocess_image(img path=img path,
model=model,
resize=target size)

Generate the activations

activations = get activations(model, img)

You get back a dictionary with layer names as the keys and NumPy arrays as the
values corresponding to the activations. Figure 5-24 shows where the activation arrays
have varying lengths corresponding to the size of the filter maps of that particular
convolutional layer.

Activations

Activations

Activations

Activations

Figure 5-24. Activation map arrays are stored (the variable length corresponding
to the size of the convolutional filter at that layer)

144

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE
Thereafter, two lines of code for displaying the activation maps:

from keract import display activations
display activations(activations, save=False)

You get to see activation maps layer by layer. Figure 5-25 shows first convolutional
layer (the 16 images corresponding to the 16 filters). Your actual image may look
different based on what you use as the test image, but the idea of activation layers
visualization is clearly demonstrated.

conv2d_1/Relu:0

Figure 5-25. Activation maps for the first convolution layer

145

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Figure 5-26 shows layer number 2 (the 32 images corresponding to the 32 filters).

conv2d_2/Relu:0

-0.04

003

. i

Figure 5-26. Activation maps for the second convolution layer

For this model, there are 5 convolutional layers (followed by max pooling layers), so
you get back 10 sets of images. For brevity, I won’t show the rest, but you are encouraged
to explore and see them by playing with the Jupyter notebook.

146

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Another Library for Web-Based Ul

Another beautiful library for activation visualization is called Quivexr. However, this one
is built on the Python microserver framework Flask and displays the activation maps

on a browser port rather than inside your Jupyter Notebook. It also needs a fully trained
Keras model as input. So, you can easily use the utility function described in the previous
section and try this library for interactive visualization of activation maps.

How Is This Productive Data Science?

In this chapter, you learned how by using only a few lines of code (utilizing compact
functions from a special module and a nice little accessory library to Keras) you can train
a CNN, generate activation maps, and display them layer by layer—from scratch. This
gives you the ability to train CNN models (simple to complex) from any image dataset (as
long as you can arrange them in a simple directory format) and look inside their guts for
any test image you want.

And once you build the necessary utility modules and the activation map scripts,
you can reuse and apply them to a wide variety of image data. This leads to a fast and
efficient exploration of a large set of images for all kinds of applications. This is why this
kind of approach integrates with the story of productive and efficient data science.

Hyperparameter Search with Scikit-learn

Keras is one of the most popular go-to Python libraries/APIs for beginners and
professionals in deep learning. Although it started as a stand-alone project by Francois
Chollet, it has been integrated natively into TensorFlow starting in version 2.0. Read
more about it here (https://keras.io/about/):. As per its own official doc, it is “an
API designed for human beings, not machines” as it “follows best practices for reducing
cognitive load.”

Now, hyperparameter tuning is one of the situations where the cognitive load is
sure to increase. DL models have a great many hyperparameters to begin with: learning
rate, decay rate, activation function, dropout rate, momentum, batch size, and more.
Optimizing a DL model for best performance and computing cost depends critically on
the right choice of these hyperparameters. Therefore, data scientists spend a lot of time
and effort tuning them manually or via some automated script or optimization strategy/

framework.

147

https://keras.io/about/

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Although there are many supporting libraries and frameworks for handling it, for
simple grid searches, Keras offers a beautiful API to integrate with our favorite scikit-
learn library. In this section, we will talk about it.

Scikit-learn Enmeshes with Keras

Almost every Python machine-learning practitioner is intimately familiar with the scikit-
learn library and its beautiful API with simple methods (www.tutorialspoint.com/
scikit learn/scikit_learn_estimator api.htm)like fit, get params, and predict.
The library also offers extremely useful methods for cross-validation, model selection,
pipelining, and grid search abilities. Data scientists use these tools for classical ML
problems every day. But can you use the same APIs for a deep learning problem?

It turns out that Keras offer a couple of special wrapper classes, both for regression
and classification problems, to utilize the full power of these APIs that are native to scikit-
learn. In this section, you will work using a simple k-fold cross-validation (https://
medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833) and
exhaustive grid search with a Keras classifier (www.tensorflow.org/api docs/
python/tf/keras/wrappers/scikit_learn/KerasClassifier) model. It utilizes an
implementation of the scikit-learn classifier API for Keras.

Data and (Preliminary) Keras Model

First, you create a simple function to synthesize and compile a Keras model with some
tunable arguments built in:

from tf.keras.models import Sequential
from tf.keras.layers import Dense

def create model():
create model
model = Sequential()
model.add(Dense(30, input dim=8, activation='relu'))
model.add(Dense(15, activation="relu'))
model.add(Dense(1, activation="sigmoid"))
Compile model
model.compile(loss="binary crossentropy’,

148

http://www.tutorialspoint.com/scikit_learn/scikit_learn_estimator_api.htm
http://www.tutorialspoint.com/scikit_learn/scikit_learn_estimator_api.htm
https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833
https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833
http://www.tensorflow.org/api_docs/python/tf/keras/wrappers/scikit_learn/KerasClassifier
http://www.tensorflow.org/api_docs/python/tf/keras/wrappers/scikit_learn/KerasClassifier

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

optimizer="'adam',
metrics=["'accuracy'])
return model

You tackle a simple binary classification task using the popular Pima Indians
Diabetes dataset (www.kaggle.com/uciml/pima-indians-diabetes-database). This
dataset is originally from the National Institute of Diabetes and Digestive and Kidney
Diseases (www.niddk.nih.gov/). The objective of the dataset is to diagnostically predict
whether or not a patient has diabetes, based on certain diagnostic measurements
included in the dataset.

You do some minimal data preprocessing including scaling the feature data with
MinMaxScaler from scikit-learn. You can pass this X_scaled vector to the special wrapper
class you will create.

The KerasClassifier Class

This is the special wrapper class from Keras that enmeshes the scikit-learn classifier
API with Keras parametric models. You can pass on various model parameters
corresponding to the create_model function, and other hyperparameters like epochs
and batch size to this class. Here is the code:

from tf.keras.wrappers.scikit learn import KerasClassifier

model = KerasClassifier(build fn=create model,
epochs=10,
batch size=32,
verbose=0)

Note how you pass on your model creation function as the build_fn argument. This
is an example of using a function as a first-class object in Python (https://dbader.org/
blog/python-first-class-functions) where you can pass on functions as regular
parameters to other classes or functions.

For now, you have fixed the batch size and the number of epochs you want to run
your model for because you just want to run cross-validation on this model. Later, you
will treat them as hyperparameters and do a full grid search over them to find the best

combination.

149

http://www.kaggle.com/uciml/pima-indians-diabetes-database
http://www.niddk.nih.gov/
https://dbader.org/blog/python-first-class-functions
https://dbader.org/blog/python-first-class-functions

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Cross-Validation with the Scikit-learn API

Here is the code to build a 10-fold cross-validation sweep with the Keras model. First,
you must import the estimators from the model_selection module of scikit-learn.
Thereafter, you can simply run the model with this code, where you pass on the
KerasClassifier object you built earlier along with the feature and target vectors.

The important parameter here is the cv where you pass the kfold object. This tells the
cross_val score estimator to run the Keras model with the data provided, in a 10-fold
stratified cross-validation setting.

from sklearn.model selection import StratifiedKFold
from sklearn.model selection import cross val score

num_folds = 10
kfold = StratifiedKFold(n splits=num folds,
shuffle=True)
cv_results = cross val score(model,
X _scaled, VY,
cv=kfold,
verbose=2)

The output variable cv_results is a NumPy array consisting of all of the accuracy
scores. Accuracy is the metric you coded in your model compiling process. Obviously,
you could have chosen any other classification metric like precision or recall, and in that
case, that metric would have been calculated and stored in the cv_results array.

You can easily calculate the average and standard deviation of the 10-fold CV run
to estimate the stability of the model predictions. This is one of the primary utilities of a
cross-validation run and now you can gauge the stability of any Keras model using this
approach.

Grid Search with a Updated Model

In this example, you will search over the following hyperparameters:
e Activation function
e Optimizer type

o Initialization method

150

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

e Batch size
e Number of epochs

However, for this to work, you must integrate the first three of these parameters into
your model definition code:

def create model grid(activation = 'relu’,
optimizer="'rmsprop’,
init="glorot uniform"):
create model
model = Sequential()

if activation=="relu':
model.add(Dense(12, input dim=8,
kernel initializer=init, activation='relu'))
model.add(Dense(8, kernel initializer=init, activation='relu'))
if activation=="tanh"':
model.add(Dense(12, input dim=8,
kernel initializer=init, activation="tanh"))
model.add(Dense(8, kernel initializer=init, activation="tanh'))
if activation=="sigmoid':
model.add(Dense(12, input dim=8,
kernel initializer=init, activation='sigmoid'))
model.add(Dense(8, kernel initializer=init, activation='sigmoid"))
model.add(Dense(1, kernel initializer=init, activation='sigmoid"))

Compile model
model.compile(loss="binary crossentropy',
optimizer=optimizer,
metrics=["'accuracy'])
return model

Then, you create the same KerasClassifier object as before but call it model grid:

model grid = KerasClassifier(build fn=create model grid, verbose=0)

151

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Make the exhaustive hyperparameter search space sizeas 3 x 3 x 3 x 3 x 3 =243.
Note that the actual number of Keras runs will also depend on the number of cross-
validation you choose, as cross-validation will be used for each of these combinations.
In total, there will be 729 fittings of the model, 3 cross-validation runs for each of the
243 parametric combinations. If you don’t like the full grid search, you can always try a
randomized grid search.

Figure 5-27 shows the choices for this exhaustive grid search.

activations = ['tanh', 'relu’, 'sigmoid']

optimizers = ['rmsprop', 'adam', 'sgd']

initializers = ['glorot_uniform', 'normal', 'uniform']
epochs = [5,18,25]

batches = [8,16,64]

Figure 5-27. Exhaustive grid search options

You must create a dictionary of search parameters and pass it on to the scikit-learn
GridSearchCV estimator:

from sklearn.model selection impert GridSearchCV

param grid = dict(activation = activations,
optimizer = optimizers,
epochs = epochs,
batch_size = batches,
init = initializers)

grid = GridSearchCV(estimator = model grid,
param_grid = param_grid,
cv = 3,
verbose = 2,)

You set the cv = 3 to reduce the time for the run. By default, it will be set to 5 by
scikit-learn if you leave out that argument.

152

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

What verbosity levels to choose? It is advisable to set the verbosity of
GridSearchCV to 2 to keep visual track of what’s going on. Remember to keep
verbose=0 for the main KerasClassifier class, though, as you probably don't
want to display all the gory details of training individual epochs.

After this, just fit with the scaled feature data and labels!
grid result = grid.fit(X scaled, Y)

How does the result look? It is just as expected from a standard scikit-learn estimator,
with all the parameters internally stored for exploration (Figure 5-28).

grid_resultJ

best_estimator_

| best_index_ instance
| best_params_ instance
| best_score_ instance
| classes_ instance
[cv instance
| cv_results_ instance

| decision_function instance
|| error_score instance

| estimator instance

Figure 5-28. Fitted grid search estimator with all the parameters

You can find out the best combination with the best_score and best_params_
attributes from the fitted estimator. A snapshot is shown in Figure 5-29.

print("Best accuracy: {}\nBest combination: {}".format(grid_result.best_score_,
grid_result.best_params_))

Best accuracy: @.75390625
Best combination: {'activation': 'tanh', ‘'batch_size': 8, 'epochs': 25, 'init': 'glor
ot_uniform', 'optimizer': 'rmsprop'}

Figure 5-29. Snapshot of best hyperparameter choice printed

153

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

You did the initial 10-fold cross-validation using ReLU activation and Adam optimizer
and got an average accuracy of 0.691. After doing an exhaustive grid search, you discover
that a tanh activation and a rmsprop optimizer could have been better choices for this
problem.

It is also quite straightforward to create a pandas DataFrame from the grid search
results and analyze them further. You include the mean and standard dev scores in
this table.

import pandas as pd

params = grid result.cv_results ['params']

d = pd.DataFrame(params)

d['Mean'] = grid result.cv _results ['mean test score']
d['Std. Dev'] = grid result.cv_results ['std test score']

The DataFrame looks like Figure 5-30.

activation batch_size epochs init optimizer Mean Std. Dev

0 tanh 8 5 glorot_uniform rmsprop 0.652344 0.022999

1 tanh 8 5 glorot_uniform adam 0.648438 0.011500

2 tanh 8 5 glorot_uniform sgd 0.651042 0.024774

3 tanh 8 5 normal rmsprop 0.651042 0.024774

4 tanh 8 5 normal adam 0.651042 0.024774
238 sigmoid 64 25 normal adam 0.651042 0.024774
239 sigmoid 64 25 normal sgd 0.651042 0.024774
240 sigmoid 64 25 uniform rmsprop 0.651042 0.024774
241 sigmoid 64 25 uniform adam 0.651042 0.024774
242 sigmoid 64 25 uniform sgd 0.651042 0.024774

243 rows x 7 columns

Figure 5-30. DataFrame created from the grid search parameters

154

CHAPTERS5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

You can create targeted visualizations from this dataset to examine which
hyperparameters improve the performance and reduce the variation in the accuracy
metric. Figure 5-31 shows some examples.

Distribution of mean accuracy with batch_size Distribution of mean accuracy with init
0.75 075
070 070
g 06 065 ‘
= =
0.60 0.60
055 0.55
050 . . : asp . . ;
g 16 &4 glorot_uniform normal uniform
batch_size init
Distribution of mean accuracy with optimizer Distribution of mean accuracy with activation
0.75 075
070 070
c c
o 065 o 065
5 & 2
0.60 0.60
055 055
050 - : : 050 - : .
msprop adam sgd @anh relu sgmoid
optimizer activation
0.75 - Sooe .
L]
a <
. %
0.70 1 o) s
*e
L]
e %
L]
§ 0.65 - N...%m “0“%’“.. SERISSL SR TRR D optimizer
= ° @ mmsprop
® adam
® sgd
0.60 1
L]
0.55 .
L]
.
tanh relu sigmoid

activation

Figure 5-31. Visualizations of the grid search results

155

CHAPTER5 MODULAR AND PRODUCTIVE DEEP LEARNING CODE

Summary

This chapter covered a variety of topics centered on the idea of making commonly used
deep learning code and tasks more productive and efficient. I carried over the idea
of modularizing the code from the previous chapter and showed hands-on examples
with useful model building and plot functions with the Keras framework. A powerful
construct called the Keras callback was also discussed in this context.

Next, I discussed the idea of streamlining one of the most common DL tasks that
a data scientist can encounter: image classification. The goal was to arrive at a single
utility function that presents a very simple API to the user. You just pass on a folder
name to this function, and it will return a fully trained conv net model by processing all
the images in that folder. Not only did you build this function step by step, but you also
demonstrated the utility of such an API by applying it to a completely different dataset.

In the next section, you further utilized this function and integrated it with a special
library that can extract and visualize activation maps for the various convolution layers
of the DL model. Basically, you demonstrated how to visualize the inner workings of a
complex DL model with only a few lines of code. Together, these two sections embodied
the true journey towards productive and efficient data science involving deep learning.

Finally, you explored the topic of making hyperparameter search easy and seamless.
Although there are many dedicated libraries and frameworks for this task, you saw a
simple and intuitive approach using the grid search tool from scikit-learn and some
special wrapper classes from Keras. It also demonstrated how two of the most popular
ML libraries, Keras and scikit-learn, can work together in a seamless manner.

Making deep learning code and products fast and efficient is a huge topic by itself.
There are countless approaches and research directions focusing on this. This chapter
only aims to induce some fundamental ideas so that you can explore them further.

156

CHAPTER 6

Build Your Own ML
Estimator/Package

I start this chapter with the same assertion as in Chapter 4: data scientists often
come from a background quite removed from traditional computer science/software
engineering, such as physics, biology, statistics, economics, and electrical engineering.
Figure Figure 6-1 confirms this.

Degree Field of Study

B Computer Science
B Engineering
Business/Economics.

[e
Natural Sciences
¥ Data Science
¥ Soc Sci and Lib Ants

B Other

100 +

%

Data Scientist ~ Machine Learning Engineer Software Engineer Data Analyst Data Engineer
Job Title

Figure 6-1. Data scientists come from a wide variety of fields and professional
experience. Source: “Where do Data Scientists Come From?” (https://medium.com/
indeed-engineering/where-do-data-scientists-come-from-fc526023ace)

But ultimately data scientists are expected to pick up enough programming/software
engineering skills to be truly impactful for their organization and business. Even if data
scientists are not writing the final production code for the ML platform/service, they are

157
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_6

https://medium.com/indeed-engineering/where-do-data-scientists-come-from-fc526023ace
https://medium.com/indeed-engineering/where-do-data-scientists-come-from-fc526023ace
https://medium.com/indeed-engineering/where-do-data-scientists-come-from-fc526023ace
https://doi.org/10.1007/978-1-4842-8121-5_6

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

expected to work in a highly integrated fashion with seasoned software development
teams. This is essential to ensure a smooth delivery experience, flawless execution of the
ML product, and, of course, achieve the desired business outcome.

This means that data scientists must learn how to write machine learning code
(whether it is the final model or just some experimental prototype) efficiently.

There must be proper organization and modularization in
their code so that it can interface well with the standard software
engineering tools and techniques.

There must be some amount of automation in their code to
reduce the time to explore, evaluate, and experiment with data
and models.

Data scientists must be comfortable with writing functional
and module tests, incorporating object-oriented principles,

and so on.

Data scientists must also develop the habit of producing good
documentation for their code so that it can be reusable and
readable by other developers.

In Chapters 4 and 5, I touched upon some of these concepts, especially
modularization and OOP principles. This chapter will take you through the journey of
developing a lightweight but useful ML package of your own, so that you can experience
many aspects of producing a complete piece of software for data science. In my
experience, this exercise of writing (and publishing) an ML package teaches several
valuable lessons to any upcoming data scientist.

Why Develop Your Own ML Package?

There is a very succinct answer to the question posed above: so that others (anywhere in
the world) can use your work and benefit from it.

Imagine that feeling. Your code is not restricted to a standalone Jupyter notebook. It
is properly structured and modularized first, so that you can call the useful methods just
like you do with your favorite Python libraries (e.g., NumPy and pandas). Going beyond

158

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

that, you are packaging the code in the form of a downloadable Python library, so that
anybody in the world can install it with a single pip command and start getting a benefit
from your work. The idea is simply illustrated in Figure 6-2.

s_

h

Figure 6-2. From a Jupyter notebook to a PyPi installer package

hon

Package
Index

Some of the steps (and associated learnings) of going through this process are as
follows:

Code organizational thinking: Publishing an open-source
Python package forces a data scientist to plan and organize their
code and modules meticulously.

Writing docstrings: Docstrings are an essential good practice

in a high-quality open-source package where collaboration is
highly welcome. The data scientist will learn the value of the same
in this process. Good docstrings may even lead to high-quality
documentation for the package (generally maintained in websites
such as readthedoc.io).

Unit and functional tests: The importance of tests for good
software development cannot be overemphasized. For data
science, testing brings its own challenges. Package development
will usually include writing a basic suite of test cases. This will add
a fundamentally valuable skill to the data scientist’s repertoire.

GitHub commit and actions: Although not strictly necessary for
publishing an open-source package, it is highly advisable to set up
a GitHub repository and GitHub actions (commands that trigger
based on a code change or commit, for example) for maintaining
and updating the package (e.g., releasing new version or bug fix)
in the long run.

159

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Discussing all of these aspects is beyond the scope of this book. Therefore, I will
mainly focus on developing the code structure from the ground up. However, there are
plenty of good tutorials on how to write good docstrings or set up GitHub actions for
open-source packages that you are encouraged to explore.

A Data Scientist’s Example

There are a few tutorials and guides that deal with teaching data scientists the principles
of OOP and modular coding. However, almost all of them cover standard out-of-the-box
OOP examples that do not appeal to a data scientist. Let me show you what I mean.

An Arithmetic Example

If you are asked to write a program to implement addition, subtraction, multiplication,
and division involving a couple of variables, a and b, what will you most likely do? You
will most likely open up a Jupyter notebook and type the following in a cell, hit Shift-
Enter, and get the result:

a+b
a-b
a*b
a/b

If you like to tidy things up by working with functions, then you may do the following
as well:

def add(a,b):
return a + b

def subtract(a,b):
return a - b

But will you go as far as defining (complete with an initializer method) a Calc class
and putting these functions inside that class as methods? These are all operations of a
similar nature, and they work on similar data. Why not encapsulate them within a single
higher-order object then? Why not the following code?

160

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

class Calc:
def init (self,a,b):
self.a = a
self.b = b

def add(self):

return self.a+self.b
def sub(self):

return self.a-self.b
def mult(self):

return self.a*self.b
def div(self):

return self.a/self.b

No, most probably you won’t do this. It does not make sense to do it for this problem
either. But the idea is valid: if you have data and functions (methods, as they are called in
the parlance of OOP) that can be combined logically, then they should be encapsulated
in a class.

But it looks like too much work just to get quick answers to some simple numerical
computations. So, what'’s the point? Data scientists are often valued on whether they can
get the right answer to the data problem, not on what elaborate programming constructs
they use in their code.

These kinds of examples are used to teach data scientists about OOP principles.
They are perfectly valid examples and cover all the necessary know-how of writing good
object-oriented Python code. However, the spark is missing as the final product can be
rather pedantic, like an arithmetic calculator.

Data Scientists Use O0P All the Time

If data scientists are not coding this way, is it not the case that they really don’t need to
use these elaborate programming constructs?

Wrong.

Without consciously being aware, data scientists make heavy use of the benefits of
the OOP paradigm. All the time.

Do you remember plt.plot after import matplotlib.pyplot as plt? Those.
symbols? You have a dash of object-oriented programming right there.

161

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Or do you remember being happy to learn the cool trick in the Jupyter notebook
of hitting Tab after putting a DOT (.), thereby showing all the functions that can be
associated with an object (Figure 6-3)?

from sklearn.linear model import LinearRegression
1m =LinearRegression()

1lm.

fit_intercept
get_params
n_jobs
normalize
predict
score

set_params %:

Figure 6-3. The OOP paradigm makes it easy to access methods and parameters

This example shows adherence to a logical consistency. Without following an OOP
paradigm, we might have to name functions like 1inear model linear regression_
fit, linear model linear regression predict, and so on. They wouldn’t be grouped
under a common logical unit.

Why? Because they are different functions and work on a different set of data. While
the fit function expects both training features and targets, predict needs only a test
data set. The fit function is not expected to return anything, while predict is expected
to return a set of predictions.

So, why are they visible under the same drop-down? In spite of being different, they
have the commonality that they can both be imagined to be essential parts of the overall
linear regression process. We expect a linear regression to fit some training data and then
be able to predict for future unseen data. We also expect the linear regression model to
provide some indication about how good the fit was, generally in the form of a single
numeric quantity or score called the coefficient of regression or R%. As expected, we see
a function score, which returns exactly that R* number, also hanging around fit and
predict. It is neat and clean. Data, functions, and parameters are cohabitating inside a
single logical unit (Figure 6-4).

162

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Data Functions/

methods

Parameters

Figure 6-4. Data, functions, and parameters cohabitating inside a single
logical unit

How Was It Made?

It was possible because somebody (the developers at the scikit-learn project) thought
about the linear regression as a high-level process and decided what essential actions it
should serve and what critical parameters it should inform its users about. Somebody
made a high-level class called LinearRegression under which all those apparently
disparate functions can be grouped together for easy bookkeeping and enhanced usability.

As data scientists, once you import this class from the library, you just have to create
an instance of the class (called 1m). That's it. All the functions, grouped under the class,
became accessible to you through that newly defined instance. If you are not satisfied
with some of the internal implementation of the functions, you can work on them and
reattach them to the main class after modification. Only the code of the internal function
changes, nothing else. The idea is visually illustrated in Figure 6-5.

Data D Data

Parameters

Parameters ; - Functions/
methods methods

Figure 6-5. Attaching functions and methods to the class as needed

In the following sections, you will examine the step-by-step process and thinking
that goes into making such a useful ML estimator from scratch. You will start with
basic data and parameters, attach methods as needed, and group them under suitable
logical units.

163

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Linear Regression Estimator—with a Twist

A traditional introduction to OOP will have plenty of examples using classes such

as animals, sports, and geometric shapes. But for data scientists, why not illustrate

the concepts using the example of an object they use every day in their code: an ML
estimator? It’s just like the LinearRegression object from the scikit-learn library, shown
in the picture above.

Next, you will go through the steps of building a simple linear regression (single or
multivariate) estimator class following the OOP paradigm. Yes, it is the good ol’ linear
regression class. It has the usual fit and predict methods as in the LinearRegression
class from scikit-learn. But it has a twist: it provides many more functionalities. Figure 6-6
shows a sneak peek.

I can see cool statistical
functions and plotting

model.

'—-|
(n

adj_r_squared

(W coef_ instance H e l
g cook_distance function [3¢ u.hlrl.les alr‘ea’dY‘
fit function :

fitted_vs_features function
fitted_vs_residual function

histogram_resid function

#l influence_plot function

(N intercept_ instance
leverage_resid_plot function .

— e e e

Figure 6-6. A linear regression estimator with extra statistical functions and plot
utilities

As shown above, this estimator is richer than the scikit-learn estimator in the
sense that it has, in addition to standard fit, predict, and R? score functions, a host of
other utilities that are essential for a linear regression modeling task, especially for
data scientists and statistical modeling folks who not only want to predict but also
would like to

164

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

e Measure the goodness of the fit

e Verify the assumptions of the linear regression
e Check for multicollinearity in the data

e Detect outliers

Let’s see how to start building this.

How Do You Start Building This?

In this section, I will show how to start with the ML estimator and add essential methods.
The next sections will cover adding more utility functions, grouping them, and so on. I
want to note, however, that much of the actual code will be skipped for brevity purposes
and only the essential concepts will be shown with the code snippets. For the complete
code, you can check the Jupyter notebook or the Python script files provided with

the book.

Base Class Definition

Let’s start with a simple code snippet to define the base class: MyLinearRegression.
Here, self denotes the objectitselfand _init is a special function that is invoked
when an instance of the class is created somewhere in the code. As the name suggests,
__init__ canbe used to initialize the class with necessary parameters (if any). Let’s also
add a simple descriptor with the _repr method.

import numpy as np
class MyLinearRegression:

def _init (self, fit_intercept=True):
self.coef_ = None
self.intercept = None
self. fit intercept = fit intercept

def _repr (self, fit intercept=True):
return "I am a Linear Regression model!"
These methods with double underscores (__init and _ repr) serve special
purpose inside a Python class and are called dunder methods.

165

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

What are Dunder methods? They are magic methods inside a Python class
definition that can help override functionality for built-in functions for custom
classes. They are called so because of the presence of the double underscores in
their names. Some common ones are

__init_ :lInitializes the class with default parameters and states
__repr__:Ageneric description of the class
__str_: Astring description of some property of the class when one prints it with the print function.

__len__:Returns the length of the class/object when it makes sense (e.g., if the class represents
some kind of collection or array)

Here is a nice article about them: “Dunder/Magic Methods in Python” (www.
section.io/engineering-education/dunder-methods-python/).

Basically, you can now instantiate an object and print it:

mlr = MylLinearRegression()
print(mlr)
>> I am a Linear Regression model!

Adding Useful Methods

So far, you have a correct but useless class definition because it does not do any machine
learning. In this section, you start adding some useful methods and see how to test them.

The Fitting Method

First, let’s add the most useful method for an ML estimator: the fit method that
executes the training/fitting with the given data. Here is the code. Note that this function
definition will go inside the base class.

def fit(self, X, y):

Fit model coefficients.

Arguments:
X: 1D or 2D numpy array
y: 1D numpy array

166

http://www.section.io/engineering-education/dunder-methods-python/
http://www.section.io/engineering-education/dunder-methods-python/

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Data type check and conversion
if type(X) is not np.ndarray:
try:
X = np.array(X)
except:
print("Could not convert features to Numpy array")
return None
if type(y) is not np.ndarray:
try:
y = np.array(y)
except:
print("Could not convert labels to Numpy array")
return None
check if X is 1D or 2D array
if len(X.shape) == 1:
X = X.reshape(-1,1)

add bias if fit intercept is True
if self. fit intercept:

X biased = np.c_[np.ones(X.shape[0]), X]
else:

X biased = X

closed form solution

XxTx = np.dot(X_biased.T, X biased)
inverse xTx = np.linalg.inv(xTx)
xTy = np.dot(X biased.T, y)

coef = np.dot(inverse xTx, xTy)

set attributes

if self. fit intercept:
self.intercept = coef[0]
self.coef = coef[1:]

else:
self.intercept =0
self.coef = coef

167

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

The code is long but self-explanatory with the help of docstrings and carefully added
comments. You use the NumPy matrix inversion (np.1linalg.inv) to solve the linear
regression problem from an ordinary least-square (https://en.wikipedia.org/wiki/
Ordinary least squares) point of view and obtain the best-fitting coefficients. Also,
note the rudimentary checks (if type(X) is not np.ndarray) and transformation of
the data shape (X = X.reshape(-1,1)) that you put in the beginning to make sure that
the linear algebra calculations are done without any error.

Testing the Method

Let’s test the method by generating some random data:

10*np.random.random(size=(20,2))
3.5*X.T[0]-1.2*X.T[1]+np.random.randn(20)

So, you have a linear relationship between the 2D vector X and the 1D vector y. You
can visualize the linear relationship in Figure 6-7 (note the intentional noise added to
the data)

Output vs. first feature Output vs. second feature
35 A O 35 1 O
30 @ 30 - @)
25 - (&80 25 1 % O 8
20 20 O
4] @)
15 6)0 8 o 15 @O o o
10 1 O 10 A1 O
(@) (@)
51 O 51 O
01040 0- e O o
2 2 6 8 0 0 2 4 6 g

Figure 6-7. Plot of the test (randomly generated) data

168

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE
Create a fresh instance:
mlr = MylLinearRegression()

You can try to print the coefficients (mlr.coef) but with a check on themlr.fitted
state. If not fitted, you print that message.

if mlr.fitted :

print("Regression coefficients:", mlr.coef)
else:

print("Not fitted yet")

>> Not fitted yet
Then you fit, as follows:
mlr.fit(X,y)
Now, for the same code for printing the coefficients, you get the expected results:

if mlr.fitted :

print("Regression coefficients:", mlr.coef)
else:

print("Not fitted yet")

>> Regression coefficients: [3.40807972 -1.23152211]

So, the actual coefficients are 3.5 and -1.2, but due to the random noise added, you
get the best fit as approximately 3.4 and -1.23. You can also get the intercept as

print("The intercept term is given by: ", mlr.intercept)

>> The intercept term is given by: 0.7673816772685598

Note that the estimated coefficients and intercept will change every time you run
this code because of the random noise addition to the data generation process.

169

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Prediction Method

Now, let’s add the predict method to the class:

def predict(self, X):

Output model prediction.

Arguments:
X: 1D or 2D numpy array
check if X is 1D or 2D array
if len(X.shape) == 1:
X = X.reshape(-1,1)
Calculates only if already fitted
if self.fitted :
self.predicted = self.intercept + np.dot(X, self.coef)
else:
print("Not fitted yet")
return None

return self.predicted

Testing Prediction

You use the old (training) data for fitting and a set of new points for prediction. Here is
sample code for testing:

num_new_samples = 10

X_new = 10*np.random.random(size=(num_new_samples,2))

y new = 3.5*X new.T[0]-1.2*X_new.T[1]+np.random.randn(num new_samples)

mlr = MyLinearRegression()
mlr.fit(X,y)
y_pred=mlr.predict(X_new)

When you plot the predicted vs. true values, you get the result shown in Figure 6-8.

170

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

e
25 - —1E
.-"
v 20
g 1
T 151
>
T 104
[V
At
Y s
o
E 0 ,.-’"
a -
A
=10 1 O i i I ! i ! !
-5 0 5 10 15 20 25
True values

Figure 6-8. Predicted vs. true values of the y-vector

Now that you have sorted out the quintessential methods, let’s discuss adding some
utility methods like visualization and statistical analysis.

Adding Utility Methods

At this point, you can start expanding your regression class and add stuff that is not even
present in the standard scikit-learn class! For example, you always want to see how the
fitted values compare to the ground truth. This is what was plotted above. But instead of
having that code lying around in the Jupyter notebook, you can create a function for that
and add it to the class.

Method for Plotting True vs. Predicted Values

Let’s call it plot_fitted. Note that a method is like a normal function. It can take
additional arguments. Here, you have an argument reference_line (default set to
False) that draws a 45-degree reference line on the fitted vs. true plot. Also, note the
docstring description.

def plot fitted(self,reference line=False):

Plots fitted values against the
true output values from the data

Arguments:
reference_line: A Boolean switch to

171

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

draw a 45-degree reference line on the plot
if self.fitted :
y pred = np.dot(X,self.coef) + self.intercept
plt.title("True vs. fitted values",fontsize=14)
plt.scatter(y,y pred,
s=150,alpha=0.75,
color="orange',
edgecolor="k")
if reference line:
plt.plot(y,y,c="k',linestyle="dotted")
plt.xlabel("True values")
plt.ylabel("Fitted values")
plt.grid(True)
plt.show()
else:
print("Not fitted yet")
return None

Note that you have a prediction going on inside the plotting code (y_pred=
np.dot(X,self.coef)+self.intercept) and then you use that vector for plotting. As
always, you execute the plotting code only after ensuring that some data has been fitted
(if self.fitted).

Here is code to demonstrate the utility of this method. With just three lines of
code, you create a brand new estimator, fit the data, and plot the ground truth vs.
predicted values!

A fresh estimator

mlr = MylLinearRegression()

Fitting with the data
mlr.fit(X,y)

Call the 'plot_fitted' method
mlr.plot fitted()

Figure 6-9 shows the result. It’s similar to Figure 6-8 but using a built-in method
instead of standalone code.

172

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

True vs. fitted values
35)
30 4 &

25 1 8

20 A

154

10 A O
N Q)

@@

Fitted values

0 5 10 15 20 25 30 35
True values

Figure 6-9. Predicted vs. true values using the built-in plotting utility

Here are many more useful plotting utilities to add:

« Pairplots (plots the pairwise relation between all features and
outputs, much like the pairs function in the R language)

o Fitted vs. residual plot (this falls under diagnostic plots for the linear
regression i.e., to check the validity of the fundamental assumptions
of regression (https://towardsdatascience.com/how-do-you-
check-the-quality-of-your-regression-model-in-python-
fa61759ff685)

e Histogram and the quantile-quantile (Q-Q) plot of the residuals
(this checks for the assumption of normality of the error distribution)

All Kinds of Error Metrics

You can add a bunch of error metrics to the base class like this:

def sse(self):
""'returns sum of squared errors (model vs actual)
squared errors = (self.resid) ** 2
self.sq error = np.sum(squared errors)
return self.sq error_

def sst(self):
""'returns total sum of squared errors (actual vs. avg(actual))

173

https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685
https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685
https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

avg y = np.mean(self.target)

squared_errors = (self.target - avg y) ** 2
self.sst = np.sum(squared errors)

return self.sst

def r squared(self):
"'"'returns calculated value of r"2
self.r sq_ =1 - self.sse()/self.sst()
return self.r sq_

More metrics here

def pretty print stats(self):

returns report of statistics for a given model object

items = (('sse:', self.sse()), ('sst:', self.sst()),
(‘mse:"', self.mse()), ('r*2:', self.r squared()),
('adj _r*2:', self.adj r squared()))

for item in items:

print('{0:8} {1:.4f}".format(item[0], item[1]))

For this to work, you must calculate one essential property called residuals (self.
resid) when fitting the data. So, add that code to the fit method, of course:

features and data

self.features_ = X

self.target =y

< vve >

Predicted/fitted y

self.predicted = np.dot(X,self.coef) + self.intercept
Residuals

self.resid = self.target - self.predicted_

< eve >

However, instead of cluttering the base class with so many methods, let’s go back to
the idea of logical consistency and grouping and use more OOP principles to organize
the code better. Let’s see how in the following section.

174

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Do More in the OOP Style

As you enthusiastically plan utility methods to add to the class, you recognize that this
approach may make the code of the main class very long and difficult to debug. To
solve this conundrum, you can make use of another beautiful principle of OOP called
inheritance (www.geeksforgeeks.org/inheritance-in-python/).

Separate Plotting Classes

You recognize that all plots are not of the same type. Pairplots and fitted vs. true data
plots are of similar nature as they can be derived from the data only. Other plots are
related to the goodness-of-fit and residuals. Therefore, you can create two separate
classes with those plotting functions: Data_plots and Diagnostic_plots. Furthermore,
you can also define your main MyLinearRegression class in terms of these utility classes.
That is an instance of inheritance. This whole approach is shown in Figure 6-10.

TS gt

e
o =
, Ve [

Pt
Copenzes g

Ty = .BG+B1)'(+E,

Data plots -
‘lIHiHHHHHHHH%HHHHHHIII
Diagnostics_plots

Inheritance in action!

Figure 6-10. Define several distinct plotting classes and use them in the base class

Partial code for the Diagnostic_plots is as follows:

class Diagnostics_plots:

Diagnostics plots and methods

Arguments:
fitted vs residual: Plots fitted values vs. residuals
fitted vs_features: Plots residuals vs all feature variables in a grid

175

http://www.geeksforgeeks.org/inheritance-in-python/

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

histogram resid: Plots a histogram of the residuals (can be normalized)
shapiro test: Performs Shapiro-Wilk normality test on the residuals
qqplot_resid: Creates a quantile-quantile plot for residuals comparing
with a normal distribution

def init ():
pass

def fitted vs residual(self):
"""pPlots fitted values vs. residuals

oo
And for the Data_plots:

class Data plots:

Methods for data related plots

pairplot: Creates pairplot of all variables and the target
plot_fitted: Plots fitted values against the true output values from
the data

def _init ():
pass

def pairplot(self):
"""Creates pairplot of all variables and the target using the
Seaborn library"""

if not self.is fitted:
print("Model not fitted yet!")
return None

oo
So, the definition of the main class changes slightly now:
class MyLinearRegression(Data_plots, Diagnostics plots):

def init (self, fit intercept=True):

176

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

self.coef = None

self.intercept = None

self. fit intercept = fit intercept
<oudd

The class definition MyLinearRegression(Data_plots,Diagnostics plots) allows
the main class to inherit all the beautiful plotting methods defined in the plotting classes.
Now you can check the quality of the regression fit by plotting the diagnostics and data
plots with only three or four lines of code:

mlr = MylLinearRegression()
mlr.fit(X,y)

The fitted vs. residual plot is shown in Figure 6-11:

mlr.fitted vs residual()

Fitted vs. residuals plot

61 °
°
4 e o ° o
° o.
2 LA
. PR o oo 0
3 ° -::ﬂb Poo § 00
s 0 "."‘""‘f 'l““'"."“'"" e %" “.
]) o o
-4 o ° [}
21 °° % % % e © o : ®
o (] L]
-4 ° ®
i °
-6 1 . : T : - T r -
-0 -5 0 5 10 15 20 2% 30
Fitted values

Figure 6-11. Fitted vs. residuals plot

Histogram of the residuals (Figure 6-12):

mlr.histogram resid()

177

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Histogram of the normalized residuals

=03 =-0.2 =01 0.0 01 0.2 03
Normalized residuals

Figure 6-12. Histogram of the normalized residuals

Q-Q plot of the residuals (Figure 6-13):

mlr.qgplot_resid()

Probability Plot
03 { Py

021

01 1

Residual quantiles

T T T T T
-2 -1 0 1 £
Theoretical quantiles

Figure 6-13. Quantile-quantile plot of the residuals

The modularization of code is at work here. You can modify and improve the core
plotting utilities without touching the main class. This is a highly flexible and less error-
prone approach that increases the productivity and efficiency of the data scientist.

178

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

More Supporting Classes and Syntactic Sugar

Just for completeness, consider the following:

e Metrics class for computing various regression metrics: SSE, SST,
MSE, R?, and Adjusted R?.

o Outliers class to plot Cook’s distance (https://en.wikipedia.org/
wiki/Cook%27s_distance)leverage, and influence plots

e Multicollinearity class to compute variance inflation factors (VIF;
https://en.wikipedia.org/wiki/Variance_inflation_factor)

Allin all, the grand scheme looks like Figure 6-14.

mm

Figure 6-14. Linear regression estimator with all the supporting classes

Once you inherit other classes, they behave just like the usual Python module you
are familiar with. So, you can add utility methods to the main class to execute multiple
methods from a sub-class together. For example, the following method runs all the usual
diagnostics checks at once. Note how you are accessing the plot methods by putting a
simple .DOT (i.e. Diagnostics plot.histogram resid), justlike accessing a function
from pandas or NumPy library.

def run_diagnostics(self):
"""Runs diagnostics tests and plots
Diagnostics plots.fitted vs residual(self)
Diagnostics plots.histogram resid(self)

179

https://en.wikipedia.org/wiki/Cook's_distance
https://en.wikipedia.org/wiki/Cook's_distance
https://en.wikipedia.org/wiki/Variance_inflation_factor

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Diagnostics plots.qgplot resid(self)
print()
Diagnostics plots.shapiro test(self)

Modularization: Importing the Class as a Module

Although not a canonical OOP principle, the essential advantage of following the OOP
paradigm is to be able to modularize your code. You can experiment and develop all this
code in a standard Jupyter notebook. But for maximum modularity, consider converting
the notebook into a standalone executable Python script (with a .py extension). As a
good practice, remove all the unnecessary comments and test code from this file and
keep only the classes together.

Once you do that, you can import the MyLinearRgression class from a completely
different notebook. This is often the preferred way of testing your code as this does
not touch the core model but only tests it with various data samples and functional
parameters. Figure 6-15 shows a snapshot of a clean notebook where you import the
class from a separate module.

Notebook to test the MyLinearRegression class and its methods

from Class_MyLinearRegression import MyLinearRegression as mlr
import numpy as np
import matplotlib.pyplot as plt

Generate random data with noise

num_samples=180

num_dim = 5

X = 10*np.random.random(size=(num_samples,num_dim))
coeff = np.array([2,-3.5,1.2,4.1,-2.5])

y = np.dot(coeff,X.T)+2*np.random. randn(num_samples)

Instantiate model and fit

model = mlr()
model.fit(X,y)

Model metrics

print ("R-squared: ",model.r_squared())
print (“Adjusted R-squared: “,model.adj_r_squared())
print({"MSE: ",model.mse())

R-squared: ©.9890652102512777
Adjusted R-squared: ©.9884835724986861
MSE: 4.447051771303101

Figure 6-15. Testing the ML estimator by importing it from a separate module
180

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Publishing It as a Python Package

At this point, you can consider releasing this Python script as a standalone Python
package (https://towardsdatascience.com/build-your-first-open-source-python-
project-53471c9942a7) that does fitting, prediction, plotting, diagnostics, and more.
Although you can host the package on your personal website or on the cloud, the most
obvious place to put it is in the official Python package repository, PyPI. This is the place
from where anybody in the world can download and install your package with the pip
command. For example, if your package is named my-ml-package, then anybody can run
pip install my-ml-package and the Python library will be installed on their machine.

