
Pro Python 3
Features and Tools for Professional
Development
—
Third Edition
—
J. Burton Browning
Marty Alchin

Pro Python 3
Features and Tools for

Professional Development

Third Edition

J. Burton Browning
Marty Alchin

Pro Python 3: Features and Tools for Professional Development

ISBN-13 (pbk): 978-1-4842-4384-8		   ISBN-13 (electronic): 978-1-4842-4385-5 
https://doi.org/10.1007/978-1-4842-4385-5

Library of Congress Control Number: 2019936454

Copyright © 2019 by J. Burton Browning and Marty Alchin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484243848. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

J. Burton Browning
Oak Island, NC, USA

Marty Alchin
Agoura Hills, CA, USA

https://doi.org/10.1007/978-1-4842-4385-5

This edition is dedicated to Champion Suyaki Mamma Mia of Misibo
and her sister Champion Sienna of Olympia of Misibo, two of the best

Siamese cats who ever owned me.

v

Chapter 1: Principles and Philosophy��� 1

The Zen of Python�� 2

Beautiful Is Better Than Ugly�� 3

Explicit Is Better Than Implicit�� 4

Simple Is Better Than Complex�� 5

Complex Is Better Than Complicated�� 6

Flat Is Better Than Nested�� 6

Sparse Is Better Than Dense�� 8

Readability Counts�� 9

Special Cases Aren’t Special Enough to Break the Rules��� 10

Practicality Beats Purity��� 10

Errors Should Never Pass Silently�� 11

Unless Explicitly Silenced��� 14

In the Face of Ambiguity, Refuse the Temptation to Guess��� 15

There Should Be One—and Preferably Only One—Obvious Way to Do It������������������������������ 15

Although That Way May Not Be Obvious at First, Unless You’re Dutch����������������������������������� 17

Now Is Better Than Never��� 17

Although Never Is Often Better Than Right Now��� 18

If the Implementation Is Hard to Explain, It’s a Bad Idea�� 18

If the Implementation Is Easy to Explain, It May Be a Good Idea��� 19

Namespaces Are One Honking Great Idea: Let’s Do More of Those!�������������������������������������� 19

Table of Contents

About the Authors���xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

vi

Don’t Repeat Yourself��� 20

Loose Coupling��� 21

The Samurai Principle�� 22

The Pareto Principle��� 22

The Robustness Principle�� 23

Backward Compatibility��� 25

Taking It With You��� 26

Chapter 2: Advanced Basics�� 27

General Concepts��� 27

Iteration�� 27

Caching��� 29

Transparency�� 30

Control Flow��� 32

Catching Exceptions��� 32

Exception Chains�� 37

When Everything Goes Right�� 39

Proceeding Regardless of Exceptions�� 41

Optimizing Loops�� 43

The with Statement�� 44

Conditional Expressions��� 46

Iteration�� 49

Sequence Unpacking�� 50

List Comprehensions�� 52

Generator Expressions�� 53

Set Comprehensions�� 55

Dictionary Comprehensions��� 56

Chaining Iterables Together�� 56

Zipping Iterables Together�� 57

Collections��� 58

Sets�� 58

Named Tuples��� 65

Table of Contents

vii

Ordered Dictionaries��� 66

Dictionaries with Defaults�� 67

Importing Code��� 68

Fallback Imports��� 68

Importing from the Future�� 70

Using __all__ to Customize Imports�� 71

Relative Imports��� 74

The __import__( ) Function�� 74

The importlib Module��� 78

Exciting Python Extensions: Random Number Beacon at NIST�� 79

How to Install the NIST Beacon Library�� 80

Simple Example to Get a Value��� 80

Example to Simulate Rolling Coin Flipping a Certain # Times and Display Heads or Tails����� 81

Taking It With You��� 81

Chapter 3: Functions��� 83

Arguments��� 84

Planning for Flexibility�� 84

Variable Positional Arguments�� 85

Variable Keyword Arguments��� 87

Combining Different Kinds of Arguments��� 89

Invoking Functions with Variable Arguments��� 92

Passing Arguments��� 93

Introspection��� 95

Example: Identifying Argument Values��� 96

Example: A More Concise Version��� 100

Example: Validating Arguments�� 102

Decorators��� 105

Closures�� 107

Wrappers�� 109

Decorators with Arguments�� 111

Decorators with—or without—Arguments�� 114

Table of Contents

viii

Example: Memoization��� 116

Example: A Decorator to Create Decorators��� 118

Function Annotations��� 120

Example: Type Safety�� 121

Factoring Out the Boilerplate�� 131

Example: Type Coercion�� 134

Annotating with Decorators�� 137

Example: Type Safety as a Decorator��� 137

Generators��� 143

Lambdas�� 146

Introspection�� 148

Identifying Object Types��� 149

Modules and Packages�� 150

Docstrings�� 151

Exciting Python Extensions: Statistics��� 154

Install Pandas and Matplotlib��� 154

Make a Text File of Data��� 155

Use Pandas to Display Data�� 155

Running Some Data Analysis�� 156

Plotting with Matplotlib�� 157

Types of Charts��� 158

Combine Matplotlib with Pandas�� 158

Taking It with You��� 159

Chapter 4: Classes��� 161

Inheritance��� 161

Multiple Inheritance�� 165

Method Resolution Order�� 166

Example: C3 Algorithm��� 171

Using super( ) to Pass Control to Other Classes�� 179

Introspection��� 184

Table of Contents

ix

How Classes Are Created��� 186

Creating Classes at Runtime�� 188

Metaclasses��� 190

Example: Plugin Framework��� 192

Controlling the Namespace�� 196

Attributes��� 198

Properties��� 198

Descriptors��� 201

Methods��� 204

Unbound Methods�� 204

Bound Methods�� 205

Class Methods�� 207

Static Methods��� 209

Assigning Functions to Classes and Instances��� 210

Magic Methods�� 211

Creating Instances�� 211

Example: Automatic Subclasses��� 213

Dealing with Attributes��� 215

String Representations��� 218

Exciting Python Extensions: Iterators��� 221

Taking It With You��� 223

Chapter 5: Common Protocols��� 225

Basic Operations�� 226

Mathematical Operations��� 228

Bitwise Operations��� 234

Variations�� 236

Numbers�� 240

Sign Operations�� 242

Comparison Operations�� 243

Table of Contents

x

Iterables��� 244

Example: Repeatable Generators��� 248

Sequences��� 250

Mappings��� 257

Callables�� 259

Context Managers�� 260

Exciting Python Extensions: Scrapy��� 262

Installation�� 263

Running Scrapy�� 263

Project Setup�� 263

Retrieve Web Data with Scrapy�� 265

View a Web Page via Scrapy�� 265

Shell Options�� 265

Taking It With You��� 267

Chapter 6: Object Management��� 269

Namespace Dictionary��� 270

Example: Borg Pattern�� 270

Example: Self-Caching Properties�� 275

Garbage Collection��� 280

Reference Counting�� 281

Cyclical References�� 283

Weak References�� 287

Pickling�� 289

Copying�� 296

Shallow Copies��� 297

Deep Copies�� 299

Exciting Python Extensions: Beautiful Soup��� 301

Installing Beautiful Soup�� 302

Using Beautiful Soup�� 302

Taking It With You��� 303

Table of Contents

xi

Chapter 7: Strings�� 305

Bytes�� 305

Simple Conversion: chr( ) and ord( )�� 306

Complex Conversion: The Struct Module�� 307

Text�� 312

Unicode��� 312

Encodings��� 313

Simple Substitution�� 316

Formatting��� 319

Looking Up Values Within Objects�� 321

Distinguishing Types of Strings�� 321

Standard Format Specification��� 322

Example: Plain Text Table of Contents�� 324

Custom Format Specification��� 326

Exciting Python Extensions: Feedparser�� 327

Feedparser��� 327

How to Install�� 328

How to Use��� 328

Taking It With You��� 329

Chapter 8: Documentation��� 331

Proper Naming��� 332

Comments�� 333

Docstrings�� 334

Describe What the Function Does�� 335

Explain the Arguments��� 335

Don’t Forget the Return Value�� 336

Include Any Expected Exceptions��� 336

Documentation Outside the Code�� 336

Installation and Configuration�� 337

Tutorials�� 337

Reference Documents�� 337

Table of Contents

xii

Documentation Utilities�� 338

Formatting�� 339

Links��� 340

Sphinx��� 343

Exciting Python Extensions: NumPy��� 343

Install NumPy��� 344

Using NumPy�� 344

Working With NumPy Arrays��� 346

Statistical Measures��� 347

Taking It With You��� 347

Chapter 9: Testing�� 349

Test-Driven Development��� 349

Doctests��� 350

Formatting Code��� 350

Representing Output��� 351

Integrating With Documentation��� 353

Running Tests��� 354

The unittest Module��� 356

Setting Up��� 356

Writing Tests��� 357

Other Comparisons��� 363

Testing Strings and Other Sequence Content��� 363

Testing Exceptions�� 364

Testing Identity��� 366

Tearing Down�� 367

Providing a Custom Test Class��� 368

Changing Test Behavior�� 368

Exciting Python Extensions: Pillow��� 369

How to Install Pillow (PIL)��� 369

Image Display: Determine File Size, Type, and Display It�� 369

Image Processing: Crop a Portion of an Image��� 370

Table of Contents

xiii

Image Processing: Changing Image Orientation��� 370

Image Processing: Filters��� 371

Taking It With You��� 371

Chapter 10: Distribution�� 373

Licensing�� 373

GNU General Public License��� 373

Affero General Public License�� 375

GNU Lesser General Public License�� 376

Berkeley Software Distribution License��� 376

Other Licenses�� 378

Packaging�� 378

setup.py�� 379

MANIFEST.in��� 382

The sdist Command�� 384

Distribution�� 386

Exciting Python Extensions: Secrets Module��� 387

Random Numbers��� 388

Password Generation��� 388

Taking It With You��� 390

Chapter 11: Sheets: A CSV Framework�� 391

Building a Declarative Framework��� 392

Introducing Declarative Programming�� 393

To Build or Not to Build?��� 394

Building the Framework��� 396

Managing Options�� 397

Defining Fields�� 401

Attaching a Field to a Class�� 403

Adding a Metaclass�� 405

Bringing It Together�� 409

Ordering Fields��� 410

Table of Contents

xiv

DeclarativeMeta.__prepare__( )��� 411

Column.__init__( )�� 414

Column.__new__( )�� 418

CounterMeta.__call__( )��� 419

Choosing an Option�� 421

Building a Field Library�� 421

StringField�� 423

IntegerColumn�� 424

FloatColumn��� 424

DecimalColumn�� 425

DateColumn�� 426

Getting Back to CSV��� 431

Checking Arguments�� 433

Populating Values��� 436

The Reader��� 439

The Writer��� 444

Taking It With You��� 448

Index�� 449

Table of Contents

xv

Dr. J. Burton Browning earned his doctorate from North Carolina State University.

He has conducted research in areas including distance learning, programming, and

instructional technology. As a lifelong learner and someone who has interests in topics

such as programming, photography, robotics, car restoration, woodworking, hunting,

reading, fishing, and archery, he is never at a loss for something to do. The

art and joy of serving as a professor suits his inquisitive nature. Dr. Browning’s

previous publications include works on Cross-Functional Learning Teams (CFLT), the

Utopian School (teacher-led school model), computer programming (several languages),

open-source software, healthcare statistics and data mining, CNC plasma cutter operation,

educational technology, biography, mobile learning, online teaching, and more.

By day, Marty Alchin works as a senior software engineer at Heroku, and

after that, he writes and codes for fun and community. His blog can be found at

http://martyalchin.com and he has profiles on many other services under the name

Gulopine. In particular, his code can be found on GitHub and his random thoughts

are on Twitter. He also accepts tips for his open source work at https://gittip.com/

gulopine.

About the Authors

http://martyalchin.com/
https://gittip.com/gulopine
https://gittip.com/gulopine

xvii

About the Technical Reviewer

Michael Thomas has worked in software development

for over 20 years as an individual contributor, team lead,

program manager, and vice president of engineering.

Michael has over 10 years of experience working with mobile

devices. His current focus is in the medical sector, using

mobile devices to accelerate information transfer between

patients and healthcare providers.  

xix

Acknowledgments

This third edition covers some exciting library features available in the Python 3

language. Try the samples and expand on your own projects with what you learn. Do not

be afraid to experiment and have fun!

J. Burton Browning

I wouldn’t have even started this project if not for the endless encouragement from my

lovely wife, Angel. She’s been my sounding board, my task manager, my copyeditor, and

my own personal cheerleader. There’s no way I could do anything like this without her

help and support.

I’d also like to thank my technical reviewer, George, for everything he’s done to help

me out. He’s gone above and beyond the limits of his role, helping with everything from

code to grammar and even a good bit of style. After enjoying his help on Pro Django,

I wouldn’t have even signed on for another book without him by my side.

Lastly, I never would’ve considered a book like this if not for the wonderful

community around Python. The willingness of Python programmers to open their minds

and their code is, I believe, unrivaled among our peers. It’s this spirit of openness that

encourages me every day, leading me to discover new things and push myself beyond

the limits of what I knew yesterday.

We learn by doing and by seeing what others have done. I hope that you’ll take the

contents of this book and do more with it than what I’ve done. There’s no better reward

for all this hard work than to see better programmers writing better code.

Marty Alchin

xxi

Introduction

This third edition expands on Marty's original work. Found in each chapter of this third

edition are useful libraries that any Python programmer will find of value. Use what you

learn for your own projects and enjoyment!

J. Burton Browning

When I wrote my first book, Pro Django, I didn’t have much of an idea what my readers

would find interesting. I had gained a lot of information I thought would be useful for

others to learn, but I didn’t really know what would be the most valuable thing they’d

take away. As it turned out, in nearly 300 pages, the most popular chapter in the book

barely mentioned Django at all. It was about Python.

The response was overwhelming. There was clearly a desire to learn more about

how to go from a simple Python application to a detailed framework like Django. It’s all

Python code, but it can be hard to understand based on even a reasonably thorough

understanding of the language. The tools and techniques involved require some extra

knowledge that you might not run into in general use.

This gave me a new goal with Pro Python: to take you from proficient to professional.

Being a true professional requires more experience than you can get from a book, but I

want to at least give you the tools you’ll need. Combined with the rich philosophy of the

Python community, you’ll find plenty of information to take your code to the next level.

Marty Alchin

�Who This Book Is For
The goal is to bring intermediate programmers to a more advanced level; we wrote

this book with the expectation that you’ll already be familiar with Python on some

basic level. You should be comfortable using the interactive interpreter, writing control

structures, and [using] a basic object-oriented approach.

That’s not a very difficult prerequisite. If you’ve tried your hand at writing a Python

application—even if you haven’t released it into the wild, or even finished it—you likely

have all the necessary knowledge to get started. The rest of the information you’ll need is

contained in these pages.

1
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_1

CHAPTER 1

Principles and Philosophy
Over 350 years ago, the famous Japanese swordsman Miyamoto Musashi wrote The Book

of Five Rings about what he learned from fighting and winning over 60 duels between the

ages of 13 and 29. His book might be related to a Zen Buddhist martial arts instruction

book for sword fighting. In the text, which originally was a five-part letter written to

the students at the martial arts school he founded, Musashi outlines general thoughts,

ideals, and philosophical principles to lead his students to success.

If it seems strange to begin a programming book with a chapter about philosophy, that’s

actually why this chapter is so important. Similar to Musashi’s method, Python was created

to embody and encourage a certain set of ideals that have helped guide the decisions of its

maintainers and its community for nearly 20 years. Understanding these concepts will help

you to make the most out of what the language and its community have to offer.

Of course, we’re not talking about Plato or Nietzsche here. Python deals with

programming problems, and its philosophies are designed to help build reliable,

maintainable solutions. Some of these philosophies are officially branded into the

Python landscape, whereas others are guidelines commonly accepted by Python

programmers, but all of them will help you to write code that is powerful, easy to

maintain, and understandable to other programmers.

The philosophies laid out in this chapter can be read from start to finish, but don’t

expect to commit them all to memory in one pass. The rest of this book will refer back to

this chapter by illustrating which concepts come into play in various situations. After all,

the real value of philosophy is in understanding how to apply it when it matters most.

As for practical convention, throughout the book you will see icons for a command

prompt, a script, and scissors. When you see a command prompt icon, the code is

shown as if you were going to try it (and you should) from a command prompt. If you

see a script icon, try the code as a Python script instead. Finally, scissors show only a

code snippet that would need additional snippets to run. The only other conventions

are that you have Python 3.x installed and have at least some computer programming

background.

2

�The Zen of Python
Perhaps the best-known collection of Python philosophy was written by Tim Peters,

longtime contributor to the language and its newsgroup, comp.lang.python.1 This Zen

of Python condenses some of the most common philosophical concerns into a brief list

that has been recorded as both its own Python Enhancement Proposal (PEP) and within

Python itself. Something of an Easter egg, Python includes a module called this.

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one -- and preferably only one -- obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

1�See the newsgroup at http://propython.com/comp-lang-python.

Chapter 1 Principles and Philosophy

http://propython.com/comp-lang-python

3

This list was primarily intended as a humorous accounting of Python philosophy,

but over the years, numerous Python applications have used these guidelines to greatly

improve the quality, readability, and maintainability of their code. Just listing the Zen

of Python is of little value, however, so the following sections will explain each idiom in

more detail.

�Beautiful Is Better Than Ugly
Perhaps it’s fitting that this first notion is arguably the most subjective of the whole

bunch. After all, beauty is in the eye of the beholder, a fact that has been discussed for

centuries. It serves as a blatant reminder that philosophy is far from absolute. Still,

having something like this in writing provides a goal to strive for, which is the ultimate

purpose of all these ideals.

One obvious application of this philosophy is in Python’s own language structure,

which minimizes the use of punctuation, instead preferring English words where

appropriate. Another advantage is Python’s focus on keyword arguments, which help

clarify function calls that would otherwise be difficult to understand. Consider the

following two possible ways of writing the same code, and consider which one looks

more beautiful:

is_valid = form != null && form.is_valid(true)

is_valid = form is not None and form.is_valid(include_hidden_fields=True)

The second example reads a bit more like natural English, and explicitly including

the name of the argument gives greater insight into its purpose. In addition to language

concerns, coding style can be influenced by similar notions of beauty. The name

is_valid, for example, asks a simple question, which the method can then be expected

to answer with its return value. A name such as validate would have been ambiguous

because it would be an accurate name even if no value were returned at all.

It’s dangerous, however, to rely too heavily on beauty as a criterion for a design

decision. If other ideals have been considered and you’re still left with two workable

options, certainly consider factoring beauty into the equation, but do make sure that

other facets are taken into account first. You’ll likely find a good choice using some of the

other criteria long before reaching this point.

Chapter 1 Principles and Philosophy

4

�Explicit Is Better Than Implicit
Although this notion may seem easier to interpret, it’s actually one of the trickier

guidelines to follow. On the surface, it seems simple enough: don’t do anything the

programmer didn’t explicitly command. Beyond just Python itself, frameworks and

libraries have a similar responsibility because their code will be accessed by other

programmers, whose goals will not always be known in advance.

Unfortunately, truly explicit code must account for every nuance of a program’s

execution, from memory management to display routines. Some programming

languages do expect that level of detail from their programmers, but Python doesn’t.

In order to make the programmer’s job easier and allow you to focus on the problem at

hand, there need to be some trade-offs.

In general, Python asks you to declare your intentions explicitly rather than issue

every command necessary to make that intention a reality. For example, when assigning

a value to a variable, you don’t need to worry about setting aside the necessary memory,

assigning a pointer to the value, and cleaning up the memory once it’s no longer in use.

Memory management is a necessary part of variable assignment, so Python takes care of

it behind the scenes. Assigning the value is enough of an explicit declaration of intent to

justify the implicit behavior.

By contrast, regular expressions in the Perl programming language automatically

assign values to special variables any time a match is found. Someone unfamiliar with

the way Perl handles that situation wouldn’t understand a code snippet that relies on

it because variables would seem to come from thin air, with no assignments related to

them. Python programmers try to avoid this type of implicit behavior in favor of more

readable code.

Because different applications will have different ways of declaring intentions, no

single generic explanation will apply to all cases. Instead, this guideline will come up

quite frequently throughout the book, clarifying how it would be applied to various

situations.

tax = .07 #make a variable named tax that is floating point

print (id(tax)) #shows identity number of tax

print("Tax now changing value and identity number")

Chapter 1 Principles and Philosophy

5

tax = .08 #create a new variable, in a different location in memory

 # and mask the first one we created

print (id(tax)) # shows identity of tax

print("Now we switch tax back...")

tax = .07 #change tax back to .07 (mask the second one and reuse first

print (id(tax)) #now we see the original identity of tax

�Simple Is Better Than Complex
This is a considerably more concrete guideline, with implications primarily in the

design of interfaces to frameworks and libraries. The goal here is to keep the interface as

straightforward as possible, leveraging a programmer’s knowledge of existing interfaces

as much as possible. For example, a caching framework could use the same interface as

standard dictionaries rather than inventing a whole new set of method calls.

Of course, there are many other applications of this rule, such as taking advantage

of the fact that most expressions can evaluate to true or false without explicit tests. For

example, the following two lines of code are functionally identical for strings, but notice

the difference in complexity between them:

if value is not None and value != ":

if value:

As you can see, the second option is much simpler to read and understand. All of

the situations covered in the first example will evaluate to false anyway, so the simpler

test is just as effective. It also has two other benefits: it runs faster, having fewer tests to

perform, and it also works in more cases, because individual objects can define their

own method of determining whether they should evaluate to true or false.

It may seem like this is something of a convoluted example, but it’s just the type of

thing that comes up quite frequently. By relying on simpler interfaces, you can often

take advantage of optimizations and increased flexibility while producing more

readable code.

Chapter 1 Principles and Philosophy

6

�Complex Is Better Than Complicated
Sometimes, however, a certain level of complexity is required in order to get the

job done. Database adapters, for example, don’t have the luxury of using a simple

dictionary-style interface but instead require an extensive set of objects and methods to

cover all of their features. The important thing to remember in those situations is that

complexity doesn’t necessarily require it to be complicated.

The tricky bit with this one, obviously, is distinguishing between the two. Dictionary

definitions of each term often reference the other, considerably blurring the line between

the two. For the sake of this guideline, most situations tend to take the following view of

the two terms:

•	 Complex: Made up of many interconnected parts

•	 Complicated: So complex as to be difficult to understand

So in the face of an interface that requires a large number of things to keep track of,

it’s even more important to retain as much simplicity as possible. This can take the form

of consolidating methods onto a smaller number of objects, perhaps grouping objects

into more logical arrangements or even simply making sure to use names that make

sense without having to dig into the code to understand them.

�Flat Is Better Than Nested
This guideline might not seem to make sense at first, but it’s about how structures are

laid out. The structures in question could be objects and their attributes, packages

and their included modules, or even code blocks within a function. The goal is to keep

things as relationships of peers as much possible, rather than parents and children.

For example, take the following code snippet:

if x > 0:

 if y > 100:

 raise ValueError("Value for y is too large.")

 else:

 return y

Chapter 1 Principles and Philosophy

7

else:

 if x == 0:

 return False

 else:

 raise ValueError("Value for x cannot be negative.")

In this example, it’s fairly difficult to follow what’s really going on because the nested

nature of the code blocks requires you to keep track of multiple levels of conditions.

Consider the following alternative approach to writing the same code, flattening it out:

x=1

y=399 # change to 39 and run a second time

def checker(x,y):

 if x > 0 and y > 100:

 raise ValueError("Value for y is too large.")

 elif x > 0:

 return y

 elif x == 0:

 return False

 else:

 raise ValueError("Value for x cannot be negative.")

print(checker(x,y))

Put in a function, and flattened out, you can see how much easier it is to follow the

logic in the second example because all of the conditions are at the same level. It even

saves two lines of code by avoiding the extraneous else blocks along the way. While

this idea is common to programming in general, this is actually the main reason for

the existence of the elif keyword; Python’s use of indentation means that complex if

blocks can otherwise quickly get out of hand. With the elif keyword, there is no switch

or select case structure in Python as in C++ or VB.NET. To handle the issue of needing a

multiple selection structure, Python uses a series of if, elif, elif, else as the situation

requires. There have been PEPs suggesting the inclusion of a switch-type structure;

however, none have been successful.

Chapter 1 Principles and Philosophy

8

Caution  What might not be as obvious is that the refactoring of this example
ends up testing x > 0 twice, where it was only performed once previously. If that
test had been an expensive operation, such as a database query, refactoring it in
this way would reduce the performance of the program, so it wouldn’t be worth it.
This is covered in detail in a later guideline, “Practicality Beats Purity.”

In the case of package layouts, flat structures can often allow a single import to make

the entire package available under a single namespace. Otherwise, the programmer

would need to know the full structure in order to find the particular class or function

required. Some packages are so complex that a nested structure will help reduce clutter

on each individual namespace, but it’s best to start flat and nest only when problems

arise.

�Sparse Is Better Than Dense
This principle largely pertains to the visual appearance of Python source code, favoring

the use of whitespace to differentiate among blocks of code. The goal is to keep highly

related snippets together while separating them from subsequent or unrelated code,

rather than simply having everything run together in an effort to save a few bytes on

disk. Those familiar with JAVA, C++, and other languages that use { } to denote statement

blocks also know that as long as statement blocks lie within the braces, whitespace or

indentation has only readability value and has no effect on code execution.

In the real world, there are plenty of specific concerns to address, such as how to

separate module-level classes or deal with one-line if blocks. Although no single set of

rules will be appropriate for all projects, PEP 82 does specify many aspects of source code

layout that help you adhere to this principle. It provides a number of hints on how to

format import statements, classes, functions, and even many types of expressions.

It’s interesting to note that PEP 8 includes a number of rules about expressions

in particular, which specifically encourage avoiding extra spaces. Take the following

examples, which are straight from PEP 8:

2�See “PEP 8—Style Guide for Python Code,” http://propython.com/pep-8.

Chapter 1 Principles and Philosophy

http://propython.com/pep-8

9

 Yes: spam(ham[1], {eggs: 2})

 No: spam(ham[1], { eggs: 2 })

 Yes: if x == 4: print x, y; x, y = y, x

 No: if x == 4 : print x , y ; x , y = y , x

 Yes: spam(1)

 No: spam (1)

 Yes: dict['key'] = list[index]

 No: dict ['key'] = list [index]

The key to this apparent discrepancy is that whitespace is a valuable resource and

should be distributed responsibly. After all, if everything tries to stand out in any one

particular way, nothing really does stand out at all. If you use whitespace to separate

even highly related bits of code like the preceding expressions, truly unrelated code isn’t

any different from the rest.

That’s perhaps the most important part of this principle and the key to applying it to

other aspects of code design. When writing libraries or frameworks, it’s generally better

to define a small set of unique types of objects and interfaces that can be reused across

the application, maintaining similarity where appropriate and differentiating the rest.

�Readability Counts
Finally, we have a principle everybody in the Python world can get behind, but that’s

mostly because it’s one of the most vague in the entire collection. In a way, it sums up the

whole of Python philosophy in one deft stroke, but it also leaves so much undefined that

it’s worth examining it a bit further.

Readability covers a wide range of issues, such as the names of modules, classes,

functions, and variables. It includes the style of individual blocks of code and the whitespace

between them. It can even pertain to the separation of responsibilities among multiple

functions or classes if that separation is done so that it’s more readable to the human eye.

That’s the real point here: code gets read not only by computers, but also by humans

who have to maintain it. Those humans have to read existing code far more often than

they have to write new code, and it’s often code that was written by someone else.

Readability is all about actively promoting human understanding of code.

Chapter 1 Principles and Philosophy

10

Development is much easier in the long run when everyone involved can simply

open up a file and easily understand what’s going on in it. This seems like a given in

organizations with high turnover, where new programmers must regularly read the code

of their predecessors, but it’s true even for those who have to read their own code weeks,

months, or even years after it was written. Once we lose our original train of thought, all

we have to remind us is the code itself, so it’s valuable to take the extra time to make it

easy to read. Another good practice is to add comments and notes in the code. It doesn’t

hurt and certainly can help even the original programmer when sufficient time has

passed such that you can’t remember what you tried or what your intent was.

The best part is how little extra time it often takes. It can be as simple as adding a blank

line between two functions or naming variables with nouns and functions with verbs. It’s

really more of a frame of mind than a set of rules, however. A focus on readability requires

you to always look at your code as a human being would, rather than only as a computer

would. Remember the Golden Rule: do for others what you’d like them to do for you.

Readability is random acts of kindness sprinkled throughout your code.

�Special Cases Aren’t Special Enough to Break the Rules
Just as “readability counts” is a banner phrase for how we should approach our code

at all times, this principle is about the conviction with which we must pursue it. It’s all

well and good to get it right most of the time, but all it takes is one ugly chunk of code to

undermine all that hard work.

What’s perhaps most interesting about this rule, though, is that it doesn’t pertain

just to readability or any other single aspect of code. It’s really just about the conviction

to stand behind the decisions you’ve made, regardless of what those are. If you’re

committed to backward compatibility, internationalization, readability, or anything else,

don’t break those promises just because a new feature comes along and makes some

things a bit easier.

�Practicality Beats Purity
And here’s where things get tricky. The previous principle encourages you to always do

the right thing, regardless of how exceptional one situation might be, where this one

seems to allow exceptions whenever the right thing gets difficult. The reality is a bit more

complicated, however, and merits some discussion.

Chapter 1 Principles and Philosophy

11

Up to this point, it seemed simple enough at a glance: the fastest, most efficient code

might not always be the most readable, so you may have to accept subpar performance

to gain code that’s easier to maintain. This is certainly true in many cases, and much of

Python’s standard library is less than ideal in terms of raw performance, instead opting

for pure Python implementations that are more readable and more portable to other

environments, such as Jython or IronPython. On a larger scale, however, the problem

goes deeper than that.

When designing a system at any level, it’s easy to get into a head-down mode, where

you focus exclusively on the problem at hand and how best to solve it. This might involve

algorithms, optimizations, interface schemes, or even refactorings, but it typically boils

down to working on one thing so hard that you don’t look at the bigger picture for a

while. In that mode, programmers commonly do what seems best within the current

context, but when backing out a bit for a better look, those decisions don’t match up with

the rest of the application.

It’s not always easy to know which way to go at this point. Do you try to optimize the

rest of the application to match that perfect routine you just wrote? Do you rewrite the

otherwise perfect function in hopes of gaining a more cohesive whole? Or do you just

leave the inconsistency alone, hoping it doesn’t trip anybody up? The answer, as usual,

depends on the situation, but one of those options will often seem more practical in

context than the others.

Typically, it’s preferable to maintain greater overall consistency at the expense of a

few small areas that may be less than ideal. Again, most of Python’s standard library uses

this approach, but there are exceptions. Packages that require a lot of computational

power or get used in applications that need to avoid bottlenecks will often be written in C

to improve performance, at the cost of maintainability. These packages then need to be

ported over to other environments and tested more rigorously on different systems, but

the speed gained serves a more practical purpose than a purer Python implementation

would allow.

�Errors Should Never Pass Silently
Python supports a robust error-handling system, with dozens of built-in exceptions

provided out of the box, but there’s often doubt about when those exceptions should be

used and when new ones are necessary. The guidance provided by this line of the Zen

of Python is quite simple, but as with so many others, there’s much more beneath the

surface.

Chapter 1 Principles and Philosophy

12

The first task is to clarify the definitions of errors and exceptions. Even though these

words, like so many others in the world of computing, are often overloaded with additional

meaning, there’s definite value in looking at them as they’re used in general language.

Consider the following definitions, as found in the Merriam-Webster Dictionary:

•	 An act or condition of ignorant or imprudent deviation from a code of

behavior

•	 A case to which a rule does not apply

The terms have been left out here to help illustrate just how similar the two

definitions can be. In real life, the biggest observed difference between the two terms

is the severity of the problems caused by deviations from the norm. Exceptions are

typically considered less disruptive and thus more acceptable, but both exceptions

and errors amount to the same thing: a violation of some kind of expectation. For the

purposes of this discussion, the term “exception” will be used to refer to any such

departure from the norm.

Note O ne important thing to realize is that not all exceptions are errors. Some
are used to enhance code flow options, such as using StopIteration, which is
documented in Chapter 5. In code flow usage, exceptions provide a way to indicate
what happened inside a function, even though that indication has no relationship to
its return value.

This interpretation makes it impossible to describe exceptions on their own; they

must be placed in the context of an expectation that can be violated. Every time we write

a piece of code, we make a promise that it will work in a specific way. Exceptions break

that promise, so we need to understand what types of promises we make and how they

can be broken. Take the following simple Python function and look for any promises that

can be broken:

def validate(data):

 if data['username'].startswith('_'):

 raise ValueError("Username must not begin with an underscore.")

Chapter 1 Principles and Philosophy

13

The obvious promise here is that of the validate() method: if the incoming data

is valid, the function will return silently. Violations of that rule, such as a username

beginning with an underscore, are explicitly treated as an exception, neatly illustrating

this practice of not allowing errors to pass silently. Raising an exception draws attention

to the situation and provides enough information for the code that called this function to

understand what happened.

The tricky bit here is to see the other exceptions that may get raised. For example,

if the data dictionary doesn’t contain a username key, as the function expects, Python

will raise a KeyError. If that key does exist, but its value isn’t a string, Python will raise

an AttributeError when trying to access the startswith() method. If data isn’t a

dictionary at all, Python would raise a TypeError.

Most of those assumptions are true requirements for proper operation, but they

don’t all have to be. Let’s assume this validation function could be called from a number

of contexts, some of which may not have even asked for a username. In those cases, a

missing username isn’t actually an exception at all but just another flow that needs to be

accounted for.

With that new requirement in mind, validate() can be slightly altered to no longer

rely on the presence of a username key to work properly. All the other assumptions

should stay intact, however, and should raise their respective exceptions when violated.

Here’s how it might look after this change.

def validate(data):

 if 'username' in data and data['username'].startswith('_'):

 raise ValueError("Username must not begin with an underscore.")

And just like that, one assumption has been removed and the function can now run

just fine without a username supplied in the data dictionary. Alternately, you could

now check for a missing username explicitly and raise a more specific exception, if truly

required. How the remaining exceptions are handled depends on the needs of the code

that calls validate(), and there’s a complementary principle to deal with that situation.

Chapter 1 Principles and Philosophy

14

�Unless Explicitly Silenced
Like any other language that supports exceptions, Python allows the code that triggers

exceptions to trap them and handle them in different ways. In the preceding validation

example, it’s likely that the validation errors should be shown to the user in a nicer way

than a full traceback. Consider a small command-line program that accepts a username

as an argument and validates it against the rules defined previously:

import sys

def validate(data):

 if 'username' in data and data['username'].startswith('_'):

 raise ValueError("Username must not begin with an underscore.")

if __name__ == '__main__':

 username = sys.argv[1]

 try:

 validate({'username': username})

 except (TypeError, ValueError) as e:

 print (e)

 #out of range since username is empty and there is no

 #second [1] position

The syntax used to catch the exception and store it as the variable e in this example

was first made available in Python 3.0. In this example, all those exceptions that might be

raised will simply get caught by this code, and the message alone will be displayed to the

user, not the full traceback. This form of error handling allows for complex code to use

exceptions to indicate violated expectations without taking down the whole program.

EXPLICIT IS BETTER THAN IMPLICIT

In a nutshell, this error-handling system is a simple example of the previous rule favoring

explicit declarations over implicit behavior. The default behavior is as obvious as possible,

given that exceptions always propagate upward to higher levels of code, but can be overridden

using an explicit syntax.

Chapter 1 Principles and Philosophy

15

�In the Face of Ambiguity, Refuse the Temptation to Guess
Sometimes, when using or implementing interfaces between pieces of code written by

different people, certain aspects may not always be clear. For example, one common

practice is to pass around byte strings without any information about what encoding they

rely on. This means that if any code needs to convert those strings to Unicode or ensure

that they use a specific encoding, there’s not enough information available to do so.

It’s tempting to play the odds in this situation, blindly picking what seems to be the

most common encoding. Surely it would handle most cases, and that should be enough

for any real-world application. Alas, no. Encoding problems raise exceptions in Python,

so those could either take down the application or they could be caught and ignored,

which could inadvertently cause other parts of the application to think strings were

properly converted when they actually weren’t.

Worse yet, your application now relies on a guess. It’s an educated guess, of course,

perhaps with the odds on your side, but real life has a nasty habit of flying in the face of

probability. You might well find that what you assumed to be most common is in fact less

likely when given real data from real people. Not only could incorrect encodings cause

problems with your application, those problems could occur far more frequently than

you realize.

A better approach would be to only accept Unicode strings, which can then

be written to byte strings using whatever encoding your application chooses. That

removes all ambiguity, so your code doesn’t have to guess anymore. Of course, if your

application doesn’t need to deal with Unicode and can simply pass byte strings through

unconverted, it should accept byte strings only, rather than you having to guess an

encoding to use in order to produce byte strings.

�There Should Be One—and Preferably Only One—Obvious
Way to Do It
Although similar to the previous principle, this one is generally applied only to

development of libraries and frameworks. When designing a module, class, or function,

it may be tempting to implement a number of entry points, each accounting for a slightly

different scenario. In the byte string example from the previous section, for example,

you might consider having one function to handle byte strings and another to handle

Unicode strings.

Chapter 1 Principles and Philosophy

16

The problem with that approach is that every interface adds a burden on developers

who have to use it. Not only are there more things to remember; it may not always be

clear which function to use even when all the options are known. Choosing the right

option often comes down to little more than naming, which can sometimes be a guess.

In the previous example the simple solution is to accept only Unicode strings,

which neatly avoids other problems, but for this principle, the recommendation is

broader. Stick to simpler, more common interfaces where you can, such as the protocols

illustrated in Chapter 5, adding on only when you have a truly different task to perform.

You might have noticed that Python seems to violate this rule sometimes, most

notably in its dictionary implementation. The preferred way to access a value is to use

the bracket syntax, my_dict['key'], but dictionaries also have a get() method, which

seems to do the exact same thing. Conflicts like this come up fairly frequently when

dealing with such an extensive set of principles, but there are often good reasons if

you’re willing to consider them.

In the dictionary case, it comes back to the notion of raising an exception when a

rule is violated. When thinking about violations of a rule, we have to examine the rules

implied by these two available access methods. The bracket syntax follows a very basic

rule: return the value referenced by the key provided. It’s really that simple. Anything

that gets in the way of that, such as an invalid key, a missing value, or some additional

behavior provided by an overridden protocol, results in an exception being raised.

The get() method, by contrast, follows a more complicated set of rules. It checks to

see whether the provided key is present in the dictionary; if it is, the associated value is

returned. If the key isn’t in the dictionary, an alternate value is returned instead. By default

the alternate value is None, but that can be overridden by providing a second argument.

By laying out the rules each technique follows, it becomes clearer why there are two

different options. Bracket syntax is the common use case, failing loudly in all but the

most optimistic situations, while get() offers more flexibility for those situations that

need it. One refuses to allow errors to pass silently, while the other explicitly silences

them. Essentially, providing two options allows dictionaries to satisfy both principles.

More to the point, though, is that the philosophy states there should only be one obvious

way to do it. Even in the dictionary example, which has two ways to get values, only one—the

bracket syntax—is obvious. The get() method is available, but it isn’t very well known, and

it certainly isn’t promoted as the primary interface for working with dictionaries. It’s okay to

provide multiple ways to do something as long as they’re for sufficiently different use cases,

and the most common use case is presented as the obvious choice.

Chapter 1 Principles and Philosophy

17

�Although That Way May Not Be Obvious at First, Unless
You’re Dutch
This is a nod to the homeland of Python’s creator and “Benevolent Dictator for Life,” as

he is known, Guido van Rossum. More importantly, however, it’s an acknowledgment

that not everyone sees things the same way. What seems obvious to one person might

seem completely foreign to somebody else, and though there are any number of reasons

for those types of differences, none of them are wrong. Different people are different, and

that’s all there is to it.

The easiest way to overcome these differences is to properly document your work so

that even if the code isn’t obvious, your documentation can point the way. You might still

need to answer questions beyond the documentation, so it’s often useful to have a more

direct line of communication with users, such as a mailing list. The ultimate goal is to

give users an easy way to know how you intend them to use your code. Use the # sign for

single line comments or “”” “”” triple quotes for block comments to the advantage of you

and your users.

print('Block comments')

"""

This

is

a'

block

comment """

print('Single line comments too!')

bye for now!

�Now Is Better Than Never
We’ve all heard the saying “Don’t put off ’til tomorrow what you can do today.” That’s

a valid lesson for all of us, but it happens to be especially true in programming. By the

time we get around to something we’ve set aside, we might have long since forgotten the

information we need to do it right. The best time to do it is when it’s on our mind.

Chapter 1 Principles and Philosophy

18

Okay, so that part was obvious, but as Python programmers, this antiprocrastination

clause has special meaning for us. Python as a language is designed in large part to help

you spend your time solving real problems rather than fighting with the language just to

get the program to work.

This focus lends itself well to iterative development, allowing you to quickly

rough out a basic implementation and then refine it over time. In essence, it’s another

application of this principle because it allows you to get working quickly rather than

trying to plan everything out in advance, possibly never actually writing any code.

�Although Never Is Often Better Than Right Now
Even iterative development takes time. It’s valuable to get started quickly, but it can be

very dangerous to try to finish immediately. Taking the time to refine and clarify an idea

is essential to getting it right, and failing to do so usually produces code that could be

described as—at best—mediocre. Users and other developers will generally be better off

not having your work at all than having something substandard.

We have no way of knowing how many otherwise useful projects never see the

light of day because of this notion. Whether in that case or in the case of a poorly made

release, the result is essentially the same: people looking for a solution to the same

problem you tried to tackle won’t have a viable option to use. The only way to really help

anyone is to take the time required to get it right.

�If the Implementation Is Hard to Explain, It’s a Bad Idea
This is something of a combination of two other rules already mentioned: simple is

better than complex, and complex is better than complicated. The interesting thing

about the combination here is that it provides a way to identify when you’ve crossed

the line from simple to complex or from complex to complicated. When in doubt, run

it by someone else and see how much effort it takes to get them on board with your

implementation.

This also reinforces the importance of communication to good development. In

open source development, like that of Python, communication is an obvious part of the

process, but it’s not limited to publicly contributed projects. Any development team can

provide greater value if its members talk to each other, bounce ideas around, and help

refine implementations. Single-person development teams can sometimes prosper, but

they’re missing out on crucial editing that can only be provided by others.

Chapter 1 Principles and Philosophy

19

�If the Implementation Is Easy to Explain, It May Be a
Good Idea
At a glance, this seems to be just an obvious extension of the previous principle, simply

swapping “hard” and “bad” for “easy” and “good.” Closer examination reveals that

adjectives aren’t the only things that changed. A verb changes its form as well: “is”

became “may be.” That may seem like a subtle, inconsequential change, but it’s actually

quite important.

Although Python highly values simplicity, many very bad ideas are easy to explain.

Being able to communicate your ideas to your peers is valuable, but only as a first step

that leads to real discussion. The best thing about peer review is the ability for different

points of view to clarify and refine ideas, turning something good into something great.

Of course, that’s not to discount the abilities of individual programmers. One person

can do amazing things all alone, there’s no doubt about it. But most useful projects

involve other people at some point or another, even if only your users. Once those other

people are in the know, even if they don’t have access to your code, be prepared to

accept their feedback and criticism. Even though you may think your ideas are great,

other perspectives often bring new insight into old problems, which only serves to make

it a better product overall.

�Namespaces Are One Honking Great Idea: Let’s Do
More of Those!
In Python, namespaces are used in a variety of ways—from package and module

hierarchies to object attributes—to allow programmers to choose the names of functions

and variables without fear of conflicting with the choices of others. Namespaces avoid

collisions without requiring every name to include some kind of unique prefix, which

would otherwise be necessary.

For the most part, you can take advantage of Python’s namespace handling without

really doing anything special. If you add attributes or methods to an object, Python will

take care of the namespace for that. If you add functions or classes to a module, or a

module to a package, Python takes care of it. But there are a few decisions you can make

to explicitly take advantage of better namespaces.

Chapter 1 Principles and Philosophy

20

One common example is wrapping module-level functions into classes. This creates

a bit of a hierarchy, allowing similarly named functions to coexist peacefully. It also has

the benefit of allowing those classes to be customized using arguments, which can then

affect the behavior of the individual methods. Otherwise, your code might have to rely

on module-level settings that are modified by module-level functions, restricting how

flexible it can be.

Not all sets of functions need to be wrapped up into classes, however. Remember

that flat is better than nested, so as long as there are no conflicts or confusion, it’s usually

best to leave those at the module level. Similarly, if you don’t have a number of modules

with similar functionality and overlapping names, there’s little point in splitting them up

into a package.

�Don’t Repeat Yourself
Designing frameworks can be a very complicated process; programmers are often

expected to specify a variety of different types of information. Sometimes, however,

the same information might need to be supplied to multiple different parts of the

framework. How often this happens depends on the nature of the framework involved,

but having to provide the same information multiple times is always a burden and

should be avoided wherever possible.

Essentially, the goal is to ask your users to provide configurations and other

information just once and then use Python’s introspection tools, described in detail in

later chapters, to extract that information and reuse it in the other areas that need it.

Once that information has been provided, the programmer’s intentions are explicitly

clear, so there’s still no guesswork involved at all.

It’s also important to note that this isn’t limited to your own application. If your

code relies on the Django web framework, for instance, you have access to all the

configuration information required to work with Django, which is often quite extensive.

You might only need to ask your users to point out which part of their code to use and

access its structure to get anything else you need.

In addition to configuration details, code can be copied from one function to another

if they share some common behaviors. In accordance with this principle, it’s often better

to move that common code out into a separate utility function. Then, each function that

needs that code can defer to the utility function, paving the way for future functions that

need that same behavior.

Chapter 1 Principles and Philosophy

21

This type of code factoring showcases some of the more pragmatic reasons to avoid

repetition. The obvious advantage to reusable code is that it reduces the number of

places where bugs can occur. Better yet, when you find a bug you can fix it in one place,

rather than worry about finding all the places that same bug might crop up. Perhaps

best of all, having the code isolated in a separate function makes it much easier to test

programmatically, to help reduce the likelihood of bugs occurring in the first place.

Testing is covered in detail in Chapter 9.

Don’t Repeat Yourself (DRY) is also one of the most commonly abbreviated

principles, given that its initials spell a word so clearly. Interestingly, though, it can

actually be used in a few different ways, depending on context.

•	 An adjective: “Wow, this feels very DRY!”

•	 A noun: “This code violates DRY.”

•	 A verb: “Let’s DRY this up a bit, shall we?”

�Loose Coupling
Larger libraries and frameworks often have to split their code into separate subsystems

with different responsibilities. This is typically advantageous from a maintenance

perspective, with each section containing a substantially different aspect of the code.

The concern here is about how much each section has to know about the others,

because it can negatively affect the maintainability of the code.

It’s not about having each subsystem completely ignorant of the others, nor is it to

avoid them ever interacting at all. Any application written to be that separated wouldn’t

be able to actually do anything of interest. Code that doesn’t talk to other code just can’t

be useful. Instead, it’s more about how much each subsystem relies on how the other

subsystems work.

In a way, you can look at each subsystem as its own complete system, with its own

interface to implement. Each subsystem can then call into the other ones, supplying only

the information pertinent to the function being called and getting the result, all without

relying on what the other subsystem does inside that function.

There are a few good reasons for this behavior, the most obvious being that it helps make

the code easier to maintain. If each subsystem only needs to know how its own functions

work, changes to those functions should be localized enough to not cause problems with

other subsystems that access them. You’re able to maintain a finite collection of publicly

reliable interfaces while allowing everything else to change as necessary over time.

Chapter 1 Principles and Philosophy

22

Another potential advantage of loose coupling is how much easier it is to split

off a subsystem into its own full application, which can then be included in other

applications later on. Better yet, applications created like this can often be released to the

development community at large, allowing others to utilize your work or even expand on

it if you choose to accept patches from outside sources.

�The Samurai Principle
As I stated in the opening to this chapter, the samurai warriors of ancient Japan were

known for following the code of Bushido, which governed most of their actions in

wartime. One particularly well-known aspect of Bushido was that warriors should return

from battle victorious or not at all. The parallel in programming, as may be indicated

by the keyword return, is the behavior of functions in the event that any exceptions are

encountered along the way.

It’s not a unique concept among those listed in this chapter, but rather an extension

of the notion that errors should never pass silently and should avoid ambiguity. If

something goes wrong while executing a function that ordinarily returns a value, any

return value could be misconstrued as a successful call, rather than identifying that an

error occurred. The exact nature of what occurred is very ambiguous and may produce

errors down the road, in code that’s unrelated to what really went wrong.

Of course, functions that don’t return anything interesting don’t have a problem with

ambiguity because nothing is relying on the return value. Rather than allowing those

functions to return without raising exceptions, they’re actually the ones that are most in

need of exceptions. After all, if there’s no code that can validate the return value, there’s

no way of knowing that anything went wrong.

�The Pareto Principle
In 1906, Italian economist Vilfredo Pareto noted that 80 percent of the wealth in Italy

was held by just 20 percent of its citizens. Since then this idea has been put to the test

in a number of fields beyond economics, and similar patterns have been found. The

exact percentages may vary, but the general observation has emerged over time: the vast

majority of effects in many systems are a result of just a small number of the causes.

Chapter 1 Principles and Philosophy

23

In programming, this principle can manifest itself in a number of different ways.

One of the more common is with regard to early optimization. Donald Knuth, the

noted computer scientist, once said that premature optimization is the root of all evil,

and many people take that to mean that optimization should be avoided until all other

aspects of the code have been finished.

Knuth was referring to a focus solely on performance too early in the process. It’s

useless to try to tweak every ounce of speed out of a program until you’ve verified that it

even does what it’s supposed to. The Pareto principle teaches us that a little bit of work at

the outset can have a large impact on performance.

Striking that balance can be difficult, but there are a few easy things that can be done

while designing a program, which can handle the bulk of the performance problems

with little effort. Some such techniques are listed throughout the remainder of this book,

under sidebars labeled Optimization.

Another application of the Pareto principle involves prioritization of features in a

complex application or framework. Rather than trying to build everything all at once,

it’s often better to start with the minority of features that will provide the most benefit to

your users. Doing so allows you to get started on the core focus of the application and get

it out to the people who need to use it, while you can refine additional features based on

feedback.

�The Robustness Principle
During early development of the Internet, it was evident that many of the protocols

being designed would have to be implemented by countless different programs and

that they’d all have to work together in order to be productive. Getting the specifications

right was important, but getting people to implement them interoperably was even more

important.

In 1980, the Transmission Control Protocol (TCP) was updated with RFC 761,3 which

included what has become one of the most significant guidelines in protocol design:

be conservative in what you do; be liberal in what you accept from others. It was called

“a general principle of robustness,” but it’s also been referred to as Postel’s law, after its

author, Jon Postel.

3�See “title,” http://propython.com/rfc-761.

Chapter 1 Principles and Philosophy

http://propython.com/rfc-761

24

It’s easy to see how this principle would be useful when guiding the implementations

of protocols designed for the Internet. Essentially, programs that follow this principle

will be able to work much more reliably with programs that don’t. By sticking to the rules

when generating output, that output is more likely to be understood by software that

doesn’t necessarily follow the specification completely. Likewise, if you allow for some

variations in the incoming data, incorrect implementations can still send you data you

can understand.

Moving beyond protocol design, an obvious application of this principle is in

functions. If you can be a bit liberal in what values you accept as arguments, you can

accommodate usage alongside other code that provides different types of values. A

common example is a function that accepts floating point numbers, which can work just

as well when given an integer or a decimal because they can both be converted to floats.

The return value is also important to the integration of a function with the code

that calls it. One common way this comes into play is when a function can’t do what it’s

supposed to and thus can’t produce a useful return value. Some programmers will opt to

return None in these cases, but then it’s up to the code that called the function to identify

that and handle it separately. The samurai principle recommends that in these cases, the

code should raise an exception rather than return an unusable value. Because Python

returns None by default, if no other value was returned, it’s important to consider the

return value explicitly.

It’s always useful, though, to try to find some return value that would still satisfy

requirements. For example, for a function that’s designed to find all instances of a

particular word within a passage of text, what happens when the given word can’t

be found at all? One option is to return None; another is to raise some WordNotFound

exception.

If the function is supposed to return all instances, however, it should already be

returning a list or an iterator, so finding no words presents an easy solution: return an

empty list or an iterator that produces nothing. The key here is that the calling code can

always expect a certain type of value, and as long as the function follows the robustness

principle, everything will work just fine.

If you’re unsure which approach would be best, you can provide two different

methods, each with a different set of intentions. In Chapter 5, I will explain how

dictionaries can support both get() and __getitem__() methods, each reacting

differently when a specified key doesn’t exist.

Chapter 1 Principles and Philosophy

25

In addition to code interaction, robustness also applies when dealing with the

people who use the software. If you’re writing a program that accepts input from human

beings, whether it is text- or mouse-based, it’s always helpful to be lenient with what

you’re given. You can allow command-line arguments to be specified out of order, make

buttons bigger, allow incoming files to be slightly malformed, or anything else that helps

people use the software without sacrificing being explicit.

�Backward Compatibility
Programming is iterative in nature, and nowhere is that more noticeable than when you

distribute your code for other people to use in their own projects. Each new version not

only comes with new features but also the risk that existing features will change in some

way that will break code that relies on its behavior. By committing yourself to backward

compatibility, you can minimize that risk for your users, giving them more confidence in

your code.

Unfortunately, backward compatibility is something of a double-edged sword when

it comes to designing your application. On the one hand, you should always try to make

your code the best it can be, and sometimes that involves changes to repair decisions

that were made early on in the process. On the other hand, once you make major

decisions, you need to commit to maintaining those decisions in the long run. The two

sides run contrary to each other, so it’s quite a balancing act.

Perhaps the biggest advantage you can give yourself is to make a distinction between

public and private interfaces. Then, you can commit to long-term support of the public

interfaces, while leaving the private interfaces for more rigorous refinement and change.

Once the private interfaces are more finalized, they can then be promoted to the public

API and documented for users.

Documentation is one of the main differentiators between public and private

interfaces, but naming can also play an important role. Functions and attributes that

begin with an underscore are generally understood to be private in nature, even without

documentation. Adhering to this will help your users look at the source and decide

which interfaces they’d like to use, taking on the risk themselves if they choose to use the

private ones.

Chapter 1 Principles and Philosophy

26

Sometimes, however, even the publicly safe interfaces might need to change in order

to accommodate new features. It’s usually best to wait until a major version number

change, though, and warn users in advance of the incompatible changes that will

occur. Then, going forward, you can commit to the long-term compatibility of the new

interfaces. That’s the approach Python took while working toward its long-awaited 3.0

release.

�Taking It With You
The principles and philosophies presented in this chapter represent many of the ideals

that are highly valued by the Python community at large, but they’re of value only when

applied to actual design decisions in real code. The rest of this book will frequently refer

to this chapter, explaining how these decisions went into the code described. In the next

chapter, I’ll examine some of the more fundamental techniques that you can build on to

put these principles to work in your code.

Chapter 1 Principles and Philosophy

27
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_2

CHAPTER 2

Advanced Basics
Like any other book on programming, the remainder of this book relies on quite a few

features that may or may not be considered commonplace by readers. You, the reader,

are expected to know a good deal about Python and programming in general, but there

are a variety of lesser-used features that are extremely useful in the operations of many

techniques shown throughout the book.

Therefore, as unusual as it may seem, this chapter focuses on a concept of advanced

basics. The tools and techniques in this chapter aren’t necessarily common knowledge,

but they form a solid foundation for more advanced implementations to follow. Let’s start

off with some of the general concepts that tend to come up often in Python development.

�General Concepts
Before getting into more concrete details, it’s important to get a feel for the concepts

that lurk behind the specifics covered later in this chapter. These are different from the

principles and philosophies discussed in Chapter 1 in that they are concerned more with

actual programming techniques, whereas those discussed previously are more generic

design goals.

Think of Chapter 1 as a design guide, whereas the concepts presented in this chapter

are more of an implementation guide. Of course, there’s only so specific a description

like this can get without getting bogged down in too many details, so this section will

defer to chapters throughout the rest of the book for more detailed information.

�Iteration
Although there is a nearly infinite number of different types of sequences that might

come up in Python code—more on that later in this chapter and in Chapter 5—most

code that uses them can be placed in one of two categories: those that actually use the

sequence as a whole and those that just need the items within it. Most functions use

28

both approaches in various ways, but the distinction is important in order to understand

what tools Python makes available and how they should be used.

Looking at things from a purely object-oriented perspective, as opposed to

a functional programming perspective, it’s easy to understand how to work with

sequences that your code actually needs to use. You’ll have a concrete item such as a

list, set, or dictionary, which not only has data associated with it but also has methods

that allow for accessing and modifying that data. You may need to iterate over it

multiple times, access individual items out of order, or return it from other methods for

other code to use, all of which works well with more traditional object usage.

Then again, you may not actually need to work with the entire sequence as a

whole; you may be interested solely in each item within it. This is often the case when

looping over a range of numbers, for instance, because what’s important is having each

number available within the loop, not having the whole list of numbers available.

The difference between the two approaches is primarily about intention, but

there are technological implications as well. Not all sequences need to be loaded

into memory, and many don’t even need to have a finite upper limit at all, such as a

network stream. This category includes the set of positive odd numbers, squares of

integers, and the Fibonacci sequence, all of which are infinite in length and easily

computable. Therefore, they’re best suited for pure iteration, without the need to

populate a list in advance, which also saves a bit of memory.

The main benefit to this is memory allocation. A program designed to print out

the entire range of the Fibonacci sequence only needs to keep a few variables in

memory at any given time, because each value in the sequence can be calculated

from the two previous values. Populating a list of the values, even with a limited

length, requires loading all the included values into memory before iterating over

them. If the full list will never be acted on as a whole, it’s far more efficient to simply

generate each item as it’s necessary and discard it once it’s no longer required in

order to produce new items.