Special Instructions for PyPI Hosting

To host on PyPI, you must follow certain steps:

1. Create a setup.py file (https://godatadriven.com/blog/a-
practical-guide-to-using-setup-py/).

2. Create the proper directory structure (if you have files other
than the main script and setup.py, such as sample data and test

scripts).
3. Putthe files in a GitHub repository.
4. Setup GitHub actions for regular commits and updates.

5. Create documentation using a tool like Sphinx and link it to the
GitHub Readmes.

6. And so on.

These specific instructions are already well explained in the link provided above, so I
don’t repeat them in this book.

Of course, you should a lot of docstring descriptions (www.geeksforgeeks.org/
python-docstrings/), examples of usage of a function, assertion checks (https://
airbrake.io/blog/python/python-assertionerror), and unit tests (https://
softwaretestingfundamentals.com/unit-testing/) to make it a good package. But
since you built the code from scratch (following some key OOP principles), you learned a
lot of valuable lessons. You obtained a taste of developing a useful piece of software from
the ground up.

181

https://towardsdatascience.com/build-your-first-open-source-python-project-53471c9942a7
https://towardsdatascience.com/build-your-first-open-source-python-project-53471c9942a7
https://godatadriven.com/blog/a-practical-guide-to-using-setup-py/
https://godatadriven.com/blog/a-practical-guide-to-using-setup-py/
http://www.geeksforgeeks.org/python-docstrings/
http://www.geeksforgeeks.org/python-docstrings/
https://airbrake.io/blog/python/python-assertionerror
https://airbrake.io/blog/python/python-assertionerror
https://softwaretestingfundamentals.com/unit-testing/
https://softwaretestingfundamentals.com/unit-testing/

CHAPTER6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

What is PyPI? The Python Package Index or PyPl is the official third-party
software repository for the Python language. It is analogous to the CPAN repository
for Perl or the CRAN repository for R. PyPl is run by the Python Software Foundation
(PSF), which maintains and develops the official Python version release.

GitHub Integration

My version of the open-source package is here: https://github.com/tirthajyoti/mlr
(Figure 6-16). Although a GitHub repo is not mandatory for publishing a Python package
on PyP], it is highly recommended to create and maintain one. GitHub integration

can make updating and version controlling of your package easy and painless. With

a proper GitHub setup, all you have to do is to push/commit the latest updated files

onto your GitHub and the PyPI version will be updated as well (after executing a set of
special commands that tells PyPI to read the updated files from your GitHub repo). The
documentation for the same can be found here: https://mlr.readthedocs.io/en/
latest/.

¥ master ~ ¥ 1branch @ 0 tags

e tirthajyoti Update README.md

B docs Update examples_advanced.md

BB images Advanced examples page updated
BB mir Update Data_plots.py

[.gitignore Initial commit

[LICENSE Initial commit

(M MANIFEST.in Create MANIFEST.in

@ README.md Update README.md

() setup.py Updated setup and added top image

Figure 6-16. GitHub repo snapshot of the linear regression package

182

https://github.com/tirthajyoti/mlr
https://mlr.readthedocs.io/en/latest/
https://mlr.readthedocs.io/en/latest/

CHAPTER 6 BUILD YOUR OWN ML ESTIMATOR/PACKAGE

Summary

In this chapter, you focused on building a linear regression estimator from the ground
up. You aimed for a clean and simple AP], like what is provided by a scikit-learn
estimator. However, you added quite a few additional methods and utilities (e.g., for
visualization and statistical inference) to this class than what is found in a standard
scikit-learn estimator.

In the process, you learned how to plan and organize the code for building such an
ML estimator and how to take advantage of the OOP paradigm using inheritance and
encapsulation. The design was not meant to be set in stone, but rather act as a guide
for you to plan and build your own data science APIs for various business and scientific
applications.

You also learned additional steps that a data scientist must take to publish this
code as a full-fledged Python package (on the PyPI server) and how this can teach you
valuable skills.

183

CHAPTER 7

Some Cool Utility
Packages

Python has an amazing ecosystem for data science work, starting from numerical
analysis to advanced deep learning or reinforcement learning, with statistical modeling
and visualization thrown in as well. A great open-source culture keeps new and exciting
developments coming and thriving. Data scientists can learn, contribute code, share
their experience, help debug, and support each other in this environment.

There are some predominant libraries and packages in this ecosystem that are used
by almost all data scientists in their daily job. I touch upon them in the next section.
However, there are also some little-known Python packages (the so-called hidden
gems, as in Figure 7-1) that can help you do common data science jobs faster and more
efficiently. They are not general-purpose large projects like NumPy or pandas. Instead,
they focus on some niche aspects of similar data science tasks and do them well.

“ The 5;(‘@,0\‘5

‘ A P&/‘thon ecosys‘tem
Other
l‘\noto(e)'\ e_MS"I
' Pandas . — 3

Figure 7-1. There are hidden gems beyond the great Python data science
ecosystem

185
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_7

https://doi.org/10.1007/978-1-4842-8121-5_7

CHAPTER 7 SOME COOL UTILITY PACKAGES

To be highly productive in data science, you must stay abreast of these new
developments and embrace these focused utility packages wherever they makes sense.
In this chapter, I touch upon a few such nifty packages and show some hands-on
examples of efficient data science. The goal is to introduce the idea of exploration to you
so that you take full advantage of the great Python data science zoo.

Build Pipelines Using pdpipe

pandas is an amazing library in the Python ecosystem for data analytics and machine
learning. It forms the perfect bridge between the data world, where Excel/CSV files and
SQL tables live, and the modeling world, where scikit-learn and TensorFlow perform
their magic.

A data science flow is most often a sequence of steps: datasets must be cleaned,
scaled, and validated before they can be used by that powerful machine learning
algorithm. These tasks can, of course, be done with many single-step functions/methods
that are offered by packages like pandas. However, an elegant alternative is to use a
pipeline. In almost all cases, a pipeline reduces the chance of error and saves time by
automating repetitive tasks. In the data science world, great examples of packages with
pipeline features are dplyr (https://dplyr.tidyverse.org/) in the R language and the
scikit-learn module composition and pipelines (https://scikit-learn.org/stable/
modules/compose.html) in the Python ecosystem.

pandas also offer a pipe method that can be used for similar purposes with user-
defined functions. However, in this section, I am going to discuss a wonderful little
library called pdpipe, which specifically addresses this pipelining issue with pandas
DataFrame and solves the problem in an elegant and intuitive way.

The Dataset

You will use a dataset of US housing prices (downloaded from Kaggle at www. kaggle.
com/vedavyasv/usa-housing). You can load the dataset in pandas. Its summary statistics
are shown in Figure 7-2.

186

https://dplyr.tidyverse.org/
https://scikit-learn.org/stable/modules/compose.html
https://scikit-learn.org/stable/modules/compose.html
https://www.kaggle.com/vedavyasv/usa-housing
http://www.kaggle.com/vedavyasv/usa-housing
http://www.kaggle.com/vedavyasv/usa-housing

Avg. Area Number of Rooms

count

Avg. Area Income 5000.0

Avg. Area House Age 5000.0

5000.0

Avg. Area Number of

ey 5000.0

Area Population 5000.0

Price 5000.0

mean std
6858311 10657.99
5.98 0.99

6.99 1.01
3.98 1.23
36163.52 9925.65

123207265 353117.63

CHAPTER 7 SOME COOL UTILITY PACKAGES

min 25% 50% 75% max
1779663 56148056 68804.29 75783.34 107701.75
2.64 5.32 5.97 6.65 9.52

3.24 6.30 7.00 7.67 10.76

2.00 3.14 4.05 4.49 6.50
17261 29403.93 36199.41 42861.29 69621.71
1593866 997577.14 123266938 147121020 2469065.59

Figure 7-2. Summary statistics of the dataset used for the demo

However, this is only a partial view. It also contains an Address field (Figure 7-3) that

not a numeric column.

Avg. Area Avg. Area Avg. Area

Av[gn. ::: House Number of Number of
Age Rooms Bedrooms

5302935 4,29 6.74 240
79566.92 5.50 7.11 5.06
64927.65 574 659 434
71306.46 5.77 6.69 2.04
87927.97 5.59 478 213

Area
Population

3447230

49311.76

29364.76

43284.40

3472416

Price

430088.25

1608889.26

1138885.10

1335904.50

1276259.02

contains raw text data. This does not show up in the summary stats above because it is

Address

58197 Anderson Squares Suite
89%\nSarahburgh, ...

536 Thompson Tumpike\nWest
Toddfurt, VT 33903...

USCGC Ashley\nFPO AE 25345

3890 Hunt Trail\nDavidhaven, OR
04793

01358 Barton
Ranch\nlawrenceborough, SD
60884-..

Figure 7-3. The dataset contains an Address field with raw text

Let’s add a small transformation based on the Avg. Area Number of Bedrooms

column. Here is the code:

def size(n):

if n<=4:

return 'Small’
elif 4<n<=6:

return 'Medium'
else:

return 'Big’

df['House size']=df['Avg. Area Number of Rooms'].apply(size)

187

CHAPTER 7 SOME COOL UTILITY PACKAGES

You define a function named size and apply it to the Avg. Area Number of Rooms
column. The resulting dataset looks like Figure 7-4.

Avg. Area Avg. Arca House Avg. Arca Number of Avg. Arca Number of Area &
Income Age Rooms Bedrooms Population Price Address § House size
3920 5674357 716 610 337 4655398 139463765 $550/CasKRG SOMmMIL AP SLEs: Big
Karenboroy...
2267 76992.82 653 605 446 24a74041 121344029 IS0 EleNy SrlerVIRoet Rogerer, Ok, Big
27962-5231
03529 Hull Mountai L chanyshire, W
4302 61877.55 535 650 325 2050454 10874537 220 I Moupianmytake Zachanyshire WY sig
4320 6442687 550 895 33 1821431 105554868 Unit 4456 30x D783\NDPO AP 45043 Big
1796 78158.95 512 618 408 3162 126407244 76 Hamis Pines Suite 435\nPort ot Big

Figure 7-4. Dataset after applying the house size transformation

Start Laying Pipes

Start with the simplest possible pipeline, consisting of just one operation. Let’s say the
machine learning team and the domain experts say that they think they can safely ignore
the Avg. Area House Age data for modeling. Therefore, you can drop this column from
the dataset. For this task, you create a pipeline object named drop_age with the ColDrop
method from pdpipe and pass the DataFrame to this pipeline:

import pdpipe as pdp
drop_age = pdp.ColDrop(‘Avg. Area House Age’)
df2 = drop_age(df)

That'’s it. The resulting DataFrame, as expected, looks like Figure 7-5.

Avg. Area Avg. Area

A"E;CT:: NumRI::md NBL::I:mr of Pml::;:: Price Address House_size
s rooms

64491.0 5.0 40 403590 7188870 1 OniZTK:"z\::ffnzsgg’s‘ Medium

64347.0 7.0 2.0 323380 959102.0 ?3321::;:2 tf\";‘;_::g:é‘r‘;tj Big

68387.0 7.0 2.0 378950 1389224.0 e Be"’;g\é’;:gs‘;‘g Big

61503.0 70 3.0 376510 8224320 13;2 I‘eﬁ’éﬁ’;sé';gg Big

61677.0 90 40 384680 13286590 5534@::213;:?:; ’;‘gt Big

Figure 7-5. Dataset after dropping the Age column using a pipe operation

188

CHAPTER 7 SOME COOL UTILITY PACKAGES

Chain Stages of Pipeline Simply by Adding

Now, single pipes are fun, but pipelines are truly useful and practical only when they
have multiple (connected) stages. There are multiple methods by which you can
do that in pdpipe. However, the simplest and most intuitive approach is to use the +
operator. It is like hand-joining pipes. Just add one to another.

Let’s say, apart from dropping the Age column, you also want to one-hot-encode the
House size column so that a classification or regression algorithm can be run on the
dataset easily. You can accomplish this simply by writing this code:

pipeline = pdp.ColDrop('Avg. Area House Age')
pipeline += pdp.OneHotEncode(‘House size’)
df3 = pipeline(df)

So, you created a pipeline object first with the ColDrop method to drop the Avg.
Area House Age column. Thereafter, you simply added the OneHotEncode method to this
pipeline object with the usual Python += syntax. The new pipeline now processes the
DataFrame object. The resulting DataFrame is shown in Figure 7-6. Note the additional
indicator columns House size Mediumand House size Small created from the one-
hot-encoding process.

Avg. Avg. Area Avg. Area Area
Area Number Number of . Price Address House_size Medium House_size_Small
Population
Income of Rooms Bedrooms

74421 Horton
Manor Apt.
121\nLake
Edward, SC7...

69606.0 7.0 3.0 35427.0 1588196.0

78312 Martin
Terrace Suite
58841.0 7.0 4.0 39555.0 1496730.0 957\nNew 0 0

Kimberly, ...

860 Graham

Meadows Suite
43242.0 7.0 20 294790 6296580 412\nEast 0 0

Figure 7-6. Dataset after one-hot-coding added to the pipeline

189

CHAPTER 7 SOME COOL UTILITY PACKAGES

Dropping Rows Based on Their Values

Next, you may want to remove rows of data based on their values. Specifically, you may
want to drop all the data where the house price is less than 250,000. You can use the
ApplybyCol method to apply any user-defined function to the DataFrame. You can also
use the method ValDrop to drop rows based on a specific value. You can easily chain
these methods to your pipeline to selectively drop rows (you are still adding to your
existing pipeline object which already does the other jobs of column dropping and one-
hot-encoding). You accomplish this by creating a small user-defined function named
price_tagand then using it inside the pipe:

def price tag(x):
if x>250000:
return ‘keep'
else:
return 'drop'
pipeline+=pdp.ApplyByCols('Price’,price tag,
'Price_tag',drop=False)
pipeline+=pdp.ValDrop(['drop'], 'Price tag')
pipeline+= pdp.ColDrop('Price tag')

Note, in the code above, for the first operation, the second argument of the ApplyByCols
method represents the user-defined function whereas the third argument named Price
tag represent the name of the resulting column. Figure 7-7 shows the dataset.

Avg.

Avg. Area
g o Number Area
Area MNumber s Price Price_tag Address House size Medium House size
of Population
Income of
Bedrooms
Rooms
16028 Sarah Isle
57358.62 7.10 3.14 22061.59 94827994 keep Suite 386\nEast 0
Clifford, PW ...
85083 Combs
73886.08 5.59 2.16 26038.51 987004.08 keep Fort\nConnorhaven, 1
AR 993906-2530
2499 Dalton
96397.58 6.20 2.40 22681.92 1053966.43 keep Keys\nNicholasland, 0
LA 68235

A28Q1 Raharra

Figure 7-7. Dataset after the price tag function is applied

190

CHAPTER 7 SOME COOL UTILITY PACKAGES

Now the ValDrop method comes in and it looks for the string drop in the Price_tag
column and drops those rows that match. Finally, the ColDrop method removes the
Price_tag column, cleaning up the DataFrame. Essentially, this Price tag column is
only needed temporarily, to tag specific rows, and should be removed after it serves its
purpose.

The efficient aspect is that all of this is accomplished by simply chaining stages of
operations on the same pipeline. At this point, you can look back and see what your
pipeline does to the DataFrame right from the beginning:

o Drops a specific column

e One-hot-encodes a categorical data column for modeling
o Tags data based on a user-defined function

e Dropsrows based on the tag

e Drops the temporary tagging column

Six lines of code for all of these actions:

pipeline = pdp.ColDrop('Avg. Area House Age')

pipeline+= pdp.OneHotEncode('House size')

pipeline+=pdp.ApplyByCols('Price',price tag,
'Price tag',drop=False)

pipeline+=pdp.ValDrop(['drop'], 'Price tag')

pipeline+= pdp.ColDrop('Price tag')

df5 = pipeline(df) # Final DataFrame

Moreover, the latest version of the package implements another direct method to do
all of this in a single line of code like this:

pdp.RowDrop({'Price': lambda x: x <= 250000})

scikit-learn and NLTK Stages

There are many more useful and intuitive DataFrame manipulation methods available
for in pdpipe that can make the data science tasks productive and efficient. Additionally,
even some operations from the scikit-learn and NLTK packages are included in pdpipe
for making awesome pipelines.

191

CHAPTER 7 SOME COOL UTILITY PACKAGES

Scaling Data with a scikit-learn Method

For example, one of the most common tasks for building ML models is the scaling of
the data. scikit-learn offers a few different types of scaling such as min-max scaling or
standardization-based scaling (where the mean of a data set is subtracted followed
by division by standard deviation). You can directly chain such scaling operations in a
pipeline. The following code demonstrates the use:

exclude = ['House_size Medium', 'House_size Small']
pipeline scale = pdp.Scale('StandardScaler', exclude columns=exclude)
df6 = pipeline scale(dfs)

Here you apply the StandardScaler estimator from the scikit-learn package to
transform the data for clustering or neural network fitting. You can selectively exclude
columns that do not need such scaling, as you have done here for the indicator columns
House size Mediumand House size Small. The resulting DataFrame shows the effect
of scaling (Figure 7-8).

Avg. Avg. Area Avg. Area Area

Area Number Number of .\ Price Address House size Medium House size Small
Population
Income of Rooms Bedrooms

06374 Martin
) } } Passage\nNew

2.067 1.195 1.379 0.128 1.366 Shawnland, KS 1 0
59839-...
827 Ferguson

-0.183 0.504 0.840 -1.328 -1.849 Isle\nRosebury, Al 0 0
61416-2167
Unit 8410 Box

0.044 0.062 1.164 -0.352 0.300 5521\nDPO AP 0 0
20914-6877

Figure 7-8. Dataset after standard normal scaling was applied to
selected columns

Tokenizer from NLTK

The Address field in your DataFrame is useless right now. However, if you can extract ZIP
codes or states from those strings, they might be useful for some form of visualization or

machine learning task.

192

CHAPTER 7 SOME COOL UTILITY PACKAGES

You can use a word tokenizer for this purpose. NLTK is a popular and powerful
Python library for text mining and natural language processing (NLP) and it offers a
range of tokenizer methods. Here, you can use one such tokenizer to split up the text
in the Address field and extract the name of the state from that. You recognize that the
name of the state is the penultimate word in the address string. Therefore, you can create
the following chained pipeline for this job:

def extract state(token):
return str(token[-2])

pipeline_tokenize = pdp.TokenizeWords('Address")

pipeline state = pdp.ApplyByCols('Address',extract state,
result columns='State")

pipeline_state extract = pipeline_tokenize + pipeline_state
df7 = pipeline_state extract(df6)

The resulting DataFrame is shown in Figure 7-9. Note the new State column.

Ava. Area Avg. Area Avg. Area Area
9- Number of Number of . Price State House size Medium House size Small

Income Population

Rooms Bedrooms

0.614 -0.391 -0.553 -0.420 0.830 AA 0 0
-0.624 0.691 0.897 -0.020 -0.883 KS 0 0
-2.87T1 0.769 0.921 0,183 -0.956 NV 0 0
-0.080 -0.014 -1.468 0713 0179 NM [} 0
-0.098 0.761 1.893 -1.456 -0.181 MH 0 0

Figure 7-9. Dataset after NLTK tokenizer method was applied to the
Addpress column

193

CHAPTER 7 SOME COOL UTILITY PACKAGES

All Together

Figure 7-10 summarizes all the operations shown in this demo.

Figure 7-10. Dataset after a NLTK tokenizer method was applied to the
Addpress column

All of these operations may be used as frequently as needed on similar types of
datasets. Having a simple set of sequential code blocks to execute as a preprocessing
operation enhances the productivity of the data scientist. Pipelining is the key to
achieving that uniform set of sequential code blocks. pandas is the most widely used
Python library for such data preprocessing tasks in a data science team, and pdpipe
provides a simple yet powerful way to build pipelines with pandas-type operations.

Speeding Up NumPy and pandas

NumPy and pandas are probably the two most widely used core Python libraries for

DS and ML tasks. Obviously, the speed of evaluating numerical expressions is critically

important for these DS/ML tasks and these two libraries do not disappoint in that regard.
Under the hood, they use fast and optimized vectorized operations (as much

as possible) to speed up mathematical operations. Plenty of articles have been

written about how NumPy is much superior (especially when you can vectorize your

calculations) over plain-vanilla Python loops or list-based operations. In this section, I

show how using a simple extension library called NumExpr can improve the speed of the

mathematical operations that the core NumPy and pandas yield.

What Is This Library?

First, install it with the pip command:

pip install numexpr

194

CHAPTER 7 SOME COOL UTILITY PACKAGES

The project is hosted on GitHub at https://github.com/pydata/numexpr. It is
from the PyData (https://pydata.org/) stable, the organization under NumFocus,
(https://numfocus.org/), which also gave rise to Numpy and pandas.

As per the official source,

“NumExpr is a fast numerical expression evaluator for NumPy.
With it, expressions that operate on arrays are accelerated and
use less memory than doing the same calculation in Python. In
addition, its multi-threaded capabilities can make use of all your
cores—which generally results in substantial performance scaling
compared to NumPy.”

Here is the detailed documentation for the library and examples of various use cases:
https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/.

Speeding It Up

Let’s start with a very simple mathematical operation of adding a scalar number, say 1,
to a NumPy array. To use the Numexpr package, all you need to do is to wrap the same
calculation under a special method named evaluate in a symbolic expression. The
following code illustrates the usage clearly:

import numpy as np
import numexpr as ne

np.arange(1e6)
np.arange(1e6)

%%timeit -n200 -r10
C = a+l

>> 3.55 ms * 52.1 ps per loop (mean + std. dev. of 10 runs, 200 loops each)

%%ktimeit -n200 -r10
c = ne.evaluate("a + 1")

>> 1.94 ms * 86.5 ps per loop (mean + std. dev. of 10 runs, 200 loops each)

195

https://github.com/pydata/numexpr
https://pydata.org/
https://numfocus.org/
https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/

CHAPTER 7 SOME COOL UTILITY PACKAGES

That was magical! All you had to do was to write the familiar a+1 NumPy code in the
form of a symbolic expression "a+1" and pass it on to the ne.evaluate() function. And
you got a significant speed boost from 3.55 ms to 1.94 ms on average.

Note that, for consistency purposes, you ran the same computation 200 times in a
10-loop test to calculate the execution time. Of course, the exact results are somewhat
dependent on the underlying hardware. You are welcome to evaluate this on your
machine and see what improvement you got.

Arithmetic Involving Two Arrays

Let’s dial it up a little and involve two arrays. Here is the code to evaluate a simple linear
expression using two arrays:

%%timeit -n100 -r10
c = 2*a+3*b

>> 11.7 ms % 177 ps per loop (mean + std. dev. of 10 runs, 100 loops each)

%ktimeit -n100 -r10
c = ne.evaluate("2*a+3*b")

>> 2.14 ms % 130 ps per loop (mean + std. dev. of 10 runs, 100 loops each)

For two-array operation, there’s an even bigger improvement than the simple scalar
addition from 11.7 ms to 2.14 ms on the average.

A Somewhat More Complex Operation

Now, let’s notch it up further by involving more arrays in a somewhat complicated
rational function expression. Suppose you want to evaluate the expression in Figure 7-11
involving five Numpy arrays, each with one million random numbers (drawn from a
Normal distribution).

_ a? + 2ay + (3/as3)
Va3 + a3

where ay, as, a3, a4, as are arrays with
1 million Normally distributed random numbers

Figure 7-11. A complex rational function involving multiple NumPy arrays

196

CHAPTER 7 SOME COOL UTILITY PACKAGES

Here is the code. You create a NumPy array of the shape (1000000, 5) and extract five
(1000000,1) vectors from it to use in the rational function. Also note how the symbolic
expression in the Numexpr method understands the string symbol ‘sqrt’ natively (you just
write sqrt).

a = np.random.normal(size=(1000000,5))
al,a2,a3,a4,a5 = a[::O]:a[:)1])3[::2]13[:)3]:3[::4]

%ktimeit -n100 -r10
c = (a1**2+2*a2+(3/a3))/(np.sqrt(as**2+a5**2))

>> 47 ms * 220 ps per loop (mean + std. dev. of 10 runs, 100 loops each)

%ktimeit -n100 -r10
ne.evaluate("(a1**2+2*a2+(3/a3))/(sqrt(as**2+a5**2))")

>> 3.96 ms * 218 ps per loop (mean + std. dev. of 10 runs, 100 loops each)

This shows a huge speed boost from 47 ms to ~4 ms on average. In fact, thisis a
trend; you will notice that the more complicated the expression becomes and the greater
number of arrays it involves, the higher the speed boost becomes with Numexpr.

Logical Expressions/Boolean Filtering

Furthermore, you are not limited to the simple arithmetic expressions shown above.
One of the most useful features of NumPy arrays is to use them directly in an expression
involving logical operators such as > or < to create Boolean filters or masks. You can

do the same with Numexpr and speed up the filtering process. Here is an example of
checking whether the Euclidean distance measure involving four vectors is greater than
a certain threshold:

x1 = np.random.random(1000000)
X2 = np.random.random(1000000)
yl = np.random.random(1000000)

y2 = np.random.random(1000000)

#%timeit -n100 -r10
C = npesqrt((x1-x2)**24(y1-y2)**2) » 0.5

>> 23.2 ms + 143 ps per loop (mean + std. dev. of 10 runs, 100 loops each)

197

CHAPTER 7 SOME COOL UTILITY PACKAGES

#%timeit -n100 -r10
c = ne.evaluate("sqrt((x1-x2)**2+(y1-y2)**2) > 0.5")

>> 1.86 ms + 112 ps per loop (mean + std. dev. of 10 runs, 100 loops each)

This kind of filtering operation appears all the time in a data science/machine
learning pipeline, and you can imagine how much compute time can be saved by
strategically replacing NumPy evaluations with Numexpr expressions.

Complex Numbers

You can make the jump from the real to the imaginary domain pretty easily. Numexpr
works equally well with complex numbers, which are natively supported by Python and
NumPy. Here is an example, which also illustrates the use of a transcendental math
operation, a logarithm:

a = np.random.random(1000000)
b = np.random.random(1000000)
cplx = a + b*1j

#%timeit -n100 -r10
¢ = np.log10(cplx)

>> 55.9 ms + 159 us per loop (mean + std. dev. of 10 runs, 100 loops each)

%%timeit -n100 -r10
c = ne.evaluate("log10(cplx)")

>> 9.9 ms + 117 ps per loop (mean + std. dev. of 10 runs, 100 loops each)

Impact of the Array Size

Next, let’s examine the impact of the size of the NumPy array over the speed
improvement. For this, let’s choose a simple conditional expression with two arrays like
2*a+3*b < 3.5 and plot the relative execution times (after averaging over 10 runs) for
a wide range of sizes. The code is in the accompanying Jupyter notebook, and the final
result is shown in Figure 7-12.

198

CHAPTER 7 SOME COOL UTILITY PACKAGES

800 1 —e— just NumPy
o 700 1 —a— With numexpr
600 -
500 1
400 A
300 1
200

100 1

Time (milliseconds

10° 10° 107
Number of elements in the array

Figure 7-12. Impact of the size of the array on speed improvement

The pandas eval Method

It turns out that pandas has an eval method where you can select to use a Numexpr
engine to speed up the operation of evaluating a Python symbolic expression (as

a string). Figure 7-13 shows a snapshot of the method from the official pandas
documentation.

engine : f'python, ‘numexpr’], default ‘numexpr’
The engine used to evaluate the expression. Supported engines are
e None: tries to use numexpr, falls back to python
e 'numexpr': This default engine evaluates pandas objects using

numexpr for large speed ups in complex expressions with large frames.

e 'python': Performs operations as if you had eval’d in top

level python. This engine is generally not that useful.
More backends may be available in the future.

Figure 7-13. Partial snapshot of the Pandas eval method with the numexpr engine

199

CHAPTER 7 SOME COOL UTILITY PACKAGES

The following code demonstrates an example where you construct four DataFrames
with 50,000 rows and 100 columns each (filled with uniform random numbers) and
evaluate a nonlinear transformation involving those DataFrames, in one case with a
native pandas expression and in other case using the pd.eval() method:

nrows, ncols = 50000, 100
df1,df2,df3,df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in
range(4)]

%%timeit -n20 -r10
c=2*df1 - (df2/2) + (df3/df4)

>> 55.8 ms + 1.8 ms per loop (mean + std. dev. of 10 runs, 20 loops each)

%%timeit -n20 -r10
pdeeval('2*df1 - (df2/2) + (df3/dfa)")

>> 17.3 ms + 539 ps per loop (mean + std. dev. of 10 runs, 20 loops each)

Note how you use a string with symbolic expressions for the DataFrames in the
second case: pd.eval('2*df1 - (df2/2) + (df3/df4)")

You do a similar analysis of the impact of the size (number of rows, while keeping
the number of columns fixed at 100) of the DataFrame on the speed improvement. The
result is shown in Figure 7-14.

2500 =
—e— Normal boring Pandas
= 20001 —* With pd.eval
=
c
S
& 1500 1
A
'E 1000 1
L}
E 5001
=
01
10° 10 10° 10°

Number of rows in the DataFrame

Figure 7-14. Impact of the size of the DataFrame on the speed improvement

200

CHAPTER 7 SOME COOL UTILITY PACKAGES

How It Works, Supported Operators

The details of the mechanism that makes Numexpr work are somewhat complex and
involve the optimal use of the underlying compute architecture. I won’t cover that

in this book. Basically, the expression is compiled using a Python compile function,
variables are extracted, and a parse tree structure is built. This tree is then compiled into
a Bytecode program, which describes the element-wise operation flow using something
called vector registers (each 4096 elements wide). The key to speed enhancement is
Numexpr’s ability to handle chunks of elements at a time.

It skips NumPy’s practice of using temporary arrays, which wastes memory and
cannot even fit into cache memory for large arrays. Also, the virtual machine is written
entirely in C, which makes it faster than native Python. It is also multi-threaded, allowing
faster parallelization of the operations on suitable hardware. A simplified illustration is
shown in Figure 7-15.

Expression ‘ Python
“compile”’

|| Vector
‘ register

Vector
Parse tree Baasde register
structure y

Vector
| register

Figure 7-15. Simplified illustration of the inner workings of Numexpr

Numexpr supports a wide array of mathematical operators for use in the expression
but not conditional operators like if or else. The full list of operators can be found
athttps://numexpr.readthedocs.io/projects/NumExpr3/en/latest/user guide.
html#supported-operators.

You can also control the number of threads that you want to spawn for parallel
operations with large arrays by setting the environment variable NUMEXPR_MAX_THREAD.
Currently, the maximum possible number of threads is 64 but there is no real benefit of
going higher than the number of virtual cores available on the underlying CPU node.

201

https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/user_guide.html#supported-operators
https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/user_guide.html#supported-operators

CHAPTER 7 SOME COOL UTILITY PACKAGES

So, in this section, you saw how to take advantage of the special virtual machine-
based expression evaluation paradigm for speeding up mathematical calculations in
NumPy and pandas. Although this method may not be applicable for all possible tasks, a
large fraction of data science, data wrangling, and statistical modeling pipelines can take
advantage of this with minimal change in the code.

Discover Best-Fitting Distributions Quickly

Imagine that you have some numeric data points and you want to find out which
statistical distribution they might have come from. This is a classic statistical inference
problem.

There are, of course, rigorous statistical methods to accomplish this goal. But maybe
you are a busy data scientist. Or a busier software engineer who happens to be given this
dataset to quickly write an application endpoint so that another ML app can use some
synthetic data generated based on the best distribution that matches the data.

In short, you don't have a lot of time on hand and you want to find a quick method to
discover the best-matching distribution that the data could have come from. Basically,
in this scenario, you want to run an automated batch of goodness-of-fit (GOF) tests
(https://en.wikipedia.org/wiki/Goodness of fit) on several distributions and
summarize the results in a flash. You can, of course, write code from scratch to run
the data through standard GOF tests using the Scipy library, one by one, for several
distributions.

Alternatively, you can use a small but useful Python library called distfit to do the
heavy lifting for you.

What are GOF tests? The goodness of fit of a statistical model describes

how well it fits a set of observations. Put simply, a measure of goodness of fit
typically summarizes the discrepancy between the observed values and the values
expected under the model in question. They find wide use in all kinds of statistical
problems and hypothesis testing scenarios.

202

https://en.wikipedia.org/wiki/Goodness_of_fit

CHAPTER 7 SOME COOL UTILITY PACKAGES

Simple Fitting Example

You will generate some random synthetic data and try to find the best-matching
distribution with only a few lines of code:

from distfit import distfit
import numpy as np

Generate test data
datal = np.random.normal(loc=5.0, scale=10, size=1000)

Then you initiate a model and fit the data to it:

Initialize model

dist1 = distfit(bins=25,alpha=0.02,stats="ks")
Fit the data

dist1.fit transform(datal,verbose=1)

Note the similarity to the scikit-learn API; it has a fit_transform method, which
you just used. Here, alpha denotes a confidence interval for fitting and stats="ks'
denotes the scoring strategy standing for the Kolmogorov-Smirnov statistic (https://
en.wikipedia.org/wiki/Kolmogorovi%E2%80%93Smirnov_test). When you run this code
in a Jupyter notebook, you get the (very) detailed output shown in Figure 7-16.

203

https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

CHAPTER 7 SOME COOL UTILITY PACKAGES

{'model’': {'distr’': <scipy.stats._continuous_distns.norm_gen at ©x2493¢@c5370>,

‘stats': 'ks',

‘params’: (5.168141032320424, 19.297680831713478),

‘name': 'norm',

‘model’: <scipy.stats._distn_infrastructure.rv_frozen

‘score': 1.1527914473738086e-07,

"loc': 5.168141032320424,

"scale’: 10.297680831713478,

farg’: (),

"CII_min_alpha': -15.980789757845336,
"CII_max_alpha': 26.31699182248618},

‘summary ' :
norm
t
genextreme
gamma
lognorm
beta
loggamma
dweibull
expon
pareto
10 uniform

O 0N R W N RO

distr
0.0

o000 00
Lo B I I I]

e.
0.00194
1.108472
1.108472
3.228419

NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

score LLE
5
S
1

-804.
-442.
-56.
-2197.

5

-25.
-710722358.
-25.

.168141
.168624
.345935
696532
600479
534935
020027
.968244
240552
209e82
240552

loc
10.297681
10.297493
10.208551
©.1308926
447 .61915
129.443957
320.587092
8.919706
30.408693
71@722332.96853
64.0835316

Figure 7-16. Detailed (partial) output of distribution fitting

at 0x2493d248ca®d>,

scale

In fact, the fitting process creates and stores all kinds of information in that dist1

object. Perhaps you are mostly interested in seeing some matching visualization and a

summary of matching performance with various distributions.

Plot and Summary

\

A simple plot command shows the best-fitted distribution and how it matches with your

data points:

dist1.plot(verbose=1)

204

CHAPTER 7 SOME COOL UTILITY PACKAGES

This results in the chart shown in Figure 7-17.

0040

0035

0030

0025 A

Frequency
o
o
13
(=13

0015

0.010

0.005

0000

norm
loc=5.17, scale=10.30

—— empirical distribution
— nom

=== Clllow (0.02)

=== Cll high (0.02)

-10 0 10 20 0
Values

Figure 7-17. Best-matched distribution with the test data points

A nice summary table is available with one line of code:

dist1.summary

It shows information about all the distributions that the fit_transform method
went through under the hood. The score here is the metric that determines the best-

matching distribution. It is like an error or distance metric, so the lower the score, better

the match is. For this case, quite a few distributions match the data with nearly zero

scores. After looking at the summary table in Figure 7-18, you can decide which one to

pick, if needed.

205

CHAPTER 7 SOME COOL UTILITY PACKAGES

distr score LLE loc scale arg

0 norm 0.0 NaN 5.168141 10.297681 0
1 t 0.0 NaN 5.168624 10.297493 (5964061.469961431,)
2 genextreme 0.0 NaN 1.345935 10.208551 (0.24650762422035927))
3 gamma 0.0 NaN -804.696532 0.130926 (6185.654208686727,)
4 lognorm 0.0 NaN -442.600479 44761915 (0.02303400880174134,)
5 beta 0.0 NaN -56.534935 129.443957 (18.311101389857235, 20.103025094062506)
6 loggamma 0.0 NaN -2197.020027 320.587092 (962.7002556656262,)
ff dweibull 0.001945 NaN 5.968244 8.919706 (1.2805598141142776,)
8 expon 1.108472 NaN -25.240552 30.408693 0
9 pareto 1.108472 NaN -710722358.209082 710722332.96853 (21661180.97529108,)
10 uniform 3.228419 NaN -25.240552 64.035316 0

Figure 7-18. Summary table of all the distributions the data was
evaluated against

Why are there only 11 distributions in this summary? Because, by default, it uses a
list of the most popular distributions to scan through. If you want to search through a
fixed list of distributions, you can specify the exact list as an argument to the distfit
object while initializing it, with distribution names as common strings.

Be Careful with Small Datasets

As with every other statistical learning model fitting process, this also works best with a
large dataset. For small data, the fit may be ambiguous (multiple distributions showing
similar match) or suboptimal (the wrong distribution is identified as the best fit).

For example, let’s generate some data from the Beta distribution (https://
en.wikipedia.org/wiki/Beta_distribution) with parameters chosen such as they
look almost like a Normal distribution. If you choose the parameters @ and f to be equal
or close, you can accomplish this. Then, if you fit 1,000 data points, you may get the
Normal distribution as the best-fitted distribution (Figure 7-19).

206

https://en.wikipedia.org/wiki/Beta_distribution
https://en.wikipedia.org/wiki/Beta_distribution

CHAPTER 7 SOME COOL UTILITY PACKAGES

import numpy as np

data2
dist2

np.random.beta(a=2.2,b=2.0,size=500)
distfit(bins=50,alpha=0.02,stats="ks")

dist2.fit transform(data2,verbose=1)
dist2.plot(title="Best-fitted with 500 data points",verbose=1)

200

175

150

=
h
w

Frequency
-
(=]
L=]

075

050

025

0.00

Best-fitted with 1000 data points

norm
loc=0.52, scale=0.22

—— empirical distribution

! —— norm
! === Cll low (0.02)
| -~ Cll high (0.02)

00

02 04 06 08 10
Values

Figure 7-19. Data generated from the beta distribution fitted with 1,000 points

However, if you extend the dataset size to 10,000 points, you will most likely get the

correct answer (Figure 7-20).

207

CHAPTER 7 SOME COOL UTILITY PACKAGES

Best-fitted with 10000 data points
beta
a=2.22, b=2.02, loc=-0.00, scale=1.00

16

14 4

12 4

[
[=]

Frequency

o
=]

0.6 -

04 1

0.2 4 —— empirical distribution
— beta
=== Cll low (0.02)

=== Cll high (0.02)

0.0 1

0.0 0.2 0.4 06 08 10
Values

Figure 7-20. Data generated from the beta distribution fitted with 10,000 points

Other Things You Can Do

There are many things you can do with the distfit library:

You can choose which statistical test (RSS, Kolmogorov-Smirnov,
etc.) to use for determining the best fit.

You can control the exact list of distributions you want to run
through.

You can use the distfit.predict method to predict the
probability of a response variable.

You can generate synthetic data using the distfit.
generate method.

I have shown examples of continuous distribution fitting only.
However, you can easily do fitting with discrete distributions.

208

CHAPTER 7 SOME COOL UTILITY PACKAGES

Summary

In this chapter, you explored lightweight Python packages that can speed up common
data science tasks such as pipelining data wrangling and cleaning, numerical
manipulation using NumPy and pandas, and finding the best-matched statistical
distribution for numeric data points.

There are hundreds of such specialized libraries in the Python ecosystem that can
lead to productive and efficient data science if you look for them. GitHub is a great place
to start searching for them. Watch for the number of stars that a GitHub project has
received to determine the quality of the package and determine whether it is mature/
stable enough to include in your data science stack.

There are also excellent articles and blogs that specifically discusses new and
exciting Python packages as alternatives to the established brands. Khyuen Tran’s open-
source book, Chapter 5 has compact (although code-heavy) discussions of many such
useful libraries.

209

CHAPTER 8

Memory and Timing
Profile

Data science tasks come with a wide variety of computational costs of both space and
time. Data wrangling jobs may need the support of large storage, while advanced ML
algorithms need high intensity computing speed. Some ML algorithms work better with
the support of large local memory (RAM) and cannot perform well with data situated far
from the CPU on a hard disk, while others are optimized to perform well with distributed
data storage.

Furthermore, the nature of the data may change slowly or frequently depending on
the application. Some models and data science code scale gracefully with the increasing
size and complexity of the input data, some do not. When the scaling is not properly
planned or baked into the code, the performance can suffer, even leading to possible
catastrophic failure in time. In many of those situations, excessive memory usage by the
code (or demand on the memory bandwidth) is at the root of the problem.

To plan for such situations or to design the data science code robustly, you must
start with basics: measuring the efficiency of the code in terms of memory usage or
profile. Obviously, this integrates tightly with the core philosophy of productive data
science, which is the theme of this book. There are many tools and techniques for such
measurements depending on the code and the underlying hardware. In Chapter 2, we
talked about a basic timing measurement and a time decorator to measure the execution
time of an ML function. In this chapter, my goal is to introduce you to some tools (with
hands-on examples) that can be used to measure a memory usage profile of data science
and ML code.

211
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_8

https://doi.org/10.1007/978-1-4842-8121-5_8

CHAPTER 8 MEMORY AND TIMING PROFILE

Why Profile Memory Usage?

Memory usage measurement or profiling may seem an afterthought for most data
science work. However, it is becoming more and more commonplace and critical to
have. As a data scientist, if you can measure the memory profile of your code reliably
and plan your larger codebase, you are sure to positively impact the robustness of your
software platform.

A Common Scenario

Suppose you have written a cool machine learning app or created a shiny neural network
model. Now you want to deploy this model over some web service or REST API. Or, you
might have developed a model based on data streams coming from industrial sensors

in a manufacturing plant and now you must deploy the model on one of the industrial
control PCs to serve decisions based on continuously incoming data.

As a data scientist, an extremely common question that you may expect from the
engineering/platform team is “what memory footprint does your model/code have?”
or “what’s the peak memory usage by your code when running with some given
data load?” This is quite natural to wonder about because hardware resources may be
limited and a single ML module should not hog all of the memory of the system. This
is particularly true for edge computing scenarios such as where the ML app may be
running on the very edge such as inside a virtualized container on an industrial PC (and
with no cloud-supported auto-scaling of memory or dynamic allocation).