Python as a language offers a few different ways of implementation to iterate over

a sequence without pushing all its values into memory at once. In its standard library,

Python uses those techniques in many of its provided features, which may sometimes

lead to confusion. Python allows you to write a for loop without a problem, but many

sequences won’t have the methods and attributes you might expect to see on a list.

To see two types of looping in action, try the following:

Chapter 2 Advanced Basics

29

last_name='Smith'

count=0

for letter in last_name:

 print(letter,' ' ,count) # note a space between ' '

 count += 1

print('---and the second loop----')

count = 0

while (count<5):

 print(last_name[count], ' ', count)

 count += 1

The section on iteration later in this chapter covers some of the more common ways

to create iterable sequences and also a simple way to convert those sequences to lists

when you truly do need to operate on the sequence as a whole. Sometimes, however,

it’s useful to have an object that can function in both respects, which requires the use of

caching.

�Caching
Outside of computing, a cache is a hidden collection, typically of items either too

dangerous or too valuable to be made directly accessible. The definition in computing is

related, with caches storing data in a way that doesn’t impact a public-facing interface.

Perhaps the most common real-world example is a Web browser, which downloads a

document from the Web when it’s first requested but keeps a copy of that document.

When the user requests that same document again (if the document has not changed)

at a later time, the browser loads the private copy and displays it to the user instead of

hitting the remote server again.

In the browser example, the public interface could be the address bar, an entry in

the user’s favorites or a link from another web site, where the user never has to indicate

whether the document should be retrieved remotely or accessed from a local cache.

Instead, the software uses the cache to reduce the number of remote requests that

need to be made, as long as the document doesn’t change quickly. The details of Web

Chapter 2 Advanced Basics

30

document caching are beyond the scope of this book, but it’s a good example of how

caching works in general:

import webbrowser

webbrowser.open_new('http://www.python.org/')

#more info at: https://docs.python.org/3.4/library/webbrowser.html

More specifically, a cache should be looked at as a time-saving or performance-

boosting utility that doesn’t explicitly need to exist in order for a feature to work properly.

If the cache gets deleted or is otherwise unavailable the function that utilizes it should

continue to work properly, perhaps with a dip in performance because it needs to refetch

the items that were lost. That also means that code utilizing a cache must always accept

enough information to generate a valid result without the use of the cache.

The nature of caching also means that you need to be careful about ensuring that

the cache is as up-to-date as your needs demand. In the Web browser example, servers

can specify how long a browser should hold on to a cached copy of a document before

requesting a fresh one from the server. In simple mathematical examples, the result can

be cached theoretically forever, because the result should always be the same, given the

same input. Chapter 3 covers a technique called memoization that does exactly that.

A useful compromise is to cache a value indefinitely but update it immediately when

the value is updated. This isn’t always an option, particularly if values are retrieved from

an external source, but when the value is updated within your application, updating the

cache is an easy step to include, which saves the trouble of having to invalidate the cache

and retrieve the value from scratch later on. Doing so can incur a performance penalty,

however, so you’ll have to weigh the merits of live updates against the time you might

lose by doing so.

�Transparency
Whether describing building materials, image formats, or government actions, transparency

refers to the ability to see through or inside of something, and its use in programming

is no different. For our purposes, transparency refers to the ability of your code to see—

and, in many cases, even edit—nearly everything that the computer has access to.

Chapter 2 Advanced Basics

31

Python doesn’t support the notion of private variables typical in many other

programming languages, so all attributes are accessible to any requester. Some languages

consider that type of openness to be a risk to maintainability, instead allowing the code

that implements an object to be solely responsible for that object’s data. Although that

does prevent some occasional misuses of internal data structures, Python doesn’t take

any measures to restrict access to that data.

Although the most obvious use of transparent access is in class instance attributes—

which is where many other languages allow more privacy—Python allows you to inspect

a wide range of aspects of objects and the code that implements them. In fact, you can

even get access to the compiled bytecode that Python uses to execute functions. Here are

just a few examples of information available at runtime:

•	 Attributes of an object

•	 The names of attributes available for an object

•	 The type of an object

•	 The module in which a class or function was defined

•	 The location (typically a filename) in which a module was loaded

•	 The bytecode of a function object

Most of this information is only used internally, but it’s available because there

are potential uses that can’t be accounted for when code is first written. Accessing

or examining that information at runtime is called introspection and is a common

tactic in systems that implement principles such as DRY (Don’t Repeat Yourself). The

definition by Hunt and Thomas for DRY is that “Every piece of knowledge must have

a single, unambiguous, authoritative representation within a system” (The Pragmatic

Programmer, 2000, by A. Hunt and D. Thomas).

The rest of this book contains many different introspection techniques in the

sections where such information is available. For those rare occasions where data should

indeed be protected, Chapters 3 and 4 show how data can show the intent of privacy or

be hidden entirely.

Chapter 2 Advanced Basics

32

�Control Flow
Generally speaking, the control flow of a program is the path the program takes during

execution. The more common examples of control flow, including of course the sequence

structure, are the if, for, and while blocks, which are used to manage the most

fundamental branches your code could need. Those blocks are also some of the first

things a Python programmer will learn, so this section will instead focus on some of the

lesser-used and underutilized control flow mechanisms.

�Catching Exceptions
Chapter 1 explained how Python philosophy encourages the use of exceptions wherever

an expectation is violated, but expectations often vary between different uses. This is

especially common when one application or module relies on another, but it’s also quite

common within a single application. Essentially, any time one function calls another,

it can add its own expectations on top of the exceptions the called function already

handles.

Exceptions are raised with a simple syntax using the raise keyword, but catching

them is slightly more complicated because it uses a combination of keywords. The try

keyword begins a block where you feel exceptions are likely to occur, while the except

keyword marks a block to execute when an exception is raised. The first part is easy,

as try doesn’t have anything to go along with it, and the simplest form of except also

doesn’t require any additional information:

def count_lines(filename):

 """

 Count the number of lines in a file. If the file can't be

 opened, it should be treated the same as if it was empty.

 """

 try:

 return len(open(filename, 'r').readlines())

 except:

 print('exception error reading the file or calculating lines!')

Chapter 2 Advanced Basics

33

 # Something went wrong reading the file

 # or calculating the number of lines.

 return 0

myfile=input('Enter a file to open: ')

print(count_lines(myfile))

Any time an exception is raised inside the try block, the code in the except block

will be executed. As it stands, this doesn’t make any distinction among the many various

exceptions that could be raised; no matter what happens, the function will always return

a number. It’s actually fairly rare that you’d want to do that, however, because many

exceptions should in fact propagate up to the caller—errors should never pass silently.

Some notable examples are SystemExit and KeyboardInterrupt, both of which should

usually cause the program to stop running.

In order to account for those and other exceptions that your code shouldn’t interfere

with, the except keyword can accept one or more exception types that should be caught

explicitly. Any others will simply be raised as if you didn’t have a try block at all. This

focuses the except block on just those situations that should definitely be handled, so

your code only has to deal with what it’s supposed to manage. Make the minor changes

to what you just tried, as shown here, to see this in action:

def count_lines(file_name):

 """

 Count the number of lines in a file. If the file can't be

 opened, it should be treated the same as if it was empty.

 """

 try:

 return len(open(file_name, 'r').readlines())

 except IOError:

 # Something went wrong reading the file.

 return 0

my_file=input('Enter a file to open: ')

print(count_lines(my_file))

Chapter 2 Advanced Basics

34

By changing the code to accept IOError explicitly, the except block will only execute

if there was a problem accessing the file from the filesystem. Any other errors, such as a

filename that’s not even a string, will be raised outside of this function, to be handled by

some other piece of code in the call stack.

If you need to catch multiple exception types, there are two approaches. The first and

easiest is to simply catch some base class that all the necessary exceptions derive from.

Because exception handling matches against the specified class and all its subclasses,

this approach works quite well when all the types you need to catch do have a common

base class. In the line counting example, you could encounter either IOError or OSError,

both of which are descendants of EnvironmentError:

def count_lines(file_name):

 """

 Count the number of lines in a file. If the file can't be

 opened, it should be treated the same as if it was empty.

 """

 try:

 return len(open(file_name, 'r').readlines())

 except EnvironmentError:

 # Something went wrong reading the file.

 return 0

Note E ven though we’re only interested in IOError and OSError, all
subclasses of EnvironmentError will get caught as well. In this case, that’s fine
because those are the only subclasses of EnvironmentError, but in general
you’ll want to make sure you’re not catching too many exceptions.

Other times, you may want to catch multiple exception types that don’t share a

common base class or perhaps limit it to a smaller list of types. In these cases, you need

to specify each type individually, separated by commas. In the case of count_lines(),

there’s also the possibility of a TypeError that could be raised if the filename passed in

isn’t a valid string:

Chapter 2 Advanced Basics

35

def count_lines(file_name):

 """

 Count the number of lines in a file. If the file can't be

 opened, it should be treated the same as if it was empty.

 """

 try:

 return len(open(file_name, 'r').readlines())

 except (EnvironmentError, TypeError):

 # Something went wrong reading the file.

 return 0

If you need to access the exception object itself, perhaps to log the message for later,

you can do so by adding an as clause with a name (as e in the next example), which will

be bound to the exception object:

import logging

def count_lines(file_name):

 """

 Count the number of lines in a file. If the file can't be

 opened, it should be treated the same as if it was empty.

 """

 try:

 return len(open(file_name, 'r').readlines())

 except (EnvironmentError, TypeError) as e:

 # Something went wrong reading the file.

 logging.error(e)

 return 0

Chapter 2 Advanced Basics

36

COMPATIBILITY: PRIOR TO 3.0

In Python 3.0, the syntax for catching exceptions changed to be more explicit, alleviating some

common errors. In older versions, a comma separated the exception types from the variable

used to store the exception object. In order to catch more than one exception type, you’d need

to explicitly wrap the types in parentheses to form a tuple.

It was very easy, therefore, when trying to catch two exception types but not store the value

anywhere, to accidentally forget the parentheses. It wouldn’t be a syntax error but would

instead catch only the first type of exception, storing its value under the name of the second

type of exception. Using except TypeError, ValueError actually stored a TypeError

object under the name ValueError!

To resolve the situation, the as keyword was added and became the only way to store an

exception object. Even though this removes the ambiguity, multiple exceptions must still be

wrapped in a tuple for clarity.

Multiple except clauses can be used, allowing you to handle different exception

types in different ways. For example, EnvironmentError OSError's constructor optionally

takes two arguments, an error code and an error message, that combine to form its

complete string representation. In order to log just the error message in that case, but

still correctly handle the TypeError case, two except clauses could be used:

import logging

def count_lines(file_name):

 """

 Count the number of lines in a file. If the file can't be

 opened, it should be treated the same as if it was empty.

 """

 try:

 return len(open(file_name, 'r').readlines())

 except TypeError as e:

 # The filename wasn't valid for use with the filesystem.

 logging.error(e)

Chapter 2 Advanced Basics

37

 return 0

 except EnvironmentError as e:

 # Something went wrong reading the file.

 logging.error(e.args[1])

 return 0

�Exception Chains
Sometimes, while handling one exception, another exception might get raised along the

way. This can happen either explicitly with a raise keyword or implicitly through some

other code that gets executed as part of the handling. Either way, this situation brings up

the question of which exception is important enough to present itself to the rest of the

application. Exactly how that question is answered depends on how the code is laid out,

so let’s take a look at a simple example, where the exception handling code opens and

writes to a log file:

def get_value(dictionary, name):

 try:

 return dictionary[name]

 except Exception as e:

 print("exception hit..writing to file")

 log = open('logfile.txt', 'w')

 log.write('%s\n' % e)

 log.close()

names={"Jack":113, "Jill":32,"Yoda":395}

print(get_value(names,"Jackz"))#change to Jack and it runs fine

If anything should go wrong when writing to the log, a separate exception will be

raised. Even though this new exception is important, there was already an exception in

play that shouldn’t be forgotten. To retain the original information, the file exception

gains a new attribute, called __context__, which holds the original exception object.

Each exception can possibly reference one other, forming a chain that represents

everything that went wrong, in order. Consider what happens when get_value() fails,

but logfile.txt is a read-only file:

Chapter 2 Advanced Basics

38

 get_value({}, 'test')

Traceback (most recent call last):

KeyError: 'test'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

IOError: [Errno 13] Permission denied: 'logfile.txt'

This is an implicit chain, because the exceptions are linked only by how they’re

encountered during execution. Sometimes you’ll be generating an exception yourself,

and you may need to include an exception that was generated elsewhere. One common

example of this is validating values using a function that was passed in. Validation

functions, as described in Chapters 3 and 4, generally raise a ValueError, regardless of

what was wrong.

This is a great opportunity to form an explicit chain, so we can raise a ValueError

directly, while retaining the actual exception behind the scenes. Python allows this by

including the from keyword at the end of the raise statement:

 def validate(value, validator):

 try:

 return validator(value)

 except Exception as e:

 raise ValueError('Invalid value: %s' % value) from e

 def validator(value):

 if len(value) > 10:

 raise ValueError("Value can't exceed 10 characters")

 validate('test', validator)

 validate(False, validator)

Traceback (most recent call last):

Chapter 2 Advanced Basics

39

TypeError: object of type 'bool' has no len()

The above exception was the direct cause of the following exception:

Traceback (most recent call last):

 ValueError: invalid value: False

Because this wraps multiple exceptions into a single object, it may seem ambiguous

as to which exception is really being passed around. A simple rule to remember is that

the most recent exception is the one being raised, with any others available by way of the

__context__ attribute. This is easy to test by wrapping one of these functions in a new

try block and checking the type of the exception:

 try:

 validate(False, validator)

 except Exception as e:

 print(type(e))

<class 'ValueError'>

�When Everything Goes Right
On the other end of the spectrum, you may find that you have a complex block of code

where you need to catch exceptions that may crop up from part of it, but code after that

part should proceed without any error handling. The obvious approach is to simply

add that code outside of the try/except blocks. Here’s how we might adjust the count_

lines() function to contain the error-generating code inside the try block, while the

line counting takes place after the exceptions have been handled:

import logging

def count_lines(file_name):

 """

Chapter 2 Advanced Basics

40

 Count the number of lines in a file. If the file can't be

 opened, it should be treated the same as if it was empty.

 """

 try:

 file = open(file_name, 'r')

 except TypeError as e:

 # The filename wasn't valid for use with the filesystem.

 logging.error(e)

 return 0

 except EnvironmentError as e:

 # Something went wrong reading the file.

 logging.error(e.args[1])

 return 0

 return len(file.readlines())

In this particular case, the function will work as expected, so all seems fine.

Unfortunately, it’s misleading because of the nature of this specific case. Because each

of the except blocks explicitly returns a value from the function, the code after the error

handling will only be reached if no exceptions were raised.

Note  We could place the file reading code directly after the file is opened, but
then if any exceptions are raised there, they’d get caught using the same error
handling as the file opening. Separating them is a way to better control how
exceptions are handled overall. You may also notice that the file isn’t closed
anywhere here. That will be handled in later sections, as this function continues
expanding.

If, however, the except blocks simply logged the error and moved on, Python would

try to count the lines in the file, even though no file was ever opened. Instead, we need a

way to specify a block of code should be run only if no exceptions were raised at all, so it

doesn’t matter how your except blocks execute. Python provides this feature by way of

the else keyword, which defines a separate block:

Chapter 2 Advanced Basics

41

import logging

def count_lines(filename):

 """

 Count the number of lines in a file. If the file can't be

 opened, it should be treated the same as if it was empty.

 """

 try:

 file = open(filename, 'r')

 except TypeError as e:

 # The filename wasn't valid for use with the filesystem.

 logging.error(e)

 return 0

 except EnvironmentError as e:

 # Something went wrong reading the file.

 logging.error(e.args[1])

 return 0

 else:

 return len(file.readlines())

Caution R aising an exception isn’t the only thing that tells Python to avoid the
else block. If the function returns a value at any time inside the try block, Python
will simply return the value as instructed, skipping the else block altogether.

�Proceeding Regardless of Exceptions
Many functions perform some kind of setup or resource allocation that must be cleaned

up before returning control to external code. In the face of exceptions the cleanup code

might not always be executed, which can leave files or sockets open or perhaps leave

large objects in memory when they’re no longer needed.

Chapter 2 Advanced Basics

42

To facilitate this, Python also allows the use of a finally block, which gets executed

every time the associated try, except, and else blocks finish. Because count_lines()

opens a file, best practice would suggest that it also explicitly close the file, rather than

waiting for garbage collection to deal with it later. Using finally provides a way to make

sure the file always gets closed.

There is still one thing to consider. So far, count_lines() only anticipates exceptions

that could occur while trying to open the file, even though there’s a common one that

comes up when reading the file: UnicodeDecodeError. Chapter 7 covers a bit of Unicode

and how Python deals with it, but for now, just know that it comes up fairly often. In

order to catch this new exception, it’s necessary to move the readlines () call back into

the try block, but we can still leave the line counting in the else block:

import logging

def count_lines(file_name):

 """

 Count the number of lines in a file. If the file can't be

 opened, it should be treated the same as if it was empty.

 """

 file = None # file must always have a value

 try:

 file = open(file_name, 'r')

 lines = file.readlines()

 except TypeError as e:

 # The filename wasn't valid for use with the filesystem.

 logging.error(e)

 return 0

 except EnvironmentError as e:

 # Something went wrong reading the file.

 logging.error(e.args[1])

 return 0

 except UnicodeDecodeError as e:

 # The contents of the file were in an unknown encoding.

 logging.error(e)

Chapter 2 Advanced Basics

43

 return 0

 else:

 return len(lines)

 finally:

 if file:

 file.close()

Of course, it’s not very likely that you’d have this much error handling in a simple

line counting function. After all, it really only exists because we wanted to return 0 in the

event of any errors. In the real world, you’re much more likely to just let the exceptions

run their course outside of count_lines(), letting other code be responsible for how to

handle it.

Tip S ome of this handling can be made a bit simpler using a with block,
described later in this chapter.

�Optimizing Loops
Because loops of some kind or another are very common in most types of code, it’s

important to make sure that they can run as efficiently as possible. The iteration section

later in this chapter covers a variety of ways to optimize the design of any loops, whereas

Chapter 5 explains how you can control the behavior of for loops. Instead, this section

focuses on the optimization of the while loop.

Typically, while is used to check a condition that may change during the course

of the loop, so that the loop can finish executing once the condition evaluates to false.

When that condition is too complicated to distill into a single expression or when the

loop is expected to break due to an exception, it makes more sense to keep the while

expression always true and end the loop using a break statement where appropriate.

Although any expression that evaluates to true will induce the intended

functionality, there is one specific value you can use to make it even better. Python

knows that True will always evaluate to true, so it makes some additional optimizations

behind the scenes to speed up the loop. Essentially, it doesn’t even bother checking the

condition each time; it just runs the code inside the loop indefinitely, until it encounters

an exception, a break statement, or a return statement:

Chapter 2 Advanced Basics

44

def echo():

 """Returns everything you type until you press Ctrl-C"""

 while True:

 try:

 print(input'Type Something or CTRL C to exit: ')

 except KeyboardInterrupt:

 print() # Make sure the prompt appears on a new line.

 print('bye for now...:')

 break

echo()

�The with Statement
The finally block covered in the exception handling section earlier in this chapter is

a convenient way to clean up after a function, but sometimes that’s the only reason to

use a try block in the first place. Sometimes you don’t want to silence any exceptions,

but you still want to make sure the cleanup code executes, regardless of what happens.

Working solely with exception handling, a simpler version of count_lines() might look

something like this:

def count_lines(file_name):

 """Count the number of lines in a file."""

 file = open(file_name, 'r')

 try:

 return len(file.readlines())

 finally:

 file.close()

Chapter 2 Advanced Basics

45

If the file fails to open, it will raise an exception before even entering the try block,

while everything else that could go wrong would do so inside the try block, which will

cause the finally block to clean up the file. Unfortunately, it’s something of a waste to

use the power of the exception handling system just for that. Instead, Python provides

another option that has some other advantages over exception handling as well.

The with keyword can be used to start a new block of code, much like try, but with a

very different purpose in mind. By using a with block, you’re defining a specific context

in which the contents of the block should execute. The beauty of it, however, is that the

object you provide in the with statement gets to determine what that context means.

For example, you can use open() in a with statement to run some code in the context

of that file. In this case, with also provides an as clause, which allows an object to be

returned for use while executing in the current context. Here’s how to rewrite the new

version of count_lines() to take advantage of all of this:

def count_lines(file_name):

 """Count the number of lines in a file."""

 with open(file_name, 'r') as file:

 return len(file.readlines())

That’s really all that’s left of count_lines() after switching to use the with statement.

The exception handling gets done by the code that manages the with statement,

whereas the file closing behavior is actually provided by the file itself, by way of a context

manager. Context managers are special objects that know about the with statement and

can define exactly what it means to have code executed in their context.

In a nutshell, the context manager gets a chance to run its own code before the with

block executes; then it gets to run some more cleanup code after it’s finished. Exactly

what happens at each of those stages will vary. In the case of open(), it opens the file and

closes it automatically when the block finishes executing.

With files, the context obviously always revolves an open file object, which is made

available to the block using the name given in the as clause. Sometimes, however, the

context is entirely environmental, so there is no such object to use during execution. To

support those cases, the as clause is optional.

Chapter 2 Advanced Basics

46

In fact, you can even leave off the as clause in the case of open() without causing any

errors. Of course, you also won’t have the file available to your code, so it’d be of little

use, but there’s nothing in Python that prevents you from doing so. If you include an as

clause when using a context manager that doesn’t provide an object, the variable you

define will simply be populated with None instead, because all functions return None if no

other value is specified.

There are several context managers available in Python, some of which will be

detailed throughout the rest of this book. In addition, Chapter 5 shows how you can write

your own context managers so that you can customize the contextual behavior to match

the needs of your own code.

�Conditional Expressions
Fairly often, you may find yourself needing to access one of two values, and which one

you use depends on evaluating an expression. For instance, it’s quite common to display

one string to a user if the value exceeds a particular value and a different one otherwise.

Typically, this would be done using an if/else combination, as here:

def test_value(value):

 if value < 100:

 return 'The value is just right.'

 else:

 return 'The value is too big!'

print(test_value(55))

Rather than writing this out into four separate lines, it’s possible to condense it into

a single line using a conditional expression. By converting the if and else blocks into

clauses in an expression, Python does the same effect much more concisely:

def test_value(value):

 return 'The value is ' + ('just right.' if value < 100 else 'too big!')

print(test_value(55))

Chapter 2 Advanced Basics

47

READABILITY COUNTS

If you’re used to this behavior from other programming languages, Python’s ordering may

seem unusual at first. Other languages, such as C++, implement something of the form

expression ? value_1 : value_2. That is, the expression to test comes first, followed

by the value to use if the expression is true, then the value to use if the expression is false.

Instead, Python attempts to use a form that more explicitly describes what’s really going on.

The expectation is that the expression will be true most of the time, so the associated value

comes first, followed by the expression, then the value to use if the expression is false. This

takes the entire statement into account by putting the more common value in the place it

would be if there were no expression at all. For example, you end up with things like return

value ... and x = value

Because the expression is then tacked on afterward, it highlights the notion that the

expression is just a qualification of the first value. “Use this value whenever this expression is

true; otherwise, use the other one.” It may seem a little odd if you’re used to another language,

but it makes sense when thinking about the equivalent in plain English.

There’s another approach that is sometimes used to simulate the behavior of the

conditional expression described in this section. This was often used in older Python

installations where the if/else expression wasn’t yet available. In its place, many

programmers relied on the behavior of the and and or operators, which could be made

to do something very similar. Here’s how the previous example could be rewritten using

only these operators:

def test_value(value):

 return 'The value is ' + (value < 100 and 'just right.' or 'too big!')

This puts the order of components more in line with the form used in other

programming languages. That fact may make it more comfortable for programmers

used to working with those languages, and it certainly maintains compatibility with even

older versions of Python. Unfortunately, it comes with a hidden danger that is often

left unknown until it breaks an otherwise working program with little explanation. To

understand why, let’s examine what’s going on.

Chapter 2 Advanced Basics

48

The and operator works like the && operator in many languages, checking to see if

the value to the left of the operator evaluates to true. If it doesn’t, and returns the value to

its left; otherwise, the value to the left is evaluated and returned. So if a value of 50 was

passed into test_value(), the left side evaluates to true, and the and clause evaluates to

the string, 'just right.' Factoring in that process, here’s how the code would look:

 return 'The value is ' + ('just right.' or 'too big!')

From here, the or operator works similarly to and, checking the value to its left to

see if it evaluates to true. The difference is that if the value is true, that value is returned,

without even evaluating the right-hand side of the operator at all. Looking at the

condensed code here, it’s clear that or would then return the string, 'just right.'

By contrast, if the value passed into the test_value() function was 150, the behavior

is changed. Because 150 < 100 evaluates to false, the and operator returns that value,

without evaluating the right-hand side. In that case, here’s the resulting expression:

 return 'The value is ' + (False or 'too big!')

Because False is obviously false, the or operator returns the value to its right instead,

'too big!' This behavior has led many people to rely on the and/or combination for

conditional expressions. But have you noticed the problem? One of the assumptions

being made here causes the whole thing to break down in many situations.

The problem is in the or clause when the left side of the and clause is true. In that

case, the behavior of the or clause depends entirely on the value to the left of the

operator. In the case shown here, it’s a nonempty string, which will always evaluate to

true, but what happens if you supply it an empty string, the number 0 or, worst of all, a

variable that could contain a value you can’t be sure of until the code executes?

What essentially happens is that the left side of the and clause evaluates to true, but

the right side evaluates to false, so the end result of that clause is a false value. Then,

when the or clause evaluates, its left side is false, so it returns the value to its right. In the

end, the expression will always return the item to the right of the or operator, regardless

of the value at the beginning of the expression.

Chapter 2 Advanced Basics

49

Because no exceptions are raised, it doesn’t look like anything is actually broken in

the code. Instead, it simply looks like the first value in the expression was false, because

it’s returning the value that you would expect in that case. This may lead you to try to

debug whatever code defines that value, rather than looking at the real problem, which is

the value between the two operators.

Ultimately, what makes it so hard to pin down is that you have to distrust your own

code, removing any assumptions you may have had about how it should work. You have

to really look at it the way Python sees it, rather than how a human would see it.

�Iteration
There are generally two ways of looking at sequences: as a collection of items, or as a

way to access a single item at a time. These two aren’t mutually exclusive, but it’s useful

to separate them in order to understand the different features available in each case.

Working on the collection as a whole requires that all the items be in memory at once,

but accessing them one at a time can often be done much more efficiently.

Iteration refers to this more efficient form of traversing a collection, working with

just one item at a time before moving on to the next. Iteration is an option for any type

of sequence, but the real advantage comes in special types of objects that don’t need to

load everything in memory all at once. The canonical example of this is Python’s built-in

range() function, which appears to iterate over the integers that fall within a given range:

>>>for x in range(5):

 print(x)

0

1

2

3

4

At a glance, it may appear like range() returns a list containing the appropriate

values, but it doesn’t. This shows if you examine its return value on its own, without

iterating over it:

Chapter 2 Advanced Basics

50

>>>range(5)

>>>range(0, 5)

>>>list(range(5))

[0, 1, 2, 3, 4]

The range object itself doesn’t contain any of the values in the sequence. Instead, it

generates them one at a time, on demand, during iteration. If you truly want a list that

you can add or remove items from, you can convert one by passing the range object into

a new list object. This internally iterates just like a for loop, so the generated list uses

the same values that are available when iterating over the range itself.

Chapter 5 shows how you can write your own iterable objects that work similarly to

range(). In addition to providing iterable objects, there are a number of ways to iterate

over these objects in different situations, for different purposes. The for loop is the most

obvious technique, but Python offers other forms of syntax as well, which are outlined in

this section.

�Sequence Unpacking
Generally, you would assign one value to one variable at a time, so when you have

a sequence, you would assign the entire sequence to a single variable. When the

sequences are small and you know how many items are in the sequence and what each

item will be, this is fairly limiting, because you’ll often end up just accessing each item

individually, rather than dealing with them as a sequence.

This is particularly common when working with tuples, where the sequence often

has a fixed length and each item in the sequence has a predetermined meaning. Tuples

of this type are also the preferred way to return multiple values from a function, which

makes it all the more annoying to have to bother with them as a sequence. Ideally, you

should be able to retrieve them as individual items directly when getting the function’s

return value.

To allow for this, Python supports a special syntax called sequence unpacking. Rather

than specifying a single name to assign a value, you can specify a number of names as a

tuple on the left side of the = operator. This will cause Python to unpack the sequence on

the right side of the operator, assigning each value to the related name on the left side:

Chapter 2 Advanced Basics

51

>>> 'propython.com'.split('.')

['propython', 'com']

>>> components = 'propython.com'.split('.')

>>> components

['propython', 'com']

>>> domain, tld = 'propython.com'.split('.')

>>> domain

'propython'

>>> tld

'com'

>>> domain, tld = 'www.propython.com'.split('.')

Traceback (most recent call last):

 ...

ValueError: too many values to unpack

The error shown at the end of this example illustrates the only significant limitation

of this approach: the number of variables to assign must match the number of items in

the sequence. If they don’t match, Python can’t properly assign the values. If you look at

the tuple as being similar to an argument list, however, there’s another option available.

If you add an asterisk before the final name in the variable list, Python will keep a

list of any values that couldn’t be put into one of the other variables. The resulting list is

stored in the final variable, so you can still assign a sequence that contains more items

than you have explicit variables to hold them. This only works if you have more items in

the sequence than you have variables to assign to. If the reverse is true, you’ll still run

into the TypeError shown previously:

>>> domain, *path = 'propython.com/example/url'.split('/')

>>> domain

'propython.com'

>>> path

['example', 'url']

Chapter 2 Advanced Basics

52

Note  Chapter 3 shows how a similar syntax applies to function arguments as well.

�List Comprehensions
When you have a sequence with more items than you really need, it’s often useful to

generate a new list and add just those items that meet a certain criteria. There are a few

ways to do that, the most obvious being to use a simple for loop, adding each item in turn:

>>> output = []

>>> for value in range(10):

... if value > 5:

... output.append(str(value))

...

>>> output

['6', '7', '8', '9']

Unfortunately, that adds four lines and two levels of indentation to your code, even

though it’s an extremely common pattern to use. Instead, Python offers a more concise

syntax for this case, which allows you to express the three main aspects of that code into

a single line:

•	 A sequence to retrieve values from

•	 An expression that’s used to determine whether a value should be

included

•	 An expression that’s used to provide a value to the new list

These are all combined into a syntax called list comprehensions. Here’s how the

preceding example would look, when rewritten to use this construct. The three basic

segments of this form have been highlighted for clarity:

Chapter 2 Advanced Basics

53

>>> output = [str(value) for value in range(10) if value > 5]

>>> output

['6', '7', '8', '9']

As you can see, the three portions of the overall form have been rearranged slightly,

with the expression for the final value coming first, followed by the iteration and ending

with the condition for deciding which items are included. You may also consider the

variable that contains the new list to be its own fourth portion of the form, but because

the comprehension is really just an expression, it doesn’t have to be assigned to a name.

It could just as easily be used to feed a list into a function:

>>> min([value for value in range(10) if value > 5])

6

Of course, this seems to violate the whole point of iteration that was pointed out

earlier. After all, the comprehension returns a full list, only to have it thrown away when

min() processes the values. For these situations, Python provides a different option:

generator expressions.

�Generator Expressions
Instead of creating an entire list based on certain criteria, it’s often more useful to leverage

the power of iteration for this process as well. Instead of surrounding the compression in

brackets, which would indicate the creation of a proper list, you can instead surround it in

parentheses, which will create a generator. Here’s how it looks in action:

>>> gen = (value for value in range(10) if value > 5)

>>> gen

<generator object <genexpr> at 0x...>

Chapter 2 Advanced Basics

54

>>> min(gen)

6

>>> min(gen)

Traceback (most recent call last):

 ...

ValueError: min() arg is an empty sequence

>>> min(value for value in range(10) if value > 5)

6

There are a few things going on here, but it’s easier to understand once you’ve seen

the output so that you have a frame of reference. First off, a generator is really just an

iterable object that you don’t have to create using the explicit interface. Chapter 5 shows

how you can create iterators manually and even how to create generators with more

flexibility, but the generator expression is the simplest way to deal with them.

When you create a generator—whether a generator expression or some other

form—you don’t immediately have access to the sequence. The generator object doesn’t

yet know what values it’ll need to iterate over; it won’t know that until it actually starts

generating them. So if you view or inspect a generator without iterating over it, you won’t

have access to the full range of values.

In order to retrieve those values, all you need to do is iterate over the generator like

you ordinarily would and it’ll happily spit out values as needed. This step is implicitly

performed inside many built-in functions, such as min(). If those functions are able to

operate without building a complete list, you can use generators to dramatically improve

performance over the use of other options. If they do have to create a new list, you’re not

losing anything by delaying until the function really needs to create it.

But notice what happens if you iterate over the generator twice. The second time

through, you get an error that you tried to pass in an empty sequence. Remember, a

generator doesn’t contain all the values; it just iterates over them when asked to do so.

Once the iteration is complete and there are no more values left to iterate; the generator

doesn’t restart. Instead, it simply returns an empty list each time it’s called thereafter.

There are two main reasons behind this behavior. First, it’s not always obvious how it

should restart the sequence. Some iterables, such as range(), do have an obvious way to

restart themselves, so those restart when iterated multiple times. Unfortunately, because

there is any number of ways to create generators—and iterators in general—it’s up to the

iterable itself to determine when and how the sequence is reset. Chapter 5 explains this

behavior, and how you can customize it for your own needs, in more detail.

Chapter 2 Advanced Basics

55

Second, not all sequences should be reset once they complete. For example, you

might implement an interface for cycling through a collection of active users, which may

change over time. Once your code finishes iterating over the available users, it shouldn’t

simply reset to the same sequence over and over again. The nature of that ever-changing

set of users means that Python itself can’t possibly guess at how to control it. Instead,

that behavior is controlled by more complex iterators.

One final thing to point out about generator expressions: even though they must

always be surrounded by parentheses, those parentheses don’t always need to be

unique to the expression. The last expression in this section’s example simply uses the

parentheses from the function call to enclose the generator expression, which also works

just fine.

This form may seem a little odd at first, but in this simple case, it saves you from

having an extra set of parentheses hanging around. However, if the generator expression

is just one of multiple arguments or if it’s part of a more complex expression, you still

need to include explicit parentheses around the generator expression itself, to make sure

that Python knows your intent.

�Set Comprehensions
Sets—described in more detail in their own section under “Collections”—are very

similar to lists in their construction, so you can build a set using a comprehension in

basically the same way as lists. The only significant difference between the two is the use

of curly braces instead of brackets surrounding the expression:

>>> {str(value) for value in range(10) if value > 5}

{'6', '7', '8', '9'}

Note  Unlike sequences, sets are unordered, so different platforms may display
the items in a different order. The only guarantee is that the same items will be
present in the set, regardless of the platform.

Chapter 2 Advanced Basics

56

�Dictionary Comprehensions
There’s certainly a theme developing with the construction of comprehensions for

different types, and it’s limited solely to one-dimensional sequences. Dictionaries can

also be a form of sequence, but each item is really a pair of a key and its value. This is

reflected in the literal form, by separating each key from its value by the use of a colon.

Because that colon is the factor that distinguishes the syntax for dictionaries from

that of sets, the same colon is what separates dictionary comprehensions from set

comprehensions. Where you would ordinarily include a single value, simply supply a

key/value pair, separated by a colon. The rest of the comprehension follows the same

rules as the other types:

>>> {value: str(value) for value in range(10) if value > 5}

{8: '8', 9: '9', 6: '6', 7: '7'}

Note R emember, dictionaries are unordered, so their keys work a lot like sets.
If you need a dictionary with keys that can be reliably ordered, see the “Ordered
Dictionaries” section later in this chapter.

�Chaining Iterables Together
Working with one iterable is useful enough in most situations, but sometimes you’ll need

to access one right after another, performing the same operation on each. The simple

approach would be to just use two separate loops, duplicating the code block for each

loop. The logical next step would be to refactor the code into a function, but now you

have an extra function call in the mix for something that really only needs to be done

inside the loop.

Instead, Python provides the chain() function, as part of its itertools module. The

itertools module includes a number of different utilities, some of which are described

in the following sections. The chain() function, in particular, accepts any number of

iterables and returns a new generator that will iterate over each one in turn:

Chapter 2 Advanced Basics

57

>>> import itertools

>>> list(itertools.chain(range(3), range(4), range(5)))

[0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4]

�Zipping Iterables Together
Another common operation involving multiple iterables is to merge them together, side

by side. The first items from each iterable would come together to form a single tuple

as the first value returned by a new generator. All of the second items become part of

the second tuple in the generator, and so on. The built-in zip() function provides this

functionality when needed:

>>> list(zip(range(3), reversed(range(5))))

[(0, 4), (1, 3), (2, 2)]

Notice here that even though the second iterable has five values, the resulting

sequence only contains three values. When given iterators of varying lengths, zip() goes

with the least common denominator, so to speak. Essentially, zip() makes sure that

each tuple in the resulting sequence has exactly as many values as there are iterators

to join together. Once the smallest sequence has been exhausted, zip() simply stops

looking through the others.

This functionality is particularly useful in creating dictionaries, because one

sequence can be used to supply the keys, while another supplies the values. Using zip()

can join these together into the proper pairings, which can then be passed directly into a

new dict(). In the next example, 97 in the ASCII table is lowercase “a” and 98 is “b,” up

to, but not including, the last number specified (102), so 101 is “e.” The map() function

iterates over a group of values; this is then paired with zip to an index value from values

to build the dictionary:

Chapter 2 Advanced Basics

58

>>> keys = map(chr, range(97, 102))

>>> values = range(1, 6)

>>> dict(zip(keys, values))

{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4}

�Collections
There are a number of well-known objects that come standard with the Python

distribution, both as built-ins available to all modules and as part of the standard

package library. Objects such as integers, strings, lists, tuples, and dictionaries are in

common use among nearly all Python programs, but others, including sets named tuples

and some special types of dictionaries, are used less often and may be unfamiliar to

those who haven’t already needed to discover them.

Some of these are built-in types that are always available to every module, whereas

others are part of the standard library included with every Python installation. There

are still more that are provided by third-party applications, some of which have become

fairly commonly installed, but this section will only cover those included with Python

itself.

�Sets
Typically, collections of objects are represented in Python by tuples and lists, but sets

provide another way to work with the same data. Essentially a set works much like a list,

but without allowing any duplicates, making it useful for identifying the unique objects

in a collection. For example, here’s how a simple function might use a set to determine

which letters are used in a given string:

>>> def unique_letters(word):

... return set(word.lower())

...

Chapter 2 Advanced Basics

59

>>> unique_letters('spam')

{'a', 'p', 's', 'm'}

>>> unique_letters('eggs')

{'s', 'e', 'g'}

Note the following:

•	 First, the built-in set type takes a sequence as its argument, which

populates the set with all the unique elements found in that

sequence. This is valid for any sequence, such as a string as shown in

the example as well as lists, tuples, dictionary keys, or custom iterable

objects.

•	 Second, the items in the set aren’t ordered the same way they

appeared in the original string. Sets are concerned solely with

membership. They keep track of items that are in the set, without

any notion of ordering. That seems like a limitation, but if you need

ordering, you probably want a list anyway. Sets are very efficient

when you only need to know if an item is a member of a collection,

without regard to where it is in the collection or how many times it

has otherwise appeared.

•	 Third, the representation showed when displaying the set in the

interactive shell. As these representations are intended to be

formatted in the same way as you can type into your source file, this

indicates a syntax for declaring sets as literals in your code. It looks

very similar to a dictionary but without any values associated with

the keys. That’s actually a fairly accurate analogy, because a set works

very much like the collection of keys in a dictionary.

Because sets are designed for a different purpose than sequences and dictionaries,

the available operations and methods are a bit different than you might be used to. To

start, however, let’s look at the way that sets behave in relation to other types. Perhaps

the most common use of sets is to determine membership, a task often asked of both

lists and dictionaries. In the spirit of matching expectations, this uses the in keyword,

familiar from other types:

Chapter 2 Advanced Basics

60

>>> example = {1, 2, 3, 4, 5}

>>> 4 in example

True

>>> 6 in example

False

In addition, items can be added to or removed from the set later on. The list’s

append() method isn’t suitable for sets, because to append an item is to add it at the

end, which then implies that the order of items in the collection is important. Because

sets aren’t at all concerned with ordering, they instead use the add() method, which just

makes sure that the specified item ends up in the set. If it was already there, add() does

nothing; otherwise, it adds the item to the set, so there are never any duplicates:

>>> example.add(6)

>>> example

{1, 2, 3, 4, 5, 6}

>>>

>>> example

{1, 2, 3, 4, 5, 6}

Dictionaries have the useful update() method, which adds the contents of a new

dictionary to one that already exists. Sets have an update() method as well, performing

the same task:

>>> example.update({6, 7, 8, 9})

>>> example

{1, 2, 3, 4, 5, 6, 7, 8, 9}

Chapter 2 Advanced Basics

61

Removing items from the set can be done in a few different ways, each serving a

different need. The most direct complement to add() is the remove() method, which

removes a specific item from the set. If that item wasn’t in the set in the first place, it

raises a KeyError:

>>> example.remove(9)

>>> example.remove(9)

Traceback (most recent call last):

 ...

KeyError: 9

>>> example

{1, 2, 3, 4, 5, 6, 7, 8}

Many times, however, it doesn’t matter whether the item was already in the set or

not; you may only care that it’s not in the set when you’re done with it. For this purpose

sets also have a discard() method, which works just like remove() but without raising

an exception if the specified item wasn’t in the set:

>>> example.discard(8)

>>> example.discard(8)

>>> example

{1, 2, 3, 4, 5, 6, 7}

Of course, remove() and discard() both assume that you already know what object

you want to remove from the set. To simply remove any item from a set, use the pop()

method, which again is borrowed from the list API but differs slightly. Because sets aren’t

explicitly ordered, there’s no real end of the set for an item to be popped off. Instead, the

set’s pop() method picks one, unpredictably returning it for use outside the set:

Chapter 2 Advanced Basics

62

>>> example.pop()

1

>>> example

{2, 3, 4, 5, 6, 7}

Finally, sets also provide a way to remove all items in one shot, resetting it to an

empty state. The clear() method is used for this purpose:

>>> example.clear()

>>> example

set()

Note T he representation of an empty set is set(), rather than {}, because
Python needs to maintain a distinction between sets and dictionaries. In order to
preserve compatibility with older code written before the introduction of set literals,
empty curly braces remain dedicated to dictionaries, so sets use their name
instead.

In addition to methods for modifying the contents in place, sets also provide

operations in which two sets combine in some way to return a new set. The most

common of these is a union, in which the contents of two sets are joined together so the

resulting new set contains all items that were in both of the original sets. It’s essentially

the same as using the update() method, except that none of the original sets is altered.

The union of two sets is a lot like a bit-wise OR operation, so Python represents it

with the pipe character (|), which is the same as is used for bit-wise OR (where each byte

is compared). In addition, sets offer the same functionality using the union() method,

which can be called from either set involved:

Chapter 2 Advanced Basics

63

>>> {1, 2, 3} | {4, 5, 6}

{1, 2, 3, 4, 5, 6}

>>> {1, 2, 3}.union({4, 5, 6})

{1, 2, 3, 4, 5, 6}

The logical complement to that operation is the intersection, where the result is

the set of all items common to the original sets. Again, this is analogous to a bit-wise

operation, but this time it’s the bit-wise AND, and again, Python uses the ampersand

(&) to represent the operation as it pertains to sets. Sets also have an intersection()

method, which performs the same task:

>>> {1, 2, 3, 4, 5} & {4, 5, 6, 7, 8}

{4, 5}

>>> {1, 2, 3, 4, 5}.intersection({4, 5, 6, 7, 8})

{4, 5}

You can also determine the difference between two sets, resulting in a set of all the

items that exist in one of the sets but not the other. By removing the contents of one set

from another, it works a lot like subtraction, so Python uses the subtraction operator (–)

to perform this operation, along with the difference() method:

>>> {1, 2, 3, 4, 5} – {2, 4, 6}

{1, 3, 5}

>>> {1, 2, 3, 4, 5}.difference({2, 4, 6})

{1, 3, 5}

Chapter 2 Advanced Basics

64

In addition to that basic difference, Python sets offer a variation called a symmetric

difference, using the symmetric_difference() method. Using this method, the resulting

set contains all items that were in either set, but not in both. This is equivalent to the

bit-wise exclusive OR operation, commonly referred to as XOR. Because Python uses the

caret (^) to represent the XOR operation elsewhere, sets use the same operator as well as

the method:

>>> {1, 2, 3, 4, 5} ^ {4, 5, 6}

{1, 2, 3, 6}

>>> {1, 2, 3, 4, 5}.symmetric_difference({4, 5, 6})

{1, 2, 3, 6}

Finally, it’s possible to determine whether all the items in one set also exist in

another. If one set contains all the items of another, the first is considered to be a

superset of the other, even if the first set contains additional items not present in the

second. The inverse, where all the items in first are contained in the second, even if the

second has more items, means the first set is a subset of the second.

Testing to see if one set is a subset or a superset of another is performed by two

methods, issubset() and issuperset(), respectively. The same test can be performed

manually by subtracting one set from the other and checking to see if any items remain. If

no items are left the set evaluates to False, and the first is definitely a subset of the second,

and testing for a superset is as simple as swapping the two sets in the operation. Using

these methods avoids creating a new set just to have it reduce to a Boolean anyway:

>>> {1, 2, 3}.issubset({1, 2, 3, 4, 5})

True

>>> {1, 2, 3, 4, 5}.issubset({1, 2, 3})

False

>>> {1, 2, 3}.issuperset({1, 2, 3, 4, 5})

False

Chapter 2 Advanced Basics

65

>>> {1, 2, 3, 4, 5}.issuperset({1, 2, 3})

True

>>> not ({1, 2, 3} – {1, 2, 3, 4, 5})

True

>>> not ({1, 2, 3, 4, 5} – {1, 2, 3})

False

Note  Looking at how subsets and supersets can be determined using
subtraction, you might notice that two identical sets will always subtract to an
empty set, and the order of the two sets is irrelevant. This is correct, and because
{1, 2, 3} – {1, 2, 3} is always empty, each set is both a subset and a
superset of the other.

�Named Tuples
Dictionaries are extremely useful, but sometimes you may have a fixed set of possible

keys available, so you don’t need that much flexibility. Instead, Python uses named

tuples, which provide some of the same functionality, but they’re much more efficient

because the instances don’t need to contain any of the keys, only the values associated

with them.

Named tuples are created using a factory function from the collections module,

called namedtuple(). Rather than returning an individual object, namedtuple() returns

a new class, which is customized for a given set of names. The first argument is the name

of the tuple class itself, but the second is, unfortunately, less straightforward. It takes a

string of attribute names, which are separated by either a space or a comma:

>>> from collections import namedtuple

>>> Point = namedtuple('Point', 'x y')

>>> point = Point(13, 25)

>>> point

Point(x=13, y=25)

>>> point.x, point.y

Chapter 2 Advanced Basics

66

(13, 25)

>>> point[0], point[1]

(13, 25)

As an efficient trade-off between tuples and dictionaries, many functions that need

to return multiple values can do so using named tuples to be as useful as possible.

There’s no need to populate a full dictionary, but values can still be referenced by useful

names rather than integer indexes.

�Ordered Dictionaries
If you’ve ever iterated over the keys of a dictionary or printed its contents to the

interactive prompt, as has been done previously in this chapter, you’ll notice that its keys

don’t always follow a predictable order. Sometimes they may look like they’re sorted

numerically or alphabetically, but other times it seems completely random.

Dictionary keys, like sets, are considered to be unordered. Even though there

may occasionally appear to be patterns, these are merely the by-product of the

implementation and aren’t formally defined. Not only is the ordering inconsistent from

one dictionary to another, variations are even more significant when using a different

Python implementation, such as Jython or IronPython.

Most of the time, what you’re really looking for from a dictionary is a way to map

specific keys to associated values, so the ordering of the keys is irrelevant. Sometimes,

though, it’s also useful to be able to iterate over those keys in a reliable manner. To offer

the best of both worlds, Python offers the OrderedDict class by way of its collections

module. This provides all the features of a dictionary but with reliable ordering of keys:

>>> from collections import OrderedDict

>>> d = OrderedDict((value, str(value)) for value in range(10) if value > 5)

>>> d

OrderedDict([(6, '6'), (7, '7'), (8, '8'), (9, '9')])

>>> d[10] = '10'

>>> d

Chapter 2 Advanced Basics

67

OrderedDict([(6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10')])

>>> del d[7]

>>> d

OrderedDict([(6, '6'), (8, '8'), (9, '9'), (10, '10')])

As you can see, the same construction used previously now results in a properly

ordered dictionary that does the right thing even as you add and remove items.

Caution I n the example given here, notice that the values for the dictionary
are provided using a generator expression. If you supply a standard dictionary,
that means your supplied values are unordered prior to going into the ordered
database, which will then assume that order was intentional and preserve it.
This also occurs if you supply values as keyword arguments, because those are
passed as a regular dictionary internally. The only reliable way to supply ordering
to OrderedDict() is to use a standard sequence, such as a list or a generator
expression.

�Dictionaries with Defaults
Another common pattern using dictionaries is to always assume some default value

in the event that a key can’t be found in the mapping. This behavior can be achieved

either by explicitly catching the KeyError raised when accessing the key or by using the

available get() method, which can return a suitable default if the key wasn’t found. One

such example of this pattern is using a dictionary to track how many times each word

appears in some text:

def count_words(text):

 count = {}

 for word in text.split(' '):

 current = count.get(word, 0) # Make sure we always have a number

 count[word] = current + 1

 return count

Chapter 2 Advanced Basics

68

Instead of having to deal with that extra get() call, the collections module provides

a defaultdict class that can handle that step for you. When you create it, you can pass

in a callable as the single argument, which will be used to create a new value when a

requested key doesn’t exist. In most cases you can just supply one of the built-in types,

which will provide a useful basic value to work with. In the case of count_words(), we

can use int:

from collections import defaultdict

def count_words(text):

 count = defaultdict(int)

 for word in text.split(' '):

 count[word] += 1

 return count

Essentially any callable can be used, but the built-in types tend to provide optimal

default values for whatever you need to work with. Using list will give you an empty list,

str returns an empty string, int returns 0, and dict returns an empty dictionary. If you

have more specialized needs, any callable that can be used without any arguments will

work. Chapter 3 introduces lambda functions, which are convenient for cases like this.

�Importing Code
Complex Python applications are typically made up of a number of different modules,

often separated into packages to supply more granular namespaces. Importing code from

one module to another is a simple matter, but that’s only part of the story. There are several

additional features available for more specific situations that you’re likely to run into.

�Fallback Imports
By now, you’ve seen several points where Python changes over time, sometimes in

backward-incompatible ways. One particular change that tends to come up occasionally

is when a module gets moved or renamed, but still does essentially the same thing

Chapter 2 Advanced Basics

69

as before. The only update needed to make your code work with it is to change to the

import location, but you’ll often need to maintain compatibility with versions both

before and after the change.

The solution to this problem exploits Python’s exception handling to determine

whether the module exists at the new location. Because imports are processed at runtime,

like any other statement, you can wrap them in a try block and catch an ImportError,

which is raised if the import failed. Here’s how you might import a common hash

algorithm both before and after the change in Python 2.5, which moved its import location:

try:

 # Use the new library if available. Added in Python 2.5

 from hashlib import md5

except ImportError:

 # Compatible functionality provided prior to Python 2.5

 from md5 import new as md5

Notice here that the import prefers the newer library first. That’s because changes

like this usually have a grace period, where the old location is still available but

deprecated. If you check for the older module first, you’ll find it long after the new

module became available. By checking for the new one first, you take advantage of any

newer features or added behaviors as soon as they’re available, falling back to older

functionality only when necessary. Using the as keyword allows the rest of the module to

simply reference the name md5 either way.

This technique is just as applicable to third-party modules as it is to Python’s own

standard library, but third-party applications often require different handling. Rather

than determining which module to use, it’s often necessary to distinguish whether the

application is available at all. This is determined the same way as the previous example,

by wrapping the import statement in a try block.

What happens next, however, depends on how your application should behave if

the module is unavailable. Some modules are strictly required, so if it’s missing, you

should raise an exception directly inside the except ImportError block or simply forgo

exception handling altogether. Other times, a missing third-party module simply means

a reduction in functionality. In this case, the most common approach is to assign None to

the variable that would otherwise contain the imported module:

Chapter 2 Advanced Basics

70

try:

 import docutils # Common Python-based documentation tools

except ImportError:

 docutils = None

Then, when your code needs to utilize features in the imported module, it can use

something like if docutils to see if the module is available, without having to reimport

it.

�Importing from the Future
Python’s release schedule often incorporates new features, but it’s not always a good

idea to just introduce them out of nowhere. In particular, syntax additions and behavior

changes may break existing code, so it’s often necessary to provide a bit of a grace period.

During the transition, these new features are made available by way of a special kind of

import, letting you choose which features are updated for each module.

The special __future__ module allows you to name specific features that you’d like

to use in a given module. This provides a simple compatibility path for your modules,

since some modules can rely on new features while other modules can use existing

features. Typically, the next release after a feature was added to __future__, and it

becomes a standard feature available to all modules.

As a quick example, Python 3.0 changed the way integer division worked. In earlier

versions, dividing one integer from another always resulted in an integer, which often

resulted in a loss of precision if the result would normally produce a remainder. That

makes sense to programmers who are familiar with the underlying C implementation,

but it’s different than what happens if you perform the same calculation on a standard

calculator, so it caused a lot of confusion.

The behavior of division was changed to return floating point values if the division

would contain a remainder, thus matching how a standard calculator would work. Before

making the change across all of Python, however, the division option was added to the

__future__ module, allowing the behavior to be changed earlier if necessary. Here’s

how an interactive interpreter session might look in Python 2.5. Python 3.x, however, by

default handles it as if you promoted one to a floating point value as in >>> 5 / 2.0:

Chapter 2 Advanced Basics

71

>>> 5 / 2 # Python 2.5 uses integer-only division by default

2

>>> from __future__ import division # This updates the behavior of division

>>> 5 / 2

2.5

The __future__ module supports a number of such features, and new options are

added with each release of Python. Rather than trying to list them all here, in the rest of

this book I will mention them when the features being described were recent enough to

need a __future__ import in older versions of Python, back to Python 2.5. Full details

on these feature changes can always be found on the “What’s New” page of the Python

documentation.1

Note I f you try to import a feature from __future__ that already exists in
the version of Python you’re using, it doesn’t do anything. The feature is already
available, so no changes have to be made, but it also doesn’t raise any exceptions.

�Using __all__ to Customize Imports
One of the lesser-used features of Python imports is the ability to import the namespace

from one module into that of another. This is achieved by using an asterisk as the portion

of the module to import:

>>> from itertools import *

>>> list(chain([1, 2, 3], [4, 5, 6]))

[1, 2, 3, 4, 5, 6]

1�See the “What’s New” page at http://propython.com/whats-new.

Chapter 2 Advanced Basics

http://propython.com/whats-new

72

Ordinarily, this would just take all the entries in the imported module’s namespace

that don’t begin with an underscore and dump them into the current module’s

namespace. It can save some typing in modules that make heavy use of the imported

module, because it saves you from having to include the module name every time you

access one of its attributes.

Sometimes, however, it doesn’t make sense for every object to be made available

in this way. In particular, frameworks often include a number of utility functions and

classes that are useful within the framework’s module, but don’t make much sense when

exported to external code. In order to control what objects get exported when you import

a module like this, you can specify __all__ somewhere in the module.

All that you need to do is supply a list—or some other sequence—that contains

the names of objects that should get imported when the module is imported using an

asterisk. Additional objects can still be imported either by importing the name directly

or by just importing the module itself, rather than anything inside of it. Here’s how an

example module might supply its __all__ option:

__all__ = ['public_func']

def public_func():

 pass

def utility_func():

 pass

Of course, there would be useful code in both of those functions in the real world.

For the purposes of illustration, though, here’s a quick rundown of the different ways that

you could import that module, which we’ll call example:

>>> import example

>>> example.public_func

<function public_func at 0x...>

>>> example.utility_func

<function utility_func at 0x...>

Chapter 2 Advanced Basics

73

>>> from example import *

>>> public_func

<function public_func at 0x...>

>>> utility_func

Traceback (most recent call last):

 ...

NameError: name 'utility_func' is not defined

>>> from example import utility_func

>>> utility_func

<function utility_func at 0x...>

Notice how, in the final case, you can still import it directly using the from syntax,

as long as you specify it explicitly. The only time __all__ comes into play is if you use

an asterisk. So depending on if you want all functions available, or only one, you have

choices.

EXPLICIT IS BETTER THAN IMPLICIT

It’s generally considered bad form to import using the asterisk notation in the first place;

PEP 8, the Python Style Guide, specifically recommends against it. The main issue with it is

that it’s not immediately obvious where the contents of that module came from. If you see a

function used without a module namespace, you can usually look at the top of the module to

see if it was imported; if not, you can safely assume that it was defined in the module. If it was

imported with the asterisk notation, you’d have to either scan the entire module to see if it was

defined or open up the source for the related module to see if it was defined there.

On occasion, it can still be useful to import using an asterisk, but it’s best to only do so when

you’re wrapping it in another namespace. As illustrated in Chapter 11, you might allow your

users to import a single root namespace that incorporates objects from several different

modules. Rather than having to update the imports every time something new is added, you

can use asterisk imports in the main module, without introducing any ambiguity in your users’

modules.

Chapter 2 Advanced Basics

74

�Relative Imports
When starting out with a project, you’ll spend most of your time importing from external

packages, so every import is absolute; its path is rooted in your system’s PYTHONPATH.

Once your projects start growing to several modules, you’ll be importing from one

another regularly. And once you establish a hierarchy, you might realize that you don’t

want to include the full import path when sharing code between two modules at similar

parts of the tree.