Also, your model may be just one of hundreds of models running on that piece of
hardware. Therefore, you must have some idea about the peak memory usage of the
model because if a multiple models peak in their memory usage at the same time, which
can crash the whole system. All these models do not necessarily come from the same
data scientist either. Various teams might have developed them over time. It makes sense
to have a common mechanism of measuring or gauging the memory usage (peak and
average) of all those models (and data science code in general). The idea is illustrated in
Figure 8-1.

212

CHAPTER 8 MEMORY AND TIMING PROFILE

Profile
meaSu{‘e_men‘t
Y
ML model 1 @ M
——
A
ML model 2 @ il i, W

Y

ML model 3 @ _NJ\J\"\/\

Figure 8-1. Measuring (gauge) of memory and CPU (execution) profile of a
multitude of ML models, all running on a single system

It’s Not the Model Size (or Compression)

You may think that making a compact and less complex ML model may solve all of your
problems. But that would be a mistaken assumption to make. When it comes to the
question of peak memory usage, we are talking about the runtime memory profile (a
dynamic quantity) of your entire code. This has very little to do with the size (or even
the compression) of your ML model (which you may have saved as a special object
on the disk, such as a scikit-learn Joblib dump, a simple Python pickle dump, or a
TensorFlow HFD5).

Model compression and sizing is quite important, too. In many situations, you may
be asked to pay special attention to it. You may have to restrict yourself from training a
model with millions of parameters by choosing a simpler model architecture. You may
have to try post-training model compression (e.g., intentionally reducing the floating-
point accuracy of the numeric coefficients) to reduce the model size (on the disk).
Often, these exercises lead to the reduction of active memory usage of the model while
itis running. However, you still need to have active code and a mechanism in place to
measure the memory usage profile in runtime.

213

CHAPTER 8 MEMORY AND TIMING PROFILE

Scalene: A Neat Little Memory Profiler

Although there are many memory and CPU profilers, it is good to have a one-stop shop
for getting a good view of the overall data science code. One such comprehensive utility
is Scalene. Let’s examine it in more detail.

As per its GitHub page, “Scalene is a high-performance CPU, GPU, and memory
profiler for Python that does several things that other Python profilers do not and
cannot do. It runs orders of magnitude faster than other profilers while delivering far
more detailed information.” It was developed at the University of Massachusetts. Check
out the video at www. youtube.com/watch?v=5iEf-_ 7mMik&feature=youtu.be for a
comprehensive introduction.

So, Scalene promises the following:

o Profile for CPU, GPU, and memory
o Offer an order of magnitude faster execution than other profilers

e More detailed information than other similar tools

Basic Usage

The install is by pip:
pip install scalene

One obvious limitation is that currently, it works only for Linux OS. If you run
Windows or MacOS, you can use it by creating a virtual machine and running your
scripts there.

The use of Scalene is extremely straightforward. You just type scalene in front of the
name of your Python script:

scalene <MyApp.py>

Alternatively, you can use in inside a Jupyter notebook, first by executing this magic
command:

%load_ext scalene

A typical output snapshot is shown in Figure 8-2. A more detailed explanation
follows.

214

http://www.youtube.com/watch?v=5iEf-_7mM1k&feature=youtu.be

CHAPTER 8 MEMORY AND TIMING PROFILE

Memory usage: [N (rox: 84.33MB, growth rate: 100%)
mlp.py: % of time = 100.80% cut of 1.38s.

Line |Time Memory e Copy
Python |native |system |Python [net timeline/% (MB/s) |mlp.py
10% 18% % 37% 28M 37% 32 |import pandas as pd
import pickle
import numpy as np
23%

FiY

19% 41% 230 | — 43% 32 |from sklearn.neural_network import MLPRegressor
2% 1H 2% from sklearn.datasets import make regression
NUM_FEATURES = 10

NUM SAMPLES l1e08

4 Make data
def make_data():
X,y = make_regression{n_samples-NUM_SAMPLES,n_featur
n_informative=NUM_FEATURES.noise=-0
data = pd.DataFrame(X,columns«['X'+str(1) for 1 in r
2% 1M 2% datal "y’]=np.array(y,dtype-np.floatls)
return data

& Test/Trair

def test train(data):
X_train.y_train = data.iloc[:int(NUM_SAMPLES/2)].dro
X test,y test = data.iloc[int(NUM SAMPLES/2):).drop(
return (X_train,y_train,X_test,y_ test)

& Fitting
def fitting(X train,y train):
mlp = MLPRegressor(max_iter=58)
2% 15% aM 17% 15 mlp. fit(X train,y train)
del X_train
del y train
return mlp

Figure 8-2. A typical output snapshot from Scalene

Features

Here are some of the cool features of Scalene. Most of them are self-explanatory and can

be gauged from Figure 8-2.

Lines or functions: Reports information both for entire functions
and for every independent code line

Threads: Supports Python threads
Multiprocessing: Supports use of the multiprocessing library

Python vs. C time: Scalene breaks out time spent in Python vs.
native code (e.g., libraries)

System time: It distinguishes system time (e.g., sleeping or
performing I/O operations)

GPU: It can also report the time spent on an NVIDIA GPU (if
present)

Copy volume: It reports MBs of data being copied per second

Detects leaks: Scalene can automatically pinpoint lines
responsible for likely memory leaks!

215

CHAPTER 8 MEMORY AND TIMING PROFILE

A Concrete Machine Learning Example

Let’s get down to the business of putting Scalene to use for memory profiling standard
machine learning code. You will look at two different types of ML models for reasons that
will be clarified soon. You will use the scikit-learn library for all three models and utilize
its synthetic data generation function to create your dataset:

e A multiple linear regression model
e A deep neural network model with the same dataset

The modeling code follows the exact same structure for these two models. External
I/0 ops are also indicated in Figure 8-3, as you will see that they may or may not
dominate the memory profile depending on the type of model.

Import Synthesize [Test/train
libraries data split
Extema ! 8 S

/[e]
Fitting Saving » Inference/
model model predict

Figure 8-3. The common ML model code flow used for the Scalene demo example

Linear Regression Model

The complete code is in the accompanying Jupyter notebook. You use standard
imports and two variables named NUM_FEATURES and NUM_SMPLES for doing some
experiments later:

import pandas as pd
import pickle
import numpy as np

from sklearn.linear model import LinearRegression
from sklearn.datasets import make regression

NUM_FEATURES = 10

216

CHAPTER 8 MEMORY AND TIMING PROFILE
NUM_SAMPLES = 1000

For brevity, won’t show they data generation and model fitting code because it’s
standard. You save the fitted model as a pickled dump and load the pickled object along
with a test CSV file for the inference:

Model saving function
def save(1lm):

Saves a sklearn linear model as a pickled object
with open('LinearModel.sav',mode="wb") as f:
pickle.dump(1m,f)

Model run function
def model run(model,testfile):

Loads and runs a sklearn linear model from pickled object

Im = pickle.load(open(model, 'rb"))

X test = pd.read csv(testfile)

_= Im.predict(X test)

return None

You run everything under a main loop for clarity with Scalene execution and
reporting (you will understand shortly):
if _name__ == ' main_ ':

data = make data()

X _train,y train,X test,y test = test train(data)

Im = fitting(X_train,y train)
save(1lm)
model run('LinearModel.sav', 'Test.csv')

You run the command

$ scalene linearmodel.py --html >> linearmodel-scalene.html

217

CHAPTER 8 MEMORY AND TIMING PROFILE

You get the results in Figure 8-4 as output. Note that you use the --html flag and the

pipe operator (>>) to channel the output to an HTML file for easy reporting.

Line |Time
Python

Memory usage:
linearmodel.py: % of time = 1688.

native

system

Memory
Python

net

timeline/%

{max:

Copy
(MB/s)

79.98MB, growth rate: 100%)
08% out of 1.28s.

linearmodel.py

4 20%
5 1%

22n

32s

1%

42%

50%
4%

20M

25M
F

— 427

— 52%
4%

20 2%

2%

% % M 3%

34

34
2

import pandas as pd

import pickle

import numpy as np

from sklearn.linear_model import LinearRegression
from sklearn.datasets impert make regression

NUM_FEATURES = 10
NUM_SAMPLES = 1000

Make data
def make_data():

data['y' J=np.array(y,dtype=np. floatlG)
return data

Test/Train
def test_train(data):

X _test,y test
return {(X_train,y train,X test,y test)

Fitting
def fitting(X_train,y train):
im = LinearRegression{n_jobs=1)
Im.fit(X_train,y train)
del X_train
del y_train
return lm

Saving model
def save(lm):
with open('LinearModel.sav’ ,mode="wb") as f:
pickle. dump(im,f)

Running model/inference
def model runimodel,testfile):

Loads and runs a sklearn linear model

lm = pickle.load(open(model, "rb'})
X_test = pd.read_csv(testfile)

_= lm.predict(X_test)

return None

if name = ' main
data = make data()
X train,y train,X test,y test = test_train{data)
X_test.to_csv("Test.csv”, index=False)
lm = fitting(X train,y train)
save(lm)
model_run('LinearModel.sav’, 'Test.csv')

19 2%
33 2%

Top net memory consumption, by line:
{1) 4: 25 MB

{2) 1:
{3) 5: 2 MB
{4) 50: 1MB

20 MB

function summary for linearmodel.py
test_train
save

Figure 8-4. Scalene output after the linear regression model code was run

through it

The most important observation from this profile is that the memory footprint

is almost entirely dominated by the external I/0 such as pandas and scikit-learn

estimator loading. A tiny amount of memory usage goes to writing the test data to a CSV

file on the disk.

218

X.y = make_regression{n_samples-NUM_SAMPLES,n_featur
n_informative-NUM FEATURES,noise-0
data = pd.DataFrame(X, columns=['X'+str({i} for i in 1

¥_train,y_train = data.ileoc[:int(NUM_SAMPLES/2)].dro
data.iloc[int (NUM_SAMPLES/2):] .drop(

CHAPTER 8 MEMORY AND TIMING PROFILE

The actual ML modeling, NumPy or pandas operations, and inference do not impact
the memory at all. This is a somewhat unexpected and non-obvious fact. Clearly, without
a proper memory profiler like scalene, you could not have discovered this.

What Happens as the Model and Data Scale?

You can scale the dataset size (number of rows) and the model complexity (number of
features) and run the same memory profiling to document how the various operations
behave in terms of memory consumption.

The result is shown in Figure 8-5. The X-axis represents the number of features/
number of data points as a pair. Note that this plot depicts percentage and not the
absolute values to showcase the relative importance of the various types of operations.

Linear Regression: Memory usage percent for various operations as data and

model scale

60

Sn \

40 \

30

20

10 —
—_—

0 -
10/1000 100/1000 10/10000 100/10000
——Sklearnload ——Pandasload ~——Data synthesis Test file I/0 Test/train split ——Model fitting

Figure 8-5. Impact of data and model (number of parameters) scaling for the
linear model

From these experiments, you can conclude that a scikit-learn linear regression
estimator is quite efficient and does not consume much memory for actual model
fitting or inference. It does, however, have a fixed memory footprint in terms of the code
and consumes that much while getting loaded. However, the percentage of that code
footprint goes down as the data size and model complexity increase.

Therefore, if you are working with a small to moderate linear model (e.g., thousands
of data points but only tens of parameters), you may want to focus on data file I/O to
optimize the data loading, storage, modeling, and inference code for better memory
utilization. For example, you can use a different file storage option than plain CSV

219

CHAPTER 8 MEMORY AND TIMING PROFILE

(e.g., Parquet or similar modern data format optimized for in-memory analytics; go
to https://medium.com/productive-data-science/why-you-should-use-parquet-
files-with-pandas-boca8cb14d71 for more information).

Deep Learning Model

If you run similar experiments with a two-hidden-layer neural network (with 50
neurons in each hidden layer), the result looks like Figure 8-6. It uses the MLPRegressor
estimator from the sklearn.neural network module. The code is in the accompanying
Python script.

Neural Network: Memory usage percent for various operations as data and model
scale

70
60
50
40
30
20

10

10/1000 100/1000 10/10000 100/10000

——Sklearnload ——Pandasload ~——Data synthesis Testfile 1/f0 ——Test/train split ——Model fitting

Figure 8-6. Impact of data and model (number of parameters) scaling for neural
network model

Clearly, the neural network model consumes a lot of memory at the training/fitting
step, unlike the linear regression model. However, for a small number of features and
large data size, the fitting takes a low amount of memory. You can also experiment with
various architectures and hyperparameters and document the memory usage to arrive at
the setting that works for a specific data science task.

Key Approaches and Advice

If you repeat the experiments with the same code files, the results will vary widely
depending on your hardware (disk/CPU/GPU/memory type). The purpose of the results
shown above is not to focus on the actual values or even on the trends. I want you to
learn to do memory profiling experiments for your own code.

220

https://medium.com/productive-data-science/why-you-should-use-parquet-files-with-pandas-b0ca8cb14d71
https://medium.com/productive-data-science/why-you-should-use-parquet-files-with-pandas-b0ca8cb14d71

CHAPTER 8 MEMORY AND TIMING PROFILE

Key Advice

Some key advice, in this regard, is the following:

Preferably write small functions focused on one single task in
your code.

Keep some free variables like the number of features and number
of data points so that you can run the same code file with minimal
changes to check the memory profile when the data/model scales.

If you are comparing one ML algorithm to another, try to keep the
structure and flow of the overall code as identical as possible to
reduce confusion. Preferably, just change the estimator class and
compare the memory profiles.

Data and model I/0 (import statements, model persistence on the
disk) can be surprisingly dominating in terms of memory footprint
depending on your modeling scenario. Never ignore them while

doing optimization.

For the reason above, consider comparing the memory profiles

of the same algorithm from multiple implementation/packages
(e.g., Keras vs. PyTorch vs. scikit-learn). If memory optimization is
your primary goal, you may have to look for the implementation
that has a minimal memory footprint yet can do the job
satisfactorily even if it is not the absolute best in terms of features
or performance.

If the data I/O becomes a bottleneck, explore faster options or
other storage types such as replacing pandas CSV with a Parquet
file and Apache Arrow storage.

221

CHAPTER 8 MEMORY AND TIMING PROFILE

Other Things You Can Do with Scalene

In this section, I discussed the bare minimum memory profiling with a focus on a
canonical ML modeling code. Scalene CLI has other options you can take advantage of:

o Profiling CPU time only and no memory profile

¢ Reduced profiling with non-zero memory footprint only

e Specifying CPU and memory allocation minimum thresholds
o Setting the CPU sampling rate

e Multithreading and checking the difference

Final Validation Is Sometimes Necessary

In many cases, ML models are run on edge devices where hardware resources are
limited, especially on the memory (RAM) side. For such low-resource situations, it’s a
good idea to host a validation environment/server that will accept a given modeling
code (after it is developed and tested but before it is deployed) and run it through a
memory profiler to create runtime statistics. If it passes the predetermined criteria of the
memory footprint, then it can be accepted for further deployment. The idea is illustrated
in Figure 8-7.

6.9 a QE Deploy

ML modeling Optimize

Validation server with
code

l memory profiling — e

Figure 8-7. Validation check with memory profile before deployment of a
ML model

Frameworks like Scalene can be very useful in these situations. By setting up such a
validation gateway, data scientists can make the overall platform much more stable and
robust against accidental memory overshoot and system crash.

222

CHAPTER 8 MEMORY AND TIMING PROFILE

Timing Profile with cProfile

You have already seen some basic tricks and techniques to measure execution time of
simple code blocks or a function with a timing decorator. In this section, I will discuss a
built-in Python library named cProfile that can give you a detailed timing profile about
the various parts of your data science code with a simple command. The advantage is
that you don’t have to insert code snippets like time.time() in various places (as shown
in Chapter 2) and track them manually.

Basic Usage

The cProfile library comes with the default Python installation, so there is nothing to
install. Here’s the basic usage with simple code where you add two NumPy arrays:

import numpy as np
import cProfile

SIZE = 10 000 000
a = np.arange(SIZE)
b = np.random.normal(size=SIZE)

cProfile.run('a+b")

The main thing to notice is that you must wrap the code within a string and pass it
on to the cProfile.run function. Here the code is simply ‘a+b’. The output may look
something like Figure 8-8. Note that the exact time will vary, of course, depending on the
underlying hardware.

3 function calls in ©.064 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
i 0.064 0.064 0.064 0.064 <string>:1(<module>)

1 0.000 0.000 0.064 0.064 {built-in method builtins.exec}
1 6.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

Figure 8-8. Output snapshot of cProfile run with a simple Numpy array addition

223

CHAPTER 8 MEMORY AND TIMING PROFILE

The interesting thing to remember is that the only piece of code that was measured
for timing is the snippet a+b. The array creation is not being measured here, only the
addition.

If you want to measure the timing profile of all the steps, you could write

code = """SIZE = 10_000 000

a = np.arange(SIZE)

b = np.random.normal(size=SIZE)
a+b"""

cProfile.run(code)

Here you put all the code inside the string variable code and then pass that on to the
cProfile.run function. The output looks different (Figure 8-9), as expected.

5 function calls in 8.528 seconds
Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

8.871 8.871 ©.528 8.528 <string>:1(<module>)

8.e00 8.0e0 8.528 .528 {built-in method builtins.exec}

8.829 8.029 ©8.929 .829 {built-in method numpy.arange}

8.000 8.009 ©.008 .800 {method 'disable' of '_lsprof.Profiler' objects}

0.428 09.428 8.428 .428 {method 'normal’' of 'numpy.random.mtrand.RandomState' objects}

e
@O0 @D

Figure 8-9. Output snapshot of cProfile run with array creation and addition

Note that the extra array creation operations resulted in a total of five function calls,
as opposed to three for the basic addition code.

With a Function as an Argument

You could, of course, create a standalone function and pass the name of that object to
cProfile.run function for the same task:

def add():
SIZE = 10_000_000

a = np.arange(SIZE)
b = np.random.normal(size=SIZE)
c=a+b

cProfile.run('add()")

224

CHAPTER 8 MEMORY AND TIMING PROFILE

The output (Figure 8-10) is similar to the output in Figure 8-9, but an additional
function call is registered that comes from the construction of the add function itself.
6 function calls in ©.688 seconds
Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
B.067 @.087 @.666 ©.666 1735574101.py:1(add)

1 9.822 0.0822 9.688 0.688 <string>:1(<module>)

1 0.000 0.000 9.688 9.688 {built-in method builtins.exec}

1 8.835 8.035 ©.835 ©.835 {built-in method numpy.arange}

1 B.000 8.000 ©.0008 ©.000 {method 'disable' of '_lsprof.Profiler' objects}

1 8.565 8.565 9.565 ©8.565 {method 'normal’' of 'numpy.random.mtrand.RandomState' objects}

Figure 8-10. Output snapshot of cProfile run with a standalone function (same
NumPy ops)

The function that is passed on to cProfile can have any argument as well. In many
cases, you can change the arguments and see the impact on the profile results. This is
one of the most obvious use-cases of the library. Let’s rewrite the add function to accept
a size argument:

def add(size):

a = np.arange(size)
b = np.random.normal(size=size)
c = atb

Then you can use it to profile the array operations with 10 million elements
(Figure 8-11):

SIZE = 10_000_000
cProfile.run('add(SIZE)")

SIZE = 10_000_000
cProfile.run('add(SIZE)"')

& function calls in ©.593 seconds

Figure 8-11. Running cProfile and passing in an argument to the function of 10
million elements

When you change the number of elements to 20 million, it reflects immediately
(Figure 8-12):

225

CHAPTER 8 MEMORY AND TIMING PROFILE

SIZE = 20 000 000
cProfile.run('add(SIZE)")

SIZE = 20_000_000
cProfile.run('add(SIZE)")

6 function calls in 1.141 seconds

Figure 8-12. Running cProfile and passing in an argument to the function for 20
million elements

Using the Profiler Class

cProfile has a special Profiler class that stores all the important information, and it
can be enabled/disabled programmatically. You can also use the pstats library and pass
this Profiler object to it for printing and extracting data. Here is the code to measure
and print the total execution time:

import cProfile, pstats

profiler = cProfile.Profile()

Enable profiler

profiler.enable()

Function execution

add(SIZE)

Disable profiler

profiler.disable()

pstats

stats = pstats.Stats(profiler)

Print the total time and number of calls
print("Total function calls:", stats.total calls)
print("Total time (seconds):", stats.total tt)

The result looks like the following:

>> Total function calls: 48
>> Total time (seconds): 1.1527893999999999

226

CHAPTER 8 MEMORY AND TIMING PROFILE

Here you get the execution time from the total tt attribute of the stats object and
the number of calls from the total calls attribute.

Consequently, this opens up the possibility to programmatically control the profiling
and storing of information as needed. For example, you can profile the execution of the
same add function over a range of arrays sizes:

size = [int(i*1e6) for i in range(5,26,5)]
total tt = []
for s in size:
profiler = cProfile.Profile()
profiler.enable()
add(s)
profiler.disable()
stats = pstats.Stats(profiler)
total tt.append(round(stats.total tt,3))

The timings are stored in the total tt array. When plotted, it shows the expected
pattern (Figure 8-13).

-
= (=1 (=] o %]

o
(]
.

Time taken (seconds)

o
o
\

5-million 10-million 15-million 20-million 25-million
Array size

Figure 8-13. Computation time extracted using cProfile for various array sizes

Data Science Workflow Profiling

While measuring the execution time of these small standalone functions serves as a
basic demonstration of the usage of these profilers, the real utility is realized when they
are used in a large-scale data science workflow. Such a workflow has a variety of modules
and functions, and you can set up profiling for all of them if necessary. The output may
be logged into a database or even be fed into a monitoring system that will track the

227

CHAPTER 8 MEMORY AND TIMING PROFILE

performance of the modules over time and act if needed (e.g., if a function performs
poorly by taking too much time in a certain run or for a certain input data). The idea is
illustrated in Figure 8-14.

(#) Profiling .
Data science

S B
=== : Data Data Feature Machine
. E | ingestion wrangling engineering learning

o .. W el
modeling @
O, H

Monitoring,
logging of profiles

Figure 8-14. Time and memory profiling at various data science workflow stages

Summary

In this chapter, you examined the importance of memory profiling your ML code for
smooth and easy interfacing with the platform/engineering team that will deploy the
code on a service/machine. Profiling memory can also show you surprising ways to
optimize the code based on the combination of specific datasets and algorithms you
are dealing with. You saw a typical ML modeling code example being profiled with
a powerful yet lightweight Python library. You saw representative results with linear
regression and neural network models and received some general advice.
Next, you saw the basic usage of the built-in Python timing profiler cProfile and how
it can be used with raw code or function modules. You learned how to extract the total
execution time or number of function calls using this library for NumPy operations. This idea
can be extended to any data science workflow that consists of many stages and modules.
Every data science team or organization has its own style for measuring code
and module efficiency and memory footprint. The motivation for this chapter was to
introduce you to the importance of these measurements and show some hands-on
examples so that you can explore further and be ready for such implementation.

228

CHAPTER 9

Scalable Data Science

Data science tasks may encounter a wide variety of dataset sizes, ranging from kilobytes
to petabytes. Some business spreadsheets will only have a few hundred rows while a
whole factory may send a deluge of sensor data to a single dataset, resulting in billions of
rows per day or even per hour. Some datasets can have many rows and a small number
of columns, while others may consist of a few rows but millions of columns as feature
dimensions. Even within the same organization or a data science team there can be
multiple pipelines dealing with different types of input, and they may be facing a wide
variation in the dataset size and complexity.

It is often a natural practice for data scientists to build a scaled prototype of a data
science job (such as combining data wrangling, ML algorithms, and some prediction
functions). They build such a prototype, test it with a typical dataset that is expected to
hit the pipeline, evaluate the result or measure some performance metric with a few ML
algorithms, tune them, and finally make a choice. This is an experimental mentality,
and it serves the spirit of doing science with data very well. However, to support this
quick analysis and prototyping, a data scientist must be able to quickly scale across a
wide variety of dataset sizes and complexity as the need arises. They should not run into
issues like being out of memory while prototyping on their laptop.

This chapter talks about the common problems and limitations that arise while
scaling out to larger datasets and what tools are out there to address these issues.
Specifically, you will visit some of the limitations that arise while doing analysis with
large datasets using the most common data analysis library, Python pandas, and explore
two alternative libraries or add-ons that can be used to overcome these limitations.

In fact, scalability is closely related to the ability to do parallel processing of large
data. Therefore, this theme will be continued in the next chapter where you will explore
Python libraries that support parallel processing natively for data science tasks.

229
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_9

https://doi.org/10.1007/978-1-4842-8121-5_9

CHAPTER9 SCALABLE DATA SCIENCE

Common Problems for Scalability

Python is a great language for data science. Libraries like pandas open myriad
possibilities for data scientists to slice and dice the data any way they like and create
meaningful insights and high-impact analytics reports with a relatively small amount of
programming. However, they have some serious limitations when it comes to dealing
with large datasets even one as simple as a CSV file with a billion rows.

Two of the most common issues that a data scientist may encounter as the scale of
the data grows are out-of-core failures and inefficiencies related to the Python single-
threading characteristic.

Out-of-core really means the inability to load the full data properly in the working
memory (RAM) of the machine. Single threading is related to the fundamental Python
design feature of the Global Interpreter Lock (GIL) (https://realpython.com/python-
gil/) that allows a single thread to put a lock on the interpreter so that other threads
cannot get a hold of it. Together, they can make doing efficient data analysis on large
datasets (anything larger than a few gigabytes) with limited hardware quite tricky.

Out-of-Core (a.k.a. Out of Memory)

pandas is the most popular data analysis library in Python, and it is at the front end of
any standard data science pipeline. However, if you have ever tried to work with data
files larger than a few GB, you may have seen the memory error that is thrown by pandas
(Figure 9-1).

.py", line 1872, in form_blocks
float_blocks = _multi_blockify(float_items, items)
File "C:\Program Files\Python\Anaconda\lib\site-packages\pandas\core\internals
.py", line 1930, in _multi blockify
block_items, values = _stack_arrays(list(tup_block), ref_items, dtype)
File "C:\Program Files\Python\Anaconda\lib\site-packages\pandas\core\internals
.py", line 1962, in _stack_arrays
stacked = np.empty(shape, dtype=dtype)
MemoryError
Press any key to continue . .

Figure 9-1. A memory error thrown by pandas

230

https://realpython.com/python-gil/
https://realpython.com/python-gil/

CHAPTER9 SCALABLE DATA SCIENCE

Of course, this error depends on the exact state of the system memory such as how
many other processes are running alongside the pandas code and what type of memory
they are blocking. Nonetheless, it is a well-known fact that pandas cannot handle multi-
GB datasets (no matter how simple in structure they may be) efficiently.

Furthermore, this inefficiency and limitation can rear its ugly head even with a
large dataset that could be somehow loaded in the memory without any memory error
at the beginning. Due to the way pandas handles in-memory objects and calculations,
itis quite easy to run into the same memory error in your data science code. This can
be exacerbated by code that produces many large in-memory DataFrames in quick
succession with intermediate calculations.

For example, imagine what the following code can do. Let’s assume that the Large-
file.csv has 10 million rows and 20 columns.

df1 = pd.read _csv("Large-file.csv") # Successful
df2 = df1.dropna()
df3 = df2[df2['col1'] > 10 and df2['col2'] < 20]

def complex calc(x):
Some complex math

df3['new-col'] = df3['col3'].apply(complex calc)

def some_transformation(df):
Transformation code
return transformed df

df4 = some_transformation(df3)

This is a generic code snippet, but you get the idea that this code is inefficient,
particularly when dealing with large pandas DataFrame objects. It produces multiple
intermediate DataFrames and does not purge them from memory when their job is
done. At the end, it may use only the final DataFrame for a machine learning modeling,
but the system memory is already clogged with so many useless objects that it will result
in a memory error and the whole pipeline will crash. This is illustrated in Figure 9-2.

231

CHAPTER9 SCALABLE DATA SCIENCE

Code starts
here...

Read data Intermediate InTer‘medlaT
from disk DataFrame DataFrame

memoryerror

Figure 9-2. A memory error produced by too many intermediate DataFrames
(bad coding practice) even when a large file could be read from the disk

Of course, one way to get around this issue is to rigorously maintain a good coding
habit where unused objects are tracked and purged regularly. However, while doing
prototyping on their Jupyter notebooks, data scientists are bound to write quick and dirty
code without following this practice, and this will hinder their scalability options with
large datasets.

Python Single Threading

The GIL was one of the earlier design choices in the Python language and it solved quite
a few important problems related to memory leaks and racing conditions. Put simply,
itis alocking mechanism that allows only one thread to hold the control of the Python
interpreter. This means that only one thread can be in a state of execution at any given
point in time.

Generally, its impact isn’t visible to programmers executing single-threaded
programs. In fact, many data science tasks can run just fine without worrying about
GIL as they execute a series of tasks one after another and do not employ many parallel
processing tricks. However, it can become a performance bottleneck in CPU-bound and
multi-threaded code.

For larger datasets, sometimes it makes sense to divide the data into multiple chunks
and utilize a parallel processing execution pipeline. The idea is to send the chunked data
to each core of the CPU and execute the analysis as much in parallel as possible. When
the executions are done, the results can be combined to get back a transformed dataset.
While this does not necessarily help to fit a larger dataset in memory, it can make
analysis of the same dataset faster by the parallel execution.

232

CHAPTER9 SCALABLE DATA SCIENCE

The beauty here is that this approach can speed up data science exploration and
prototyping tasks even without paying for large CPU clusters on the cloud. It is really
a matter of taking advantage of the 8 or 16 cores that routinely come with the single
modern-day CPU inside a data scientist’s laptop. However, you must make sure that the
data science code and libraries are not getting in the way, and that you are using libraries
that can take full advantage of the multi-core hardware platform.

What Options Are Out There?

To solve the memory issue (while loading and transforming large datasets) there are
many possible solutions depending on the situation you are in. Some are related to your
choice of hardware and some have to do with your data loading strategy. Let’s talk about
them in a systematic manner.

Cloud Instances

For larger and larger datasets, there is always a brute-force solution of renting out a
cloud instance with a large RAM attached. As an example, these days you can rent out
an AWS (Amazon Web Service) Elastic Compute (EC2) instance with 128GB of RAM
for less than a dollar per hour. Figure 9-3 shows the pricing for a r6g.4xlarge instance
(a so-called memory optimized EC2 instance, www.amazonaws.cn/en/ec2/instance-
types/#Memory Optimized Instances).

Instance On-Demand hourly Network

vCPU ¥ Memory ¥ Storage ¥
name A rate v performance
r6g.4xlarge $0.8064 16 128 GiB EBS Only Up to 10 Gigabit

Figure 9-3. A memory-optimized EC2 (AWS) instance pricing

Once set up, you can install all your favorite Python libraries, read large data
files stored locally (e.g., to a mapped SSD) or from an AWS S3 folder, and do pandas
data transformation without worrying about memory errors. While it may still seem
expensive to a causal user, organizations or teams who need that much memory to
process pandas DataFrames regularly probably won’t mind paying ~$0.8 an hour for a
smooth and error-free data science task flow.

233

http://www.amazonaws.cn/en/ec2/instance-types/#Memory_Optimized_Instances
http://www.amazonaws.cn/en/ec2/instance-types/#Memory_Optimized_Instances

CHAPTER9 SCALABLE DATA SCIENCE

However, remember that pandas will still be limited to use only one CPU core at a
time and, by default, it will exhibit slowness while loading and dealing with large files.
Just running run-of-the-mill pandas code on a large-memory cloud instance may stop
some frequent memory error situations, but it may not fundamentally make the data
science pipeline productive or efficient aft scale.

What is a memory-optimized EC2 instance? A cloud service like AWS must
cater to a wide variety of users with various needs. Someone may need fast
processing with a CPU cluster, someone else may need a high network bandwidth,
and someone else may require large on-board memory (RAM). Memory-optimized
instances are just that: they provide a large amount of RAM at an optimized cost.
They do not necessarily have the best-in-class CPUs or network bandwidth,

but they work best for jobs that demand large slices of physical memory during
execution. Within these instances, there are multiple choices depending on cost
and available CPU types. The r6g.4xlarge is really the starting point of this lineup
that goes up to a 768GB memory option with a reasonable hourly cost.

AWS is not the only cloud service to offer this. Every major player—Google
Cloud or Microsoft Azure, for example—offers similar high-memory instances as
Infrastructure-as-a-Service (laaS) that can address the problem of insufficient
memory while executing a data science task (on a local machine).

Google Colab

Google Colaboratory (or Colab, as it is known popularly; https://research.google.
com/colaboratory/faq.html) is also a cloud service at its core. Basically, it runs a
Jupyter notebook service that is hosted on Google cloud servers. You can use a CPU,
GPU, or even a TPU (if you are lucky) for free just by having a Google account.

The greatest advantage of Colab, as compared to AWS or GCP, is its ease of
use and low barrier of entry. If you have your data science Python code in a Jupyter
notebook, Colab can help get you started on this cloud instance instantly (as soon as you
upload your notebook to the instance). Unlike AWS or GCP barebone instances, there is
no setup or installation needed. You can directly access Colab notebooks through your
browser and start running your code in a matter of minutes.

234

https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html

CHAPTER9 SCALABLE DATA SCIENCE

What is a Tensor Processing Unit? Tensor Processing Units (TPUs) are
Google’s custom-developed application-specific integrated circuits (ASICs) used to
accelerate machine learning workloads. These ASICs are designed from the ground
up with the sole aim of optimizing the speed and power of computation tasks

that appear in deep learning such as matrix multiplication and addition, special
activations functions, other linear algebra routines like matrix inversion, and so on.
Their internal architecture is quite different from traditional CPUs that are designed
for general purpose computing tasks. Memory bandwidth memory transfer speed
of a TPU is also enhanced as this factors critically in a deep learning training
performance.

For some specific situations, this may indeed increase productivity and efficiency.
For example, if the local laptop does not have a good enough CPU or a GPU card
installed, or the RAM is under 8GB, then switching to Google Colab should enhance the
productivity instantly.

The typical instance (free of cost) has ~12-13 GB of RAM and a CPU equivalent to an
Intel Xeon processor. Getting a GPU instance is also quite easy, with the most common
GPU being a Tesla K80 (compute 3.7, having 2496 CUDA cores and 12GB GDDR5
VRAM). While the CPU core count is nothing boast about, having a larger RAM and GPU
memory may help data science exploration, especially if it involves GPU-intensive tasks
like training a deep neural network or even vectorized computation involving NumPy
arrays. If 12GB RAM seems too little, you can upgrade to Colab Pro (https://colab.
research.google.com/signup), which offers double the RAM for only $10/month (a
whole lot cheaper than paying for an equivalent EC2 instance with 24GB of RAM).

However, despite its attractive features, Colab does have some serious limitations
for practicing data scientists who are trying to explore larger datasets and scale up their
data science workflow. At the outset, it puts a time limit on the running time of the
notebook, so if you leave it idle for a certain amount of time, the instance will die (along
with any variables and internal states). Basically, you must plan your code execution
carefully and be ever vigilant to take full advantage of Colab.

Also, file loading (whether uploading from local drive or reading from the Web) is
painfully slow (most probably a deliberate choice to control the bandwidth usage over

235

https://colab.research.google.com/signup
https://colab.research.google.com/signup

CHAPTER9 SCALABLE DATA SCIENCE

the Google Cloud infrastructure). Therefore, while you can do in-memory analytics and
data transformations rather quickly, the initial loading can take an inordinate amount
of time or may even crash your notebook. Upgrading to Colab Pro or Pro+ (from a
completely free account) alleviates these issues to some extent but not fully.

pandas-Specific Tricks

Since I started the scalability discussion by pointing out the out-of-core issues in pandas,
it makes sense to loop back to ground zero and examine what suggestions the pandas
developers have to address this issue.

There is a dedicated resource page on the pandas documentation portal about this
topic: “Scaling to large datasets” (https://pandas.pydata.org/pandas-docs/stable/
user_guide/scale.html). It starts like this:

Pandas provides data structures for in-memory analytics, which makes
using pandas to analyze datasets that are larger than memory datasets
somewhat tricky. Even datasets that are a sizable fraction of memory
become unwieldy, as some pandas operations need to make intermedi-
ate copies.

It goes on to point out some useful tricks and techniques for coping with memory
issues. I discuss some of them below and add a few more.

Load Only the Columns You Need

Often, a particular data transformation task requires only a small fraction of the columns
that the complete dataset features. If you have a dataset with 10 million rows and 100
columns, and you need only the first 5, it makes absolute sense to load only those 5
columns and not even look at the rest. You avoid loading a whopping 950 million pieces
of data into memory. The essential trick here is to include the necessary argument in
your data loading function.

Write

df = pd.read csv("Large-file.csv",
names = ['Col-1','Col-2",'Col-3"])

instead of

236

https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html

CHAPTER9 SCALABLE DATA SCIENCE
df = pd.read _csv("Large-file.csv")

This little change can indeed make or break your data transformation pipeline.

Column-Specific Functions (If Applicable)

Following the same idea as above, it is a good practice (wherever applicable) to write
separate functions that deal with specific columns/features in the dataset as needed
(Figure 9-4). For example, a dataset may have the following:

o String data corresponding to name and address. This can be handled
by a specific function.

o Datetime data corresponding to some business transaction. This
should be handled by another specific function that loads and
process only these columns.

e Pure numeric data, which can be handled many ways, even read
as a pure NumPy array and utilizing vectorizing tricks (as discussed
elsewhere in this book) to speed up the data transformation process.

Working on
columns 1 and 2

| Working on
~ \ \ columns 3 and 4
IR —— Rest of the
pipeline
< ad Function - 2 : .
A large file ey Function -3 p—-
on the disk

o 8 .
I I Working on Never loading more than a
R R k-2l small fraction of the file
Figure 9-4. Functions to deal with specific columns of a large on-disk file, never
loading more than a small fraction into memory

Explicitly Specify/Convert Data Types

The default data types in pandas are not designed to be the most memory efficient.
This is especially true for text/string data columns with relatively few unique values

237

CHAPTER9 SCALABLE DATA SCIENCE

(alternatively known as low-cardinality data). By using more efficient and targeted data
types, you can significantly reduce the memory usage and process larger datasets.

There is a dataset called loan_data.csv on file (supplied with the book). Let’s see
how explicitly specifying the data type can reduce the memory usage while working with
this dataset:

import pandas as pd
df = pd.read _csv("../loan data.csv")
df.memory usage(deep=True)

The function memory usage() shows the true memory usage by the in-memory
object. The output is shown in Figure 9-5. The output of df.info() is shown in the same
figure, indicating that the default loading assigned the general-purpose object data type
to that column while others were assigned data types like int64 or float.

Index 128

credit.policy 76624

purpose 680654 |

int.rate 76624

installment 76624 \ This column is

log.annual.inc 76624 taking up too much

dti 76624 memory compared ‘(‘Een'er'ulu-pur'pose

fico 76624 1o others object” type

days.with.cr.line 76624 \

revol.bal 76624 <class 'pandas.core.frame.DataFrame’>

revol.util 76624 RangeIndex: 9578 entries, @ to 9577

inq.last.emths 76624 Data columns (total 14 columns):

deling.2yrs 76624 I ohm ton- il Count) e

pub.rec 76624 & credit.policy 9578 non-null |ints4

not.fully.paid 76624 1 purpose 9578 non-null object

dtype: inté4d 2 J:.nt‘rate 9578 non-null floate4d
3 installment 9578 non-null floate4
4 log.annual.inc 9578 non-null floatsd

Figure 9-5. Default data loading assigned a general-purpose data type to a text/
string column, causing it to take up too much memory

You might also have noticed that the credit.policy is an unsigned integer taking on
values 1 or 0. Why do you need a 64-bit integer data type to represent that? So, let’s also
type convert that column:

df['credit.policy'].unique()
>> array([1, 0], dtype=int64)

Here is the code for doing the data type conversions (explicit specifications):

238

CHAPTER9 SCALABLE DATA SCIENCE

df2 = df.copy()

df2["purpose'] = df2['purpose’].astype('category")
df2['credit.policy'] = df2['credit.policy'].astype('uint8")
del(df)

Here, first you do a copy on the existing DataFrame. Then, you use the astype
function to assign the category data type to the purpose column and unit8 (8-bit
unsigned integer) to the credit.policy column. Lastly, as a good practice, you delete
the old DataFrame object from the memory since you no longer need it for your data
science pipeline.

You can see the stark difference in Figure 9-6.

df2.memory_usage(deep=True)

Index 128

credit.policy 9578
[pur-pose 10370 These columns are now
int.rate 76624 taking up the least
installment 76624 amount of memory
log.annual.inc 76624 compared to the others.
dti 76624

fico 76624

days.with.cr.line 76624

revol.bal 76624

revol.util 76624

ing.last.émths 76624

deling.2yrs 76624

pub.rec 76624

not.fully.paid 76624

dtype: inté4

Figure 9-6. Loan dataset memory usage after explicit data type specification/
conversion

This memory saving may seem trivial for this example, but small savings like this
add up quickly for a long and data-intensive pipeline and can reduce the total overhead
significantly.

Libraries for Parallel Processing

Parallel computing is an extensive field of its own. It is not trivial to implement optimized
code in Python that will execute parallel threads/processes flawlessly and with high

239

CHAPTER9 SCALABLE DATA SCIENCE

performance. Fortunately, there are some fantastic Python frameworks for doing parallel
processing with minimal learning curves.

I will discuss a couple of them, Dask and Ray, with hands-on examples in the next
chapter, so I won'’t get into those details here.

Libraries for Handling Out-of-Core Datasets

There are special libraries to handle out-of-core datasets. Vaex and Modin are two such
frameworks. Let’s discuss them in more detail with hands-on examples next.

A Note About the Preferred 0S

Although a many data scientists use Windows OS for their day-to-day tasks, it has been
observed that (in general, and while doing the technical review of this book) advanced
libraries like Vaex, Modin, Ray, and Dask may have trouble being set up or performing
smoothly on Windows OS. Therefore, you are strongly encouraged to use a Linux-based
OS for practicing with these libraries and running some of the Jupyter Notebooks that are
provided. You can either

e Usea Linux-based OS (e.g., Ubuntu, Fedora, or Red Hat) on your
local machine natively

e Run avirtual machine (VM) using tools like Oracle VirtualBox on
your Windows-based machine, with a Linux-based OS on the VM

e Use acloud instance with a Linux-based OS (including the Amazon
Linux flavor that comes with any EC2 instance)

Hands-0On Example with Vaex

Vaex is a Python library designed for working with lazy out-of-core DataFrames. One
of its central goals is to help visualize and explore big tabular datasets. Vaex is high-
performant for large datasets. For example, it can help calculate statistics such as mean,
sum, count, standard deviation, and more on an N-dimensional grid of up to a billion
objects/rows per second.

240

CHAPTER9 SCALABLE DATA SCIENCE

In this section, you will see hands-on examples of such calculations and
visualizations with the Vaex library.