Python allows you to specify a relative path to the module you’d like to import,

so you can move around an entire package, if necessary, with minimal modifications

required. The preferred syntax for this is to specify part of the module’s path with one

or more periods, indicating how far up the path to look for the module. For example, if

the acme.shopping.cart module needs to import from acme.billing, the two following

import patterns are identical:

from acme import billing

from .. import billing

A single period allows you to import from the current package, so acme.shopping.

gallery could be imported as from.import gallery. Alternatively, if you’re looking to

just import something from that module, you could instead simply prefix the module

path with the necessary periods, then specify the names to import as usual: from.

gallery import Image.

�The __import__( ) Function
You don’t always have to place your imports at the top of a module. In fact, sometimes

you might not be able to write some of your imports in advance at all. You might be

making decisions about which module to import based on user-supplied settings, or

perhaps you’re even allowing users to specify modules directly. These user-supplied

settings are a convenient way to allow for extensibility without resorting to automatic

discovery.

Chapter 2 Advanced Basics

75

In order to support this functionality, Python allows you to import code manually

using the __import__() function. It’s a built-in function, so it’s available everywhere,

but using it requires some explanation because it’s not as straightforward as some of the

other features provided by Python. You can choose from five arguments to customize

how a module gets imported and what contents are retrieved:

•	 name: The only argument that is always required, this accepts the

name of the module that should be loaded. If it’s part of a package,

just separate each part of the path with a period, as when using

import path.to.module.

•	 globals: A namespace dictionary that is used to define the context

in which the module name is resolved. In standard import cases, the

return value from the built-in globals() function is used to populate

this argument.

•	 locals: Another namespace dictionary, ideally used to help define

the context in which the module name is resolved. In reality,

however, current implementations of Python simply ignore it. In

the event of future support, the standard import provides the return

value from the built-in locals() function for this argument.

•	 fromlist: A list of individual names that should be imported from

the module, rather than importing the full module.

•	 level: An integer indicating how the path should be resolved with

respect to the module that calls __import__(). A value of -1 allows

both absolute and implicit relative imports; 0 allows only absolute

imports; positive values indicate how many levels up the path to use

for an explicit relative import.

Even though that may seem simple enough, the return value contains a few traps

that can cause quite a bit of confusion. It always returns a module object, but it can

be surprising to see which module is returned and what attributes are available on it.

Because there are a number of different ways to import modules, these variations are

worth understanding. First, let’s examine how different types of module names impact

the return value.

Chapter 2 Advanced Basics

76

In the simplest case, you’d pass in a single module name to __import__(), and the

return value is just what you’d expect: the module referenced by the name provided. The

attributes available on that module object are the same as you’d have available if you

imported that name directly in your code: the entire namespace that was declared in that

module’s code.

When you pass in a more complex module path, however, the return value may not

match expectations. Complex paths are provided using the same dot-separated syntax

used in your source files, so importing os.path, for instance, would be achieved by

passing in "os.path". The returned value in that case is os, but the path attribute lets

you access the module you’re really looking for.

The reason for that variation is that __import__() mimics the behavior of Python

source files, in which import os.path makes the os module available under that name.

You can still access os.path, but the module that goes into the main namespace is

os. Because __import__() works essentially the same way as a standard import, what

you get in the return value is what you would have in the main module namespace

ordinarily.

In order to get just the module at the end of the module path, you can take a couple

of different approaches. The most obvious, although not necessarily direct, would be

to split the given module name on periods, using each portion of the path to get each

attribute layer from the module returned by __import__(). Here’s a simple function that

would do the job:

>>> def import_child(module_name):

... module = __import__(module_name)

... for layer in module_name.split('.')[1:]:

... module = getattr(module, layer)

... return module

...

>>> import_child('os.path')

<module 'ntpath' from 'C:\Python31\lib\ntpath.py'>

>>> import_child('os')

<module 'os' from 'C:\Python31\lib\os.py'>

Chapter 2 Advanced Basics

77

Note T he exact name of the module referenced by os.path will vary based on
the operating system under which it’s imported. For example, it’s called ntpath on
Windows, whereas most Linux systems use posixpath. Most of the contents are
the same, but they may behave slightly differently depending on the needs of the
operating system, and each may have additional attributes that are unique to that
environment.

As you can see, it works for the simple case as well as more complex situations, but

it still goes through a bit more work than is really necessary to do the job. Of course,

the time spent on the loop is fairly insignificant compared to the import itself, but if the

module had already been imported, our import_path() function comprises most of

the process. An alternate approach takes advantage of Python’s own module caching

mechanism to take the extra processing out of the picture:

>>> import sys

>>> def import_child(module_name):

... __import__(module_name)

... return sys.modules[module_name]

...

>>> import_child('os.path')

<module 'ntpath' from 'C:\Python31\lib\ntpath.py'>

>>> import_child('os')

<module 'os' from 'C:\Python31\lib\os.py'>

The sys.modules dictionary maps import paths to the module objects that were

generated when importing them. By looking up the module in that dictionary, there’s no

need to mess around with the particulars of the module name.

Of course, this is really only applicable to absolute imports. Relative imports, no

matter how they are referenced, are resolved relative to the module where the import

statement—or in this case, the __import__() function call—is located. Because the most

common case is to place import_path() in a common location, relative imports would

be resolved relative to that, rather than the module that called import_path(). That

could mean importing the completely wrong module.

Chapter 2 Advanced Basics

78

�The importlib Module
In order to address the issues that are raised by using __import__() directly, Python

also includes the importlib module, which provides a more intuitive interface to import

modules. The import_module() function is a much simpler way to achieve the same

effect as __import__(), but in a way that more closely matches expectations.

For absolute imports, import_module() accepts the module path, just like __

import__(). The difference, however, is that import_module() always returns the last

module in the path, while __import__() returns the first one. The extra handling that

was added in the previous section is made completely unnecessary because of this

functionality, so this is a much better approach to use:

>>> from importlib import import_module

>>> import_module('os.path')

<module 'ntpath' from 'C:\Python31\lib\ntpath.py'>

>>> import_module('os')

<module 'os' from 'C:\Python31\lib\os.py'>

In addition, import_module() takes relative imports into account by also accepting a

package attribute that defines the reference point from which the relative path should be

resolved. This is easily done when calling the function, simply by passing in the always-

global __name__ variable, which holds the module path that was used to import the

current module in the first place:

import_module('.utils', package=__name__)

Chapter 2 Advanced Basics

79

Caution R elative imports don’t work directly inside the interactive interpreter.
The module the interpreter runs in isn’t actually in the filesystem, so there are no
relative paths to work with.

�Exciting Python Extensions: Random Number
Beacon at NIST
Most programming languages implement some form of random and pseudo-random

number generator. Python does as well; however, the base algorithm which generates

these random numbers is less robust than could be had elsewhere. As such, the National

Institute of Standards and Technology (NIST) has implemented a randomness beacon

which sends out every 60 seconds to connected users a true random number.

From May 2018, NIST states: “NIST is implementing a source of public randomness.

The service (at https://beacon.nist.gov/home) uses two independent commercially

available sources of randomness, each with an independent hardware entropy

source and SP 800-90-approved components. The Beacon is designed to provide

unpredictability, autonomy, and consistency. Unpredictability means that users cannot

algorithmically predict bits before they are made available by the source. Autonomy

means that the source is resistant to attempts by outside parties to alter the distribution

of the random bits. Consistency means that a set of users can access the source in such a

way that they are confident they all receive the same random string.”2

You could think of the randomness beacon as a good way to obtain somewhat

reliable randomness every 60 seconds for applications requiring a random value, such

as a game. The term “somewhat” is used here to note that NIST says not to use their

service for cryptographic needs, and certainly many people assert that the beacon is not

really secure due to connections between NIST and NSA, and the fact that within the

60-second window the “randomness” could be compromised. However, all that being

said, it is still an interesting and, the authors feel, valid service to have in your toolbox.

To use the service you will need to install the library's required https://www.nist.gov/

programs-projects/nist-randomness-beacon for access first.

2�NIST, “NIST Randomness Beacon,” https://www.nist.gov/programs-projects/nist-
randomness-beacon, accessed May 22, 2018.

Chapter 2 Advanced Basics

https://beacon.nist.gov/home
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon

80

�How to Install the NIST Beacon Library
Regardless of your platform, you can use the NIST beacon with Python. Information

about versions and updates can be found at NIST or https://pypi.org/project/

nistbeacon/0.9.2. Assuming you are using MS Windows and have pip installed and are

online, it is as easy to install as:

pip install nistbeacon (press enter)

Assuming you received no errors from the install, try a few of the following examples

to get a feel for how the beacon works.

�Simple Example to Get a Value
In the following example a 512 Hexadecimal (base 16) value is obtained from the

beacon, displayed and converted to decimal. A random value is also obtained, in the

range of 1 through 10, and displayed. Typing record. will display many other function

options if using IDLE or other full-functioning IDEs.

#Get a 512 hex value from the beacon and display it

from nistbeacon import NistBeacon

record = NistBeacon.get_last_record()

v = record.output_value # 512 hex

r = record.pseudo_random # pick a pseudo random number

print ('Your random follows: ')

print (r.randint(1,10)) #print 1 - 10 random #random())for floats .0 to 1.0

print()

print ('Hex original value:\n', v, '\n')

d=int(v,16) #convert to decimal

print ('Hex value converted to decimal:\n', d)

Chapter 2 Advanced Basics

https://pypi.org/project/nistbeacon/0.9.2
https://pypi.org/project/nistbeacon/0.9.2

81

�Example to Simulate Rolling Coin Flipping a Certain #
Times and Display Heads or Tails
In this example a record is obtained every 66 seconds, converted to decimal, then run

against modulus (remainder of integer division) to see if it is “odd” for “even,” to simulate

“heads” or “tails”:

#Coin flip-O-matic

from nistbeacon import NistBeacon

import time

print()

print ('Coin flip 0 or 1 tails or heads')

print()

print ('Run five times')

for count in range (5):

 time.sleep(66) #wait for new beacon every 66 seconds

 h = NistBeacon.get_last_record()

 v = h.output_value #512 hex

 d=int(v,16) #convert to decimal

 coin = d% 2 #modulus of record (0 or 1)

 if coin == 0:

 print ('tails')

 else:

 print ('heads')

�Taking It With You
The features laid out in this chapter are just a taste of what Python has to offer if you’re

willing to take the time to learn the language. The rest of this book will rely heavily on

what was laid out here, but each chapter will add another layer for future chapters to

build on as well. In that spirit, let’s continue with what you thought was one of the most

basic, unassuming features of Python: functions.

Chapter 2 Advanced Basics

83
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_3

CHAPTER 3

Functions
At the core of any programming language is the notion of functions, but we tend to

take them for granted. Sure, there’s the obvious fact that functions allow code to be

encapsulated into individual units, which can be reused rather than being duplicated

all over the place. But Python takes this beyond just the notion of what some languages

allow, with functions being full-fledged objects that can be passed around in data

structures, wrapped in other functions, or replaced entirely by new implementations.

In fact, Python provides enough flexibility with functions that there are actually

several different types of functions, reflecting the various forms of declaration and

purposes. Understanding each of these types of functions will help you decide which

is appropriate for each situation you encounter while working with your own code.

This chapter explains each of them in turn, as well as a variety of features you can take

advantage of to extend the value of each function you create, regardless of its type.

At their core all functions are essentially equal, regardless of which of the following

sections they fit into. The built-in function type forms their basis, containing all the

attributes necessary for Python to understand how to use them:

>>> def example():

... pass

...

>>> type(example)

<type 'function'>

>>> example

<function example at 0x...>

Of course, there are still a number of different types of functions and as many different

ways of declaring them. First off, let’s examine one of the most universal aspects of functions.

84

�Arguments
Most functions need to take some arguments in order to do anything useful. Normally,

that means defining them in order in the function (the declaration’s) signature, and then

supplying them in the same order when calling that function later. Python supports that

model, but also supports passing keyword arguments and even arguments that won’t be

known until the function is called.

One of the most common advantages of Python’s keyword arguments is that you

can pass arguments in a different order than the way they were defined in the function.

You can even skip arguments entirely, as long as they have a default value defined. This

flexibility helps encourage the use of functions that support lots of arguments with

default values.

EXPLICIT IS BETTER THAN IMPLICIT

One way that Python’s keyword arguments encourage being explicit is to only allow arguments

to be passed out of order if they’re passed by keyword. Without keywords, Python needs to use

the position of the argument to know which parameter name to bind to it when the function

runs. Because keywords are just as explicit as positions, the ordering requirement can be lifted

without introducing ambiguity.

In fact, keywords are even more explicit than positions when working with arguments,

because the function call documents the purpose of each argument. Otherwise, you’d have to

look up the function definition in order to understand its arguments. Some arguments may be

understandable in context, but most optional arguments aren’t obvious at a glance, so passing

them with keywords makes for more readable code.

�Planning for Flexibility
Planning parameter names, order, and default values is particularly important for

functions intended to be called by someone who didn’t write them, such as those

in distributed applications. If you don’t know the exact needs of the users who will

eventually be using your code, it’s best to move any assumptions you may have into

arguments that can be overridden later.

Chapter 3 Functions

85

As an extremely simple example, consider a function that appends a prefix to a string:

def add_prefix(my_string):

 """Adds a 'pro_' prefix before the new string is returned."""

 return 'pro_' + my_string

final_string=input('Enter a string so we can put pro_ in front of it!: ')

print(add_prefix(final_string))

The 'pro_' prefix here may make sense for the application it was written for, but

what happens when anything else wants to use it? Right now, the prefix is hard-coded

into the body of the function itself, so there’s no available alternative. Moving that

assumption into an argument makes for an easy way to customize the function later:

def add_prefix(my_string, prefix='pro_'):

 """Adds a 'pro_' prefix before the string provided, a default value."""

 return prefix + my_string

final_string=input("Enter a string so we can put pro_ in front of it!: ")

print(add_prefix(final_string))

The function call without the prefix argument doesn’t need to change, so existing

code works just fine. The section on preloading arguments later in this chapter shows

how even the prefix can be changed and still be used by code that doesn’t know about it.

Of course, this example is far too simple to provide much real-world value, but the

functions illustrated throughout the rest of this book will take advantage of plenty of

optional arguments, showing their value in each situation.

�Variable Positional Arguments
Most functions are designed to work on a specific set of arguments, but some can handle

any number of arguments, acting on each in turn. These may be passed into a single

argument as a tuple, list, or other iterable.

Chapter 3 Functions

86

Take a typical shopping cart, for example. Adding items to the cart could be done one

at a time or in batches. Using a definition of a class, with a function inside, here’s how it

could be done, using a standard argument:

class ShoppingCart:

 def add_to_cart(items):

 self.items.extend(items)

That would certainly do the trick, but now consider what that means for all the

code that has to call it. The common case would be to add just a single item, but as the

function always accepts a list, it would end up looking something like this:

cart.add_to_cart([item])

So we’ve basically sabotaged the majority case in order to support the minority.

Worse yet, if add_to_cart() originally supported just one item and was changed to

support multiples, this syntax would break any existing calls, requiring you to rewrite

them just to avoid a TypeError.

Ideally, the method should support the standard syntax for single arguments, while

still supporting multiple arguments. By adding an asterisk before an argument name,

you can specify that that all remaining positional arguments are collected into one tuple

bound to the argument prefixed with an asterisk that didn’t get assigned to anything

before it. In this case there are no other arguments, so variable positional arguments can

make up the entire argument list:

 def add_to_cart(*items):

 self.items.extend(items)

Chapter 3 Functions

87

Now, the method can be called with any number of positional arguments rather

than having to group those arguments first into a tuple or list. The extra arguments are

bundled in a tuple automatically before the function starts executing. This cleans up

the common case, while still enabling more arguments as needs require. Here are a few

examples of how the method could be called:

cart.add_to_cart(item)

cart.add_to_cart(item1, item2)

cart.add_to_cart(item1, item2, item3, item4, item5)

There is still one more way to call this function that allows the calling code to support

any number of items as well, but it’s not specific to functions that are designed to accept

variable arguments. See the section on invoking functions with variable arguments for

all the details.

�Variable Keyword Arguments
Functions may need to take extra configuration options, particularly if passing those

options to some other library further down the line. The obvious approach would be to

accept a dictionary, which can map configuration names to their values:

class ShoppingCart:

 def __init__(self, options):

 self.options = options

Unfortunately, that ends up with a problem similar to the one we encountered with

positional arguments described in the previous section. The simple case in which you

only override one or two values gets fairly complicated. Here are two ways the function

call could look, depending on preference:

Chapter 3 Functions

88

options = {'currency': 'USD'}

cart = ShoppingCart(options)

cart = ShoppingCart({'currency': 'USD'})

Of course, this approach doesn’t scale any prettier than the list provided in the

positional argument problem from the previous section. Also, like the previous problem,

this can be problematic. If the function you’re working with were previously set up to

accept some explicit keyword arguments, the new dictionary argument would break

compatibility.

Instead, Python offers the ability to pass a variable number of keyword arguments by

adding two asterisks before the name of the argument that will accept them. This allows

for the much friendlier keyword argument syntax, while still allowing for a fully dynamic

function call. Examine the following stub:

 def __init__(self, **options):

 self.options = options

Now consider what that same stub function from earlier would look like, given that

the function now takes arbitrary keyword arguments:

cart = ShoppingCart(currency='USD')

Caution  When working with variable arguments, there’s one difference between
positional and keyword arguments that can cause problems. Positional arguments
are grouped into a tuple, which is immutable, while keyword arguments are placed
into a dictionary, which is mutable (changeable).

Chapter 3 Functions

89

BEAUTIFUL IS BETTER THAN UGLY

The second function call example here is a classic example of code that would generally be

considered ugly by many Python programmers. The sheer volume of punctuation—quotation

marks around both the key and value, a colon between them, and curly braces around the

whole thing—inside the already necessary parentheses make it very cluttered and difficult to

process at a glance.

E.g. cart = ShoppingCart({'currency': 'USD'})

By switching to keyword arguments, as shown in this section, the appearance of the code

is considerably better aligned with Python’s core values and philosophy. Beauty may be

subjective in its very nature, but certain subjective decisions are praised by the vast majority

of the programmers.

�Combining Different Kinds of Arguments
These options for variable arguments combine with the standard options, such as

required and optional arguments. In order to make sure everything meshes nicely,

Python has some very specific rules for defining parameters in a function signature.

There are only four types of arguments, listed here in the order they generally appear in

functions:

•	 Required arguments

•	 Optional arguments

•	 Variable number of positional arguments

•	 Variable keyword arguments

Putting the required arguments first in the list ensures that positional arguments

satisfy the required arguments prior to getting into the optional arguments. Variable

arguments can only pick up values that didn’t fit into anything else, so they naturally get

defined at the end. Here’s how this stub would look in a typical function definition:

def create_element(name, editable=True, *children, **attributes):

Chapter 3 Functions

90

This same ordering can be used when calling functions, but it has one shortcoming.

In this example, you’d have to supply a value for editable as a positional argument in

order to pass in any children at all. It’d be better to be able to supply them right after the

name, avoiding the optional editable argument entirely most of the time.

To support this, Python also allows variable positional arguments to be placed

among standard arguments. Both required and optional arguments can be positioned

after the variable argument, but now they must be passed by keyword. All the arguments

are still available, but the less common ones become more optional when not required

and more explicit when they do make sense.

IN THE FACE OF AMBIGUITY, REFUSE THE TEMPTATION TO GUESS

By allowing positional arguments in the middle of a list of explicit arguments, Python might

have introduced a considerable ambiguity. Consider a function defined to pass commands

through to an arbitrary argument: perform_action(action, *args, log_output=False). Ordinarily,

you can supply enough positional arguments to reach even the optional arguments, but in this

case, what would happen if you supplied three or more values?

One possible interpretation is to give the first value to the first argument, the last value to

the last argument, and everything else to the variable argument. That could work, but then

it comes down to a guess as to the intent of the programmer making the call. Once you

consider a function with even more arguments behind the variable argument, the possible

interpretations become quite numerous.

Instead, Python strictly enforces that everything after the variable argument becomes

accessible by keyword only. Positional argument values beyond those explicitly defined in the

function go straight into the variable argument, whether just one or dozens were provided. The

implementation becomes easy to explain by having just one way to do it, and it’s even more

explicit by enforcing the use of keywords.

An added feature of this behavior is that explicit arguments placed after variable

positional arguments can still be required. The only real difference between the two

types of placement is the requirement of using keyword arguments; whether the

argument requires a value still depends on whether you define a default argument:

Chapter 3 Functions

91

>>> def join_with_prefix(prefix, *segments, delimiter):

... return delimiter.join(prefix + segment for segment in segments)

...

>>> join_with_prefix('P', 'ro', 'ython')

Traceback (most recent call last):

 ...

TypeError: join_with_prefix() needs keyword-only argument delimiter

>>> join_with_prefix('P', 'ro', 'ython', ' ')

Traceback (most recent call last):

 ...

TypeError: join_with_prefix() needs keyword-only argument delimiter

>>> join_with_prefix('P', 'ro', 'ython', delimiter=' ')

'Pro Python'

Note  If you want to accept keyword-only arguments but you don’t have a good
use for variable positional arguments, simply specify a single asterisk without an
argument name. This tells Python that everything after the asterisk is keyword-
only, without also accepting potentially long sets of positional arguments. One
caveat is that if you also accept variable keyword arguments, you must supply at
least one explicit keyword argument. Otherwise, there’s really no point in using the
bare asterisk notation, and Python will raise a SyntaxError.

In fact, remember that the ordering requirements of required and optional

arguments are solely intended for the case of positional arguments. With the ability to

define arguments as being keyword-only, you’re now free to define them as required and

optional in any order, without any complaints from Python. Ordering isn’t important

when calling the function, so it’s also not important when defining the function.

Consider rewriting the previous example to require the prefix as a keyword argument,

while also making the delimiter optional:

Chapter 3 Functions

92

>>> def join_with_prefix(*segments, delimiter=' ', prefix):

... return delimiter.join(prefix + segment for segment in segments)

>>> join_with_prefix('ro', 'ython', prefix='P')

'Pro Python'

Caution  Be careful taking advantage of this level of flexibility, because it’s not
very straightforward compared to how Python code is typically written. It’s certainly
possible, but it runs contrary to what most Python programmers will expect, which
can make it difficult to maintain in the long run.

In all cases, however, variable keyword arguments must be positioned at the end of

the list, after all other types of arguments.

�Invoking Functions with Variable Arguments
In addition to being able to define arguments that can accept any number of values, the

same syntax can be used to pass values into a function call. The big advantage to this is

that it’s not restricted to arguments that were defined to be variable in nature. Instead,

you can pass variable arguments into any function, regardless of how it was defined. The

* unpacks an iterable and passes its contents as separate arguments.

The same asterisk (*) notation is used to specify variable arguments, which are then

expanded into a function call as if all the arguments were specified directly. A single

asterisk specifies positional arguments, while two asterisks specify keyword arguments.

This is especially useful when passing in the return value of a function call directly as an

argument, without assigning it to individual variables first:

>>> value = 'ro ython'

>>> join_with_prefix(*value.split(' '), prefix='P')

Chapter 3 Functions

93

This example seems obvious on its own, because it’s a variable argument being passed

in to a variable argument, but the same process works just fine on other types of functions

as well. Because the arguments get expanded before getting passed to the function, it can

be used with any function, regardless of how its arguments were specified. It can even be

used with built-in functions and those defined by extensions written in C.

Note  You can only pass in one set of variable positional arguments and one set
of variable keyword arguments in a function call. If you have two lists of positional
arguments, for example, you’ll need to join them together yourself and pass that
combined list into the function instead of trying to use the two separately.

�Passing Arguments
When you start adding a number of arguments to function calls, many of which are

optional, it becomes fairly common to know some of the argument values that will need

to be passed, even if it’s still long before the function will actually be called. Rather than

having to pass in all the arguments at the time the call is made, it can be quite useful to

apply some of those arguments in advance, so fewer can be applied later.

This concept is officially called partial application of the function, but the function

doesn’t get called at all yet, so it’s really more a matter of preloading some of the

arguments in advance. When the preloaded function is called later, any arguments

passed along are added to those that were provided earlier.

WHAT ABOUT CURRYING?

If you’re familiar with other forms of functional programming, you may have heard of currying,

which may look very similar to preloading arguments. Some frameworks have even provided

functions named curry() that can preload arguments on a function, which leads to even

more confusion. The difference between the two is subtle but important.

With a truly curried function, you must call it as many times as necessary to fill up all of the

arguments. If a function accepts three arguments and you call it with just one argument,

you’d get back a function that accepts two more arguments. If you call that new function,

it still won’t execute your code but will instead load the next argument and return another

function that takes the last remaining argument. Calling that function will finally satisfy all the

arguments, so the actual code will be executed and return a useful value.

Chapter 3 Functions

94

Partial application returns a function which, when called later, will at least try to execute code,

no matter how many arguments may remain. If there are required arguments that haven’t

gotten a value yet, Python will raise a TypeError just like it would if you had called it with

missing arguments any other time. So even though there are certainly similarities between the

two techniques, it’s important to understand the difference.

This behavior is provided as part of the built-in functools module, by way of

its partial() function. By passing in a callable and any number of positional and

keyword arguments, it will return a new callable that can be used later to apply those

arguments:

>>> import os

>>> def load_file(file, base_path='/', mode='rb'):

... return open(os.path.join(base_path, file), mode)

...

>>> f = load_file('example.txt')

>>> f.mode

'rb'

>>> f.close()

>>> import functools

>>> load_writable = functools.partial(load_file, mode='w')

>>> f = load_writable('example.txt')

>>> f.mode

'w'

>>> f.close()

Note T he technique of preloading arguments is true for the partial() function,
but the technique of passing one function into another to get a new function back
is generally known as a decorator or higher order function. Decorators, as you’ll
see later in this chapter, can perform any number of tasks when called; preloading
arguments is just one example.

Chapter 3 Functions

95

This is commonly used to customize a more flexible function into something

simpler, so it can be passed into an API that doesn’t know how to access that flexibility.

By preloading the custom arguments beforehand, the code behind the API can call your

function with the arguments it knows how to use, but all the arguments will still come

into play.

Caution  When using functools.partial(), you won’t be able to provide any
new values for those arguments that were previously loaded. This is, of course,
standard behavior any time you try to supply multiple values for a single argument,
but the situation comes up much more often when you’re not supplying them all in
the same function call. For an alternative approach that addresses this issue, see
the “Decorators” section of this chapter.

�Introspection
Python is very transparent, allowing code to inspect many aspects of objects at runtime.

Because functions are objects like any others, there are several things that your code

can glean from them, including the function signature, which specifies parameters.

Obtaining a function’s arguments directly requires going through a fairly complicated

set of attributes that describe Python’s bytecode structures, but thankfully Python also

provides some functions to make it easier.

Many of Python’s introspection features are available as part of the standard inspect

module, with its getfullargspec() function being of use for function arguments. It

accepts the function to be inspected and returns a named tuple of information about

that function’s arguments. The returned tuple contains values for every aspect of an

argument specification:

•	 args: A list of explicit argument names

•	 varargs: The name of the variable positional argument

•	 varkw: The name of the variable keyword argument

•	 defaults: A tuple of default values for explicit arguments

•	 kwonlyargs: A list of keyword-only argument names

Chapter 3 Functions

96

•	 kwonlydefaults: A dictionary of default values for keyword-only

arguments

•	 annotations: A dictionary of argument annotations, which will be

explained later in this chapter

To better illustrate what values are present in each part of the tuple, here’s how it

maps out to a basic function declaration:

>>> def example(a=1, b=1, *c, d, e=2, **f) -> str:

... pass

...

>>> import inspect

>>> inspect.getfullargspec(example)

FullArgSpec(args=['a', 'b'], varargs='c', varkw='f', defaults=(1,),

kwonlyargs=[

'd', 'e'], kwonlydefaults={'e': 2}, annotations={'a': <class 'int'>,

'return': <

class 'str'>})

�Example: Identifying Argument Values
Sometimes it can be useful to log what arguments a function will receive, regardless

of which function it is or what its arguments look like. This behavior often comes into

play in systems that generate argument lists based on something other than a Python

function call. Some examples include instructions from a template language and regular

expressions that parse text input.

Unfortunately, positional arguments present a bit of a problem because their values

don’t include the name of the argument they’ll be sent to. Default values also pose a

problem because the function call doesn’t need to include any values at all. Because

the log should include all the values that will be given to the function, both of these

problems will need to be addressed.

Chapter 3 Functions

97

First, the easy part. Any argument values passed by keyword don’t need to be

matched up with anything manually, as the argument names are provided right with

the values. Rather than concerning ourselves with logging at the outset, let’s start with a

function to get all the arguments in a dictionary that can be logged. The function accepts

a function, a tuple of positional arguments, and a dictionary of keyword arguments:

def example(a=1, b=1, *c, d, e=2, **f) -> str:

 pass

def get_arguments(func, args, kwargs):

 """

 Given a function and a set of arguments, return a dictionary

 of argument values that will be sent to the function.

 We are modifying get_arguments by adding new parts to it.

 """

 arguments = kwargs.copy()

 return arguments

print(get_arguments(example, (1,), {'f': 4})) #will yield a result

of: {'f': 4}

That really was easy. The function makes a copy of the keyword arguments instead of

just returning it directly because we’ll be adding entries to that dictionary soon enough.

Next, we have to deal with positional arguments. The trick is to identify which argument

names map to the positional argument values, so that those values can be added to the

dictionary with the appropriate names. This is where inspect.getfullargspec() comes

into play, using zip() to do the heavy lifting:

def example(a=1, b=1, *c, d, e=2, **f) -> str:

 pass

import inspect

def get_arguments(func, args, kwargs):

Chapter 3 Functions

98

 """

 Given a function and a set of arguments, return a dictionary

 of argument values that will be sent to the function.

 """

 arguments = kwargs.copy()

 spec = inspect.getfullargspec(func)

 arguments.update(zip(spec.args, args))

 return arguments

print(get_arguments(example, (1,), {'f': 4})) # will output {'a': 1, 'f': 4}

Now that the positional arguments have been dealt with, let’s move on to figuring out

default values. If there are any default values that weren’t overridden by the arguments

provided, the defaults should be added to the argument dictionary, as they will be sent

to the function:

import inspect

def example(a=1, b=1, *c, d, e=2, **f) -> str:

 pass

def get_arguments(func, args, kwargs):

 """

 Given a function and a set of arguments, return a dictionary

 of argument values that will be sent to the function.

 """

 arguments = kwargs.copy()

 spec = inspect.getfullargspec(func)

 arguments.update(zip(spec.args, args))

 if spec.defaults:

 for i, name in enumerate(spec.args[-len(spec.defaults):]):

 if name not in arguments:

 arguments[name] = spec.defaults[i]

 return arguments

print(get_arguments(example, (1,), {'f': 4})) # will output {'a': 1, 'b': 1, 'f': 4}

Chapter 3 Functions

99

Because optional arguments must come after required arguments, this addition uses

the size of the defaults tuple to determine the names of the optional argument. Looping

over them, it then assigns only those values that weren’t already provided. Unfortunately,

this is only half of the default value situation. Because keyword-only arguments can take

default values as well, getfullargspec() returns a separate dictionary for those values:

import inspect

def example(a=1, b=1, *c, d, e=2, **f) -> str:

 pass

def get_arguments(func, args, kwargs):

 """

 Given a function and a set of arguments, return a dictionary

 of argument values that will be sent to the function.

 """

 arguments = kwargs.copy()

 spec = inspect.getfullargspec(func)

 arguments.update(zip(spec.args, args))

 for i, name in enumerate(spec.args[-len(spec.defaults)]):

 if name not in arguments:

 arguments[name] = spec.defaults[i]

 if spec.kwonlydefaults:

 for name, value in spec.kwonlydefaults.items():

 if name not in arguments:

 arguments[name] = value

 return arguments

print(get_arguments(example, (1,), {'f': 4})) # will yield {'a': 1, 'b': 1,

'e': 2, 'f': 4}

Because default values for keyword-only arguments also come in dictionary form,

it’s much easier to apply those because the argument names are known in advance. With

that in place, get_arguments() can produce a more complete dictionary of arguments

that will be passed to the function. Unfortunately, because this returns a dictionary

Chapter 3 Functions

100

and variable positional arguments have no names, there’s no way to add them to the

dictionary. This limits its usefulness a bit, but it’s still valid for a great many function

definitions.

�Example: A More Concise Version
The previous example is certainly functional, but it’s a bit more code than is really

necessary. In particular, it takes a fair amount of work supplying default values when

explicit values aren’t provided. That’s not very intuitive, however, because we usually

think about default values the other way around: they’re provided first, then overridden

by explicit arguments.

The get_arguments() function can be rewritten with that in mind by bringing the

default values out of the function declaration first, before replacing them with any values

passed in as actual arguments. This avoids a lot of the checks that have to be made to

make sure nothing gets overwritten accidentally.

The first step is to get the default values out. Because the defaults and

kwonlydefaults attributes of the argument specification are set to None if no default

values were specified, we actually have to start by setting up an empty dictionary to

update. Then the default values for positional arguments can be added in.

Because this only needs to update a dictionary this time, without regard for what

might be in it already, it’s a bit easier to use a different technique to get the positional

defaults. Rather than using a complex slice that’s fairly difficult to read, we can use a

similar zip() to what was used to get the explicit argument values. By first reversing the

argument list and the default values, they still match up starting at the end:

def example(a=1, b=1, *c, d, e=2, **f) -> str:

 pass

def get_arguments(func, args, kwargs):

 """

 Given a function and a set of arguments, return a dictionary

 of argument values that will be sent to the function.

 """

Chapter 3 Functions

101

 arguments = {}

 spec = inspect.getfullargspec(func)

 if spec.defaults:

 arguments.update(zip(reversed(spec.args), reversed(spec.defaults)))

 return arguments

print(get_arguments(example, (1,), {'f': 4})) # will output {'b': 1}

Adding default values for keyword arguments is much easier because the argument

specification already supplies them as a dictionary. We can just pass that straight into an

update() of the argument dictionary and move on:

def example(a=1, b=1, *c, d, e=2, **f) -> str:

 pass

def get_arguments(func, args, kwargs):

 """

 Given a function and a set of arguments, return a dictionary

 of argument values that will be sent to the function.

 """

 arguments = {}

 spec = inspect.getfullargspec(func)

 if spec.defaults:

 arguments.update(zip(reversed(spec.args), reversed(spec.defaults)))

 if spec.kwonlydefaults:

 arguments.update(spec.kwonlydefaults)

 return arguments

print(get_arguments(example, (1,), {'f': 4})) # will output {'b': 1, 'e': 2}

Now all that’s left is to add the explicit argument values that were passed in. The

same techniques used in the earlier version of this function will work here, with the only

exception being that keyword arguments are passed in an update() function instead of

being copied to form the argument dictionary in the first place:

Chapter 3 Functions

102

def example(a=1, b=1, *c, d, e=2, **f) -> str:

 pass

def get_arguments(func, args, kwargs):

 """

 Given a function and a set of arguments, return a dictionary

 of argument values that will be sent to the function.

 """

 arguments = {}

 spec = inspect.getfullargspec(func)

 if spec.defaults:

 arguments.update(zip(reversed(spec.args), reversed(spec.defaults)))

 if spec.kwonlydefaults:

 arguments.update(spec.kwonlydefaults)

 arguments.update(zip(spec.args, args))

 arguments.update(kwargs)

 return arguments

print(get_arguments(example, (1,), {'f': 4})) # will output {'a': 1, 'b':

1, 'e': 2, 'f': 4}

With that, we have a much more concise function that works the way we normally

think of default argument values. This type of refactoring is fairly common after you get

more familiar with the advanced techniques available to you. It’s always useful to look

over old code to see if there’s an easier, more straightforward way to go about the task at

hand. This will often make your code faster as well as more readable and maintainable

going forward. Now we'll extend our solution to also validate arguments.

�Example: Validating Arguments
Unfortunately, that doesn’t mean that the arguments returned by get_arguments() are

capable of being passed into the function without errors. As it stands, get_arguments()

assumes that any keyword arguments supplied are in fact valid arguments for the

Chapter 3 Functions

103

function, but that isn’t always the case. In addition, any required arguments that didn’t

get a value will cause an error when the function is called. Ideally, we should be able to

validate the arguments as well.

We can start with get_arguments(), so we have a dictionary of all the values that will

be passed to the function, then we have two validation tasks: make sure all arguments

have values and make sure no arguments were provided that the function doesn’t know

about. The function itself may impose additional requirements on the argument values,

but as a generic utility, we can’t make any assumptions about the content of any of the

provided values.

Let’s start off with making sure all the necessary values were provided. We don’t

have to worry as much about required or optional arguments this time around, since

get_arguments() already makes sure optional arguments have their default values. Any

argument left without a value is therefore required:

import itertools

def validate_arguments(func, args, kwargs):

 """

 Given a function and its arguments, return a dictionary

 with any errors that are posed by the given arguments.

 """

 arguments = get_arguments(func, args, kwargs)

 spec = inspect.getfullargspec(func)

 declared_args = spec.args[:]

 declared_args.extend(spec.kwonlyargs)

 errors = {}

 for name in declared_args:

 if name not in arguments:

 errors[name] = "Required argument not provided."

 return errors

Chapter 3 Functions

104

With the basics in place to validate that all required arguments have values, the

next step is to make sure the function knows how to deal with all the arguments that

were provided. Any arguments passed in that aren’t defined in the function should be

considered an error:

import itertools

def validate_arguments(func, args, kwargs):

 """

 Given a function and its arguments, return a dictionary

 with any errors that are posed by the given arguments.

 """

 arguments = get_arguments(func, args, kwargs)

 spec = inspect.getfullargspec(func)

 declared_args = spec.args[:]

 declared_args.extend(spec.kwonlyargs)

 errors = {}

 for name in declared_args:

 if name not in arguments:

 errors[name] = "Required argument not provided."

 for name in arguments:

 if name not in declared_args:

 errors[name] = "Unknown argument provided."

 return errors

Of course, because this relies on get_arguments(), it inherits the same limitation

of variable positional arguments. This means validate_arguments() may sometimes

return an incomplete dictionary of errors. Variable positional arguments present an

additional challenge that can’t be addressed with this function. A more comprehensive

solution is provided in the section on function annotations.

Chapter 3 Functions

105

�Decorators
When dealing with a large codebase, it’s very common to have a set of tasks that need to

be performed by many different functions, usually before or after doing something more

specific to the function at hand. The nature of these tasks is as varied as the projects that

use them, but here are some of the more common examples of where decorators are

used:

•	 Access control

•	 Cleanup of temporary objects

•	 Error handling

•	 Caching

•	 Logging

In all of these cases, there’s some boilerplate code that needs to be executed before

or after what the function’s really trying to do. Rather than copying that code into each

function, it would be better if it could be written once and simply applied to each

function that needs it. This is where decorators come in.

Technically, decorators are just simple functions designed with one purpose: accept

a function and return a function. The function returned can be the same as the one

passed in, or it could be completely replaced by something else along the way. The

most common way to apply a decorator is using a special syntax designed just for this

purpose. Here’s how you could apply a decorator designed to suppress any errors during

the execution of a function:

import datetime

from myapp import suppress_errors

@suppress_errors

def log_error(message, log_file='errors.log'):

 """Log an error message to a file."""

 log = open(log_file, 'w')

 log.write('%s\t%s\n' % (datetime.datetime.now(), message))

Chapter 3 Functions

106

This syntax tells Python to pass the log_error() function as an argument to the

suppress_errors() function, which then returns a replacement to use instead. It’s easier

to understand what happens behind the scenes by examining the process used in older

versions of Python, before the @ syntax was introduced in Python 2.4:

 #Python 2.x example

import datetime

from myapp import suppress_errors

def log_error(message, log_file='errors.log'):

 """Log an error message to a file."""

 log = open(log_file, 'w')

 log.write('%s\t%s\n' % (datetime.datetime.now(), message))

log_error = suppress_errors(log_error)

DON’T REPEAT YOURSELF/READABILITY COUNTS

When using the older decoration approach, notice that the name of the function is written

three different times. Not only is this some extra typing that seems unnecessary; it

complicates matters if you ever need to change the function name, and it only gets worse

the more decorators you add. The newer syntax can apply a decorator without repeating the

function name, no matter how many decorators you use.

Of course, the @ syntax does have one other benefit, which greatly helps its introduction: it

keeps decorators right near the function’s signature. This makes it easy to see at a glance

which decorators are applied, which more directly conveys the total behavior of the function.

Having them at the bottom of the function requires more effort to understand the complete

behavior, so by moving decorators up to the top, readability is greatly enhanced.

The older option is still available and behaves identically to the @ syntax. The only

real difference is that the @ syntax is only available when defining the function in the

source file. If you want to decorate a function that was imported from elsewhere, you’ll

have to pass it into the decorator manually, so it’s important to remember both ways it

can work:

Chapter 3 Functions

107

from myapp import log_error, suppress_errors

log_error = suppress_errors(log_error)

To understand what commonly goes on inside decorators like log_error(), it’s

necessary to first examine one of the most misunderstood and underutilized features of

Python, and many other languages as well: closures.

�Closures
Despite their usefulness, closures can seem to be an intimidating topic. Most

explanations assume prior knowledge of things such as lexical scope, free variables,

upvalues, and variable extent. Also, because so much can be done without ever learning

about closures, the topic often seems mysterious and magical, as if it’s the domain of

experts, unsuitable for the rest of us. Thankfully, closures really aren’t as difficult to

understand as the terminology may suggest.

In a nutshell, a closure is a function that’s defined inside another function but is then

passed outside that function where it can be used by other code. There are some other

details to learn as well, but it’s still fairly abstract at this point, so here’s a simple example

of a closure:

def multiply_by(factor):

 """Return a function that multiplies values by the given factor"""

 def multiply(value):

 """Multiply the given value by the factor already provided"""

 return value * factor

 return multiply

times2=multiply_by(2)

print(times2(2))

Chapter 3 Functions

108

As you can see, when you call multiply_by() with a value to use as a multiplication

factor, the inner multiply() gets returned to be used later on. Here’s how it would

actually be used, which may help explain why this is useful. If you key in the previous

code line by line from a Python prompt, the following would give you an idea about how

this works:

>>> times2 = multiply_by(2)

>>> times2(5)

10

>>> times2(10)

20

>>> times3 = multiply_by(3)

>>> times3(5)

15

>>> times2(times3(5))

30

This behavior looks a bit like the argument preloading feature of functools.partial(),

but you don’t need to have a function that takes both arguments at once. The interesting

part of about how this works, however, is that the inner function doesn’t need to accept a

factor argument of its own; it essentially inherits that argument from the outer function.

The fact that an inner function can reference the values of an outer function often

seems perfectly normal when looking at the code, but there are a couple of rules about

how it works that might not be as obvious. First, the inner function must be defined

within the outer function; simply passing in a function as an argument won’t work:

def multiply(value):

 return value * factor

def custom_operator(func, factor):

 return func

multiply_by = functools.partial(custom_operator, multiply)

Chapter 3 Functions

109

On the surface, this looks mostly equivalent to the working example shown

previously, but with the added benefit of being able to provide a callable at runtime.

After all, the inner function gets placed inside the outer function and gets returned for

use by other code. The problem is that closures only work if the inner function is actually

defined inside the outer function, not just anything that gets passed in:

>>> times2 = multiply_by(2)

>>> times2(5)

Traceback (most recent call last):

 ...

NameError: global name 'factor' is not defined

This almost contradicts the functionality of functools.partial(), which works

much like the custom_operator() function described here, but remember that

partial() accepts all of the arguments at the same time as it accepts the callable to be

bundled with them. It doesn’t try to pull in any arguments from anywhere else.

�Wrappers
Closures come into play heavily in the construction of wrappers, the most common use

of decorators. Wrappers are functions designed to contain another function, adding

some extra behavior before or after the wrapped function executes. In the context of the

closure discussion, a wrapper is the inner function, while the wrapped function is passed

in as an argument to the outer function. Here’s the code behind the suppress_errors()

decorator shown in the previous section:

def suppress_errors(func):

 """Automatically silence any errors that occur within a function"""

 def wrapper(*args, **kwargs):

 try:

 return func(*args, **kwargs)

Chapter 3 Functions

110

 except Exception:

 pass

 return wrapper

A few things are going on here, but most of them have already been covered. The

decorator takes a function as its only argument, which isn’t executed until the inner

wrapper function executes. By returning the wrapper instead of the original function, we

form a closure, which allows the same function name to be used even after suppress_

errors() is done.

Because the wrapper has to be called as if it were the original function, regardless of

how that function was defined, it must accept all possible argument combinations. This

is achieved by using variable positional and keyword arguments together and passing

them straight into the original function internally. This is a very common practice with

wrappers because it allows maximum flexibility, without caring what type of function it’s

applied to.

The actual work in the wrapper is quite simple: just execute the original function

inside a try/except block to catch any exceptions that are raised. In the event of any

errors it just continues merrily along, implicitly returning None instead of doing anything

interesting. It also makes sure to return any value returned by the original function, so

that everything meaningful about the wrapped function is maintained.

In this case the wrapper function is fairly simple, but the basic idea works for many

more complex situations as well. There could be several lines of code both before and after

the original function is called, perhaps with some decisions about whether it is called at

all. Authorization wrappers, for instance, will typically return or raise an exception without

ever calling the wrapped function, if the authorization failed for any reason.

Unfortunately, wrapping a function means some potentially useful information is

lost. Chapter 5 shows how Python has access to certain attributes of a function, such as

its name, docstring, and argument list. By replacing the original function with a wrapper,

we’ve actually replaced all of that other information as well. In order to bring some of it

back, we turn to a decorator in the functools module called wraps.

It may seem odd to use a decorator inside a decorator, but it really just solves the

same problem as anything else: there’s a common need that shouldn’t require duplicate

code everywhere it takes place. The functools.wraps() decorator copies the name,

docstring, and some other information over to the wrapped function, so at least some of

it gets retained. It does not copy over the argument list, but it’s better than nothing:

Chapter 3 Functions

111

import functools

def suppress_errors(func):

 """Automatically silence any errors that occur within a function"""

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 try:

 return func(*args, **kwargs)

 except Exception:

 pass

 return wrapper

What may seem most odd about this construction is that functools.wraps() takes

an argument in addition to the function to which it’s applied. In this case, that argument

is the function to copy attributes from, which is specified on the line with the decorator

itself. This is often useful for customizing decorators for specific tasks, so next we’ll

examine how to take advantage of custom arguments in your own decorators.

�Decorators with Arguments
Ordinarily decorators only take a single argument, the function to be decorated. Behind

the scenes, though, Python evaluates the @ line as an expression before applying it as

a decorator. The result of the expression is what’s actually used as a decorator. In the

simple case, the decorator expression is just a single function, so it evaluates easily.

Adding arguments in the form used by functools.wraps() makes the whole statement

evaluate like this:

wrapper = functools.wraps(func)(wrapper)

Looking at it this way, the solution becomes clear: one function returns another. The

first function accepts the extra arguments and returns another function, which is used

as the decorator. This makes implementing arguments on a decorator more complex

Chapter 3 Functions

112

because it adds another layer to the whole process, but it’s easy to deal with once you see

it in context. Here’s how everything works together in the longest chain you’re likely to see:

•	 A function to accept and validate arguments, and also return a

function that decorates the original

•	 A decorator to accept a user-defined function

•	 A wrapper to add extra behavior

•	 The original function that was decorated

Not all of that will happen for every decorator, but that’s the general approach of

the most complex scenarios. Anything more complicated is simply an expansion of one

of those four steps. As you’ll notice, three of the four have already been covered, so the

extra layer imposed by decorator arguments is really the only thing left to discuss.

This new outermost function accepts all the arguments for the decorator, optionally

validates them, and returns a new function as a closure over the argument variables.

That new function must take a single argument, functioning as the decorator. Here’s how

the suppress_errors() decorator might look if it instead accepted a logger function to

report the errors to, rather than completely silencing them:

import functools

def suppress_errors(log_func=None):

 """Automatically silence any errors that occur within a function"""

 def decorator(func):

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 try:

 return func(*args, **kwargs)

 except Exception as e:

 if log_func is not None:

 log_func(str(e))

 return wrapper

 return decorator

Chapter 3 Functions

113

This layering allows suppress_errors() to accept arguments prior to being used as

a decorator, but it removes the ability to call it without any arguments. Because that was

the previous behavior, we’ve now introduced a backward incompatibility. The closest we

can get to the original syntax is to actually call suppress_errors() first, but without any

arguments.

Here’s an example function that processes updates files in a given directory. This is a

task that’s often performed on an automated schedule, so that if something goes wrong,

it can just stop running and try again at the next appointed time:

import datetime

import os

import time

from myapp import suppress_errors

@suppress_errors()

def process_updated_files(directory, process, since=None):

 """

 Processes any new files in a `directory` using the `process` function.

 If provided, `since` is a date after which files are considered updated.

 The process function passed in must accept a single argument: the absolute

 path to the file that needs to be processed.

 """

 if since is not None:

 # Get a threshold that we can compare to the modification time later

 threshold = time.mktime(since.timetuple()) + since.microsecond / 1000000

 else:

 threshold = 0

 for filename in os.listdir(directory):

 path = os.path.abspath(os.path.join(directory, filename))

 if os.stat(path).st_mtime > threshold:

 process(path)

Unfortunately, this is still a strange situation to end up with, and it really doesn’t look

like anything that Python programmers are used to. Clearly, we need a better solution.

Chapter 3 Functions

114

�Decorators with—or without—Arguments
Ideally, a decorator with optional arguments would be able to be called without

parentheses if no arguments are provided, while still being able to provide the arguments

when necessary. This means supporting two different flows in a single decorator, which

can get tricky if you’re not careful. The main problem is that the outermost function must

be able to accept arbitrary arguments or a single function, and it must be able to tell the

difference between the two and behave accordingly.

That brings us to the first task: determining which flow to use when the outer function

is called. One option would be to inspect the first positional argument and check to see if

it’s a function, since decorators always receive the function as a positional argument.

Interestingly, a pretty good distinction can be made based on something mentioned

briefly in the previous paragraph. Decorators always receive the decorated function

as a positional argument, so we can use that as its distinguishing factor. For all other

arguments we can instead rely on keyword arguments, which are generally more explicit

anyway, thus making it more readable as well.

We could do this by way of using *args and **kwargs, but because we know the

positional argument list is just a fixed single argument, it’s easier to just make that the

first argument and make it optional. Then, any additional keyword arguments can be

placed after it. They’ll all need default values, of course, but the whole point here is that

all arguments are optional, so that’s not a problem.

With the argument distinction squared away, all that’s left is to branch into a

different code block if arguments are provided, rather than a function to be decorated.

By having an optional first positional argument, we can simply test for its presence to

determine which branch to go through:

import functools

def suppress_errors(func=None, log_func=None):

 """Automatically silence any errors that occur within a function"""

 def decorator(func):

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 try:

Chapter 3 Functions

115

 return func(*args, **kwargs)

 except Exception as e:

 if log_func is not None:

 log_func(str(e))

 return wrapper

 if func is None:

 return decorator

 else:

 return decorator(func)

This now allows suppress_errors() to be called with or without arguments, but it’s

still important to remember that arguments must be passed with keywords. This is an

example in which an argument looks identical to the function being decorated. There’s

no way to tell the difference by examining them, even if we tried.

If a logger function is provided as a positional argument, the decorator will assume

it’s the function to be decorated, so it’ll actually execute the logger immediately, with

the function to be decorated as its argument. In essence, you’ll end up logging the

function you wanted to decorate. Worse yet, the value you’re left with after decorating

the function is actually the return value from the logger, not the decorator. Because

most loggers don’t return anything, it’ll probably be None—that’s right, your function

has vanished. Given that you keyed in the aforementioned functions, you can try the

following from a prompt:

>>> def print_logger(message):

... print(message)

...

>>> @suppress_errors(print_logger)

... def example():

... return variable_which_does_not_exist

...

<function example at 0x...>

>>> example

>>>

Chapter 3 Functions

116

This is a side effect of the way the decorator works, and there’s little to be done other

than documenting it and making sure you always specify keywords when applying arguments.

�Example: Memoization
To demonstrate how decorators can copy out common behavior into any function you

like, consider what could be done to improve the efficiency of deterministic functions.

Deterministic functions always return the same result given the same set of arguments,

no matter how many times they’re called. Given such a function, it should be possible to

cache the results of a given function call so if it’s called with the same arguments again,

the result can be looked up without having to call the function again.

Using a cache, a decorator can store the result of a function using the argument list

as its key. Dictionaries can’t be used as keys in a dictionary, so only positional arguments

can be taken into account when populating the cache. Thankfully, most functions that

would take advantage of memoization are simple mathematical operations, which are

typically called with positional arguments anyway:

def memoize(func):

 """

 Cache the results of the function so it doesn't need to be called

 again, if the same arguments are provided a second time.

 """

 cache = {}

 @functools.wraps(func)

 def wrapper(*args):

 if args in cache:

 return cache[args]

 # This line is for demonstration only.

 # Remove it before using it for real.

 print('Calling %s()' % func.__name__)

 result = func(*args)

 cache[args] = result

 return result

 return wrapper

Chapter 3 Functions

117

Now, whenever you define a deterministic function, you can use the memoize()

decorator to automatically cache its result for future use. Here’s how it would work for

some simple mathematical operations. Again, given you keyed in the aforelisted stub, try

the following:

>>> @memoize

... def multiply(x, y):

... return x * y

...

>>> multiply(6, 7)

Calling multiply()

42

>>> multiply(6, 7)

42

>>> multiply(4, 3)

Calling multiply()

12

>>> @memoize

... def factorial(x):

... result = 1

... for i in range(x):

... result *= i + 1

... return result

...

>>> factorial(5)

Calling factorial()

120

>>> factorial(5)

120

>>> factorial(7)

Calling factorial()

5040

Chapter 3 Functions

118

Caution  Memoization is best suited for functions with a few arguments, which
are called with relatively few variations in the argument values. Functions that are
called with a large number of arguments or have a lot of variety in the argument
values that are used will quickly fill up a lot of memory with the cache. This can
slow down the entire system, with the only benefit being the minority of cases
where arguments are reused. Also, functions that aren’t truly deterministic will
actually cause problems because the function won’t be called every time.

�Example: A Decorator to Create Decorators
Astute readers will have noticed something of a contradiction in the descriptions of

the more complex decorator constructs. The purpose of decorators is to avoid a lot of

boilerplate code and simplify functions, but the decorators themselves end up getting

quite complicated just to support features such as optional arguments. Ideally, we could

put that boilerplate into a decorator as well, simplifying the process for new decorators.

Because decorators are Python functions, just like those they decorate, this is quite

possible. As with the other situations, however, there’s something that needs to be taken

into account. In this case, the function you define as a decorator will need to distinguish

between the arguments meant for the decorator and those meant for the function it

decorates:

def decorator(declared_decorator):

 """�Create a decorator out of a function, which will be used as a wrapper."""

 @functools.wraps(declared_decorator)

 def final_decorator(func=None, **kwargs):

 # This will be exposed to the rest

 # of your application as a decorator

 def decorated(func):

 # This will be exposed to the rest

 # of your application as a decorated

Chapter 3 Functions

119

 # function, regardless how it was called

 @functools.wraps(func)

 def wrapper(*a, **kw):

 # This is used when actually executing

 # the function that was decorated

 return declared_decorator(func, a, kw, **kwargs)

 return wrapper

 if func is None:

 # The decorator was called with arguments,

 # rather than a function to decorate

 return decorated

 else:

 # The decorator was called without arguments,

 # so the function should be decorated immediately

 return decorated(func)

 return final_decorator

With this in place, you can define your decorators in terms of the wrapper function

directly; then, just apply this decorator to manage the overhead behind the scenes.

Your declared functions must always accept three arguments now, with any additional

arguments added on beyond that. The three required arguments are shown in the

following list:

•	 The function that will be decorated, which should be called if

appropriate

•	 A tuple of positional arguments that were supplied to the decorated

function

•	 A dictionary of keyword arguments that were supplied to the

decorated function

With these arguments in mind, here’s how you might define the suppress_errors()

decorator described previously in this chapter:

Chapter 3 Functions

120

>>> @decorator

... def suppress_errors(func, args, kwargs, log_func=None):

... try:

... return func(*args, **kwargs)

... except Exception as e:

... if log_func is not None:

... log_func(str(e))

...

>>> @suppress_errors

... def example():

... return variable_which_does_not_exist

...

>>> example() # Doesn't raise any errors

>>> def print_logger(message):

... print(message)

...

>>> @suppress_errors(log_func=print_logger)

... def example():

... return variable_which_does_not_exist

...

>>> example()

global name 'variable_which_does_not_exist' is not defined

�Function Annotations
There are typically three aspects of a function that don’t deal with the code within it: a

name, a set of arguments, and an optional docstring. Sometimes, however, that’s not

quite enough to fully describe how the function works or how it should be used. Static-

typed languages—such as Java, for example—also include details about what type of

values are allowed for each of the arguments, as well as what type can be expected for

the return value.

Chapter 3 Functions

121

Python’s response to this need is the concept of function annotations. Each

argument, as well as the return value, can have an expression attached to it, which

describes a detail that can’t be conveyed otherwise. This could be as simple as a type,

such as int or str, which is analogous to static-typed languages, as shown in the

following example stub:

def prepend_rows(rows:list, prefix:str) -> list:

 return [prefix + row for row in rows]

The biggest difference between this example and traditional static-typed languages

isn’t a matter of syntax; it’s that in Python annotations can be any expression, not just a

type or a class. You could annotate your arguments with descriptive strings, calculated

values, or even inline functions—see this chapter’s section on lambdas for details.

Here’s what the previous example might look like if annotated with strings as additional

documentation:

def prepend_rows(rows:"a list of strings to add to the prefix",

 prefix:"a string to prepend to each row provided",

) -> "a new list of strings prepended with the prefix":

 return [prefix + row for row in rows]

Of course, this flexibility might make you wonder about the intended use for function

annotations, but there isn’t one, and that’s deliberate. Officially, the intent behind

annotations is to encourage experimentation in frameworks and other third-party

libraries. The two examples shown here could be valid for use with type checking and

documentation libraries, respectively.

�Example: Type Safety
To illustrate how annotations can be used by a library, consider a basic implementation

of a type safety library that can understand and utilize the function described previously.

It would expect argument annotations to specify a valid type for any incoming

arguments, while the return annotation would be able to validate the value returned by

the function.

Chapter 3 Functions

122

Because type safety involves verifying values before and after the function is

executed, a decorator is the most suitable option for the implementation. Also, because

all of the type-hinting information is provided in the function declaration, we don’t need

to worry about any additional arguments, so a simple decorator will suffice. The first

task, however, is to validate the annotations themselves, as they must be valid Python

types in order for the rest of the decorator to work properly:

import inspect

def typesafe(func):

 """

 Verify that the function is called with the right argument types and

 that it returns a value of the right type, according to its annotations

 """

 spec = inspect.getfullargspec(func)

 for name, annotation in spec.annotations.items():

 if not isinstance(annotation, type):

 raise TypeError("The annotation for '%s' is not a type." % name)

 return func

So far this doesn’t do anything to the function, but it does check to see that each

annotation provided is a valid type, which can then be used to verify the type of the

arguments referenced by the annotations. This uses isinstance(), which compares an

object to the type it’s expected to be. More information on isinstance() and on types

and classes in general can be found in Chapter 4.

Now that we can be sure all the annotations are valid, it’s time to start validating

some arguments. Given how many types of arguments there are, let’s take them one at a

time. Keyword arguments are the easiest to start out with, since they already come with

their name and value tied together, so that’s one less thing to worry about. With a name,

we can get the associated annotation and validate the value against that. This would also

be a good time to start factoring out some things, as we’ll end up having to use some of

the same things over and over again. Here’s how the wrapper would look to begin with:

Chapter 3 Functions

123

import functools

import inspect

def typesafe(func):

 """

 Verify that the function is called with the right argument types and

 that it returns a value of the right type, according to its annotations

 """

 spec = inspect.getfullargspec(func)

 annotations = spec.annotations

 for name, annotation in annotations.items():

 if not isinstance(annotation, type):

 raise TypeError("The annotation for '%s' is not a type." % name)

 error = "Wrong type for %s: expected %s, got %s."

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 # Deal with keyword arguments

 for name, arg in kwargs.items():

 if name in annotations and not isinstance(arg, annotations[name]):

 raise TypeError(error % (name,

 annotations[name].__name__,

 type(arg).__name__))

 return func(*args, **kwargs)

 return wrapper

By now, this should be fairly self-explanatory. Any keyword arguments provided

will be checked to see if there’s an associated annotation. If there is, the provided value

is checked to make sure it’s an instance of the type found in the annotation. The error

message is factored out because it’ll get reused a few more times before we’re done.

Next up is dealing with positional arguments. Once again, we can rely on zip() to

line up the positional argument names with the values that were provided. Because the

result of zip() is compatible with the items() method of dictionaries, we can actually

use chain() from the itertools module to link them together into the same loop:

Chapter 3 Functions

124

Part one: add part two to this to see it in action as a script:

import functools

import inspect

from itertools import chain

def typesafe(func):

 """

 Verify that the function is called with the right argument types and

 that it returns a value of the right type, according to its annotations

 """

 spec = inspect.getfullargspec(func)

 annotations = spec.annotations

 for name, annotation in annotations.items():

 if not isinstance(annotation, type):

 raise TypeError("The annotation for '%s' is not a type." % name)

 error = "Wrong type for %s: expected %s, got %s."

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 # Deal with keyword arguments

 for name, arg in chain(zip(spec.args, args), kwargs.items()):

 if name in annotations and not isinstance(arg, annotations[name]):

 raise TypeError(error % (name,

 annotations[name].__name__,

 type(arg).__name__))

 return func(*args, **kwargs)

 return wrapper

Although that takes care of both positional and keyword arguments, it’s not

everything. Because variable arguments can also accept annotations, we have to

account for argument values that don’t line up as nicely with defined argument names.

Unfortunately, there’s something else that must be dealt with before we can do much of

anything on that front.

Chapter 3 Functions

125

If you’re paying really close attention, you might notice a very subtle bug in the

code as it stands. In order to make the code a bit easier to follow and to account for any

arguments that are passed by keywords, the wrapper iterates over the kwargs dictionary

in its entirely, checking for associated annotations. Unfortunately, that leaves us with the

possibility of an unintentional name conflict.

To illustrate how the bug could be triggered, first consider what would be expected

when dealing with variable arguments. Because we can only apply a single annotation

to the variable argument name itself, that annotation must be assumed to apply to all

arguments that fall under that variable argument, whether passed positionally or by

keyword. Without explicit support for that behavior yet, variable arguments should just

be ignored, but here’s what happens with the code as it stands:

Part two: put this at the end of the script you just keyed in:

@typesafe

def example(*args:int, **kwargs:str):

 pass

print(example(spam='eggs')) #fine

print(example(kwargs='spam')) #fine

print(example(args='spam')) # not fine!

output will be:

#Traceback (most recent call last):

#TypeError: Wrong type for args: expected int, got str.

Interestingly, everything works fine unless the function call includes a keyword

argument with the same name as the variable positional argument. Although it may not

seem obvious at first, the problem is actually in the set of values to iterate over in the

wrapper’s only loop. It assumes that the names of all the keyword arguments line up

nicely with annotations.

Basically, the problem is that keyword arguments that are meant for the variable

argument end up getting matched up with annotations from other arguments. For the

most part, this is acceptable because two of the three types of arguments won’t ever

cause problems. Matching it with an explicit argument name simply duplicates what

Python already does, so using the associated annotation is fine, and matching the

Chapter 3 Functions

126

variable keyword argument name ends up using the same annotation that we were

planning on using anyway.

So the problem only crops up when a keyword argument matches the variable

positional argument name, because that association never makes sense. Sometimes if

the annotation is the same as that of the variable keyword argument, the problem might

never show up, but it’s still there, regardless. Because the code for the wrapper function

is still fairly minimal, it’s not too difficult to see where the problem is occurring.

In the main loop, the second part of the iteration chain is the list of items in the

kwargs dictionary. That means everything passed in by keyword is checked against

named annotations, which clearly isn’t always what we want. Instead, we only want to

loop over the explicit arguments at this point, while still supporting both positions and

keywords. That means we’ll have to construct a new dictionary based on the function

definition, rather than taking the easy way out and relying on kwargs, as we are now.

The outer typesafe() function has been removed from the listing here to make the code

easier to digest in print:

 def wrapper(*args, **kwargs):

 # Populate a dictionary of explicit arguments passed positionally

 explicit_args = dict(zip(spec.args, args))

 # Add all explicit arguments passed by keyword

 for name in chain(spec.args, spec.kwonlyargs):

 if name in kwargs:

 explicit_args[name] = kwargs[name]

 # Deal with explicit arguments

 for name, arg in explicit_args.items():

 if name in annotations and not isinstance(arg, annotations[name]):

 raise TypeError(error % (name,

 annotations[name].__name__,

 type(arg).__name__))

 return func(*args, **kwargs)

Chapter 3 Functions

127

With that bug out of the way, we can focus on properly supporting variable

arguments. Because keyword arguments have names but positional arguments don’t,

we can’t manage both types in one pass like we could with the explicit arguments. The

processes are fairly similar to the explicit arguments, but the values to iterate over are

different in each case. The biggest difference, however, is that the annotations aren’t

referenced by the name of the arguments.

In order to loop over just the truly variable positional arguments, we can simply use

the number of explicit arguments as the beginning of a slice on the positional arguments

tuple. This gets us all positional arguments provided after the explicit arguments or an

empty list if only explicit arguments were provided.

For keyword arguments, we have to be a bit more creative. Because the function

already loops over all the explicitly declared arguments at the beginning, we can use that

same loop to exclude any matching items from a copy of the kwargs dictionary. Then we

can iterate over what’s left over to account for all the variable keyword arguments:

 def wrapper(*args, **kwargs):

 # Populate a dictionary of explicit arguments passed positionally

 explicit_args = dict(zip(spec.args, args))

 keyword_args = kwargs.copy()

 # Add all explicit arguments passed by keyword

 for name in chain(spec.args, spec.kwonlyargs):

 if name in kwargs:

 explicit_args[name] = keyword_args.pop(name)

 # Deal with explicit arguments

 for name, arg in explicit_args.items():

 if name in annotations and not isinstance(arg, annotations[name]):

 raise TypeError(error % (name,

 annotations[name].__name__,

 type(arg).__name__))

 # Deal with variable positional arguments

 if spec.varargs and spec.varargs in annotations:

 annotation = annotations[spec.varargs]

 for i, arg in enumerate(args[len(spec.args):]):

Chapter 3 Functions

128

 if not isinstance(arg, annotation):

 raise TypeError(error % ('variable argument %s' % (i + 1),

 annotation.__name__,

 type(arg).__name__))

 # Deal with variable keyword arguments

 if spec.varkw and spec.varkw in annotations:

 annotation = annotations[spec.varkw]

 for name, arg in keyword_args.items():

 if not isinstance(arg, annotation):

 raise TypeError(error % (name,

 annotation.__name__,

 type(arg).__name__))

 return func(*args, **kwargs)

This covers all explicit arguments as well as variable arguments passed in by position

and keyword. The only thing left is to validate the value returned by the target function.

Thus far the wrapper just calls the original function directly without regard for what it

returns, but by now, it should be easy to see what needs to be done:

 def wrapper(*args, **kwargs):

 # Populate a dictionary of explicit arguments passed positionally

 explicit_args = dict(zip(spec.args, args))

 keyword_args = kwargs.copy()

 # Add all explicit arguments passed by keyword

 for name in chain(spec.args, spec.kwonlyargs):

 if name in kwargs:

 explicit_args[name] = keyword_args(name)

 # Deal with explicit arguments

 for name, arg in explicit_args.items():

 if name in annotations and not isinstance(arg, annotations[name]):

Chapter 3 Functions

129

 raise TypeError(error % (name,

 annotations[name].__name__,

 type(arg).__name__))

 # Deal with variable positional arguments

 if spec.varargs and spec.varargs in annotations:

 annotation = annotations[spec.varargs]

 for i, arg in enumerate(args[len(spec.args):]):

 if not isinstance(arg, annotation):

 raise TypeError(error % ('variable argument %s' % (i + 1),

 annotation.__name__,

 type(arg).__name__))

 # Deal with variable keyword arguments

 if spec.varkw and spec.varkw in annotations:

 annotation = annotations[spec.varkw]

 for name, arg in keyword_args.items():

 if not isinstance(arg, annotation):

 raise TypeError(error % (name,

 annotation.__name__,

 type(arg).__name__))

 r = func(*args, **kwargs)

 if 'return' in annotations and not isinstance(r, annotations['return']):

 raise TypeError(error % ('the return value',

 annotations['return'].__name__,

 type(r).__name__))

 return r

With that, we have a fully functional type safety decorator, which can validate all

arguments to a function as well as its return value. There’s one additional safeguard

we can include to find errors even more quickly, however. In the same way as the outer

typesafe() function already validates that the annotations are types, that part of the

function is also capable of validating the default values for all provided arguments.

Because variable arguments can’t have default values, this is much simpler than dealing

with the function call itself:

Chapter 3 Functions

130

import functools

import inspect

from itertools import chain

def typesafe(func):

 """

 Verify that the function is called with the right argument types and

 that it returns a value of the right type, according to its annotations

 """

 spec = inspect.getfullargspec(func)

 annotations = spec.annotations

 for name, annotation in annotations.items():

 if not isinstance(annotation, type):

 raise TypeError("The annotation for '%s' is not a type." % name)

 error = "Wrong type for %s: expected %s, got %s."

 defaults = spec.defaults or ()

 defaults_zip = zip(spec.args[-len(defaults):], defaults)

 kwonlydefaults = spec.kwonlydefaults or {}

 for name, value in chain(defaults_zip, kwonlydefaults.items()):

 if name in annotations and not isinstance(value, annotations[name]):

 raise TypeError(error % ('default value of %s' % name,

 annotations[name].__name__,

 type(value).__name__))

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 # Populate a dictionary of explicit arguments passed positionally

 explicit_args = dict(zip(spec.args, args))

 keyword_args = kwargs.copy()

 # Add all explicit arguments passed by keyword

 for name in chain(spec.args, spec.kwonlyargs):

 if name in kwargs:

 explicit_args[name] = keyword_args.pop(name)

Chapter 3 Functions

131

 # Deal with explicit arguments

 for name, arg in explicit_args.items():

 if name in annotations and not isinstance(arg, annotations[name]):

 raise TypeError(error % (name,

 annotations[name].__name__,

 type(arg).__name__))

 # Deal with variable positional arguments

 if spec.varargs and spec.varargs in annotations:

 annotation = annotations[spec.varargs]

 for i, arg in enumerate(args[len(spec.args):]):

 if not isinstance(arg, annotation):

 raise TypeError(error % ('variable argument %s' % (i + 1),

 annotation.__name__,

 type(arg).__name__))

 # Deal with variable keyword arguments

 if spec.varkw and spec.varkw in annotations:

 annotation = annotations[spec.varkw]

 for name, arg in keyword_args.items():

 if not isinstance(arg, annotation):

 raise TypeError(error % (name,

 annotation.__name__,

 type(arg).__name__))

 r = func(*args, **kwargs)

 if 'return' in annotations and not isinstance(r, annotations['return']):

 raise TypeError(error % ('the return value',

 annotations['return'].__name__,

 type(r).__name__))

 return r

 return wrapper

�Factoring Out the Boilerplate
Looking over the code as it stands, you’ll notice a lot of repetition. Each form of

annotation ends up doing the same things: checking to see if the value is appropriate

and raising an exception if it’s not. Ideally, we’d be able to factor that into a separate

Chapter 3 Functions

132

function that can focus solely on the actual task of validation. The rest of the code is

really just boilerplate, managing the details of finding the different types of annotations.

Because the common code will be going into a new function, the obvious way to tie

it into the rest of the code is to create a new decorator. This new decorator will be placed

on a function that will process the annotation for each value, so we’ll call it annotation_

processor. The function passed into annotation_processor will then be used for each

of the annotation types throughout the existing code:

import functools

import inspect

from itertools import chain

def annotation_decorator(process):

 """

 Creates a decorator that processes annotations for each argument passed

 into its target function, raising an exception if there's a problem.

 """

 @functools.wraps(process)

 def decorator(func):

 spec = inspect.getfullargspec(func)

 annotations = spec.annotations

 defaults = spec.defaults or ()

 defaults_zip = zip(spec.args[-len(defaults):], defaults)

 kwonlydefaults = spec.kwonlydefaults or {}

 for name, value in chain(defaults_zip, kwonlydefaults.items()):

 if name in annotations:

 process(value, annotations[name])

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 # Populate a dictionary of explicit arguments passed positionally

 explicit_args = dict(zip(spec.args, args))

 keyword_args = kwargs.copy()

Chapter 3 Functions

133

 # Add all explicit arguments passed by keyword

 for name in chain(spec.args, spec.kwonlyargs):

 if name in kwargs:

 explicit_args[name] = keyword_args.pop(name)

 # Deal with explicit arguments

 for name, arg in explicit_args.items():

 if name in annotations:

 process(arg, annotations[name])

 # Deal with variable positional arguments

 if spec.varargs and spec.varargs in annotations:

 annotation = annotations[spec.varargs]

 for arg in args[len(spec.args):]:

 process(arg, annotation)

 # Deal with variable keyword arguments

 if spec.varkw and spec.varkw in annotations:

 annotation = annotations[spec.varkw]

 for name, arg in keyword_args.items():

 process(arg, annotation)

 r = func(*args, **kwargs)

 if 'return' in annotations:

 process(r, annotations['return'])

 return r

 return wrapper

 return decorator

Note  Because we’re making it a bit more generic, you’ll notice that the initial
portion of the decorator no longer checks that the annotations are valid types. The
decorator itself no longer cares what logic you apply to the argument values, as
that’s all done in the decorated function.

Chapter 3 Functions

134

Now we can apply this new decorator to a much simpler function to provide a new

typesafe() decorator, which functions just like the one in the previous section:

@annotation_decorator

def typesafe(value, annotation):

 """

 Verify that the function is called with the right argument types and

 that it returns a value of the right type, according to its annotations

 """

 if not isinstance(value, annotation):

 raise TypeError("Expected %s, got %s." % (annotation.__name__,

 type(value).__name__))

The benefit of doing this is that it’s much easier to modify the behavior of the decorator

in the future. In addition, you can now use annotation_processor() to create new types

of decorators that use annotation for different purposes, such as type coercion.

�Example: Type Coercion
Rather than strictly requiring that the arguments all be the types specified when they’re

passed into the function, another approach is to coerce them to the required types inside

the function itself. Many of the same types that are used to validate values can also be

used to coerce them directly into the types themselves. In addition, if a value can’t be

coerced, the type it’s passed into raises an exception, usually a TypeError, just like our

validation function.

ROBUSTNESS PRINCIPLE

This is one of the more obvious applications of the robustness principle. Your function requires

an argument be of a specific type, but it’s much nicer to accept some variations, knowing that

they can be converted to the right type before your function needs to deal with them. Likewise,

coercion also helps ensure that the return value is always of a consistent type that the external

code knows how to deal with.

Chapter 3 Functions

135

The decorator presented in the previous section provides a good starting point

for adding this behavior to a new decorator, and we can use it to modify the incoming

value according to the annotation that was provided along with it. Because we’re

relying on a type constructor to do all the necessary type checking and raise exceptions

appropriately, this new decorator can be much simpler. In fact, it can be expressed in

just one actual instruction:

@annotation_decorator

def coerce_arguments(value, annotation):

 return annotation(value)

This is so simple that it doesn’t even require the annotation be a type at all. Any

function or class that returns an object will work just fine, and the value returned will

be passed into the function decorated by coerce_arguments(). Or will it? If you look

back at the annotation_decorator() function as it stands, there’s a minor problem that

prevents it from working the way this new decorator would need it to.

The problem is that in the lines that call the process() function that was passed

into the outer decorator, the return value is thrown away. If you try to use coerce_

arguments() with the existing decorator, all you’ll get is the exception-raising aspect of

the code, not the value coercion aspect. So, in order to work properly, we’ll need to go

back and add that feature to annotation_processor().

There are a few things that need to be done overall, however. Because the annotation

processor will be modifying the arguments that will be eventually sent to the decorated

function, we’ll need to set up a new list for positional arguments and a new dictionary for

keyword arguments. Then we have to split up the explicit argument handling, so that we

can distinguish between positional and keyword arguments. Without that, the function

wouldn’t be able to apply variable positional arguments correctly:

 def wrapper(*args, **kwargs):

 new_args = []

 new_kwargs = {}

 keyword_args = kwargs.copy()

Chapter 3 Functions

136

 # Deal with explicit arguments passed positionally

 for name, arg in zip(spec.args, args):

 if name in annotations:

 new_args.append(process(arg, annotations[name]))

 # Deal with explicit arguments passed by keyword

 for name in chain(spec.args, spec.kwonlyargs):

 if name in kwargs and name in annotations:

 new_kwargs[name] = process(keyword_args.pop(name),

 annotations[name])

 # Deal with variable positional arguments

 if spec.varargs and spec.varargs in annotations:

 annotation = annotations[spec.varargs]

 for arg in args[len(spec.args):]:

 new_args.append(process(arg, annotation))

 # Deal with variable keyword arguments

 if spec.varkw and spec.varkw in annotations:

 annotation = annotations[spec.varkw]

 for name, arg in keyword_args.items():

 new_kwargs[name] = process(arg, annotation)

 r = func(*new_args, **new_kwargs)

 if 'return' in annotations:

 r = process(r, annotations['return'])

 return r

With those changes in place, the new coerce_arguments() decorator will be able to

replace the arguments on the fly, passing the replacements into the original function.

Unfortunately, if you’re still using typesafe() from before, this new behavior causes

problems because typesafe() doesn’t return a value. Fixing that is a simple matter of

returning the original value, unchanged, if the type check was satisfactory:

@annotation_decorator

def typesafe(value, annotation):

Chapter 3 Functions

137

 """

 Verify that the function is called with the right argument types and

 that it returns a value of the right type, according to its annotations

 """

 if not isinstance(value, annotation):

 raise TypeError("Expected %s, got %s." % (annotation.__name__,

 type(value).__name__))

 return value

�Annotating with Decorators
The natural question to ask is: what happens if you want to use two libraries together?

One might expect you to supply valid types, whereas the other expects a string to use for

documentation. They’re completely incompatible with each other, which forces you to

use one or the other, rather than both. Furthermore, any attempt to merge the two, using

a dictionary or some other combined data type, would have to be agreed on by both

libraries, as each would need to know how to get at the information it cares about.

Once you consider how many other frameworks and libraries might take advantage

of these annotations, you can see how quickly the official function annotations fall

apart. It’s still too early to see which applications will actually use it or how they’ll work

together, but it’s certainly worth considering other options that can bypass the problems

completely.

Because decorators can take arguments of their own, it’s possible to use them to

provide annotations for the arguments of the functions they decorate. This way, the

annotations are separate from the function itself and provided directly to the code that

makes sense of them. And because multiple decorators can be stacked together on a

single function, it’s already got a built-in way of managing multiple frameworks.

�Example: Type Safety as a Decorator
To illustrate the decorator-based approach to function annotations, let’s consider the

type safety example from earlier. It already relied on a decorator, so we can extend that

to take arguments, using the same types that the annotations provided previously.

Essentially, it’ll look something like this:

Chapter 3 Functions

138

>>> @typesafe(str, str)

... def combine(a, b):

... return a + b

...

>>> combine('spam', 'alot')

'spamalot'

>>> combine('fail', 1)

Traceback (most recent call last):

 ...

TypeError: Wrong type for b: expected str, got int.

It works almost exactly like the true annotated version, except that the annotations

are supplied to the decorator directly. In order to accept arguments, we’re going to just

change the first portion of the code a bit so that we can get the annotations from the

arguments instead of inspecting the function itself.

Because annotations come in through arguments to the decorator, we have a new

outer wrapper for receiving them. When the next layer receives the function to be

decorated it can match up the annotations with the function’s signature, providing

names for any annotations passed positionally. Once all the available annotations have

been given the right names, they can be used by the rest of the inner decorator without

any further modifications:

import functools

import inspect

from itertools import chain

def annotation_decorator(process):

 """

 Creates a decorator that processes annotations for each argument passed

 into its target function, raising an exception if there's a problem.

 """

 def annotator(*args, **kwargs):

Chapter 3 Functions

139

 annotations = kwargs.copy()

 @functools.wraps(process)

 def decorator(func):

 spec = inspect.getfullargspec(func)

 annotations.update(zip(spec.args, args))

 defaults = spec.defaults or ()

 defaults_zip = zip(spec.args[-len(defaults):], defaults)

 kwonlydefaults = spec.kwonlydefaults or {}

 for name, value in chain(defaults_zip, kwonlydefaults.items()):

 if name in annotations:

 process(value, annotations[name])

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 new_args = []

 new_kwargs = {}

 keyword_args = kwargs.copy()

 # Deal with explicit arguments passed positionally

 for name, arg in zip(spec.args, args):

 if name in annotations:

 new_args.append(process(arg, annotations[name]))

 # Deal with explicit arguments passed by keyword

 for name in chain(spec.args, spec.kwonlyargs):

 if name in kwargs and name in annotations:

 new_kwargs[name] = process(keyword_args.pop(name),

 annotations[name])

 # Deal with variable positional arguments

 if spec.varargs and spec.varargs in annotations:

 annotation = annotations[spec.varargs]

 for arg in args[len(spec.args):]:

 new_args.append(process(arg, annotation))

 # Deal with variable keyword arguments

 if spec.varkw and spec.varkw in annotations:

Chapter 3 Functions

140

 annotation = annotations[spec.varkw]

 for name, arg in keyword_args.items():

 new_kwargs[name] = process(arg, annotation)

 r = func(*new_args, **new_kwargs)

 if 'return' in annotations:

 r = process(r, annotations['return'])

 return r

 return wrapper

 return decorator

 return annotator

That handles most of the situation, but it doesn’t handle return values yet. If you try

to supply a return value using the right name, return, you’ll get a syntax error because

it’s a reserved Python keyword. Trying to provide it alongside the other annotations

would require each call to pass annotations using an actual dictionary, where you can

provide the return annotation without upsetting Python’s syntax.

Instead, you’ll need to provide the return value annotation in a separate function

call, where it can be the sole argument without any reserved name issues. When working

with most types of decorators, this would be easy to do: just create a new decorator that

checks the return value and be done with it. Unfortunately, as the eventual decorator

you’re working with is created outside the control of our code, it’s not so easy.

If you completely detached the return value processing from the argument

processing, the programmer who’s actually writing something like the typesafe()

decorator would have to write it twice; once to create the argument-processing decorator

and again to create the return-value–processing decorator. Because that’s a clear

violation of DRY, let’s reuse as much of their work as possible.

Here’s where some design comes into play. We’re looking at going beyond just a

simple decorator, so let's figure out how to best approach it so that it makes sense to

those who have to use it. Thinking about the available options, one solution springs to

mind fairly quickly. If we can add the extra annotation function as an attribute of the

final decorator, you’d be able to write the return value annotator on the same line as the

other decorator, but right afterward, in its own function call. Here’s what it might look

like, if you went that route:

Chapter 3 Functions

141

@typesafe(int, int).returns(int)

def add(a, b):

 return a + b

Unfortunately this isn’t an option, for reasons that can be demonstrated without

even adding the necessary code to support it. The trouble is, this formation isn’t allowed

as Python syntax. If typesafe() hadn’t taken any arguments it would work, but there’s

no support for calling two separate functions as part of a single decorator. Instead of

supplying the return value annotation in the decorator itself, let’s look somewhere else.

Another option is to use the generated typesafe() decorator to add a function as

an attribute to the wrapper around the add() function. This places the return value

annotation at the end of the function definition, closer to where the return value is

specified. In addition, it helps clarify the fact that you can use typesafe() to supply

argument decorators without bothering to check the return value, if you want to. Here’s

how it would look:

@typesafe(int, int)

def add(a, b):

 return a + b

add.returns(int)

It’s still very clear and perhaps even more explicit than the syntax that doesn’t work

anyway. As an added bonus, the code to support it is very simple, requiring just a few

lines be added to the end of the inner decorator() function:

 def decorator(func):

 from itertools import chain

 spec = inspect.getfullargspec(func)

 annotations.update(zip(spec.args, args))

 defaults = spec.defaults or ()

 defaults_zip = zip(spec.args[-len(defaults):], defaults)

 kwonlydefaults = spec.kwonlydefaults or {}

Chapter 3 Functions

142

 for name, value in chain(defaults_zip, kwonlydefaults.items()):

 if name in annotations:

 process(value, annotations[name])

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 new_args = []

 new_kwargs = {}

 keyword_args = kwargs.copy()

 # Deal with explicit arguments passed positionally

 for name, arg in zip(spec.args, args):

 if name in annotations:

 new_args.append(process(arg, annotations[name]))

 # Deal with explicit arguments passed by keyword

 for name in chain(spec.args, spec.kwonlyargs):

 if name in kwargs and name in annotations:

 new_kwargs[name] = process(keyword_args.pop(name),

 annotations[name])

 # Deal with variable positional arguments

 if spec.varargs and spec.varargs in annotations:

 annotation = annotations[spec.varargs]

 for arg in args[len(spec.args):]:

 new_args.append(process(arg, annotation))

 # Deal with variable keyword arguments

 if spec.varkw and spec.varkw in annotations:

 annotation = annotations[spec.varkw]

 for name, arg in keyword_args.items():

 new_kwargs[name] = process(arg, annotation)

 r = func(*new_args, **new_kwargs)

 if 'return' in annotations:

 r = process(r, annotations['return'])

 return r

Chapter 3 Functions

143

 def return_annotator(annotation):

 annotations['return'] = annotation

 wrapper.returns = return_annotator

 return wrapper

Because this new returns() function will be called before the final typesafe()

function ever will, it can simply add a new annotation to the existing dictionary. Then,

when typesafe() does get called later, the internal wrapper can just continue working

like it always did. This just changes the way the return value annotation is supplied,

which is all that was necessary.

Because all of this behavior was refactored into a separate decorator, you can

apply this decorator to coerce_arguments() or any other similarly purposed function.

The resulting function will work the same way as typesafe(), only swapping out the

argument handling with whatever the new decorator needs to do.

�Generators
Chapter 2 introduced the concept of generator expressions and stressed the importance

of iteration. Whereas generator expressions are useful for simple situations, you’ll often

need more sophisticated logic to determine how the iteration should work. You may

need finer-grained control over the duration of the loop, the items getting returned,

possible side effects that get triggered along the way, or any number of other concerns

you may have.

Essentially, you need a real function, but with the benefits of a proper iterator and

without the cognitive overhead of creating the iterator yourself. This is where generators

come in. By allowing you to define a function that can produce individual values one at

a time, rather than just a single return value, you have the added flexibility of a function

and the performance of an iterator.

Generators are set aside from other functions by their use of the yield statement.

This is somewhat of an analog to the typical return statement, except that yield doesn’t

cause the function to stop executing completely. It pushes one value out of the function,

which gets consumed by the loop that called the generator; then, when that loop starts

over, the generator starts back up again. It picks up right where it left off, running until it

finds another yield statement or the function simply finishes executing.

Chapter 3 Functions

144

The basics are best illustrated by an example, so consider a simple generator that

returns the values in the classic Fibonacci sequence. The sequence begins with 0 and

1; each following number is produced by adding up the two numbers before it in the

sequence. Therefore, the function only ever needs to keep two numbers in memory

at a time, no matter how high the sequence goes. In order to keep it from continuing

on forever, however, it’s best to require a maximum number of values it should return,

making a total of three values to keep track of.

It’s tempting to set up the first two values as special cases, yielding them one at a

time before even starting into the main loop that would return the rest of the sequence.

That adds some extra complexity, however, which can make it pretty easy to accidentally

introduce an infinite loop. Instead, we’ll use a couple other seed values, –1 and 1, which

can be fed right into the main loop directly. They’ll generate 0 and 1 correctly when the

loop’s logic is applied.

Next, we can add a loop for all the remaining values in the sequence, up until the

count is reached. Of course, by the time the loop starts two values have already been

yielded, so we have to decrease count by 2 before entering the loop. Otherwise, we’d end

up yielding two more values than were requested:

Part one: add part two to see it in action:

def fibonacci(count):

 # These seed values generate 0 and 1 when fed into the loop

 a, b = -1, 1

 while count > 0:

 # Yield the value for this iteration

 c = a + b

 yield c

 # Update values for the next iteration

 a, b = b, c

 count -= 1

With the generator in place, you can iterate over the values it produces, simply by

treating it like you would any other sequence. Generators are iterable automatically,

so a standard for loop already knows how to activate it and retrieve its values. Before

Chapter 3 Functions

145

you add part two, do a hand trace of -1 and 1 through the structure you and can see

exactly how it operates.

Part two: add to end of previous code and run:

for x in fibonacci(3):

 print(x)

output is

#0

#1

#1

for x in fibonacci(7):

 print(x)

#output is

#0

#1

#1

#2

#3

#5

#8

Unfortunately, the main benefit of generators can also, at times, be somewhat of a

burden. Because there’s no complete sequence in memory at any given time, generators

always have to pick up where they left off. Most of the time, however, you’ll completely

exhaust the generator when you iterate over it the first time, so when you try to put it into

another loop, you won’t get anything back at all.

Add this to the end after part two and run:

fib = fibonacci(7)

print(list(fib)) # output [0, 1, 1, 2, 3, 5, 8]

print(list(fib)) # output []

Chapter 3 Functions

146

This behavior can seem a bit misleading at first, but most of the time, it’s the

only behavior that makes sense. Generators are often used in places where the entire

sequence isn’t even known in advance or it may change after you iterate over it. For

example, you might use a generator to iterate over the users currently accessing a

system. Once you’ve identified all the users, the generator automatically becomes stale

and you need to create a new one, which refreshes the list of users.

Note  If you’ve used the built-in range() function (or xrange() prior to Python
3.0) often enough, you may have noticed that it does restart itself if accessed
multiple times. That behavior is provided by moving one level lower in the iteration
process, by implementing the iterator protocol explicitly. It can’t be achieved with
simple generators, but Chapter 5 shows that you can have greater control over
iteration of the objects you create.

�Lambdas
In addition to providing features on their own, functions are often called on to provide

some extra minor bit of functionality to some other feature. For example, when sorting a

list, you can configure Python’s behavior by supplying a function that accepts a list item

and returns a value that should be used for comparison. This way, given a list of House

objects, for instance, you can sort by price:

>>> def get_price(house):

... return house.price

...

>>> houses.sort(key=get_price)

Unfortunately, this seems like a bit of a waste of the function’s abilities, plus it

requires a couple of extra lines of code and a name that never gets used outside of the

sort() method call. A better approach would be if you could specify the key function

directly in line with the method call. This not only makes it more concise, it also places

the body of the function right where it will be used, so it’s a lot more readable for these

types of simple behaviors.

Chapter 3 Functions

147

In these situations, Python’s lambda form is extremely valuable. Python provides a

separate syntax, identified by the keyword lambda. This allows you to define a function

without a name as a single expression, with a much simpler feature set. Before diving

into the details of the syntax, here’s what it looks like in the house-sorting example.

Think of it as a one-line minifunction. Try the following:

>>> g=lambda x: x*x

>>> g(8) # which returns 8 * 8

As you can see, this is a considerably compressed form of a function definition.

Following the lambda keyword is a list of arguments, separated by commas. In the

sort example only one argument is needed, and it can be named anything you like,

such as any other function. They can even have default values if necessary, using the

same syntax as regular functions. Arguments are followed by a colon, which notes the

beginning of the lambda’s body. If no arguments are involved, the colon can be placed

immediately after the lambda keyword:

>>> a = lambda: 'example'

>>> a

<function <lambda> at 0x. .>

>>> a()

'example'

>>> b = lambda x, y=3: x + y

>>> b()

Traceback (most recent call last):

TypeError: <lambda>() takes at least 1 positional argument (0 given)

>>> b(5)

8

>>> b(5, 1)

6

Chapter 3 Functions

148

As you’ll have likely discovered by now, the body of the lambda is really just its return

value. There’s no explicit return statement, so the entire body of the function is really just

a single expression used to return a value. That’s a big part of what makes the lambda

form so concise, yet easily readable, but it comes at a price: only a single expression is

allowed. You can’t use any control structures, such as try, with, or while blocks; you can’t

assign variables inside the function body; and you can’t perform multiple operations

without them also being tied to the same overall expression.

This may seem extremely limiting, but in order to still be readable, the function

body must be kept as simple as possible. In situations in which you need the additional

control flow features, you’ll find it much more readable to specify it in a standard function,

anyway. Then you can pass that function in where you might otherwise use the lambda.

Alternatively, if you have a portion of the behavior that’s provided by some other function,

but not all of it, you’re free to call out to other functions as part of the expression.

�Introspection
One of the primary advantages of Python is that nearly everything can be examined

at runtime, from object attributes and module contents to documentation and even

generated bytecode. Peeking at this information is called introspection, and it permeates

nearly every aspect of Python. The following sections define some of the more general

introspection features that are available, while more specific details are given in the

remaining chapters.

The most obvious attribute of a function that can be inspected is its name. It’s also

one of the simplest, made available at the __name__ attribute. The return is the string

used to define the function. In the case of lambdas, which have no names, the __name__

attribute is populated with the standard string '<lambda>':

>>> def example():

... pass

...

>>> example.__name__

'example'

>>> (lambda: None).__name__

'<lambda>'

Chapter 3 Functions

149

�Identifying Object Types
Python’s dynamic nature can sometimes make it seem difficult to ensure you’re getting

the right type of value or to even know what type of value it is. Python does provide some

options for accessing that information, but it’s necessary to realize those are two separate

tasks, so Python uses two different approaches.

The most obvious requirement is to identify what type of object your code was given.

For this Python supplies its built-in type() function, which accepts an object to identify.

The return value is the Python class that was used to create the given object, even if that

creation was done implicitly, by way of a literal value:

>>> type('example')

<type 'str'>

>>> class Test:

... pass

...

>>> type(Test)

<type 'classobj'>

>>> type(Test())

<type 'instance'>

Chapter 4 explains in detail what you can do with that class object once you have it,

but the more common case is to compare an object against a particular type you expect

to receive. This is a different situation because it doesn’t really matter exactly what type

the object is. As long as the value is an instance of the right type, you can make correct

assumptions about how it behaves.

There are a number of different utility functions available for this purpose, most of

which are covered in Chapter 4. This section and the next chapter will make use of one of

them fairly frequently, so it merits some explanation here. The isinstance() function

accepts two arguments: the object to check and the type you’re expecting it to be. The

result is a simple True or False, making it suitable for if blocks:

Chapter 3 Functions

150

>>> def test(value):

... if isinstance(value, int):

... print('Found an integer!')

...

>>> test('0')

>>> test(0)

Found an integer!

�Modules and Packages
Functions and classes that are defined in Python are placed inside of modules, which in

turn are often part of a package structure. Accessing this structure when importing code

is easy enough, using documentation or even just peeking at the source files on disk.

Given a piece of code, however, it’s often useful to identify where it was defined in the

source code.

For this reason, all functions and classes have a __module__ attribute, which

contains the import location of the module where the code was defined. Rather than

just supplying the name of the module, the math.sin._module__ also includes the full

path to where the module resides. Essentially, it’s enough information for you to pass it

straight into any of the dynamic importing features shown in Chapter 2.

Working with the interactive interpreter is something of a special case because

there’s no named source file to work with. Any functions or classes defined there will

have the special name '__main__' returned from the __module__ attribute:

>>> def example():

... pass

...

>>> example

<function example at 0x...>

>>> example.__module__

'__main__'

Chapter 3 Functions

151

�Docstrings
Because you can document your functions with docstrings included right alongside the

code, Python also stores those strings as part of the function object. By accessing the

__doc__ attribute of a function, you can read a docstring into code, which can be useful

for generating a library’s documentation on the fly. Consider the following example,

showing simple docstring access on a simple function:

def example():

 """This is just an example to illustrate docstring access."""

 pass

print(example.__doc__) # which outputs This is just an example to

illustrate docstring access.

Next, try the following from a prompt:

>>> def divide(x, y):

... """

... divide(integer, integer) -> floating point

...

... This is a more complex example, with more comprehensive documentation.

... """

... return float(x) / y # Use float()for compatibility prior to 3.0

...

>>> divide.__doc__

'\n divide(integer, integer) -> floating point\n\n This is a more

complex example, with more comprehensive documentation.\n '

>>> print(divide.__doc__)

 divide(integer, integer) -> floating point

Chapter 3 Functions

152

This is a more complex example, with more comprehensive documentation.

As you can see, simple docstrings are easy to handle just by reading in __doc__ and

using it however you need to. Unfortunately, more complex docstrings will retain all

whitespace, including newlines, making them more challenging to work with. Worse

yet, your code can’t know which type of docstring you’re looking at without scanning

it for certain characters. Even if you’re just printing it out to the interactive prompt,

you still have an extra line before and after the real documentation, as well as the same

indentation as was present in the file.

To handle complex docstrings more gracefully, like the one shown in the example,

the inspect module mentioned previously also has a getdoc() function, designed

to retrieve and format docstrings. It strips out whitespace both before and after the

documentation, as well as any indentation that was used to line up the docstring

with the code around it. Here’s that same docstring again, but formatted with

inspect.getdoc():

>>> import inspect

>>> print(inspect.getdoc(divide))

divide(integer, integer) -> floating point

This is a more complex example, with more comprehensive documentation.

We still have to use print() at the interactive prompt because the newline character

is still retained in the result string. All inspect.getdoc() strips out is the whitespace

that was used to make the docstring look right alongside the code for the function. In

addition to trimming the space at the beginning and end of the docstring, getdoc() uses

a simple technique to identify and remove whitespace used for indentation.

Essentially, getdoc() counts the number of spaces at the beginning of each line

of code, even if the answer is 0. Then it determines the lowest value of those counts

and removes that many characters from each line that remains after the leading and

trailing whitespace has been removed. This allows you to keep other indentation in

the docstring intact, as long as it’s greater than what you need to align the text with the

surrounding code. Here’s an example of an even more complex docstring, so you can see

how inspect.getdoc() handles it:

Chapter 3 Functions

153

>>> def clone(obj, count=1):

... """

... clone(obj, count=1) -> list of cloned objects

...

... Clone an object a specified number of times, returning the cloned

... objects as a list. This is just a shallow copy only.

...

... obj

... Any Python object

... count

... Number of times the object will be cloned

...

... >>> clone(object(), 2)

... [<object object at 0x12345678>, <object object at 0x87654321>]

... """

... import copy

... return [copy.copy(obj) for x in count]

...

>>> print(inspect.getdoc(clone))

clone(obj, count=1) -> list of cloned objects

Clone an object a specified number of times, returning the cloned

objects as a list. This is just a shallow copy only.

obj

 Any Python object

count

 Number of times the object will be cloned

 >>> clone(object(), 2)

 [<object object at 0x12345678>, <object object at 0x87654321>]

Chapter 3 Functions

154

Notice how the descriptions of each argument are still indented four spaces, just

like they appeared to be in the function definition. The shortest lines had just four total

spaces at the beginning, while those had eight, so Python stripped out the first four,

leaving the rest intact. Likewise, the example interpreter session was indented by two

extra spaces, so the resulting string maintains a two-space indentation.

Oh, and don’t worry too much about the copy function just yet. Chapter 6 describes

in detail how to make and manage copies of objects when necessary.

�Exciting Python Extensions: Statistics
Most people working with statistical analysis might not consider Python as a first choice.

Since Python is a general-purpose language and other languages such as R, SAS, or

SPSS are aimed at statistics directly, this makes sense. However, Python, via it’s rich set

of libraries, might be a good choice, especially since it is so user-friendly and handles

data acquisition with ease. It is integrated well with other languages. However, let’s see

how easy it is to work with statistical analysis with Python. One library to use is Pandas

(Python Data Analysis Library).

�Install Pandas and Matplotlib
Use PIP to install Pandas.

	 1)	 From an escalated command prompt, type: pip install pandas (enter)

This will also install NumPy and datautils, which will be needed.

Assuming you had no errors, make a file and try a test read to

make sure it works.

	 2)	 Type: pip install matplotlib (enter)

Chapter 3 Functions

155

�Make a Text File of Data
First, we will make a CSV (comma separated values) text file with some hypothetical

data. This could be data from the Internet, or a database, and so on. You might well have

a spreadsheet (e.g., Excel or OpenOffice) of data you want to work with. These packages

make it easy to “save as” CSV format. For now, use your favorite text editor.

	 1)	 Start Notepad (Windows) and enter the following, saving as a text

file to the same folder where you are going to save your Python file

to read it. Make sure the text file and Python file are in the same

folder!

	 2)	 Save the file as “students.csv” and make sure a txt extension is not

appended to the file name; the complete file name should only be

“students.csv”.

�Use Pandas to Display Data
Now, let’s test and see if we can read our CSV data and display it to the screen. Once this

works, we can work with the data a bit. Create a Python script and run the following,

giving the Python file a valid name of your own choice:

import pandas

data = pandas.read_csv('students.csv', sep=',', na_values=".")

print (data)

Chapter 3 Functions

156

Your output should be similar to the following:

Output from reading students.csv data file using Pandas.

�Running Some Data Analysis
In this next example, let’s look at the average age of the students who are in different majors.

The statistics library’s make this easy, in this case the function is mean() and groupby():

import pandas

data = pandas.read_csv('students.csv', sep=',', na_values=".")

print (data)

groupby_major = data.groupby('Major')

for major, student_age in groupby_major['Age']:

 print('The average age for', major, 'majors is: ', student_age.mean())

Average student age output for various majors.

Chapter 3 Functions

157

The unique() function will show you only unique values for a given column of data.

For example, using our students.csv file, we can list only the majors that are in the

dataset. Note that the column field is case-sensitive, so you would want to either display

or view the original CSV file to make sure your case is correct. In this case a capital M is

needed in Major, or it would not function properly:

import pandas

data = pandas.read_csv('students.csv', sep=',', na_values=".")

dif_majors = data.Major.unique()

print(dif_majors)

Next, you might want to only access certain columns of data. Consider the following,

where only the Major and GPA columns of data will be extracted and displayed:

import pandas

data = pandas.read_csv('students.csv', sep=',', na_values=".")

major_gpa = data[['Major','GPA']].head(10)

print (major_gpa)

�Plotting with Matplotlib
The Matplotlib library will allow you to visualize your numeric data, which is very

important with trying to convey information to the general population. In fact,

visualizing data can help even data experts to find hidden meaning from the information.

Try the following example to see how easy it is to visualize a series of data values

graphically:

import matplotlib.pyplot as plt

plt.plot([1,8,2,9,6]) # x values

plt.ylabel('Data readings for five hours') #y values

plt.show()

Chapter 3 Functions

158

�Types of Charts
There are many types of charts available. A quick visit to Matplotlib.org will show new

additions and features of the library for pyplot, which are evolving at a rapid pace.

Consider the following to see just a few of the many types of charts available to you from

this library:

#Pie chart example

import matplotlib.pyplot as plt

#Data sets 1 - 5

sets = 'D 1', 'D 2', 'D 3', 'D 4', 'D 5'

data = [5, 10, 15, 20, 50]

plt.pie(data, labels=sets)

plt.show()

There are many others such as bar, hist (histogram), box, density, area, scatter, and

XKCD-style charts (comic web site with Pythonish humor). The format is similar to pie.

�Combine Matplotlib with Pandas
Now that we have the basics down for visualizing data let’s visualize a larger data set,

which would be a bit more practical: you would not normally type every value into your

code, but would be reading from a CSV file or similar, perhaps obtained from an Internet

site. We will combine data visualization with Pandas. In the following example we add a

few functions such as tick and title and make a histogram of students in age ranges from

the students.csv data set. Pandas and Matplotlib with pyplot are good tools to use in

combination:

import pandas

import matplotlib.pyplot as plt

data = pandas.read_csv('students.csv', sep=',', na_values=".")

age = data[['Age']]

print(age)

plt.hist(age)

plt.xticks(range(18,33))

plt.title('Ages of students')

plt.show()

Chapter 3 Functions

http://matplotlib.org

159

The Pandas and Matplotlib documentation and main web site of course will describe

other functions available, but this will get you using Pandas features so that you can

easily integrate other features you might need into your applications as needed.

�Taking It with You
Although Python functions may seem to be quite simple on the surface, you now know

how to define and manage them in ways that really fit your needs. Of course, you’re

probably looking to incorporate functions into a more comprehensive object-oriented

program, and for that, we’ll need to look at how Python’s classes work.

Chapter 3 Functions

161
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_4

CHAPTER 4

Classes
In Chapter 3 you reviewed how functions allow you to define code that can be reused.

This allowed for general code streamlining by not having to retype “chunks” of code.

However, it’s often more useful to combine those same functions into logical groupings

that define the behavior and attributes of a particular type of object. This is standard

object-oriented (OO) programming, which is implemented in Python by way of types

and classes. These, like functions, may seem simple enough on the surface, but there’s a

considerable amount of power behind them that you can leverage.

The most basic idea of a class is that it encapsulates the behavior of an object,

whereas an instance of the class represents the data for the object. Therefore, even

though data may well change from one instance to another, behavior determined by the

underlying class will remain the same across those instances. Defining, extending, and

altering that behavior is the focus of this chapter.

�Inheritance
The simplest way to use classes is to define a single class for a single type of object. That

works well for many simple applications, but you’re likely to find the need for finer-

grained control over the behavior of objects. In particular, it’s common to have a single

common set of behaviors for a large collection of objects, but you then need to modify

them or add new ones for a smaller set of more specific objects.

To facilitate this, Python allows each class to specify one or more base classes that

will provide the fundamental behavior. Then, the new class being defined can add new

behaviors or override any existing ones. By default, all objects descend from the built-in

object type, although that doesn’t really do anything useful on its own. It’s really just a

foundation type that underpins the entire system, as everything else inherits from it.

162

Like most object-oriented languages, Python lets you define as many subclasses as

you’d like for a given class, and you can subclass those as well, going as many levels deep

as necessary. This vertical approach to inheritance is appropriate for most applications,

because it maximizes the usefulness of the base classes. When a single, typically large,

set of behaviors needs to be reused across a variety of other classes, vertical inheritance

proves quite useful. Try a very simple Python class with an explicit constructor:

class Contact:

 def __init__(self, lName, fName): # explicit constructor for class

 self.lastName = lName

 self.firstName = fName

worker1 = Contact("Smith", "James")

print(worker1.lastName, worker1.firstName)

Python also has some built-in functions to modify your classes.. This is a peek ahead

to the “Attributes” section of this chapter, but these functions are getattr(obj, name)

to access the attribute of an object; setattr(obj, name, value) to set the attribute of an

object; hasattr(obj, name) to check for existence; and, finally, delattr(obj, name) to delete

an attribute in an object. Public properties are, of course, accessible once the object is

created:

class Contact:

 def __init__(self, lName, fName): # explicit constructor for class

 self.lastName = lName

 self.firstName = fName

worker1 = Contact('Smith', 'James')

print(worker1.lastName, worker1.firstName) # object.public_property

newLast=raw_input('Enter new last name: ')

setattr(worker1,'lastName',newLast) # set attribute with new value

print(worker1.lastName, worker1.firstName)

print(getattr(worker1, 'lastName')) # get existing attribute

Chapter 4 Classes

163

As yet another example, consider a common scenario involving a contact management

application. At the root of all else you would have a Contact class, because, by definition,

everything in the application is a contact. It would have a set of fields and behaviors

associated with it, which cover only those things that are pertinent to all contacts,

according to the needs of your application:

class Contact:

 name = TextField()

 email = EmailAddressField()

 phone = PhoneNumberField()

 def send_mail(self, message):

 # Email sending code would go here

For now, don’t worry about the specifics of where each of the field classes come from

or how they work in the application. If you’re interested, Chapter 11 demonstrates one

possible framework for writing classes like this. The key for now is that each of the fields

represents a single piece of data relating to the class at hand. Values might be provided

by user input, results from a database query, or even random value generator; what’s

important is the structure of the class and how subclasses will work with it.

Even with just a contact in place, you can create a useful application based on those

core fields and behaviors. Providing additional features means adding support for

different types of contacts. For instance, real people have a first name, last name, and

perhaps a cell phone, whereas companies will often have only a single name and phone

number. Likewise, companies will do business in particular industries, which wouldn’t

make any sense in the case of individuals:

class Person(Contact):

 first_name = TextField()

 last_name = TextField()

 name = ComputedString('%(last_name)s, %(first_name)s')

 cell_phone = PhoneNumberField()

class Company(Contact):

 industry = TextField()

Chapter 4 Classes

164

Now we have a basic hierarchy beginning to take shape. People are different from

companies, and they each have different fields that are appropriate to each case.

Python’s inheritance system automatically pulls the fields from the Contact class and

makes them available on the Person and Company classes. You can subclass these as well,

providing such Person types as Employee, Friend, and FamilyMember:

class Employee(Person):

 employer = RelatedContact(Company)

 job_title = TextField()

 office_email = EmailAddressField()

 office_phone = PhoneNumberField()

 extension = ExtensionField()

class Friend(Person):

 relationship = TextField()

class FamilyMember(Person):

 relationship = TextField()

 birthday = DateField()

Notice here that even though both Friend and FamilyMember have relationship fields

that work identically to each other, FamilyMember doesn’t inherit from Friend. It’s not

necessarily true that a family member will also be a friend, so the class structure reflects

that. Each new subclass is automatically considered to be a more specific example of

the class it extends, so it’s important that the inheritance scheme reflects the actual

relationships being codified.

This may seem like a philosophical detail, but it has real ramifications in code as

well. As will be shown in the “Introspection” section in this chapter, Python code can

take a look at the inheritance structure of classes, so any mismatches can cause your

code to confuse one type of class for another. The best way to avoid those problems is to

think about how the objects you’re representing actually relate to one another and try to

recreate those relationships in code.

Chapter 4 Classes

165

�Multiple Inheritance
Python also supports a horizontal approach to class inheritance, by allowing a subclass

to define more than one base class at a time. This way, a class can obtain behaviors

from many various classes without having to go several levels deep. Of course, that

means taking a different logical approach because you’re no longer defining classes by

increasing specificity. Instead, in some uses of multiple inheritance, you’re essentially

building up each class as a set of components.

Building up classes like this is particularly well suited for applications in which your

classes share some common behaviors but are not otherwise related to each other in a

hierarchical manner. In order to make sense, this typically requires a large number of

classes to be built from a reasonably large number of components. Because that’s not the

way most applications are put together, it’s rarely used this way in the wild.

Instead, multiple inheritance is often called on to apply support classes, called

mixins. Mixin classes don’t provide full functionality on their own; they instead supply

just a small add-on feature that could be useful on a wide range of different classes. One

example might be a mixin that returns None when you try to access any attribute that

isn’t available on the object, rather than raising an AttributeError:

class NoneAttributes:

 def __getattr__(self, name):

 return None

The __getattr__() method, which will be described in more detail in the “Magic

Methods” section later in this chapter, is called whenever an attribute is requested that

isn’t available on the object. Because it works as a fallback, it’s an obvious choice for

a mixin; the real class provides its own functionality, with the mixin adding onto that

where applicable:

class Example(BaseClass, NoneAttributes):

 pass

e = Example()

e.does_not_exist

Chapter 4 Classes

166

In typical applications, a vertical hierarchy will provide most of the functionality,

with mixins adding some extras where necessary. Because of the potential number of

classes involved when accessing attributes, it becomes even more important to fully

understand how Python decides which class is used for each attribute and method

that was accessed. To put it another way, you need to know the order in which Python

resolves which method to use.

�Method Resolution Order
Given a class hierarchy, Python needs to determine which class to use when attempting

to access an attribute by name. To do this, Python has rules that govern how to order

a set of base classes when a new class is defined. For most basic usage of classes you

don’t really need to know how this works, but if you work with multilevel or multiple

inheritance, the details in this section will help you understand what’s really going on.

In the simple vertical-only scenario, it’s easy to imagine how the Method Resolution

Order (MRO) would be created. The class you’re actually working with would be first in

line, followed by its base class, followed by the base class of the base class, and so on up

the line until you get back to the root object type.

At each step in the chain, Python checks to see if the class has an attribute with the

name being requested, and if it does, that’s what you get. If not, it moves on to the next

one. This is easy to see with a simple example. Key this in from a prompt and try it:

>>> class Book:

... def __init__(self, title):

... self.title = title

... self.page = 1

... def read(self):

... return 'There sure are a lot of words on page %s.' % self.page

... def bookmark(self, page):

... self.page = page

...

>>> class Novel(Book):

... pass

Chapter 4 Classes

167

...

>>> class Mystery(Novel):

... def read(self):

... return "Page %s and I still don't know who did it!" % self.page

...

>>> book1 = Book('Pro Python')

>>> book1.read()

'There sure are a lot of words on page 1.'

>>> book1.bookmark(page=52)

>>> book1.read()

'There sure are a lot of words on page 52.'

>>> book2 = Novel('Pride and Prejudice')

>>> book2.read()

'There sure are a lot of words on page 1.'

>>> book3 = Mystery('Murder on the Orient Express')

>>> book3.read()

"Page 1 and I still don't know who did it!"

>>> book3.bookmark(page=352)

>>> book3.read()

"Page 352 and I still don't know who did it!"

As you can see, when calling read() on a Mystery object, you get the method that’s

defined directly on that class, while using bookmark() on that same class uses the

implementation from Book. Likewise, Novel doesn’t define anything on its own—it’s just

there to make for a more meaningful hierarchy—so all of the methods you have access

to actually come from Book. To put it more directly, the MRO for Mystery is [Mystery,

Novel, Book], while the MRO for Novel is simply [Novel, Book].

So what happens when you take a horizontal approach using multiple inheritance?

For the sake of simplicity, we’ll start with just a single layer of inheritance for each of the

supplied base classes so that it’s a purely horizontal approach. In this case Python goes

from left to right, in the order the classes were defined as base classes. Here’s what the

previous example looks like once we add a purchase() method, which would allow the

user to buy a copy of the book. If you still have the previous terminal session open, try

the next bit to add on to what we have done:

Chapter 4 Classes

168

>>> class Product:

... def purchase(self):

... return 'Wow, you must really like it!'

...

>>> class BookProduct(Book, Product):

... pass

...

>>> class MysteryProduct(Mystery, Product):

... def purchase(self):

... return 'Whodunnit?'

...

>>> product1 = BookProduct('Pro Python')

>>> product1.purchase()

'Wow, you must really like it!'

>>> product2 = MysteryProduct('Murder on the Orient Express')

>>> product2.purchase()

'Whodunnit?'

Thus far, each MRO has been very straightforward and easy to understand, even if

you didn’t know what was going on behind the scenes. Unfortunately, things get more

complex when you start combining both forms of inheritance. It doesn’t even take a very

complicated example to illustrate the problem; consider what happens when you inherit

from one class that has a base class of its own and a mixin that stands alone:

class A:

 def test(self):

 return 'A'

class B(A):

 pass

class C:

 def test(self):

 return 'C'

Chapter 4 Classes

169

This is simple enough, but if you create a new class, D, which subclasses both B

and C, what would happen if you call its test() method? As always, it’s easy enough to

test this out in the interactive interpreter, where you’ll see that the answer depends on

which one you put first. Make sure you are in the same session, and have keyed in the

aforementioned code, and then try the following to see the results:

>>> class D(B, C):

... pass

...

>>> D().test()

'A'

>>> class D(C, B):

... pass

...

>>> D().test()

'C'

On the surface, it seems easy to assume that Python simply goes depth first; it looks

at the first base class and follows it all the way down, looking for the requested attribute,

moving on to the next base class only when it can’t find what it needs. That observation

is certainly true for this and many other cases, but it’s still not the whole story. What’s

really going on takes the whole inheritance scheme into account.