Features at a Glance

Here is a quick summarization of the key features of Vaex:

Performance: It can work easily with huge tabular data. Its
processing capability is in the order of billions rows/second.

Lazy/virtual columns: The computation is done on the fly,
without wasting precious RAM/virtual memory.

Memory efficient: No memory copies when doing routine data
slicing such as filtering/selections/subsets.

Visualization: Natively and directly supported. Lots of functions
to realize routine visualization from huge tabular datasets.

User friendly API: The DataFrame object is the main API and it is
all that a general user will ever need. The API feels very similar to
pandas and therefore presents with minimal learning curve when
replacing pandas code with Vaex for out-of-core data processing.

Lean and compartmentalized: Vaex is separated into multiple
subpackages and you can install any combination of them as per
your specific needs. For example, Vaex-astro supports astronomy
related transformations and FITS file reading. Vaex-viz support
all visualizations. But if all you want is to calculate statistics and
not visualize the data, you don’t have to install it. For modern file
types like Apache Arrow, it has a package named Vaex-arrow.

Basic Usage Example

Start by using an example dataset provided with Vaex:

import vaex
df = vaex.example()

241

CHAPTER9 SCALABLE DATA SCIENCE

When you run this code first time, it will download the dataset from the Web, so an
Internet connection is required while running this code first time. It will store the dataset
(a .hdfs file) in a folder called data.

You can examine the information about the file:

df.info()

You will see something like Figure 9-7.

helmi-dezeeuw-2000-FeH-v2-10percent

rows: 330,000

Columns:

column type unit description expression
id uint8
x float32
y float32
z float32
vx float32
vy float32
vz float32
E float32
L float32
Lz float32

FeH float32

Figure 9-7. Vaex example dataset information

The slicing and indexing of the data are just like pandas. For example, say you want
to see only the x, y, vx, and vy columns for rows 3 to 7:

df[["x","y", 'vx", 'vy "]][3:8]

242

CHAPTER9 SCALABLE DATA SCIENCE
It will give you the expected output (Figure 9-8).
X y VX vy
0 471559 458525 -232421 -294.851
7T 721719 119947 -1.68917 181.329
2 -7.78437 598977 86.7009 -238.778

8.08373 -3.27348 -57.4544 120.117

Lo

4 -3.55719 541363 -67.0511 -145.933

Figure 9-8. Vaex example of indexing the dataset

The calculation of statistics is fast. On my laptop, calculating the mean of 330,000
rows took under 20ms.

%ktimeit
df.x.mean()

>> 19.6 ms + 2.1 ms per loop (mean + std. dev. of 7 runs, 10 loops each)

No Unnecessary Memory Copying

The best thing about Vaex is that it does not create unnecessary copies of DataFrame
objects while doing simple filtering operations or intermediate calculations. Even the
base DataFrame has minimal memory impact. The computations are done in a lazy, on-
the-fly (when necessary) manner.

Check the memory footprint with this code:

import sys

Vaex dataframe

print("Size of Vaex DF:", sys.getsizeof(df))

Convert to Pandas dataframe

df pandas = df.to_pandas_df()

print("Size of Pandas DF:", sys.getsizeof(df pandas))

The output is astonishing:

243

CHAPTER9 SCALABLE DATA SCIENCE

Size of Vaex DF: 48
Size of Pandas DF: 13530144

You can run all the necessary calculations on the Vaex dataframe object with much
less worry about memory errors cropping up.

For example, you can filter the dataframe for only those rows that have negative x
values and positive z values:

df filtered = df[df.x < 0 and df.z > 0]
sys.getsizeof(df filtered)

>> 48

As expected, the new df _filtered dataframe still has a low memory footprint, but it
only has 164464 rows compared to original 330,000 rows.

df filtered.shape
>> (164464, 11)

Expressions and Virtual Columns

You can create custom expressions and assign them to virtual columns with no memory
copying (again). Working with pure pandas code, every such operation runs a chance

of creating memory overhead. Let’s say you want to calculate the root of the sum of the
squares of two columns from the example dataset:

import numpy as np
sqroot_exp = np.sqrt(df['x']*¥*2+df['y']**2)

Now, if you examine this sqroot_exp, you will see that it is a special expression (not
evaluated yet). It has not created any memory overhead.

type(sqroot_exp)
>> vaex.expression.Expression
If you do this in pandas, it will create a pandas series object:

sqroot_pandas = np.sqrt(df pandas['x']**2+df pandas['y']**2)
type(sqroot_pandas)
>> pandas.core.series.Series

244

CHAPTER9 SCALABLE DATA SCIENCE

Now, such Vaex expressions can be added to a DataFrame, creating a virtual column.
These virtual columns are similar to normal DataFrame columns, except they do not
waste any memory.

Assignment of expression to a virtual column
df['sqroot'] = sqroot exp

Evaluation only when needed

df['sqroot'].mean()

>> array(8.38820497)

Computation on a Multidimensional Grid

One of the most interesting features of Vaex is the ability to calculate statistics on user-
selectable grids in a fast and efficient manner. This has many practical applications when
you are interested in finding local minima or maxima or the distribution of numeric

quantities over specific regions from a maze of numbers.

counts x = df.count(binby=df.x, limits=[-5, 5], shape=32)
counts_x

>> array([4216, 4434, 4730, 4975, 5332, 5800, 6162, 6540, 6805, 7261,
7478,7642, 7839, 8336, 8736, 8279, 8269, 8824, 8217, 7978, 7541, 7383,7116,
6836, 6447, 6220, 5864, 5408, 4881, 4681, 4337, 4015], dtype=int64)

The result is nothing but a NumPy array with the number counts in 32 bins
distributed between x = -5, and x = 5. The key thing to note here is the binby argument
inside the function that works similar to GroupBy in SQL or even pandas. Here the data
was grouped by the x column (binby=df.x).

So, with this single line of code, you

o Filtered/restricted the data within -5 and 5
e Counted the number of data points

¢ Binned the counts in 32 bins

245

CHAPTER9 SCALABLE DATA SCIENCE

Figure 9-9 shows the visualization.

9000 1

8000

7000 A

6000 -

5000 A

4000 1

" 2 0 2 a
Figure 9-9. Counts of x column data for a specific range and bin count

Want a more powerful example? You can calculate the root of the sum of the squares
of velocities vx, vy, and vz to get the resultant velocity. However, you may want to do it
for a certain range of x and y data and bin the result for easy visualization.

Just an expression

velo = np.sqrt(df.vx**2 + df.vy**2 + df.vz**2)

Pass the expression to the function

Binned by x and y, over limits of -10 to 10

xy _mean_v = df.mean(velo, binby=[df.x, df.y],
limits=[[-10, 10], [-10, 10]],
shape=(64, 64))

You can do a 2D plot of the resultant velocity over the same xy range:

plt.figure(dpi=120,figsize=(3,3))
plt.imshow(xy_mean v.T,
origin="lower",
extent=[-10, 10, -10, 10])
plt.show()

Figure 9-10 shows the result.

246

CHAPTER9 SCALABLE DATA SCIENCE

10.0
1.5
5.0
2.5
0.0

—2.9

-5.0

=75

=10.0
=10 =5 0 5 10

Figure 9-10. Resultant velocity calculated and visualized over specific ranges of x
and y data

Dynamic Visualizations Using Widgets and Other
Plotting Libraries

The N-dimensional grid-based computation is designed to be fast with Vaex. This allows
you to extend the visualization to be dynamic using widgets and third-party libraries
like bgplot. Unfortunately, these dynamic visualizations are not possible to render in the
pages of a book. However, some code and results are shown in the Jupyter notebook.

For example, this simple code creates a plot widget in the Jupyter notebook where
you can pan and zoom around and choose a few data transformations from the drop-
down menu. (Figure 9-11 shows a static snapshot of the widget.)

247

CHAPTER9 SCALABLE DATA SCIENCE

il o | = e ® @ ©

Figure 9-11. Snapshot of a dynamic visualization with a Vaex plot widget method

The usefulness of such utility methods cannot be overemphasized for large-scale
data analysis. You can plot complex transformations on large, out-of-core datasets (say
10GB or 20GB in size) with only a few lines of code to visualize the hidden patterns. This
increases the productivity and efficiency of such a data analysis pipeline far beyond what
would have been possible with only pandas and Matplotlib code.

Vaex Preferred HDF5 Format

The magic in Vaex happens because of internal optimization and data representation.
One of the design choices is to work with HDF5 file formats as much as possible.
Therefore, the best way to work with Vaex is to load other types of data into this format
before you start exploring. For convenience, Vaex provides many utility methods to
convert other files or data structures to this format. You can convert from CSVs, Arrow
tables, Python dictionaries, NumPy arrays, JSON, and more.

For example, this code converts a moderate-sized CSV file (close to a million rows
and 15 columns) into a HDF5 file:

df2 = vaex.from_csv("Large-data.csv", convert=True)

248

CHAPTER9 SCALABLE DATA SCIENCE

When you run this code, another file named Large-data.csv.hdf5 gets created
in the folder where the Large-data.csv file resides. You must not forget to set
convert=True for this to happen.

After that, you can read/open this HDF5 much faster than what is possible with
pandas CSV reading. Here is the complete code:

Pandas reading CSV

t1 = time.time()

df2_pandas = pd.read csv("Large-data.csv")

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds with Pandas")

Vaex conversion from CSV
df2 = vaex.from csv("Large-data.csv", convert=True)

Vaex reading HDF5

t1 = time.time()

df2 = vaex.open("Large-data.csv.hdf5")

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds with Vaex")

The results speak for themselves:

Took 2354.523 milliseconds with Pandas
Took 14.057 milliseconds with Vaex

In today’s world of data science, a dataset with a million rows is not a particularly
large one. Even this modest sized file caused pandas to take over 2 seconds to read from
the disk. With Vaex, after conversion to HDF5, it becomes so much faster. Therefore,
for a data processing pipeline utilizing the power of libraries like Vaex, it makes sense
to convert (in a systematic manner) all the text-based data files (CSV or even JSON if
that makes sense) to HDF5 and read them as a Vaex DataFrame as much as possible, as
illustrated in Figure 9-12.

249

CHAPTER9 SCALABLE DATA SCIENCE

ert
CSV files
) converter
- ASCII files ’
Regl:ilar ' - . ‘ Vaex-based
Pandas o g pipeline
| -

Slow and Fast and ideal
inefficient objects for out-of-core

datasets

Figure 9-12. Converting to HDF5 and working with Vaex results in a faster and
more productive data science pipeline, particularly for out-of-core datasets

Hands-0n Examples with Modin

Modin is a library whose actual utility falls into the realm of parallel processing or multi-
core processing. It uses a Ray or Dask back end to provide an effortless way to speed up
pandas notebooks, scripts, and libraries. The main attractiveness of Modin is its tight
integration and identical API to that of pandas.

You will see the use of a Dask DataFrame and Ray in the next chapter. However,
unlike these distributed DataFrame libraries, Modin provides seamless integration and
compatibility with existing pandas code including DataFrame construction. Basically,
you just need to change a single line of code to get started.

Single CPU Core to Multi-Core

For most of the data science workload to use Modin, you just start like this:
import modin.pandas as pd

From a simple change in one line of code, the benefit that you get is enormous.
This comes from the fact that despite all the great features and capabilities, the core
implementation of pandas is inherently single-threaded. This means that only one of
the multiple CPU cores can be utilized at any given time for executing normal pandas
code. In a single CPU machine (e.g., a data scientist’s laptop), it would look something
like Figure 9-13.

250

CHAPTER9 SCALABLE DATA SCIENCE

System memory

This core These are idle cores
is utilized e A \

"
Core Core Core Core

Figure 9-13. The pandas code utilizing only a single core of the system

However, just wrapping the pandas code with Modin (a single line of code change),
you can utilize all the cores (by setting up a Dask or Ray backend cluster/worker system),
as shown in Figure 9-14.

System memory

All cores are u*ilizw \\
[¥

—
Core Core Core Core

Figure 9-14. Modin code utilizing all the CPU cores

Out-of-Core Processing

Let’s now demonstrate the out-of-core processing capability of Modin. Here, the phrase
“core” does not refer to the CPU core but really to the system memory or RAM.

The following code creates a DataFrame with ~1 million (2?° to be precise) rows and
256 columns with random integers. Note the use of modin.pandas here.

import modin.pandas as pd
import numpy as np

251

CHAPTER9 SCALABLE DATA SCIENCE

raw_data = np.random.randint(0, 100, size=(2**20, 2**8))
df = pd.DataFrame(raw_data).add prefix("col")

When you execute this code for the first time, you may see some user warnings and
message (Figure 9-15) about the Dask cluster setup (assuming that you are using the
Dask back end for the parallel processing/ clustering). In the next chapter, you will see
how to start and monitor a Dask cluster. The good thing with Modin is that all of this gets
taken care of under the hood, and the user doesn’t have to write the cluster setup code.

UserWarning: Dask execution environment not yet initialized. Initializing...
To remove this warning, run the following python code before doing dataframe operations:

from distributed import Client
client = Client()

UserWarning: Distributing <class 'numpy.ndarray'> object. This may take some time.

Figure 9-15. Warning message related to Dask cluster setup for Modin code
execution (first time only)

You can check the information about the DataFrame:
df.info()
It will show something like this:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1048576 entries, 0 to 1048575
Columns: 256 entries, col0o to col255
dtypes: int32(256)

memory usage: 1.0 GB

So, under the hood, it uses the pandas.core.frame.DataFrame class but when
you check the type of the DataFrame object, it is a Modin pandas object, not the
regular pandas.

type(df)
>> modin.pandas.dataframe.DataFrame

252

CHAPTER9 SCALABLE DATA SCIENCE

Now you come to the key part of this demo. The following code concatenates 20
such 1GB DataFrames into a single large DataFrame. Check out the time it takes to
do this and think what could have gone wrong if you tried this with normal pandas code
(assuming your local machine has a 16GB RAM).

import time

t1 = time.time()

big df = pd.concat([df for _ in range(20)])

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds")

It should be done under a second.
Took 236.584 milliseconds
If you want to see the shape of this large DataFrame big_df:

big df.shape
>> (20971520, 256)

So, it does have over 20 million rows and 256 columns. This would be almost
impossible to handle as a persistent in-memory object with pure pandas.
If you check the memory usage explicitly:

big df.memory usage(deep=True)

>>

Index 167772160
colo 83886080
col1 83886080
col2 83886080
col3 83886080

col251 83886080
col252 83886080
col253 83886080
col254 83886080
col255 83886080
Length: 257, dtype: int64

253

CHAPTER9 SCALABLE DATA SCIENCE

So, each column’s memory usage is over 80MB. In total, for 256 columns (and one
index), this represents over 20GB of memory usage. My laptop has only 16GB of RAM
and surely the Jupyter notebook, where this code is being run, did not take up all the
memory. This is the direct demonstration of out-of-core computing with Modin.

You can treat this large DataFrame as a regular pandas DataFrame for all purposes
from now on. For example, calculating the mean on col0 is done under 2 seconds.

t1 = time.time()

big df['colo'].mean()

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds for calculating mean
of colo")

>> Took 2677.044 milliseconds for calculating mean of colo

How about calculating the mean of the entire DataFrame? Instead of one column,
now you are operating over all 256 columns of data.

t1 = time.time()

big df.mean()

t2 = time.time()

print(f"Took {round(1000*(t2-t1),3)} milliseconds for calculating mean of
the entire DataFrame")

>> Took 37654.585 milliseconds for calculating mean of the entire DataFrame

So, the time goes from 2.7 seconds to 37.7 seconds. Not a 256X increase in the
computing time, but much less. This is the fruit of parallel processing and allocating data
chunks optimally to each worker that the Dask cluster has set up in the background.

Other Features of Modin

Modin is a live, open-source project and new contributions get added all the time. It
also has

o Distributed XGBoost support for fast machine learning

o Standard SQL connection support to execute SQL queries on
databases

254

CHAPTER9 SCALABLE DATA SCIENCE

e Gradually maturing support for various input data ingestion
APIs (reading all kinds of files and data formats). In this matter, if
something is tricky to support, it defaults to the pandas reading API
automatically for ingestion, and then processes the object as a Modin
DataFrame.

For more details and updates, interested readers should definitely check out the
official documentation at https://modin.readthedocs.io/en/stable/index.html.

Summary

In this chapter, you started addressing the concept of scaling out a data science workload
to multiple CPU cores and beyond the system memory. This is particularly important for
dealing with increasingly larger datasets, going from the realm of megabytes to gigabytes
to terabytes and more. The conventional Python data science ecosystem using NumPy,
pandas, and Matplotlib is great at smaller datasets but starts becoming inefficient while
dealing with large file sizes, particularly reading from the disk or performing aggregation
and statistical computations. pandas may throw up memory errors for a lot of trivial
situations involving multi-GB level datasets because it makes a lot of unnecessary
memory copies while doing regular data wrangling.

You explored common tricks and techniques within pandas to address these issues
such as selective data loading, explicit type setting, and more. Then, you followed hands-
on examples of out-of-core computing and scalability with large file and dataset size
with two powerful libraries, Vaex and Modin. Doing data transformation (or visualization)
with such large datasets would have been slow and inefficient with pure pandas code.

Among these, Modin uses a Ray or Dask back end for distributing computing load
to multiple CPU cores. In the next chapter, you will take this discussion of scalable data
science further by exploring these parallel or distributed computing aspects.

255

https://modin.readthedocs.io/en/stable/index.html

CHAPTER 10

Parallelized Data Science

In the last chapter, I talked about how data science tasks may encounter a wide variety of
dataset sizes, ranging from kilobytes to petabytes. There can be a range of scale either in
the number of samples or the extent of feature dimensionality. To handle complex data
analytics and machine learning, data scientists employ a dizzying array of models, and
that ecosystem scales up quickly, too.

Handling data and models at scale is a special skill to be acquired. When a
data scientist starts learning the tradecraft, they first focus on understanding the
mathematical basis, data wrangling and formatting concepts, and how to source and
scrape data from various sources. In the next stage, they focus mainly on various ML
algorithms and statistical modeling techniques and how to apply them for various tasks.
Model performance and hyperparameter tuning remains their sole focus.

However, in almost all real-life scenarios, the success of a data science pipeline
(and its value addition to the overall business of the organization) may depend on how
smoothly and flawlessly it can be deployed at scale (i.e., how easily it can handle large
datasets, faster streaming data, rapid change in the sampling or dimensionality, etc.). In
this era of Big Data, the principles of the five V’s (or six) must be embraced by enterprise-
scale data science systems.

Of course, a single data scientist will not oversee implementing this whole enterprise
or the pipeline. However, knowledge about scaling up the data science workflow is fast
becoming a prerequisite for even an entry-level job in this field. There are a few different
dimensions to that knowledge: cloud computing, Big Data technologies like Hadoop
and Spark, and parallel computing with data science focus, for example.

The topics of cloud computing and associated tools (think AWS, Google Cloud
Service, or Azure ML) are squarely beyond the scope of this book. Additionally, there
are excellent resources (both online courses and textbooks) for learning the essentials
of distributed data processing with the Hadoop infrastructure and related technologies.
This chapter focuses on the Python-based parallel computing aspects that can be used
directly for data science tasks. Much like the last chapter, I will discuss some of the

257
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_10

https://doi.org/10.1007/978-1-4842-8121-5_10

CHAPTER 10 PARALLELIZED DATA SCIENCE

limitations that arise while doing analysis with large and complex datasets using the
most common data analysis and numerical computing libraries like pandas or NumPy
and discuss alternative libraries to help with those tasks.

It is to be noted, however, that this is not going to be an exhaustive discussion
about general parallel computing tricks and techniques with Python. In fact, I will
avoid detailed treatment of the topics that often come up in a standard Python
parallel computing tutorial or treatise, such as working with built-in modules like
multiprocessing, threading, orasynco. The focus, like any other chapter in this book,
is squarely on data science, and therefore, I will cover two libraries named Dask and
Ray that truly add value to any data science pipeline where you want to mix the power of
parallel computing.

Parallel Computing for Data Science

You'll start with a simple code snippet to understand where you want to go. Assuming
you have standard Python installed on your laptop, execute this code (on a CLI or inside
a Jupyter notebook):

import multiprocessing as mp
print("Number of processors: ", mp.cpu_count())

You are highly likely to get a response like 4 or 6. This is because all modern CPUs
consist of more than one core; they're parallel computing units, effectively. There
are subtle differences between the actual physical cores (electronic units with those
nanometer-scale transistors) and logical cores, but for all computing purposes, you can
think of the logical cores as the fundamental units in your system.

For more detailed information on the CPU installed on your laptop, you may execute
the following snippet:

import psutil

print("="*20, "CPU Info", "="*20)

number of cores

print("Physical cores:", psutil.cpu_count(logical=False))
print("Total cores:", psutil.cpu_count(logical=True))

CPU frequencies

cpufreq = psutil.cpu freq()

258

CHAPTER 10 PARALLELIZED DATA SCIENCE

print(f"Max Frequency: {cpufreq.max:.2f}Mhz")
print(f"Current Frequency: {cpufreq.current:.2f}Mhz")
CPU usage
print("CPU Usage Per Core:")
for i, percentage in enumerate(psutil.cpu_percent(percpu=True,
interval=1)):
print(f"Core {i}: {percentage}%")
print(f"Total CPU Usage: {psutil.cpu_percent()}%")

On my laptop, I get the following:

Physical cores: 2

Total cores: 4

Max Frequency: 2195.00Mhz
Current Frequency: 2195.00Mhz
CPU Usage Per Core:

Core 0: 64.7%

Core 1: 40.9%

Core 2: 58.5%

Core 3: 29.2%

Total CPU Usage: 55.6%

So, we have multiple cores, and we should be able to take advantage of that
hardware design in our data science tasks. What might that look like?

Single Core to Multi-Core CPUs

Although this is a book about data science, sometimes it is necessary (and nostalgic)
to take a slight detour into the hardware realm and revisit the history of development
on that side. For parallel computing, a lot of hardware development had to happen
over a long period of time before the modern software stack started taking full-blown
advantage of that development. It will be beneficial to get a brief glimpse of this history
to put our discussion in context.

259

CHAPTER 10 PARALLELIZED DATA SCIENCE

The earliest commercially available CPU was the Intel 4004, a 4-bit 750kHz
processor released in 1971. Since then, processor performance improvements were
mainly due to clock frequency increases and data/address bus width expansion. A
watershed moment was the release of the Intel 8086 in 1979 with a max clock frequency
of 10MHz and a 16-bit data width and 20-bit address width.

The first hint of parallelism came with the first pipelined CPU design for the Intel
i386 (80386) which allowed running multiple instructions in parallel. Separating the
instruction execution flow into distinct stages was the key innovation here. As one
instruction was being executed in one stage, other instructions could be executed in the
other stages and that led to some degree of parallelism.

At around the same time, superscalar architecture was introduced. In a sense,
this can be thought of as the precursor to the multi-core design of the future. This
architecture duplicated some instruction execution units, allowing the CPU to run
multiple instructions at the same time if there were no dependencies in the instructions.
The earliest commercial CPUs with this architecture included the Intel iI960CA, AMD
29000 series, and Motorola MC88100.

The unstoppable march of Moore’s Law (shrinking the transistor sizes and
manufacturing cost at an exponential pace; www.synopsys.com/glossary/what-is-
moores-1law.html) helped fuel this whole revolution in microarchitecture with the
necessary steam. Semiconductor process technology was improving and lithography
was driving the transistor nodes to the realm of sub 100 nm (1/1000" of the width of
a typical human hair), supporting circuitry, motherboards, and memory technology
(taking advantage of the same manufacturing process advancements).

The war for clock frequency heated up and AMD released the Athlon CPU,
hitting the 1GHz speed for the first time, at the turn of the century in 1999. This war was
eventually won by Intel, who released a dizzying array of high-frequency single-core
CPUs in the early 2000s, culminating in the Pentium-4 with a base frequency around
3.8GHz - 4GHz.

But fundamental physics struck back. High clock frequencies and nanoscale
transistor sizes resulted in faster circuit operations, but the power consumption shot
up as well. The direct relationship between frequency and power dissipation posed an
insurmountable problem for scaling up. Effectively, this power dissipation resulted in
so-called higher leakage current that destabilized the entire CPU and system operation
when the transistor count was also going up into billions (imagine billions of tiny and
unpredictable current leakages happening inside your CPU).

260

http://www.synopsys.com/glossary/what-is-moores-law.html
http://www.synopsys.com/glossary/what-is-moores-law.html

CHAPTER 10 PARALLELIZED DATA SCIENCE

To solve this issue, multi-CPU designs were tried that housed two physical CPUs
sharing a bus and a common memory pool on a motherboard. The fundamental idea
is to stop increasing the frequency of operations and go parallel by distributing the
computing tasks over many equally powerful computation units (and then accumulate
the result somehow). But due to communication latencies from sharing external (outside
the package) bus and memory, they were not meant to be truly scalable designs.

Fortunately, true multi-core designs followed soon after where multiple CPU cores
were designed from the ground up within the same package, with special consideration
for parallel memory and bus access. They also featured shared caches that are separate
from the individual CPU caches (L1/L2/L3) to improve inter-core communication by
decreasing latency significantly. In 2001, IBM released Power4, which can be considered
the first multi-core CPU, although the real pace of innovation and release cycle picked
up after Intel’s 2005 release of the Core-2 Duo and AMD'’s Athlon X2 series.

Many architectural innovations and design optimizations are still ongoing in this
race. Enhancing core counts per generation has been the mainstay for both industry
heavyweights, Intel and AMD. While today’s desktop workstation/laptops regularly
use 4 or 6 core CPUs, high-end systems (enterprise data center machines or somewhat
expensive cloud instances) may feature 12 or 16 cores per CPU.

For the data science revolution and progress, it makes sense to follow this journey
closely and reap the benefits of all the innovations that hardware design can offer. But it
is easier said than done. Parallelizing everyday data science tasks is a non-trivial task and
needs special attention and investment.

What Is Parallel in Data Science?

For data science jobs, both data and models are important artifacts. Therefore, one of the
first considerations to be made for any parallel computing effort is to the focal point of
parallelizing: data or model.

Why do you need to think this through? Because some artifacts are easier to be
imagined to be parallelized than the others. For example, assume you have 100 datasets
to run some statistical testing on and 4 CPU cores in your laptop. It is not hard to imagine
that it would be great if somehow you could distribute the datasets evenly across all the
cores and execute the same code in parallel (Figure 10-1). This should reduce the overall
time to execute the statistical testing code significantly, even if the scheme involves
some upfront overhead for dividing and distributing data, and some end-of-the-cycle
aggregation or accumulation of the processed data.

261

CHAPTER 10 PARALLELIZED DATA SCIENCE

Although this is not hard to imagine, the actual implementation is not that
straightforward for a traditional Python-based data science stack using pandas or SciPy.
As discussed in the last chapter, Python is inherently single-threaded and doing parallel
processing with Python code needs some prior setup and clever manipulation. When a
data scientist is using high-level analytics libraries like pandas, it is even more important
to know the limitations for parallel processing (if any).

0
‘i‘}

Parallelized data

o0

Aggregation

33
"o

m @
O
00
a
iy
T
ﬁﬁ

Figure 10-1. Distributing datasets across multiple computing cores

Moreover, data science is not limited to model exploration and statistical analysis
on a single person’s laptop (or a single cloud-based compute node) anymore. From a
single machine (however powerful it might be), the advantages are apparent for large-
scale data analytics when one connects to a cluster architecture consisting of multiple
computers banded together with high-speed network. In the limiting case, such a cluster
aims to become a single entity of computing for all intents and purposes: a single brain
arising out of parallel combination and communication among many smaller brains.

Naturally, data scientists start imagining all kinds of possibilities that can be tried and
tested with this collective brain. Alongside splitting a large collection of datasets, they can
think of splitting models (or even modeling subtasks) into chunks and executing them
in a parallel fashion. Datasets can be sliced and diced in multiple ways and all those
dimensions might be parallelized, depending on the problem at hand. Some tasks may
benefit from splitting data samples in rows; others may benefit from column-wise splitting.

262

CHAPTER 10 PARALLELIZED DATA SCIENCE

Even many optimization tasks can be parallelized with sufficient effort and thrown
to multiple compute nodes. One example could be running parallel local area searches
for finding the best cost function of a global problem. All these ideas are captured in

Figure 10-2.
Data Science Task
Data - Optimizations
rows Model Data - P
columns

— — —
— f— —

\ Cluster - single brain out of many)

Y

Common
memory/
cache

CPU/GPU
direct
comm

Figure 10-2. Cluster of computing nodes for parallelizing data science tasks in
various dimensions: data, model, optimizations, and so on

Parallel Data Science with Dask

Dask is a feature-rich, easy-to-use, flexible library for parallelized and scalable
computing in the Python ecosystem. While there are quite a few choices and approaches
for such parallel computing with Python, the great thing about Dask is that it is
specifically optimized and designed for data science and analytics workloads. In that
way, it really separates itself from other major players such as Apache Spark.

In a typical application scenario, Dask comes to the rescue when a data scientist is
dealing with large datasets that would have been tricky (if not downright impossible)
to handle with the standard Python data science workflow of NumPy/ pandas/scikit-
learn/TensorFlow. Although these Python libraries are the workhorses of any modern
data science pipeline, it is not straightforward how to take advantage of large parallel
computing infrastructure or clusters with these libraries.

263

CHAPTER 10 PARALLELIZED DATA SCIENCE

At the minimum, one must spend quite a bit of manual effort and set up customized
code or preprocessing steps to optimally distribute a large dataset or split a model that
can be executed on the parallel computing infrastructure. Moreover, this limitation is
not only for cloud-based clusters but applies to a single machine scenario as well. It
is not apparent how to take advantage of all the logical cores or threads of a powerful
workstation (with a single standalone CPU) when doing a pandas data analysis task
or using SciPy for a statistical hypothesis testing. Some of the design features of these
libraries may even fundamentally prevent us from using multiple CPU cores at once.

Fortunately, Dask takes away the pain of planning and writing customized code for
turning most types of data science tasks into parallel computing jobs and abstracts away
the hidden complexity as much as possible. It also offers a DataFrame API that looks
and feels much like the pandas DataFrame so that standard data analytics and data
wrangling code can be ported over with minimal change and debugging. It also has a
dedicated ML library (APIs similar to that of scikit-learn). Let’s explore how Dask works
and more features in the next sections.

Is Dask the same as Spark? This article (https://coiled.io/is-spark-
still-relevant-dask-vs-spark-vs-rapids/) lays out the similarities and
differences nicely. In brief, Dask is more “friendly and familiar” to data scientists
working with Python codebase and solving problems that do not always restrict
themselves to SQL-type data queries.

How Dask Works Under the Hood

At its core, Dask operates by using efficient data structures (arrays and DataFrames)

and a cleverly designed graph. Basically, it uses a client-scheduler-worker cluster
architecture (Figure 10-3) to optimally distribute subtasks, collect them together, and
calculate the outcome/prediction. The intricacies of parallel computing are abstracted
away from regular Python programmers or data scientists, so working with large datasets
is made easy and accessible. Figure 10-3 shows a schematic illustration.

264

https://coiled.io/is-spark-still-relevant-dask-vs-spark-vs-rapids/
https://coiled.io/is-spark-still-relevant-dask-vs-spark-vs-rapids/

CHAPTER 10 PARALLELIZED DATA SCIENCE

ﬁ) s
Client JUPY'ET User facing layer -
® highly abstracted
-
Manages states and
Scheduler sends tasks to workers
Distributed
cluster < / l \
k D —

Computes, stores, and serves results to
other workers or clients

Figure 10-3. Dask client-scheduler-worker operations under the hood

The most useful fundamental building blocks of Dask are the following:
e Daskarray
e Dask DataFrame
e Daskbag
e Dasktask graph

Dask Array

This is an implementation of a subset of the NumPy n-dimensional array (or ndarray)
interface using blocked algorithms that effectively cut up a large array into many small
arrays/chunks. This facilitates computation on out-of-core (larger than memory) arrays
using all the cores in a computer in a parallel fashion. These blocked algorithms are
coordinated using Dask task graphs. For more details on Dask arrays, go to the official
documentation at https://docs.dask.org/en/latest/array.html.

265

https://docs.dask.org/en/latest/array.html

CHAPTER 10 PARALLELIZED DATA SCIENCE

Dask DataFrame

Essentially, a Dask DataFrame is a large-scale parallelized DataFrame composed of
many smaller pandas DataFrames, split along the index. Depending on the size and
situation, the pandas DataFrames may exist on the disk for out-of-core computing on a
single machine, or they may live on many different computing nodes in a cluster.

A single Dask DataFrame operation triggers many operations down the chain (i.e., on
the constituent pandas DataFrames in a parallel manner).

Efficiency and ease of use are main goals of the Dask project. Therefore, Dask
DataFrames are partitioned row-wise, grouping rows by index value for efficiency. At the
same time, they can expose the same API and methods as those coming from the pandas
stable. A data scientist won'’t feel the difference or need to change existing code but can
utilize the parallelism just by working with the Dask DataFrame API. In fact, the pandas
official documentation suggests using Dask for scaling out to large datasets (Figure 10-4).

Use other libraries

pandas is just one library offering a DataFrame API, Because of its popularity, pandas’ API has
become something of a standard that other libraries implement. The pandas documentation
maintains a list of libraries implementing a DataFrame API in our ecosystem page.

For example, Dask, a parallel computing library, has dask.dataframe, a pandas-like API for working
with larger than memory datasets in parallel. Dask can use multiple threads or processes on a
single machine, or a cluster of machines to process data in parallel.

Figure 10-4. The pandas official documentation suggests using Dask for large
datasets

Dask Bag

This is a data structure that implements operations like map, filter, fold, and groupby
on collections of generic Python objects like lists or tuples. It uses a small memory
footprint using Python iterators and is inherently parallelized.

Apache Spark has its famous Resilient Distributed Dataset (RDD; https://
databricks.com/glossary/what-is-rdd). A Dask Bag is a Pythonic version of that RDD,
suitable for operations inherently popular with users of the Hadoop file system. They are
mostly used to parallelize simple computations on unstructured or semi-structured data
such as text data, JSON records, log files, or customized user-defined Python objects.

266

https://databricks.com/glossary/what-is-rdd
https://databricks.com/glossary/what-is-rdd

CHAPTER 10 PARALLELIZED DATA SCIENCE

Dask Task Graph

Dask uses the common approach to parallel execution in user-space: task scheduling.
With this approach, it breaks the main high-level program/code into many medium-
sized tasks or units of computation (e.g., a single function calls on a non-trivial amount
of data). These tasks are represented as nodes in a graph. Edges run between nodes if
one task is dependent on the data produced by another. A task scheduler is called upon
to execute this whole graph in a way that respects all the inter-node data dependencies
and leverages parallelism wherever possible, thereby speeding up the overall
computation.

There are many techniques for scheduling: Embarrassingly Parallel, MapReduce, Full
Task Scheduling, etc. Often task scheduling logic hides within other larger frameworks
like Luigi, Storm, Spark, and IPython Parallel. Dask encodes full task scheduling
(Figure 10-5) with minimal incidental complexity using common Python artifacts (i.e.,
dictionaries, tuples, and callables). Dask can even use Python-native schedulers such as
Threaded and Multiprocessing.

B A . I/‘“\ /‘\
Q _/ Pl) O
f P / /_"‘\ /_‘\
3), " /K_
N (N Ve
r (X U & — C’
0 SO
\) \,_/ (—j

Figure 10-5. Dask uses a full task scheduling approach for its task graph

Taking the fundamental data structures and schedulers, we can illustrate the
flexibility of Dask as shown in Figure 10-6.

Dask collections Schedulers

Dask task graph
\
patarrame %—D Threaded

Bags
Synchronous

Figure 10-6. Dask collections, task graph, and schedulers

267

CHAPTER 10 PARALLELIZED DATA SCIENCE

Works on Many Types of Clusters

One of the great features of Dask is that tasks and code can be deployed over many types
of clusters:

o Hadoop/Spark clusters running YARN

e HPC clusters running job managers like SLURM, SGE, PBS, LSF,
or others

¢ common in academic and scientific labs
¢ Kubernetes clusters

This makes Dask a truly powerful engine for parallel computing no matter the
underlying distributed data processing infrastructure choice. Naturally, Dask code and
pipelines can be easily ported from one organization to another or shared among the
teams of a large data science organization.

Basic Usage Examples

Here is how you can define and examine some of the data structures you just learned
about. Let’s start with arrays and then go on to show some examples with DataFrames
and Bags.

A note about Dask and Ray code examples / Almost all the code snippets in
this chapter are for illustration and conceptualization purpose only. They are not
fully executable, working code. The reason for this is brevity. The book focuses on
concepts and learning and does not intend to act as a code manual. Working code
examples are provided in the accompanying Jupyter notebooks (or GitHub links).

Array

Define a Numpy array of 100,000 elements (Gaussian random numbers) and create a
Dask array from that using the da.from array() method:

import numpy as np
import pandas as pd

268

CHAPTER 10 PARALLELIZED DATA SCIENCE

import dask.dataframe as dd
import dask.array as da
import dask.bag as db

arr = np.random.normal(size=100 000).reshape(500,200)
dask arr = da.from array(arr,chunks=(100,100))

Note that for creating the Dask array, you have chosen a chunk size of (100, 100).In
a Jupyter notebook, if you just examine this dask_arr object, it is even visualized nicely
(Figure 10-7).

dask_arr
Array Chunk
Bytes 781.25kiB 78.12 kiB 8
fre
Shape (500, 200) (100, 100)
Count 10 Tasks 10 Chunks

Type floatb4 numpy.ndarray 200

Figure 10-7. A 2D Dask array created from a NumPy array of random numbers

All the chunks have the same size of 78.12 kiB whereas the total dataset is 781.25
kiB. These chunks can effectively be distributed over cores or machines for parallel
computing. You can go ahead and define a 3D array in a similar fashion:

arr = np.random.normal(size=100 000).reshape(50,200,10)
dask arr = da.from array(arr,chunks=(50,20,10))

Now the Dask array looks like a stack of bricks with a 3D shape (Figure 10-8).

269

CHAPTER 10 PARALLELIZED DATA SCIENCE

dask_arr
Array Chunk
Bytes 781.25 kiB 78.12 kiB o
Shape (50, 200, 10) (50, 20, 10) &
Count 10 Tasks 10 Chunks
Type floaté4 numpy.ndarray ‘%

10

Figure 10-8. A 3D Dask array created from a NumPy array of random numbers

Dask operates on the principle of lazy valuation where final values are not computed
unless explicitly asked to do so. You can define a summation operation on the 3D array
like this where you are also counting the time for the operation:

import time

t1 = time.time()

task1l = dask arr.sum(axis=2)

t2 = time.time()

print("Time (milliseocnds):", round((t2-t1)*1000,3))
task1

In the Jupyter notebook, this will show a visualization. Note the time taken for this
operation is ~4 milliseconds (Figure 10-9). Nothing has been computed; just a task graph
has been built, and the expected output array shape has been determined.

270

CHAPTER 10 PARALLELIZED DATA SCIENCE

tl = time.time()

taskl = dask_arr.sum(axis=2)

t2 = time.time()

print("Time (milliseconds):", round((t2-tl1)*1e80,3))
taskl

Time (milliseconds): 3.999

Array Chunk
Bytes 78.12 kiB 7.81 kiB 50
Shape (50, 200) (50, 20)
200
Count 30 Tasks 10 Chunks

Type float64 numpy.ndarray
Figure 10-9. A simple summation operation leads to a new array and task graph

Similarly, you can add another operation to this chain, determining the max value
out of those summed values along the columns (i.e., axis=1):

t1 = time.time()

task2=task1.max(axis=1)

t2 = time.time()

print("Time (milliseocnds):", round((t2-t1)*1000,3))
task2

Again, the task2 is shown as an array with a shape of (50,), and it took ~6
milliseconds for this to be built (Figure 10-10).

271

CHAPTER 10 PARALLELIZED DATA SCIENCE

tl = time.time()

task2=taskl.max(axis=1)

t2 = time.time()

print("Time (milliseconds):", round((t2-t1)*1eee,3))
task2

Time (milliseconds): 5.999

Array Chunk
| Bytes 400 B 400 B | 1
Shape (50,) (50) 50
Count 44 Tasks 1 Chunks

Type floatbd numpy.ndarray

Figure 10-10. Determining the max out of the summed values along columns

Finally, you need to call a special computation method to evaluate the result -
result = task2.compute(). The computation time is much higher here (~24
milliseconds) and you get the one-dimensional array of max values as expected
(Figure 10-11). This is where all the tasks in the task graph are executed over multiple
cores in a parallel fashion.

272

CHAPTER 10 PARALLELIZED DATA SCIENCE

t1 = time.time()

result=task2.compute()

t2 = time.time()

print("Time (milliseocnds):", round((t2-t1)*1e00,3))
print("="%40)

print("Result:\n")

print(result)

Time (milliseocnds): 23.985

Result:

[8.20376347 6.81514322 19.71€14311 9.56123543 9.87424841 8.1678258
9.25362142 6.88081303 7.58215514 9.96070282 8.06762946 9.96991664
8.45045481 7.42665067 9.77733545 8.0062088 8.99773538 8.47654512

19.92758927 9.82853287 8.21597788 7.68340567 9.28841218 10.2206227
19.33909096 6.78129281 1©.12508648 8.24886617 9.49483907 6.59391729
9.33334661 7.69205114 8.36703685 7.31321315 7.00957787 7.91146618
10.43512876 8.12108536 9.86026751 7.80963788 9.79952717 11.29513906
7.40358535 9.66389599 6.61055314 6.09541635 8.05787834 10.64292572
7.77117279 9.5708752]

Figure 10-11. Final computation for the 3D array

In fact, you can check the details of the task graph just by examining the dask
attribute of any array such as task2 (Figure 10-12).

273

CHAPTER 10 PARALLELIZED DATA SCIENCE

task2.dask

HighLevelGraph
O HighLevelGraph with 6 layers.

@ » Layer: array

@ » Layer2: sum

. » Layer3: sum-aggregate

. » Layer4: amax

. » Layer5: amax-partial

. » Layer6: amax-aggregate
Figure 10-12. A high-level task graph for the sum-max operations

In the Jupyter notebook, each of these layers can be expanded to see more details.
You are encouraged to check out the accompanying notebook.

DataFrames

Dask DataFrames are equally easy to use if you are already familiar with pandas. You can
create a DataFrame with timeseries data using Dask’s built-in datasets module:

from dask import datasets

df = datasets.timeseries(
start='2022-01-01",
end="'2022-01-31",
freg="1min"',
partition fregq="1d',)

Now, if you just type df in a Jupyter notebook cell, it won’t show the data snapshot
that you are used to seeing in a pandas DataFrame. This is because Dask operates on lazy
evaluation and just typing df does not demand any actual computation. Instead, it will

274

CHAPTER 10 PARALLELIZED DATA SCIENCE

show the schema (i.e., datatypes) and the general structure information (Figure 10-13).
Note that it has 30 partitions because you chose the partition freq = '1d' inthe code
and the start and end dates fall on the 1** and 31 of the month.