Before clarifying the full algorithm, however, let’s get one thing out of the way.

The first namespace Python looks at is always the instance object. If the attribute

isn’t found there, it goes to the actual class that provides that object’s behavior. These

two namespaces are always the first two to be checked, regardless of any inheritance

structure that may be in use. Python try to locate it through class inheritance only if the

attribute isn’t found there.

Rather than looking at the whole inheritance structure as a kind of tree, Python tries

to flatten it out to a single list, with each class appearing just once. This is an important

distinction because it’s possible for two base classes to subclass the same class deeper in

the chain, but looking at that class twice would only cause confusion later on. To resolve

this and other potential issues, there needs to be a single, flat list to work with.

Chapter 4 Classes

170

The first step is to identify all the different paths that can be taken to get from a class

to its basemost class. There will always be at least one path, even if there’s no base class,

for two reasons. For one, the MRO for a given class always includes the class itself in

the first position. This may seem obvious from earlier descriptions, but the rest of the

algorithm will make it clear why this is important to state explicitly. Also, every class

implicitly inherits from object, so that’s at the end of every MRO.

So, for just a simple class, A, which doesn’t inherit from anything, its MRO is just a

simple two-element list: [A, object]. If you have another class, B, which subclasses A,

its MRO becomes fairly obvious as well, being [B, A, object]. Once you introduce a bit

of multiple inheritance, it’s possible for the same class to appear more than once in the

overall tree, so we need some extra work in order to sort out the MRO.

Consider a new class, C, which inherits from both B and A. Now A shows up under two

different branches and at two different distances from the new class, C.

Note  It might not make sense to do this because B already inherits from A.
Remember, however, that you may not always know in advance what the base
classes are doing behind the scenes. You might extend classes that were passed
into your code from elsewhere or were generated dynamically, such as will be
shown later in this chapter. Python doesn’t know how your classes are laid out, so
it has to be able to account for all the possibilities.

>>> class A:

... pass

...

>>> class B(A):

... pass

...

>>> class C(B, A):

... pass

...

Chapter 4 Classes

171

The MRO for object is obviously just [object], and A has already been shown to

be [A, object], as you would expect. B is clearly [B, A, object], but what about C?

Looking at it depth-first, you might guess [C, B, A, object] once the duplicate A is

removed. Taking a breadth-first (horizontal before vertical) approach, you’d come up

with [C, A, B, object].

So which way does Python go? The truth is, neither of those is accurate; Python uses

an algorithm called C3. This algorithm takes all the inheritance into account, reducing

it by one layer at a time, until only a single list remains. At each level, C3 processes the

class lists that were created for all of that level’s parent classes. Because of this, it starts at

the most generic class, object, and continues outward from there.

With C in place, we can finally see how the algorithm works in detail. By the time

Python encounters C, both A and B have already been processed, so their MROs are

known. In order to combine them, C3 looks at the first class in each of the parent MROs

to see if it can find a candidate for inclusion in the MRO for C. Of course, that begs the

question of what exactly constitutes a valid candidate.

The only criteria used to identify a candidate class is whether it exists in only the first

position in any of the MRO lists being considered. It doesn’t have to be in all of them, but

if it’s present, it must be the first in the list. If it’s in any other position in any of the lists,

C3 will skip it until its next pass. Once it finds a valid entry, it pulls that into the new MRO

and looks for the next one using the same procedure.

�Example: C3 Algorithm
Because algorithms are really just code, let’s put together a simple C3 function that will

perform the necessary linearization—reducing the inheritance tree into a single list.

Before diving into the full implementation, however, let’s first take a look at what the

function call would look like, so we know what data it’ll be working with. For C, it would

look like this:

C3(C, [B, A, object], [A, object], [B, A])

The first argument is the class itself, which is followed by the known MRO lists for its

parent classes, in the order they were defined on the class. The last argument, however,

is simply the list of parent classes themselves, without their full MROs. As will be shown

in a slight modification of C later, this extra argument is necessary to resolve some

ambiguities.

Chapter 4 Classes

172

As with any function, there are a few boring details that need to be put in place

before the real heavy lifting can be done. In the case of C3, there will be some

modification of the MRO lists along the way, and we don’t want those modifications to

affect the code that called the C3 function, so we have to make copies of them to work

with. In addition, we need to set up a new list to contain the final MRO being generated

by the algorithm:

def C3(cls, *mro_lists):

 # Make a copy so we don't change existing content

 mro_lists = [list(mro_list[:]) for mro_list in mro_lists]

 # Set up the new MRO with the class itself

 mro = [cls]

 # The real algorithm goes here.

 return mro

We can’t just use mro_list[:] here because that only copies the outer list. All the

other lists that were contained inside that list would remain, so any modifications to

them would be visible outside the function. By using a list comprehension and copying

each of the internal lists, we get copies of all the lists involved, so they can be safely

altered.

THE ROBUSTNESS PRINCIPLE

If you’re already aware of Python’s copy module—or you’ve skipped ahead to Chapter 6—you

may wonder why we don’t just use copy.deepcopy(mro_list) instead. At the very least,

you may be wondering what that extra list(mro_list[:]) is for, because we’re passing in lists

already. By explicitly casting each of the internal sequences to lists and wrapping it all in a

list comprehension, we can allow the function to accept any valid sequence types, including

tuples, which aren’t able to be modified after being created (like a constant perhaps). This

makes the C3 function much more liberal in what it accepts.

Chapter 4 Classes

173

With the housekeeping out of the way, we can move on to the main algorithm.

Because we don’t know in advance how many classes are in each MRO, it’s best to wrap

the main workload in a simple while True loop, which will execute indefinitely, so we

can control its flow using break and continue. Of course, this means you shouldn’t try

executing this code until a bit later on, until we have the necessary control code in place.

The first task inside that loop will be to loop over each MRO list, get its first class, and

see if it’s in any position other than first in any of the other lists. If it is, that class isn’t a

valid candidate yet and we need to move on to the first class in the next list. Here’s the

loop necessary to perform those first steps:

import itertools

def C3(cls, *mro_lists):

 # Make a copy so we don't change existing content

 mro_lists = [list(mro_list[:]) for mro_list in mro_lists]

 # Set up the new MRO with the class itself

 mro = [cls]

 while True:

 for mro_list in mro_lists:

 # Get the first item as a potential candidate for the MRO.

 candidate = mro_list[0]

 if candidate in itertools.chain(*(x[1:] for x in mro_lists)) :

 # The candidate was found in an invalid position, so we

 # move on to the next MRO list to get a new candidate.

 continue

 return mro

The chain used here reduces all the non–first classes in all the MRO lists down to a

single list, so it’s easier to test whether the current candidate is valid or not. Of course,

the current code only responds if the candidate is invalid. If it wasn’t found in that chain,

it’s a valid candidate and can be promoted to the final MRO right away.

Chapter 4 Classes

174

In addition, we need to remove that candidate from the MRO list where it was found,

as well as any of the others it might be found in. This is made a bit easier by the fact

that we know it can only be the first item in any of the lists and that it won’t be in any of

them that were already processed in this round. We can therefore just look at each of the

remaining candidates and remove the class that was promoted. In any case, none of the

other MRO lists should be processed for a new candidate this time around, so we also

need to add a continue:

 while True:

 # Reset for the next round of tests

 candidate_found = False

 for mro_list in mro_lists:

 if not len(mro_list):

 # Any empty lists are of no use to the algorithm.

 continue

 # Get the first item as a potential candidate for the MRO.

 candidate = mro_list[0]

 if candidate_found:

 # Candidates promoted to the MRO are no longer of use.

 if candidate in mro:

 mro_list.pop(0)

 # Don't bother checking any more candidates if one was found.

 continue

 if candidate in itertools.chain(*(x[1:] for x in mro_lists)) :

 # The candidate was found in an invalid position, so we

 # move on to the next MRO list to get a new candidate.

 continue

 else:

 # The candidate is valid and should be promoted to the MRO.

 mro.append(candidate)

 mro_list.pop(0)

 candidate_found = True

Chapter 4 Classes

175

Note  Now that we’re removing items from the MRO lists, we also have to add in
an extra bit of code to handle the situation in which one of the lists was completely
emptied. Because there’s nothing of value in an empty list, the loop just moves on
to the next one.

With the candidate selection now complete, the only things left are to tell the

algorithm when its job is done and it should exit the loop. As it stands it will empty the

lists completely, but continue looping through them forever, without ever returning the

new MRO. The key to identifying this situation is that it will indeed empty all the lists.

Therefore, we can check the remaining MRO lists to see if any classes remain. If not, it’s

done and can end the loop:

 while True:

 # Reset for the next round of tests

 candidate_found = False

 for mro_list in mro_lists:

 if not len(mro_list):

 # Any empty lists are of no use to the algorithm.

 continue

 # Get the first item as a potential candidate for the MRO.

 candidate = mro_list[0]

 if candidate_found:

 # Candidates promoted to the MRO are no longer of use.

 if candidate in mro:

 mro_list.pop(0)

 # Don't bother checking any more candidates if one was found.

 continue

 if candidate in itertools.chain(*(x[1:] for x in mro_lists)) :

 # The candidate was found in an invalid position, so we

 # move on to the next MRO list to get a new candidate.

 continue

Chapter 4 Classes

176

 else:

 # The candidate is valid and should be promoted to the MRO.

 mro.append(candidate)

 mro_list.pop(0)

 candidate_found = True

 if not sum(len(mro_list) for mro_list in mro_lists):

 # There are no MROs to cycle through, so we're all done.

 # note any() returns false if no items so it could replace sum(len)

 break

This loop, inside the C3 function mentioned already, can successfully create an

MRO for any valid Python inheritance scheme. Going back to the function call for the C

class mentioned previously, we’d get the following result. Notice that we’re using strings

here instead of the actual classes, to make it easier to illustrate. Nothing about the C3

algorithm is actually tied to classes anyway; it’s all just about flattening out a hierarchy

that may contain duplicates:

>>> C3('C', ['B', 'A', 'object'], ['A', 'object'], ['B', 'A'])

['C', 'B', 'A', 'object']

That’s all well and good, but there’s another related situation that needs some

attention as well: what happens when C inherits from A before B? One would logically

assume that any attributes found on A would be used before those on B, even though B’s

MRO puts B before A. That would violate an important consistency in class inheritance:

the order of items in an MRO should be preserved in all of its future subclasses.

Those subclasses are allowed to add new items to their MRO, even inserting them

in between items in the MRO of the base class, but all the MROs involved should still

retain the same ordering they had originally. So when doing something like C(A, B), the

correct result would actually be inconsistent with user expectations.

That’s why the C3 algorithm requires that the base classes themselves be added to

the list of MROs that are passed in. Without them, we could invoke the C3 algorithm with

this new construct and get the same result that was obtained with the original ordering:

>>> C3('C', ['B', 'A', 'object'], ['A', 'object'])

['C', 'B', 'A', 'object']

>>> C3('C', ['A', 'object'], ['B', 'A', 'object'])

['C', 'B', 'A', 'object']

Chapter 4 Classes

177

Even though it seems like the two should do different things, they would actually

end up doing the same thing. By adding in the extra class list at the end, however, the

behavior of C3 changes a bit. The first candidate is A, which is found in the second

position in the MRO of B, so A is skipped for this round. The next candidate is B, which is

found in the list added in the final argument, so that’s skipped, too. When the final list is

examined, A is skipped once again.

This means C3 completes a full loop without finding any valid candidates, which is

how it detects inappropriate constructs like C(A, B). Without a valid candidate, no items

are removed from any of the lists and the main loop would run again with exactly the same

data. Without any extra handling for the invalid case, our current Python implementation

of C3 will simply continue on indefinitely. It would be better to raise an exception. First,

however, let’s validate this assumption by examining Python’s own behavior with C(A, B).

Assuming that you keyed in the previous examples, try the following:

>>> class A:

... pass

...

>>> class B(A):

... pass

...

>>> class C(A, B):

... pass

...

Traceback (most recent call last):

 ...

TypeError: Cannot create a consistent method resolution

order (MRO) for bases B, A

Sure enough, Python’s class system disallows this construct in an effort to force

developers to only make classes that make sense. Duplicating this functionality in

our own C3 class is fairly easy now that we know how to identify an invalid situation.

All we have to do is check at the end of the loop and see whether a valid candidate

was found. If not, we can raise a TypeError:

Chapter 4 Classes

178

import itertools

def C3(cls, *mro_lists):

 # Make a copy so we don't change existing content

 mro_lists = [list(mro_list[:]) for mro_list in mro_lists]

 # Set up the new MRO with the class itself

 mro = [cls]

 while True:

 # Reset for the next round of tests

 candidate_found = False

 for mro_list in mro_lists:

 if not len(mro_list):

 # Any empty lists are of no use to the algorithm.

 continue

 # Get the first item as a potential candidate for the MRO.

 candidate = mro_list[0]

 if candidate_found:

 # Candidates promoted to the MRO are no longer of use.

 if candidate in mro:

 mro_list.pop(0)

 # Don't bother checking any more candidates if one was found.

 continue

 if candidate in itertools.chain(*(x[1:] for x in mro_lists)) :

 # The candidate was found in an invalid position, so we

 # move on to the next MRO list to get a new candidate.

 continue

 else:

 # The candidate is valid and should be promoted to the MRO.

 mro.append(candidate)

 mro_list.pop(0)

 candidate_found = True

Chapter 4 Classes

179

 if not sum(len(mro_list) for mro_list in mro_lists):

 # There are no MROs to cycle through, so we're all done.

 break

 if not candidate_found:

 # No valid candidate was available, so we have to bail out.

 break

 raise TypeError("Inconsistent MRO")

 return mro

With this last piece in place, our C3 implementation matches the behavior of

Python’s own, covering all the bases. Most arbitrary class inheritance structures can be

reduced to a valid MRO, so you typically don’t need to worry too much about how the

algorithm works. There is one feature of classes, however—the super() function—that

relies on the MRO extensively.

�Using super( ) to Pass Control to Other Classes
One of the most common reasons to create a subclass is to override the behavior of some

existing method. It could be as simple as logging every time the method is called, or as

complex as completely replacing its behavior with a different implementation. In the

case of the former, where you’re simply tweaking existing behavior, it’s quite useful to be

able to use the original implementation directly so that you don’t have to reinvent the

wheel just to make some minor changes.

To achieve this, Python supplies the built-in super() function, which is all too

often misunderstood. The common explanation of super() is that it allows you to call a

method on a base class within the overridden method on a subclass. That description

works to a point, but before explaining it more fully let’s examine how it behaves in the

simple case, to see what that even means:

class A(object):

 def afunction(self):

 print('afunction from Class A')

class B(A):

Chapter 4 Classes

180

 def __init__(self):

 print('B is constructed!!!') # constructor for B

 def afunction(self):

 return super(B, self).afunction()

sample1=B()

print(sample1.afunction())

In this simple example, super() returns the base class of the method. To build on

what we just read about, super() looks at the next class in the MRO, in this case class

A. Notice that we say “overridden,” as we have two functions named afunction.

Next, consider an application that needs to create a dictionary that automatically

returns None for any keys that don’t already have a value associated with them. This is

fairly similar to defaultdict, but it doesn’t have to create a new value each time; it just

returns None:

>>> class NoneDictionary(dict):

... def __getitem__(self, name):

... try:

... return super(NoneDictionary, self). __getitem__(name)

... except KeyError:

... return None

...

>>> d = NoneDictionary()

>>> d['example']

>>> d['example'] = True

>>> d['example']

True

Before getting too much further, it’s important to realize what super() is really doing

here. In some languages, super() is simply a language feature that gets compiled into

some special code to access methods from other classes. In Python, however, super()

returns an actual object, which has a set of attributes and methods that are based on

where it was used.

Chapter 4 Classes

181

From this simple example, it does seem that super() just provides access to a

method on the base class, but remember that there can be any number of base classes

involved, with more than one specified on each class. Given the complex nature of some

inheritance structures, it should be clear by now that Python would use the MRO to

determine which method to use. What may not be obvious, however, is which MRO is

used when looking up the method.

Just looking at it, you might think that Python uses the MRO of the class where

super() was used, which would be NoneDictionary in the example given here. Because

most cases will look very much like that example, that assumption will be accurate

enough to account for most cases. However, more complicated class hierarchies raise

the question of what happens when the MRO gets changed in subclasses. Consider the

following set of classes; however, start a new Python session, as these class definitions

are a bit different than our first example:

>>> class A:

... def test(self):

... return 'A'

...

>>> class B(A):

... def test(self):

... return 'B->' + super(B, self). test()

...

>>> B().test()

'B->A'

In this example, using super() inside of B refers to its base class, A, as expected.

Its test() method includes a reference to itself, so we’ll be able to see along the way if

things change. Along with B, we could define another class, C, which also subclasses A.

To illustrate things a bit better down the road, C will implement its own test() method,

without using super():

Chapter 4 Classes

182

>>> class C(A):

... def test(self):

... return 'C'

...

>>> C().test()

'C'

Of course, there’s nothing unusual or problematic about this so far, as it doesn’t

interact with A or B in any way. Where things get interesting is when we create a new

class, D, which subclasses both B and C. It doesn’t need a test() method, so we just leave

its body blank, making it as simple as a class can be. Let’s see what happens to test()

now:

>>> class D(B, C):

... pass

...

>>> D().test()

'B->C'

Now we can finally see what’s going on. We can see that test() is called on B,

causing its reference in the output, but when it calls super().test(), it refers to the

method of C, rather than the one on A. If Python simply used the MRO of the class where

the method was defined, it would reference A, not C. Instead, because it uses C, we can

gain some insight into how super() really works.

In the most common case, which includes the usage shown here, super() takes two

arguments: a class and an instance of that class. As our example has shown, the instance

object determines which MRO will be used to resolve any attributes on the resulting

object. The provided class determines a subset of that MRO, because super() only uses

those entries in the MRO that occur after the class provided.

Chapter 4 Classes

183

The recommended usage is to provide the class where super() was used as the

first argument, and the standard self as the second argument. The resulting object will

retain the instance namespace dictionary of self, but it only retrieves attributes that

were defined on the classes found later in the MRO than the class provided. Technically,

however, you could pass in a different class and get different results:

>>> class B(A):

... def test(self):

... return 'B->' + super(C, self). test()

...

>>> class D(B, C):

... pass

...

>>> D().test()

'B->A'

In this example, where B actually references C in its invocation of super(), the

resulting MRO skips C, moving straight onto A, which is shown by calling test() again.

This is a dangerous thing to do in common practice, however, as shown when trying to

use B on its own:

>>> B().test()

Traceback (most recent call last):

 ...

TypeError: super(type, obj): obj must be an instance or subtype of type

Because self isn’t a subclass of C in this case, C isn’t anywhere in the MRO, so super()

can’t determine where it should start looking for attributes. Rather than creating a

useless object that just throws an AttributeError for everything, super() fails when first

called, providing a better error message.

Chapter 4 Classes

184

WARNING: BE CAREFUL WITH YOUR ARGUMENTS

One common mistake when using super() is to use it on a method that won’t always have

the same signature across all the various classes. In our examples here, the test( ) method

doesn’t take any arguments, so it’s easy to make sure it’s the same across the board. Many

other cases, such as __getitem__(), shown previously, are standard protocols that should

never have their function signatures significantly changed by any subclass. Chapter 5 shows

many of these cases in more detail.

Unfortunately you can’t always know what another class will do, so using super() can

sometimes cause problems by providing the wrong arguments to the class given. Of course,

this really isn’t any different than passing in an object that has a different protocol than what

another function expects.

The reason it’s worth noting with super() is that it’s easy to assume you know what function

you’re actually calling. Without a solid understanding of how MROs work and how super()

determines which attributes to use, problems can seem to come up out of nowhere. Even with

a thorough knowledge of these topics, however, the only real defense against such problems

is an agreement among all the classes involved to not change method signatures.

�Introspection
Given all the different inheritance options available, it’s appropriate that Python

provides a number of tools to identify what structure a class uses. The most obvious

introspection task for use with classes is to determine whether an object is an instance

of a given class. This behavior is provided using the built-in isinstance() function,

which takes any arbitrary object as its first argument and a Python class as its second

argument. Only if the given class is anywhere in the inheritance chain of the object’s

class will isinstance() return True:

>>> isinstance(10, int)

True

>>> isinstance('test', tuple)

False

Chapter 4 Classes

185

A natural complement to isinstance() is the ability to determine whether one

class has another class somewhere in its inheritance chain. This feature, provided by the

built-in subclass() function, works just like isinstance(), except that it operates on

a class rather than an instance of it. If the first class contains the second anywhere in its

inheritance chain, issubclass() returns True:

>>> issubclass(int, object)

True

>>> class A:

... pass

...

>>> class B(A):

... pass

...

>>> issubclass(B, A)

True

>>> issubclass(B, B)

True

That last example may seem odd, as B clearly can’t be a subclass of itself, but this

behavior is to remain consistent with isinstance(), which returns True if the type of the

provided object is the exact class provided along with it. In a nutshell, the relationship

between the two can be described using a simple expression, which is always true:

isinstance(obj, cls) == issubclass(type(obj), cls)

If you’d like more information about the inheritance structure for a particular

class, there are a few different tools at your disposal. If you’d like to know what base

classes were defined for a particular class, simply access its __bases__ attribute, which

will contain those base classes in a tuple. It only provides the immediate base classes,

however, without any of the classes that were extended deeper than that:

Chapter 4 Classes

186

>>> B.__bases__

(<class '__main__.A'>,)

On the other side of the coin, every class also has a __subclasses__() method,

which returns a list of all the subclasses of the class you’re working with. Like __bases__,

this only goes one level away from the class you’re working with. Any further subclasses

need to use some other mechanism to keep track of subclasses, some of which will be

discussed later in this book:

>>> A.__subclasses__()

[<class '__main__.B'>]

If you’d like even more information and control, every class also has an __mro__

attribute, which contains the full MRO for that class, in a tuple. As mentioned previously,

this also includes the actual class you pass in along with any of its parent classes. You

might even try this on the first example with super() used earlier:

>>> B.__mro__

(<class '__main__.B'>, <class '__main__.A'>, <class 'object'>)

�How Classes Are Created
Defining a class in Python works differently than in many other languages, although the

differences are not always apparent. It seems quite simple: you supply a name, possibly

a base class to inherit from, some attributes, and some methods. But when Python

encounters that declaration, the process that takes place actually has more in common

with functions than you may realize.

To start with, the body of a class declaration is a code block. Just like if, for, and

while, the body of a class block can contain any valid Python code, which will execute

Chapter 4 Classes

187

from top to bottom. It will follow function calls, perform error handling, read files, or

anything else you ask it to do. In fact, if blocks can be quite useful inside of a class declaration:

>>> try:

... import custom_library

... except ImportError:

... custom_library = None

...

>>> class Custom:

... if custom_library is not None:

... has_library = True

... else:

... has_library = False

...

>>> Custom.has_library

False

Tip T his example is useful for demonstration purposes only. If you’re looking to
achieve the exact effect shown here, it’s much more pragmatic to simply assign
the expression custom_library is not None directly to the has_library
attribute. It returns a Boolean value anyway, so the end result is identical, but it’s a
much more common approach to the task at hand.

After Python finishes executing the inner code, you’ll notice that has_library

becomes an attribute of the class object that’s made available to the rest of your code.

This is possible because Python’s class declarations work a little bit like functions.

When a new class is found, Python starts by creating a new namespace for the block

of code inside it. While executing the code block, any assignments are made in that

new namespace. Then the namespace created is used to populate a new object, which

implements the new class.

Chapter 4 Classes

188

�Creating Classes at Runtime
The previous section alluded to the fact that Python creates type objects while

executing code, compiling and interpreting. As with nearly everything else that happens

at runtime, you can hook into that process yourself and use it to your advantage. Doing

so takes advantage of what Python does behind the scenes when encountering a class.

The really important stuff happens just after the contents of the class are processed.

At this point Python takes the class namespace and passes it, along with some other

pieces of information, to the built-in type(), which creates or “instantiates” the new

class object. This means that all classes are actually subclasses of type(), which sits at

the base of all of them. Specifically, there are three pieces of information that type()

uses to instantiate a class:

•	 The name of the class that was declared

•	 The base classes the defined class should inherit from

•	 The namespace dictionary populated when executing the class body

This information is all that’s necessary to represent the entire class, and even though

Python obtains this information automatically by inspecting the class declaration, you

can create a type by passing in these values directly.

The name is easiest, as it’s just a string with the name of the class. Base classes get

slightly more involved, but they’re still fairly simple: just supply a sequence containing

existing class objects that the new class should inherit from. The namespace dictionary

is just that: a dictionary, which happens to contain everything that should be attached to

the new class by name. Here’s an example of how the same class could be created in two

different ways:

>>> class Example(int):

... spam = 'eggs'

...

>>> Example

<class '__main__.Example'>

>>> Example = type('Example', (int,), {'spam': 'eggs'})

>>> Example

<class '__main__.Example'>

Chapter 4 Classes

189

DON’T REPEAT YOURSELF

You’ll notice that this example ends up having to write the name Example twice, which may

seem to violate the DRY principle. Remember, however, that there are really two things going

on here, and the two aren’t tied to each other. First, the class is being created, which requires

us to supply a name. Second, the new class gets bound to a name in the namespace.

This example uses the same name for both operations, partly for convenience and partly for

compatibility with the native class declaration above it. However, the namespace assignment

is completely separate from class creation, so any name could be used. In fact, most of the

time you won’t even know the name of the class in advance, so you’ll almost always use a

different name in practice anyway.

Like most times, you have low-level access to a common feature, type(), which gives

you plenty of chances to create problems. One of the three arguments to type() is the

name of the class to create, so it’s possible to create multiple classes with the same name.

In addition, by passing in the attribute namespace, you can supply a new __module__

attribute to mimic its presence in a different module. It won’t actually put the class in the

specified module, but it will fool any code that introspects the module later on. Having

two classes with both the same name and module could potentially cause problems with

tools that introspect modules to determine their structure and hierarchy.

Of course, it’s possible to encounter these problems even without using type()

directly. If you create a class, assign it to a different name, and then create a new class

with the same name as the original, you can have the exact same naming problem. Also,

Python lets you supply a __module__ attribute within a standard class declaration, so you

can even create clashes in code that’s not under your control.

Even though it’s possible to run into these problems without resorting to type()

directly, the warning here is that type() makes it much easier to accidentally encounter

problems. Without it, you’d have to write code that specifically exploits the preceding

points in order to create naming conflicts. With type(), however, the values supplied

might come from user input, customization settings, or any number of other places, and

the code won’t look like it has any problems of this nature.

Chapter 4 Classes

190

Unfortunately there are no real safeguards against these types of problems, but

there are some things you can do to help reduce the risks. One approach would be to

wrap all custom class creation inside of a function that keeps track of which names

have been assigned and reacts appropriately when a duplicate is created. A more

pragmatic option is simply to make sure any introspecting code is capable of handling

a case where duplicates are encountered. Which approach to use will depend on the

needs of your code.

�Metaclasses
Thus far, classes have been defined as being processed by the built-in type, which

accepts the class name, its base classes, and a namespace dictionary. But type is just

a class like anything else; it’s only special in that it’s a class used to create classes—a

metaclass. Like any other class, though, it can be subclassed to provide customized

behavior for our application. Because the metaclass receives the full class declaration as

soon as Python encounters it, you can unlock some pretty powerful features.

By subclassing type you can create your own metaclass, which can customize the

creation of new classes to better suit the needs of your application. Like any class-based

customization, this is done by creating a subclass of type and overriding any methods

that make sense for the task at hand. In most cases, this is either __new__() or __init__().

The “Magic Methods” section later in this chapter will explain the difference between the

two, but for this discussion we’ll just use __init__(), since it’s easier to work with.

As mentioned previously, type() takes three arguments, all of which must be

accounted for in any subclasses. To start off simple, consider the following metaclass,

which prints out the name of every class it encounters:

>>> class SimpleMetaclass(type):

... def __init__(cls, name, bases, attrs):

... print(name)

... super(SimpleMetaclass, cls).__init__(name, bases, attrs)

...

Chapter 4 Classes

191

This alone is enough to capture a class declaration. Using super() here makes sure

that any other necessary initialization also takes place. Even though type doesn’t do

anything in its own __init__(), remember from earlier in this chapter that this class

could be part of a bigger inheritance structure. Using super() makes sure that the class

gets initialized properly, regardless of what “properly” really means in the given context.

To apply this metaclass to a new class and print out its name, Python allows the class

definition to specify a metaclass right alongside its parent classes. It looks like a keyword

argument, but this isn’t a function call, so it’s actually part of the syntax of a class

declaration. Here’s an example of how our SimpleMetaclass would work:

>>> class Example(metaclass=SimpleMetaclass):

... pass

...

>>> Example

All that was needed here was to supply the metaclass in the class definition, and

Python automatically ships that definition off to the metaclass for processing. The only

difference between this and a standard class definition is that it uses SimpleMetaclass

instead of the standard type.

Note T he first argument to the __init__() method on a metaclass is typically
called cls, although you might think it should be self because __init__()
operates an instance object, rather than a class. That’s true in general, and this
case is actually no exception. The only difference here is that the instance is
a class object itself, which is an instance of type, so using self would still be
accurate. However, because of the differences between classes and objects, we
still refer to class objects as cls, rather than self, so they stay well separated.

Metaclasses can be difficult to understand without real-world examples to illustrate

their usefulness. Let’s take a look at how a simple metaclass can be used to provide a

powerful framework for registering and using plugins.

Chapter 4 Classes

192

�Example: Plugin Framework
As an application grows flexibility becomes increasingly important, so attention often

turns to plugins and whether the application can accommodate that level of modularity.

There are many ways to implement plugin systems and individual plugins, but they all

have three core features in common.

First, you need a way to define a place where plugins can be used. In order to plug

something in, there needs to be a socket for the plug to fit into. In addition, it should be

very obvious how to implement individual plugins along the way. Lastly, the framework

needs to provide an easy way to access all the plugins that were found, so they can all be

used. Other features may be added on top, but these are what make a plugin framework.

There are several approaches that would satisfy these requirements, but because

plugins are really a form of extension, it makes sense to have them extend a base

class. This makes the first requirement fairly simple to define: the point where plugins

can attach themselves would be a class. As a class it takes advantage of Python’s own

extension features, not only through the built-in subclass syntax but also by allowing

the base class to provide some methods that constitute default functionality or offer

help for common plugin needs. Here’s how such a plugin mount point might look for an

application that validates user input:

class InputValidator:

 """

 A plugin mount for input validation.

 �Supported plugins must provide a validate(self, input) method, which

receives

 input as a string and raises a ValueError if the input was invalid. If the

 input was properly valid, it should just return without error. Any return

 value will be ignored.

 """

 def validate(self, input):

 # The default implementation raises a NotImplementedError

 # to ensure that any subclasses must override this method.

 raise NotImplementedError

Chapter 4 Classes

193

Even without any of the framework-level code that makes the plugins work, this

example demonstrates one of the most important aspects of an extensible system:

documentation. Only by properly documenting a plugin mount can you expect plugin

authors to correctly adhere to its expectations. The plugin framework itself doesn’t make

any assumptions about what requirements your application will have, so it’s up to you to

document them.

With a mount point written, individual plugins can easily be created simply by

writing a subclass of the mount point that’s already in place. By providing new or

overridden methods to satisfy the documented requirements, they can add their own

little slice of functionality to the overall application. Here’s an example validator that

ensures the provided input only consists of ASCII characters:

class ASCIIValidator(InputValidator):

 """

 Validate that the input only consists of valid ASCII characters.

 >>> v = ASCIIValidator()

 >>> v.validate('sombrero')

 >>> v.validate('jalapeño')

 Traceback (most recent call last):

 ...

 UnicodeDecodeError: 'ascii' codec can't decode character '\xf1' in position

 6: ordinal not in range(128)

 """

 def validate(self, input):

 # If the encoding operation fails, str.enc ode() raises a

 # UnicodeDecodeError, which is a subclass of ValueError.

 input.encode('ascii')

Tip  Notice that this also provides its own documentation. Because plugins
are also classes all their own, they can be subclassed by even more specialized
plugins down the road. This makes it important to include thorough documentation
even at this level, to help ensure proper usage later.

Chapter 4 Classes

194

Now that we have two of the three components out of the way, the only thing left

before tying it all together is to illustrate how to access any plugins that were defined.

Because our code will already know about the plugin mount point, that makes an

obvious place to access them, and as there could be anywhere from zero to hundreds

of plugins, it’s optimal to iterate over them, without caring how many there are. Here’s

an example function that uses any and all available plugins to determine whether some

input provided by a user is valid:

def is_valid(input):

 for plugin in InputValidator.plugins:

 try:

 plugin().validate(input)

 except ValueError:

 # A ValueError means invalidate input

 return False

 # All validators succeeded

 return True

Having plugins means you can extend the functionality of even a simple function

like this without having to touch its code again later. Simply add a new plugin, make

sure it gets imported, and the framework does the rest. With that, we finally get around

to explaining the framework and how it ties all these pieces together. Because we’re

working with classes whose definitions specify more than just their behavior, a metaclass

would be an ideal technique.

All the metaclass really needs to do is recognize the difference between a plugin

mount class and a plugin subclass and register any plugins in a list on the plugin mount,

where they can be accessed later. If that sounds too simple, it’s really not. In fact, the

entire framework can be expressed in just a few lines of code, and it only takes one extra

line of code on the plugin mount to activate the whole thing:

Chapter 4 Classes

195

class PluginMount(type):

 """

 Place this metaclass on any standard Python class to turn it into a plugin

 mount point. All subclasses will be automatically registered as plugins.

 """

 def __init__(cls, name, bases, attrs):

 if not hasattr(cls, 'plugins'):

 # The class has no plugins list, so it must be a mount point,

 # so we add one for plugins to be registered in later.

 cls.plugins = []

 else:

 # Since the plugins attribute already exists, this is an

 # individual plugin, and it needs to be registered.

 cls.plugins.append(cls)

That’s all that’s necessary to supply the entire plugin framework. When the metaclass

is activated on the plugin mount, the __init__() method recognizes that the plugins

attribute doesn’t yet exist, so it creates one and returns without doing anything else.

When a plugin subclass is encountered the plugins attribute is available by virtue of its

parent class, so the metaclass adds the new class to the existing list, thus registering it for

later use.

Adding this functionality to the inputValidator mount point described previously is

as simple as adding the metaclass to its class definition.

class InputValidator(metaclass=PluginMount):

 ...

Individual plugins are still defined as standard plugins, without additional effort

required. Because metaclasses are inherited by all subclasses, the plugin behavior is

added automatically.

Chapter 4 Classes

196

�Controlling the Namespace
Metaclasses can also be used to help control how Python processes the class declaration.

Rather than waiting for the class to be created before acting on it, another tactic is to

process the raw components of the class while Python is going through them. This is

made possible by a special metaclass called __prepare__().

By supplying a __prepare__() method on your metaclass, you can get early access

to the class declaration. In fact, this happens so early that the body of the class definition

hasn’t even been processed yet. The __prepare__() method receives just the class

name and a tuple of its base classes. Rather than getting the namespace dictionary as an

argument, __prepare__() is responsible for returning that dictionary itself.

The dictionary returned by __prepare__() is used as the namespace while Python

executes the body of the class definition. This allows you to intercept each attribute as

soon as it’s assigned to the class, so it can be processed immediately. Ordinarily this is

used to return an ordered dictionary, so that attributes can be stored in the order they

were declared within the class. For reference, take a look at how a metaclass would work

without using __prepare__():

>>> from collections import OrderedDict

>>> class OrderedMeta(type):

... def __init__(cls, name, bases, attrs):

... print(attrs)

...

>>> class Example(metaclass=OrderedMeta):

... b = 1

... a = 2

... c = 3

...

{'a': 2, '__module__': '__main__', 'b': 1, 'c': 3}

The default behavior returns a standard dictionary, which doesn’t keep track of how

the keys are added. Adding a simple __prepare__() method provides all that’s needed to

keep the ordering intact after the class is processed:

Chapter 4 Classes

197

>>> class OrderedMeta(type):

... @classmethod

... def __prepare__(cls, name, bases):

... return OrderedDict()

... def __init__(cls, name, bases, attrs):

... print(attrs)

...

>>> class Example(metaclass=OrderedMeta):

... b = 1

... a = 2

... c = 3

...

OrderedDict([('__module__', '__main__'), ('B', 1), ('A', 2), ('c', 3)])

Note T he __module__ attribute is at the beginning of the attribute list because
it gets added just after __prepare__() is called, before Python starts processing
the body of the class.

WITH GREAT POWER COMES GREAT RESPONSIBILITY

By controlling the object used for the namespace dictionary, you can have a tremendous

amount of control over how the entire class declaration behaves. Every time a line in a class

references a variable or assigns an attribute, the custom namespace can intercede and

change the standard behavior. One possibility is to provide decorators that can be used when

defining methods within the class, without requiring a separate import to make them available

to the class definition. Likewise, you can control how attributes are assigned by changing their

names, wrapping them in helper objects, or removing them from the namespace completely.

Chapter 4 Classes

198

This amount of power and flexibility can be easily abused to provide a level of magic not

seen elsewhere. To a developer simply using your code without fully understanding how

it’s implemented, it’ll look like Python itself is wildly inconsistent. Worse yet, any significant

changes you make to the behavior of the class declaration could impact the behavior of other

tools your users might try to combine with yours. Chapter 5 shows how you can enable these

features by extending your dictionary, but be very careful when doing so.

�Attributes
Once an object is instantiated, any data associated with it is kept within a new

namespace dictionary that’s specific to that instance. Access to this dictionary is

handled by attributes, which make for easier access than using dictionary keys. Just like

dictionary keys, attribute values can be retrieved, set, and deleted as necessary.

Typically, accessing an attribute requires you to know the name of the attribute in

advance. The syntax for attributes doesn’t offer the same flexibility as dictionary keys

in providing variables instead of literals, so it can seem limited if you need to get or set

an attribute with a name that came from somewhere else. Instead of offering a special

syntax for working with attributes in this way, Python provides a trio of functions.

The first, getattr(), retrieves the value to which an attribute refers, given a variable

that contains the name of the attribute. The next, setattr(), takes both the name

of an attribute and its value and attaches that value to the attribute with the given

name. Finally, delattr() allows you to delete an attribute value given the name as its

argument. With these functions, you can work with any attribute on any object without

knowing the attribute names when writing code.

�Properties
Rather than only acting as a proxy to the standard namespace dictionary, properties

allow attributes to be powered by methods that can access the full power of Python.

Typically, properties are defined using the built-in @property decorator function.

Applied to a method, it forces the method to be called whenever the function’s name is

accessed as an attribute name:

Chapter 4 Classes

199

>>> class Person:

... def __init__(self, first_name, last_name):

... self.first_name = first_name

... self.last_name = last_name

... @property

... def name(self):

... return '%s, %s' % (self.last_name, self.first_name)

...

>>> p = Person('Marty', 'Alchin')

>>> p.name

'Alchin, Marty'

>>> p.name = 'Alchin, Martin' # Update it to be properly legal

Traceback (most recent call last):

 ...

AttributeError: can't set attribute

That last error isn’t terribly descriptive, but basically properties defined this way only

retrieve attribute values, not set them. Function calls are only one way, so to set the value

we’ll need to add another method that handles that side of things. This new method

would accept another variable: the value that should be set on the attribute.

In order to mark the new method as the setter for a property, it’s decorated much

like the getter property. Rather than using a built-in decorator, though, the getter gains a

setter attribute that can be used to decorate the new method. This fits with the typical

noun-based naming convention of decorators, while also describing which property will

be managed:

>>> class Person:

... def __init__(self, first_name, last_name):

... self.first_name = first_name

... self.last_name = last_name

... @property

Chapter 4 Classes

200

... def name(self):

... return '%s, %s' % (self.last_name, self.first_name)

... @name.setter

... def name(self, value):

... return '%s, %s' % (self.last_name, self.first_name)

...

>>> p = Person('Marty', 'Alchin')

>>> p.name

'Alchin, Marty'

>>> p.name = 'Alchin, Martin' # Update it to be properly legal

>>> p.name

'Alchin, Martin'

Just make sure that the setter method is named the same as the original getter

method, or it won’t work properly. The reason for this is that name.setter doesn’t

actually update the original property with the setter method. Instead, it copies the getter

onto the new property and assigns them both to the name given to the setter method.

Exactly what this means behind the scenes will be explained better in the next section on

descriptors.

In addition to getting and setting values, a property can also delete the current value,

using a decorator similar to the setter. By applying name.deleter to a method that only

accepts the usual self, you can use that method to delete values from the attribute. For

the Person class shown here, that means clearing out both first_name and last_name

together:

>>> class Person:

... def __init__(self, first_name, last_name):

... self.first_name = first_name

... self.last_name = last_name

... @property

... def name(self):

... return '%s, %s' % (self.last_name, self.first_name)

... @name.setter

Chapter 4 Classes

201

... def name(self, value):

... return '%s, %s' % (self.last_name, self.first_name)

... @name.deleter

... def name(self):

... del self.first_name

... del self.last_name

...

>>> p = Person('Marty', 'Alchin')

>>> p.name

'Alchin, Marty'

>>> p.name = 'Alchin, Martin' # Update it to be properly legal

>>> p.name

'Alchin, Martin'

>>> del p.name

>>> p.name

Traceback (most recent call last):

 ...

AttributeError: 'Person' object has no attribute 'last_name'

�Descriptors
One potential problem with properties is that they require all the methods to be defined

as part of the class definition. It’s great for adding functionality to a class if you have

control over the class yourself, but when building a framework for inclusion in other

code, we’ll need another approach. Descriptors allow you to define an object that can

behave in the same way as a property on any class to which it’s assigned.

In fact, properties are implemented as descriptors behind the scenes, as are methods,

which will be explained in the next section. This makes descriptors perhaps one of the

most fundamental aspects of advanced class behavior. They work by implementing any of

three possible methods, dealing with getting, setting, and deleting values.

The first, __get__(), manages retrieval of attribute values, but unlike a property, a

descriptor can manage attribute access on both the class and its instances. In order to

identify the difference, __get__() receives both the object instance and its owner class

as arguments. The owner class will always be provided, but if the descriptor is accessed

directly on the class instead of an instance, the instance argument will be None.

Chapter 4 Classes

202

A simple descriptor using only the __get__() method can be used to always provide

an up-to-date value when requested. The obvious example, then, is an object that

returns the current date and time without requiring a separate method call:

>>> import datetime

>>> class CurrentTime:

... def __get__(self, instance, owner):

... return datetime.datetime.now()

...

>>> class Example:

... time = CurrentTime()

...

>>> Example().time

datetime.datetime(2009, 10, 31, 21, 27, 5, 236000)

>>> import time

>>> time.sleep(5 * 60) # Wait five minutes

>>> Example().time

datetime.datetime(2009, 10, 31, 21, 32, 15, 375000)

The related __set__() method manages setting a value on the attribute managed

by the descriptor. Unlike __get__(), this operation can only be performed on instance

objects. If you assign a value to the given name on the class instead, you’ll actually

overwrite the descriptor with the new value, removing all of its functionality from the

class. This is intentional, because without it, there would be no way to modify or remove

a descriptor once it’s been assigned to a class.

Because it doesn’t need to accept the owner class, __set__() only receives the

instance object and the value being assigned. The class can still be determined by

accessing the __class__ attribute on the instance object provided, though, so there’s no

information lost. With both __get__() and __set__() defined on a descriptor, we can do

something more useful. For example, here’s a basic descriptor that behaves just like an

attribute, except that it logs every time its value is changed:

Chapter 4 Classes

203

>>> import datetime

>>> class LoggedAttribute:

... def __init__(self):

... self.log = []

... self.value_map = {}

... def __set__(self, instance, value):

... self.value_map[instance] = value

... log_value = (datetime.datetime.now(), instance, value)

... self.log.append(log_value)

... def __get__(self, instance, owner):

... if not instance:

... return self # This way, the log is accessible

... return self.value_map[instance]

...

>>> class Example:

... value = LoggedAttribute()

...

>>> e = Example()

>>> e.value = 'testing'

>>> e.value

'testing'

>>> Example.value.log

[(datetime.datetime(2009, 10, 31, 21, 49, 59, 933000), <__main__.Example object a

t 0x...>, 'testing')]

Before going on, there are a few important things to notice here. First, when setting a

value on the descriptor, __set__() adds it to a dictionary on itself, using the instance as

a key. The reason for this is that the descriptor object is shared among all the instances

of the class it’s attached to. If you were to set the value to the descriptor’s self, that value

would be shared among all those instances as well.

Chapter 4 Classes

204

Note  Using a dictionary is just one way to make sure that instances are handled,
but it’s not the best. It’s used here because the preferred method, assigning
directly to the instance’s namespace dictionary, is only an option once you know
the name of the attribute. Descriptors on their own don’t have access to that name,
so the dictionary is used here instead. Chapter 11 shows an approach to address
this problem based on metaclasses.

Also, notice that __get__() returns self if no instance was passed in. Because the

descriptor works based on setting values, it has no additional value to contribute when

called on the class. Most of the time, when a descriptor is in this situation it makes more

sense to raise an AttributeError to prevent users from trying something that doesn’t

make sense. Doing so here would mean the value log would never be available, so the

descriptor returns itself.

In addition to getting and setting values, descriptors can also delete values from

the attribute or the attribute itself. The __delete__() method manages this behavior,

and because it only works on instances and doesn’t care about the value, it receives the

instance object as its only argument.

In addition to managing attributes, descriptors are also used to implement one of the

most important aspects of object-oriented programming: methods.

�Methods
When a function is defined in a class, it’s considered to be a method. Even though it still

works like a function in general, it has class information available to it because functions

are actually descriptors as well. Within the category of methods, however, there are two

distinct types: bound and unbound methods.

�Unbound Methods
Because descriptors can be accessed from the class as well as its instances, methods

can be accessed from both as well. When accessing a function on a class, it becomes an

unbound method. The descriptor receives the class, but methods typically require the

instance, so they’re referred to as unbound when accessed without one.

Chapter 4 Classes

205

Calling it an unbound method is really more of a naming convention than any formal

declaration. What you get when accessing the method on a class is just the function

object itself:

>>> class Example:

... def method(self):

... return 'done!'

...

>>> type(Example.method)

<class 'function'>

>>> Example.method

<function method at 0x...>

self isn't passed automatically

>>> Example.method()

Traceback (most recent call last):

 ...

TypeError: method() takes exactly 1 position argument (0 given)

It’s still callable just like any other standard function, but it also carries information

about what class it’s attached to. Notice that the self argument in an unbound method

isn’t passed automatically, as there’s no instance object available to bind to it.

�Bound Methods
Once the class is instantiated, each method descriptor returns a function that’s bound

to that instance. It’s still backed by the same function, and the original unbound method

is still available on the class, but the bound method now automatically receives the

instance object as its first argument:

Chapter 4 Classes

206

>>> ex = Example()

>>> type(ex.method)

<class 'method'>

>>> ex.method

<bound method Example.method of <__main__.Example object at 0x...>>

self gets passed automatically now

>>> ex.method()

'done!'

And the underlying function is still the same

>>> Example.method is ex.method.__func__

True

is and == have related yet different functionality and == could have

replaced is in this instance, yet since is checks to see if two arguments

refer to the same object versus == checks to see if two object have same

value, is works better for our needs.

As you can see, bound methods are still backed by the same function as unbound

methods. The only real difference is that bound methods have an instance to receive as

the first argument. It’s important to realize also that the instance object is passed as a

positional argument, so the argument name doesn’t need to be self to work properly,

but it’s a well-established standard that you should follow whenever possible.

Tip  Because bound methods accept an instance as the first argument, method
binding can be faked by explicitly providing an instance as the first argument to
an unbound method. It all looks the same to the method, and it can be a useful
approach when passing functions around as callbacks.

Sometimes, however, the method doesn’t need access to the instance object,

regardless of whether the class has been instantiated. These methods fall into two

separate types.

Chapter 4 Classes

207

�Class Methods
When a method only needs access to the class it’s attached to, it’s considered a class

method, which Python supports through the use of a built-in @classmethod decorator.

This ensures that the method will always receive the class object as its first positional

argument, regardless of whether it’s called as an attribute of the class or one of its

instances:

>>> class Example:

... @classmethod

... def method(cls):

... return cls

...

>>> Example.method()

<class __main__.Example at 0x...>

>>> Example().method()

<class __main__.Example at 0x...>

Once the @classmethod decorator has been applied—see the section later in this

chapter for information on decorators—the method() method will never receive an

instance of Example as its first argument, but will always be the class itself or one of its

subclasses. The cls argument will always be whatever class was used to call the method,

rather than just the one where the method was defined.

Although it may not be clear from the previous example, class methods are actually

bound instance methods, just like those described in the previous sections. Because

all classes are actually instances of a built-in type, class methods are bound to the class

itself:

>>> Example.method

<bound method type.method of <class '__main__.Example'>>

Chapter 4 Classes

208

Class methods can also be created in another, slightly more indirect way. Because all

classes are really just instances of metaclasses, you can define a method on a metaclass. All

instance classes will then have access to that method as a standard bound method. There’s

no need to use the @classmethod decorator, because the method is already bound to the

class using the standard behavior described previously. Here’s how it works:

>>> class ExampleMeta(type):

... def method(cls):

... return cls

...

>>> class Example(metaclass=ExampleMeta):

... pass

...

>>> Example.method

<bound method ExampleMeta.method of <class '__main__.Example'>>

>>> Example.method()

<class __main__.Example at 0x...>

The actual behavior of a method constructed this way is identical to a regular class

method in most respects because they’re built the same way internally. They can be called

from the class itself, rather than requiring an instance, and they always receive the class

object as an implicit first argument. The difference, however, is that class methods can still be

called from instances, whereas a bound class method can only be called from the class itself.

The reason for this behavior is that the method is defined in the metaclass namespace,

which only puts it in the MRO of instances of that metaclass. All classes that reference

the metaclass will have access to the method, but it’s not actually in their definitions.

Methods decorated with @classmethod are placed directly in the namespace of the class

where they’re defined, which makes them available to instances of that class as well.

Even though this difference in visibility seems like metaclass-based class methods are

just an inferior version of standard decorated class methods, there are two reasons why

they may be beneficial to an application. First, class methods are generally expected to be

called as attributes of the class, and are rarely called from instance objects. That’s not a

universal rule, and it’s certainly not enough to justify the use of a metaclass on its own, but

it’s worth noting.

Chapter 4 Classes

209

Perhaps more importantly, many applications that already use a metaclass also need

to add class methods to any class that uses that metaclass. In this case, it makes sense

to just define the methods on the existing metaclass, rather than using a separate class

to hold the class methods. This is especially useful when that extra class wouldn’t have

anything valuable to add on its own; if the metaclass is the important part, it’s best to

keep everything there.

�Static Methods
Occasionally, even the class is more information than is necessary for a method to do

its job. This is the case for static methods, which are often implemented for the sake

of establishing a namespace for functions that could otherwise be implemented at the

module level. Using the staticmethod decorator, the method won’t receive any implicit

arguments at any time:

>>> class Example:

... @staticmethod

... def method():

... print('static!')

...

>>> Example.method

<function method at 0x...>

>>> Example.method()

static!

As you can see, static methods don’t really look like methods at all. They’re just

standard functions that happen to sit in a class. The next section shows how a similar

effect can be achieved on instances by taking advantage of Python’s dynamic nature.

Chapter 4 Classes

210

�Assigning Functions to Classes and Instances
Python allows most attributes to be overwritten simply by assigning a new value, which

presents an interesting opportunity for methods:

>>> def dynamic(obj):

... return obj

...

>>> Example.method = dynamic

>>> Example.method()

Traceback (most recent call last):

 ...

TypeError: dynamic() takes exactly 1 positional argument (0 given)

>>> ex = Example()

>>> ex.method()

<__main__.Example object at 0x...>

Notice here that the function assigned to the class still needs to be written to accept

an instance as its first argument. Once assigned, it works just like a regular instance

method, so the argument requirement doesn’t change at all. Assigning to instances

works similarly in syntax, but because the function never gets assigned to a class, there’s

no binding involved at all. A function assigned directly to an instance attribute works just

like a static method that was attached to the class:

>>> def dynamic():

... print('dynamic!')

...

>>> ex.method = dynamic

>>> ex.method()

dynamic!

>>> ex.method

<function dynamic at 0x...>

Chapter 4 Classes

211

�Magic Methods
Objects in Python can be created, manipulated, and destroyed in a number of different

ways, and most of the available behaviors can be modified by implementing some extra

methods on your own custom classes. Some of the more specialized customizations can

be found in Chapter 5, but there are several of these special methods that are common

to all types of classes. These methods can be categorized according to what aspect of

classes they deal with, so the following sections each cover a few different methods.

�Creating Instances
The transition from a class to an object is called instantiation. An instance is little more

than a reference to the class that provides behavior and a namespace dictionary that’s

unique to the instance being created. When creating a new object without overriding any

special methods, the instance namespace is just an empty dictionary, waiting for data.

Therefore, the first method most classes implement is __init__(), with the purpose

of initializing the namespace with some useful values. Sometimes these are just

placeholders until more interesting data arrives, while at other times the interesting data

comes into the method directly, in the form of arguments. This happens because any

arguments passed in to the class instantiation get passed right along to __init__() along

the way:

>>> class Example:

... def __init__(self):

... self.initialized = True

...

>>> e = Example()

>>> e.initialized = True

>>> class Example2:

... def __init__(self, name, value=“):

... self.name = name

... self.value = value

...

Chapter 4 Classes

212

>>> e = Example2()

Traceback (most recent call last):

 ...

TypeError: __init__() takes at least 2 positional arguments (1 given)

>>> e = Example2('testing')

>>> e.name

'testing'

>>> e.value

"

Like any Python function, you’re free to do whatever you like inside of __init__(),

but keep in mind that’s intended to initialize the object, nothing more. Once __init__()

has finished executing the object should be ready to be used for more practical purposes,

but anything beyond basic setup should be deferred to other more explicit methods.

Of course, the real definition of initialization could mean different things to different

objects. For most objects, you’ll only need to set a few attributes to either some default

values or to the values passed in to __init__(), as shown in the previous example. Other

times, those initial values may require calculations, such as converting different units of

time into seconds, so everything’s normalized.

In some less common cases initialization may include more complicated tasks, such as

data validation, file retrieval, or even network traffic. For example, a class for working with

a web service might take an API token as its only argument to __init__(). It might then

make a call to the web service to convert that token into an authenticated session, which

would allow other operations to take place. All of the other operations require separate

method calls, but the authentication that underlies all of them could happen in __init__().

The main concern with doing too much in __init__() is that there’s no indication

that anything’s going on, short of documentation. Unfortunately, some users just won’t

read your documentation no matter how hard you try; they may still expect initialization

to be a simple operation, and they might be surprised to see errors if they don’t have a

valid network connection, for example. See the example in the next section for one way

to address this.

Even though __init__() is probably the most well-known magic method of all, it’s

not the first that gets executed when creating a new object. After all, remember that __

init__() is about initialization an object, not creating it. For the latter, Python provides

the __new__() method, which gets most of the same arguments but is responsible for

actually creating the new object prior to initializing it.

Chapter 4 Classes

213

Rather than working with the typical instance object self, the first argument to

__new__() is actually the class of the object being created. This makes it look a lot like

a class method, but you don’t need to use any decorators to make it work this way—it’s

a special case in Python. Technically, however, it’s a static method, so if you try to call

it directly you’ll always need to supply the class; it will never be sent implicitly, like it

would be if it were a true class method.

After the class parameter—typically named cls, like a regular class method—the

__new__() method receives all the same arguments that __init__() would receive.

Whatever you pass in to the class when trying to create the object will be passed along to

__new__() to help define it. These arguments are often useful when customizing the new

object for the needs at hand.

This is often different from initialization, because __new__() is typically used to

change the very nature of the object being created, rather than just setting up some

initial values. To illustrate, consider an example in which the class of an object can

change depending on what values are passed in when creating it.

�Example: Automatic Subclasses
Some libraries consist of a large variety of classes, most of which share a common set

of data, but with perhaps different behaviors or other data customizations. This often

requires users of the library to keep track of all the different classes and determine which

features of their data correspond to the appropriate classes.

Instead, it can be much more helpful to provide a single class the user can

instantiate which actually returns an object that can be of different classes depending

on arguments. Using __new__() to customize the creation of new objects, this can be

achieved rather simply. The exact behavior will depend on the application at hand, but

the basic technique is easy to illustrate with a generic example.

Consider a class that picks a subclass randomly whenever it’s instantiated into an

object. This isn’t the most practical use, of course, but it illustrates how the process

could work. Using random.choice() to pick from the values available from using

__subclasses__(), it then instantiates the subclass it finds, rather than the one

defined:

Chapter 4 Classes

214

>>> import random

>>> class Example:

... def __new__(cls, *args, **kwargs):

... cls = random.choice(cls.__subclasses__())

... return super(Example, cls).__new__(cls, *args, **kwargs)

...

>>> class Spam(Example):

... pass

...

>>> class Eggs(Example):

... pass

...

>>> Example()

<__main__.Eggs object at 0x...>

>>> Example()

<__main__.Eggs object at 0x...>

>>> Example()

<__main__.Spam object at 0x...>

>>> Example()

<__main__.Eggs object at 0x...>

>>> Example()

<__main__.Spam object at 0x...>

>>> Example()

<__main__.Spam object at 0x...>

In another real-world example, you could pass in the contents of a file to a single

File class and have it automatically instantiate a subclass whose attributes and methods

are built for the format of the file provided. This can be especially useful for large classes

of files, such as music or images, that behave similarly in most respects on the surface

but have underlying differences that can be abstracted away.

Chapter 4 Classes

215

�Dealing with Attributes
With an object in use, one of the more common needs is to interact with its attributes.

Ordinarily this is as simple as just assigning and accessing attributes directly, given their

name, such as instance.attribute. There are a few cases in which this type of access

isn’t sufficient on its own, so you need more control.