Dask DataFrame Structure:

id name X y
npartitions=30
2022-01-01 int32 object float64 float64

2022-01-02

2022-01-30

2022-01-31

Dask Name: make-timeseries, 30 tasks

Figure 10-13. A time series DataFrame in Dask showing the data schema

If you want to see the first few entries, the familiar head method will serve that
purpose and, by default, the computation will be done (i.e., the actual data will be
shown) as in Figure 10-14.

df.head(n=3)

id name % y

timestamp
2022-01-01 00:00:00 1040 Norbert 0.769071 0.202093
2022-01-01 00:01:00 984 Kevin 0985783 0.361957

2022-01-01 00:02:00 939 Laura -0.721564 -0.644398

Figure 10-14. A Dask DataFrame showing the first few entries

275

CHAPTER 10 PARALLELIZED DATA SCIENCE

Most pandas-type operations are supported. For example, to know how many
unique names there are, you write the following code:

df['name'].nunique().compute()
>> 26

Now, to group by those names and compare their variances of x and y data side by

side, you can write

df.groupby(by="name").var().compute()[['x","'y"]]

>>
X y

name

Alice 0.331361 0.318624
Bob 0.328595 0.336009
Charlie 0.324984 0.334246
Dan 0.329188 0.333593
Edith 0.324070 0.332390
Frank 0.340098 0.335124

<truncated output>

Direct plotting is also supported like pandas. Using a special resample method
(because the data is a time series), you can plot the mean data like this (Figure 10-15):

df[['x", 'y']].resample('24h").mean().compute().plot()

0.04

0.02

0.00
-0.02
-0.04
03 10 17 24 31
Jan
2022
timestamp

Figure 10-15. Time series resampled data mean

276

CHAPTER 10 PARALLELIZED DATA SCIENCE

Randomly accessing a partition’s data is fast but still needs to be computed to
see the actual data. For example, to see all the time for the 25" of January partition
(Figure 10-16), you can write this:

df.loc['2022-01-25"].compute()

id name x y

timestamp

2022-01-25 00:00:00 999 Tim 0.082126 0.059601
2022-01-25 00:01:00 1050 Yvonne 0.405951 0.927564
2022-01-25 00:02:00 1014 Oliver -0.943153 0.877603
2022-01-25 00:03:00 994 Bob -0.839904 -0.669831

2022-01-25 00:04:00 1021 Norbert -0.525939 0.132539

2022-01-25 23:55:00 1012 Kevin 0425903 -0.521117
2022-01-25 23:56:00 998 Norbert 0.572189 0.565643
2022-01-25 23:57:00 1004 Edith -0.144321 -0.133911
2022-01-25 23:58:00 1070 Sarah 0.521525 -0.237634

2022-01-25 23:59:00 987 Charlie 0.145602 -0.959385
1440 rows x 4 columns

Figure 10-16. Accesing and computing the data for a particular day/partition

Dask Bags

Here’s a Dask Bag example that contains some JSON records. This could be randomly
generated information and the code for generating such JSON data is given in the
accompanying notebook/source code. You can have five JSON records (about five
people) in a folder called data. You read them in a Dask Bag structure via following code
(note the use of map and json.loads functions):

import dask.bag as db
import json

bag = db.read text('data/*.json').map(json.loads)

277

CHAPTER 10 PARALLELIZED DATA SCIENCE

Again, due to lazy evaluation, you cannot see inside the Bag unless you explicitly ask
for that. You can use either take method for that:

bag.take(2)

This should show something like Figure 10-17. The records contain information
about people’s name, occupation, phone number, and address. The record is multi-level.
For example the address field has another level of data fields: address and city.

({'age': 63,
'name': ['Stuart', 'Berry'],
'occupation': 'Mineralologist’,

'telephone': "298-142-4549°',

‘address': {'address': '474 Valdez Bypass', 'city': 'Stockton'},

‘credit-card': {'number': '3481 460420 21743', 'expiration-date': '08/24'}},
{'age': 61,

‘name': ['Jacob', 'Frank'],

‘occupation': 'Minicab Driver',

'telephone': "+1-(746)-566-5338",

‘address': {'address': '572 Rex Alley', 'city': 'Florence'},

‘credit-card': {'number': '2421 4440 8569 8618',

‘expiration-date': '10/17'}})

Figure 10-17. Dask bag containing JSON records (the first two records are
shown here)

Now you can do operations like map, filter, and aggregation on this records data. For
example, you may want to filter only those people whose age is over 50 and whose credit-
card expiration date year is beyond 2022. You write a simple filtering function and pass
it to the Bag object’s filter method. Note that you must use take or compute to get the
actual computation done.

def filter func(record):

condl = record['age'] > 50

cond2 = int(record['credit-card']['expiration-date'].split('/")
[-1]) > 22

return condl and cond2

bag.filter(filter func).take(2)

This may return something like Figure 10-18.

278

CHAPTER 10 PARALLELIZED DATA SCIENCE

({'age': 63,
‘name’: ['Stuart', 'Berry'],
'occupation': 'Mineralologist’,

'telephone': "'298-142-4549',

‘address': {'address': '474 Valdez Bypass', 'city': 'Stockton'},

‘credit-card': {'number': '3481 460420 21743', 'expiration-date': '08/24'}},
{'age': 61,

‘name': ['Faustino', 'Frye'],

'occupation': 'Au Pair’',

'telephone': "+1-(136)-978-2565",

'address': {'address': '378 Blair Freeway', 'city': 'Carlsbad'},

‘credit-card': {'number': '3736 813403 82353', 'expiration-date': '12/24'}})

Figure 10-18. Filtering operation done on the records contained in the Dask Bag

There are many powerful usages for Dask Bags with semi-structured datasets that
would have been difficult to accomplish just with an array or DataFrames.

Dask Distributed Client

All the usage examples in the earlier sections feature the formalism and lazy evaluation
nature of Dask APIs (arrays, DataFrames, and Bags), but they don’t showcase the
distributed/parallelized nature of computation in an obvious manner. For that, you
must select and use the distributed scheduler from the Dask repertoire. It is actually a
separate module or lightweight library called Dask.distributed that extends both the
concurrent.futures and Dask APIs to moderate sized clusters.

Some of the core features of this module are as follows:

Low overhead and latency: There is only about 1ms of overhead
for each task. A small computation and network roundtrip can be
completed in less than 10ms.

Data sharing between peers: Worker nodes (e.g., logical cores
on a local machine or cheap computing nodes in a cluster)
communicate with each other to share data.

Locality of the data: Computations happen where the data lives.
Scheduling algorithms distribute and schedule tasks following
this principle. This also minimizes network traffic and improves
the overall efficiency.

279

CHAPTER 10 PARALLELIZED DATA SCIENCE

Complex task scheduling: This is probably the most attractive
feature. The scheduler supports complex workflows and is not
restricted to standard map/filter/reduce operations that are the
primary feature of other distributed data processing frameworks
like Hadoop-based systems. This is absolutely necessary for
sophisticated data science tasks involving n-dimensional arrays,
machine learning, image or high-dimensional data processing,
and statistical modeling.

The flexibility and power of the scheduler also stems from the fact that it is
asynchronous and event driven. This means it can simultaneously respond to
computation requests from multiple clients and track the progress of a multitude of
workers that have been given tasks already. It is also capable of concurrently handling a
variety of workloads coming from multiple users while also managing a dynamic worker
population with possible failures and new additions.

The best thing for the user, a data scientist, is that they can use all these features
and powers with pure Python code and a minimal learning curve. Cluster management
or distributed scheduling is not a trivial matter to accomplish programmatically. A
data scientist using Dask does not have to bother about those complexities as they are
abstracted away. That’s where the theme of productive data science gets its support from
libraries like Dask.

In fact, with just two lines of code, you can start a local cluster (utilizing the CPU
cores of a local machine):

from dask.distributed import Client
client = Client()

Now, if you type client in the Jupyter notebook cell, you will see a description like
Figure 10-19. Note that it shows a hyperlink to a dashboard, which you will see in
action soon.

280

CHAPTER 10 PARALLELIZED DATA SCIENCE

client

D Client

Client-b8e058fd-8494-11ec-85a8-b05adad59baa
Connection method: Cluster object Cluster type: distributed.LocalCluster

Dashboard: http://127.0.0.1:60011/status

» Cluster Info
Figure 10-19. Starting up a Dask-distributed cluster/scheduler (on a local
machine)

If you keep expanding the Cluster Info drop-down, you may see something like
Figure 10-20. Note how it shows the threads/workers of the local machine and the
available system memory.

v Cluster Info

LocalCluster
0cf46951

Dashboard: http://127.0.0.1:60011/status Workers: 4
Total threads: 4 Total memory: 15.92 GiB
Status: running Using processes: True

v Scheduler Info

Scheduler
Scheduler-887d1d80-4abb-461f-96ad-b4e70b0a89c8

Comm: tcp://127.0.0.1:60012 Workers: 4

Dashboard: http://127.0.0.1:60011/status Total threads: 4

Started: Just now Total memory: 15.92 GiB
v Workers

Figure 10-20. Cluster and scheduler info for Dask distributed client setup

281

CHAPTER 10 PARALLELIZED DATA SCIENCE

The important thing to know is that you can pass on many customizable parameters
to the Client constructor when you create your scheduler/cluster. Some of the most
prominent ones are

address: IP address (with port) of a real cloud-based, remote
cluster or the local host machine. If you can afford to rent a high-
end cloud instance with a high CPU count (as discussed in the
previous chapter), the Dask scheduler can directly connect to it
and start utilizing the resources. When not specified, only the local
host machine is taken up as the computing node.

n_workers: Explicitly specifying the number of CPU cores that the
cluster will be able to use. This could be important for resource
constrained situations or if there are many Dask tasks to be
distributed among a finite number of CPU cores.

threads_per worker: Just like specifying number of CPU cores,
this dictates the number of threads per core. Generally, this
numberis 1 or 2.

memory limit: This is another useful keyword to use for optimally
managing the total system memory for the distributed client.

This limit is on a per-CPU core basis and should be a string (e.g.,
‘2 GiB").

Once the scheduler is started up, it manages the distributed computing aspects
by itself. However, there is a certain way to submit jobs to the scheduler using map and
submit methods. Here is a (somewhat contrived) example.

Suppose you have a few datasets of random variables (generated from a specific
statistical distribution) and you want to measure the differences between their max
and median, and then take an average of those measurements. Each dataset may
contain 1,000 values and there are 21 such datasets. Taken together, this could be a
measure of some sort of outliers in the data (i.e., how much the max value is higher
than the median values for a certain batch of data). You have the data generation code
in the accompanying notebook. The distributions (of individual datasets) are shown in
Figure 10-21.

282

Density

CHAPTER 10 PARALLELIZED DATA SCIENCE

2.5/

2.0+

1.5

1.0

0.5 1

0.0 -

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 10-21. A synthetic batch of data for which a distributed processing needs

to be run

So, this involves the following computations:

21 max computation (from 1,000 data points each time)
21 median computation (from 1,000 data points each time)

Two arithmetic mean computations (of 21 max/median values
each time)

A final difference calculation

You write the Dask code as follows (assuming that the datasets are contained in a

Python list called dists). The code for generating such randomized numbers in a list is

given in the accompanying source code/notebook.

Mapping statistical computations to data distributions
A = client.map(np.max, dists)
B = client.map(np.median, dists)

Submitting averaging jobs

mean_max
mean_min

= client.submit(np.mean, A)
= client.submit(np.mean, B)

283

CHAPTER 10 PARALLELIZED DATA SCIENCE

At this point, if you examine the mean_max object, you will see it is something called a
Dask Future (a sort of promise that will be calculated or acted upon in future, similar to a
concept in JavaScript):

mean_max

>> Future: mean status: finished, type: numpy.float64, key: mean-2e5b19a3
2199725e1cf4f6f5bade295a

The entire distributed task is just planned at this point and no actual computation
has happened. You must call result to execute the actual computations:

final = mean _max.result() - mean min.result()
final
>> 0.6780617253952232

However, more interesting things can be observed simply by looking at the
dynamic dashboard that Dask provides. You can simply click on the hyperlink shown in
Figure 10-20 and see something like Figure 10-22.

Slatus Workers. Tasks Systom Froflo Graph Groups Info More.

el S8 N Task Stisam

H
£

snE

win
ratian mn
maan

Figure 10-22. Task status view of the dynamic Dask dashboard

284

CHAPTER 10 PARALLELIZED DATA SCIENCE

This is a static snapshot of the task status tab of the dashboard. When the parallel
processes execute (distributed over multiple CPU cores), the graph changes and updates
dynamically as all the data chunks are split and shared among workers. A good visual
demonstration of this dynamic process can be seen in an article that I published at
https://medium.com/productive-data-science/out-of-core-larger-than-ram-
machine-learning-with-dask-9d2e5f29d733 with a hands-on example involving the
Dask Machine Learning library. You are encouraged to check out this article.

There are many other tabs in this dashboard. The information tab about workers is
one among them (Figure 10-23). Again, here the view is static and after the processing
was finished. Therefore, you see minimal usage of memory and CPU. But for a dynamic
state, those numbers will be high and constantly changing.

CPU Use (%)
o)

Memory Use (%)

@
name address | nthreads | cpu memory | limit memory % managed unmanage unmanage spilled
Total (3) 8 3% 183.2MiB 4.5GiB 41% 1.5KiB 187.8MiB 476.0KiB 0.0
0 tep:/i27.0 2 3% 624MiE 1.5GiB 41% 3208 62.2MiB 220.0KiB 0.0
1 tep:i127.0 2 3% 644ME 1.5GiB 42% 76808 641MB 2430KiB 0.0
2 tep:i127.0 2 3% 61.4MiE 1.5GiB 4.0 % 70408 6H1.4MB SOKiB 0.0

Figure 10-23. Workers information view of the dynamic Dask dashboard

Dask Machine Learning Module

While Dask provides an amazing suite of parallel and out-of-core computing facilities
and a straightforward set of APIs (Arrays, DataFrames, Bags, etc.,), the utility does not
stop there. Going beyond the data wrangling and transformation stage, when data
scientists arrive at the machine learning phase, they can still leverage Dask for doing
the modeling and preprocessing tasks with the power of parallel computing. All of
this can be achieved with a minimal change in their existing codebase and in pure
Pythonic manner.

For ML algorithms and APIs, Dask has a separately installable module called
dask-ml. Full treatment of that module is beyond the scope of this book. You are again
encouraged to check out the above-mentioned article to get a feel about the API. Here, I
will briefly discuss some key aspects of dask-ml.

285

https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733
https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733
https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733

CHAPTER 10 PARALLELIZED DATA SCIENCE

What Problems Does It Address?

Fundamentally, libraries like dask-ml addresses the dual problems of data scaling and
model scaling.

The data scaling challenge comes about with the Big Data domain, for example,
when the computing hardware starts having trouble containing training data in the
working memory. So, this is essentially a memory-bound problem. Dask solves this
problem by spilling data out-of-core onto drive storage and providing incremental meta-
learning estimators that can learn from batches of data rather than having to load entire
dataset in the memory.

The model scaling challenge, on the other hand, raises its ugly head when the
parametric space of ML model becomes too large and the operations become compute-
bound. To address these challenges, you can continue to use the efficient collections
Dask offers (arrays, DataFrames, bags) and use a Dask Cluster to parallelize the
workload on an array of machines. Even the task of parallelization has choices. It can
occur through one of the built-in integrations (e.g., Dask’s joblib back end to parallelize
scikit-Learn directly) or one of dask-ml estimators (e.g., a hyper-parameter optimizer or
a parallelized Random Forest estimator).

Tight Integration with scikit-learn

Following through the principle of simplicity of use, dask-ml maintains a high degree
of integration and the drop-in replacement philosophy with the most popular Python
ML library, scikit-learn. Dask-ml provides data preprocessing, model selection, training,
and even data generating functions just like scikit-learn does while supporting Dask
collections as native objects to use with those APIs.

Generic code could go like this (not an actual working code):

import dask.dataframe as ddf

from dask ml.model selection import train test split
from dask ml.preprocessing import MinMaxScaler

from dask_ml.xgboost import XGBRegressor

Reading efficient parquet file format

data = ddf.read parquet('Parquet file' engine='pyarrow’),
X = data[Feature columns]

y = data[Label_column]

286

CHAPTER 10 PARALLELIZED DATA SCIENCE

Test/train split
train, train labels, test, test labels = train test split(X,y,
test size=0.2,...)

Scale/pre-process
train = MinMaxScaler.fit transform(train)
test = MinMaxScaler.fit transform(test)

Parallelized estimator
est = XGBRegressor(...)
est.fit(train, train_labels)
est.score(test)

It is easy to spot the almost line-by-line similarity between this code and a standard
scikit-learn pipeline. This is called the drop-in replacement ability of dask-ml. You may
also notice the use of the Parquet file format for reading a large dataset efficiently (into
a Dask DataFrame) from a disk drive or network storage. You may check out my article
on this topic (https://medium.com/productive-data-science/out-of-core-larger-
than-ram-machine-learning-with-dask-9d2e5f29d733). When executed, this code
combines the advantage of out-of-core data handling of a Dask DataFrame with the
parallelized estimator API and delivers a scalable machine learning experience for the
data scientist, thereby boosting their productivity.

The dask-ml library also offers some meta-estimators/ wrappers to help parallelize
and scale out certain tasks that would not have been possible with scikit-learn itself. For
example, ParallelPostFit can be used to parallelize the predict, predict proba, and
transform methods, enabling them to work on large (possibly larger-than-memory)
datasets. This is highly suited for real-life production deployments, as the live data can
be pretty large even when the training was done with a smaller dataset. For smooth
and stable performance of a prediction service, these post-fitting methods should scale
gracefully whatever the dataset size may be and dask-ml helps accomplish this without a
lot of code change. A generic code snippet for such a task may look like the following:

from sklearn.ensemble import GradientBoostingClassifier
from dask_ml.wrappers import ParallelPostFit

Wrapping the sklearn estimator with Dask wrapper
clf = ParallelPostFit(estimator=GradientBoostingClassifier())
clf.fit(X, y)

287

https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733
https://medium.com/productive-data-science/out-of-core-larger-than-ram-machine-learning-with-dask-9d2e5f29d733

CHAPTER 10 PARALLELIZED DATA SCIENCE

Big dataset for prediction
X _big, _ = make classification(n_samples=100000, chunks=10000,)

Probability of first 10 data points
clf.predict proba(X big).compute()[:10]

In the code above, note that the main estimator comes from scikit-learn itself. The
Dask part is only a wrapper that utilizes the underlying estimator to work on a Dask
collection like a DataFrame for lazy evaluation and out-of-core computing.

Parallel Computing with Ray

Parallel computing in pure Python has recently been revolutionized by the rapid rise
of a few great open-source frameworks, Ray being one of them. It was created by two
graduate students in the UC Berkley RISElab (https://rise.cs.berkeley.edu/), Robert
Nishihara and Philipp Moritz, as a development and runtime framework for simplifying
distributed computing. Under the guidance of Professors Michael Jordan and Ion
Stoica, it rapidly progressed from being a research project to a full-featured computing
platform with many subcomponents built atop it for different Al and ML focused tasks
(hyperparameter tuning, reinforcement learning, data science jobs, and even ML model
deployment).

Currently, Ray is maintained and continuously enhanced by Anyscale
(www.anyscale.com/), a commercial entity (startup company) formed by the creators
of Ray. It is a fully managed Ray offering that accelerates building, scaling, and
deploying Al applications on Ray by eliminating the need to build and manage complex
infrastructure.

Features and Ecosystem of Ray

Some of the core features of Ray are as follows:

Ray achieves scalability and fault tolerance by abstracting the
control state of the system in a global control store and keeping
all other components stateless.

288

https://rise.cs.berkeley.edu/
http://www.anyscale.com/

CHAPTER 10 PARALLELIZED DATA SCIENCE

It uses a shared-memory distributed object store to efficiently
handle large data through shared memory, and it uses a bottom-
up hierarchical scheduling architecture to achieve low-latency
and high-throughput scheduling.

Ray presents a lightweight API based on dynamic task graphs
and actors to express a wide range of data science and general-
purpose applications in a flexible manner.

Utilizing these features, a great many distributed computing tools and frameworks
are being built that are powered by the engine of Ray. For an excellent reference article to
get an overview of these tools, go to https://gradientflow.com/understanding-the-
ray-ecosystem-and-community/. Figure 10-24 shows a visual illustration.

RLLib (parallel

AsynclO \ reinforcement
Distributed
Multiprocessing.Pool
(deploy ML

P
learn/Joblib

~ = (o3 RAY

— AN

learning)
Ray-serve

Modin (Ray

on pandas) / o
RaySGD (hyperparameter
(parallel

Figure 10-24. Distributed data science/ML ecosystem built atop Ray

In this section, I will show only a couple of examples of running parallel data science
workloads using Ray. You are highly encouraged to check out the official documentation
(www.ray.io/docs) and try out all the great features that this library provides.

289

https://gradientflow.com/understanding-the-ray-ecosystem-and-community/
https://gradientflow.com/understanding-the-ray-ecosystem-and-community/
http://www.ray.io/docs

CHAPTER 10 PARALLELIZED DATA SCIENCE

Simple Parallelization Example

Before I show the hands-on examples, I want to mention that Ray is currently built
and tested for Linux and Mac OS, and the Windows version is experimental and not
guaranteed to be stable. Therefore, you are encouraged to practice Ray examples in
a Linux environment or create a virtual machine (VM) on your Windows platform,
install Ray, and continue.

For example, the following examples are run inside an Ubuntu Linux 20.04
environment that runs within a VM managed by Oracle Virtual Box software (installed
on a Windows 11 laptop). The VM has also been assigned four logical CPU cores by the
creator/user (Figure 10-25). This is important to note as the default starting number for
the CPU cores may be only one and that will not demonstrate the expected speed-up for
parallel processing tasks. A detailed guide on how to create such a VM is given in this
article (https://brb.nci.nih.gov/seqtools/installUbuntu.html). If you are working

on native Linux or Mac OS machine, then this step is unnecessary.
% 'y

] General System

m Systern Motherboard ~ Processor Acceleration

!J Display Processor(g]

&] Storage :

\1)] Audio 1%

;ijl Newoik Extended Features: (] Enable PAEANX

@ Serial Ports

Q'"’ use -

—— 4 CPU (logical) cores

e have been assigned to

this VM

i e

Figure 10-25. Multiple logical CPU cores assigned to a VM that is used to run Ray

You can start Ray by the ray.init() method:

import ray
ray.init()

You may see something like the following upon running this code:

290

https://brb.nci.nih.gov/seqtools/installUbuntu.html

CHAPTER 10 PARALLELIZED DATA SCIENCE

{'node_ip address': '10.0.2.15",
'raylet ip address': '10.0.2.15',
'redis_address': '10.0.2.15:6379',
‘object _store address': '/tmp/ray/
session_2022-02-08 21-00-00_ 998495 21742/sockets/plasma_store’,
'raylet socket name': '/tmp/ray/session 2022-02-08 21-00-00 998495 21742/
sockets/raylet’,
'webui url': '127.0.0.1:8265',
'session_dir': '/tmp/ray/session_2022-02-08 21-00-00_ 998495 21742",
‘metrics_export port': 62074,
'gcs_address': '10.0.2.15:43155",
'node_id': '922916efoc5dcfo2dc25fead28b930df40ccf2450fa974bb307826Fe" }

Note that the initiation of Ray starts things like Redis, object store, and Dashboard. In
fact, you will notice a message printed at the top with the URL of the dashboard:

View the Ray dashboard at http://127.0.0.1:8265

If you click this hyperlink, you will see the Ray dashboard with workers and their
status, as shown in Figure 10-26 (quite like the Dask dashboard discussed earlier).

lay Dashboard
LOGICAL VIEW MEMORY RAY CONFIG
B Group by host
Hast PID Uptime (2) -] RAM Plasma Diskc
- Ubartu VM (10.0.2.15) Sworkers / § cores 00h 05m Ss 14.8% 1.7 GiB / 48 GIB (36%) 0.0 MiB / 11087 M 10.0 GiB / 24.0 GiBl (42%)
ray (Folc 306<) IDLE 00h 03m 153 1.6% Ta2miB Y A
ray (P 3060) IOLE 00h 03m 155 4% 79.1 M8 N/A NiA
oy (PR0c 3061) IDLE 00k 03m 158 0% T33MB MIA A
iy (PED: 3062) IDLE 00h 03m 155 20% 794 MiB LU N/A
ray (Fi0c 3043) IDLE 00k 03m 155 20% T9.5MiB A A

* Totals (1 host) S warkers £ § cores 148% 1.7 GiB / 4.8 GiB (36%) 0.0 MaB / 11087 M8 10.0 GiB / 24.0 GiB (42%)

Figure 10-26. Snapshot of a Ray dashboard (with five CPU assignments)

You can check the assigned resources to this Ray cluster with
ray.available resources()

>> {"memory': 2325037056.0,

291

CHAPTER 10 PARALLELIZED DATA SCIENCE

'node:10.0.2.15"': 1.0,
'object store memory': 1162518528.0,
'CPU': 5.0}

Now, let’s construct a few large DataFrames and calculate their statistics using
pandas and Rays to show the parallel computing benefit:

NUM_ROWS = 100_000
NUM_COLS = 20
data_dict = {}
Pandas DataFrames
for i in range(4):
data = np.random.normal(size=(NUM_ROWS, NUM_COLS))
data dict['df'+str(i)] = pd.DataFrame(data,
columns=["Col-"+str(i) for i in
range(NUM_COLS)])

For pandas, you write a function that simply returns the statistics:

def build stats(df):
return df.describe().T

You measure the time to run this function over multiple DataFrames (here, four):

t1 = time.time()

results = [build stats(data_dict['df'+str(i)]) for i in range(4)]
t2 = time.time()

print("Total time (milliseconds): ", round((t2-t1)*1000,2))

>> Total time (milliseconds): 1130.66

The trick to do the same thing with Ray and take advantage of the parallel computing
is to use the decorator @ray.remote with the same function and use the ray.get()
method to collect the result after it has been submitted for parallel execution. Here is the
decorated function:

@ray.remote
def build stats ray(df):
return df.describe().T

292

CHAPTER 10 PARALLELIZED DATA SCIENCE
You can now write similar code for measuring the time:

t1 = time.time()

results = ray.get([build stats ray.remote(data dict['df'+str(i)]) for i in
range(4)])

t2 = time.time()

print("Total time (milliseconds): ", round((t2-t1)*1000,2))

You will get a lower number for total execution time (this will vary on many factors
like hardware, number of CPUs, Ray build, OS, etc.):

>> Total time (milliseconds): 575.77

Note how you call the build stats ray function with a . remote() method and how
you wrap that with the ray.get () method to run everything in parallel. The takeaway
is that although Ray offers a great many features, you must learn how to properly
take advantage of them and how to submit a parallelizable task to the Ray cluster by
pipelining the sub-components in correct order. Figure 10-27 shows the idea.

Some DS Put sub- Decorate

task tasks in » functions with
functions @ray.remote

Call ray.get method Call functions
for final parallel « with .remote
execution method

Figure 10-27. Pipeling sub-components in the correct order

Ray Dataset for Distributed Loading and Compute

Ray Datasets (https://docs.ray.io/en/latest/data/dataset.html) are the standard
(and recommended) way to load and exchange data in the Ray ecosystem. These objects
provide basic distributed data transformations such as map, filter, and repartition,
and play well with a wide variety of file formats, data sources, and distributed

293

https://docs.ray.io/en/latest/data/dataset.html

CHAPTER 10 PARALLELIZED DATA SCIENCE

frameworks for easy loading and conversion. They are also specifically designed to
load and preprocess data with high performance for distributed ML training pipelines
built with Ray such as Ray-Train. (https://docs.ray.io/en/latest/train/train.
html#train-docs).

Ray Datasets are a relatively new feature and are available as Beta from
Ray 1.8+ version onwards. If you are using an older version of Ray, you need to
upgrade to take advantage of them. Also, make sure that the PyArrow library is
installed.

Ray Datasets are a good candidate for the last-mile data processing blocks (before
data is fed into a parallelized ML task flow) where the initial data sources are traditional
RDBMS, output of ETL pipeline, or even Spark DataFrames.

Previously, I talked about Apache Arrow and how these modern data storage formats
are revolutionizing the data science world. Ray Datasets, at their core, implement
distributed Arrow. Each Dataset is essentially a list of Ray object references to blocks
that hold Arrow tables (or Python lists in some cases). The presence of such block-level
structure allows the parallelism and compatibility with distributed ML training. In this
manner, Ray Datasets are similar to what you saw with Dask. Moreover, since Datasets
are just lists of Ray object references, they can be freely (almost no memory operation
overhead) exchanged between Ray tasks, actors, and libraries. This lets you have
tremendous flexibility with their usage and integration, and it improves the system
performance.

As mentioned, Ray Datasets work with almost every kind of data sources that you use
in your everyday work. Figure 10-28 shows a partial snapshot of their input compatibility.

294

https://docs.ray.io/en/latest/train/train.html#train-docs
https://docs.ray.io/en/latest/train/train.html#train-docs

CHAPTER 10 PARALLELIZED DATA SCIENCE

Datasource Compatibility Matrices

Input Type Read API Status
CSV File Format ray.data.read_csv()
JSON File Format ray.data.read_json()
Parquet File Format ray.data.read_parquet()
Numpy File Format ray.data.read_numpy()
Text Files ray.data.read_text()
Binary Files ray.data.read_binary_files()
Python Objects ray.data.from_items()
Spark Dataframe ray.data.from_spark()
Dask Dataframe ray.data.from_dask()
Modin Dataframe ray.data.from_modin()

Figure 10-28. Snapshot of Ray Datasets’ input compatibility

As an example, you can create a Ray Dataset with the range function:
ds = ray.data.range(100000)

If you examine it by typing ds in a Jupyter notebook cell, you will see
Dataset(num_blocks=200, num_rows=100000, schema=<class 'int'>)

So, by default, it has created 200 blocks of object reference and also assigned a
schema of integer to the data. This parallelism and data type integration inherently
makes the Dataset more efficient than traditional data sources like pandas DataFrame.

You can apply a mapping function to the Dataset just like others:

op _ds = ds.map(lambda x: np.sin(x)+np.cos(x))

295

CHAPTER 10 PARALLELIZED DATA SCIENCE

The op_ds is itself a Ray Dataset now but its schema has changed due to the
operation.

op_ds
>> Dataset(num_blocks=200, num_rows=100000, schema=<class 'numpy.float64'>)

Because the schema has changed, many NumPy methods are directly available now.

op_ds.std()
>> 1.0000051823664913

One cool thing is that you can read batches of the data (which are originally integers)
as a Python list or pandas DataFrames and do calculations on those batches. This is very
useful for distributed ML training on this kind of data. The following code reads batches
of size 25,000 at a time as pandas DataFrame and prints out their statistics:

i=1
for batch in ds.iter batches(batch size=25000,
batch_format="pandas'):

print("Batch number: ",i)
print("="*40)
print(batch.describe(percentiles=[0.5]))
print("="*40)
i+=1

The result looks like Figure 10-29.

296

CHAPTER 10 PARALLELIZED DATA SCIENCE

Batch number: 1

0
count 25000.000000
mean 12499.500000
std 7217.022701
min 0.000000
50% 12499.500000
max 24999.000000

Batch number: 2

0
count 25000.000000
mean 37499.500000
std 7217.022701
min 25000.000000
50% 37499.500000
max 49999.000000

Batch number: 3

Figure 10-29. Partial result of batch iteration of a Ray Dataset as chunks of a
pandas DataFrame

The Dataset makes it possible to run parallel data transformation tasks on blocks
of data as pandas. Here is a pseudo-code example:

A Pandas DataFrame UDF
def transform batch(df: pd.DataFrame):
Drop nulls.
df = df.dropna(...)
Add new column.
df["new_col"] = (...)
Transform existing column.
df["feature 1"] = (...)
Drop column.
df.drop(...)
One-hot encoding.
categories = ["cat 1", "cat 2", "cat 3"]
for category in categories:

(...)

return df

297

CHAPTER 10 PARALLELIZED DATA SCIENCE

batch _format="pandas" tells Datasets to provide the transformer
with blocks
represented as Pandas DataFrames.
ds = ds.map batches(transform batch,
batch format="pandas")

Summary

In this chapter, I continued the discussion about making data science scalable across
large datasets and models with parallel (and distributed) computing tools. I discussed
that both raw data and large models can be processed with these parallel processing
techniques. With the advent of modern multi-core CPUs and the easy availability of
large computing clusters at a reasonable cost (from cloud vendors), the prospects of
parallelized data science look bright.

I focused particularly on two Python frameworks, Dask and Ray. I covered, in detail,
various core data structures and internal representations that Dask provides to make
parallel computing easy and fun. I also discussed the Dask distributed client in detail
with hands-on examples. For Ray, I covered the basic Ray parallelism with special
decorators and methods and the distributed data loading functionalities.

In the next chapter, I will go beyond the realm of the CPU and venture into a different
kind of scalability: how to port and take advantage of GPU-based systems for data
science tasks.

298

CHAPTER 11

GPU-Based Data Science
for High Productivity

In the last two chapters, you learned about various tools and frameworks for doing
out-of-core and distributed/parallelized data science. The central goal has always

been the same: enhancing the productivity of the data science pipeline. Productivity is
often directly related to the speed of execution of various DS tasks including numerical
processing, data wrangling, and feature engineering. When it goes to the advanced
machine learning stage, depending on the modeling complexity, the matter of speed and
performance assumes even a critical role.

It is now well established that the unprecedented success of modern ML systems
has been critically dependent on their ability to process massive amounts of raw data in
a parallel fashion using task-optimized hardware. The history of machine learning has
clearly demonstrated that the use of specialized hardware like the graphics processing
unit (GPU) played a significant role in the early success of ML.

For example, in 2012, Alex Krizhevsky (https://qz.com/1307091/the-inside-
story-of-how-ai-got-good-enough-to-dominate-silicon-valley/), in collaboration
with Ilya Sutskever and Geoffrey Hinton (www.cs.toronto.edu/~hinton/), designed
a neural network eventually known as AlexNet (https://proceedings.neurips.cc/
paper/2012/file/c399862d3b9d6b76c8436€924a68c45b-Paper.pdf) that won the
famous ImageNet Large Scale Visual Recognition Challenge (https://en.wikipedia.
org/wiki/ImageNet Large Scale Visual Recognition Challenge). Among many
novel features, it was one of the early neural nets to be trained on parallel GPU
combinations that went on to beat classical ML algorithms in the ImageNet competition
by a large margin. Consequently, the whole idea of deep neural networks got a huge
boost and so did the essential role that GPU-based training hardware played in that
success. Since then, a lot of emphasis has been given to building highly optimized

299
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_11

https://qz.com/1307091/the-inside-story-of-how-ai-got-good-enough-to-dominate-silicon-valley/
https://qz.com/1307091/the-inside-story-of-how-ai-got-good-enough-to-dominate-silicon-valley/
https://www.cs.toronto.edu/~hinton/
http://www.cs.toronto.edu/~hinton/
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://en.wikipedia.org/wiki/ImageNet_Large_Scale_Visual_Recognition_Challenge
https://en.wikipedia.org/wiki/ImageNet_Large_Scale_Visual_Recognition_Challenge
https://doi.org/10.1007/978-1-4842-8121-5_11

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

software tools and customized mathematical processing engines (both hardware and
software) to leverage the power and architecture of GPUs and parallel computing for
artificial intelligence and machine learning.

While the use of GPUs and distributed computing is widely discussed in academic and
business circles for core AI/ML tasks (e.g., running a deep neural network of 100+ layers
for image classification or billion-parameter BERT language synthesis model (https://
towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-
nlp-f8b21a9b6270)), they get less coverage when it comes to their utility for regular data
science and data engineering tasks. These data-related tasks are the essential precursor to
any ML workload in an Al pipeline and they often constitute a majority percentage of the
time and intellectual effort spent by a data scientist or even an ML engineer.

In fact, the famous Al pioneer Andrew Ng recently talked about moving from a model-
centric to a data-centric approach (https://spectrum.ieee.org/andrew-ng-data-
centric-ai) to Al tools development. The central idea there is to not use large datasets
but smaller datasets of higher quality. This means spending much more time with the
raw data and preprocessing it before an actual Al workload executes on your pipeline.
Watch Andrew’s interview at www. youtube . com/watch?v=06-AZXmwHjo (note this is a
YouTube video link). This also means that if we can put the power of the GPU into such
pre-ML data processing tasks, then the overall pipeline will benefit immediately.

However, the important question remains: can we leverage the power of GPUs for
regular data science jobs (e.g., data wrangling, descriptive statistics) too? The answer
is not trivial and needs some special consideration and knowledge sharing (Figure 11-1).
In this chapter, I will focus on a specialized suite of tools called RAPIDS that helps any
data scientist take advantage of GPU-based hardware for a wide variety of data science
tasks (not necessarily deep learning or advanced ML). We expect that by utilizing the
inherent parallel processing power of GPUs we can enhance the productivity of such

common data science tasks significantly.

What is ImageNet? It is an ongoing research effort to provide researchers
around the world an easily accessible image database. This project is inspired
by a growing sentiment in the image and vision research field: the need for more
data. The project has been instrumental in advancing computer vision and
deep learning research. The data is available for free to researchers for non-
commercial use. The latest deep learning architectures are pitted against each

300

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://spectrum.ieee.org/andrew-ng-data-centric-ai
https://spectrum.ieee.org/andrew-ng-data-centric-ai
http://www.youtube.com/watch?v=06-AZXmwHjo

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

other in an annual competition that centers around this data repository, and the
performance of the algorithms/architectures/techniques are measured based on
how they performed on images from this source.

| have a powerful GPU
workstation, but | just run data
processing and analytics. No
deep learning. Can | use the
power of the GPU?

Figure 11-1. “Can we leverage the power of GPUs for regular data science jobs”?

The RAPIDS Ecosystem

The RAPIDS suite of open-source software libraries and APIs provides the ability to
execute end-to-end data science and analytics pipelines entirely on GPUs. Nvidia
incubated this project and built tools to take advantage of CUDA primitives for low-level
compute optimization. It specifically focuses on exposing GPU parallelism and high-
bandwidth memory speed features through the friendly Python language so popular
with data scientists and analytics professionals.

Common data preparation and wrangling tasks are highly valued in the RAPIDS
ecosystem as they take up a significant amount of time in a typical data science
pipeline. A familiar dataframe-like API has been developed with a lot of optimization
and robustness built in. It has also been customized to integrate with a variety of ML

algorithms for end-to-end pipeline accelerations with incurring serialization costs.
301

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

RAPIDS also includes a significant amount of internal support for multi-node,
multi-GPU deployment and distributed processing. It integrates with other libraries that
make out-of-memory (i.e., dataset sizes larger than the individual computer RAM) data
processing easy and accessible for individual data scientists.

The following subsections describe, in brief, the most prominent libraries in this
ecosystem that data scientists will find quite useful.

What is CUDA? CUDA is a parallel computing platform and programming model
created by NVIDIA. First introduced in 2006, it has grown to become the most
common choice for enabling GPU-accelerated computing with support for multiple
programming languages (e.g., C, C++, Fortran, Python, and MATLAB) and APIs.

A noteworthy point is that CUDA by itself is neither a programming language, nor
an API. It is a platform for building third-party libraries, SDKs, and profiling and
optimization tools. It mainly supplies extensions or primitives to add to an existing
programming language, and these extensions essentially connect the computation
(performed by the high-level language or API) directly to the underlying GPU
hardware.

The CUDA Toolkit (https://developer.nvidia.com/cuda-toolkit)
includes GPU-accelerated libraries, a compiler, development tools, and the CUDA
runtime. To boost performance across multiple application domains from Al to
HPC, developers can harness NVIDIA CUDA-X—a collection of libraries, tools and
technologies built on top of CUDA (www.nvidia.com/en-us/technologies/
cuda-x/).

CuPy

CuPy is a CUDA-powered array library that looks and feels like NumPy, the foundation
of all numerical computing and ML with Python. Under the hood, it uses CUDA-based
low-level libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT, and
NCCL to make full use of the a given GPU architecture with the goal of providing GPU-
accelerated computing with Python.

302

https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.com/en-us/technologies/cuda-x/
http://www.nvidia.com/en-us/technologies/cuda-x/

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

CuPy’s interface is highly similar to that of NumPy and can be used as a simple
drop-in replacement for most use cases. Here is the module-level detailed list of
API compatibility between CuPy and NumPy: https://docs.cupy.dev/en/stable/
reference/comparison.html. Notice that almost all common NumPy methods are
duplicated in CuPy and the names are identical, too. For data science tasks, this
essentially presents you with GPU-powered speed-up without any significant
learning curve.

The speed-up over NumPy can be significant depending on the data type and
use case. In the next section, I will show a hands-on example of a speedup comparison
between CuPy and NumPy for two different array sizes and for various common
numerical operations like slicing, statistical operations like sum and standard
deviation over multi-dimensional array, matrix multiplication and inverse, Fast Fourier
Transformation (FFT), and singular value decomposition (SVD).

CuDF

Built on the Apache Arrow columnar memory format, CuDF is a GPU-accelerated data
analysis library for loading, joining, aggregating, filtering, and manipulating tabular
data in all manners imaginable. It is no surprise that it provides a pandas-like API that
will be familiar to almost all data engineers and data scientists. The idea is that data
scientists should be able to use CuDF to easily accelerate their workflows using powerful
GPUs without delving deeply into the details of CUDA programming. Just like CuPy,
the majority of the methods are just drop-in replacements from an existing pandas
codebase.

Note, however, that currently CuDF is supported only on Linux OS and works with
Python versions 3.7 and later. Other requirements for installing and using CuDF are

e CUDA11.0+
e NVIDIA driver 450.80.02+
o Pascal architecture or better (compute capability >=6.0)

Therefore, you must undergo some environment setup and installation procedures
before CuDF can be used. Here is a resource to quickly get started with this powerful
library: https://docs.rapids.ai/api/cudf/stable/10min.html.

303

https://docs.cupy.dev/en/stable/reference/comparison.html
https://docs.cupy.dev/en/stable/reference/comparison.html
https://docs.rapids.ai/api/cudf/stable/10min.html

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Combined, CuPy and CuDF present a wonderful opportunity to any data scientist,
regardless of whether they are using deep learning or not, to enhance the productivity of
their work using GPU-accelerated computing power.

CuML

CuML is another library within RAPIDS that enables data scientists, analysts, and
researchers to run traditional/classical ML algorithmic tasks with (mostly) tabular
datasets on GPUs without knowing a lot of details of CUDA programming. In most cases,
CuML’s Python API matches that of the popular Python library scikit-learn to make
the transition to GPU hardware fast and painless. Here is the GitHub page for the library
for you to follow and dig deep into: https://github.com/rapidsai/cuml.

Along with CuPy and CuDE in the next section you will also explore some hands-
on examples of CuML functions and methods for common ML tasks and compare their
execution speed and scalability with equivalent scikit-learn algorithms.

Going beyond the scenario of a single GPU on a laptop, CuML also integrates with
Dask, wherever it can, to offer multi-GPU and multi-node-GPU support for an ever-
increasing set of algorithms that take advantage of such distributed processing. Basically,
instead of a single GPU, many modern high-end hardware platforms come equipped
with four or even eight GPUs, sometimes interconnected by a special memory bus and
data interfacing channels that completely bypass the CPU and traditional slow-speed
motherboard communication bus for direct GPU-to-GPU connection.

CuGraph

CuGraph is a collection of GPU-accelerated graph algorithms that processes data found
in GPU DataFrames. The vision of CuGraph is to make graph analysis ubiquitous to the
point that users just think in terms of analysis and not technologies or frameworks.

Data scientists will readily pick up how CuGraph integrates with the pandas-like
API of CuDE. On the other hand, users familiar with NetworkX will quickly recognize
the NetworkX-like API provided in CuGraph, with the goal of allowing existing code to
be ported into RAPIDS with minimal effort. Currently, it supports a wide array of graph
analytics algorithms:

o Centrality

o Community

304

https://github.com/rapidsai/cuml

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

e Link analysis
e Link prediction
o Traversal

Many scientific and business analytics tasks involve the use of extensive graph
algorithms on large datasets. Libraries like CuGraph lend the assurance of higher
productivity to those engineers when they invest in GPU-powered workstations.

Hardware Story

The hardware side of this story cannot be emphasized enough. Driven by the grand
success and wide adoption of AT and ML solutions, with particular emphasis on deep
learning applications, there has been a plethora of investments and developments in
the domain of customized hardware for running such workloads. For example, all major
server and workstation suppliers (e.g., HP, IBM, Lenovo, Super Micro, etc.) that were
solely focused on building computing infrastructure for cloud computing only now
offer a dizzying array of GPU-optimized hardware options. Google’s Tensor Processing
Unit (TPU; https://en.wikipedia.org/wiki/Tensor Processing Unit), for instance,
is an application-specific integrated circuit that is designed from the ground up with
the sole aim of speeding up computations unique to machine learning and deep
learning workloads such as linear algebra, matrix multiplication, special nonlinear
transformation, and supporting multiple floating-point number formats. Nvidia, the
leader in GPU research and development, is pioneering many such groundbreaking
hardware platforms, too. In fact, a whole hardware ecosystem with specialized
storage, shared memory architecture and chipsets, motherboard designs, and data
communication channels and standards are being actively developed to cater to Al
workloads (Figure 11-2).

Granted, the focus of such hardware development has always been specific types of
Al workloads such as large-scale computer vision, powerful chatbots, or industrial-scale
natural language processing. Nonetheless, with the help of frameworks such as RAPIDS,
finally data scientists and analysts (i.e., those who do not necessarily use deep learning
in any of their daily tasks) can rejoice and use these powerful Al-workstations to enhance
their productivity.

305

https://en.wikipedia.org/wiki/Tensor_Processing_Unit

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

—_

"'i-

A
Y
3
1
Com—
S,

r

<

.

L]
@ 5
°

o

I'II ¢

Figure 11-2. Data scientists can rejoice and use Al-optimized hardware for
their tasks

Choice of Environment and Setup

As noted, RAPIDS will work only on the Linux OS and with certain GPUs and above.
Although CuPy works with earlier generation of GPUs, for CuDF and CuML, you must
have a GPU with compute capability 6 or higher. NVIDIA provides a list of GPUs and
their compute capability (https://developer.nvidia.com/cuda-gpustcompute) that
you can check to make sure you have the right kind of GPU for taking advantage of the
RAPIDS framework.

For laptops, if you have anything above GeForce 1050, RAPIDS will work. This, of
course, includes the RTX line of GPUs. For workstations, a M6000 or K-series may not
work but anything above P400 will work. For datacenter GPUs (when you may be renting
a cloud instance, for example), it must be of the Pascal architecture or above, such as P4,
P40, P100, V100, and A100.

306

https://developer.nvidia.com/cuda-gpus#compute

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Once you have the right GPU, you also need to make sure that CUDA 11.2 or above
is installed. After that, a lot of custom setup and environment install needs to happen
for RAPIDS to work properly. Therefore, two common ways to accomplish this are as
follows:

e Use a hosted environment without getting into the details of the
custom setup

e Use a NVIDIA docker image if you're using it on a bare-metal Linux
OS (for example, on an EC2 instance)

For instance, the following examples were run using a free hosted setup on Saturn
Cloud. This service is a fully managed data science cloud service offering GPU-based
infrastructure and a transparent pricing. For the free tier, it has certain limitations on
how many hours of free usage you get in a month. However, for basic learning, the free
usage quota (30 hours of Jupyter Lab sessions in a month) should be enough. You are
encouraged to sign up on their website and follow the examples in this book (and the
associated Jupyter notebooks).

When you log in to the Saturn Cloud platform, you are presented with several
choices for starting a Jupyter notebook. Each choice represents a managed service (e.g., a
RAPIDS environment, TensorFlow, PyTorch, or a FastAPI instance). Figure 11-3 shows a
typical snapshot of all the choices (note that it was taken in April 2022, and the offerings
may change).

307

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Create a Resource New RStudio Server

J7/DASK O PyTorch T | oontioe
TensorFlow +
Dask (Python) PyTorch (Python) Deploy a Dashboard (R) TensorFlow (R) ” Clone Existing
Ve dstribced computieg with " 3 Resource
rw f| OFastAPI aﬂ @ @ T
e < TensorFlow
giilg-.'!; Dashboard Deploy a".AP’l [Pytchon:- ok AP Run Jobs (Python) _R-.r: Jobs (R) Ten;or?lcw Python)

arvw el

Resources [Show All Resource Types ~ | Sort By Recently Created ~
Jugry
tirthajyoti / raplds =seees E= -

Use GPUs for data science and machine learning with this platform by NVIDIA

eated: 4 month: age

Figure 11-3. Saturn Cloud opening page with choices of various managed services

At the bottom of Figure 11-3, you can see a RAPIDS Jupyter server already created
by me. When you click on your version, the following screen (Figure 11-4) shows where
you can start the Jupyter lab. Essentially, Saturn Cloud deploys a docker container
with Jupyter lab, RAPIDS, and other Python libraries preinstalled and properly
configured on a GPU-based hardware/computing node. It is to be noted that they also
pair up a Dask cluster choice with this service so that you can take advantage of multi-
GPU systems if you choose to do so. The free tier limits the type and number of GPUs
that you can take advantage of; however, as mentioned, for basic learning, you don’t
need more than one GPU, and therefore you won'’t launch a Dask cluster.

308

CHAPTER 11

Resources tirthajyoti rapids

Jupyter Server

tirthajyoti / rapids

Use GPUs for data science and machine learning with this platform by NVIDIA
image: satumcloud/satum-rapids2021.11.10

Wooricing Directany: /hammb| oy B g - P oR amE M WX BME L FREIcE
et Variables

SATURN__JUPYTER_SETL®_DASK_MORKSPACE=Erug

Resource Detalls

Jupyter Server
Td-XLarge - & cores - 16 36 Ra® - 1 6PU - 1861 Oisk

cpord
Metrics

Ao Shutol: 1 howr
Spot Instance: No

$5H URL (ot ensbled) (7)

GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

G Edit I B Delete

@ Logs

Dask Cluster G Edit | | § Delete
Morkers : Ta-XLarge - & cores - 16 08 RaM - 1 GPU Sopres
Matrcs

Connect Externally
Numbar of Workers [_workeri): 3

Kumiber of Worker Processes [nprocsk: 1

Kumber of Worker Threads (riheeadsk 4

Schaculer Size: Large - 3 cones - 15 GB RAM

Spot Instance: No

Figure 11-4. Saturn Cloud’s Jupyter server with RAPIDS

Once the Jupyter lab starts up, you can verify that you have a compatible GPU for
RAPIDS. Figure 11-5 shows the command and a typical output. Here, the GPU is a Tesla
T4 (www.nvidia.com/en-us/data-center/tesla-t4/), the CUDA versionis 11.4, and

the NVIDIA driver version is 470.57.02.

Invidia-smi
Last executed at 2e22-@2-15 @@:57:37 in 875as
Tue Feb 15 ©8:57:36 2022

| NVIDIA-SMI 47@.57.02

Driver Version:
|===m e e Hommmmm -

470.57.02 CUDA Version: 11.4 |

-------------- Fomm et

GPU Hame Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
==================== $ ==mmmmgjm========== ====== [
@ Tesla T4 On	20000200:00:1E.0 OFff	2
nJA 38C P 33U/ 7eu	342MiB / 15109MiB	o% Default
I I I N/A		
e e L L L L LR $omeeeemeecee s +		
e +		
Processes:		
6PU G6I (I PID Type Process name GPU Memory		
Ip 1ID Usage		
e [
B T e -

Figure 11-5. A typical output for a Nvidia GPU status command

309

http://www.nvidia.com/en-us/data-center/tesla-t4/

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

CuPy vs. NumPy

In this section, I will show some basic examples of CuPy usage and how it compares
with the ubiquitous NumPy package. As NumPy finds wide and varying use in almost all
data science and ML tasks, it is interesting to note that productivity of all those tasks can
probably be increased significantly by switching to CuPy.

Looks and Works Just Like NumPy

As mentioned, the CuPy API is designed to be drop-in replacement for NumPy code.
Therefore, all the common methods are available for use. Start by importing both
libraries (for comparison) and others:

import numpy as np, cupy as cp
import matplotlib.pyplot as plt
import time

You can define an array just like in NumPy:

al
a2
a3

cp.array([1,2,3])
cp.arange(1,11,2)
cp.random.normal(size=(3,3))

Only the type is different:

type(a3)
>> cupy._core.core.ndarray

You can have all the usual and useful NumPy operations such as broadcasting,
transpose, inverse, and Boolean filtering.

a3.T

a3+l
a3.mean(axis=1)
a3*(a3>0)

The output of the last one is as follows:

>> array([[0.58731747, -O. , -0. 1,
[-0. , -0. , 0.7699453],
[1.80051069, 0.67680871, 1.3091392]])

310

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Much Faster Than NumPy

Although CuPy looks and feels same as NumPy, it is much faster for vectorized
operations when supported by a high-performance GPU. Here is some code to show this
conclusively:

SIZE = 200
%ktimeit -n10 -110
np.random.normal(size=(SIZE,SIZE))@np.random.normal(size=(SIZE,SIZE))

>> 3.67 ms % 258 ps per loop (mean + std. dev. of 10 runs, 10 loops each)

This code measures the average time taken for a NumPy operation of matrix
multiplication with (200 x 200) size.

Now, let’s run the exact same code with a single change of replacing np by cp (i.e.,
using CuPy arrays and methods instead of NumPy):

%ktimeit -n10 -r10
cp.random.normal(size=(SIZE,SIZE))@cp.random.normal(size=(SIZE,SIZE))

>> 127 ps * 40.7 ps per loop (mean * std. dev. of 10 runs, 10 loops each)

Even a simple 200 x 200 matrix multiplication shows a more than 25X speedup (127
us as compared to 3.67 ms). Imagine the extent of the performance improvement for
large data science operations involving much larger numeric datasets.

Data (Array) Size Matters

The performance improvement, demonstrated above, scales up quickly with the size of
the array. Let’s see this using a simple set of code. First, you write a timing measurement
code using NumPy with np.1linalg.solve() method (i.e., solving a set of simultaneous
equations). Recall that this same method is used (under the hood) for solving a simple
multiple linear regression algorithm.

import time, tqdm
size=[100*i for i in range(1,21)]
numpy_time = []
for s in tqdm(size):
a = np.array([np.random.randint(-10,10,s).tolist() for i in range(s)])

311

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

b = np.array([np.random.randint(-100,100,s)]).T
t1 = time.time()

x = np.linalg.solve(a,b)

t2 = time.time()

delta t = (t2-t1)*1000

numpy time.append(delta_t)

You must repeat the same code for CuPy by replacing np with cp, as showed before.
Finally, with a simple plotting code, you can see the comparison clearly (Figure 11-6).
Observe that the performance improvement scales up with the array size and somewhat
nonlinearly too. This means for even larger size arrays, the improvement will scale up
even faster. This kind of improvement, of course, can be achieved up to the point
where the data (array) can be properly fit in the GPU memory. This could be a
limitation for datasets with tens of millions of rows or columns as the GPU memory can
be smaller compared to a system memory (RAM). However, many batch operations or
segmented operations can be designed to work around this limitation and still achieve
significant speedup.

Numpy/CuPy speed comparison for linear system solve

100

® NumPy time
—— CuPy time

Time (milliseconds)

250 500 750 1000 1250 1500 1750 2000
Matrix size for linear system of equations

Figure 11-6. CuPy and NumPy comparison with varying array sizes for a linear
system solve

312

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Next, let’s tackle the problem of singular value decomposition (SVD) using a
randomly generated square matrix (drawn from a normal distribution) of varying sizes.
Iwon’t repeat the code block here but just show the result for brevity (Figure 11-7). Note
that the CuPy algorithm does not show markedly superior performance to that of the
NumPy algorithm in this problem class. Perhaps this is something to be taken up by the
CuPy developers to improve upon.

5000 —@&— Numpy solve time

—a&— CuPy solve time

4000

=3
(=]
(=]

2000

1000

Time taken to solve the problem (msec)

250 500 750 1000 1250 1500 1750 2000
Dimension of the matrix

Figure 11-7. CuPy and NumPy comparison with varying matrix sizes for SVD
Next, let’s go back to the basics and consider the fundamental problem of matrix
inversion (used in almost all machine learning algorithms). The result again shows a

strongly favorable performance gain by the CuPy algorithm over that from the NumPy
package (Figure 11-8).

313

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

—&— Numpy solve time

-J
o
o

—ik— CuPy solve time

w o
o [=]
(=] (=]

g

Time taken to solve the problem (msec)

250 500 750 1000 1250 1500 1750 2000
Dimension of the matrix

Figure 11-8. CuPy and NumPy comparison for matrix multiplication tasks

CuDF vs. pandas

Let’s use the same Saturn Cloud instance and spin up a new Jupyter notebook for doing
this exercise. The idea is to show some basic operations with CuDF and to demonstrate a
simple computing speed comparison with pandas.

Data Reading from an URL

Let’s read a dataset from an URL hosted on my personal GitHub:

import numpy as np, cupy as cp, cudf
import pandas as pd
<more imports...>

url = "https://raw.githubusercontent.com/tirthajyoti/Machine-Learning-with-
Python/master/Datasets/College Data"

content = requests.get(url).content.decode('utf-8")

cdf = cudf.read csv(StringIO(content))

314

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

So you read a CSV file over the Internet and load it into a CuDF DataFrame. You can

use the familiar .head() method to examine the first few entries:
cdf.head()

This produces the output shown in Figure 11-9.

Unnamed: 0 Private Apps Accept Enroll TopiOperc Top2Sperc Flndergrad FUndergrad Outstate Room.Board Books Personal

0 Abilene Christian University Ye: 1560 1232 il 23 52 2835 537 7440 3300 450 2200
1 Adelphi University Yes 2186 1924 512 16 29 2683 1227 12280 8450 750 1500
2 Adrian College Yes 1428 1087 336 22 50 1036 99 11250 3750 400 1165
3 Agnes Scott College Yes 417 349 137 60 -] 510 63 12960 3450 430 875
4 Alazka Pacific University Yes 193 146 55 16 42 249 £69 7560 4120 800 1500

PhD Terminal S.F.Ratio

70
29
53
52
76

78
30
66
97
72

Figure 11-9. CuDF DataFrame first few entries after loading the data from a URL

Indexing, Filtering, and Grouping

The indexing, column naming, and filtering works just like the pandas API. First, rename

the Unnamed: 0 column to something more meaningful:
cdf.rename(columns={"Unnamed: 0": "College"}, inplace=True)

Then you can see a selective portion of the data:
cdf[['F.Undergrad', 'P.Undergrad']][2:4]

This produces the output in Figure 11-10.

cdf[['F.Undergrad', 'P.Undergrad']][2:4]

Last executed at 2022-02-19 14:19:11 in 14ms
F.Undergrad P.Undergrad
2 1036 99

3 510 63

Figure 11-10. CuDF DataFrame indexing selected columns and rows

315

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Now try a somewhat complicated filtering operation to extract and list colleges with
a decent student-faculty ratio (under 10) but with low tuition expenditure (under $8000)
as well:

filter 1
filter 2

cdf['S.F.Ratio"']< 10
cdf["Expend'] < 8000

cdf[filter 1 & filter 2][['College','S.F.Ratio', 'Expend']]

The results are shown in Figure 11-11.

filter_1 = cdf['S.F.Ratio']< 16
filter_2 = cdf['Expend'] < 8688

cdf[filter_1 & filter_2][['College','S.F.Ratio', 'Expend']]
Last executed at 2022-02-19 14:5@:46 in 2@ms

College S.F.Ratio Expend

73 Buena Vista College 88 6333
109 Chestnut Hill College 8.3 7729
135 College of St. Joseph 9.5 6936
241 Gwynedd Mercy College 7.8 7483
341 Marian College of Fond du Lac 84 5352
580 Tennessee Wesleyan College 89 6286
608 University of Charleston 25 7683

Figure 11-11. Multiple filtering operation on the CuDF DataFrame

316

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

A groupby operation, followed by an aggregation, works just like pandas too
(Figure 11-12).

cdf.groupby('Private').mean()[['Accept’, 'Grad.Rate']]

Last executed at 2022-02-19 14:54:10 in 29ms
Accept Grad.Rate

Private

No 3919287736 56.042453

Yes 1305.702655 68.998230

Figure 11-12. Groupby and averaging operations on the CuDF DataFrame

NumPy Array Conversion

For many purposes, especially for plotting and visualization, you may need to convert
the CuDF data fields to standard NumPy arrays. In these cases, just using the standard
.values attribute will yield a CuPy array only. To get to the NumPy array, you need to use
the .get() method on top of it.

Here is what you get with .values only:

phds=cdf['PhD"'].values

type(phds)
>> cupy. core.core.ndarray

Using the .get method, you get the NumPy array and can plot a histogram of the
number of PhDs (Figure 11-13).

phds=cdf['PhD"].values.get()
plt.title('Histogram of PhD',fontsize=15)
plt.hist(phds,edgecolor="k")

plt.show()

317

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Histogram of PhDs

175 1

150 ~1

125 A1

100

25 1

20 40 60 80 100

Figure 11-13. Histogram of PhDs from the CuDF DataFrame after NumPy array
conversion

Simple Benchmarking of Speed

You can show the improvement in the computation performance (by using the T4 GPU,
of course) with CuDF with a very simple benchmarking exercise.

Construct a NumPy array with 1 million rows and 100 columns with random
numbers (drawing from a Gaussian distribution), and convert that to a pandas
DataFrame first and a CuDF DataFrame next:

data = np.random.normal(size=(1000 000,100))
df = pd.DataFrame(data)
cdf = cudf.DataFrame.from pandas(df)

Here, the . from_pandas method converts an existing pandas DataFrame to a CuDF
DataFrame quickly and painlessly.

A simple mean calculation on the first column gives the following output for the
pandas DataFrame:

%timeit -n10 -r10 df[0].mean()
>> 15 ms * 1.16 ms per loop (mean * std. dev. of 10 runs, 10 loops each)

The same exercise the CuDF DataFrame yields a much faster result:

%timeit -n10 -r10 cdf[0].mean()
>> 504 pus * 52.7 ps per loop (mean + std. dev. of 10 runs, 10 loops each)

318

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Extending this exercise further, you run a loop by selecting an increasing number
of columns each time and see how the computation time scales with the number of
columns and how the benchmark comparison between pandas and CuDF looks:

for i in range(2,11):

ti=time.time()

df[[j for j in range(i)]].mean()

t2=time.time()

del t = round(1000*(t2-t1),3)

print(f"Calculation with {i} columns took {del t} ms")
>>
Calculation with 2 columns took 3.333 ms
835 ms
878 ms
Calculation with 5 columns took 3.269 ms

2 3.
3 columns took 2.
4 2.
5 3.
Calculation with 6 columns took 3.589 ms
7 4.
8 4.
9 4.

columns took

Calculation with
Calculation with

Calculation with 7 columns took 4.11 ms
606 ms
Calculation with 9 columns took 4.99 ms
Calculation with 10 columns took 5.478 ms

Calculation with 8 columns took

For the CuDF DataFrame, the calculation times are much shorter and it scales

much slower:

Calculation with 2 columns took 3.333 ms
835 ms
878 ms
Calculation with 5 columns took 3.269 ms

2 3.
3 columns took 2.
4 2.
5 3.
Calculation with 6 columns took 3.589 ms
7 4.
8 4.
9 4.

columns took

Calculation with
Calculation with

Calculation with 7 columns took 4.11 ms
606 ms
Calculation with 9 columns took 4.99 ms
Calculation with 10 columns took 5.478 ms

Calculation with 8 columns took

319

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Dask Integration, User-Defined Functions,
and Other Features

CuDF plays nicely with a Dask cluster where the power of multiple GPUs can be
utilized for massively parallelized data processing. It also natively supports complex
user-defined functions (UDFs, as they are called) to be applied over selected axes or
columns. These functions work block by block (pertaining to the internal representation
of the data in the GPU memory) and exhibit a much faster computation speed than what
would have been possible with a CPU-based pandas workflow. For the sake of brevity, I
won't cover all these features, but you are encouraged to check out the excellent tutorials
provided on the RAPIDS portal at https://docs.rapids.ai/api/cudf/stable/user_
guide/10min.html.

CuML vs. scikit-learn

After covering the basic usage of CuPy and CuDF and showing comparative benchmarks
with NumPy and pandas, it makes sense to move up to the next stage of a data science
pipeline and discuss about the GPU-powered equivalent of scikit-learn: CuML.

As most instances of conventional usage of GPU-powered hardware have been
squarely in the machine learning domain, it is important to clarify what this comparative
discussion is about. Here, we are focusing solely on the non-deep-learning aspects
of the machine learning world (i.e., instances where a data scientist would apply out-
of-the-box algorithms borrowing from the scikit-learn API). The point is that, in such
circumstances, if the data scientist has access to a GPU-based system, they can improve
the computing performance significantly without spending any time or effort on
tweaking the code or learning about GPU programming. These are the situations where
TensorFlow is not required, yet the power of GPU must be fully utilized.

Classification with Random Forest

In this exercise, you will use a scikit-learn Random Forest classifier to train with a
synthetic dataset and compare the performance and speed with a similar classifier from
the CuML APIL. First, you create some synthetic data with 10,000 samples and 20 features:

NUM_ROWS = 10000
NUM_FEATURES = 20

320

https://docs.rapids.ai/api/cudf/stable/user_guide/10min.html
https://docs.rapids.ai/api/cudf/stable/user_guide/10min.html

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

from sklearn.datasets import make classification

X,y = make classification(n_samples=NUM_ROWS,
n_classes=2,
n_features=NUM_FEATURES,
n_informative=NUM_FEATURES,
n_redundant=0,
n_repeated=0)

You have imported the necessary functions and classes from the respective APIs.
However, for such a comparative study, you need to be careful about the naming
as the class and function names are largely identical between scikit-learn and
CuML. Therefore, you can create your own versions while importing:

from sklearn.model selection import train test split as sk tts
from cuml.model selection import train_test split as cuml tts
from sklearn.ensemble import RandomForestClassifier as SKRF
from cuml.ensemble import RandomForestClassifier as CURF

Note that you are importing not only the classifier but also the train/test splitting
utility from CuML. As a general practice, you should use every bit of the API that is
offered by CuML when you are utilizing the power of a GPU.

For proper comparison and data protection, you build two separate functions, one with a

scikit-learn pipeline and another with the CuML API. Here is the scikit-learn version:

def sklearn pipeline(X,y,n_estimators=100):

Executes Sklearn-based pipeline

t1 =time.time()

X _train, X test, y train, y test = sk tts(X,y, test size=0.3)
model = SKRF(n_estimators=n_estimators)

model.fit(X train,y train)

t2 =time.time()

del t = round(1000*(t2-t1),3)

score = round(model.score(X test,y test),3)

return (score, del t)

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

The code below is the CuML version. Note that to be compatible with certain GPU
calculations, the data type is changed to np.float32 (i.e., 32-bit floating point precision
for the CuML). Also, CuML API works with CuPy arrays only, and that’s where the
NumPy-to-CuPy conversion is required. Nonetheless, you measure the entire time taken
by this pipeline, not just the training/fitting part. The function returns a tuple for the
classification score (on the test set) and the time taken to execute.

def cuml pipeline(X,y,n estimators=100):

Executes CuML-based pipeline

t1 =time.time()

X = cupy.array(X,dtype=np.float32)

y = cupy.array(y,dtype=np.float32)

X _train, X test, y train, y test = cuml tts(X,y, test size=0.3)
model = CURF(n_estimators=n_estimators)

model.fit(X train,y train)

t2 =time.time()

del t = round(1000*(t2-t1),3)

score = round(model.score(X test,y test),3)

return (score, del t)

Then you just run these pipelines one after another. For the scikit-learn case, here
are the results:

score_sk, t sk = sklearn_pipeline(X,y)
print("Sklearn pipeline score: ",score sk)
print("Sklearn pipeline time (ms): ",t sk)
>>

Sklearn pipeline score: 0.937

Sklearn pipeline time (ms): 2132.17

322

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY
For the CuML pipeline, here are the results:

score cuml, t cuml = cuml pipeline(X,y)
print("CuML pipeline score: ",score_cuml)
print("CuML pipeline time (ms): ",t cuml)
>>

CuML pipeline score: 0.936

CuML pipeline time (ms): 100.471

You can observe a massive speed-up for the CuML pipeline with the identical data
input. The accuracy scores of both pipelines are almost identical, with the CuML score
differing at the third decimal place, perhaps due to the 32-bit floating point precision
conversion. But the speed improvement compensates for that miniscule accuracy
change many times over.

Note that while running the code (or associated Jupyter notebook), the first time
you may get a result that may show the scikit-learn pipeline is faster than the
CuML pipeline. This is related to how the GPU memory is prefetched and cached
with code and data, and it only happens for the very first run. This should be
ignored. If you run the code again, you should get the same trend as shown in the
results here.

Extending this further, let’s investigate whether the model complexity factors into
this relative improvement over scikit-learn when you use CuML. Fit the same data to
the Random Forest models of increasing complexity (i.e., increasing number of root
estimators/trees). The result shown in Figure 11-14 clearly demonstrates the fact that
CuML and its parallelized (GPU-powered) operation helps ensemble classifiers like
Random Forest in a significant manner as the model complexity grows. While the
computing time goes up for both classifiers, the pace of growth is miniscule for CuML as
compared to that of scikit-learn. There are some minor differences in the accuracy scores
but the payoff in terms of the computation efficiency is much more significant.

323

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Accuracy vs. number of trees Execution time vs. number of trees
0.95 4- —— Scikit-learn Scikit-learn
— CuML 20001 — cuML
0.94 - 5
c

5, 093 S 1500
8 0.92 &
3 =
8 £ 1000 -

0.91 A E
¢ £

0.90 A E w6

0.89 -

0.88 L, , : : , o] . . : !

20 40 60 80 100 20 40 60 80 100
Number of trees/estimators Number of trees/estimators

Figure 11-14. Varying Random Forest classfier complexities with scikit-learn
and CuML

K-Means Clustering

Next, consider an unsupervised learning problem of clustering using the all-too-familiar
k-means algorithm. Here, you are again comparing a CuML function with an equivalent
estimator from the Scikit-learn package. Just for reference, Figure 11-15 shows the API
comparison between these two estimators. They look virtually identical, except the
CuML uses something called “scalable-k-means++” as the initialization parameter. The
CuML k-means estimator also accepts amax_samples per batch argument that allows
controlled batch training.

sklearn.cluster.KMeans

class sklearn.cluster. KMeans(n_clusters=8, * init="k-means++', n_init= 10, max_iter=300, tol=0.0001,
precompute_distances="deprecated’, verbose=0, random_state=None, copy_x=True, n_jobs="deprecated’, algorithm="auto) * [source]

CuML K-means

K-Means Clustering %

class cuml.KMeans(®, handie=None, n_ciusters=8, max_iter=300, (o/=0.0001, verbose=False, random_state=1, init="scalable-k-means++"
n_fnit=1, oversampling_factor=2.0, max_samples_per_balch=32768, oulput_type=None)

Figure 11-15. API comparison between scikit-learn and CuML K-means
estimators

324

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Figure 11-16 shows the result for a dataset with 10 features/dimensions.

K-means comparison for 10 features (data dimension)

—@®— scikit-learn training time

500 o .
—&— CuML training time

400

300

200

Time taken to train the model (msec)

WWW“*—A—/H

2500 5000 7500 10000 12500 15000 17500 20000
Number of data points

Figure 11-16. K-means clustering speed comparison for 10 features

Figure 11-17 shows the result of another experiment with a 100-feature dataset.
Clearly, both the sample size (number of rows) and dimensionality (number of columns)
matter in how the GPU-based acceleration performed so well.

K-means comparison for 100 features (data dimension)

17504 —®— scikit-learn training time |
—&— CuML training time

—
w
o
(=]

—
"]
w
(=]

[
(=1
o
(=]

750

=
1=}

Time taken to train the model (msec)

250

o) AAA Ay Ay A A A A A

2500 5000 7500 10000 12500 15000 17500 20000
Number of data points

Figure 11-17. K-means clustering speed comparison for 100 features

325

CHAPTER 11 GPU-BASED DATA SCIENCE FOR HIGH PRODUCTIVITY

Further discussion and results on a linear regression problem can be found in this
article by me: https://medium.com/dataseries/gpu-powered-data-science-not-
deep-learning-with-rapids-29f9ed8d51f3. You are encouraged to check it out.

Summary

This chapter focused on the usage and application of GPU-based hardware systems for
data science tasks that do not necessarily involve deep learning models or inferencing,
but still can benefit significantly from hardware-centric optimizations.

Iintroduced you to the fantastic ecosystem of RAPIDS, a GPU-centered data science
framework with separate libraries for numerical computing, tabular data analytics,
classical machine learning, graph analysis, and even signal processing. This framework
is powered by CUDA-accelerated libraries and takes full advantage of NVIDIA GPUs
(above a certain generation of GPU class and compute capability).

However, the best feature is that all of these modules try to mimic their non-GPU,
pure-Python counterparts like NumPy, pandas, and scikit-learn. Therefore, for data
scientists, the learning curve is short and (almost) drop-in code replacements can work
most of the time. Following this principle, next you saw multiple hands-on examples
of the basic usage of these libraries using a Tesla T4 GPU powered hosted runtime (on
the cloud). I also showed benchmark comparisons of computation performance of
equivalent operations and ML algorithms to clearly demonstrate the advantage of GPU-
accelerated data science.

326

https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3
https://medium.com/dataseries/gpu-powered-data-science-not-deep-learning-with-rapids-29f9ed8d51f3

CHAPTER 12

Other Useful Skills
to Master

As you progress towards the end of the grand journey of productive and efficient data
science that you took in this book, I would like to dedicate one complete chapter to

the set of various disparate useful skills that a data scientist should strive to master to
enhance their productivity. Unlike the previous chapters, where you examined similarly
grouped skills (e.g., memory profilers or distributed computing tools), the tools and skills
you'll explore in this chapter may look somewhat disjointed from each other. It is true
that they do not fall under one unifying class but taken as a whole, they truly aid any data
scientist in performing their tasks with higher productivity.

I start with a discussion on the importance of learning basic web technologies such
as HTML, CSS, and JavaScript. Building on the same concepts, next I discuss the utility
of creating a simple web app for a data science project. I show a hands-on example with
two Python libraries, Flask and PyWeblIO. Thereafter, I talk about cloud technologies
such as Amazon Web Service and show (with lined resources) the simple process of
bringing the power of the cloud to a local data science workflow. Finally, I switch gears
and discuss how, in many cases, using a so-called “low-code” framework can be useful
and productive for a data science task. I demonstrate PyCaret, a popular low-code
Python library in this regard.

As you can observe from this description, unlike previous chapters, this chapter
is not focused on one (or a small number of) Python tools/libraries. While I may be
discussing a few useful Python libraries in some sections, elsewhere I may be discussing
general technology features without any reference to a specific Python tool. In those
sections, I may have general suggestions for what topics to learn and how to go
about that.

327
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_12

https://doi.org/10.1007/978-1-4842-8121-5_12

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Understanding the Basics of Web Technologies

You may be wondering why a data scientist needs to understand the nuts and bolts of
web apps or general web technologies. The answer lies in the simple fact that a data
scientist’s responsibility should not just be limited to statistical analysis or building
ML models. Above all, the job of a data scientist is to solve a business or scientific
problem using data in a scientific manner. Communicating the result and presenting
the modeling and analysis to the external world in an accessible (or even interactive)
manner is a necessary goal of any reasonable data science job.

A Consumer-Facing Layer

In other words, while analyzing datasets, finding hidden patterns, and building
predictive models are rightfully considered the primary skills for a data scientist, it is
equally important to communicate the key insights gleaned from those analyses and/

or to build some sort of interactive layers on top of those models that works as the touch
point for the external consumers. These aspects can be especially important if a data
scientist is thinking about building a consumer-facing product or even starting their own
business powered by data science methods.

To build a functioning consumer-facing interactive layer on top of a data science
core, creating a web app is an obvious choice. In the early days of personal computing
(until around the turn of the 21% century), building a standalone desktop app could
have been sufficient. The technology and tools for such an app are quite different from
the tools used in building a web app. However, in today’s world, a web app is expected
for any sort of computing or information technology product and data science is no
exception in this regard. Therefore, it makes sense for a data scientist to understand the
basics of building such an app. All the usual data science tools and technologies are still
fully used, only to find a presentable outlet or user-interaction layer through a web app,
as shown in Figure 12-1.

328

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

e
y S

Presentation of data
science result

Giving the consumer
a chance to interact/

, experiment
Standard data science tasks. Building interactive/
Essential but not full-stack. consumer facing layer
LN J

® A

Y
A complete web app with back-end data
science and front-end web technologies

Figure 12-1. A well-rounded data science project with a consumer-facing layer of
a web application at the front end

All Useful Data Science Is Delivered Through Web Apps

Observing from the side of consumer, we realize that almost all useful data science

is delivered to us through some web app or another. If we watch a suggested movie

on Netflix or buy a product on Amazon, there is a recommendation engine and a
sophisticated ML algorithm powdered by petabytes of data about ourselves and our
buying/watching habits and choices behind that. But ultimately, the cumulative result
of all that sophisticated data science work is presented through a simple web interface
showing a movie or product link for us to click and enjoy.

Now, it is quite likely that in any reasonably sized organization, the web app
developer is a person (or a team) who is separate from the data science team. However, it
is extremely beneficial for the data scientists to know the details (to a reasonable degree)
about the full technology stack that starts with the raw data (with their team) and ends
with a nice, shiny web app developed by other software engineers using a different set of
technologies. This kind of knowledge facilitates conversations and brainstorming for
solving existing problems (both on the data side and the web app side) and promotes
innovative ideas.

329

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

There are many dimensions to this kind of conversation, which facilitates problem
solving and product innovation. Some typical examples are shown below. Let’s assume
a typical scenario of a data science pipeline running at the back end (along with some
database integration) and a web app serving the results of that pipeline to users who may
be logging on to a portal and even paying to use some of the services.

Is the web app easy to scale with the existing data science/
processing pipeline? What are the challenges and how can the
data science team help?

What portion of visualization should be done on the data science
(for example, using Python frameworks) back end vs. front-end
JavaScript rendering? What JavaScript library works better with
Python data objects? What are the caveats to watch for?

Where are the exact touch points between the data science and
the deployment layers? What about the interactive user inputs and
their impact on the data science pipeline?

How should the data science tasks be organized and managed
to help the web app? How about containerization of various
services? Will that help the app in terms of service quality and
latency?

What should be the strategies around data storage and databases
that play equally well with the data science back end and web app

front end?

What (if any) other back-end services (e.g., user authorization,
financial transactions) must play well with the data science
service? What are the dependencies?

Clearly, to have meaningful impact on the overall business operations, the data
science team must have a good grasp of the full stack of tools and technologies used
(HTML, CSS, JavaScript, PHP, Ruby on Rails, Docker, Kubernetes, to name a few
common ones). Other back-end services that operate very close to the data science
services (using Python) and that may even consume the output of the data science
pipeline somehow (before it is sent to the front end) may be written in languages like Go
or Rust.

330

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

The point here is that a data scientist need not become an expert in all these tools
and technologies. But they must have the curiosity to know more about them and the
inclination to see the complete technology stack as a holistic data-oriented enabler.
Python-based data science is a critically important piece of this enterprise, but it is
the whole stack that delivers the final value to the customer and brings revenue to the
organization.

What Are Some Pathways to Learn?

Web apps (and full web-based services) development, and the associated tools and
technologies, perhaps constitute the largest domain of knowledge in the universe of
software engineering and information technology. There are dizzying number of choices
and varieties, standards and protocols, languages and frameworks, and practices both
good and bad. It is neither within the scope of this book nor within the expertise of the
author to try to teach you about these technologies. However, I feel that some typical
example-based suggestions can encourage you explore these areas along with your data
science journey. They may include but are not limited to the following examples:

Learning to build and deploy a simple web application based on
a data analysis project, complete with exploratory visualizations
and a simple predictive model

Learning deeply about a Python-based web microframeworks
such as Flask or FastAPI and how to serve a machine learning
model using them

Learning a front-end framework that is meant for visual analytics
such as D3.js. Pursuing this kind of knowledge gives you a solid
grasp of fundamental JavaScript programming while keeping
you motivated by showing the power of visual data analysis

on the Web

Learning markdown language and acquiring basic CSS skills
with the goal of creating attractive-looking Readme documents for
GitHub repositories and open-source data science projects and
packages that you have developed

Learning about and implementing database integration with
Python data science services with a live web application in mind

331

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Learning about container technologies and how they enrich
modern web applications and how they enable organizations
to move away from the older-generation monolithic software
building practice

Itis clear from these suggestions that they are specifically meant for data scientists
who hail from a non-software or non-web-development background. There are,
in fact, many web developers who are extremely enthusiastic about data science and
gradually transitioning into that kind of role. They, of course, are already deeply familiar
with these tools. It is the other section of data science practitioners, coming from diverse
backgrounds of physics, economics, statistics, and social sciences, that do a great service
to themselves when they add web-related technologies to their repertoire. Having such
well-rounded knowledge and a holistic view of the application will help them prosper in
their jobs and prepare for newer challenges too.

Building Simple Web Apps for Data Science

In this section, I demonstrate how to build a simple web app backed by a few data
science tasks and services. First, I will showcase a ML model prediction example using
one of the most popular Python web frameworks, Flask. This will require you to write a
Python script and an HTML script that will be rendered on the web page. In the parlance
of web app development, Python is the back end (that performs the data science tasks
such as machine learning) whereas the HTML is the front-end technology for this app.

Next, [will showcase another Python library that abstracts away the front-end
programming part even more and lets data scientists focus on the data science part
while allowing them to build a useful web app with a minimal learning curve.

Hands-0n Example with Flask

Flask is a powerful yet lightweight web framework for Python that can be used to build
fast-response web apps. It is particularly popular with the data science community as it
presents a reasonably easy learning curve, while providing a lot of flexibility for building
useful web apps for presenting their data science work (models or analysis). It effectively
takes care of a lot of the environment and project setup involved in a web application.
Consequently, the developer, a data scientist in this case, can focus on the real data
science code and methods while Flask takes care of HTTP, routing, assets, and so on.

332

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

There are a lot of wonderful learning resources about Flask on the Internet that you
are encouraged to find if you are interested in learning about this library. I will not get
into those details here. Instead, I will present the code and the results directly for a small
web app featuring predictions from an ML model.

There are two main files/scripts in a folder: a Python script (with Flask code) and
a HTML file that is used as the front end for the app. Both files are supplied with the
book. The Python script loads a pretrained ML model that is trained on the famous
adult income dataset (https://archive.ics.uci.edu/ml/datasets/adult) for a
classification task using a simple logistic regression model.

I'will not go into the details of the HTML file as that is not the focus of this book.
Instead, I will just show the output of the HTML, which is the page it produces
(Figures 12-2 through 12-4). You can see textboxes that accept numerical input and
drop-down boxes with category options. The ML model is trained to work with both
input types. However, the Flask-based script must carefully convert and encode the input
received from the HTML page for seamless processing with the ML model.

Income range predictor with machine learning

Age: [age |

Number of years of education: | education-num

Marital status: | Never-married v|

Race: IWhite v]

| Predict income range |

Figure 12-2. Income range prediction model app page

333

https://archive.ics.uci.edu/ml/datasets/adult

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Income range predictor with machine learning

Agc:|age |

Number of years of education: | education-num |

Marital status: | Never-married
Never-married
Married-civ-spouse
Divorced

[@ Married-spouse-absent
Separated

Married-AF-spouse
Widowed

Race: | White

Figure 12-3. Marital status dropdown choices shown on the app

Income range predictor with machine learning

Age: | age]

Number of years of education: | education-num

Marital status: | Never-married v|

Race: | White v

Predi Black
Asian-Pac-Islander
Amer-Indian-Eskimo |
Other

Figure 12-4. Race dropdown choices shown on the app

Next, here’s the Flask app code piece by piece:

from flask import Flask, render template, request
import pickle
import numpy as np

app = Flask(__name)

334

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Load model and scaler objects (from pickle dumps)
model = pickle.load(open(‘income model.pkl’,’rb’))
scaler = pickle.load(open(‘income model scaler.pkl’,’rb’))

Here, you create the app object as a Flask class and load two objects from pickled
dumps: the pretrained ML model called model and a scikit-learn scaling object called
scaler. This scaler is an instance of the MinMaxScaler class used to scale the input data
while training the model. For proper predictions, this needs to be saved and loaded
into the app. The training of the model was done separately and is shown in a Jupyter
notebook that is also supplied with this book

The next piece of code just creates two routes (or endpoints) with the @app.route
decorator. The noteworthy point here is the render_template function used in the home
function definition where you pass in the name of the HTML file. This file must be stored
under a folder called templates inside the same directory where the Flask app script is
located. A typical arrangement of files/resources is shown in Figure 12-5.

The prediction route decorates the main prediction function predict, which is not
shown in this snippet. In this route, you define the methods argument that basically lists
the URL methods that are allowed for this route: GET and POST. These are operations that
can be performed on this route by the browser (on the client side). These methods are
basically the fundamental data exchange methods between the client (front end) and the
server (back end) sides for any web application.