If you don’t know the name of the attribute at the time you write the application, you

can supply a variable for the name if you use the built-in getattr() function instead.

For example, instance.attribute would become getattr(instance, attribute_name),

where the value for attribute_name can be provided from anywhere, as long as it’s a

string.

That approach only handles the case in which you’re given a name as a string and

you need to look up the instance attribute referenced by that name. On the other side

of the equation, you can also tell a class how to deal with attributes it doesn’t explicitly

manage. This behavior is controlled by the __getattr__() method.

If you define this method, Python will call it whenever you request an attribute that

hasn’t already been defined. It receives the name of the attribute that was requested, so

your class can decide what should be done with it. One common example is a dictionary

that allows you to retrieve values by attribute instead of just using the standard

dictionary syntax:

>>> class AttributeDict(dict):

... def __getattr__(self, name):

... return self[name]

...

>>> d = AttributeDict(spam='eggs')

>>> d['spam']

'eggs'

>>> d.spam

'eggs'

Chapter 4 Classes

216

Note A not-so-obvious feature of __getattr__() is that it only gets called
for attributes that don’t actually exist. If you set the attribute directly, referencing
that attribute will retrieve it without calling __getattr__(). If you need to catch
every attribute regardless, use __getattribute__() instead. It takes the same
arguments and functions just like __getattr__(), except that it gets called even
if the attribute is already on the instance.

Of course, a dictionary that allows attribute access isn’t terribly useful if attributes

are read-only. In order to complete the picture, we should support storing values in

attributes as well. Even beyond this simple dictionary example, there are a variety of

needs for customizing what happens when you set a value to an attribute. As expected,

Python provides a parallel in the form of the __setattr__() method.

This new method takes an extra argument because there’s also a value that needs to

be managed. By defining __setattr__(), you can intercept these value assignments and

handle them however your application needs. Applying this to AttributeDict is just as

simple as the previous example:

>>> class AttributeDict(dict):

... def __getattr__(self, name):

... return self[name]

... def __setattr__(self, name, value):

... self[name] = value

...

>>> d = AttributeDict(spam='eggs')

>>> d['spam']

'eggs'

>>> d.spam

'eggs'

>>> d.spam = 'ham'

>>> d.spam

'ham'

Chapter 4 Classes

217

Tip  Just like getattr() provides for accessing attributes with a variable in
place of a hardcoded name, Python provides setattr() for setting attributes. Its
arguments match those of __setattr__(), as it takes the object, the attribute
name, and the value.

Even though that might look like a complete picture of attribute access, there’s still

one component missing. When you no longer have use for an attribute and would like

to remove it from the object altogether, Python provides the del statement. When you’re

working with fake attributes managed by these special methods, however, del on its own

doesn’t work.

For dealing with this situation, Python hooks into the __delattr__() method if one

is present. Because the value is no longer relevant, this method only accepts the name of

the attribute along with the standard self. Adding this to the existing AttributeDict is easy:

>>> class AttributeDict(dict):

... def __getattr__(self, name):

... return self[name]

... def __setattr__(self, name, value):

... self[name] = value

... def __delattr__(self, name):

... del self[name]

...

>>> d = AttributeDict(spam='eggs')

>>> d['spam']

'eggs'

>>> d.spam

'eggs'

>>> d.spam = 'ham'

>>> d.spam

'ham'

>>> del d.spam

>>> d.spam

Chapter 4 Classes

218

Traceback (most recent call last):

 ...

KeyError: 'spam'

WARNING: RAISE THE RIGHT EXCEPTION

This error message brings up an important point about working with these types of overridden

attributes. It’s very easy to overlook how exceptions are handled inside your function, so you

may end up raising an exception that doesn’t make any sense; if an attribute doesn’t exist, you

would reasonably expect to see an AttributeError, rather than a KeyError.

This may seem like an arbitrary detail, but remember that most code explicitly catches

specific types of exceptions, so if you raise the wrong type, you could cause other code to

take the wrong path. Therefore, always make sure to raise AttributeError explicitly

when encountering something that’s the equivalent of a missing attribute. Depending

on what the fake attribute does, it might be a KeyError, IOError, or perhaps even a

UnicodeDecodeError, for example.

This will come up at various points throughout this book and elsewhere in the real world.

Chapter 5 covers a variety of protocols in which it’s just as important to get the exceptions

right as the arguments.

�String Representations
Of all the different object types that are possible in Python, easily the most common is

the string. From reading and writing files to interacting with web services and printing

documents, strings dominate many aspects of software execution. Even though most of

our data exists in other forms along the way, sooner or later most of it gets converted

to a string.

In order to make that process as simple as possible, Python provides an extra

hook to convert an object to its string representation. The __str__() method, when

implemented on a class, allows its instances to be converted to a string using the built-in

str() function, which is also used when using print() or string formatting. Details on

those features and more can be found in Chapter 7, but for now, look at how __str__()

works in a simple class:

Chapter 4 Classes

219

First, without __str__()

>>> class Book:

... def __init__(self, title):

... self.title = title

...

>>> Book('Pro Python')

<__main__.Book object at 0x...>

>>> str(Book('Pro Python'))

'<__main__.Book object at 0x...>'

And again, this time with __str__()

>>> class Book:

... def __init__(self, title):

... self.title = title

... def __str__(self):

... return self.title

...

>>> Book('Pro Python')

<__main__.Book object at 0x...>

>>> str(Book('Pro Python'))

'Pro Python'

The addition of __str__() allows the class to specify what aspects of the object

should be displayed when representing the object as a string. In this example it was the

title of a book, but it could also be the name of a person, the latitude and longitude of a

geographic location, or anything else that succinctly identifies the object among a group

of its peers. It doesn’t have to contain everything about the object, but there needs to be

enough to distinguish one from another.

Notice also that when the expression in the interactive interpreter doesn’t include the

call to str(), it doesn’t use the value returned by __str__(). Instead, the interpreter uses

a different representation of the object, which is intended to more accurately represent the

code nature of the object. For custom classes this representation is fairly unhelpful, only

showing the name and module of the object’s class and its address in memory.

Chapter 4 Classes

220

For other types, however, you’ll notice that the representations can be quite useful in

determining what the object is all about. In fact, the ideal goal for this representation is

to present a string that, if typed back into the console, would recreate the object. This is

extremely useful for getting a feel for the objects in the interactive console:

>>> dict(spam='eggs')

{'spam': 'eggs'}

>>> list(range(5))

[0, 1, 2, 3, 4]

>>> set(range(5))

{0, 1, 2, 3, 4}

>>> import datetime

>>> datetime.date.today()

datetime.date(2009, 10, 31)

>>> datetime.time(12 + 6, 30)

datetime.time(18, 30)

This alternate representation is controlled by the __repr__() method, and is used

primarily in cases just like this, to describe an object inside the interactive console. It’s

automatically triggered when referencing an object on its own in the interpreter and is

sometimes used in logging applications where __str__() often doesn’t provide enough

detail.

For the built-ins such as lists and dictionaries, the representation is a literal

expression that can reproduce the object easily. For other simple objects that don’t

contain very much data, the date and time examples show that simply providing an

instantiation call will do the trick. Of course, datetime would have to be imported first,

but it gets the job done.

In cases in which the data represented by the object is too numerous to condense

into a simple representation like this, the next best thing is to provide a string,

surrounded in angle brackets, which describes the object in a more reasonable amount

of detail. This is often a matter of showing the class name and a few pieces of data that

would identify it. For the Book example, which in the real world would have many more

attributes, it could look like this:

Chapter 4 Classes

221

>>> class Book:

... def __init__(self, title, author=None):

... self.title = title

... self.author = author

... def __str__(self):

... return self.title

... def __repr__(self):

... �return '<%s by %s>' % (self.title, self.author or '<Unknown

Author>')

...

>>> Book('Pro Python', author='Marty Alchin')

<Book: Pro Python by Marty Alchin>

>>> str(Book('Pro Python', author='Marty Alchin'))

'Pro Python'

�Exciting Python Extensions: Iterators
An iterator is an object that can be iterated over; in other terms, you could say it is an

“iterable” or “loopable” item. A list, tuple, and string are iterable; they hold more than

one item, and thus are iterable containers. There are two iterator objects in Python. The

first, a sequence iterator, works on an arbitrary sequence. The second object iterates over

callable objects items with a sentinel value ending the process. Let’s see them in action

to understand this a bit more.

A very simple example is an enhanced for loop which iterates over all of the items

(you must have more than one) in the container. Consider the following:

my_string=('Hello Python!')

for item in my_string:

 print(item)

my_list=[1,2,3,4]

for item in my_list:

 print (item, end=' ')

#Note newline after printing is replaced with space

Chapter 4 Classes

222

print()

my_tuple='Fred','Wilma', 1, 3

for item in my_tuple:

 print (item)

Now, if you had a text file in the same folder as the Python script, such as perhaps a

CSV file with data, you could do something like the following:

for the_line in open("file.csv”):

 print (the_line)

With Python iterators you can also combine structures for enhanced functionality.

Do keep it readable. Note that we are looping through a string and counting the

instances of the letter “b.”

#Combine control structures

my_string=('ababaaaabbbbaaaabb')

counter=0

for character in [char for char in my_string if char == 'b']:

 counter +=1

print('There were ', counter, ' letter b')

Another example might be Caesar cipher encryption:

#Secret message Ceasar cipher!

my_string = input('Type secret message: ')

print (my_string)

new_string = ' '

z=input('How much to Ceasar shift by? ')

for letter in my_string:

 x=ord(letter)

 t=x+int(z)

 print (chr(t),)

Chapter 4 Classes

223

Now let’s look at the iteration protocol. The next function iterates with the first item

and continues to the last, but it returns a StopIteration error when it tries to print item

four, which is not present in the list:

Simple iteration over a list

simple_list = [1, 3, 2]

simple_iter = iter(simple_list)

counter = 1

while counter <=4:

 print(next(simple_iter))

 counter +=1

Now, you could add try and except to keep this running, but this shows how things

work at a general level. Time spent working with iterators will pay off well.

�Taking It With You
A thorough understanding of classes unlocks a world of possibilities for your

applications, whether they’re simple personal projects or large frameworks built for

mass distribution. In addition to all this freedom, there is a set of established protocols

that can allow your classes to work just like some of Python’s most well-known types.

Chapter 4 Classes

225
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_5

CHAPTER 5

Common Protocols
Most of the time, you’ll want to define objects that are highly customized to the needs

of your application. This often means coming up with your own interfaces and APIs

that are unique to your own code. The flexibility to do this is essential to the expansion

capabilities of any system, but there is a price. Everything new that you invent must be

documented and understood by those who need to use it.

Understanding how to use the various classes made available by a framework can be

quite a chore for users of that framework, even with proper documentation. A good way

to ease the burden on users is to mimic interfaces they’re already familiar with. There are

many existing types that are standard issue in Python programming, and most of them

have interfaces that can be implemented in custom classes.

Methods are the most obvious way to implement an existing interface, but with

many of the built-in types, most of the operations are performed with native Python

syntax rather than explicit method calls. Naturally, these syntactic features are backed

by actual methods behind the scenes, so they can be overridden to provide custom

behaviors.

The following sections show how the interfaces for some of the most common types

used in Python can be imitated in custom code. This is by no means an exhaustive list

of all the types that ship with Python, nor is every method represented. Instead, this

chapter is a reference for those methods that aren’t so obvious because they’re masked

by syntactic sugar.

226

�Basic Operations
Even though there are a wide variety of object types available in Python, most of

them share a common set of operations. These are considered to be something of a

core feature set, representing some of the most common high-level aspects of object

manipulation, many of which are just as applicable to simple numbers as they are to

many other objects.

One of the simplest and most common needs in all of programming, Python

included, is to evaluate an expression to a Boolean value so that it can be used to make

simple decisions. Typically this is used in if blocks, but these decisions also come

into play when using while, and Boolean operations such as and and or. When Python

encounters one of these situations, it relies on the behavior of the __bool__() method to

determine the Boolean equivalent of an object.

The __bool__() method, if implemented, accepts just the usual self and must

return either True or False. This allows any object to determine whether it should

be considered to be true or false in a given expression, using whatever methods or

attributes are appropriate:

>>> bool(0)

False

>>> bool(1)

True

>>> bool(5)

True

As another example, consider that a class representing a rectangle might use its area

to determine whether the rectangle is considered true or false. Therefore, __bool__()

only has to check whether there exists a nonzero width and a nonzero height, since with

a bool 0 is false and any other positive value, typically 1, is true. Here we use the built-in

bool(), which uses __bool__() to convert the value to a Boolean:

Chapter 5 Common Protocols

227

>>> class Rectangle:

... def __init__(self, width, height):

... self.width = width

... self.height = height

... def __bool__(self):

... if self.width and self.height:

... return True

... return False

...

>>> bool(Rectangle(10, 15))

True

>>> bool(Rectangle(0, 0))

False

>>> bool(Rectangle(0, 15))

False

Tip T he __bool__() method isn’t the only way to customize Python’s Boolean
behavior. If, instead, an object provides a __len__() method, which is described
in the section on sequences later in this chapter, Python will fall back to that and
consider any nonzero lengths to be true, while lengths of zero are false.

With the truthfulness of objects taken into account, you automatically get control

over the behavior of such operators as and, or, and not. Therefore, there are no separate

methods to override in order to customize those operators.

In addition to being able to determine the truthfulness of an object, Python

offers a great deal of flexibility in other operations as well. In particular, the standard

mathematical operations can be overridden because many of them can apply to a variety

of objects beyond just numbers.

Chapter 5 Common Protocols

228

�Mathematical Operations
Some of the earliest forms of math stemmed from observations about the world around

us. Therefore, most of the math we learned in elementary school applies just as easily

to other types of objects as it does to numbers. For example, addition could be seen as

simply putting two things together (concatenation), such as tying two strings together to

make a single longer string.

If you only look at it mathematically, you could say that you’re really just adding two

lengths together, resulting in a single, greater length. But when you look at what really

just happened, you now have a brand-new string, which is different from the two strings

that went into it originally.

This analogy extends easily into Python strings as well, which can be concatenated

using standard addition, rather than requiring a separate, named method. Similarly, if

you need to write the same string out multiple times, you can simply multiply it the same

way you would a regular number. These types of operations are very common in Python

because they can be a simple way to implement common tasks:

>>> 2 + 2

4

>>> 'two' + 'two'

'twotwo'

>>> 2 * 2

4

>>> 'two' * 2

'twotwo'

Like __bool__(), these behaviors are controlled by special methods of their own.

Most of them are fairly straightforward, accepting the usual self as well as an other

argument. These methods are bound to the object on the left side of the operator, with

the additional other being the object on the right side.

The four basic arithmetic operations—addition, subtraction, multiplication, and

division—are represented in Python using the standard operators +, -, *, and /. Behind

the scenes, the first three are powered by implementations of the __add__(), __sub__(),

and __mul__() methods. Division is a bit more complicated, and we’ll get to that shortly,

but for now, let’s take a look at how this operator overloading works.

Chapter 5 Common Protocols

229

Consider a class that acts as a simple proxy around a value. There’s not much use for

something like this in the real world, but it’s a good starting point to explain a few things:

>>> class Example:

... def __init__(self, value):

... self.value = value

... def __add__(self, other):

... return self.value + other

...

>>> Example(10) + 20

30

This is just one example of a few basic arithmetic operations that are available for

your code to customize. You’ll find more advanced operations detailed throughout the

remainder of this chapter; Table 5-1 lists these basic arithmetic operators.

Table 5-1.  Basic Arithmetic Operators

Operation Operator Custom Method

Addition + __add__()

Subtraction - __sub__()

Multiplication * __mul__()

Division / __truediv__()

Here’s where things get interesting, because you’ll notice that the method for division

isn’t __div__(), as you might expect. The reason for this is that division comes in two

different flavors. The kind of division you get when you use a calculator is called true

division in Python, which uses the __truediv__() method, which works as you’d expect.

However, true division is the only arithmetic operation that can take two integers

and return a noninteger. In some applications, it’s useful to always get an integer back

instead. If you’re displaying an application’s progress as a percentage, for instance, you

don’t really need to display the full floating point number.

Chapter 5 Common Protocols

230

Instead an alternative operation is available called floor division; you may also have

heard it referred to as integer division. If the result of true division would land between

two integers, floor division will simply return the lower of the two, so that it always

returns an integer. Floor division, as you might expect, is implemented with a separate

__floordiv__() and is accessed using the // operator:

>>> 5 / 4

1.25

>>> 5 // 4

1

There’s also a modulo operation, which is related to division. In the event that

a division operation would result in a remainder, using modulo would return that

remainder, so modulo returns only the remainder of division. This uses the % operator,

implemented using __mod__(). This is used by strings to perform standard variable

interpretation, even though that has nothing to do with division:

>>> 20 // 6

3

>>> 20 % 6

2

>>> 'test%s' % 'ing'

'testing'

In effect, you can use floor division and a modulo operation to obtain the integer

result of a division operation as well as its remainder, which retains all the information

about the result. This is sometimes preferable to true division, which would simply

produce a floating point number. For example, consider a function that takes a number

of minutes and has to return a string containing the number of hours and minutes:

Chapter 5 Common Protocols

231

>>> def hours_and_minutes(minutes):

... return minutes // 60, minutes % 60

...

>>> hours_and_minutes(60)

(1, 0)

>>> hours_and_minutes(137)

(2, 17)

>>> hours_and_minutes(42)

(0, 42)

In fact, this basic task is common enough that Python has its own function for it:

divmod(). By passing in a base value and a value to divide it by, you can get the results of

floor division and a modulo operation at the same time. Rather than simply delegating

to those two methods independently, however, Python will try to call a __divmod__()

method, which allows a custom implementation to be more efficient.

In lieu of a more efficient implementation, the __divmod__() method can be

illustrated using the same technique as the hours_and_minutes() function. All we have

to do is accept a second argument in order to take the hard-coded 60 out of the method:

>>> class Example:

... def __init__(self, value):

... self.value = value

... def __divmod__(self, divisor):

... return self.value // divisor, self.value % divisor

...

>>> divmod(Example(20), 6)

(3, 2)

There’s also an extension of multiplication called exponentiation, where a value is

multiplied by itself a number of times. Given its relationship to multiplication, Python

Chapter 5 Common Protocols

232

uses a double-asterisk ** notation to perform the operation. It’s implemented using a

__pow__() method, because real-world math typically calls it raising a value to a power

of some other value:

>>> class Example:

... def __init__(self, value):

... self.value = value

... def __pow__(self, power):

... val = 1

... for x in range(power):

... val *= self.value

... return val

...

>>> Example(5) ** 3

125

Unlike the other operations, exponentiation can be performed in one other way as

well, by way of the built-in pow() function. The reason there’s a different operator is that

it allows for an extra argument to be passed in. This extra argument is a value that should

be used to perform a modulo operation after the exponentiation has been performed.

This extra behavior allows for a more efficient way to perform such tasks as finding prime

numbers, which is commonly used in cryptography:

>>> 5 ** 3

125

>>> 125 % 50

25

>>> 5 ** 3 % 50

25

>>> pow(5, 3, 50)

25

Chapter 5 Common Protocols

233

In order to support this behavior with the __pow__() method, you can optionally

accept an extra argument, which will be used to perform the modulo operation. This

new argument must be optional in order to support the normal ** operator. There’s

no reasonable default value that can be used blindly without causing problems with

standard exponentiation, so it should default to None to determine whether the modulo

operation should be performed:

>>> class Example:

... def __init__(self, value):

... self.value = value

... def __pow__(self, power, modulo=None):

... val = 1

... for x in range(power):

... val *= self.value

... if modulo is not None:

... val %= modulo

... return val

...

>>> Example(5) ** 3

125

>>> Example(5) ** 3 % 50

25

>>> pow(Example(5), 3, 50)

25

Caution A s with the __divmod__() implementation shown previously, this
example is not a very efficient approach at solving the problem. It does produce
the correct values, but it should be used only for illustration.

Chapter 5 Common Protocols

234

�Bitwise Operations
Bitwise operations are used in situations in which you are working on binary files,

cryptography, encoding, hardware drivers, and networking protocols. As such, they are

often associated with low-level programming; however, they are certainly not exclusively

reserved for that domain. With bitwise operations, a separate group of operations act on

values not as numbers directly, but rather as a sequence of individual bits. At that level,

there are a few different ways of manipulating values that are applicable to not only

numbers but some other types of sequences as well. The simplest bitwise manipulation

is a shift, where the bits within a value are moved to the right or to the left, resulting in a

new value.

In binary arithmetic, shifting bits one place to the left multiplies the value by two.

This is just like in decimal math: if you move all the digits in a number one place to the

left and fill in the gap on the right with a zero, you’ve essentially multiplied the value by

ten. This behavior exists for any numbered base, but computers work in binary, so the

shifting operations do as well.

Shifting is achieved using the << and >> operators for left and right, respectively. The

right-hand side of the operator indicates how many positions the bits should be shifted.

Internally, these operations are supported by the __lshift__() and __rshift__()

methods, each of which accepts the number of positions to shift as its only additional

argument:

>>> 10 << 1

20

>>> 10 >> 1

5

In addition to shuffling the bits around, there are a few operations that compare

the bits in each value to each other, resulting in a new value that represents some

combination of the two individual values. The four bitwise comparison operations are &,

|, ^, and ~, referred to AND, OR, XOR (exclusive OR), and inversion, respectively.

Chapter 5 Common Protocols

235

An AND comparison returns 1 only if both of the individual bits being compared

are 1. If it’s any other combination, the result is 0. This behavior is often used to create

a bitmask, where you can reset all irrelevant values to 0 by applying AND to a value that

has 1 for each of the useful bits and 0 for the rest. This will clear out any bits you aren’t

interested in, allowing for easy comparisons with sets of binary flags. Supporting this

behavior in your code requires the presence of an __and__() method.

OR comparisons return 1 if either of the individual bits being compared is 1. It

doesn’t matter if both of them are 1; as long as at least one of them is 1, the result will

be 1. This is often used to join sets of binary flags together, so that all the flags from

both sides of the operator are set in the result. The method required to support this

functionality is __or__().

The standard OR operator is sometimes called an inclusive OR, to contrast it with its

cousin, the exclusive OR, which is typically abbreviated as XOR. In an XOR operation,

the result is 1 only if one of the individual bits was 1 but not the other. If both bits are 1 or

both bits are 0, the result will be 0. XOR is supported by the __xor__() method.

Finally, Python also offers bitwise inversion, where each of the bits gets flipped to

the opposite value from what it is currently; 1 becomes 0, and vice versa. Numerically,

this swaps between negative and positive values, but it doesn’t simply change the sign.

Here’s an example of how numbers react when inverted using the ~ operator:

>>> ~42

-43

>>> ~-256

255

This behavior is based on the way computers work with signed values. The most

significant bit is used to determine whether the value is positive or negative, so flipping

that bit changes the sign. The change in the absolute value after inversion is due to a

lack of –0. When 0 is inverted it becomes –1 rather than –0, so all other values follow

suit after that.

In custom code, inversion is typically most useful when you have a known set of all

possible values, along with individual subsets of those values. Inverting these subsets

would remove any existing values and replace them with any values from the master set

that weren’t previous in the subset.

Chapter 5 Common Protocols

236

This behavior can be provided by supplying an __invert__() method on your

object. Unlike the other bitwise methods, however, __invert__() is unary, so it doesn’t

accept any additional arguments beyond the standard self.

Note T he inversion behavior described here is valid for numbers that are
encoded using the two’s-complement method for working with signed numbers.
There are other options1 available that can behave differently than what’s shown
here if a custom number class provides the __invert__() method to do so. By
default, Python works only with the two’s-complemented encoding method.

�Variations
In addition to the normal behavior of operations, there are a couple different ways they

can also be accessed. The most obvious issue is that the methods are typically bound to

the value on the left-hand side of the operator. If your custom object gets placed on the

right-hand side instead, there’s a good chance that the value on the left won’t know how

to work with it, so you’ll end up with a TypeError instead of a usable value.

This behavior is understandable but unfortunate, because if the custom object

knows how to interact with the other value, it should be able to do so regardless of their

positions. To allow for this, Python gives the value on the right-hand side of the operator

a chance to return a valid value.

When the left-hand side of the expression fails to yield a value, Python then checks

to see if the value on the right is of the same type. If it is, there’s no reason to expect that

it would be able to do any better than the first time around, so Python simply raises the

TypeError. If it’s a different type, however, Python will call a method on the right-hand

value, passing in the left-hand value as its argument.

This process swaps the arguments around, binding the method to the value on the

right-hand side. For some operations, such as subtraction and division, the order of

the values is important, so Python uses a different method to indicate the change in

ordering. The names of these separate methods are mostly the same as the left-hand

methods, but with an r added after the first two underscores:

1�http://en.wikipedia.org/wiki/Signed_number_representations.

Chapter 5 Common Protocols

http://en.wikipedia.org/wiki/Signed_number_representations

237

>>> class Example:

... def __init__(self, value):

... self.value = value

... def __add__(self, other):

... return self.value + other

...

>>> Example(20) + 10

30

>>> 10 + Example(20)

Traceback (most recent call last):

 ...

TypeError: unsupported operand type(s) for +: 'int' and 'Example'

>>> class Example:

... def __init__(self, value):

... self.value = value

... def __add__(self, other):

... return self.value + other

... def __radd__(self, other):

... return self.value + other

...

>>> Example(20) + 10

30

>>> 10 + Example(20)

30

Tip  In cases like this in which the order of the values doesn’t affect the result,
you can actually just assign the left-hand method to the name of the right-hand
method. Just remember that not all operations work that way, so you can’t blindly
copy the method to both sides without ensuring that it makes sense.

Chapter 5 Common Protocols

238

Another common way to use these operators is to modify an existing value and

assign the result right back to the original value. As has been demonstrated without

explanation earlier in this chapter, an alternative form of assignment is catered to these

modifications. By simply appending = to the operator you need, you can assign the result

of the operation to the value on the left-hand side:

>>> value = 5

>>> value *= 3

>>> value

15

By default, this form of augmented assignment uses the standard operator methods

in the same way as was described previously in this chapter. However, that requires

creating a new value after the operation, which is then used to rebind an existing value.

Instead, it can sometimes be advantageous to modify the value in place, as long as you

can identify when this assignment is taking place.

Like the right-hand side methods, in-place operators use essentially the same

method names as the standard operators, but this time with an i after the underscores.

There’s no right-hand side equivalent of this operation, however, because the

assignment is always done with the variable on the left-hand side. With everything taken

into account, Table 5-2 lists the available operators, along with the methods required to

customize their behavior.

Chapter 5 Common Protocols

239

Note T here’s no in-line method for the division and modulo operation because
it’s not available as an operator that supports assignment. It’s only called as the
divmod() method, which has no in-line capabilities. Also, bitwise inversion is a
unary operation, so there’s no right-side or in-line method available.

Even though these operations are primarily focused on numbers, many of them also

make sense for other types of objects. There is another set of behaviors, however, that

really only makes sense for numbers and objects that can act like numbers.

Table 5-2.  Available Operators

Operation Operator Left-hand Right-hand In-line

Addition + __add__() __radd__() __iadd__()

Subtraction - __sub__() __rsub__() __isub__()

Multiplication * __mul__() __rmul__() __imul__()

True division / __truediv__() __rtruediv__() __itruediv__()

Floor division // __floordiv__() __rfloordiv__() __ifloordiv__()

Modulo % __mod__() __rmod__() __imod__()

Division & modulo divmod() __divmod__() __rdivmod__() N/A

Exponentiation ** __pow__() __rpow__() __ipow__()

Left binary shift << __lshift__() __rlshift__() __ilshift__()

Right binary shift >> __rshift__() __rrshift__() __irshift__()

Bitwise AND & __and__() __rand__() __iand__()

Bitwise OR | __or__() __ror__() __ior__()

Bitwise XOR ^ __xor__() __rxor__() __ixor__()

Bitwise inversion ~ __invert__() N/A N/A

Chapter 5 Common Protocols

240

�Numbers
Underneath it all computers are all about numbers, so it’s only natural that they play

an important role in most applications. Beyond the operations outlined in the previous

section, there are many various behaviors exhibited by numbers that may not be as

obvious.

The most basic behavior a custom number can have is to convince Python that it is in

fact a number. This is necessary when trying to use an object as an index in a sequence.

Python requires that all indexes be integers, so there needs to be a way to coerce an

object into an integer for the sake of being used as an index. For this Python uses an

__index__() method, raising a TypeError if it doesn’t exist or it returns something other

than an integer:

>>> sequence = [1, 2, 3, 4, 5]

>>> sequence[3.14]

Traceback (most recent call last):

 ...

TypeError: list indices must be integers, not float

>>> class FloatIndex(float):

... def __index__(self):

... # For the sake of example, return just the integer portion

... return int(self)

...

>>> sequence[FloatIndex(3.14)]

4

>>> sequence[3]

4

In addition to simple index access, __index__() is used to coerce an integer for

the sake of slicing and to generate a starting value for conversion using the built-in

bin(), hex(), and oct() functions. When looking to explicitly force an integer in other

situations, you can use the __int__() method, which is used by the built-in int()

function. Other type conversions can be performed using __float__() to support

float() and __complex__() for complex().

Chapter 5 Common Protocols

241

One of the most commonly required operations when converting one number to

another is rounding. Unlike int(), which blindly truncates any part of the value that’s

not an integer, rounding affords more control over what type of value you end up with

and how much precision is retained.

When you pass a decimal or a floating point number into int(), the effect is

essentially just a floor operation. Like floor division mentioned previously, a floor

operation takes a number between two integers and returns the lower of the two. The

math module contains a floor() function to perform this operation.

As you might expect, this relies on a __floor__() method on a custom object to

perform the floor operation. It doesn’t require any arguments beyond the usual self and

should always return an integer. Python doesn’t actually enforce any requirements on

the return value, however, so if you’re working with some subclass of integers, you can

return one of those instead.

By contrast, you may need to go with the higher of the two, which would be a ceiling

operation. This is done using math.ceil() and implemented with the __ceil__()

method. Like __floor__(), it doesn’t take any additional arguments and returns an

integer.

More likely, you’ll need to round a value to a specific number of digits. This is

achieved using the round() function, which is a built-in function, rather than being

located in the math module. It takes up to two arguments and is implemented using the

__round__() method on a custom object.

The first argument to round() is the object that __round__() will be bound to, so

it comes through as the standard self. The second argument is a bit more nuanced,

however. It’s the number of digits to the right of the decimal point that should be

considered significant, and thus retained in the result. If it’s not provided, round()

should assume that none of those digits are significant and return an integer:

>>> round(3.14, 1)

3.1

>>> round(3.14)

3

>>> round(3.14, 0)

3.0

Chapter 5 Common Protocols

242

>>> import decimal

>>> round(decimal.Decimal('3.14'), 1)

Decimal('3.1')

>>> round(decimal.Decimal('3.14'))

3

As you can see, there’s actually a difference between passing a second argument of 0

and not passing one at all. The return value is essentially the same, but when not passing

it in, you should always get an integer. When passing in a 0 instead, you’ll get whatever

type you pass in, but with only the significant digits included.

In addition to rounding digits to the right of the decimal point, round() can act on

the other side as well. By passing in a negative number, you can specify the number of

digits to the left of the decimal point that should be rounded away, leaving the other

digits remaining:

>>> round(256, -1)

260

>>> round(512, -2)

500

�Sign Operations
There is also a selection of unary operations that can be used to adjust the sign of a

value. The first, -, negates the sign, swapping between positive and negative values.

Customization of this behavior is made available by providing a __neg__() method,

which accepts no extra arguments beyond self.

To complement the negative sign, Python also supports a positive sign, using +.

Because numbers are ordinarily assumed to be positive, this operator actually doesn’t do

anything on its own; it simply returns the number unchanged. In the event that a custom

object needs an actual behavior attached to this, however, a __pos__() method can

provide it.

Chapter 5 Common Protocols

243

Finally, a number can also have an absolute value, which is generally defined as its

distance from zero. The sign is irrelevant, and all values become positive. Therefore,

applying abs() to a number removes the negative sign if present but leaves positive

values unchanged. This behavior is modified by an __abs__() method.

�Comparison Operations
The operations shown thus far have been concerned with returning a modified value,

based at least in part on one or more existing values. Comparison operators, by contrast,

return either True or False, based on the relationship between two values.

The most basic comparison operators, is and is not, operate directly on the

internal identity of each object. Because the identity is typically implemented as the

object’s address in memory, which can’t be changed by Python code, there’s no way

to override this behavior. Its use is generally reserved for comparison with known

constants, such as None.

The operators that are available represent the standard numerical comparisons,

which detect if one value is higher, lower, or exactly equal to another. The most versatile

is testing for equality, using ==. Its versatility comes from the fact that it’s not limited to

numerical values because many other types can have objects that are considered equal

to each other. This behavior is controlled by an __eq__() method.

Inequality is represented in Python by the != operator, which behaves just as you

would expect. What you might not expect, however, is that this functionality is not tied to

== in any way. Rather than simply calling __eq__() and inverting its result, Python relies

on a separate __ne__() method to handle inequality testing. Therefore, if you implement

__eq__(), always remember to supply __ne__() as well to ensure that everything works

as expected.

In addition, you can compare one value as less than or greater than another, using <

and >, which are implemented using __lt__() and __gt__(), respectively. Equality can

also be combined with these, so that one value can be greater than or equal to another,

for instance. These operations use <= and >= and are supported by __lte__() and

__gte__().

These comparisons are often used for objects that are predominantly represented by

a number, even if the object itself is much more than that. Dates and times are notable

examples of objects that are easily comparable because they’re each essentially a series

of numbers that can each be compared individually if needed:

Chapter 5 Common Protocols

244

>>> import datetime

>>> a = datetime.date(2019, 10, 31)

>>> b = datetime.date(2017, 1, 1)

>>> a == b

False

>>> a < b

True

Strings are an interesting case with regard to comparisons. Even though a string isn’t

numeric in an obvious sense, each character in a string is simply another representation

of a number, so string comparisons also work. These comparisons drive the sorting

features of strings.

�Iterables
It may seem like sequences are the obvious next choice, but there’s a more generic form

to consider first. An object is considered iterable if it can yield objects one at a time,

typically within a for loop. This definition is intentionally simple, because at a high level,

iterables really don’t go beyond that. Python does have a more specific definition of

iterables, however.

In particular, an object is iterable if passing it into the built-in iter() function

returns an iterator. Internally, iter() inspects the object passed in, looking first for an

__iter__() method. If such a method is found, it’s called without any arguments and

is expected to return an iterator. There’s another step that will take place if __iter__()

wasn’t available, but for now, let’s focus on iterators.

Even though the object is considered iterable, it’s the iterator that does all the real

work, but there’s really not that much to it. There’s no requirement for what the __init__

() method should look like, because it gets instantiated within the __iter__() method

of its master object. The required interface consists of just two methods.

Chapter 5 Common Protocols

245

The first method, perhaps surprisingly, is __iter__(). Iterators should always be

iterable on their own as well, so they must provide an __iter__() method. There’s

usually no reason to do anything special in this method, though, so it’s typically

implemented to just return self. If you don’t supply __iter__() on the iterator the

main object will still be iterable in most cases, but some code will expect its iterator to be

usable on its own as well.

More importantly, an iterator must always provide a __next__() method, where

all the real work happens. Python will call __next__() to retrieve the next value from

the iterator, with that value being used in the body of whatever code called the iterator.

When that code needs a new value, typically for the next pass in a loop, it calls __next__

() again to get a new value. This process continues until one of a few things happens.

If Python encounters anything that causes the loop to complete while the iterator

still has items it could produce, the iterator just stands by, waiting for some other code

to ask for another item. If that never happens, eventually there will be no more code that

knows about the iterator at all, so Python will remove it from memory. Chapter 6 covers

this garbage collection process in greater detail.

There are a few different cases where an iterator might not be given a chance to

finish. The most obvious is a break statement, which would stop the loop and continue

on afterward. Additionally, a return or a raise statement would implicitly break out of

any loop it’s part of, so the iterator is left in the same state as when a break occurs.

More commonly, however, the loop will just let the iterator run until it doesn’t have

any more items to produce. When using a generator, this case is handled automatically

when the function returns without yielding a new value. With an iterator, this behavior

must be provided explicitly.

Because None is a perfectly valid object that could reasonably be yielded from an

iterator, Python can’t just react to __next__() failing to return a value. Instead, the

StopIteration exception provides a way for __next__() to indicate that there are no

more items. When this is raised the loop is considered complete, and execution resumes

on the next line after the end of the loop.

To illustrate how all of this fits together, let’s take a look at the behavior of the built-

in range() function. It’s not a generator because you can iterate over it multiple times.

To provide similar functionality we need to return an iterable object instead, which can

then be iterated as many times as necessary:

Chapter 5 Common Protocols

246

class Range:

 def __init__(self, count):

 self.count = count

 def __iter__(self):

 return RangeIter(self.count)

class RangeIter:

 def __init__(self, count):

 self.count = count

 self.current = 0

 def __iter__(self):

 return self

 def __next__(self):

 value = self.current

 self.current += 1

 if self.current > self.count:

 raise StopIteration

 return value

>>> def range_gen(count):

... for x in range(count):

... yield x

...

>>> r = range_gen(5)

>>> list(r)

[0, 1, 2, 3, 4]

>>> list(r)

[]

>>> r = Range(5)

>>> list(r)

[0, 1, 2, 3, 4]

>>> list(r)

[0, 1, 2, 3, 4]

Chapter 5 Common Protocols

247

Iterators are the most powerful and flexible way to implement an iterable, so they’re

generally preferred, but there’s also another way to achieve a similar effect. What makes

an object iterable is the fact that iter() returns an iterator, so it’s worth noting that

iter() supports a certain kind of special case.

If an object doesn’t have an __iter__() method, but contains a __getitem__()

method instead, Python can use that in a special iterator that exists just to handle that

case. We’ll get to more details in the next section on sequences, but the basic idea is that

__getitem__() accepts an index and is expected to return the item in that position.

If Python finds __getitem__() instead of __iter__(), it will automatically create an

iterator designed to work with it. This new iterator calls __getitem__() several times,

each with a value from a series of numbers, beginning with zero, until __getitem__()

raises an IndexError. Therefore, our custom Range iterable can be rewritten quite

simply:

class Range:

 def __init__(self, count):

 self.count = count

 def __getitem__(self, index):

 if index < self.count:

 return index

 raise IndexError

>>> r = Range(5)

>>> list(r)

[0, 1, 2, 3, 4]

>>> list(r)

[0, 1, 2, 3, 4]

Note P ython will only use this __getitem__() behavior if __iter__() is not
present. If both are provided on a class, the __iter__() method will be used to
control the iteration behavior.

Chapter 5 Common Protocols

248

�Example: Repeatable Generators
The ability to iterate over an object multiple times is very common among explicitly

iterable object types, but generators are often more convenient to work with. If you need

to have a generator that can restart itself each different time the iterator is accessed, it

may seem like you’re stuck either losing out on that functionality or adding a bunch of

otherwise unnecessary code that exists solely to allow for proper iteration.

Instead, like many other behaviors, we can rely on Python’s standard way to augment

a function and factor it out into a decorator. When applied to a generator function, this

new decorator can handle everything necessary to create an iterable that triggers the

generator from the beginning each time a new iterator is requested:

def repeatable(generator):

 """

 A decorator to turn a generator into an object that can be

 iterated multiple times, restarting the generator each time.

 """

 class RepeatableGenerator:

 def __init__(self, *args, **kwargs):

 self.args = args

 self.kwargs = kwargs

 def __iter__(self):

 return iter(generator(*self.args, **self.kwargs))

 return RepeatableGenerator

>>> @repeatable

... def generator(max):

... for x in range(max):

... yield x

...

Chapter 5 Common Protocols

249

>>> g = generator(5)

>>> list(g)

[0, 1, 2, 3, 4]

>>> list(g)

[0, 1, 2, 3, 4]

By creating a new class that can be instantiated when the generator function is

called, its __iter__() method will get called instead of the generator’s. This way,

the generator can be called from scratch each time a new loop begins, yielding a

new sequence rather than trying to pick up where it left off, which would often mean

returning an empty sequence.

Caution E ven though most generators return a similar sequence each time
through and can be restarted without worry, not all of them behave that way. If a
generator changes its output based on when it’s called, picks up where it left off
on subsequent calls or produces side effects, this decorator is not recommended.
By changing the behavior to explicitly restart the decorator each time, the new
generator could yield unpredictable results.

There’s one problem with the code as it stands, however. The @repeatable decorator

receives a function but returns a class, which works fine in the example provided but

has some very troubling implications. To start, remember from Chapter 3 that wrapper

functions have new properties, a problem that can be fixed using the @functools.wraps

decorator.

Before we can even consider using another decorator, however, we have to solve the

bigger problem: we’re returning a completely different type than the original function.

By returning a class instead of a function, we’ll cause problems with any code that

expects it to be a function, including other decorators. Worse yet, the class returned can’t

be used as a method because it doesn’t have a __get__() method to bind it to its owner

class or an instance of it.

To solve these issues, we have to introduce a wrapper function around the class,

which will instantiate the object and return it. This way, we can use @functools.wraps to

retain as much of the original decorator as possible. Better yet, we can then also return a

function, which can be bound to classes and instances without any trouble:

Chapter 5 Common Protocols

250

import functools

def repeatable(generator):

 """

 A decorator to turn a generator into an object that can be

 iterated multiple times, restarting the generator each time.

 """

 class RepeatableGenerator:

 def __init__(self, *args, **kwargs):

 self.args = args

 self.kwargs = kwargs

 def __iter__(self):

 return iter(generator(*self.args, **self.kwargs))

 @functools.wraps(generator)

 def wrapper(*args, **kwargs):

 return RepeatableGenerator(*args, **kwargs)

 return wrapper

�Sequences
After numbers, sequences are perhaps some of most commonly used data structures

in all of programming, including Python. Lists, tuples, and even strings are sequences

that share a common set of features, which are actually a specialized type of iterator. In

addition to being able to yield a series of items individually, sequences have additional

attributes and behaviors supporting the fact that they know about the entire set of items

all at once.

These extra behaviors don’t necessarily require that all the items be loaded into

memory at the same time. The efficiency gains achieved through iteration are just as

valid with sequences as with any other iterable, so that behavior doesn’t change. Instead,

the added options simply refer to collection as a whole, including its length and the

ability to get a subset of it, as well as accessing individual items without getting the whole

sequence.

Chapter 5 Common Protocols

251

The most obvious feature of a sequence is the ability to determine its length.

For objects that can contain any arbitrary items, this requires knowing—or perhaps

counting—all those items. For others, the object can use some other information to

reach the same result. Customization of this behavior is achieved by providing a

__len__() method, which is called internally when the object is passed into the built-in

len() function.

To continue along the same lines as previous examples, here’s how a simple

replacement Range class could use knowledge of its configuration to return the length

without having to yield a single value:

class Range:

 def __init__(self, max):

 self.max = max

 def __iter__(self):

 for x in range(self.max):

 yield x

 def __len__(self):

 return self.max

Because sequences contain a fixed collection of items, they can be iterated not only

from start to finish but also in reverse. Python provides the reversed() function, which

takes a sequence as its only argument and returns an iterable that yields items from the

sequence in reverse. There may be particular efficiency gains to be had, so a custom

sequence object can provide a __reversed__() method to customize the internal

behavior of reversed().

Taking this notion to the Range class again, it’s possible to provide a reversed range

using an alternative form of the built-in range():

class Range:

 def __init__(self, max):

 self.max = max

Chapter 5 Common Protocols

252

 def __iter__(self):

 for x in range(self.max):

 yield x

 def __reversed__(self):

 for x in range(self.max - 1, -1, -1):

 yield x

Now that we have the ability to iterate over a sequence both forward and backward

as well as report its length, the next step is to provide access to individual items. In a

plain iterable, you can only access items by retrieving them one at a time as part of a

loop. With all the values in the sequence known in advance, a custom class can provide

access to any item at any time.

The most obvious task is to retrieve an item given an index that’s known in advance.

For example, if a custom object contained the arguments passed in on the command

line, the application would know the specific meaning of each argument and would

typically access them by index rather than simply iterating over the whole sequence.

This uses the standard sequence[index] syntax, with its behavior controlled by the

__getitem__() method.

With __getitem__(), individual items can be picked out of the sequence or retrieved

from some other data structure if necessary. Continuing on the Range theme again,

__getitem__() can calculate what the appropriate value should be without cycling

through the sequence. In fact, it can even support the full range of arguments that are

available to the built-in range():

class Range:

 def __init__(self, a, b=None, step=1):

 """

 Define a range according to a starting value, an end value and a step.

 If only one argument is provided, it's taken to be the end value. If

 two arguments are passed in, the first becomes a start value, while the

 second is the end value. An optional step can be provided to control

 how far apart each value is from the next.

 """

Chapter 5 Common Protocols

253

 if b is not None:

 self.start = a

 self.end = b

 else:

 self.start = 0

 self.end = a

 self.step = step

 def __getitem__(self, key):

 value = self.step * key + self.start

 if value < self.end:

 return value

 else:

 raise IndexError("key outside of the given range")

>>> r = Range(5)

>>> list(r)

[0, 1, 2, 3, 4]

>>> r[3]

3

>>> r = Range(3, 17, step=4)

>>> list(r)

[3, 7, 11, 15]

>>> r[2]

11

>>> r[4]

Traceback (most recent call last):

 ...

IndexError: indexed value outside of the given range

In the event that the index passed in is beyond the range of available items, __

getitem__() should raise an IndexError. Highly specialized applications could define

a more specific subclass and raise that instead, but most use cases will simply catch

IndexError on its own.

In addition to matching the expectations of most Python programmers, properly raising

IndexError is essential to allow a sequence to be used as an iterable without implementing

__iter__(). Python will simply pass in integer indexes until the __getitem__() method

raises an IndexError, at which point it will stop iterating over the sequence.

Chapter 5 Common Protocols

254

Beyond just accessing a single item at a time, a sequence can provide access to

subsets of its contents by way of slicing. When using the slicing syntax, __getitem__()

receives a special slice object instead of an integer index. A slice object has dedicated

attributes for the start, stop, and step portions of the slice, which can be used to

determine which items to return. Here’s how this affects the Range object we’ve been

examining:

class Range:

 def __init__(self, a, b=None, step=1):

 """

 Define a range according to a starting value, an end value and a step.

 If only one argument is provided, it's taken to be the end value. If

 two arguments are passed in, the first becomes a start value, while the

 second is the end value. An optional step can be provided to control

 how far apart each value is from the next.

 """

 if b is not None:

 self.start = a

 self.end = b

 else:

 self.start = 0

 self.end = a

 self.step = step

 def __getitem__(self, key):

 if isinstance(key, slice):

 r = range(key.start or 0, key.stop, key.step or 1)

 return [self.step * val + self.start for val in r]

 value = self.step * key + self.start

 if value < self.end:

 return value

 else:

 raise IndexError("key outside of the given range")

Chapter 5 Common Protocols

255

The next logical step is to allow an individual item in the sequence to be

set according to its index. This in-place assignment uses essentially the same

sequence[index] syntax but as the target of an assignment operation. It’s supported by a

custom object in its __setitem__() method, which accepts both the index to access and

the value to store at that index.

Like __getitem__(), however, __setitem__() can also accept a slice object as its

index, rather than an integer. Because a slice defines a subset of the sequence, however,

the value that’s passed is expected to be another sequence. The values in this new

sequence will then take the place of those in the subset referenced by the slice.

Things aren’t exactly as they seem, however, because the sequence being assigned

to the slice doesn’t actually need to have the same number of items as the slice itself. In

fact, it can be of any size, whether larger or smaller than the slice it’s being assigned to.

The expected behavior of __setitem__() is simply to remove the items referenced by the

slice, then place the new items in that gap, expanding or contracting the size of the total

list as necessary to accommodate the new values.

Note T he __setitem__() method is only intended for replacing existing values
in the sequence, not for strictly adding new items. To do that you’ll need to also
implement append() and insert(), using the same interfaces as standard lists.

Removing an item from a list can be achieved in one of two different ways. The

explicit method for this is remove() (e.g., my_list(range(10, 20)).remove(5)), which takes

the index of the item that should be removed. The remaining items that were positioned

after the removed item are then shifted to the left to fill in the gap. This same behavior is

also available using a del sequence[index] statement.

Implementing remove() is straightforward enough, given that it’s an explicit method

call. The simple case for del works just like remove(), but using a __delitem__()

method instead. In fact, if deleting a single item was all that mattered, you could simply

assign an existing remove() method to the __delitem__ attribute, and it would work as

expected. Unfortunately, slicing complicates matters slightly.

Deleting items from a slice works just like the first portion of the slicing behavior of

__setitem__(). Instead of replacing the items in the slice with a new sequence, however,

the sequence should simply shift its items to close up the gap.

Chapter 5 Common Protocols

256

With all the different ways to make changes to the contents of a sequence, the

last—but not least—important feature is to test whether an item is a part of the

given sequence. By default, Python will simply iterate over the sequence—using the

techniques listed previously in the section on iterables—until it either finds the item

being tested or exhausts all the values provided by the iterator. This allows a membership

test to be performed on iterables of any type, without being limited to full sequences.

In order to be more efficient, sequences can override this behavior as well, by

providing a __contains__() method. Its signature looks like __getitem__(), but rather

than accepting an index, it accepts an object and returns True if the given object is

present in the sequence or False otherwise. In the Range example examined previously,

the result of __contains__() can be calculated on the fly, based on the configuration of

the object:

class Range:

 def __init__(self, a, b=None, step=1):

 """

 Define a range according to a starting value, an end value and a step.

 If only one argument is provided, it's taken to be the end value. If

 two arguments are passed in, the first becomes a start value, while the

 second is the end value. An optional step can be provided to control

 how far apart each value is from the next.

 """

 if b is not None:

 self.start = a

 self.end = b

 else:

 self.start = 0

 self.end = a

 self.step = step

 def __contains__(self, num):

 return self.start <= num < self.end and \

 not (num – self.start) % self.step

Chapter 5 Common Protocols

257

>>> list(range(5, 30, 7))

[5, 12, 19, 26]

>>> 5 in Range(5, 30, 7)

True

>>> 10 in Range(5, 30, 7)

False

>>> 33 in Range(5, 30, 7)

False

Many of the methods presented here for sequences are also valid for the next

container type, which maps a collection of keys to associated values.

�Mappings
Whereas sequences are contiguous collections of objects, mappings work a bit

differently. In a mapping the individual items are actually a pair, consisting of both a key

and a value. Keys don’t have to be ordered because iterating over them isn’t generally the

point. Instead, the goal is to provide fast access to the value referenced by a given key.

The key is typically known in advance, and most common usage expects it.

Accessing a value by its key uses the same syntax as using indexes in sequences.

In fact, Python doesn’t know or care if you’re implementing a sequence, a mapping or

something completely different. The same methods, __getitem__(), __setitem__(),

and __delitem__(), are reused to support the obj[key] syntax regardless of which

type of object is used. That doesn’t mean the implementations of these methods can be

identical, however.

For a mapping, a key is used as the index. Even though there’s no difference in syntax

between the two, keys support a wider range of allowed objects. In addition to plain

integers, a key may be any hashable Python object such as dates, times, or strings; of

these, strings are by far the most common. It’s up to your application, however, to decide

whether there should be any limitations on what keys to accept.

Python supports so much flexibility, in fact, that you can even use the standard slicing

syntax without regard to what values are involved in the slice. Python simply passes along

whatever objects were referenced in the slice, so it’s up to the mapping to decide how to

deal with them. By default, lists handle slices by explicitly looking for integers, using __

index__() if necessary to coerce objects into integers. For dictionaries, by contrast, slice

objects aren’t hashable, so dictionaries don’t allow them to be used as keys.

Chapter 5 Common Protocols

258

Tip  For the most part you can accept anything in a custom dictionary, even if you
intend to use only a specific type, such as strings, as your keys. As long as it only
gets used in your own code, it won’t make any difference because you’re in control
of all its uses. If you make modifications that prove to be useful outside of your
application, other developers will make use of it for their own needs. Therefore, you
should restrict the available keys and values only if you really need to; otherwise,
it’s best to leave options open, even for yourself.

Even though this chapter hasn’t generally covered any methods that are called

directly as part of the public interface, mappings have three methods that provide

particularly useful access to internal components, which should always be implemented.

These methods are necessary because mappings essentially contain two separate

collections—keys and values—which are then joined together by association, whereas

sequences only contain a single collection.

The first of these extra methods, keys(), iterates over all the keys in the mapping

without regard to their values. By default, the keys can be returned in any order, but

some more specialized classes could choose to provide an explicit order for these keys.

This same behavior is provided by iteration over the mapping object itself, so be sure to

always supply an __iter__() method that does the same thing as keys().

The next method, values(), is complementary, iterating over the values side of

the mapping instead. Like the keys, these values generally aren’t assumed to be in

any sort of order. In practice, the C implementation of Python uses the same order as

it does for the keys, but order is never guaranteed, even between the keys and values

of the same object.

In order to reliably get all the keys and values in their associated pairs, mappings

provide an items() method. This iterates over the entire collection, yielding each pair

as a tuple in the form of (key, value). Because this is often more efficient than iterating

over the keys and using mapping[key] to get the associated value, all mappings should

provide an items() method and make it as efficient as possible.

Chapter 5 Common Protocols

259

�Callables
In Python, both functions and classes can be called to execute code at any time, but

those aren’t the only objects that can do so. In fact, any Python class can be made

callable by simply attaching a single extra method to the class definition. This method,

appropriately named __call__(), accepts the usual self along with any arguments that

should be passed along in the method call.

There are no special requirements for what arguments __call__() can accept

because it works like any other method when it’s being called. The only difference is that

it also receives the object it’s attached to as the first argument:

>>> class CallCounter:

... def __init__(self):

... self.count = 0

... def __call__(self, *args, **kwargs):

... self.count += 1

... return 'Number of calls so far: %s' % self.count

... def reset(self):

... self.count = 0

...

>>> counter = CallCounter()

>>> counter()

'Number of calls so far: 1'

>>> counter()

'Number of calls so far: 2'

>>> counter()

'Number of calls so far: 3'

>>> counter.reset()

>>> counter()

'Number of calls so far: 1'

Chapter 5 Common Protocols

260

Caution A s a method itself, __call__() can also be decorated any number of
times, but remember that it’s still a method, even though it is invoked by calling the
object directly. As a method, any decorators applied to it must be able to deal with
the first argument being an instance of the object.

As for what __call__() can do, the sky is the limit. Its purpose is solely to allow an

object to be callable; what happens during that call depends entirely on the needs at hand.

This example shows that it can also take any additional arguments you may need, like any

other method or function. Its greatest strength, however, is that it allows you to essentially

provide a function that can be customized on its own, without the need for any decorators.

�Context Managers
As mentioned briefly in Chapter 2, objects can also be used as context managers for

use in a with statement. This allows an object to define what it means to work within

the context of that object, setting things up prior to executing the contained code and

cleaning up after execution has finished.

One common example is file handling, because a file must be opened for a specific

type of access before it can be used. Then it also needs to be closed when it’s no longer in

use, to flush any pending changes to disk. This makes sure other code can open the same

file later on, without conflicting with any open references. What happens between those

two operations is said to be executed within the context of the open file.

As mentioned, there are two distinct steps to be performed by a context manager.

First, the context needs to be initialized, so that the code that executes inside the with

block can make use of the features provided by the context. Just prior to execution of the

interior code block, Python will call the __enter__() method on the object. This method

doesn’t receive any additional arguments, just the instance object itself. Its responsibility

is then to provide the necessary initialization for the code block, whether that means

modifying the object itself or making global changes.

If the with statement includes an as clause, the return value of the __enter__()

method will be used to populate the variable referenced in that clause. It’s important to

realize that the object itself won’t necessarily be that value, even though it may seem that

way looking at the syntax for the with statement. Using the return value of __enter__()

allows the context object to be more flexible, although that behavior can be achieved by

simply returning self.

Chapter 5 Common Protocols

261

Once the code inside the with block finishes executing, Python will call the __exit__()

method on the object. This method is then responsible for cleaning up any changes

that were made during __enter__(), returning the context to whatever it was prior to

processing the with statement. In the case of files, this would mean closing the file, but it

could be virtually anything.

Of course, there are a few ways that execution within the with block can complete.

The most obvious is if the code simply finishes on its own, without any problems or

other flow control. Statements such as return, yield, continue, and break can also stop

execution of the code block, in which case __exit__() will still be called because the

cleanup is still necessary. In fact, even if an exception is raised, __exit__() is still given a

chance to reverse any changes that were applied during __enter__().

In order to identify whether the code finished normally or stopped early by way of an

exception, the __exit__() method will be given three additional arguments. The first is

the class object for the exception that was raised, followed by the instance of that class,

which is what was actually raised in the code. Finally, __exit__() will also receive a

traceback object, representing the state of execution as of when the exception was raised.

All three of those arguments are always passed in, so any implementations of __

exit__() must accept them all. If execution completed without raising any exceptions,

the arguments will still be provided, but their values will simply be None. Having access

to both the exception and a traceback allows your implementation of __exit__() to

intelligently react to whatever went wrong and what led to the problem.

Tip T he __exit__() method doesn’t suppress any exceptions on its own. If __
exit__() completes without a return value, the original exception, if any, will be
reraised automatically. If you need to explicitly catch any errors that occur within
the with block, simply return True from __exit__() instead of letting it fall off
the end, which would return an implicit None.

To show one simple example, consider a class that uses the context management

protocol to silence any exceptions that are raised within the with block. In this case,

__enter__() doesn’t need to do anything because the exception handling will be done

in __exit__():

Chapter 5 Common Protocols

262

>>> class SuppressErrors:

... def __init__(self, *exceptions):

... if not exceptions:

... exceptions = (Exception,)

... self.exceptions = exceptions

... def __enter__(self):

... pass

... def __exit__(self, exc_class, exc_instance, traceback):

... if isinstance(exc_instance, self.exceptions):

... return True

... return False

...

>>> with SuppressErrors():

... 1 / 0 # Raises a ZeroDivisionError

...

>>> with SuppressErrors(IndexError):

... a = [1, 2, 3]

... print(a[4])

...

>>> with SuppressErrors(KeyError):

... a = [1, 2, 3]

... print(a[4])

...

Traceback (most recent call last):

 ...

IndexError: list index out of range

�Exciting Python Extensions: Scrapy
If you ever have the need to extract data from the Internet, most specifically making

sense of data on web sites, then a web-scraping tool will be of great benefit. Scrapy is

an open source and full featured tool for web scraping. If you have heard of “spiders” or

“web crawling,” then you already are familiar with other terms for web scraping, but they

Chapter 5 Common Protocols

263

are all the same. In the big scope of things, a web-scraping tool is one part of working

with big data. Web scraping allows you to data mine information from the Internet while

other tools would allow you to clean it up and others to categorize the raw and cleaned

data you obtained. Python makes it easy to build a scaper. Read on to see how to get your

raw data with Scrapy.

�Installation
First you will need to install the libraries for the web-scraping tool Scrapy. To do this, get

to an escalated command prompt (Windows) and type:

pip install scrapy (Enter)

MacOS and Linux will be similar; just check the scrapy.org site for details.

�Running Scrapy
You can run a spider directly via the run spider command or you can create a project

directory that can hold one or more spiders. For quick work, such as just running

one spider, it is just one simple command: scrapy runspider my_spider.py. However,

sometimes you may want a project directory so that you can store configuration

information and multiple spiders in an orderly manner. For our purposes, one spider will

more than suffice.

�Project Setup
The initial process will be to find and download web pages and then extract information,

based on given criteria, from the pages. To do this you will want your spider in a folder of

your choice to organize everything into one area. Make a folder on your system you can

easily navigate to from a command prompt for this example. For example, if on the root

of your C: drive is on MS Windows:

md firstspider (Enter)

Chapter 5 Common Protocols

https://www.scrapy.org

264

It really does not matter where you make the folder, but do make sure you are able

to navigate to it. Next, using your Python IDLE IDE, write the following very basic spider

code and save the file as scraper.py to the folder you just created:

import scrapy

filename scraper.py

class QuotesSpider(scrapy.Spider):

 name = "quotes"

 def start_requests(self):

 urls = ['http://quotes.toscrape.com/page/1/']

 for url in urls:

 yield scrapy.Request(url=url, callback=self.parse)

 def parse(self, response):

 print('\nURL we went to: ', response, '\n')

Now, running the aforementioned code is not very exciting. For our purposes, Scrapy

will run better via the command line using the Scrapy command interface. It is very

similar to how you would run a Python script from the command line. With Python it

would be python name_of_file.py and with Scrapy it will be similar, from within the

folder you just created and where you saved your file to: scrapy runspider scraper.py

(Enter). If everything runs properly, you should see something similar to the following:

Figure 5-1.  Screen capture running the sample scraper via the terminal

Chapter 5 Common Protocols

265

If you received any errors, it could be that your path or search drive to find Scrapy

is not set. If on Windows and you receive a win32api error, you will need to most likely

install pypiwin32. Complete this if needed by typing from an escalated command

prompt:

pip install pypiwin32api (Enter)

By itself, this was only exciting in that there were (hopefully) no errors and we

showed the URL we went to. That being said, let’s now perform a bit more productive

work.

�Retrieve Web Data with Scrapy
Scrapy has a command line interface that is quite handy. Of course you will write your

spider(s) in Python, but the Scrapy shell can help you with what to write in your spider

code. Consider how to view a web page with Scrapy.

�View a Web Page via Scrapy
From an escalated command prompt, scrapy view http://quotes.toscrape.com/page/1/

will cause Scrapy to load the URL you specify, in a browser. This is handy because you

may want to check a site before having Scrapy extract data from it. Note the title of the

page; we will extract only that next.

�Shell Options
You will, of course, what to know what Scrapy shell options are available. To see them,

use the interactive shell and enter from the command linescrapy shell http://quotes.

toscrape.com/page/1/. You now see options. Try from the command prompt: response.
css(‘title’). Note that you are still in the Scrapy interactive shell, and note that the title,

from the HTML markup tags, is returned. Use CTRL Z to exit the shell.

To perform the same thing programmatically with Python, consider the following:

import scrapy

class QuotesSpider(scrapy.Spider):

 name = "quotes"

 def start_requests(self):

Chapter 5 Common Protocols

﻿http://www.quotes.toscrape.com/page/1/﻿
﻿http://www.quotes.toscrape.com/page/1/﻿
﻿http://www.quotes.toscrape.com/page/1/﻿

266

 urls = [

 'http://quotes.toscrape.com/page/1/']

 for url in urls:

 yield scrapy.Request(url=url, callback=self.parse)

 def parse(self, response):

 print()

 print("Title will follow: \n")

 print(response.css("title"))

 print()

This will give use the extracted title from the page, with markup tags.

Figure 5-2.  CLI output of title

Now, to clean it up a bit, change the line:

print(response.css("title"))

to:

print(response.css("title").extract_first(),)

Then save and rerun the spider, and you will note a much cleaner and usable output

of the HTML tags and the title. The extract_first() method returns a string of the first

occurrence found.

Of course, this is just a bit to get you started with Scrapy. You can do much more with

it; use what you have learned to expand your web-scraping skills. The best place to find

more information would be at the docs.scrapy.org site for more information on methods

and features of Scrapy. In fact, the Quotes URL used in this example is the same used in

the Scrapy sites tutorials.

Chapter 5 Common Protocols

https://www.docs.scrapy.org

267

�Taking It With You
There is perhaps one thing that is most important to understand about all the protocols

listed in this chapter: they aren’t mutually exclusive. It is possible—and sometimes

very advantageous—to implement multiple protocols on a single object. For example, a

sequence can also be used as a callable and a context manager if both of those behaviors

make sense for a given class.

This chapter has dealt primarily with the behaviors of objects, as provided by their

classes; the next chapter will cover how you can manage those objects and their data

once they have been instantiated in working code.

Chapter 5 Common Protocols

269
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_6

CHAPTER 6

Object Management
Creating an instance of a class is only the beginning; once you have an object, there are

a number of things you can do with it. This is obvious, of course, because objects have

methods and attributes that are intended to control their behavior, but those are defined

by each class. Objects, as a whole, have an additional set of features that allow you to

manage them in a number of different ways.

In order to understand these features, it’s first necessary to understand what

actually constitutes an object. At a high level, an object is simply the product of data and

behavior, but internally, Python considers an object to be a combination of three specific

things (five if you add base cclasses and attributes):

•	 Identity: Each object is unique, with an identity that can be used

to compare objects to each other without having to look at any

other details. This comparison, using the is operator, is very strict,

however, without access to any of the subtleties outlined in Chapter 5.

In actual implementations, an object’s identity is simply its address in

memory, so no two objects can ever have the same identity.

•	 Type: The subject of the previous two chapters, an object’s type

is defined by its class and any base classes that support it. Unlike

identity, a type is shared among all of its instances; each object

simply contains a reference to its class.

•	 Value: With a shared type to provide behavior, each object also has a

value that makes it distinct among its peers. This value is provided by

a namespace dictionary that is specific to a given object, where any

aspect of its individuality can be stored and retrieved. This is different

from the identity, however, because the value is designed to work

with the type to do useful things; identity is unrelated to the type at

all, so it doesn’t have anything to do with the behaviors specified for

the class.

270

These three things can be referenced and, in some cases, changed to suit the needs

of an application. An object’s identity can’t be modified at any time, so its value is

constant for the life of the object. But once the object is destroyed, its identity can—and

often will—be reused for a future object, which then retains that identity until the object

is destroyed.

If you want to retrieve an identity at any time, you can pass the object into the built-

in id() function because the object itself doesn’t know anything about its identity (ID

method). In fact, the identity isn’t related to anything specific to the object; none of its

attributes have any bearing on its identity. Therefore, you won’t get the same identity

if you instantiate what would otherwise be an identical object. It also varies based on

available memory, so in one session the location (returned as an integer) will most likely

be different during another session. Types have been covered thoroughly in the previous

two chapters, so the next obvious component is the value, which is implemented by way

of a namespace dictionary.

�Namespace Dictionary
As hinted at previously, an object’s namespace is implemented as a dictionary that is

created for each new object as it’s being instantiated. This is then used to store values for

all the attributes on the object, thus comprising the value for the object as a whole.

Unlike the identity, however, this namespace dictionary can be accessed and

modified at runtime, as it’s available as the __dict__ attribute on an object. In fact,

because it’s an attribute, it can even be replaced with a new dictionary altogether. This is

the basis of what’s commonly referred to as the Borg pattern, named after the collective

consciousness from the Star Trek universe.

�Example: Borg Pattern
Like its namesake, the Borg pattern allows a large number of instances to share a single

namespace. In this way the identity for each object remains distinct, but its attributes—

and thus its behaviors—are always the same as all of its peers. This primarily allows

a class to be used in applications in which it could be instantiated several times, with

potential modifications made to it each time. By using the Borg pattern these changes

can be accumulated in a single namespace, so each instance reflects all the changes that

have been made to each object.

Chapter 6 Object Management

271

This is achieved by attaching a dictionary to the class and then assigning that

dictionary to the namespace of each object as it is being instantiated. As Chapter 4

demonstrated, this can be achieved like this: __init__() and __new__(). Because

both methods execute during instantiation of the object, they seem to be equally viable

options. However, let’s take a look at how they would each work individually.

The __init__() method is the usual place to start because it’s much better

understood and more widely adopted. This method typically initializes instance

attributes, so the dictionary assignment would need to take place prior to any other

initialization. That’s easy enough to do, however, by simply placing it at the beginning of

the method. Here’s how this would work:

>>> class Borg:

... _namespace = {}

... def __init__(self):

... self.__dict__ = Borg._namespace

... # Do more interesting stuff here.

...

>>> a = Borg()

>>> b = Borg()

>>> hasattr(a, 'attribute')

False

>>> b.attribute = 'value'

>>> hasattr(a, 'attribute')

True

>>> a.attribute

'value'

>>> Borg._namespace

{'attribute': 'value'}

This certainly does the job, but there are a few pitfalls with the approach, particularly

when you start working with inheritance. All subclasses would need to make sure they

use super() in order to call the initialization procedures from the Borg class. If any

subclass fails to do so, it won’t use the shared namespace; nor will any of its subclasses,

even if they do use super(). Furthermore, subclasses should use super() before

Chapter 6 Object Management

272

doing any attribute assignments of their own. Otherwise, those assignments will get

overwritten by the shared namespace.

That only applies when Borg is applied to other classes that know about it, however.

The problem is even more pronounced when working with Borg as a mixin, because it

would get applied alongside classes that don’t know about it—and they shouldn’t have to.

But because they can get combined anyway, it’s worth examining what would happen:

>>> class Base:

... def __init__(self):

... print('Base')

...

>>> class Borg:

... _namespace = {}

... def __init__(self, *args, **kwargs):

... self.__dict__ = Borg._namespace

... print('Borg')

...

>>> class Testing(Borg, Base):

... pass

...

>>> Testing()

Borg

<__main__.Testing object at 0x...>

>>> class Testing(Base, Borg):

... pass

...

>>> Testing()

Base

<__main__.Testing object at 0x...>

As you can see, this exhibits the typical problem when not using super(), where the

order of base classes can completely exclude the behaviors of one or more of them. The

solution, of course, is to just use super(), but in the case of mixins, you typically don’t

have control over both the classes involved. Adding super() would suffice in the case of

Chapter 6 Object Management

273

Borg coming before its peer, but mixins are usually applied after their peers, so it doesn’t

really help much.

With all this in mind, it’s worth considering the alternative __new__() method. All

methods are vulnerable to the same types of problems that were shown for __init__(),

but at least we can reduce the chance of collisions that would cause those problems.

Because the __new__() method is less commonly implemented, the odds of running into

conflicting implementations are much smaller.

When implementing the Borg pattern with __new__(), the object must be created

along the way, usually by calling __new__() on the base object. In order to play nicely

with other classes as a mixin, however, it’s still better to use super() here as well. Once the

object is created, we can replace its namespace dictionary with one for the entire class:

>>> class Base:

... def __init__(self):

... print('Base')

...

>>> class Borg:

... _namespace = {}

... def __new__(cls, *args, **kwargs):

... print('Borg')

... obj = super(Borg, cls).__new__(cls, *args, **kwargs)

... obj.__dict__ = cls._namespace

... return obj

...

>>> class Testing(Borg, Base):

... pass

...

>>> Testing()

Borg

Base

<__main__.Testing object at 0x...>

>>> class Testing(Base, Borg):

... pass

...

Chapter 6 Object Management

274

>>> Testing()

Borg

Base

<__main__.Testing object at 0x...>

>>> a = Testing()

Borg

Base

>>> b = Testing()

Borg

Base

>>> a.attribute = 'value'

>>> b.attribute

'value'

Now, Borg comes first in the most common situations, without any unusual

requirements on any classes that operate alongside them. There’s still one problem with

this implementation, however, and it’s not very obvious from this example. As a mixin,

Borg could be applied in any class definition, and you might expect that its namespace

behavior would be limited to that defined class and its subclasses.

Unfortunately, that’s not what would happen. Because the _namespace dictionary is

on Borg itself, it’ll be shared among all the classes that inherit from Borg at all. In order to

break that out and apply it only to those classes where Borg is applied, a slightly different

technique is necessary.

Because the __new__() method receives the class as its first positional argument,

the Borg mixin can use that object as a namespace on its own, thereby splitting up the

managed dictionary into individual namespaces, with one for each class that is used. In a

nutshell, Borg.__new__() must create a new dictionary for each new class it encounters,

assigning it to a value in the existing _namespace dictionary, using the class object as its key:

>>> class Borg:

... _namespace = {}

... def __new__(cls, *args, **kwargs):

... obj = super(Borg, cls).__new__(cls, *args, **kwargs)

... obj.__dict__ = cls._namespace.setdefault(cls, {})

Chapter 6 Object Management

275

... return obj

...

>>> class TestOne(Borg):

... pass

...

>>> class TestTwo(Borg):

... pass

...

>>> a = TestOne()

>>> b = TestOne()

>>> a.spam = 'eggs'

>>> b.spam

'eggs'

>>> c = TestTwo()

>>> c.spam

Traceback (most recent call last):

 ...

AttributeError: 'TestTwo' object has no attribute 'spam'

>>> c.spam = 'burger'

>>> d = TestTwo()

>>> d.spam

'burger'

>>> a.spam

'eggs'

As you can see, by using cls as a kind of namespace of its own, we can

compartmentalize the managed values on a per-class basis. All instances of TestOne

share the same namespace, whereas all instances of TestTwo share a separate

namespace, so there’s never any overlap between the two.

�Example: Self-Caching Properties
Even though attributes are the primary means of accessing an object’s namespace

dictionary, remember from Chapter 4 that attribute access can be customized using

special methods, such as __getattr__() and __setattr__(). Those methods are what

Python actually uses when accessing an attribute, and it’s up to those methods to look

Chapter 6 Object Management

276

things up in the namespace dictionary internally. If you were to define them in pure

Python, they’d look a lot like this:

class object:

 def __getattr__(self, name):

 try:

 return self.__dict__[name]

 except KeyError:

 raise AttributeError('%s object has no attribute named %s'

 % (self.__class__.__module__, name))

 def __setattr__(self, name, value):

 self.__dict__[name] = value

 def __delattr__(self, name):

 try:

 del self.__dict__[name]

 except KeyError:

 raise AttributeError('%s object has no attribute named %s'

 % (self.__class__.__module__, name))

As you can see, every access to the attribute performs a lookup in the namespace,

raising an error if it wasn’t there. This means that in order to retrieve an attribute, its

value must have been created and stored previously. For most cases this behavior is

appropriate, but in some cases the attribute’s value can be a complex object that’s

expensive to create, and it might not get used very often, so it’s not very advantageous to

create it along with its host object.

One common example of this situation is an Object-Relational Mapping (ORM) sitting

between application code and a relational database. When retrieving information about

a person, for instance, you’d get a Person object in Python. That person might also have

a spouse, children, a house, an employer, or even a wardrobe filled with clothing, all of

which could also be represented in the database as related to the person you’ve retrieved.

If we were to access all of that information as attributes, the simple approach

described previously would require all of that data to be pulled out of the database every

time a person is retrieved. Then, all of that data must be collected into separate objects

for each of the types of data: Person, House, Company, Clothing, and probably a host

Chapter 6 Object Management

277

of others. Worse yet, each of those related objects has other relationships that would

be accessible as attributes, which can quickly seem like you need to load up the entire

database every time a query is made.

Instead, the obvious solution is to load that information only when requested. By

keeping track of a unique identifier for the person, along with a set of queries that know

how to retrieve the related information, methods can be added that will be able to

retrieve that information when necessary.

Unfortunately, methods are expected to perform their task every time they’re

called. If you need the person’s employer, for example, you’d have to call a Person.get_

employer() method, which would make a query in the database and return the result.

If you call the method again another query is made, even though it’s often unnecessary.

This could be avoided by storing the employer as a separate variable, which could be

reused instead of calling the method again, but that doesn’t hold up once you start

passing the Person object around to different functions that might have different needs.

Instead, a more preferable solution would be to make an attribute that starts out with

as little information as possible—perhaps even none at all. Then, when that attribute

is accessed, the database query is made, returning the appropriate object. This related

object can then be stored in the main object’s namespace dictionary, where it can be

accessed directly later on, without having to hit the database again.

Querying a database when accessing an attribute is a fairly easy task, actually.

Applying the @property decorator to a method will produce the desired effect, calling

the function whenever the attribute is accessed. Caching its return value requires a bit

more finesse, however, but it’s really fairly simple: simply overwrite the existing value if

there’s already one in the object’s namespace or create a new one otherwise.

This could be simply added into the behavior of an existing property, as it only

requires a few extra lines of code to support. Here’s all it would take:

class Example:

 @property

 def attribute(self):

 if 'attribute' not in self.__dict__:

 # Do the real work of retrieving the value

 self.__dict__['attribute'] = value

 return self.__dict__['attribute']

Chapter 6 Object Management

278

Caution  When caching property values like this, be careful to check that
the computed value shouldn’t change based on the value of other attributes.
Computing a full name based on first and last names, for example, is a poor
candidate for caching because changing the first name or last name should change
the value of the full name as well; caching would prevent incorrect behavior.

Notice, however, that this really just performs a little work before the real code and

a little bit afterward, making it an ideal task for a decorator. Here’s what that decorator

could look like:

import functools

def cachedproperty(name):

 def decorator(func):

 @property

 @functools.wraps(func)

 def wrapper(self):

 if name not in self.__dict__:

 self.__dict__[name] = func(self)

 return self.__dict__[name]

 return wrapper

 return decorator

Once applied to a function, cachedproperty() will work like a standard property,

but with the caching behavior applied automatically. The one difference you’ll

notice, however, is that you must supply the name of the attribute as an argument to

cachedproperty() in addition to naming the function that you’re decorating. Assuming

you typed in the previous function, here’s how it would look:

>>> class Example:

... @cachedproperty('attr')

... def attr(self):

Chapter 6 Object Management

279

... print('Getting the value!')

... return 42

...

>>> e = Example()

>>> e.attr

Getting the value!

42

>>> e.attr

42

Why must the name be supplied twice? The problem, as mentioned in previous

chapters, is that descriptors, including properties, don’t get access to the names they’re

given. Because the cached value is stored in the object namespace according to the

name of the attribute, we need a way to pass that name into the property itself. This is a

clear violation of DRY, however, so let’s see what other techniques are available and what

their pitfalls would be.

One option would be to store a dictionary on the cached property descriptor directly,

using object instances as keys. Each descriptor would get a unique dictionary, and

each key would be a unique object, so you’d be able to store as many values as you have

objects that have the attribute attached:

def cachedproperty(func):

 values = {}

 @property

 @functools.wraps(func)

 def wrapper(self):

 if self not in values:

 values[self] = func(self)

 return values[self]

 return wrapper

This new decorator allows you to cache an attribute without having to specify the

name. If you’re skeptical about it, however, you might wonder about storing those values

in a single dictionary for all objects, without referencing the name of the attribute. After

Chapter 6 Object Management

280

all, that would seem to mean that if you had more than one cached property on a single

object, their values would overwrite each other and you’d have all sorts of confusion.

That’s not a problem in this situation, however, because the dictionary is created

inside of the cachedproperty() function, which means each property gets its own

dictionary name values. This way there’s no chance of collision, no matter how many

cached properties you place on an object. The dictionary will be shared only if you

assign an existing property to a new name without redefining it. In that case, the second

name should always behave exactly like the first, and the cache described here will still

maintain that behavior.

However, there is one other problem with this property that may not be so obvious.

Believe it or not, this contains a memory leak, which could be severely harmful if it gets

used in a large part of an application without being fixed (this will be discussed shortly in

more detail).

In some cases the best fix will be to simply go back to the first form described in

this chapter, where the attribute’s name is provided explicitly. Because the name isn’t

provided to a descriptor, this approach would require the use of a metaclass. Of course,

metaclasses are overkill for simple situations like this, but in cases in which a metaclass

is used for other reasons anyway, having the name available can be quite useful.

Chapter 11 showcases a framework that uses the metaclass approach to great effect.

In order to avoid using a metaclass, it’s first necessary to understand what the

memory leak is, why it’s happening, and how we can avoid it. It all has to do with how

Python removes objects from memory when they’re no longer in use, a process called

garbage collection.

�Garbage Collection
Unlike lower-level languages like C, Python doesn’t require you to manage your own

memory usage. You don’t have to allocate a certain amount of memory for an object or

remove your claim on that memory when the object is no longer needed. In fact, you

often don’t even need to worry about how much memory an object will take up or how

to determine when it’s no longer needed. Python handles those gritty details behind the

scenes.

Garbage collection is easy to understand: Python deletes any objects that are

identified as garbage, clearing whatever memory they were using so that memory is

available for other objects. Without this process every object created would stay in

Chapter 6 Object Management

281

memory forever, and you’d slowly—or quickly—run out of memory, at which point

everything comes to a grinding halt.

As you probably noticed, effective garbage collection first requires the ability

to reliably identify an object as garbage. Even with the ability to remove garbage

from memory, failing to recognize garbage will cause memory leaks to creep into

an application. The last example in the previous section contains a simple situation

that can cause Python to not notice when an object becomes garbage, so we need to

examine how that gets determined. It is important to note that because Python is not a

strongly typed language (you do not explicitly declare a variables type), variables that are

changed during a command session are rereferenced if you redeclare the variable with a

previously used value during that session. The next terminal prompt example shows this

by showing the location of the variable in memory, and as you will note it changes back

with the original value:

>>> x=10

>>> type(x)

<class 'int'>

>>> id(x) #location of x

1368047320

>>> x="foobar"

>>> type(x)

<class 'str'>

>>> id(x) #location of x as a string instead of int

62523328

>>> x=10

>>> id(x) #back to the original location of x as an int at 10

1368047320

�Reference Counting
At a high level, an object is considered garbage when it’s no longer accessible by any

code. In order to determine whether an object is accessible, Python counts how many

data structures refer to the object at any given time.

Chapter 6 Object Management

282

The most obvious way to reference an object is to assign it in any namespace,

including modules, classes, objects, and even dictionaries. Other types of references

include any kind of container object, such as a list, tuple, or set. Even less obvious is that

every function has its own namespace, which can contain references to objects, even

in the case of closures. Essentially, anything that provides access to an object increases

its reference count. In turn, removing an object from such a container decreases its

reference count.

To illustrate, here are a few examples of situations that would create new references:

>>> a = [1, 2, 3]

>>> b = {'example': a}

>>> c = a

After executing these three lines of code, there are now three references to the list [1,

2, 3]. Two of them are fairly obvious, when it was assigned to a and later reassigned

to c. The dictionary at b also has a reference to that list, however, as the value of its

'example' key. That dictionary, in turn, has just one reference, having been assigned as

the value of b.

The del statement is perhaps the most obvious way to remove a reference to an

object, but it’s not the only option. If you replace a reference to one object with a

reference to another (rebind it), you’ll also implicitly remove the reference to the first

object. For example, if we were to run these two lines of code, we end with just one

reference to the list shown as a:

>>> del c

>>> a = None

Even though it’s no longer available in the root namespace, that list is still available

as part of the dictionary, which itself is still accessible as b. Therefore, they each have

just one reference, and neither will be garbage collected. If you were to del b right now,

the reference count for the dictionary becomes zero and will be eligible for garbage

collection. Once that’s been collected, the reference count for the list is reduced to zero

and is collected as garbage.

Chapter 6 Object Management

283

Tip B y default, Python simply clears out the memory that was occupied by the
object. You don’t need to do anything in order to support that behavior, and it works
just fine for most cases. In the rare event that an object has some special needs to
address when it’s deleted, the __del__() method can provide this customization.

Instead of deleting objects, there are a number of other things you can do with

them as well. Here’s a look at a very different situation that can alter the way reference

counting works.

�Cyclical References
Consider the scenario in which you have a dictionary that refers to a list as one of its values.

Because lists are containers as well, you could actually append the dictionary as a value to

the list. What you end up with is a cyclical reference, where each object refers to the other.

To extend the previous examples, let’s examine what would happen with this line of code:

>>> b['example'].append(b)

Prior to this the dictionary and the list had one reference each, but now the

dictionary gains another reference by being included as a member of the inner list.

This situation will work just fine in normal operation, but it does present an interesting

problem when it comes to garbage collection.

Remember that using del b would decrease the reference count of the dictionary by

one, but now that the list also contains a reference to that same dictionary, its reference

count goes from two to one, rather than dropping to zero. With a reference count above

zero, the dictionary wouldn’t be considered garbage and it would stay in memory, along

with its reference to the list. Therefore, the list also has a reference count of one, keeping

it in memory.

What’s the problem here? Well, after you delete the reference at the variable b, the

references those two objects have to each other are now the only references they have in

the entire Python interpreter. They’re completely cut off from any code that will continue

executing, but because garbage collection uses reference counts, they’ll stay in memory

forever unless something else is done.

Chapter 6 Object Management

284

To address this, Python’s garbage collection comes with code designed to spot these

structures when they occur, so they can be removed from memory as well. Any time a set

of objects is referenced only by other objects in that set—and not from anywhere else in

memory—it's flagged as a reference cycle. This allows the garbage collection system to

reclaim the memory it was using.

Things start to get really tricky when you implement __del__(), however. Ordinarily,

__del__() works just fine because Python can intelligently figure out when to delete

the object. Therefore, __del__() can be executed in a predictable manner, even when

multiple objects are deleted within a short span.

When Python encounters a reference cycle that’s inaccessible from any other code, it

doesn’t know the order to delete the objects in that cycle. This becomes a problem with

the custom __del__() method, because it could act on related objects as well. If one

object is part of an orphaned reference cycle, any related objects are all also scheduled

for deletion, so which one should fire first?

After all, each object in the cycle could reference one or more of the other objects in

that same cycle. Without an object to be considered first, Python would have to simply

guess which one it should be. Unfortunately, that leads to behavior that is not only

unpredictable but also unreliable across the many times it could occur.

Therefore, Python has to take one of only two predictable, reliable courses of action.

One option would be to simply ignore the __del__() method and delete the object

just as it would if the __del__() method wasn’t found. Unfortunately, that changes the

behavior of the object based on things outside that object’s control.

The other option, which Python does take, is to leave the object in memory. This

avoids the problem of trying to order a variety of __del__() methods while maintaining

the behavior of the object itself. The problem, however, is that this is in fact a memory leak,

and it’s only there because Python can’t make a reliable assumption about your intentions.

IN THE FACE OF AMBIGUITY, REFUSE THE TEMPTATION TO GUESS

This situation with __del__() in a cyclical reference is a perfect example of ambiguity

because there’s no clear way to handle the situation. Rather than guess, Python sidesteps it by

simply leaving the objects in memory. It’s not the most memory-efficient way to address the

problem, but consistency is far more important in situations like this. Even though it potentially

means more work for the programmer, that extra work results in much more explicit, reliable

behavior.

Chapter 6 Object Management

285

There are three ways you can avoid this problem. First, you can avoid having any

objects with __del__() methods involved in any cyclical references. The easiest way to

accomplish that is to avoid the __del__() method entirely. Most of the common reasons

to customize an object’s teardown are more appropriately handled using a context

manager.

In those rare cases in which __del__() proves necessary, the second option is to

simply avoid having the objects appear in reference cycles. That’s not always easy to do,

however, because it requires you to have complete control over all the ways the object

might be used. That might work for some highly internalized implementation details, but

if it’s part of a public interface, it’s probably not an option.

Finally, if you can’t prevent the cycles from being orphaned, Python does provide a

way that you can still detect them and have a chance to clean them up on a regular basis.

Once all other references are removed and the garbage collection cycle runs, Python

keeps the entire cycle alive by placing each object involved into a special list, available in

the gc module.

The gc module provides a few options that are useful for getting into the guts of

the garbage collection system, but the factor at hand here is the garbage attribute. This

attribute contains objects that are otherwise unreachable but are part of a cycle that

includes __del__() somewhere along the line. Accessing them as part of gc.garbage

allows you to try to break the cycle after the fact, which will allow their memory to be

relinquished.

Consider the following example, which also shows the usage of gc.collect(),

a module-level function that manually runs the garbage collector so that cyclical

references are detected and placed in gc.garbage accordingly:

>>> import gc

>>> class Example:

... def __init__(self, value):

... self.value = value

... def __repr__(self):

... return 'Example %s' % self.value

... def __del__(self):

... print('Deleting %r' % self)

...

Chapter 6 Object Management

286

>>> e = Example(1)

>>> e

Example 1

>>> del e

>>> gc.collect()

Deleting Example 1

0

Now let's try it with a cyclical reference

>>> e = Example(2)

>>> e.attr = e

>>> del e

>>> gc.collect()

2

>>> gc.garbage

From here, we can break the cycle and remove it from memory

>>> e = gc.garbage[0]

>>> del e.attr

>>> del e

>>> gc.collect()

0

>>> gc.garbage

Don't forget to clear out gc.garbage as well

>>> gc.garbage[:] = []

Deleting Example 2

>>> gc.garbage

[]

In the real world, however, __del__() is rarely needed, and it’s even more rare to run

into very severe problems with cyclical references. Far more common, however, is the

need to adjust how references themselves are created and what to do when you don’t

really need a reference all your own.

Chapter 6 Object Management

287

�Weak References
As we’ve seen, assigning an object creates a reference to it, and those references keep

that object alive in memory. But what happens when you need to access an object but

you don’t care to keep it alive? For this, Python provides the concept of a weak reference:

you get a reference to the object without increasing its reference count.

By getting a reference without increasing the object’s reference count, you can

perform operations on that object without getting in the way of how it would ordinarily

be deleted. This can be very important for applications that register objects for use later.

The registry itself keeps references to all the registered objects, which ordinarily wouldn’t

get deleted, because the application that knows about the object typically doesn’t know

anything about the registration system.

Creating a weak reference is fairly simple, thanks to the weakref module in the

standard library. The ref() class within that module creates a weak reference to

whatever object is passed into it, allowing that reference to be used later. To provide

access to the original object, a weak reference is a callable object that takes no arguments

and returns the object.

In order to see what was supposed to happen, we have to first store a reference to

that object outside the weak reference. That way we cannot only create a weak reference

that has access to the object, but we can then delete the additional reference to see how

the weak reference behaves:

>>> import weakref

>>> class Example:

... pass

...

>>> e = Example()

>>> e

<__main__.Example object at 0x...>

>>> ref = weakref.ref(e)

>>> ref

<weakref at ...; to 'Example' at ...>

>>> ref()

<__main__.Example object at 0x...>

Chapter 6 Object Management

288

>>> del e

>>> ref

<weakref at ...; dead>

>>> ref()

>>>

As you can see, as long as there’s at least one other reference keeping the object alive,

the weak reference has easy access to it. Once the object is deleted elsewhere, the weak

reference object itself is still available, but it simply returns None when called. We could make

the example even simpler as well, by passing a new object directly into the weak reference:

>>> ref = weakref.ref(Example())

>>> ref

<weakref at ...; dead>

>>> ref()

>>>

Wait, what just happened? Where did the Example object go? This simple example

illustrates one of the most common problems you’re likely to encounter with weak

references. Because you’re instantiating the object as part of the call to ref(), the only

reference that gets created for that object is inside of ref().

Ordinarily that would be fine, but that particular reference doesn’t help keep the

object alive, so the object is immediately marked for garbage collection. The weak

reference provides access to the object only if there’s something else to keep it alive, so

in this case, the reference simply returns None when called. That situation may seem

obvious, but there are a few others that may come up when you least expect them.

One such situation that can come up involves creating a weak reference inside of a

function:

>>> def example():

... e = Example()

... ref = weakref.ref(e)

Chapter 6 Object Management

289

... return ref

...

>>> e = example()

>>> e

<weakref at ...; dead>

>>> e()

>>>

As you can see, even though the example() function stores a strong reference

inside itself, the weak reference goes dead immediately. The problem here is that every

function gets a brand-new namespace every time it executes, and it’s deleted when the

function finishes, because execution is the only thing keeping it alive.

By default, all assignments in the function take place in that namespace, so once it’s

destroyed any objects assigned are destroyed as well unless they have references stored

elsewhere. In this case the only other reference to the Example object is weak, so the

object gets destroyed once the example() function returns.

The recurring theme here is that weak references can cause problems when used

along with any kind of implicit reference removal. We’ve discussed two already, but there

are other similar situations as well. For example, a for loop automatically assigns at

least one variable each time the loop begins, overwriting any values that were previously

assigned to the same name. Because that also destroys the reference to whatever object

was used in the previous iteration, a weak reference created inside the loop isn’t enough

to keep that object alive.

�Pickling
So far we’ve only discussed how objects are handled inside of Python, but it’s often

necessary to exchange data with external processes such as files, databases, and network

protocols. Most of the time the structure of that data outside of Python is already

established, so your application will need to adhere to that structure. Other times,

however, the only reason to send the data into something else is to store it for a while and

read it back into Python later. The Pickle command is used to convert a Python object

such as a list or dictionary into a persistent character stream that can be reloaded later to

recreate the object for use in a different Python application. It is used for serializing and

deserializing a Python object to and from a file.

Chapter 6 Object Management

290

In this case, the external system really doesn’t care what your data is or how it’s

structured. As long as it’s a data type that system can understand, it should be usable.

You should note that def functions and classes cannot be pickled. Because the most

flexible and widely supported data type is a string, it’s necessary to export Python’s data

structures to strings. For this, Python provides the pickle module. PEP 3137 has some

very interesting details on byte types and strings by Guido.

In the real world, pickling is a way of preserving food so it can be stored for long

periods of time and consumed much later. Without preservation techniques like

pickling, food would have to be consumed almost immediately after it’s produced. The

same is true for data: it’s easy to consume shortly after it’s produced, but saving it for

later requires some extra work.

The action of pickling is performed by using the pickle module’s dump() or dumps()

functions. Both of these functions can take any object as the first argument, but they

differ in where they output the string representing that object. In the case of dump(),

a second required argument specifies a writable file-like object that the function will

use as the destination for the pickled value. The dumps() function, by contrast, simply

returns the string directly, allowing the code that called the function to decide where to

put it. Beyond that the two functions are identical, and the examples throughout the rest

of this section will use dumps(), as it shows the output much more easily:

>>> import pickle

>>> pickle.dumps(1)

b'\x80\x03K\x01.'

>>> pickle.dumps(42)

b'\x80\x03K*.'

>>> pickle.dumps('42')

b'\x80\x03X\x02\x00\x00\x0042q\x00.'

As you can see, the pickled output can contain more information than the original

objects value because it also needs to store the type, so the object can be reconstituted

later.

Once a value has been pickled, the resulting string can be stored or passed around

however your application requires. Once it’s time to retrieve the object back into Python,

the pickle module provides two addition functions, load() and loads(). The difference

Chapter 6 Object Management

291

between the two is similar to the dump functions: load() accepts a readable file-like

object, while loads() accepts a string:

>>> pickled = pickle.dumps(42)

>>> pickled

b'\x80\x03K*.'

>>> pickle.loads(pickled)

42

Dumping objects into pickled strings and loading them back again are just the

external tasks, however. Like in the many protocols described previously, Python

allows individual objects to control how they’re pickled and restored. Because pickling

represents a sort of snapshot of the object at the time it was pickled, these functions are

named to refer to the state of the object at a given time.

The first method to consider is __getstate__(), which controls what gets included

in the pickled value. It doesn’t take any additional arguments and returns whatever value

Python should include in the pickled output. For complex objects the value will typically

be a dictionary or perhaps a tuple, but it’s completely up to each class to define what

values are pertinent to the object.

For example, a currency conversion class might contain a number to use as the

current amount as well as a string to indicate the currency being represented. In

addition, it would likely have access to a dictionary of current exchange rates, so that

it can convert the amount to a different currency. If a reference to that dictionary were

placed on the object itself, Python would pickle it all together:

>>> class Money:

... def __init__(self, amount, currency):

... self.amount = amount

... self.currency = currency

... self.conversion = {'USD': 1, 'CAD': .95}

... def __str__(self):

... return '%.2f %s' % (self.amount, self.currency)

Chapter 6 Object Management

292

... def __repr__(self):

... return 'Money(%r, %r)' % (self.amount, self.currency)

... def in_currency(self, currency):

... �ratio = self.conversion[currency] / self.conversion[self.

currency]

... return Money(self.amount * ratio, currency)

...

>>> us_dollar = Money(250, 'USD')

>>> us_dollar

Money(250, 'USD')

>>> us_dollar.in_currency('CAD')

Money(237.5, 'CAD')

>>> pickled = pickle.dumps(us_dollar)

>>> pickled

b'\x80\x03c__main__\nMoney\nq\x00)\x81q\x01}q\x02(X\x08\x00\x00\

x00currencyq\x03

X\x03\x00\x00\x00USDq\x04X\x06\x00\x00\x00amountq\x05K\xfaX\n\x00\x00\

x00convers

ionq\x06}q]\x07(h\x04Kx01X\x03\x00\x00\x00CADq\x08G?\xeeffffffuub.'

As you can see, this is already quite an expansive pickled value, and that’s with just

having two currencies stored in the dictionary. Because the currency conversion values

aren’t specific to the instance at hand—and they’ll change over time anyway—there’s no

reason to store them in the pickled string, so we can use __getstate__() to provide just

those values that are actually important.

If you look closely at the pickled output of the existing Money object, you’ll notice that

the attribute names are also included because Python doesn’t know if they’re important.

In lieu of any explicit instructions from __getstate__(), it includes as much information

as possible, to be sure the object can be recreated later. Because we already know that

there are just two values that are necessary, we can return just those two values as a tuple:

>>> class Money:

... def __init__(self, amount, currency):

... self.amount = amount

Chapter 6 Object Management

293

... self.currency = currency

... self.conversion = {'USD': 1, 'CAD': .95}

... def __str__(self):

... return '%.2f %s' % (self.amount, self.currency)

... def __repr__(self):

... return 'Money(%r, %r)' % (self.amount, self.currency)

... def __getstate__(self):

... return self.amount, self.currency

... def in_currency(self, currency):

... �ratio = self.conversion[currency] / self.conversion[self.

currency]

... return Money(self.amount * ratio, currency)

...

>>> us_dollar = Money(250, 'USD')

>>> us_dollar

Money(250, 'USD')

>>> us_dollar.in_currency('CAD')

Money(237.5, 'CAD')

>>> pickled = pickle.dumps(us_dollar)

>>> pickled

b'\x80\x03c__main__\nMoney\nq\x00)\x81q\x01K\xfaX\x03\x00\x00\x00USDq\x02\

x86q\x

03b.'

As you can see, this cuts the size of the pickled output to just over a third of what

it was before. In addition to being more efficient, it’s more practical because it doesn’t

contain unnecessary information. Other attributes that should avoid being pickled are

initialization values, system-specific details, and other transient information that are

simply related to the object’s value rather than being part of that value directly.

That’s only half of the equation, however. Once you have customized the pickled

output of an object, it can’t be retrieved back into a Python object without also

customizing that side of things. After all, by storing the value as a tuple, we’ve removed

some of the hints Python used to rebuild the object, so we have to provide an alternative.

As you might have guessed, the complement to __getstate__() is __setstate__().

The __setstate__() method accepts just one additional argument: the state of the

object to restore. Because __getstate__() can return any object to represent state,

Chapter 6 Object Management

294

there’s no specific type that will also be passed into __setstate__(). It’s not at all

random, however; the value passed into __setstate__() will be exactly the same value

that was returned from __getstate__().

In the case of our currency converter, the state is represented by a 2-tuple containing

the amount and currency:

>>> class Money:

... def __init__(self, amount, currency):

... self.amount = amount

... self.currency = currency

... self.conversion = {'USD': 1, 'CAD': .95}

... def __str__(self):

... return '%.2f %s' % (self.amount, self.currency)

... def __repr__(self):

... return 'Money(%r, %r)' % (self.amount, self.currency)

... def __getstate__(self):

... return self.amount, self.currency

... def __setstate__(self, state):

... self.amount = state[0]

... self.currency = state[1]

... def in_currency(self, currency):

... �ratio = self.conversion[currency] / self.conversion[self.

currency]

... return Money(self.amount * ratio, currency)

...

>>> us_dollar = Money(250, 'USD')

>>> pickled = pickle.dumps(us_dollar)

>>> pickle.loads(pickled)

Money(250, 'USD')

And with that, the Money class now fully controls how its value gets pickled and

unpickled. That should be the end of it, right? Well, just to be sure, let’s test that in_

currency() method again, because that’s an important aspect of its behavior:

Chapter 6 Object Management

295

>>> us_dollar = pickle.loads(pickled)

>>> us_dollar

Money(250, 'USD')

>>> us_dollar.in_currency('CAD')

Traceback (most recent call last):

 ...

AttributeError: 'Money' object has no attribute 'conversion'

So why didn’t this work? When unpickling an object, Python doesn’t call __init__()

along the way because that step is only supposed to take place when setting up new

objects. Because the pickled object was already initialized once before the state was

saved, it would usually be wrong to try to initialize it again. Instead, you can include

initialization behaviors like that inside of __setstate__() to ensure that everything is

still properly in place:

>>> class Money:

... def __init__(self, amount, currency):

... self.amount = amount

... self.currency = currency

... self.conversion = self.get_conversions()

... def __str__(self):

... return '%.2f %s' % (self.amount, self.currency)

... def __repr__(self):

... return 'Money(%r, %r)' % (self.amount, self.currency)

... def __getstate__(self):

... return self.amount, self.currency

... def __setstate__(self, state):

... self.amount = state[0]

... self.currency = state[1]

... self.conversion = self.get_conversions()

... def get_conversions(self):

... return {'USD': 1, 'CAD': .95}

Chapter 6 Object Management

296

... def in_currency(self, currency):

... �ratio = self.conversion[currency] / self.conversion[self.

currency]

... return Money(self.amount * ratio, currency)

...

>>> us_dollar = Money(250, 'USD')

>>> pickled = pickle.dumps(us_dollar)

>>> pickle.loads(pickled)

Money(250, 'USD')

>>> us_dollar.in_currency('CAD')

Money(237.5, 'CAD')

Of course, all of this is only useful if you’re copying an object to be stored or sent to

a non-Python consumer outside. If all you’ll need to do is work with it inside of Python

itself, you can simply copy the object internally.

�Copying
Mutable objects come with one potentially prominent drawback: changes made to an

object are visible from every reference to that object. All mutable objects work this way

because of how Python references objects, but that behavior isn’t always the most useful.

In particular, when working with objects passed in as arguments to a function, the code

that called the function will often expect the object to be left unchanged. If the function

needs to make modifications in the course of its work, you’ll need to take some extra care.

In order to make changes to an object without those changes showing up elsewhere,

you’ll need to copy the object first. Some objects provide a mechanism for this right out of

the box. Lists, for instance, support slicing to retrieve items from the list into a new list. That

behavior can be used to get all the items at once, creating a new list with those same items.

Simply leave out the start and end values, and the slice will copy the list automatically:

>>> a = [1, 2, 3]

>>> b = a[:]

>>> b

[1, 2, 3]

Chapter 6 Object Management

297

>>> b.append(4)

>>> b

[1, 2, 3, 4]

>>> a

[1, 2, 3]

Similarly, dictionaries have their own way to copy their contents, although not using

a syntax like lists use. Instead, dictionaries provide a copy() method, which returns a

new dictionary with all the same keys and values:

>>> a = {1: 2, 3: 4}

>>> b = a.copy()

>>> b[5] = 6

>>> b

{1: 2, 3: 4, 5: 6}

>>> a

{1: 2, 3: 4}

Not all objects include this type of copying behavior internally, but Python allows

you to copy any object, even if it doesn’t have its own copying mechanism.

�Shallow Copies
To get a copy of any arbitrary object, Python provides a copy module. The simplest

function available in that module is also named copy(), and it provides the same basic

behavior as the techniques shown in the previous section. The difference is that rather

than being a method on the object you want to copy, copy.copy() allows you to pass in

any object and get a shallow copy of it. Not only can you copy a wider variety of objects,

you can do so without needing to know anything about the objects themselves:

>>> import copy

>>> class Example:

... def __init__(self, value):

Chapter 6 Object Management

298

... self.value = value

...

>>> a = Example('spam')

>>> b = copy.copy(a)

>>> b.value = 'eggs'

>>> a.value

'spam'

>>> b.value

'eggs'

Of course, this is just a shallow copy. Remember from the beginning of this chapter

that an object is really the combination of three components: an identity, a type, and

a value. When you make a copy of an object, what you’re really doing is creating a new

object with the same type, but with a new identity and a new—but identical—value.

For mutable objects, that value typically contains references to other objects, such as

the items in a list or the keys and values in a dictionary. The value for the copied object

may have a new namespace, but it contains all the same references. Therefore, when you

make changes to a member of the copied object, those changes get reflected in all other

references to that same object, just like any other namespace. To illustrate, consider a

dictionary that contains lists as its values:

>>> a = {'a': [1, 2, 3], 'b': [4, 5, 6]}

>>> b = a.copy()

>>> a['a'].append(4) #Copy to a and b

>>> b['b'].append(7) #Copy to a and b

>>> a

{'a': [1, 2, 3, 4], 'b': [4, 5, 6, 7]}

>>> b

{'a': [1, 2, 3, 4], 'b': [4, 5, 6, 7]}

As you can see, the copy only goes one level deep, so it’s considered to be “shallow.”

Beyond the object’s own namespace only references get copied, not the objects themselves.

This is true for all types of objects, not just the lists and dictionaries shown here. In fact,

custom objects can even customize this behavior by providing a __copy__() method.

Chapter 6 Object Management

299

The copy() function will call __copy__() with no arguments if it exists, so that method can

determine which values get copied and how they’re handled.

Typically, shallow copies are useful when the first layer is the only part of a value you

need to change, particularly when it makes more sense to specifically keep the rest of the

objects intact. The basic example case for this is sorting a list, where a new list must be

created in order to sort the items, but those items themselves should remain as they were.

To illustrate, consider a custom implementation of Python’s built-in sorted()

method, which sorts the items into a new list while keeping the original unchanged:

>>> def sorted(original_list, key=None):

... copied_list = copy.copy(original_list)

... copied_list.sort(key=key)

... return copied_list

...

>>> a = [3, 2, 1]

>>> b = sorted(a)

>>> a

[3, 2, 1]

>>> b

[1, 2, 3]

Of course, this still relies on the object passed in being a list, but it illustrates how

shallow copies can be useful. In other situations you may need to modify the whole

structure as deep as you can get.

�Deep Copies
It’s often necessary for algorithms to need to reorganize data in large structures in order

to solve a particular problem. Sorting, indexing, aggregating, and rearranging data are all

common tasks to perform in these more complex operations. Because the goal is simply

to return some analysis of that data, the original structure needs to remain intact. We

need a deeper copy than what we’ve examined so far.

For these situations Python’s copy module also contains a deepcopy() method,

which copies not only the original structure but also the objects that are referenced by

Chapter 6 Object Management

300

it. In fact, it looks recursively through all those objects for any other objects, copying

each in turn. This way you’re free to modify the copy however you like, without fear of

modifying the original or any modifications to the original being reflected in the copy:

>>> original = [[1, 2, 3], [1, 2, 3]]

>>> shallow_copy = copy.copy(original)

>>> deep_copy = copy.deepcopy(original)

>>> original[0].append(4)

>>> shallow_copy

[[1, 2, 3, 4], [1, 2, 3]]

>>> deep_copy

[[1, 2, 3], [1, 2, 3]]

It’s not truly recursive, however, because full recursion would sometimes make for

infinite loops if the data structure had a reference to itself at any time. Once a particular

object is copied Python makes a note of it, so that any future references to that same

object can simply be changed to refer to the new object rather than create a brand-new

one every time (deepcopy function).

Not only does that avoid recursively copying the same object if it’s somehow a

member of itself; it also means that any time the same object is found more than once

in the structure, it will only be copied once and referenced as many times as necessary.

That means the copied structure will have the same behavior as the original with regard

to how changes are reflected in referenced objects:

>>> a = [1, 2, 3]

>>> b = [a, a]

>>> b

[[1, 2, 3], [1, 2, 3]]

>>> b[0].append(4)

>>> b

[[1, 2, 3, 4], [1, 2, 3, 4]]

>>> c = copy.deepcopy(b)

>>> c

Chapter 6 Object Management

301

[[1, 2, 3, 4], [1, 2, 3, 4]]

>>> c[0].append(5)

>>> c

[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]

This is a must for algorithms that rely on objects being present in multiple places of

a structure. Each copy will behave the same as the original in that regard, so there’s no

worry about how many times it gets copied before an algorithm starts working with it.

One other problem that can come up with deep copies is that Python doesn’t know

what might or might not be important, so it copies everything, which might end up being

far more than you need. In order to control that behavior, custom objects can specify the

deep copying behavior separately from shallow copies.

By supplying a __deepcopy__() method, an object can specify which values are

pertinent to the copy, much like how __getstate__() works for pickling. The biggest

difference from __getstate__(), and from __copy__() as well, is that __deepcopy__()

also accepts a second argument, which will be a dictionary used to manage the identity

of objects during copies. Because the deep copy should only copy each object once and

use references any other time that object is used, this identity namespace provides a way

to keep track of which objects are indeed the same because it maps their identities to the

objects themselves.

�Exciting Python Extensions: Beautiful Soup
Beautiful Soup is a de facto standard library for working with HTML and XML

documents. It is a file parser or screen-scraper that gives you great control in shaping

files to meet your data extraction needs. In Chapter 5 you used Scrapy for web scraping.

The documents you obtained can be easily cleaned to remove markup language with

Beautiful Soup. This is a great library to use in conjunction with other Python extensions

such as Scrapy. Consider that you would obtain the data with a tool like Scrapy and then

clean it with Beautiful Soup. Beautiful Soup has some powerful searching capabilities as

well, but let’s just focus on the parsing ability.

Chapter 6 Object Management

302

�Installing Beautiful Soup
Documentation for the extension is available at https://www.crummy.com/software/

BeautifulSoup:

pip install beautifulsoup4 (Enter)

Of course, with other operating systems you would use the appropriate install tool;

with Elementary or Ubuntu, for example, it would be sudo apt-get name-of-package.

�Using Beautiful Soup
Make sure your install is working first by running from a Python interactive prompt:

from bs4 import BeautifulSoup (Enter)

If no errors result, then your libraries are installed. If you receive errors check that

you do not have another Python installation, such as Anaconda, or path issues.

As an example of the power of Beautiful Soup, we will take the HTML file harvested

in Chapter 5 with Scrapy and clean it up so that it is a text file only, with the markup

tags removed. This will create a file that is much better suited to data analysis such as

searching for key words or occurrences. Key in and run the following code, with the

quotes.html file we created in the previous chapter in the same folder, and you will see

raw HTML output and prettified Beautiful Soup output:

from bs4 import BeautifulSoup

path='quotes-1.html'

filedata=open(path,'r',errors='ignore')

page=filedata.read()

soup = BeautifulSoup(page, 'lxml')

print(soup.prettify()) # show raw HTML markup

print('\n\nAnd a cleaner version:\n')

print(soup.get_text()) # return plain text only

What you should see is the raw HTML text, then the cleaned-up version via Beautiful

Soup. Note that some extraneous data was left (but not much) that we could not clean

Chapter 6 Object Management

https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup

303

up via a looping structure. Next let’s only search for items that have a HTML ‘span’ tag,

count the occurrences, and print a cleaner output of only those selected items:

from bs4 import BeautifulSoup

path='quotes-1.html'

filedata=open(path,'r',errors='ignore')

page=filedata.read()

soup = BeautifulSoup(page, 'lxml')

print('\nWe found this many span tags: ',len(soup.find_all('span')))

print('\n\nShow only span tag items\n\n')

print(soup.find_all('span'))

print('------------------')

print('\nNow clean up the span tags\n\n')

for item in soup.find_all('span'):

 print(item.text)

In this last example we searched for a tag, then used an enhanced for to print

the individual items, with the tags removed via item.text. Is there more you could do

with Beautiful Soup? Certainly, but this should serve as a good stepping-off point to

experiment more.

�Taking It With You
Every application knows how to deal with objects at a basic level, but with the

techniques shown in this chapter you’ll be able to move on to managing large collections

of objects, spanning a wide variety of different types. In the next chapter, we’ll shift from

a macro-level view of objects to a micro-level examination of one specific type of object:

the humble string.

Chapter 6 Object Management

305
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_7

CHAPTER 7

Strings
Given the fundamental nature of strings in all forms of programming, it should come as

no surprise that Python’s string features can fill an entire chapter. Whether it’s interacting

with users by way of keyboard input, sending content over the Web, analyzing big data,

or participating in a Turing test,1 strings can and are used for many applications.

With all this emphasis on strings, Python makes sure to include a wide variety of

features to support them. Some of these features are built right into the string objects

themselves, while others are provided by modules in the standard library and many

third-party libraries, such as Boost, offer even more options. This chapter, however,

will focus on Python built-in string functions rather than investigating third-party

applications.

The first thing to understand about Python strings is that there are actually two

different formats to consider: bytes and Unicode strings. Let’s examine bytes first.

�Bytes
At a very basic level, a string is really just a sequence of individual bytes. In this general

sense, bytes are used for every piece of data a computer processes. Numbers, strings,

and more complex objects are all stored as bytes at some point, and anything more

structured is built on top of a sequence of bytes. In a byte string, represented in Python

by a bytes object, each character represents exactly one byte, so it’s easy to interact with

files and other interfaces to the outside world.

While standard strings—described later in the section on text—are identified as

literals simply with a pair of straight single quotes ('example'), byte string literals

include a b before the first quote. This is used in the source code as well as the repr()

output for these values:

1�See “xx,” http://propython.com/turing_test/.

http://propython.com/turing_test

306

>>> b'example' #the keyword print is assumed since it is a command prompt

statement versus a script.

b'example'

The primary use of bytes is to convey nontextual information such as numbers,

dates, sets of flags, and a number of other things. Even though Python doesn’t directly

know how to deal with those particular values, a bytes object will make sure that they

pass through unchanged, so that your own code can handle each situation appropriately.

Without any assumptions about the intentions of the data, bytes offer you maximum

flexibility, but that means you’ll need some way to convert data back and forth between

bytes and something with more meaning to your application.

�Simple Conversion: chr( ) and ord( )
At a basic level a byte is really just a number, which happens to be represented by a

character of some kind. Python considers numbers and characters to be two different

things, but their values are equivalent, so it’s fairly easy to convert between them. Given

a single byte, you can pass it into the built-in ord(#) function, which will return its

equivalent integer value:

>>> ord(b'A')

65

>>> ord(b'!')

33

>>> list(b'Example')

[69, 120, 97, 109, 112, 108, 101]

Notice what happens when iterating over a sequence of bytes. Rather than one-

character byte strings, you actually get the raw integers immediately, removing the

need for ord() at all. This works well when converting single-byte values from bytes to

numbers, but going in the other direction requires the built-in chr() function. As an

inverse to ord(), it returns a single character based on the integer value you pass in:

Chapter 7 Strings

307

>>> chr(65)

'A'

>>> chr(33)

'!'

>>> [chr(o) for o in [69, 120, 97, 109, 112, 108, 101]]

['E', 'x', 'a', 'm', 'p', 'l', 'e']

>>> “.join(chr(o) for o in [69, 120, 97, 109, 112, 108, 101])

'Example'

There’s one important thing to notice here: the string returned by chr() is a regular

string, rather than a byte string, as evidenced by the lack of a b prefix. As you’ll see in

the section on text later in this chapter, standard strings work a bit differently from byte

strings. The biggest problem for our purposes here, however, is that a standard string

doesn’t always equate directly to a single byte, so it’s possible to get things wrong. In

order to get things to work more reliably and get some extra features on top of it, we can

use the struct module.

�Complex Conversion: The Struct Module
In addition to the problem with chr() returning standard strings, a big problem with

the ord()/chr() combination is that it can only be reliably used when working with

individual bytes. When converting numbers to bytes, that limits it to values from 0 to 255.

In order to support a wider range of values and some other interesting features, Python

provides the struct module.

Similarly to how chr() and ord() represent a pair to convert values between byte

strings and native Python values, struct.pack() writes out byte strings, while struct.

unpack() reads those values back into Python. Unlike those simpler functions, however,

the struct module uses a format string to specify how values should get converted. This

format has its own sort of simple syntax to control what types of values to use and how

they work.

Because we came by struct to overcome some difficulties with chr(), we’ll start by

looking at how struct.pack() can provide the intended functionality. The format to use

for a single, unsigned byte is B, and here’s how you’d use it in practice:

Chapter 7 Strings

308

>>> import struct

>>> struct.pack(b'B', 65)

b'A'

>>> struct.pack(b'B', 33)

b'!'

>>> struct.pack(b'BBBBBBB', 69, 120, 97, 109, 112, 108, 101)

b'Example'

As you can see, the first argument is the format string itself, with one character for

each argument that should get converted into the byte string. All additional arguments

are used to provide the values that should be converted. Therefore, for each format

specifier, you’ll need to include an argument at the equivalent position.