Home page
@app.route("/")
def home():

return render template('mli.html')
@app.route("/predict”, methods=['GET','POST'])
Prediction function
def predict():

335

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

' Static files)

.

%

4 app.py \
ML models ‘
CSS stylesheets

* Flask classes and
Images — resources

Other resources) * Route definitions

* Input data handling

.

+ Prediction
Templates ‘ « Model persistence

* Presentation logic

HTML for home
HTML for prediction — _ Y,

Figure 12-5. Typical Flask app files and resources arrangement

Next, here’s the prediction function in detail:

def predict():

336

if request.method == 'POST':

Access the data from form
age = int(request.form["age"])
education num = int(request.form["education-num"])
marital status = request.form["maritalstatus"”]
race = request.form["Race"]
Convert marital status and race to numbers
marital status = marital encoder(marital status)
race = race_encoder(race)
Arrange input features in an array
X = np.array([age, education_num,
marital status, race])
X = scaler.transform(X.reshape(1,-1))
Prediction
prediction = model.predict(X)
Output formatting

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

output_fn = lambda x: 'below $50k' if x==0 else 'above $50k'
output = output_fn(int(prediction))

return render template("mli.html",
prediction range='Your predicted annual
income is {}'.format(output))

Here, you are receiving the data payload from the HTML form with the POST
method and parsing it for extracting the individual input features such as variables
like age, education_num, marital status, and race. A couple of these variables need
to be converted/encoded into numerical features using helper functions (not shown in
this code) as they are received in the payload as text strings from the HTML form. In fact,
age and education_num are also read as text and converted to integer types using the int
type conversion function.

Thereafter, you prepare the input feature vector, use the scaling transformer, and
pass it on to the model object for prediction. The output prediction is also converted into
a string object using a lambda function and that is what is printed as the final output.
Also noteworthy is the use of the render_template function in the return statement.
You basically return a formatted string that contains the output from the model and
places it in the HTML element/tag with an id of prediction_range.

The placement of this prediction_range element in the HTML code is at the
botttom of the page below the Submit button (that has an identifier of “Predict income
range”). It has a H2 (header level 2) tag as well to make it prominent on the page.

<button type="submit" class="btn btn-primary btn-block btn-large">Predict
income range</button>

</form>

<h2>

{{ prediction_range }}

The last part of the app code is for starting the web app using the app.run() method:

if _name_ == " main_":

app.run(debug=True)

337

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

You start this app by simply running the Python app on command line:

python app.py

This will start a web server and expose a particular port. You can simply go to the
localhost:5000 on the local browser and see the web app (i.e., the homepage rendered
by the HTML file).

When you first load the web app, this won’t be visible as it is coded as a Jinja
template variable (with “{{ ... }}”).Jinja is a helper Python library for Flask that
takes care of all the HTML/CSS rendering for Flask scripts with some predetermined
encoding of variables and loop statements. Here, the {{ ... }} essentially holds a
Python variable that comes from the Flask app script (through the return statement of
the predict function).

Here is a recap of the whole process sequence. After a user clicks on the button
Predict income range (shown in Figure 12-2), the input will be submitted through the
HTML form (with textboxes and drop-down menu selections), the ML prediction will
happen at the app.py level, and the result will be returned back to be rendered at the
bottom of the page through this Jinja placeholder (Figure 12-6). Note the large font for
the result string as it has the HTML H2 tag assoociated with it.

Income range predictor with machine learning

Age: | age |

Number of years of education: | education-num

Marital status: [Never-married v|

Race: [White v

[Predict income range]

Your predicted annual income is above $50k

Figure 12-6. Rendering the final result for the Flask ML prediction app

338

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Although this example used a very simple data flow and a small ML model, it
showcased all the essential components of a Flask-based Python project that are
needed to build a powerful web application. For example, the data submission can be
manual user input or reading from an online resource or a back-end database; the ML
algorithm could be a simple logistic regression or a complex deep learning; there could
be a large data wrangling and preprocessing pipeline before the features are extracted
from the input layer; and the output could be a simple text rendering or a JavaScript-
based fancy visualization. Whatever components the web app might feature, the core
connection between them will follow the glue that is Flask and its resources.

Hands-0n Example with PyWeblO

PyWeblO is another helper library for building quick web apps without the need to know
anything about HTML/CSS/JavaScript. PyWeblO provides a diverse set of imperative
functions to obtain user input and output content on the browser, essentially turning the
browser into a rich text terminal. Using PyWeblO, data scientists can build simple web
applications just by writing Python scripts and inserting web-based GUI elements inside
those scripts as they are required. Additionally, it supports file handling and image/plot
generation natively to make the data scientists’ life easier.

The full code for the app is supplied along with this book. Here, I just show the main
function to highlight a few features (that are also different than what you saw in the Flask
example):

def app():

Main app

put_markdown("""# A utility for analyzing a CSV file
[Dr. Tirthajyoti Sarkar](https://www.linkedin.com/in/tirthajyoti-
sarkar-2127aa7/)
You can upload a data file (CSV) and,
- display histograms of the data coulmns
- download the summary statistics as a file.

")

339

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

data = input_group("Input data",[file upload(label='Upload your CSV
file', accept=".csv',name="file"),
radio('Display data?',['Yes','No'], name='display data',value='No'),
radio('Display plots?',['Yes','No'], name='display plot',value='No'),
D
file = data['file']
display data = data['display data']

display plot = data['display plot']

content = file['content'].decode('utf-8").splitlines()
df = content to pandas(content)

if display data=='Yes':
show_data(df)

if display plot=='Yes':
show plots(df)

show stats(df)

Note the use of the function put_markdown() that helps display simple markdown
content on the web app. This largely eliminates the need of coding a lot of HTML/CSS
content as templates or static files, as in the Flask example. Further, the input_group
object and other elements like radio create corresponding radio button elements on
the web app page, again eliminating the need to code them using HTML. Basically,
PyWebIO does not require a data scientist to do anything else other than work on a
single Python script, yet enables them to create a nice-looking web app.

I named this script csv-analysis.py as it accepts a CSV file (through a file uploading
function) from the user, internally creates a pandas DataFrame representation, and
shows some basic plots of the numeric variables. The app function, shown above, calls
other helper functions like show_data() and show_stats() that accept the pandas
DataFrame and display the raw data or descriptive statistics on the web page.

The last bit of code of the script looks quite similar to what you saw with the Flask
example:

if name_ ==" main_"':
start_server(app,port=9999,debug=True)

340

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

It basically starts a web server and exposes it through the port 9999. When you run
this on a command line:

python csv-analysis.py
you see the following output on the command line:

Running on all addresses.
Use http://10.0.0.55:9999/ to access the application

So, you go to this address on the local browser (http://10.0.0.55:9999/) and see
this neat little web app popping up (Figure 12-7). Note how the markdown content you
coded in the Python script is rendered nicely on the web page with headers, hyperlinks,
and bullets. The input data section is nicely grouped as well, complete with a file upload
box and radio buttons for selecting the choice of data display or statistics display.

A utility for analyzing a CSV file

Dr. Tirthajyoti Sarkar

You can upload a data file (CSV) and,

 display histograms of the data coulmns

¢ download the summary statistics as a file.

Input data

Upload your CSV file
Choose file Browse

Display data?

O Yes
@® No

Display plots?

O Yes
® No

Figure 12-7. CSV analysis web app created by PyWebIO with just a single
Python script

341

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Overall, this presents a HTML form (much like what you saw with the Flask example
earlier) that accepts user input, does background Python processing, and presents the
processed data back to the user. All the user needs to do is upload a file and press the
Submit button.

The file upload functionality exposes the local filesystem for searching and choosing
any file that the user wants to select. Figure 12-8 shows the state of the app after the user
presses the Browse button on the file upload box.

A utility for analyzing a CSV file

Dr. Tirthajyoti Sarkar

‘You can upload a data file (CSV) and,

» display histograms of the data coulmns

« download the summary statistics as a file.

Input data

Uplead your CSV file

Choose file Browse
Display data?
2 Yes
@ No € Open x
Display plots? ’) -~ 4 Pythonand other Notebooks » PyWebiD + o Search PyWebi0
O Yes
® No Crganize » New folder s-m @
Reset » Wl Desktop Mame Saatus Diate edified Trpe Size
» [0 Documents T ipymb_checkpoints @ 2 File folder
Email ttcheng 20 I0 @ 2 M Micmsct Excel
» 1 Pictures G tmp_stats @ ; K
| Q| Usa Housing a 2NW22 THIZ AM Mitrosolt Ereel C 2 KB
> [ThaPC
Fie names | -] Mtrosafs Excel Comma Separs

Open Cancel

Figure 12-8. The user chooses the file they want to analyze with the PyWeblo app

After pressing the Submit button, the back-end processing happens and the page
elements and states are updated to show the output in the bottom frame. Figure 12-9
shows the result. Note that here both the raw data table and plots section are truncated
for intelligibility purposes.

342

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

A utility for analyzing a CSV file

Dr. Tirthajyoti Sarkar

You can upload a data file (CSV) and,

» display histograms of the data coulmns

s download the summary statistics as a file.
The data

X1 X2 X3 X4 X5 X6
0 795455 568286 7.00919 409 230868 1.05903e+06
1 792486 6.0029 6.73082 3.09 40173.1 1.50589%e+06
2 612871 586589 851273 5.13 368822 1.05899%e+06
3 633452 7.18824 558673 3.26 343102 1.26062e+06
4 599822 5.04055 7.83939 423 263541 630944
5 801758 498841 6.10451 4.04 267484 1.06814e+06
6 646985 6.02534 8.14776 341 60828.2 1.50206e+06

7 783943 698978 6.62048 242 365164 1.57394e+06

Plots

Plots for X1

\ d

ks A= .

= b \!H ;

- \ _,
. S, (- mmI -

wa th wa e oa

Plots for X2

L AANMN |
Y ‘\/ \;' “/ -

Plots for X3

Thoa ML]

Figure 12-9. Typical output from the CSV analysis web app

343

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

At the bottom of the page, the descriptive stats, calculated from the CSV file data, are
also displayed and a download option is presented to the user (Figure 12-10).

Descriptive stats

count mean std min 25% 50% 75% max
X1 19 683914 11692.1 39033.8 61608.1 69391.4 793971 81885.
X2 19 586014 1.06293 4.42367 5.05422 5.68286 6.47244 8.0935
X3 19 7.06813 11431 5.04275 6.24882 718777 8.15772 8.5175
X4 19 3.83947 1.01868 227 31 4.04 4.335 6.
X5 19 35107.1 | 904133 23086.8 28067.9 35521.3 39469.1 60328.
X6 19 1.18541e+06 351690 528485 1.03112e+06 1.26062e+06 1.50397e+06 1.70705e+0

13

Download stats here

Download stats file here

Figure 12-10. More output from the CSV analysis app including a
download option

Although you saw a very simple data analysis task, this example demonstrates the
essential features and advantages of PyWebIO for this kind of workflow: user uploads of
data files, background data transformations and visualizations, displaying the results,
and a download option for the transformed data. You can create such an app just by
coding a single Python script and abstracting away all the HTML/CSS/JavaScript front-
end details using PyWebIO methods and utilities. This enhances your productivity and
helps you present the result of your data science exploration in a nicely organized
visual manner to external stakeholders within a short span of time.

Other Options and GUI-Building Tools

Although I demonstrated the PyWeblO library in this section, there are quite a few
options for a similar task: going from a Python script or Jupyter notebook to a full-
fledged web app. Streamlit is one of the most prominent and widely used options.
Interested readers can refer to this article that I wrote about working with Streamlit:
https://towardsdatascience.com/data-analytics-to-web-app-streamlit-made-
easy-ed6872660e8.

344

https://towardsdatascience.com/data-analytics-to-web-app-streamlit-made-easy-ed687266f0e8
https://towardsdatascience.com/data-analytics-to-web-app-streamlit-made-easy-ed687266f0e8
https://towardsdatascience.com/data-analytics-to-web-app-streamlit-made-easy-ed687266f0e8

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

There is a recently developed tool called mljar-mercury that lets you convert Jupyter
notebooks into web apps with the minimal addition of some YAML config code. With
this library, you define interactive widgets for the notebook with a YAML header, and
the end users can change the widgets’ values, execute the notebook, and save the results
(as an HTML file). You can also hide the code to abstract the complexity from any non-
technical collaborators. The library makes it easy to deploy the app to any server such
as AWS or Heroku. For more information, please see the GitHub site (https://github.
com/mljar/mercury) or the documentation (https://mljar.com/mercury/).

In many cases, building a stand-alone GUI app (not necessarily running on a web
browser) may also be required to quickly demonstrate and disseminate some data
science work or model. There are a host of options for doing that. Interested readers can
check out this article that I wrote about a framework called PySimpleGUI and how to use
it to build simple data science GUI apps: https://towardsdatascience.com/building-
data-science-gui-apps-with-pysimplegui-179db54a9a15.

Going from Local to the Cloud

Cloud technology, with any doubt, has ushered in the biggest revolution in both the
personal and enterprise computing spaces in the modern era. It takes full advantage of
the improved infrastructure of the global high-speed internet backbone that continues to
reach an ever-expanding section of human society every day. And, with that advantage,
it has democratized and commoditized the process of delivering goods and services of
every kind imaginable, virtual and physical.

Data science is no exception in this regard. While a great many data scientists prefer
to work and explore ideas on their local machines, for various reasons they may need to
transport their workflow seamlessly on to cloud resources, or at least have the skills to do
so at a moment’s notice when the need arrives.

Some typical example scenarios include but are not limited to the following:

Need to analyze a multi-terabyte-sized dataset that they cannot
store properly on their local machine

Large in-memory analytics requirements for which their local
system memory is awfully inadequate

Fast, distributed computing requirement with a cluster of CPU/
GPU resources

345

https://github.com/mljar/mercury
https://github.com/mljar/mercury
https://mljar.com/mercury/
https://towardsdatascience.com/building-data-science-gui-apps-with-pysimplegui-179db54a9a15
https://towardsdatascience.com/building-data-science-gui-apps-with-pysimplegui-179db54a9a15

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Need to use highly specialized libraries, frameworks, and
specially designed environments that come only with a prebuilt
container/image that is difficult and time-consuming to set up on

a local machine

In all these cases, the ability to quickly spin up a cloud resource and connect
the existing data science codebase to that infrastructure determines the ultimate
productivity and efficiency of the data science pipeline.

Many Types of Cloud Services for Data Science

There is no denying the fact that a dizzying variety of cloud services exist that can be
used to enhance the productivity and efficiency of regular data science work. Some

of them fall under the category of Infrastructure-as-a-Service (IaaS), where the end
users rent the raw compute/storage power that exists in the cloud environment and just
transport their local codebase to that layer. The typical usage scenarios in the previous
section are applicable for this IaaS case. A specific example is to rent an EC2 compute
node on AWS, connect it to some S3 storage bucket, and start doing large-scale data
science work on this “rented” infrastructure that would not have been possible with
limited local compute power.

Platform-as-a-Service

A variety of new startups (and new service organizations of established corporations) are
also working on services that can be classified as Platform-as-a-Service (PaaS). Here a
host of modules and submodules run on top of an Iaa$ layer (that is not chosen or entirely
visible to the end user). These modules can perform all the necessary and expected tasks
of a typical data science pipeline (data ingestion, transformation, machine learning,
visualization, model deployment, long-term data and logs storage, etc.). Users may choose
all or a mix of the modules/services that are part of a PaaS offering.

For example, AWS has many components (Amazon QuickSight (business analytics
service), Amazon RedShift (data warehousing), AWS Data Pipeline, AWS Data
Exchange, Amazon Kinesis (real-time data analysis), Amazon EMR (big data processing
using map-reduce)) that can be used as per the requirements of the end user’s data
science workflow. Google Cloud also provides a host of similar services (BigQuery
(data warehouse), Dataflow (streaming analytics), Dataproc (running Apache Hadoop,
Apache Spark clusters), Looker (business intelligence and analytics), Google Data

346

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Studio (visualization dashboards, data reporting), Dataprep (data preparation for
analytics)) for the end user to pick and choose. At the other end of this spectrum,
these services can be highly specialized, focusing on a single type of AI/ML job. AWS
Sagemaker and Google Vertex Al are examples in this regard.

Data-as-a-Service

Data-as-a-Service (DaaS$) is also becoming a popular concept with the advent of cloud-
based data services. DaaS is provided by a host of new and established cloud vendors
that use cloud computing to provide data storage, data processing, multi-domain data
sources integration, and advanced data analytics to clients using distributed network
infrastructure. They have proper security and identity management layers integrated
and their focus is on AI/ML and data analytics without a limit on scaling. This kind of
service can be used by any organization to rapidly improve their business process and
create long-term value using the power of data. Some prominent examples of service
providers in this field include Databricks and H20.ai.

There are also cloud services focusing on providing specialized data science coding
and programming environments for end users. An example that you have already seen
in this book is the Saturn Cloud service that you used in Chapter 11 to spin up a GPU-
powered cloud instance with the RAPIDS framework preinstalled and configured. All
you had to do was to click a few buttons and within minutes you could connect to a
Jupyter notebook with access to all the RAPIDS libraries from your local browser.

Paperspace Gradient is another such successful hosted service provider for ML
tasks. Without a doubt, these services enhance the productivity of data scientists by
reducing the barrier of entry to environments that need special setup or a dedicated
hardware configuration.

Bringing Cloud Power to a Local Environment

There are a plenty of excellent resources to learn about cloud computing technologies
and how they can help various data science tasks and projects. In fact, knowledge

and basic experience of such technologies are becoming standard requirements for
getting into the field of data science as a professional. This means, apart from studying
programming languages, algorithms, machine learning theory and practices, and
statistics concepts, a data scientist also needs to acquire skills and basic experience in
cloud computing for prospective job interviews or career progression.

347

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Therefore, a related question is, how can you bring the power of cloud computing
(mostly the infrastructure part, as mentioned in the previous section) to a local
environment?

This basically entails the following tasks:

e Spin up a EC2 instance on AWS.

e Setup a Python data science environment on that instance (basically
a computer in the cloud).

o Start a Jupyter server.
e Securely connect to that server through a local browser.

If these tasks are completed successfully, a data scientist will have a Jupyter
notebook running on their local browser that is powered by the cloud computing
instance. Local files and existing code can be ported into an environment that is no
longer restricted by the hardware limitations of a single system.

Fortunately, many excellent step-by-step tutorials on this topic are available on the
Internet. Instead of repeating the steps from those articles, I will provide links so you can
follow them directly. Many of these tutorials feature low-resource EC2 instances (e.g., t2-
micro) to keep the cost of the AWS service minimal or even zero. However, the concept
is extendable to almost any kind of EC2 instance, and the data scientist can spin
up as large and powerful cloud computing resource as needed by the data science
workflow. If it is a CPU-intensive data science task, a 32- or 64-core CPU instance can be
chosen. It is a memory-intensive job, specialized high-memory instances can be used.

Additionally, the following links also include a guide for accomplishing the same
goal with a Google Cloud Platform (GCP), which is a competitor and equivalent service
to what AWS offers. GCP is powered by the vast distributed computing resource of
Google and runs the familiar Jupyter notebook on a GCP computing node; it could be
the first step towards extending your local data science pipeline to the amazing world of
cloud computing. Furthermore, the similarity of the overall process in these two articles
will prove that the fundamentals of this local-to-cloud connection remain exactly
same regardless of the cloud service adopted.

Article/guide about AWS: “JupyterLab on AWS EC2” (https://medium.com/
analytics-vidhya/jupyterlab-on-aws-ec2-d6b2cb945e54)

Article/guide about GCP: “"Setting up Jupyter Lab Instance on Google Cloud
Platform” (https://medium.com/analytics-vidhya/setting-up-jupyter-lab-
instance-on-google-cloud-platform-3a7acaa732b7)

348

https://medium.com/analytics-vidhya/jupyterlab-on-aws-ec2-d6b2cb945e54
https://medium.com/analytics-vidhya/jupyterlab-on-aws-ec2-d6b2cb945e54
https://medium.com/analytics-vidhya/setting-up-jupyter-lab-instance-on-google-cloud-platform-3a7acaa732b7
https://medium.com/analytics-vidhya/setting-up-jupyter-lab-instance-on-google-cloud-platform-3a7acaa732b7

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Low-Code Libraries for Productive Data Science

Low-code libraries are becoming some of the most promising gateways for professionals
who come from a diverse background such as web developers, business analysts, and
even academic researchers in parallel fields and want to enter the world of data science
and leverage its full power for their profession or daily work. In this section, I discuss the
essential nature of low-code libraries and show a popular example.

What Are These Low-Code Libraries?

At their core, these libraries are built atop the traditional data science ecosystem (e.g.,
programmatic frameworks with languages like Python, R, or Julia) with the goal of
abstracting away the coding portion of data science as much as possible while
keeping the technical rigor largely intact.

Naturally, these libraries act as thin wrapper layers on established coding-
oriented libraries and frameworks. They provide easy and intuitive APIs and may even
incorporate a lot of attractive visual elements and dashboard analytics tools to make the
data science work ever more approachable and presentable.

In many cases, they incorporate some Auto-ML bells and whistles that help run a
series of data science/machine learning experiments and tuning exercises with only a
few lines of codes (or at the click of a button). When such a low-code library abstracts
away all its direct programmatic APIs into a GUI-oriented, interactive front end, then it
can also be called a No-code data science library.

Example with PyCaret

As its website (https://pycaret.org/) says, “PyCaret is an open-source, low-code
machine learning library in Python that automates machine learning workflows”

(Figure 12-11). Although the emphasis on machine learning is heavy in this statement, it
can support all the usual stuff in a typical data science pipeline, like

o Exploratory data analysis
o Data wrangling and preprocessing
e Model training and tuning

e Basic model explainability and model management (MLOps)

349

https://pycaret.org/

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

low-code
machine

learning

PyCaret is an open-source, low-code /-
machine learning library in Python that \
automates machine learning workflows.

Figure 12-11. PyCaret, a low-code, open source data science/ML library

Here is a simple classification example with PyCaret to demonstrate the idea of low-
code data science. First, install the library via pip:

pip install pycaret

PyCaret offers friendly data loading functions that can be used to import popular ML
datasets, one of them being the diabetes dataset (https://archive.ics.uci.edu/ml/
datasets/diabetes):

from pycaret.datasets import get data
data = get data('diabetes")

The next steps are almost magical! With a single function call (setup), the data is
examined and set up (i.e., prepared for an ML experiment):

from pycaret.classification import *
s = setup(data, target = 'Class variable')

The inference algorithm embedded (and largely abstracted from the general user)
inside PyCaret will automatically infer the data types for all features based on certain
properties. If the inference is not 100% correct, PyCaret handles this by displaying a user
prompt and asking for a confirmation of data types when the setup function is executed.

350

https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/diabetes

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

You can press Enter if the data types are correct, or type quit to exit the setup. Ensuring
the correct data types is critically important in PyCaret as it automatically performs
multiple type-specific preprocessing tasks that are imperative for accurate ML modeling.

The next step is equally magical in its simplicity and power. One function call of
compare_models() trains and evaluates the performance of all the ML estimators
available in the model library using cross-validation (CV). The output is a scoring grid
with average cross-validated scores. CV metrics can be accessed with the get _metrics
function and customized metrics can be added or removed using the add_metric and
remove_metric functions, respectively.

Best = compare models()
print(best)

Figure 12-12 shows the results.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT(Sec)
catboost CatBoost Classifier 0.7767 0.8309 06056 0.7114 06413 0.4823 0.4950 1.3870
Ir Logistic Regression 0.7564 0.8043 05056 06941 05786 04145 04285 1.1230
gbe Gradient Boosting Classifier 0.7562 0.8239 05667 06731 06031 04314 0.4431 0.0900
ada Ada Boost Classifier 0.7526 0.8016 05889 006524 06091 04310 0.4394 0.0800
lightgbm Light Gradient Boosting Machine 0.7524 0.8028 05778 0.6614 006086 04299 0.4381 0.1430
rf Random Forest Classifier 0.7488 0.8035 05111 06849 05740 04023 04182 0.2350
ridge Ridge Classifier 0.7452 0.0000 0.4722 006844 05492 0.3816 0.3997 0.0150
Ida Linear Discriminant Analysis 0.7452 0.7912 0.4833 0.6783 0.5563 0.3859 0.4017 0.0130
xgboost Extreme Gradient Boosting 0.7449 0.7896 05722 06442 05984 04140 04207 0.2640
knn K Neighbors Classifier 0.7153 0.7261 05111 05962 05405 0.3379 0.3467 0.0220
et Extra Trees Classifier 0.7134 0.7573 04333 06079 04968 0.3072 0.3204 0.1810
dt Decision Tree Classifier 0.7075 0.6741 05722 05635 05630 0.3445 0.3481 0.0130
nb Naive Bayes 0.6817 07064 02389 05527 0.3288 0.1657 0.1905 0.0110
svm SVM - Linear Kernel 0.6015 0.0000 0.3611 0.3419 0.3251 0.0851 0.0924 0.0170
qda Quadratic Discriminant Analysis 0.5759 05889 04833 04062 03705 01011 01281 00180

Figure 12-12. One function call trains a handful of ML estimators and displays
the CV metrics of all kinds. Image from https://pycaret.qgitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

351

https://pycaret.gitbook.io/docs/get-started/quickstart
https://pycaret.gitbook.io/docs/get-started/quickstart

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Next, you can analyze the performance of the trained model on the test set, again
with a single function call. This actually gives you a choice of many types of plots, and
you can select any one of them.

evaluate model(best)

A typical result is shown in Figure 12-13 where the user has chosen to see a feature

importance plot.
Plot Type: Hyperparameters AUC Confusion Matrix Threshold Precision Recall
Prediction Error Class Report Feature Selection Learning Curve Manifold Learning
Calibration Curve Validation Curve Dimensions Feature Importance Feature Importance. ..
Decision Boundary Lift Charl Gain Chart Decision Tree KS Statistic Plot
Feature Importance Plot
Plasma glucose concentration a 2 hours in an oral glucose tolerance test *
Body mass index (weight in kg/(height in m)*2) *
Age (years)]
Diabetes pedigree funchon L 2
3 Diastolic blood pressure (mm Hg) L
=3
:LE 2-Hour serum insulin (mu U/ml) *
Triceps skin fold thickness (mmy) L]
Number of times pregnant_4 *
Number of times pregnant_1 .
Number of imes pregnant_3 *
0 5 10 15 20

Variable Importance

Figure 12-13. One function call analyzes the trained model against the test set
and produces various plots. Image from https://pycaret.gitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

Note that evaluate_model can only be used in a Jupyter notebook session since it
uses ipywidget (to interactively show the user all the plot options). You can also use the
following code to generate plots individually:

plot model(best, plot = 'auc')

352

https://pycaret.gitbook.io/docs/get-started/quickstart
https://pycaret.gitbook.io/docs/get-started/quickstart

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

This produces the plot shown in Figure 12-14 showing the area-under-the-curve.

ROC Curves for CatBoostClassifier

True Positive Rate

02 [—— ROC of class 0, AUC = 0.86

ROC of class 1, AUC = 0.86
micro-average ROC curve, AUC = 0.86

% == macro-average ROC curve, AUC = 0.86

00 “

0o 02 04 06 o8 10
False Positive Rate

Figure 12-14. Individual plot. Image from https://pycaret.qgitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

Prediction is, as expected, one line of code. The evaluation metrics are calculated on
the test set.

predict_model(best)

And finally, saving a model (the full pipeline, actually) and loading it back is simple,
too (Figure 12-15).

save_model(best, 'my best pipeline')
loaded model = load model('my best pipeline')

353

https://pycaret.gitbook.io/docs/get-started/quickstart
https://pycaret.gitbook.io/docs/get-started/quickstart

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

Transformation Pipeline and Model Successfully Loaded
Pipeline(memory=none,
steps=[('dtypes’,

DataTypes_Auto_infer(categorical_features=[],
display_types=True, features_todrop=[],
id_columns=[],
ml_usecase='classification’,
numerical_features=[],
target="Class variable’,
time_features=[])),

("imputer’,

Simple Imputer(categorical strategy='not_available’,

fill value_categorical=None,
fill_value_numerical=None,
numeri...

("cluster_all', 'passthrough'),

("dummy’, Dummify(target='Class variable')),

('fix_perfect', Remove_100(target='Class variable')),

('clean_names', Clean_Colum_Names()),

('feature_select', 'passthrough'), ('fix_multi', 'passthrough'),

('dfs’', 'passthrough’), ('pca’, 'passthrough’),

["trained_model"’,

<catboost.core.CatBoostClassifier object at 0x0000020AF7A3ADFO>]],

verbose=False)

Figure 12-15. Saved model. Image from https://pycaret.gitbook.io/docs/
get-started/quickstart, used with permission from the PyCaret creator

It is clear from this hands-on demo that one of the primary goals of these libraries is
to save time for the data science practitioner by simplifying the front API, reducing the
lines of the raw coding needed, and even helping run multiple ML experiments in an
autopilot mode. All these goals line up very well with that of the productive data science
and therefore I strongly believe that low-code libraries are going to be an important
part of this initiative in the future ahead.

Summary

This chapter was not about a particular topic or a specific type of Python framework. It
was an ensemble of topics and skills that often need to be studied and acquired by data
scientists parallel to practicing a productive data science agenda. Although these skills
do not feature directly in a data science pipeline as explicit components, they often
provide additional value and foundation bedrock. Learning them can truly amplify the
power and efficiency of a standard data science task flow.

354

https://pycaret.gitbook.io/docs/get-started/quickstart
https://pycaret.gitbook.io/docs/get-started/quickstart

CHAPTER 12 OTHER USEFUL SKILLS TO MASTER

In that spirit of learning, I started with a discussion on the importance of learning
basic web technologies (HTML, CSS, and JavaScript). Next, I touched upon the utility of
creating web apps for data science projects and made the point that the ultimate success
of a data science task depends critically on communicating the insights that it generates
and how this can be done best with an interactive web app. I showed how to build
simple web apps with Python libraries of two distinct flavors, Flask and PyWebIO.

Almost invariably, web apps are supported by the cloud infrastructure that is the
backbone of modern high-tech society. In the context of data science, I also talked about
cloud technologies such as Amazon Web Service and Google Cloud Platform and data-
focused platforms such as Databricks and Saturn Cloud. I also provided pointers to the
simple process for bringing the power of cloud computing power to a local data science
environment.

Finally, I switched gears and discussed how in many cases using a “low-code”
framework can be useful and productive for a data science task. I demonstrated a ML
classification task with PyCaret, a popular Python library in this genre, and showed how
the low-code-focused abstraction made the whole affair of doing data science highly
productive, faster, and intuitively simple.

355

CHAPTER 13

Wrapping It Up

You underwent a long and arduous journey over the course of the last 12 chapters. As
you begin the last phase of this book, let's summarize the key takeaways and salient
points of those chapters. This is important because one of the main things that I

will focus on in this chapter is the topic of what was not covered. Naturally, you will
appreciate the treatment of what was not by examining and recollecting what was
covered.

Chapter 1

Like any other computing (and non-computing) task in life, data science and machine
learning can be practiced with various degrees of efficiency and productivity. Therefore,
the goal of Chapter 1 was to introduce you to the benefits of performing data science
tasks efficiently and productively. I also illustrated potential pitfalls in the everyday work
of a regular data scientist to drive home the point of efficient data science.

Chapter 2

The goal of Chapter 2 was to introduce you to the concepts of certain programming
styles and habits that play an essential part in developing efficient data science systems
and pipelines. I illustrated the concepts through brief examples and talked about how to
measure or track inefficiency. Concepts of time and space complexities in programming
and algorithms were introduced, as was the Big-O notation. Then I demonstrated
practical examples of common, inefficient data science and ML coding practices to show
you a glimpse of typically inefficient (but commonly used) coding patterns that do not
scale well or make some aspects of the overall system design inefficient.

357
© Dr. Tirthajyoti Sarkar 2022

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5_13

https://doi.org/10.1007/978-1-4842-8121-5_13

CHAPTER 13 WRAPPING IT UP

Chapter 3

In Chapter 3, I came close to the root of this book in a sense. This is a book based on
exploring productive data science with the Python programming language. The choice
of this language is almost self-explanatory. Python is, without any doubt, the most used
and fastest growing programming language of choice for data scientists (and other
related professionals such as ML engineers or artificial intelligence researchers) all
over the world. One of the primary reasons for this popularity is the availability of high-
quality and powerful yet easy-to-learn libraries focused on data science.

However, just because these libraries provide easy APIs and smooth learning
curves does not mean that everybody uses them in a highly productive and efficient
manner. You must explore these libraries in depth and understand both their power and
weaknesses to exploit them fully for productive data science work.
This was precisely the goal of this chapter: to show how and why these libraries should be
used in typical data science tasks for achieving high efficiency. You started with the Numpy
library as it is also the foundation of Pandas and Scipy. Then you explored the Pandas
library, followed by a tour of the Matplotlib and Seaborn visualization packages.

Chapter 4

This chapter built on the connection between data scientists and the Python

language that was discussed in the previous chapter. Data scientists often come from

a background that is quite far removed from traditional computer science/software
engineering, one of physics, biology, statistics, economics, and electrical engineering,
and they also use Python a lot for their work. While Python is the most widely used
major language for modern data-driven analytics and Al apps, it is also used for simple
scripting purposes, to automate stuff, and to build a web framework back end. It turns
out that Python for data science work and Python for scripting and general software
development can be quite different in style and temperament.

Scripting is (mostly) the code you write for yourself. Software is the assemblage of code
you (and other teammates) write for others. It has been widely observed that when (a
majority of) data scientists who do not come from a software engineering background
write Python programs for AI/ML models and statistical analysis, they tend to write such
code mostly for themselves. Writing high-quality, production level code is a skill to be
learned and honed over a lifetime. It is the bread and butter of software engineers and

358

CHAPTER 13 WRAPPING IT UP

developers. Not all data scientists will have the motivation and drive to acquire these
skills. However, some good practices can be learned and applied in your everyday work.
This chapter provided some pointers in the context of productive data science.

Chapter 5

Functions, inheritance, methods, classes: they are at the heart of robust object-oriented
programming. But a typical data scientist may not delve deeply into them if all they want
to do is to create a Jupyter notebook with exploratory data analysis and plots. Therefore,
they can avoid the initial pain of using OOP principles, but that almost always renders
the Notebook code non-reusable and non-extensible. More precisely, that piece of code
serves only the individual (until that individual forgets what exact logic was coded) and
no one else.

But readability (and thereby reusability) is critically important for any good software
product/service. Following a discussion about modular, readable, reusable coding
practices in Chapter 4, this chapter focused on examples of such practices in the domain
of deep learning. These days, powerful and flexible frameworks like TensorFlow or
PyTorch make the actual coding of a complex neural network architecture relatively
simple and brief. However, if the overall data science code is not modularized and well
organized, then it can be plagued by the same issues of non-reproducibility and non-
reusability.

Specifically, I discussed wrapping up the most essential tasks in a DL-based
workflow, such as building and compiling a classification or regression model, creating
targeted visual analytics, creating proper docstrings inside custom functions, and using
them as the core building blocks of the main data science pipeline. Additionally, you can
wrap up the task related to data formatting/transformation and prediction/inference
in a similar fashion. Apart from simple functional wrappers, I also discussed a powerful
construct called callback that caters to the dynamic nature of training a deep neural
network. I showed how to extend this approach all the way to the full OOP paradigm,
to build out classes and utility modules incorporating all these wrappers as special
methods. I called this a DL utility module that can be called from any data science task.

359

CHAPTER 13 WRAPPING IT UP

Chapter 6

In the previous two chapters, I showed that data scientists must learn how to write
machine learning code (whether it is the final model or just some experimental
prototype) efficiently. There must be proper organization and modularization in the
code so that it can interface well with the standard software engineering tools and
techniques. There must be some amount of automation in the code to reduce the time
to explore, evaluate, and experiment with data and models. Data scientists must be
comfortable with writing functional and module tests, incorporating object-oriented
principles, and so on. And finally, data scientists must also develop the habit of
producing good documentation for their code so that it can be reusable and readable by
other developers.

This chapter took you through the journey of developing a lightweight but useful
ML package of your own so that you can experience many aspects of producing a
complete piece of software for data science. In my experience, this exercise of writing
(and publishing) an ML package teaches several valuable lessons to any upcoming data
scientist.

Chapter 7

Python has an amazing ecosystem for data science work, starting from numerical
analysis and going all the way to advanced deep learning or reinforcement learning, with
statistical modeling and visualization thrown in the mix. A great open-source culture
keeps new and exciting developments coming and thriving. Data scientists can learn,
contribute code, share their experience, help debug, and support each other in this
environment.

There are some predominant libraries and packages in this ecosystem that are used
by almost all data scientists in their daily job: Pandas, NumPy, and Scikit-learn are three.
However, there are also some little-known Python packages that can help you do some
common data science jobs faster and more efficiently. These are not general-purpose
large projects like Numpy or Pandas. Instead, they focus on niche aspects of similar data
science tasks and do them really well.

In this chapter, I touched upon a few such nifty packages and showed hands-on
examples of efficient data science. The goal was to induce the idea of exploration in your
mind so that you can take full advantage of the great Python data science zoo.

360

CHAPTER 13 WRAPPING IT UP

Chapter 8

Data science tasks come with a wide variety of computational costs of both space and
time. Data wrangling jobs may need the support of large storage, while advanced ML
algorithms need high intensity computing speed. Some ML algorithms work better with
the support of large local memory (RAM) and cannot perform well with data situated far
from the CPU on a hard disk, while others are optimized to perform well with distributed
data storage.

Furthermore, the nature of the data may change slowly or frequently, depending on
the application. Some models and data science code scale gracefully with increasing
size and complexity of the input data, some do not. When their scaling is not properly
planned or baked into the code, the performance can suffer, even leading to possible
catastrophic failure in time.

To plan for such a situation or to design data science code robustly, you must start
with the basic measurement of the efficiency of the code in terms of memory usage
or profile. There are many tools and techniques for such measuring depending on the
code and the underlying hardware. In this chapter, I introduced tools (with hands-on
examples) that can be used to measure the memory usage profile of data science and
ML code.

Chapter 9

Data science tasks may cover a wide variety of dataset sizes, ranging from kilobytes to
petabytes. Some datasets can have many rows and a small number of columns while
others (e.g., genomic assay) may be extremely high-dimensional and consist of a few
rows but millions of columns as feature dimensions. Even within the same organization
or data science team, there can be multiple pipelines dealing with different types of
input and they may face wide variation in the dataset size and complexity.

It is often a natural practice for data scientists to build a scaled prototype of a data
science job (such as combining data wrangling, a ML algorithm, and some prediction
functions). To support this quick analysis and prototyping, a data scientist must be able
to quickly scale across a wide variety of dataset sizes and complexity as the need arises.
They should not run into issues like out-of-memory while prototyping on their laptop.

This chapter talked about the common problems and limitations that arise while
scaling out to larger datasets and what tools exist to address those issues. Specifically,

361

CHAPTER 13 WRAPPING IT UP

you explored some of the limitations that arise while doing analysis with a large dataset
using the most common data analysis library, Python Pandas, and discussed two
alternative libraries or add-ons that can be used to overcome those limitations.

Chapter 10

In almost all real-life scenarios, the success of a data science pipeline (and its value
addition to the overall business of the organization) may depend on how smoothly and
flawlessly it can be deployed at scale, such as how easily it can handle large datasets,
faster streaming data, rapid changes in the sampling or dimensionality, and so on. This
aspect of scalability is also closely related to the ability to do parallel processing of large
data. Therefore, the theme of Chapter 9 was continued in this chapter where I discussed
Python libraries that support parallel processing natively for data science tasks.

Much like the last chapter, I discussed limitations that arise while doing analysis
with large and complex datasets using the most common data analysis and numerical
computing libraries like Pandas or Numpy and I discussed some alternative libraries
to help with those tasks. However, this chapter does not focus on an exhaustive
discussion about the general parallel computing tricks and techniques with Python.

It purposely avoids detailed treatment of the topics that often come up in a standard
Python parallel computing tutorial or treatise such as working with built-in modules like
multiprocessing, threading, orasynco. The focus, like any other chapter in this book,
is squarely on data science, so I covered two libraries named Dask and Ray that truly add
value to any data science pipeline where the user wants to bring in the power of parallel
computing to their tasks.

Chapter 11

Productivity in data science is often directly related to the speed of execution of various
tasks including numerical processing, data wrangling, and feature engineering. When it
goes to the advanced machine learning stage, depending on the modeling complexity,
the matter of speed and performance assumes a critical role. It is now well established
that the unprecedented success of modern ML systems has been critically dependent
on their ability to process massive amounts of raw data in a parallel fashion using task-

362

CHAPTER 13 WRAPPING IT UP

optimized hardware. The history of machine learning has clearly demonstrated that the
use of specialized hardware like GPUs played a significant role in the early success of ML.
While the use of GPUs and distributed computing is widely discussed in academic
and business circles for core AI/ML tasks, there is less coverage when it comes to their
utility for regular data science and data engineering tasks. So, the important question
is, can we leverage the power of GPUs for regular data science jobs (e.g., data wrangling,
descriptive statistics) too? The answer is not trivial and needs some special consideration
and knowledge sharing. In this chapter, I focused on a specialized suite of tools called
RAPIDS that help any data scientist take advantage of GPU-based hardware for a wide
variety of data science tasks (not necessarily deep learning or advanced ML). You
explored how by utilizing the inherent parallel processing power of GPUs, you can
enhance the productivity of such common data science tasks significantly.

Chapter 12

I dedicated this complete chapter to the set of various disparate useful skills that a data
scientist should strive to master to enhance their productivity. Unlike previous chapters
where I examined and discussed similarly grouped skills (e.g., memory profilers or
distributed computing tools), the tools and skills discussed in this chapter might have
looked somewhat disjointed from each other. They do not fall under one unifying class,
but taken as a whole, they can truly aid a data scientist in enhancing productivity.

I started with a discussion on the importance of learning basic web technologies
such as HTML, CSS, and JavaScript. Building on the same concepts, next I discussed
the utility of creating a simple web app for a data science project. You saw a hands-
on example with two Python libraries, Flask and PyWebIO. Then I moved on to cloud
technologies such as Amazon Web Services and showed (with lined resources) the
simple process for bringing the power of the cloud to a local data science workflow.
Finally, I switched gears and discussed how, in many cases, using a so-called “low-code”
framework can be useful and productive for a data science task. I demonstrated PyCaret,
a popular low-code Python library in this regard.

363

CHAPTER 13 WRAPPING IT UP

What Was Not Discussed in This Book

Often, the most important thing that an author can (and should) discuss at the end of a
book is not a running list of all the topics that were covered in the book, but what was not
covered. In that spirit, in the following subsections, I identify some key topics that should
be pointed out to you, the reader, for self-learning and exploring beyond this book.
These topics should help you equip yourself with productive data science techniques.

MLOps and DataOps

A typical (or traditional) software development lifecycle goes from requirement
elicitation, to designing, to development, to testing, to deployment, and all the way
down to maintenance. For many years, these practices were firmly in the realm of so-
called DevOps.

As business and technological enterprises incorporate more and more data
science and machine learning into their products and services, the new requirement of
building ML systems modifies these time-tested principles of the SDLC to give rise to
a new engineering discipline called MLOps (a handshake between ML practices and
traditional DevOps). One of the most popular and widely used Python libraries for
getting started with basic MLOps is MLFlow.

While MLOps deals primarily with ML models and artifacts, a similar and related
concept is DataOps, which focuses data (and the various transformations, techniques,
and systems associated with the processing and flow of data) as main artifacts. Like
MLOps, this modern discipline tries to blend the newer set of demands created by the
unprecedented scale and complexity of data processing with traditional DevOps tool
chain and produce a homogenized pipeline that delivers value to any organization that
wants to take advantage of the power of data science.

These are newly emerging disciplines with ever-changing standards and golden
practices. To be productive and efficient, a data scientist must keep abreast of these
developments. There are conferences exclusively dedicated to these spaces, and
excellent books and blogs are being produced all the time. You are highly encouraged to
start exploring these avenues to get a firm grasp of these concepts.

364

CHAPTER 13 WRAPPING IT UP

Container Technologies

Containers have become an essential part of any modern software technology stack.
Fundamentally, they enable packaging software code and services with all the necessary
components like libraries, frameworks, and other dependencies so that they are
“contained” and “isolated” in their own private space. This results in the ability of the
software or application within the container to move across and run consistently in
any environment and on any infrastructure, independent of that environment or
infrastructure’s operating system.

Although the core idea of such process isolation has been around for years, in
2013, Docker introduced Docker Engine, which set a standard for container use with
easy-to-use tools and pioneered a universal approach for packaging. This accelerated
the adoption of container technology with breakneck speed, leading to container
orchestration tools like Kubernetes (developed and open sourced by Google). Today,
developers can choose from a large selection of containerization platforms and tools that
support the Open Container Initiative standards pioneered by Docker.

In fact, the adoption of containerization has pushed software development from
being monolithic (where all services and components use the same language or a
fixed set of technology) towards a much more diversified situation (each individual
service is written in the best programming language for the task and then run as pods
with a container orchestration tool like Kubernetes). Naturally, an increasing number
of modern data science and ML services and platforms are also being built with
containerization at their core. To take advantage of this mega-trend and to make it work
for productive data science, you should familiarize yourself with the basic principles,
workings, and features of container tools such as Docker and Kubernetes.

Database Technologies

Database and related technologies have been around for much longer than modern data
science and machine learning, going back to the early 1960s. For the longest time, they
centered around relational database management systems or RDMBS. These systems
mainly dealt with “structured data” such as business transactional records or tabular
data coming from inventory, quality control, production, or other business processes of
a similar nature. Structured Query Language or SQL (and the many variants it spawned)
has been the mainstay of querying large databases with amazing speed and accuracy for
more than five decades.

365

CHAPTER 13 WRAPPING IT UP

It is imperative for any aspiring data scientist to acquire at least a rudimentary
knowledge of databases and SQL and to constantly practice and upgrade that
knowledge. Almost every web app, platform, and enterprise software makes use of
multiple databases in some form or another. In real-life scenarios, it is extremely likely
that the raw data for a data science pipeline must come from a legacy database (or a
combination of multiple such databases). Therefore, the data scientists in charge need to
be proficient in SQL to perform those queries to extract raw data from the databases.

SQL, being a declarative language (https://365datascience.com/tutorials/sql-
tutorials/sql-declarative-language/), does not necessarily have a steep learning
curve. But a solid knowledge of database design and optimization can go a long way
towards performing optimized queries for data extraction that enhances the efficiency
of the entire data science pipeline. There are, in fact, many database bindings or
connector libraries in Python that allow data scientists to build tight coupling with
existing databases and extract data even from within a Python environment.

However, SQL and RDBMS are just the tip of the iceberg. With the growing
importance of unstructured data such as images, videos, audio, natural language,
handwritten notes, and streaming output from digital sensor networks, particularly in
the field of data science and ML, there is a fresh revolution in database technologies
leading to the development of NoSQL technologies. These tools and languages are
generally designed and optimized for dealing with unstructured or semi-structured
datasets.

You are duly encouraged to update your database knowledge, invest time in building
solid fundamentals in SQL, and keep abreast of developments in the latest database
trends and technologies. No matter what background you come from or what kind of
business or scientific application you are working on, this knowledge will help you
become highly productive and efficient with maximum impact.

General Advice for Upcoming Data Scientists

Itis not hard to imagine that the following question comes up often when a few data
scientists gather for a drink, after work: how can you distinguish yourself from
hundreds of other data science practitioners/candidates at work or in a job
interview?

Why is this question important to ponder?

366

https://365datascience.com/tutorials/sql-tutorials/sql-declarative-language/
https://365datascience.com/tutorials/sql-tutorials/sql-declarative-language/

CHAPTER 13 WRAPPING IT UP

Because there is a tremendous amount of competition to get a job as a data scientist
(www. kdnuggets.com/2020/10/getting-data-science-job-harder.html). Because
there is a mad rush. Every kind of engineer, scientist, and working professional is calling
himself or herself a data scientist (www.linkedin.com/pulse/why-so-many-fake-
data-scientist-bernard-marr/). Because, as an aspiring data scientist, you may not be
sure if you can cut your teeth in this field. The so-called imposter syndrome is alive and
well in data science (https://towardsdatascience.com/how-to-manage-impostor-
syndrome-in-data-science-ad814809068).

I neither claim to have ready answers nor do I know whether you can truly
distinguish yourself, but I will list a few pointers.

Ask Questions and Learn Constantly

Ask yourself the following questions and count the number of YES answers. The more
you have done, the more you can separate yourself from the masses.

If You Are a Beginner

Have you published your own Python/R (whatever you code in)
package?

If yes, have you written extensive documentation for it to be used
easily by everyone else?

Have you taken your analysis from a Jupyter notebook to a fully
published web app? Or have you investigated tools that help you
do so easily?

Have you written at least a few high-quality, detailed articles
describing your hobby project?

Do you try to practice the Feynman method of learning, which
is to teach a concept you want to learn about to a student in the
sixth grade?

At a More Advanced Phase

If you consider yourself to be at a somewhat mature stage as a data scientist, answer
these questions:

367

http://www.kdnuggets.com/2020/10/getting-data-science-job-harder.html
http://www.linkedin.com/pulse/why-so-many-fake-data-scientist-bernard-marr/
http://www.linkedin.com/pulse/why-so-many-fake-data-scientist-bernard-marr/
https://towardsdatascience.com/how-to-manage-impostor-syndrome-in-data-science-ad814809f068
https://towardsdatascience.com/how-to-manage-impostor-syndrome-in-data-science-ad814809f068

CHAPTER 13 WRAPPING IT UP

Do you consciously try to integrate good software engineering
practices (e.g., object-oriented programming, modularization,
unit testing) in your data science code at every chance you get?

Do you make it a point to not stop at the scope of the immediate
data analysis required but imagine what would happen for 100X
data volume or 10X cost of making the wrong prediction? In other
words, do you think consciously about data or problem scaling
and its impact?

Do you make it a point to not stop at the traditional ML metrics,
but also think about the cost of data acquisition and business
value resulting from applying ML?

Learn a Diverse Set of Skills

I particularly would like to advise you to not spend all of your time and energy analyzing
larger and larger datasets or experimenting with the latest deep learning model. As well-
rounded data scientists, we should set aside at least a quarter of our time learning to do a
couple of things that are valued everywhere, in every organization, in all situations.

Build a small but focused utility tool for your daily data analysis.
Your creative juices will flow freely in this exercise. You are
creating something that may not have thousands of immediate
users, but it will be novel, and it will be your own creation.

Read and create high-quality documentation related to new
tools or frameworks or the utility tool you just built (see above).
This will force you to learn how to communicate the utility and
mechanics of your creation in a manner that is intelligible to a
wide audience.

As you can see, these habits are easy to develop and practice. They do not require
backbreaking work, a years-long background in statistics, or advanced expertise in deep
machine learning knowledge. But, surprisingly, not everybody embraces them. So, here’s
your chance to distinguish yourself from a set of large number of candidates either at a
new job or at an interview (Figure 13-1).

368

CHAPTER 13 WRAPPING IT UP

Figure 13-1. Building data science tools (apps) and high-quality documentation
could distinguish yourself from others. Image source: “How Can You Distinguish
Yourself from Hundreds of Other Data Science Candidates?” by Tirthajyoti Sarkar
(https://towardsdatascience.com/how-to-distinguish-yourself-from-
hundreds-of-data-science-candidates-62457dd8f385)

Read About Broad Topics at Every Chance

Aspiring data scientists often spend a disproportionate amount of time reading about
the latest deep learning trick or blog posts about the latest Python library. While these
are positive attributes, in order to be productive and efficient, you should also allocate
some time for reading broader topics in data science or artificial intelligence in general. I
encourage you to read about broad and diverse topics in the industry’s top forums and in
good books. Figure 13-2 shows some of the books and forums that I enjoy.

369

https://towardsdatascience.com/how-to-distinguish-yourself-from-hundreds-of-data-science-candidates-62457dd8f385
https://towardsdatascience.com/how-to-distinguish-yourself-from-hundreds-of-data-science-candidates-62457dd8f385

CHAPTER 13 WRAPPING IT UP

C Center for S
Human-Compatible A”

A I Artificial AN |
Intelligence . N
FACEBOOK Artificial Intelligence

3 Google Al Uber Al

©

OpenAl

@ deeplearning.ai

Yuwval \o‘ah Harari -I'HE MASTE . n‘:_““
Saplens THINKING, AU}UR"HM e
A Brief FAST..SLOW -il‘—-ﬂm LHE
History of ——— et BOOK OF
Humankind

DANIEL PEDRD DOMINGOS WHY

KAHNEMAN

A

Figure 13-2. Some high impact blogs, forums, and books on broad topics related
to data science, machine learning, and artificial intelligence

Distinguish Yourself at a Job Interview

Following the goal of distinguishing yourself at a job interview, imagine yourself to be
in such a situation. If you did have many YES answers to the questions above, you can

mention something like the following to your interviewer:

e “Hey, check out the cool Python package I built for generating synthetic
time-series data at will.”

e “Ialso wrote a detailed documentation which is hosted at MyApp.
readthedocs.io website. It’s built with Sphinx and Jekyll.”

o “I'write data science articles regularly for the largest online platform,
Towards Data Science. Based on those articles, I even got a book
publishing offer from a well-known publisher like Packt or Springer.”

e “Everybody can fit an ML model in a Jupyter notebook. But I can hack
out a basic web app demo of that Scikit-learn function where you can
send data through a REST API and get back the prediction.”

370

CHAPTER 13 WRAPPING IT UP

e “Ican help in the cost-benefit analysis of a new machine learning
program and tell you if the benefit outweighs the data collection effort
and how to do it optimally.”

Imagine how different you will sound to the interview board from all the other
candidates who do well on regular questions of statistics and gradient descent but do not
offer demonstrable proof of all-around capabilities.

This shows that you are inquisitive about data science problems. This shows
that you read, you analyze, and you communicate. This shows that You create and
document for others to create. This shows that your thinking goes beyond notebooks
and classification accuracy to the realm of business value addition and customer
empathy. This is the secret sauce of being truly productive and efficient.

What company wouldn’t love this kind of candidate?

Some Useful Resources

There are so many great tools and resources for acquiring and practicing these skills. It is
impossible to even list a good fraction of them in the space of a single chapter, but below
I list some representative examples. The key idea is to instill the idea of exploring along
these lines and discovering such learning aids for yourself.

A Data Scientist’s Amazing, Curated List of Useful Tricks
and Tools

Khuyen Tran is a data science writer at NVIDIA and a data science intern at Ocelot
Consulting. She has written over 200 data science articles and hundreds of daily data
science tips at Data Science Simplified (https://mathdatasimplified.com/). Her
current mission is to make open source more accessible to the data science community.
She has curated a list of efficient Python tricks and tools that can act as a perfect
supplement to this book. Check out the open-source book Efficient Python Tricks

and Tools for Data Scientists (Figure 13-2) at https://khuyentran1401.github.io/
Efficient_Python_tricks_and_tools for data_scientists/intro.html.

371

https://mathdatasimplified.com/
https://khuyentran1401.github.io/Efficient_Python_tricks_and_tools_for_data_scientists/intro.html
https://khuyentran1401.github.io/Efficient_Python_tricks_and_tools_for_data_scientists/intro.html

CHAPTER 13 WRAPPING IT UP

Build Installable Software Packages Using Only
Jupyter Notebooks

This tool comes from the developers of FastAl, a popular deep learning framework and
learning resource. They experimented with the idea that one can build an installable
Python package right from the Jupyter notebook code and came up with this tool. Of
course, the Jupyter notebook is where data scientists are mostly at ease and this kind of
tool lets them publish packages right from their preferred coding and experimentation
environment. Here are the details about this project: www.fast.ai/2019/12/02/nbdev/.

Learn How to Integrate Unit Testing Principles

Testing software modules enhances robustness and trust in the final product/service.
The importance of high-quality testing cannot be emphasized enough in any software
development. The same argument goes for your data science pipeline. Even if you are
developing a data science codebase mainly for prototyping and research, it’s a good idea
to know how to write basic testing modules to check if the functions and classes you are
developing are working as expected.

It is often not about checking the input data type but about checking whether your
data science pipeline can handle it. It is not only just randomly throwing out-of-range
variables at the function but also about checking whether the response is as expected.

To get you started, here are references to a couple of useful articles in this regard. In
these short articles, I looked at an example of a typical data science pipeline (consisting
of small, dedicated functions) instead of a monolith, and showed how to write a Pytest
module for it. I also looked at why writing test modules for data science can be slightly
different from what software engineers or Quality Assurance folks do every day.

“PyTest for Machine Learning” (https://towardsdatascience.com/pytest-for-
machine-learning-a-simple-example-based-tutorial-a3df3c58cf8)

“How to Write Test Code for a Data Science Pipeline” (https://heartbeat.comet.
ml/how-to-write-test-code-for-data-science-pipeline-4ee35956c513)

Write Whole Programming and Technology Books Right
from Your Jupyter Notebook

This is an awesome open-source project to help develop code-oriented, quick-read
books and booklets: “Books with Jupyter” (https://jupyterbook.org/intro.html).

372

http://www.fast.ai/2019/12/02/nbdev/
https://towardsdatascience.com/pytest-for-machine-learning-a-simple-example-based-tutorial-a3df3c58cf8
https://towardsdatascience.com/pytest-for-machine-learning-a-simple-example-based-tutorial-a3df3c58cf8
https://heartbeat.comet.ml/how-to-write-test-code-for-data-science-pipeline-4ee35956c513
https://heartbeat.comet.ml/how-to-write-test-code-for-data-science-pipeline-4ee35956c513
https://jupyterbook.org/intro.html

CHAPTER 13 WRAPPING IT UP

Get Started with MLOps

As discussed, MLOps was not covered in this book, and yet it deserves the full attention
of aspiring data scientists to succeed professionally and be productive in today’s
business environment. Check out this high-quality introductory guide: “What is
MLOps - Everything You Must Know to Get Started” (https://towardsdatascience.
com/what-is-mlops-everything-you-must-know-to-get-started-523f2dob8bd8).

Understand the Multi-Faceted Complexity of a Real-Life
Analytics Problem

Check out the following article to understand the multi-faceted complexities of a real-
life analytics problem: “Why a Business Analytics Problems Demands all of your Data
Science Skills” (https://medium.com/analytics-vidhya/why-a-business-analytics-
problem-demands-all-of-your-expertise-at-once-1290170808c4). In this case
study example, I describe in detail what could be a good analytics pipeline for a power
company that wants to run a power shut-off campaign (for non-payment of electric
bills), shown in Figure 13-3. Specifically, I analyzed

¢ What data needs to be collected and how it needs to be cleaned and
prepared using wrangling techniques

e What the main components of the pipeline need to be

e What subcomponents or specific modeling technique may be used
o How to formulate the optimization problem

o What business and social factors to consider

e When to apply stochastic simulations and what kind of simulation
runs need to be conducted

373

https://towardsdatascience.com/what-is-mlops-everything-you-must-know-to-get-started-523f2d0b8bd8
https://towardsdatascience.com/what-is-mlops-everything-you-must-know-to-get-started-523f2d0b8bd8
https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4
https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4

CHAPTER 13 WRAPPING IT UP

Effective Python for Data
Scientists

Q, Search this book...

Efficient Python Tricks and Tools for
Data Scientists

Python Built-in Methods
Pandas

NumPy

Data Science Teols

Cool Tools

Jupyter Notebook

Powered by Jupyter Book

Efficient Python Tricks and Tools for Data
Scientists
Why efficient Python? Because using Python more efficiently will make your code more readable and run more efficiently.

Why for data scientist? Because Python has a wide application. The Python tools used in the data science field are not
necessarily useful for other fields such as web development.

The goal of this book is 1o spread the awareness of efficient ways to do Python. They include:

efficient built-in methods and libraries to work with iterator, dictionary, function, and class
efficient methods to work with popular data science libraries such as pandas and NumPy
efficient tools to incorporate in a data science project

efficient tools to incorparate in any project
efficient tools to work with Jupyter Notebook.

Figure 13-3. Khuyen Tran'’s ebook on efficient Python tricks and tools for

data science

374

CHAPTER 13 WRAPPING IT UP

Classification = :
Customer Time series

model

-?, W

Shut off specific data, employee
efficiency, randomness

AR @ Desired outcome — a route map to
'*‘—L‘;-}wr*;ff‘ shut off power optimally

Figure 13-4. An example of a real-life business analytics problem incorporating
data science tools of all kinds, such as classification, simulation, time-series,

risk and cost modeling, randomized (stochastic) analyses, optimization, etc.
Image source: “Why a Business Analytics Problem Demands all of your Data
Science Skills” by Tirthajyoti Sarkar (https://medium.com/analytics-vidhya/
why-a-business-analytics-problem-demands-all-of-your-expertise-at-
once-1290170808c4)

You will appreciate, after reading this article, how the modern practice of
data-driven analytics, when applied to a real-life business problem, is always
a complicated mixture of multiple techniques and frameworks including data
wrangling, machine learning, business logic, and even ethical choices.

Begin a New Journey

Well, that’s the end for this journey with this book. My goal was simple: to illustrate the
concept of productive data science and introduce you to a few tools and techniques

(all using the Python language and its rich ecosystem) that can help you achieve higher
productivity (and efficiency) in your data science work. With that goal in mind, I covered

375

https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4
https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4
https://medium.com/analytics-vidhya/why-a-business-analytics-problem-demands-all-of-your-expertise-at-once-1290170808c4

CHAPTER 13 WRAPPING IT UP

a wide array of topics in the span of 13 chapters. Some of those topics dealt directly with
the efficiency of the data science code and programming patterns, while others covered
concepts that may play critically important roles in practical data science pipelines.
There were discussions on as diverse topics as modularity, code packaging, memory and
time profiling, GPU processing, parallel computing, web technologies, and everything in
between.

I sincerely hope that this medley was useful and illuminating to you, and that you
gained an insight or two about productive data science practices by making the journey
through these chapters, either by following every example diligently or just browsing
casually. As expected from a book on such a mixed topic, not everything that I know
to be important for practicing productive data science could be covered within these
chapters. Whenever possible, I encouraged you to explore those topics and concepts on
their own.

Those explorations will surely lead to newer adventures, professional success,
and pure joy for the practitioners of the wonderful enterprise (and transformative
technology) that is data science. With this hope, I signal the start of that newer and future

journey.

376

Index

A

Activation maps, 142
activation, 144-146
training, 143
web-based Ul, 147
AI/ML models, 9, 85, 358
Algorithmic complexity
deep learning network, 25, 26
image data, cubic-complexity, 22
regression model, 23, 24
relative growth comparison, 24, 25
Apache Arrow columnar memory
format, 303
Artificial intelligence (AI), 9, 47, 85,
300, 358, 370
Aspiring data, 369, 373
.at or .iloc methods, 61
AutoML tools, 10

B

Back-end processing, 342
Base class, 119, 165, 166, 173, 175
Basic web technologies, 327, 355, 363
Best-matching distribution
datasets, 206, 207
plot, 204
simple fitting, 203, 204
Binary search, 20
Boolean filters, 197
Business and technological
enterprises, 364

© Dr. Tirthajyoti Sarkar 2022

C

Cell magic, 44
Classification score, 322
Client-scheduler-worker, 264, 265
Cloud computing
technologies, 347
Cloud instance, 233, 234, 261, 282,
314, 347
Cloud technology, 345
Colab Pro, 236
ColDrop method, 189, 191
Computing, 212, 235, 254, 357
Containers technologies, 365
Convolutional neural
network (CNN), 119, 138
cProfile library
array operations, 225
data science workflow, 227
Profiler class, 226, 227
usage, 223
cProfile.run function, 223, 224
Cross-validation (CV), 92, 95,
148, 150, 351
CSV analysis app, 344
CSV analysis web app, 341, 343
CUDA programming, 303, 304
CUDA version, 309
CuDF DataFrame, 315, 317, 319
CuDF vs. pandas, 314
CuGraph, 304-305
CuML pipeline, 323
CuML version, 322

T. Sarkar, Productive and Efficient Data Science with Python, https://doi.org/10.1007/978-1-4842-8121-5

377

https://doi.org/10.1007/978-1-4842-8121-5

INDEX

CuPy algorithm, 304, 311, 313 hardware/traditional tools, 10-12
NumPy comparison, 312 measure efficiency, 8
interface, 303 measuring efficiency, 12
usage, 310 ML model development, 13
modularized and expressive data
D science pipeline, 9
OOP, 9

Dask, 263, 264 productive data, 15

array, 265 Python, 9
bag, 266, 277-279

clusters, 268, 308, 320
dashboard, 285
DataFrame, 266, 274-277
distributed client, 279-283

unit/functional testing, 13
plotting code, 6
Python libraries, 2
scatterplot, 4

task flow, 2
hood, 264, 265 test module, 8
ML, 285 tools, 328
tasks, 267

workflow stages, 228
Data science methods, 328
Data science pipeline, 13, 230, 239, 257,
301, 349, 354, 362, 372

Dask Future, 284

dask-ml library, 287
Data-as-a-Service (DaaS), 347
Database technologies, 365 Data scientist
Database knowledge, 366 arithmetic, 160, 161
DataOps architectures, 2 OOP, 161-163

Data/problem scaling, 368 Datasets. 129 130. 262

Data repository, 301 Decision boundary visualization, 102-108

Data scaling challenge, 286 Deep learning (DL), 11, 15, 26, 48, 114,
Data science, 147, 211, 345, 354, 361

116, 147, 220
brute-force for loop, 3 Deep neural network (DNN), 114, 216,
combinatorial sign, 5 299 359
defini.tion, 1 . DevOps, 364
generic function, 6, 7 distfit library, 202, 208

inefficient programming Docker Engine, 365

canonical example, 28-35
computing tasks, 35, 36

iterrows(), 4 E
pandas DataFrame, 3 Elastic Compute (EC2) instance, 233
pitfalls eval method, 199
GUI programming/web app Evaluation metrics, 353
development, 14 Execution time

378

Jupyter/IPython magic
command, 43-45
Pythons time module, 37-41, 43
Extend class functionality, 128

F

Filtering operation, 55, 198, 243, 316
fit_generator method, 134, 135
fit_transform method, 203, 205
Flask, 332

Flask app files, 336

Flask ML prediction app, 338

G

Gigabytes (GB), 10
Global Interpreter Lock (GIL), 230
Goodness-of-fit (GOF), 175, 202
Google Cloud Platform (GCP),
348, 355
Google Colaboratory, 234
GPU-accelerated data science, 326
GPU memory, 235, 312, 320
GPU-powered hardware, 320
Graphics processing unit (GPU), 299
GUI/app development, 16

H

Hardware story
Al and ML solutions, 305
hardware development, 305
Hidden gems, 185
Hyperparameter
cross-validation, 150
data/keras model, 148, 149
grid search, 150, 152-155

INDEX

kerasClassifier class, 149
scikit-learn library, 148

Image classification
CNN, 133,134
data generator object, 131, 132
dataset, 129, 130
encapsulate, 135-137
extensions, 141
fit_generator method, 134, 135
image dataset, 138-140
simplifying, 129
testing utility function, 137
Imposter syndrome, 367
Income range prediction model, 333
Informed search, 27
Infrastructure-as-a-Service (IaaS),
234, 346

J

JavaScript library, 330

Job interview, 347, 370-371

Jump-starter packages, 47

Jupyter magic commands, 33, 46

Jupyter notebook, 6, 9, 29, 42, 78, 88, 98,
114, 147, 159, 180, 216, 240, 247,
270, 280, 307, 335, 348, 372

K

Keract, 143

Keras callback class, 119, 120
k-means algorithm, 324

K-means clustering, 325

K-nearest neighbor (KNN), 104, 106
Kubernetes, 365

379

INDEX

L

Linear regression algorithm, 163, 164, 311
Linear search, 20

Line command, 44

Low-cardinality data, 238

Low-code libraries, 101, 349, 354

Machine learning (ML), 1, 17, 213, 216
algorithms, 326
data scale, 219
deep learning, 220
experiments, 354
final validation, 222
key advice, 221
linear regression, 216-218
modular code, 86
standard data science task
flow, 87, 88
systematic evaluation, 96
systematic evaluation,
automation, 96-101
Mathematical operators, 201
Matplotlib and Seaborn, 6, 47,
73-75,77-83
Memory profile, 212, 213, 222
mljar-mercury, 345
MLOps, 364, 373
Model compression, 213
Model scaling challenge, 286
Modern data science, 263, 365
Modern ML systems, 299
Modin, 250
features, 254
out-of-core processing, 251-254
single CPU, 250, 251
Modular Code

380

fast experimentation
business/data science, 118
compile/train functions, 121
final code, 124-126
keras callback, 119, 120
utility functions, 126
visualization function, 123

0]0)%
builders, 116
callbacks, 116
DL task, 114, 116
wrapper, 116

Multiple terabytes (TB), 10

N

Natural language processing (NLP), 33,

193, 305
N-dimensional numerical arrays, 49
ne.evaluate() function, 196
Neural network model, 212, 216, 220
NLTK tokenizer method, 194
NoSQL technologies, 366
Numerical Python, 48
Numexpr method, 197
Numexpr package, 194, 195
NumPy, 47, 194, 358

.append method, 56, 57

arithmetic, 196

arrays, 49, 268-272, 274, 317, 318

array size, 198, 199

arrays vs. native python
computation, 50-52

Boolean filters, 197

built-in vectorize function, 55, 56

chaining methods, 72

complex numbers, 198

complex operation, 196, 197

conversion first/operation later, 53
definition, 48, 83
libraries, 72
logical operators, 197
pandas productivity, 60-70
reading utilities, 57-59
remove orphan dataframes, 71
vectorize logical operations, 54, 55
NumPy operations, 310, 311
NumPy package, 41, 310, 313

O

Object-oriented programming (OOP),
9,114
modularization, 180
separate plotting classes, 175-178
supporting classes, 179
Out-of-core datasets, 230, 231, 240,
251-254, 285

P

Pandas, 47, 186
DataFrame, 200
documentation, 199
eval method, 199
Pandas-specific tricks
column-specific functions, 237
convert data, 238, 239
loading function, 236
Paperspace Gradient, 347
Parallel computing, 257, 288
data science, 258, 261, 262
single core, 259-261
Parallel processing, 240, 252, 262, 290, 300
pd.eval() method, 200

pdpipe

INDEX

dataset, 186-188
laying pipes
chain stages, 189
dropping rows, 190, 191
NLTK, 192-194
scikit-learn, 191, 192
pip command, 159, 181, 194
Platform-as-a-Service (PaaS), 346
plot command, 204
predict method, 164, 170
Productive data science work, 41, 48, 90,
110, 358, 359
PyArrow, 67, 69-70
PyCaret, 349-351, 355
PyPi installer package
code organizational thinking, 159
GitHub, 159
unit/functional tests, 159
writing docstrings, 159
Python app, 47, 338, 360
Python-based data science, 262, 331
Python data science ecosystem, 73, 185
Python language, 182, 232, 301, 358, 375
Python libraries, 2, 60, 147, 193, 223, 240,
327,332, 364
Python package, 48, 372
GitHub integration, 182
instructions, 181
Python processing, 342
Python programs, 85, 358
Python script, 80, 90, 93, 165, 180, 214,
220, 333, 341, 344
PyWeblO library, 327, 339, 344, 355

Q

Quantile-quantile plot, 178
Quiver, 147

381

INDEX

R

Race dropdown choices, 334
Random Forest, 286, 320-324
RAPIDS ecosystem
advantage, 306
CUDA, 302
data preparation and wrangling
tasks, 301
data processing, 302
fantastic ecosystem, 326
internal support, 302
Jupyter server, 308
libraries and APIs, 301
parallelism, 301
RAPIDS environment, 307
Ray, 288
data science, 289
dataset, 291-297
distributed data transformations, 293
ecosystems, 288
VM, 290
Real-life analytics problem, 373
Residuals, 174

S

Saturn Cloud platform, 307, 314, 347
Scalability problems, 230
Scalene, 214
CLI, 222
features, 215
output, 215
usage, 214
Scikit-learn, 286, 287
hyperparameters, 108, 109

382

out-of-box visualization methods, 110
parallel job runner, 109
synthetic data generators, 110
Scikit-learn Task Flow, 88-96
Scripting, 9, 73, 113
Single-threaded programs, 232
Singular value decomposition (SVD),
303, 313
Software engineering practices, 368
Static snapshot, 285
Support Vector Machine (SVM), 102

T

Task scheduling, 267
Testing software modules, 372
Time and space complexities
Big-O notation, 19
binary search, 20
linear time, 21, 22
searching element, 18
worst-case, 18

U

Useless class

fitting method, 166, 168

prediction method, 170

testing method, 168, 169

testing prediction, 170
Utility functions, 58, 87, 126, 127, 165
Utility method

error metrics, 173, 174

plotting true vs. predicted

values, 171-173

INDEX

V Vector registers, 201
Virtual machine (VM), 201, 240, 290

Vaex library, 241 . o :
Visualization function, 122-123

dynamic visualizations, 247, 248
expressions/virtual columns, 244

features, 241 W, X, Y, Z

HDF5 format, .248’2149 » Web apps, 328, 329, 331, 345, 355
memory copying, 243, Windows OS, 240

multidimensional grid, 245, 246 Wrapper functions, 116

usage, 241, 242 Wrapping up, 116, 359
ValDrop method, 191

383

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is Productive and Efficient Data Science?
	A Typical Data Science Pipeline
	Typical Examples of Inefficient Practices in Data Science
	Iterating Over a pandas DataFrame
	Brute-Force for Loop
	Better Approaches: df.iterrows and df.values

	Scatterplot Everything in a Large Dataset
	Combinatorial Explosion

	Writing Similar Plotting Code Multiple Times
	Write a Generic Function Instead

	Not Writing A Test Module

	Some Pitfalls to Avoid
	Don’t Live in Ignorance. Measure Efficiency.
	Don’t Leave Your Code as Orphans. Modularize Them.
	The Python-Powered Data Science Legacy May Have a Problem
	Embrace OOP Principles As Much As You Can

	Don’t Be Limited by Hardware or Traditional Tools
	Local Hardware Memory Limitation Is a Real Issue
	GPU-Accelerated Computing Has Not Focused on Data Science as a Whole
	Always Explore Alternative Libraries/Frameworks

	Efficiency and Productivity Go Hand in Hand
	Measuring Efficiency Goes a Long Way
	Testing Reduces the Chance of Rework
	Planning ML Model Development
	Knowledge of GUI Programming/Web App Development Is Quite Helpful

	Skills and Attitude for Practicing Productive Data Science
	Summary

	Chapter 2: Better Programming Principles for Efficient Data Science
	The Concept of Time and Space Complexities plus Big-O Notation
	A Simple Example: Searching for an Element
	The Big-O Notation
	Complexities: Linear, Logarithmic, Quadratic, and More
	How Much Faster?
	What’s Beyond Linear?

	Why Complexity Matters for Data Science
	Image Data: Cubic-Complexity Algorithms
	Best Regression Model: Exponential Complexity
	Relative Growth Comparison
	AI Is Intractable, but It Works

	Inefficient Programming in Data Science
	Canonical Examples
	Use a Filter Instead of a for Loop
	Use Sets to Find Unique Elements
	Use a Specialized Data Structure for Counting
	Use the itertools Library for Combinatorial Structures

	Lessons Learned from the Examples

	Measuring Code Execution Timing
	Python’s time Module Is Your Friend
	Basic Usage Example
	Many Loops Needed for a Fast Code Block
	A Timing Decorator
	Using the Decorator to Measure Complexity

	Jupyter/IPython Magic Command
	%timeit: Execution Time for Single-Line Code
	%%timeit: Measuring Execution Time for a Block of Code in a Cell

	Summary

	Chapter 3: How to Use Python Data Science Packages More Productively
	Why NumPy Is Faster Than Regular Python Code and By How Much
	NumPy Arrays are Different
	NumPy Array vs. Native Python Computation
	NumPy and Native Python Implementation
	Conversion Adds Overhead

	Using NumPy Efficiently
	Conversion First, Operation Later
	Vectorize Logical Operations
	Use the Built-In Vectorize Function
	Avoid Using the .append Method
	Utilizing NumPy Reading Utilities
	Reading from a Flat Text File
	Utility for Tabular Data in a Text File

	Using pandas Productively
	Setting Values in a New DataFrame
	The .at or .iloc Methods Are Slow
	Use .values to Speed Things Up Significantly

	Specify Data Types Whenever Possible
	Iterating Over a DataFrame
	Brute-Force For Loop
	Better Approaches: df.iterrows and df.values

	Using Modern, Optimized File Formats
	Impressive Speed Improvement
	Read Only What Is Needed
	PyArrow to pandas and Back

	Other Miscellaneous Ideas
	Remove Orphan DataFrames Regularly
	Chaining Methods
	Using Specialized Libraries to Enhance Performance

	Efficient EDA with Matplotlib and Seaborn
	Embrace the Object-Oriented Nature of Matplotlib
	Two Approaches for Creating Panels with Subplots
	A Better Approach with a Clever Function

	Set and Control Image Quality
	Setting DPI Directly in plt.figure()
	Setting DPI and Output Format for Saving Figures
	Adjust Global Parameters

	Tricks with Seaborn
	Use Sampled Data for Large Datasets
	Use pandas Correlation with Seaborn heatmap
	Use Special Seaborn Methods to Reduce Work

	Summary

	Chapter 4: Writing Machine Learning Code More Productively
	Why (and How) to Modularize Code for Machine Learning
	Questions to Ask Yourself
	Start Simple with a Standard Data Science Flow

	A Scikit-learn Task Flow Example
	The Monolithic Example
	Little Boxes, Little Boxes...
	How to Use the Modular Code

	Systematic Evaluation of ML Algorithms in an Automated Fashion
	List of Classifiers
	Function to Automate Model Fitting
	How Does Automation Help?

	Decision Boundary Visualization
	The Custom Function
	Example Results
	Parametric Experimentation

	Other Scikit-learn Utilities and Techniques
	Hyperparameter Search Utilities
	Parallel Job Runner
	Out-of-the-box Visualization Methods
	Synthetic Data Generators

	Summary

	Chapter 5: Modular and Productive Deep Learning Code
	Modular Code and Object-Oriented Style for Productive DL
	Example of a Productive DL Task Flow
	Wrappers, Builders, Callbacks

	Modular Code for Fast Experimentation
	Business/Data Science Question
	Inherit from the Keras Callback
	Model Builder and Compile/Train Functions
	Visualization Function
	Final Analytics Code, Compact and Simple
	Turn the Scripts into a Utility Module
	Summary of Good Practices

	Streamline Image Classification Task Flow
	The Dataset
	Building the Data Generator Object
	Building the Convolutional Neural Net Model
	Training with the fit_generator Method
	Encapsulate All of This in a Single Function
	Testing the Utility Function
	Does It Work (Readily) for Another Dataset?
	Other Extensions

	Activation Maps in a Few Lines of Code
	Activation Maps
	Activation Maps with a Few Lines of Code
	Training
	Activation
	Another Library for Web-Based UI

	How Is This Productive Data Science?

	Hyperparameter Search with Scikit-learn
	Scikit-learn Enmeshes with Keras
	Data and (Preliminary) Keras Model
	The KerasClassifier Class
	Cross-Validation with the Scikit-learn API
	Grid Search with a Updated Model

	Summary

	Chapter 6: Build Your Own ML Estimator/Package
	Why Develop Your Own ML Package?
	A Data Scientist’s Example
	An Arithmetic Example
	Data Scientists Use OOP All the Time
	How Was It Made?

	Linear Regression Estimator—with a Twist
	How Do You Start Building This?
	Base Class Definition
	Adding Useful Methods
	The Fitting Method
	Testing the Method
	Prediction Method
	Testing Prediction

	Adding Utility Methods
	Method for Plotting True vs. Predicted Values
	All Kinds of Error Metrics

	Do More in the OOP Style
	Separate Plotting Classes
	More Supporting Classes and Syntactic Sugar
	Modularization: Importing the Class as a Module

	Publishing It as a Python Package
	Special Instructions for PyPI Hosting
	GitHub Integration

	Summary

	Chapter 7: Some Cool Utility Packages
	Build Pipelines Using pdpipe
	The Dataset
	Start Laying Pipes
	Chain Stages of Pipeline Simply by Adding
	Dropping Rows Based on Their Values

	scikit-learn and NLTK Stages
	Scaling Data with a scikit-learn Method
	Tokenizer from NLTK

	All Together

	Speeding Up NumPy and pandas
	What Is This Library?
	Speeding It Up
	Arithmetic Involving Two Arrays
	A Somewhat More Complex Operation
	Logical Expressions/Boolean Filtering
	Complex Numbers
	Impact of the Array Size

	The pandas eval Method
	How It Works, Supported Operators

	Discover Best-Fitting Distributions Quickly
	Simple Fitting Example
	Plot and Summary
	Be Careful with Small Datasets
	Other Things You Can Do

	Summary

	Chapter 8: Memory and Timing Profile
	Why Profile Memory Usage?
	A Common Scenario
	It’s Not the Model Size (or Compression)

	Scalene: A Neat Little Memory Profiler
	Basic Usage
	Features
	A Concrete Machine Learning Example
	Linear Regression Model
	What Happens as the Model and Data Scale?
	Deep Learning Model

	Key Approaches and Advice
	Key Advice
	Other Things You Can Do with Scalene
	Final Validation Is Sometimes Necessary

	Timing Profile with cProfile
	Basic Usage
	With a Function as an Argument
	Using the Profiler Class
	Data Science Workflow Profiling

	Summary

	Chapter 9: Scalable Data Science
	Common Problems for Scalability
	Out-of-Core (a.k.a. Out of Memory)
	Python Single Threading

	What Options Are Out There?
	Cloud Instances
	Google Colab
	pandas-Specific Tricks
	Load Only the Columns You Need
	Column-Specific Functions (If Applicable)
	Explicitly Specify/Convert Data Types

	Libraries for Parallel Processing
	Libraries for Handling Out-of-Core Datasets
	A Note About the Preferred OS

	Hands-On Example with Vaex
	Features at a Glance
	Basic Usage Example
	No Unnecessary Memory Copying
	Expressions and Virtual Columns
	Computation on a Multidimensional Grid
	Dynamic Visualizations Using Widgets and Other Plotting Libraries
	Vaex Preferred HDF5 Format

	Hands-On Examples with Modin
	Single CPU Core to Multi-Core
	Out-of-Core Processing
	Other Features of Modin

	Summary

	Chapter 10: Parallelized Data Science
	Parallel Computing for Data Science
	Single Core to Multi-Core CPUs
	What Is Parallel in Data Science?

	Parallel Data Science with Dask
	How Dask Works Under the Hood
	Dask Array
	Dask DataFrame
	Dask Bag
	Dask Task Graph
	Works on Many Types of Clusters

	Basic Usage Examples
	Array
	DataFrames
	Dask Bags

	Dask Distributed Client
	Dask Machine Learning Module
	What Problems Does It Address?
	Tight Integration with scikit-learn

	Parallel Computing with Ray
	Features and Ecosystem of Ray
	Simple Parallelization Example
	Ray Dataset for Distributed Loading and Compute

	Summary

	Chapter 11: GPU-Based Data Science for High Productivity
	The RAPIDS Ecosystem
	CuPy
	CuDF
	CuML
	CuGraph
	Hardware Story
	Choice of Environment and Setup

	CuPy vs. NumPy
	Looks and Works Just Like NumPy
	Much Faster Than NumPy
	Data (Array) Size Matters

	CuDF vs. pandas
	Data Reading from an URL
	Indexing, Filtering, and Grouping
	NumPy Array Conversion
	Simple Benchmarking of Speed
	Dask Integration, User-Defined Functions, and Other Features

	CuML vs. scikit-learn
	Classification with Random Forest
	K-Means Clustering

	Summary

	Chapter 12: Other Useful Skills to Master
	Understanding the Basics of Web Technologies
	A Consumer-Facing Layer
	All Useful Data Science Is Delivered Through Web Apps
	What Are Some Pathways to Learn?

	Building Simple Web Apps for Data Science
	Hands-On Example with Flask
	Hands-On Example with PyWebIO
	Other Options and GUI-Building Tools

	Going from Local to the Cloud
	Many Types of Cloud Services for Data Science
	Platform-as-a-Service
	Data-as-a-Service

	Bringing Cloud Power to a Local Environment

	Low-Code Libraries for Productive Data Science
	What Are These Low-Code Libraries?
	Example with PyCaret

	Summary

	Chapter 13: Wrapping It Up
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	What Was Not Discussed in This Book
	MLOps and DataOps
	Container Technologies
	Database Technologies

	General Advice for Upcoming Data Scientists
	Ask Questions and Learn Constantly
	If You Are a Beginner
	At a More Advanced Phase
	Learn a Diverse Set of Skills
	Read About Broad Topics at Every Chance

	Distinguish Yourself at a Job Interview
	Some Useful Resources
	A Data Scientist’s Amazing, Curated List of Useful Tricks and Tools
	Build Installable Software Packages Using Only Jupyter Notebooks
	Learn How to Integrate Unit Testing Principles
	Write Whole Programming and Technology Books Right from Your Jupyter Notebook
	Get Started with MLOps
	Understand the Multi-Faceted Complexity of a Real-Life Analytics Problem

	Begin a New Journey

	Index