As mentioned, B specifies an unsigned value, which means there can be no negative

values. With this you could provide values from 0 to 255, but nothing below 0. A signed

value, by contrast, allows negative values by using one of the eight bits in the byte to

identify whether the value is positive or negative. There are still 256 unique values,

but the range is shifted a bit so that half the values are on each side of the sign. With 0

being considered a positive value, a signed byte can contain values from –128 to 127. To

complement unsigned bytes, the format specifier for signed bytes is b:

>>> struct.pack(b'b', 65)

b'A'

>>> struct.pack(b'Bb', 65, -23)

b'A\xe9'

>>> struct.pack(b'B', 130)

b'\x82'

>>> struct.pack(b'b', 130)

Traceback (most recent call last):

 ...

struct.error: byte format requires -128 <= number <= 127

Chapter 7 Strings

309

Of course, B and b are only valid for single byte values, limited to 256 total values. To

support larger numbers you can use H and h for two-byte numbers, allowing up to 65,536

values. Just like the single-byte option, the uppercase format assumes an unsigned value,

whereas the lowercase format assumes a signed value:

>>> struct.pack(b'Hh', 42, -137)

b'*\x00w\xff'

Now that a single value can span multiple bytes, there comes the question of which

byte comes first. One of the two bytes contains the 256 smallest values, while the other

contains the values 0 to 256 but multiplied by 256. Therefore, getting the two mixed up

can greatly affect the value that gets stored or retrieved. This is easy enough to see by

taking a quick look at the inverse function, struct.unpack():

>>> struct.unpack(b'H', b'*\x00')

(42,)

>>> struct.unpack(b'H', b'\x00*')

(10752,)

As you can see, the function call for struct.unpack() looks very similar to struct.

pack(), but there are a couple notable differences. First, there are always only two

arguments to unpack(), because the second argument is the raw byte string. This string

can contain multiple values to be pulled out, but it’s still passed as just one argument,

unlike pack().

Instead the return value is a tuple, which could contain multiple values. Therefore,

struct.unpack() is a true inverse of struct.pack(); that is, you can pass the result

from one into the call to the other and get the same value you passed in the first time.

All you need is to ensure that you use the same format string in each of the individual

function calls:

Chapter 7 Strings

310

>>> struct.unpack(b'Hh', struct.pack(b'Hh', 42, -42))

(42, -42)

>>> struct.pack(b'Hh', *struct.unpack(b'Hh', b'*\x00\x00*'))

b'*\x00\x00*'

So what’s the problem with values spanning multiple bytes? After all, these examples

show that values can be converted to a string and back without worrying about how

those strings are created or parsed. Unfortunately, it’s only easy because we’re currently

working only within Python, which has an implementation that is consistent with itself.

If you have to work with strings, such as file contents, that need to be used with other

applications, you’ll need to make sure you match up with what those applications expect.

Therefore, struct formats also allow you to explicitly specify the endianness of a

value. Endianness is the term for how the bytes of a value are ordered; in a big-endian

value, the most significant byte—the byte that provides the largest part of the number—

gets stored first. For little-endian values, the least significant byte is stored first.

To distinguish between the two, the format specification can take a prefix. If you

place a < before the format, you can explicitly declare it to be little-endian. Conversely,

using > will mark it as big-endian. If neither option is supplied, as in the previous

examples, the default behavior is to use the same endianness as the system in which

Python is executing, which is typically little-endian on modern systems. This allows you

to control the way values are treated for both pack() and unpack(), covering both sides

of the conversion process:

>>> struct.pack(b'<H', 42)

b'*\x00'

>>> struct.pack(b'>H', 42)

b'\x00*'

>>> struct.unpack(b'<H', b'*\x00')

(42,)

>>> struct.unpack(b'>H', b'*\x00')

(10752,)

Chapter 7 Strings

311

Now that it’s possible to control the ordering of multiple-byte numbers, it’s easier

to work with larger values. In addition to the one- and two-byte integers discussed

previously, struct supports four-byte values using I and i, whereas eight-byte values

can be specified using Q and q. Like the others, uppercase letters indicate unsigned

values, whereas lowercase letters indicate signed values.

The struct module goes beyond just conversion of integers, however. You can also

convert floating-point values using the f format, or perhaps even the b format for greater

precision. In fact, you can use struct to work with strings inside strings as well, giving

you some extra flexibility. Use the s format code, combined with a numeric prefix, to

indicate the size of the string to read or write:

>>> struct.pack(b'7s', b'example')

b'example'

>>> struct.unpack(b'7s', b'example')

(b'example',)

>>> struct.pack(b'10s', b'example')

b'example\x00\x00\x00'

As you can see, pack() will add in null bytes to fill in as many bytes as necessary to

match the prefix supplied in the format. But why would you want to use struct to turn

a string into a string? The benefit is that you can pack and unpack multiple values at a

time, so the string might just be part of the structure. Consider a simple byte string that

contains a person’s contact information:

>>>import struct

>>>first_name = 'Marty'

>>> last_name = 'Alchin'

>>> age = 28

>>> �struct.pack(b'10s10sB', bytes(first_name, 'utf8'), bytes(last_name,

'utf8'), age)

>>> data

b'Alchin\x00\x00\x00\x00Marty\x00\x00\x00\x00\x00\x1c'

Chapter 7 Strings

312

If you’re looking to work with strings in this manner, however, you’re more likely

working with text, in which the string has meaning as a whole rather than its characters

being conversions of some other types of values. The format of how you do this changed

a bit in Python 3.2, so now you must encode string (str) text to byte strings, normally utf8

encoding.

�Text
Conceptually, text is a collection of written words. It’s a linguistic concept that existed

long before computing, but once it became clear that computers would need to work

with text, it was necessary to determine how to represent text in a system designed for

numbers. When programming was still young, text was limited to a set of characters

known as the American Standard Code for Information Interchange (ASCII), or EBCDIC,

or others.

Notice the reference to “American”; this set of 127 characters—only 95 of them

printable—is designed to address only the needs of the English language. ASCII only

covered seven bits of each byte, so there was some room for potential future expansion,

but even another 128 values weren’t enough. Some applications employed special tricks

to convey additional letters by adding accents and other marks, but the standard was still

very limited in scope.

�Unicode
To resolve this limitation, the Unicode standard emerged as an alternative that could

contain most of the characters used in the vast majority of the world’s languages. In order

for Unicode to support as many code points as it needs, each code point takes up more

than one byte, unlike in ASCII. When loaded in memory, this isn’t a problem because it’s

only used within Python, which only has one way of managing those multiple-byte values.

Note T he Unicode standard is actually made up of more than a million individual
“code points” rather than characters. A code point is a number that represents
some facet of written text, which can be a regular character, a symbol, or a
modifier, such as an accented character. Some characters are even present at
multiple code points for compatibility with systems in use prior to the introduction
of Unicode.

Chapter 7 Strings

313

By default, all standard strings in Python are Unicode, supporting a wide array of

languages in the process. The byte strings shown in the previous section all required the

use of a b prefix to distinguish them as different from standard Unicode strings.

The trouble comes when writing those values out to strings that can be read by other

systems because not all systems use the same internal representation of Unicode strings.

Instead, there are several different encodings that can be used to collapse a Unicode

string into a series of bytes for storage or distribution.

�Encodings
Much like how multiple bytes can be used to store a number larger than one byte would

allow, Unicode text can be stored in a multiple-byte format. Unlike numbers, though, text

generally contains a large number of individual characters, so storing each as up to four

bytes would mean a long passage of text could end up much larger than it may seem.

To support text as efficiently as possible, it quickly became clear that not all text

requires the full range of available characters. This book, for example, is written in

English, which means the vast majority of its content lies within the ASCII range. As

such, most of it could go from four bytes per character down to just one.

ASCII is one example of a text encoding. In this particular case, a small set of

available characters is mapped to specific values from 0 to 127. The characters chosen

are intended to support English, so it contains all the available letters in uppercase and

lowercase variants, all 10 numerals and a variety of punctuation options. Any text that

contains just these values can be converted to bytes using the ASCII encoding.

The encoding process itself is managed using a string’s encode() method. Simply

pass in the name of an encoding and it will return a byte string representing the text in

the given encoding. In the case of ASCII, the representation of the byte string looks just

like the input text, because each byte maps to exactly one character:

>>> 'This is an example, with punctuation and UPPERCASE.'.encode('ascii')

b'This is an example, with punctuation and UPPERCASE.'

Chapter 7 Strings

314

By mapping each byte to a single character, ASCII is very efficient, but it only works if

the source text contains those characters specified in the encoding. Certain assumptions

had to be made about what characters were important enough to include in such a small

range. Other languages will have their own characters that take priority, so they use

different encodings in order to be as efficient as ASCII is for English (UTF-8 is the most

popular).

Some languages, including Chinese and Japanese, have so many characters that

there’s no way a single byte could hope to represent them. Some encodings for these

languages use two bytes for every character, further highlighting how different the

various text encodings can be. Because of this, an encoding designed for a particular

language often can’t be used for text outside of that language.

To address this, there are some more generic Unicode-focused encodings. Because

of the sheer number of available characters, these encodings use a variable-length

approach. In UTF-8, the most common of these, characters within a certain range can be

represented in a single byte. Other characters require two bytes, while still others can use

three or even four bytes. UTF-8 is desirable because of a few particular traits it exhibits:

•	 It can support any available Unicode code point, even if it isn't

commonly in actual text. That feature isn’t unique to UTF-8, but it

definitely sets it apart from other language-specific encodings, such

as ASCII.

•	 The more common the character is in actual use, the less space

its code point takes. In a collection of mostly English documents,

for example, UTF-8 can be nearly as efficient as ASCII. Even when

encoding non-English text most languages share certain common

characters, such as spaces and punctuation, which can be encoded

with a single byte. When it has to use two bytes, it’s still more efficient

than an in-memory Unicode object.

•	 The single-byte range precisely coincides with the ASCII standard,

making UTF-8 completely backward compatible with ASCII text. All

ASCII text can be read as UTF-8, without modification. Likewise, text

that only contains characters that are also available in ASCII can be

encoded using UTF-8 and still be accessed by applications that only

understand ASCII.

Chapter 7 Strings

315

For these reasons, among others, UTF-8 has emerged as a very common encoding

(since 2008) for applications that need to support multiple languages or where the

language of the application isn’t known at the time it’s being designed. That may

seem like an odd situation to be in, but it comes up fairly frequently when looking at

frameworks, libraries, and other large-scale applications. They could be deployed in

any environment on the planet, so they should do as much as possible to support other

languages. Chapter 8 will describe, in more detail, the steps an application can take to

support multiple languages.

The consequences of using the wrong encoding or decoding can vary depending on

the needs of the application, the encoding used, and the text passed in. For example,

ASCII text can be decoded using UTF-8 without a problem, yielding a perfectly valid

Unicode string. Reversing that process is not always as forgiving, because a Unicode

string can contain code points outside the valid ASCII range:

>>> ascii = 'This is a test'.encode('ascii')

>>> ascii

b'This is a test'

>>> ascii.decode('utf-8')

'This is a test'

>>> unicode = 'This is a test: \u20ac' # A manually encoded Euro symbol

>>> unicode.encode('utf-8')

b'This is a test: \xe2\x82\xac'

>>> unicode.encode('ascii')

Traceback (most recent call last):

 ...

UnicodeEncodeError: 'ascii' codec can't encode character '\u20ac' in

position 16

: ordinal not in range(128)

At other times text can seem to be encoded or decoded properly, only to have the

resulting text be gibberish. Typically, however, problems like that arise when upgrading

an application to include proper Unicode support, but existing data wasn’t encoded

consistently. Building an application for Unicode from the ground up doesn’t completely

eliminate the possibility of these problems, but it greatly helps avoid them.

Chapter 7 Strings

316

�Simple Substitution
There are different ways to produce a string with information that’s only available at

runtime. Perhaps the most obvious is to concatenate multiple strings together using

the + operator, but that only works if all the values are strings. Python won’t implicitly

convert other values to strings to be concatenated, so you’d have to convert them

explicitly, by first passing them into the str() function, for example.

As an alternative, Python strings also support a way to inject objects into a string.

This uses placeholders inside a string to denote where objects should go, along with

a collection of objects that should fill them in. This is called string substitution, and is

performed using the % operator, using a custom __mod__() method, as described in

Chapter 5.

Placeholders consist of a percent sign and a conversion format, optionally with

some modifiers between them to specify how the conversion should take place. This

scheme allows the string to specify how objects should get converted, rather than having

to call separate function explicitly. The most common of these formats is %s, which is

equivalent to using the str() function directly:

>>> 'This object is %s' % 1

'This object is 1'

>>> 'This object is %s' % object()

'This object is <object object at 0x...>'

Because this is equivalent to calling str() directly, the value placed into the

string is the result of calling the object’s __str__() method. Similarly, if you use the

%r placeholder inside the substitution string, Python will call the object’s __repr__()

method instead. This can be useful for logging arguments to a function, for example. Try

the next example as a script:

def func(*args):

 for i, arg in enumerate(args):

 print('Argument %s: %r' % (i, arg))

Chapter 7 Strings

317

func('example', {}, [1, 2, 3], object())

Your output will look like the following:

Argument 0: 'example'

Argument 1: {}

Argument 2: [1, 2, 3]

Argument 3: <object object at 0x...>

This example also illustrates how multiple values can be placed in the string at once,

by wrapping them in a tuple. They’re matched up with their counterparts in the string

according to their position, so the first object goes in the first placeholder and so on.

Unfortunately, this feature can also be a stumbling block at times, if you’re not careful.

The most common error occurs when attempting to inject a tuple into the substitution

string:

>>> def log(*args):

... print('Logging arguments: %r' % args)

...

>>> log('test')

"Logging arguments: 'test'"

>>> log('test', 'ing')

Traceback (most recent call last):

 ...

TypeError: not all arguments converted during string formatting

What’s going on here is that Python makes no distinction between a tuple that was

written as such in the source code and one that was merely passed from somewhere

else. Therefore, string substitution has no way of knowing what your intention is. In this

example, the substitution works fine as long as only one argument is passed in because

there’s exactly one placeholder in the string. As soon as you pass in more than one

argument, it breaks.

In order to resolve this, you’ll need to build a one-item tuple to contain the tuple you

want to place in the string. This way the string substitution always gets a single tuple,

which contains one tuple to be placed in a single placeholder:

Chapter 7 Strings

318

>>> def log(*args):

... print('Logging arguments: %r' % (args,))

...

>>> log('test')

"Logging arguments: ('test',)"

>>> log('test', 'ing')

"Logging arguments: ('test', 'ing')"

With the tuple situation sorted out, it’s worth noting that objects can be inserted by

keyword as well. Doing so requires the substitution string to contain the keywords in

parentheses, immediately following the percent sign. Then, to pass in values to inject,

simply pass in a dictionary of objects, rather than a tuple:

>>> def log(*args):

... for i, arg in enumerate(args):

... print('Argument %(i)s: %(arg)r' % {'i': i, 'arg': arg})

...

>>> log('test')

Argument 0: 'test'

>>> log('test', 'ing')

Argument 0: 'test'

Argument 1: 'ing'

In addition to being able to more easily rearrange placeholders in the substitution

string, this feature allows you to include just those values that are important. If you have

a dictionary with more values than you need in the string, you can reference only the

ones you need. Python will simply ignore any values that aren’t mentioned by name in

the string. This is in contrast to the positional option, where supplying more values than

you’ve marked in the string will result in a TypeError.

Chapter 7 Strings

319

�Formatting
For a more powerful alternative to the simple string substitution described in the

previous section, Python also includes a robust formatting system for strings. Rather

than relying on a less obvious operator, string formatting uses an explicit format()

method on strings. In addition, the syntax used for the formatting string is considerably

different from what was used in simple substitution previously.

Instead of using a percent sign and a format code, format() expects its placeholders

to be surrounded by curly braces. What goes inside those braces depends on how you

plan to pass in the values and how they should be formatted. The first portion of the

placeholder determines whether it should look for a positional argument or a keyword

argument. For positional arguments the content is a number, indicating the index of the

value to work with, while for keyword arguments, you supply the key that references the

appropriate value:

>>> 'This is argument 0: {0}'.format('test')

'This is argument 0: test'

>>> 'This is argument key: {key}'.format(key='value')

'This is argument key: value'

This may look a lot like the older substitution technique, but it has one major

advantage already. Because formatting is initiated with a method call, rather than an

operator, you can specify both positional and keyword arguments together. That way you

can mix and match indexes and keys in the format string if necessary, referencing them

in any order.

As an added bonus, that also means that not all positional arguments need to be

referenced in the string in order to work properly. If you supply more than you need,

format() will just ignore anything it doesn’t have a placeholder for. This makes it much

easier to pass a format string into an application that will call format() on it later, with

arguments that may come from another source. One such example is a customizable

validation function that accepts an error message during customization:

Chapter 7 Strings

320

>>> def exact_match(expected, error):

... def validator(value):

... if value != expected:

... raise ValueError(error.format(value, expected))

... return validator

...

>>> validate_zero = exact_match(0, 'Expected {1}, got {0}')

>>> validate_zero(0)

>>> validate_zero(1)

Traceback (most recent call last):

 ...

ValueError: Expected 0, got 1

>>> validate_zero = exact_match(0, '{0} != {1}')

>>> validate_zero(1)

Traceback (most recent call last):

 ...

ValueError: 1 != 0

>>> validate_zero = exact_match(0, '{0} is not the right value')

>>> validate_zero(1)

Traceback (most recent call last):

 ...

ValueError: 1 is not the right value

As you can see, this feature lets the validator function call format() using all

of the information it has available at the time, leaving it up to the format string to

determine how to lay it out. With the other string substitution, you’d be forced to use

keywords to achieve the same effect because positional arguments just didn’t work

the same way.

Chapter 7 Strings

321

�Looking Up Values Within Objects
In addition to being able to reference the objects being passed in, the format string syntax

allows you to refer to portions of those objects specifically. The syntax for this looks much

like it would in regular Python code. To reference an attribute, separate its name from the

object reference with a period. To use an indexed or keyword value, supply the index or

keyword inside square brackets; just don’t use quotes around the keyword:

>>> import datetime

>>> def format_time(time):

... return '{0.minute} past {0.hour}'.format(time)

...

>>> format_time(datetime.time(8, 10))

'10 past 8'

>>> '{0[spam]}'.format({'spam': 'eggs'})

'eggs'

�Distinguishing Types of Strings
You may remember that simple substitution required you to specify either %s or %r to

indicate whether the __str__() method or the __repr__() method should be used to

convert an object to a string, while the examples given thus far haven’t included such a

hint. By default, format() will use __str__(), but that behavior can still be controlled as

part of the format string. Immediately following the object reference, simply include an

exclamation point, followed by either s or r:

>>> validate_test = exact_match('test', 'Expected {1!r}, got {0!r}')

>>> validate_test('invalid')

Traceback (most recent call last):

 ...

ValueError: Expected 'test', got 'invalid'

Chapter 7 Strings

322

�Standard Format Specification
Where this new string formatting really differs from the previous substitution feature is in

the amount of flexibility available to format the output of objects. After the field reference

and the string type mentioned in previous sections, you can include a colon, followed by

a string that controls the formatting of the referenced object. There’s a standard syntax

for this format specification, which is generally applicable to most objects.

The first option controls the alignment of the output string, which is used when

you need to specify a minimum number of characters to output. Supplying a left angle

bracket (<) produces a left-aligned value; a right angle bracket (>) aligns to the right; and

a caret (^) centers the value. The total width can be specified as a number afterward:

>>> import os.path

>>> '{0:>20}{1}'.format(*os.path.splitext('contents.txt'))

' contents.txt'

>>> for filename in ['contents.txt', 'chapter.txt', 'index.txt']:

... print('{0:<10}{1}'.format(*os.path.splitext(filename)))

...

contents .txt

chapter .txt

index .txt

Notice here that the default behavior of the length specification is to pad the output

with spaces to reach the necessary length. That, too, can be controlled by inserting

a different character before the alignment specifier. For example, some plain-text

document formats expect headings to be centered within a length of equal signs or

hyphens. This is easy to accomplish using string formatting:

>>> def heading(text):

... return '{0:=^40}'.format(text)

...

>>> heading('Standard Format Specification')

Chapter 7 Strings

323

'=====Standard Format Specification======'

>>> heading('This is a longer heading, beyond 40 characters')

'This is a longer heading, beyond 40 characters'

The second call here demonstrates an important property of the length format; if the

argument string is longer than the length specified, format() will lengthen the output to

match, rather than truncating the text. That creates a bit of a problem with the heading

example, however, because if the input was too long, the output doesn’t contain any of

the padding characters at all. This can be fixed by explicitly adding one character each

at the beginning and end of the string and reducing the placeholder’s length by two to

compensate:

>>> def heading(text):

... return '={0:=^38}='.format(text)

...

>>> heading('Standard Format Specification')

'=====Standard Format Specification======'

>>> heading('This is a longer heading, beyond 40 characters')

'=This is a longer heading, beyond 40 characters='

Now the heading will always be at least 40 characters wide but also always have at

least one equals sign on each side of the text, even if it runs long. Unfortunately, doing so

now requires writing the equal sign three times in the format string, which becomes a bit

of a maintenance hassle once we consider that sometimes the padding character will be

a hyphen.

Solving one part of this problem is simple: because we’re explicitly numbering the

placeholders, we can pass in the padding character as an argument and just reference

that argument twice in the format string; once at the beginning and once at the end.

That alone doesn’t really solve the problem, however, because it leaves the core problem

untouched: how to replace just part of the argument reference for the text.

To solve that problem, the format specification also allows argument references to

be nested. Inside the placeholder for the text portion, we can add another placeholder

at the position reserved for the padding character; Python will evaluate that one first,

before trying to evaluate the other. While we’re at it, this also allows us to control how

many characters the output will fill up:

Chapter 7 Strings

324

>>> def heading(text, padding='=', width=40):

... return '{1}{0:{1}^{2}}{1}'.format(text, padding, width - 2)

...

>>> heading('Standard Format Specification')

'=====Standard Format Specification======'

>>> heading('This is a longer heading, beyond 40 characters')

'=This is a longer heading, beyond 40 characters='

>>> heading('Standard Format Specification', padding='-', width=60)

'---------------Standard Format Specification----------------'

�Example: Plain Text Table of Contents
Although there are many forms of documentation, plain text is perhaps the most

common, as it doesn’t require any additional software to view. Navigating large chunks

of documentation can be difficult, however, because of the lack of links or page numbers

for a table of contents. Line numbers could be used instead of page numbers, but a

properly formatted table of contents can still be tedious to maintain.

Consider a typical table of contents, in which the title of a section is left-aligned and

the page or line number is right-aligned, and the two are joined by a line of periods to

help guide the eye from one to the other. Adding or removing lines from such a format is

simple, but every time you change the name or location of a section you not only have to

change the relevant information; you also need to update the line of periods in-between,

which is less than ideal.

String formatting can come in handy here because you can specify both alignment

and padding options for multiple values within a string. With this, you can set up a

simple script that formats the table of contents for you automatically. The key to doing

this, however, is to realize what you’re working with.

On the surface, it seems like the goal is just as mentioned: to left-align the section

title, right-align the line number, and place a line of periods in between. Unfortunately,

there’s no option to do exactly that, so we’ll need to look at it a bit differently. By having

each part of the string be responsible for part of the padding, it’s fairly easy to achieve the

desired effect:

Chapter 7 Strings

325

>>> '{0:.<50}'.format('Example')

'Example...'

>>> '{0:.<50}'.format('Longer Example')

'Longer Example....................................'

>>> '{0:.>10}'.format(20)

'........20'

>>> '{0:.>10}'.format(1138)

'......1138'

With these two parts in place, they just need to be combined in order to create a

full line in the table of contents. Many plain text documents are limited to 80 characters

in a single line, so we can expand it a bit to give some breathing room for longer titles.

In addition, 10 digits is a bit much to expect for line numbers even in extremely long

documents, so that can be reduced in order to yield more space for the titles as well:

>>> def contents_line(title, line_number=1):

... return '{0:.<70}{1:.>5}'.format(title, line_number)

...

>>> contents_line('Installation', 20)

'Installation...20'

>>> contents_line('Usage', 112)

'Usage...112'

Calling this function one line at a time isn’t a realistic solution in the long run,

however, so we’ll create a new function that can accept a more useful data structure to

work with. It doesn’t need to be complicated, so we’ll just use a sequence of two-tuples,

each consisting of a section title and its corresponding line number:

>>> contents = (('Installation', 20), ('Usage', 112))

Chapter 7 Strings

326

>>> def format_contents(contents):

... for title, line_number in contents:

... yield '{0:.<70}{1:.>5}'.format(title, line_number)

...

>>> for line in format_contents(contents):

... print(line)

...

Installation...20

Usage...112

�Custom Format Specification
The true strength of the new formatting system, however, is that format() isn’t actually

in control of the formatting syntax described in the previous section. Like many of the

features described in Chapter 4, it instead delegates that control to a method on the

objects passed in as arguments.

This method, __format__(), accepts one argument, which is the format specification

that was written into the format string where the object is being placed. It doesn’t get

the entire bracketed expression, however, just the bit after the colon. This is true for all

objects, as you can see by calling it directly on a brand-new instance of object. As of

Python 3.3 and higher the format for this changed, so make sure you are using Python

3.3 or higher before trying the next example:

>>> object().__format__(")

'=====<object object at 0x0209F158>======'

Because of this, the standard format specification options described in the previous

section aren’t the only way to do things. If you have a custom need, you can override

that behavior by replacing that method on the class you’re working with. You can either

extend the existing behavior or write a completely new one.

For example, you could have a class to represent a verb, which can have a present or

a past tense. This Verb class could be instantiated with a word to use for each tense, and

then be used in expressions to form complete sentences:

Chapter 7 Strings

327

>>> class Verb:

... def __init__(self, present, past=None):

... self.present = present

... self.past = past

... def __format__(self, tense):

... if tense == 'past':

... return self.past

... else:

... return self.present

...

>>> format = Verb('format', past='formatted')

>>> message = 'You can {0:present} strings with {0:past} objects.'

>>> message.format(format)

'You can format strings with formatted objects.'

>>> save = Verb('save', past='saved')

>>> message.format(save)

'You can save strings with saved objects.'

In this example there’s no way for the placeholder string to know how to format a past

tense verb, so it delegates that responsibility to the verb passed in. This way, the string can

be written once and used many times with different verbs, without skipping a beat.

�Exciting Python Extensions
�Feedparser
RSS feeds (Rich Site Summary) are published feeds on information such as blogs, news,

and media. Also known as feeds, web feeds, or channels, they could include summarized

information or headlines. Suffice to say they are a first step in keeping up-to-date in an

information-overloaded world. The Python feedparser library handles formats including

Atom, RDF, and RSS. From what we have already learned, accessing this data will be

handy, and if used in conjunction with Beautiful Soup or other libraries, can yield much

information.

Chapter 7 Strings

328

�How to Install
Use pip to install the libraries:

pip install feedparser (Enter)

Make sure you are at an escalated Windows command prompt. Linux and Mac will

be similar. With no errors during the install, you are now set to use Feedparser.

�How to Use
For this example we will harvest data from the “Anytime Fitness blog.” The sample code

will extract the title, subtitle, number of RSS entries, and their names. Of course you

could do more, and you could just write the data to a file for later use by another library

to extract key data. Try it out to see how easy it is:

#feedparser example

import feedparser

main site is: http://blog.anytimefitness.com/

c = feedparser.parse('http://feeds.feedburner.com/anytimefitnessofficial')

#all elements of the channel are now in container c

#print the title and subtitle and list # of elements of the feed

print (c['feed']['title'])

print (c['feed']['subtitle'])

print ("There are this many entries: ", len(c['entries']))

print()

for item in c['entries']:

 title = item.title

 print (title)

try others such as item.summary, item.description, item.link, etc.

write the data to a file for use with BeautifulSoup, etc.

In this example c is a container of named entries such as title, subtitle, and so on.

Also, this container has an integer number of times in it (len).

Chapter 7 Strings

329

�Taking It With You
Because strings are so common throughout all kinds of programming, you’ll find

yourself with a wide range of needs. The features shown in this chapter will help you

make better use of your strings, but the proper combination of techniques is something

that can’t be written for you. As you go forward with your code, you’ll need to keep an

open mind about which techniques to use so that you can choose what’s best for your

needs.

So far, these chapters have focused on how to use various aspects of Python to

perform complex and useful tasks so that your applications can be that much more

powerful. The next chapter will show you how to verify whether those tasks are being

performed properly.

Chapter 7 Strings

331
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_8

CHAPTER 8

Documentation
Documentation is arguably the most difficult part of any project. Code tends to come

fairly easy to programmers, but documentation requires a different set of skills because

the audience is strictly human. The magnitude of the differences can vary greatly

between projects and audiences. Sometimes all that’s necessary is some example code,

whereas other topics can fill entire books and still have plenty left to cover.

The language of documentation is very different from that of code, so it can

be difficult to excel at both. This causes many programmers to take the path of

least resistance, opting for tools that automatically generate some minimal form of

documentation from the code itself, so that the extra work is kept to a minimum.

Although that can seem sufficient, such tools can only do so much because they’re

limited by what the code alone can tell them. Javadoc for JAVA and Epydoc for Python

are examples of such tools.

This chapter will show the tools available to help describe your code and its features

for human understanding. There are several options available, some of which go

alongside the code itself, while others accompany it on the outside. These can be used

individually or in combination to form a full set of documentation for any project. How

much of each is necessary will differ based on the needs of each application, but each

has its place.

Each section in this chapter will highlight how to document your code with the

available tools, along with the benefits and drawbacks of each approach. The most

important thing to remember about documentation, however, is that it’s all about

presenting what people need to know about your application and how to use it. You

must always consider how your code works and what your users will need to know to

interact with it. Only then can you pick the approaches that are best for your needs.

332

�Proper Naming
The simplest form of documentation is to properly name the various aspects of your

code. With very few exceptions, every single class, function, and variable is given a name

when it’s defined. Because these names are already required, all it takes is a little extra

thought to make sure they’re accurate and easy to understand. To illustrate how valuable

this can be, take a look at a function signature with vague, generic names and see if you

can guess what it does:

def action(var1, var2):

Given some code inside the body of the function, you might be able to get a good

idea of its purpose, but the signature itself does nothing to help. In fact, the only

reason the code in the body would be more helpful is that it would typically use more

standardized features available from elsewhere. For instance, loops and slicing are easily

recognizable, as are methods from commonly used objects, such as a string’s format()

method. These are just clues to help make an educated guess, however; the naming

should make it obvious:

def find_words(text, word):

Just picking some more descriptive names makes the purpose of the function and its

arguments much clearer. As a rule of thumb, classes and variables should be named as

singular nouns, such as Book, Person, Restaurant, index, and first_name. Functions,

by contrast, should be given verbs as names, such as find(), insert(), and process_

user().

PEP 8,1 also included as an appendix in this book, offers some more specific

guidelines for naming various types of objects. See its “Naming Conventions” section

for details. Once you get inside a block of code things aren’t always as easy to follow, so

comments can help clarify.

1�See “PEP 8: Style Guide for Python Code,” http://www.python.org/dev/peps/pep-0008.

Chapter 8 Documentation

http://www.python.org/dev/peps/pep-0008

333

�Comments
In classes and functions that are very long or complex, the name alone is often not

sufficient to convey all the things the code is doing. Variable names can certainly help,

but that usually only explains what the code does; it’s typically more useful to explain

why the code does what it does. Both of these can be addressed by placing comments in

your code.

Comments are one of the most basic forms of documentation a programmer can use,

yet they’re also among the most powerful. Comments are placed directly alongside the

rest of your code, where it’s easiest to write and is often most helpful. Comments offer a

convenient way to make small notes where they’re most relevant, which can help make

complex code easier to understand later on.

Python’s comments are separated from code by the # symbol. All of the text that

follows that symbol is treated as a comment, all the way to the end of the line. This allows

comments to either take up a whole line or attach to the end of a line of code. Unlike

some other languages, Python doesn’t have any true syntax for multiline comments

unless you use a docstring triple quoted string, as tweeted by Guido van Rossum in 2011.

(A more detailed discussion of docstrings follows shortly, so hold on for more details.)

Formally for strings, each line of a longer comment must be preceded by a # symbol.

Note both methods here:

def foo(): #example of a docstring comment

 """alkaj

 laksjf

 alkdfj"""

x=1

print (x) # shows value for x

foo() # does nothing

Chapter 8 Documentation

334

This function doesn't really do anything useful. It's only here to show

how multi-line comments work in Python. Notice how each line has to have

a separate # to indicate that it's a comment.

def example():

 pass

Like naming conventions, the Python Style Guide has a lot to say on how comments

should be formatted. See the “Comments” heading of PEP 8 for details.

Perhaps the biggest limitation of comments is that they’re only available when

viewing the source file directly. Because comments don’t have any impact on the

execution of the code, there are no introspection tools available to read them at runtime.

For that, we turn to docstrings.

�Docstrings
In the previous section, as well as in Chapters 3 and 4, we referred briefly to docstrings

and how they’re used in code. A docstring is placed at the beginning of a module,

function, or class; rather than assigning it to a variable, however, you can just leave the

string as its own statement. As long as it’s the first thing in the code block, Python will

interpret it as a docstring:

def find_words(text, word):

 """

 Locate all instances of a word in a given piece of text.

 Return a list of indexes where the words were found.

 If no instances of the word were found, return an empty list.

 text -- a block of text to search

 word -- an individual word to search for

 """

Chapter 8 Documentation

335

This information could be presented in a set of comments, but there’s one major

advantage of using docstrings instead: Python makes them available in code. In keeping

with the spirit of transparency, docstrings can be accessed at runtime through the

__doc__ attribute of modules, classes, and functions. Perhaps the most obvious benefit

this brings is that the various automatic documentation generators get a lot more

information to work with. Better yet, that information is written specifically for humans,

which can greatly improve the quality of the final output.

Exactly how it’s written, however, is entirely up to you. Aside from where docstrings

can be placed in your code, Python makes no assumptions or requirements about the

format or structure of their contents. PEP 257,2 also provided as an appendix, provides a

number of recommendations, but the final decision is left up to you. The goal is to help

people understand how to use your code, however, so there are a few particulars that

everyone should follow.

�Describe What the Function Does
As simple as it sounds, it can sometimes be difficult to step back from how the code

works and simply describe what it does. For most functions you should be able to

describe it in one sentence, preferably on a single line. Common examples are “add an

item to the collection” and “cache an object for later use.” The details of how the code

achieves that goal are best left out of the docstring.

�Explain the Arguments
Argument names are limited to one or two words. This works well as a simple

reminder of their purpose, but more information is usually needed to understand

their purposes in the first place. This is particularly important for optional

arguments, which often help control how the function works. Even if the argument

names are self-explanatory, including a brief description helps maintain consistency

across your documentation.

2�See “PEP 257: Docstring Conventions,” http://www.python.org/dev/peps/pep-0257.

Chapter 8 Documentation

http://www.python.org/dev/peps/pep-0257

336

�Don’t Forget the Return Value
Any time a function returns a value, the nature of that value should be documented.

It should include the return value’s type as well as any relevant details about how the

object will be formed. For example, find_words() returns a list, but that list contains

indexes where the words were found, rather than returning the words themselves, so that

behavior is documented.

Also, make sure that if the return value differs slightly based on what input was given

or what other conditions the function works with, the different forms of return values are

given. For example, a function to retrieve an object by name might be given a name that

doesn’t match any existing objects. In that case, it’s important to document whether the

function will create a new object or raise an exception.

�Include Any Expected Exceptions
Every piece of code contains opportunities for exceptions to be raised. Sometimes those

exceptions are actually part of the code’s expected functionality, such as when looking

for an object by a name that doesn’t match anything. In these cases, the exceptions

should be documented right alongside the return values. These explicit exceptions are

frequently caught by the code that calls your function, so it’s necessary to indicate which

ones will be raised, as well as the circumstances under which they’ll be raised.

�Documentation Outside the Code
One thing you’ll notice about the recommendations in the previous section is that they

aren’t specific to docstrings. You should also document your application outside of the

code, and that documentation needs to include all the same details. What makes this

external documentation different is how the information is presented, and it will also

include additional information not covered inside the code itself.

This general class of documentation can cover a wide variety of topics, many of

which wouldn’t make any sense inside the code. After all, someone who’s reading your

code is likely to have something already in mind to look for. They’ll be looking for more

information about a specific module, class, or function that they already know how to find.

Other users will have a broader range of needs, from installation and tutorials to more

topical references that show how to combine multiple features toward a certain goal.

Chapter 8 Documentation

337

�Installation and Configuration
Before anyone can use your software, they will need to obtain it and get it working. This

almost goes without saying, but not quite. There are a number of issues that users need

to tackle before they can use your code, and you need to make sure that those issues are

addressed as thoroughly as possible.

Obtaining the code is the first step. However you choose to distribute your code,

you’ll need to make sure your users know how to get it. Sometimes it will be a simple

one-line command, but in other cases it may require first obtaining other applications

such as version control software to get the latest code without waiting for a release.

Chapter 10 will describe some of the more common ways to distribute your code, along

with what your choices will mean for the users who need to retrieve it.

�Tutorials
After getting an application, many users want to immediately get an idea of how to use it.

Everybody appreciates immediate gratification, so you can use their first experience with

your software as an opportunity to accomplish something quickly. Tutorials are a great

way to walk your users through the most common features of your application.

A tutorial can often showcase the greatest strengths of an application, so it can

also be your first chance to convince someone to try it out in the first place. This is

particularly true with libraries and frameworks, which are designed to be integrated

into other code rather than be used independently. If your audience can get a quick feel

for how your approach can help them work with their own code, it will make a lasting

impression.

�Reference Documents
Once your users have a good idea of how your application can help them and have

gotten a bit of experience under their belts, their needs change again. At this point they

no longer need to be convinced to use your software, and they’re ready to move beyond

learning how to use it. Now they need reminders of how all the features work, how those

features work together, and how they can integrate with the tasks they’re really trying to

perform.

Chapter 8 Documentation

338

Different readers will look for different forms of reference documentation. Some may

prefer method-level arguments and return values, like those contained in docstrings,

whereas others may get more out of a broader overview, written in plain language.

Some readers, like you, even enjoy a physical book, easy to pick up and flip through at a

moment’s notice.

With all of these different preferences, it’s unlikely that you’ll be able to write

reference documentation in a way that will suit all tastes. As the author, it’s your job to

determine what type of documentation best suits your application. Look to your own

preferences for the type of documentation you like to read most, as that’s likely to be

in the same spirit of the software you create. Just write the way you’d like to read. The

users who like your documentation are likely to be the very same ones who will like your

software.

Note O ne important thing to remember is that you may not need reference
documentation at all. For very simple applications, a tutorial alone may be enough
to illustrate and explain all the available features.

�Documentation Utilities
Some of the most challenging aspects of documentation have nothing to do with your

application or how you plan to write about it. Beyond those concerns, tasks such as

formatting, referencing, and presenting documentation can consume quite a bit of time

and energy. The more documents you need to write, the harder these tasks become.

The third-party docutils package3 provides a comprehensive set of tools to make this

process more manageable.

The crown jewel of the docutils package is reStructuredText, more often referred

to as ReST or simply RST. reStructuredText is a markup language designed for writing

technical documents, taking what its developers call a What You See Is What You Mean

(WYSIWYM) approach. This is in contrast with the more traditional What You See Is

What You Get (WYSIWYG), where editing based on the visual layout and formatting of

the document.

3�See “Docutils: Documentation Utilities,” http://docutils.sourceforge.net.

Chapter 8 Documentation

http://docutils.sourceforge.net

339

In WYSIWYM, the goal is to indicate the structure and intentions of the document,

without regard to exactly how it will be presented. Much like HTML, separating

content from its presentation allows you to focus on what’s really important about your

documentation and leave the details of visual style for later. reStructuredText uses a

more text-friendly approach than HTML, however, so that even unformatted documents

are easily readable.

READABILITY COUNTS

In keeping with Python philosophy, reStructuredText focuses on readability at all times, even

before the document gets formatted into its final format. The structure of a document and the

instructions are designed to be understandable and easy to remember and format.

�Formatting
The most basic unit of any type of document is the paragraph, so reStructuredText makes

them the easiest to work with. All you need to do is write a block of text with each line of

text starting immediately below the one before it. The number of lines and the length of

each line are irrelevant, as long as there are no completely blank lines between any lines

of text in a given paragraph.

Blank lines are reserved for separating paragraphs from each other and from other

types of content. This forms a simple way to distinguish one paragraph from another.

You can use multiple blank lines if you’d like, but only one is required. Indenting a

paragraph indicates a quoted passage from another document, which will typically also

be indented in the output. To illustrate, here are a couple of simple paragraphs written

for reStructuredText:

The reStructuredText format is very simple when it comes down to it. It's all

about readability and flexibility. Common needs, such as paragraphs and inline

formatting, are simple to write, read and maintain. More complex features are

possible, and they use a simple, standardized syntax.

After all, the Zen of Python says:

 Simple is better than complex.

 Complex is better than complicated.

Chapter 8 Documentation

340

Most application documentation will also include blocks of code along with regular

text. This is particularly useful for tutorials, in which a block of code can be built up in

pieces, with explanations in between. Distinguishing between a paragraph and a block

of code is based on a double colon at the end of a normal paragraph, followed by an

indented block of code. This will end the first paragraph with a colon and format the

indented text as code:

The reStructuredText format is very simple when it comes down to it. It's all

about readability and flexibility. Common needs, such as paragraphs and inline

formatting, are simple to write, read and maintain. More complex features are

possible, and they use a simple, standardized syntax.

After all, the Zen of Python says::

 Simple is better than complex.

 Complex is better than complicated.

Note  You’ll notice that the example shown here isn’t actually code. The
double-colon format technically distinguishes a block of text as preformatted.
This prevents the reStructuredText parser from doing any additional processing
on that block. Therefore, even though it’s most useful for including code in your
documentation, it can be used for anything that already has its own formatting that
should remain intact.

Inside an individual paragraph, you can also format text in all the ways you’d expect.

Rather than directly marking things for italics or bold, this formatting requires the use

of additional punctuation before and after the text you’d like to format. Surrounding

a word or phrase with asterisks marks it as emphasized, which will typically render in

italics. Using an extra pair of asterisks beyond that will indicate strong emphasis, often

rendering as bold.

�Links
When working with large amounts of documentation, one of the most important features

you can offer is linking multiple documents together. The reStructuredText format offers

several different ways to link to additional information, whether footnotes, other sections

Chapter 8 Documentation

341

in the same document, or completely different documents. The simplest form of link you

can include is a URL, which will be converted into a link when rendering the document.

Other types of links require a bit more formatting.

Links take the form of an underscore following the text that should be used as the

link. The target of the link is specified differently, depending on where that target is

located. In the most common case, in which a document links to some external web

page, the link target is placed in what might appear to be its own paragraph, with a

structure that tells the parser that it’s a link instead of an actual paragraph:

This paragraph shows the basics of how a link is formed in reStructuredText.

You can find additional information in the official documentation_.

.. _documentation: http://docutils.sf.net/docs/

This will cause the word “documentation” to be used as the link itself, referencing

the target given on the bottom line. You’ll usually need to use more than one word for

the text of a link, but this doesn’t provide a way to specify how much text should be

included. To do that, you’ll need to enclose the text in backticks (`). The underscore then

goes outside the enclosure, immediately following the second backtick:

This paragraph shows the basics of how a link is formed in reStructuredText.

You can find additional information in the `official documentation`_.

.. _official documentation: http://docutils.sf.net/docs/

In this case, the link target is specified immediately below the paragraph where

the link should be placed. This particular case can be simplified a bit by creating an

anonymous link, which no longer requires rewriting the link text underneath. In order

to distinguish it from a regular link, you’ll need to use two underscores after the link text

instead of just one. Then, the link target is specified with only two underscores at the

beginning of the line:

Chapter 8 Documentation

342

This paragraph shows the basics of how a link is formed in reStructuredText.

You can find additional information in the `official documentation`__.

__ http://docutils.sf.net/docs/

READABILITY COUNTS

There’s also another way to specify external links that’s even more space-efficient: place the

link target directly alongside the link text, inside the paragraph itself. Links formatted this way

still use backticks to set the link apart from the rest of the text, but the link target goes inside

the backticks as well, after being enclosed in angle brackets. To distinguish it as a link, two

underscores are still used, so it is parsed as an anonymous link—for example, `Pro Python

<http://propython.com/>`__.

The problem with this approach is that having the URL inside the paragraph can be very

distracting when reading the source code for the document, even though the target will be

hidden from view from the final output. Furthermore, named link targets can all be placed at

the end of the document, so they don’t even have to interrupt the flow from one paragraph to

another.

Rather than referencing external documents, you can also include footnotes to be

placed at the end of the same document or in an attached bibliography. Defining this

type of link works much like standard links except that the link text is set apart by square

brackets. Between the brackets, the text can either be just a number or a small piece of

text, which will be used to reference the related information elsewhere.

Then, at the end of the document, the referenced information can be included in a

format similar to named link targets. Rather than using an underscore to signify it, the

reference text from earlier in the document is enclosed in square brackets again. After

that, simply write the related text in the paragraph. This can be used for references to

traditional publications, such as books, as well as for minor additions to further clarify

the main text:

Chapter 8 Documentation

http://propython.com

343

The reStructuredText format isn't part of Python itself, but it's popular enough

that even published books [1]_ reference it as an integral part of the Python

development process.

.. [1] Alchin, Marty. *Pro Python*. Apress, 2010.

In addition to these options, docutils allows reStructuredText to be expanded to

provide other features. One application that provides some additional features is Sphinx.

�Sphinx
The base features provided by reStructuredText are designed to work with individual

documents. Even though it’s easy to reference other documents, those references must

be explicitly included in each document. If you write a complex application that requires

multiple documents, each one will need to know the full structure of all the documents

in order to reference them.

Sphinx4 is an application that attempts to address that problem by working with

the documents as a whole collection. In this way it’s somewhat similar to other, more

popular automated systems such as Javadoc and Doxygen, but Sphinx is designed to

get its content from dedicated files rather than directly from the code itself. It can also

include content based on code, but the main goal is to write documentation on its own.

By managing references across documents more effectively, Sphinx can generate

an entire documentation package at once. This can be a web site full of linked HTML

documents or even a single PDF document that includes all the documents as individual

sections. In addition, Sphinx offers a variety of styling options, with many already

supplied by a growing community.

�Exciting Python Extensions: NumPy
As noted on the main site for NumPy, it is “the fundamental package for scientific

computing with Python.” As such, it offers much power to a Python programmer.

4�See “Sphinx: Python Documentation Generator,” http://sphinx.pocoo.org.

Chapter 8 Documentation

http://sphinx.pocoo.org

344

NumPy is the most fundamental package for scientific computing and data

manipulation with Python. If you need to work in Python with standard arrays, than

Numpy is the ticket. Typically, it will be used in conjunction with SciPy, and is one of

the core packages in SciPy. One thing about the base Python implementation is that it

does not have standard array structures as other languages do. By “standard” we mean

arrays that hold like data (e.g., all integer, all character, etc.). So, to the rescue is NumPy.

However, it does much more. Let’s try a few of the interesting features in NumPy. First

you will need to install it.

�Install NumPy
If using Windows, try this from an escalated command prompt type:

pip install numpy (enter)

It should respond that it installed correctly or that it was already installed.

�Using NumPy
First, standard non-Python arrays are handy things. Python uses Lists, Dictionary’s, and

Tuples; they are powerful, yet sometimes an old-fashioned array is just the thing to solve

a problem. A NumPy array is just like one you might use in C++ or other languages in

that they contain the same type of data elements (each is an int, float, character, etc.). It

also cannot be changed with regard to size, unless you delete it and recreate a larger one.

It is also interesting to note that a NumPy array is smaller in terms of memory usage than

the same structure stored as a list.

Python array-like structures and standard arrays each offer their own unique

benefits. So if you need a standard array, you can create them with NumPy with ease:

Try the following:

#NumPy create a 1 dimensional numeric array from a list

import numpy as mynp

my_list = [1,2,3,4,5]

array1 = mynp.array(my_list)

Chapter 8 Documentation

345

#Print array and its type

print (array1)

print(type(array1))

In the preceding example, each item in the list is treated as a numeric value.

However, if you change one value in the list to alphanumeric, the entire array becomes a

character array:

#NumPy create a 1 dimensional character array from a list

import numpy as mynp

my_list = [1,2,3,'a',5]

array1 = mynp.array(my_list)

#Print array and its type

print (array1)

print(type(array1))

So in this conversion it would not work well if you were performing some math

manipulations on the values in the array, as in the next example:

#Add one to each value

import numpy as mynp

my_list = [1,2,3,4,5]

array1 = mynp.array(my_list)

#Print array and its type

print (array1)

print('With one added two each: ')

for item in array1:

 print (item + 1)

Since each was a numeric value in the array, we could add one to it and display the

result. If you wanted to specify the array type, as you would with another language such

as C++, you might do the following:

Chapter 8 Documentation

346

#NumPy 1 dimensional array from a list as floating-point values

#and make it a float array

import numpy as mynp

my_list = [1.1,2.1,3.1,4.1,5.1]

array1 = mynp.array(my_list, dtype='float')

#Print the array

print (array1)

You can also convert from one type to another with astype, as in array1.astype(‘int’)

or other valid data types such as bool, str, or float. Or, you could convert the array back to

a list with array1.tolist().

�Working With NumPy Arrays
You can address an array in a similar fashion to other Python structures. In this next

example we will extract one element and find truth to a question, based on each element

in the array:

#NumPy create a 1 dimensional array from a list

#and make it a float array

import numpy as mynp

my_list = [1.1,2.1,3.1,4.1,5.1]

array1 = mynp.array(my_list, dtype='float')

#Print the array

print (array1)

print("Print second element of array")

print (array1[1])

print("Print if element is > 2")

print (array1 > 2)

Chapter 8 Documentation

347

�Statistical Measures
NumPy has some statistical functions built in, such as the standards min, max, and

mean. With regard to random numbers (such as for random participant selection in a

study or cryptographic work), the random library built in to NumPy is very similar to the

enhanced features of C++’s random library. Use a numeric array to try it out:

#NumPy stats functions

import numpy as mynp

my_list = [1,2,7,4,5]

array1 = mynp.array(my_list, dtype='int')

print ('Minimum:> ',array1.min())

print ('Max:> ',array1.max())

print ('Mean of all values:> ',array1.mean())

#if you want only pseudo-randoms set a seed value

#np.random.seed(100) # uncomment for pseudo-randoms

print('Random int between 1 and 100):> ',mynp.random.randint(0, 100))

�Taking It With You
The tools shown here serve only as a base for the real work of documenting your

code. The real work of documentation requires taking a step back from the code itself

so that you can see your application the way your users and other developers would

see it. Keeping that in mind, it’s often useful to read documentation for other similar

applications. That will give you a good idea of what your users are used to seeing, the

types of questions they need answered, and how to distinguish your application as a

superior alternative to the existing options.

On the other end of the spectrum, you can also help your users by taking a very close

look at your code. Putting your code under the tightest scrutiny will allow you to write

tests. The next chapter will show how tests can verify that your application works the way

it should and that your documentation stays as accurate as possible.

Chapter 8 Documentation

349
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_9

CHAPTER 9

Testing
Writing an application is only part of the process; it’s also important to check that all of

the code works as it should. You can visually inspect the code, but it’s better to execute it

in a variety of situations that may arise in the real world to make sure it behaves properly.

This process is called unit testing, because the goal is to test the smallest available units

of execution.

Typically, the smallest unit is a function or method, many of which combine to form

a full application. By breaking it down into individual units, you can minimize how

much each test is responsible for. This way a failure of any particular unit doesn’t involve

hundreds of lines of code, so it’s easier to track down exactly what’s going wrong.

Testing each individual unit can be a lengthy process for large applications, given

how many scenarios you may need to take into account. Rather than try to get through

all of it manually, you can automate the process by letting your code do the heavy lifting.

Writing a test suite allows you to easily try all the different paths your code might take,

verifying that each behaves as it should.

�Test-Driven Development
One of the more extreme examples of automated testing is the practice of test-driven

development, often referred to simply as TDD. As the name implies, this practice uses

automated testing to drive the development process. Whenever a new feature is written,

tests for that feature are written first—tests that will fail right away. Once the tests are in

place, you would write code to make sure those tests pass.

One value of this approach is that it encourages you to understand the desired

behavior more thoroughly before setting out to write the code. For example, a function

that processes text might have a number of common input strings, each with a desired

output. Writing the test first encourages you to think about the output string for each

available input string, without regard to how the string is processed internally. By shifting

350

the focus away from code at the outset, it’s easier to see the big picture. The benefit of

a focus on the interface (names, functions, method signatures, etc.) early is not to be

underrated, since changes here are harder than implementation changes later.

The more obvious advantage, however, is that it ensures that every piece of code

in an application has a set of tests associated with it. When code comes first, it’s all

too easy to run a few basic scenarios manually and then move on to coding the next

feature. Tests can get lost in the shuffle, even though they’re essential to the long-term

health of the project. Getting into the habit of writing tests first is a good way to make

sure they do get written.

Unfortunately, many developers find test-driven development far too strict for

practical work. As long as the tests get written as comprehensively as possible, however,

your code will reap the benefits. One of the easiest ways to do this is to write doctests.

�Doctests
The topic of documentation was covered in Chapter 8, but one particular aspect of it can

be useful for testing. Because Python supports docstrings that can be processed by code

instead of just by people, the content within those strings can be used to perform basic

tests as well.

In order to play double duty alongside regular documentation, doctests must look

like documentation while still being something that can be parsed, executed, and

verified for correctness. One format fits that bill very conveniently, and it’s been in use

throughout this book. Doctests are formatted as interactive interpreter sessions, which

already contain both input and output in an easily identifiable format.

�Formatting Code
Even though the overall format of a doctest is identical to the interpreter sessions shown

throughout this book, there are some specific details that are important to identify. Each

line of code to execute begins with three right-angle brackets (>>>) and a single space,

followed by the code itself:

>>> a = 2

Chapter 9 Testing

351

Just like the interactive interpreter, any code that extends beyond one line is

indicated by new lines beginning with three periods (...) rather than brackets. You can

include as many of these as necessary to complete multiline structures, such as lists and

dictionaries, as well as function and class definitions:

>>> b = ('example',

... 'value')

>>> def test():

... return b * a

All of the lines that start with periods like this are combined with the last line that

started with angle brackets, and they’re all evaluated together. That means you can

leave extra lines if necessary, anywhere in the structure or even after it. This is useful

for mimicking the output of an actual interpreter session, which requires a blank line to

indicate when indented structures, such as functions or classes, are completed:

>>> b = ('example',

...

... 'value')

>>> def test():

... return b * a

...

�Representing Output
With the code in place, we just need to verify that its output matches what is expected.

In keeping with the interpreter format, output is presented beneath one or more lines of

input code. The exact formatting of the output will depend on the code being executed,

but it’s the same as you’d see when typing the code into the interpreter directly:

Chapter 9 Testing

352

>>> a

2

>>> b

('example', 'value')

>>> test()

('example', 'value', 'example', 'value')

In these examples, the output string is equivalent to passing the return value from

the expression into the built-in repr() function. Therefore, strings will always be quoted,

and many specific types will have a different format than if you print them directly.

Testing the output of str() can be achieved simply by calling str() in the line of code.

Alternatively, the print() function is also supported and works just as you’d expect:

>>> for value in test():

... print(value)

example

value

example

value

In examples like this, all lines of the output are checked against what was actually

returned or printed by the code provided. This provides a very readable way to deal with

sequences, as shown here. For longer sequences, as well as situations in which output

is allowed to change from one run to another, output may also include three periods as

ellipses, indicating a place where additional content should be ignored:

>>> for value in test():

... print(value)

example

...

value

Chapter 9 Testing

353

This form is particularly useful when testing exceptions: the interpreter output

includes file paths, which will nearly always change from one system to another, and

aren’t relevant to most tests. In these cases what’s important to test is that the exception

is raised, that it’s the correct type, and that its value, if any, is correct:

>>> for value in test:

... print(value)

Traceback (most recent call last):

 ...

TypeError: 'function' object is not iterable

As the output format here suggests, the doctest will verify the first and last lines of the

exception output, while ignoring the entire traceback in between. Because the traceback

details are typically irrelevant to the documentation as well, this format is also much

more readable.

�Integrating With Documentation
Because the tests are meant to be built into documentation, there needs to be a way to

make sure that only the tests are executed. In order to distinguish between the two without

interrupting the flow of documentation, tests are set aside by nothing more than an extra

newline. You’d always have to use one newline to avoid them all running together on a

single line, so adding an extra simply leaves one blank line between the two:

"""

This is an example of placing documentation alongside tests in a single string.

Additional documentation can be placed between snippets of code, and it won't

disturb the behavior or validity of the tests.

"""

print("Hello, world!")

Chapter 9 Testing

354

�Running Tests
The actual execution of doctests is provided by the doctest module. In the simplest

form, you can run a single function to test an entire module. This is useful when

writing a set of tests for a file that was already written, because you can easily test the

file individually after writing new tests. Simply import doctest and run its testmod()

function to test the module. Here’s an example module that contains a couple types of

doctests:

def times2(value):

 """

 Multiplies the provided value by two. Because input objects can override

 the behavior of multiplication, the result can be different depending on

 the type of object passed in.

 >>> times2(5)

 10

 >>> times2('test')

 'testtest'

 >>> times2(('a', 1))

 ('a', 1, 'a', 1)

 """

 return value * 2

if __name__ == '__main__':

 import doctest

 doctest.testmod()

The docstring in times2() function includes tests, and because it’s available as

a module-level function, the testmod() can see it and execute the tests. This simple

construct allows you to call the module directly from the command line and see the

results of all doctests in the module. For example, if this module was called times2.py,

you could invoke it from the command line as follows:

Chapter 9 Testing

355

$ python times2.py

$

By default, the output only contains errors and failures, so if all the tests pass, there

won’t be any output at all. Failures are reported on individual tests, with each input/

output combination being considered a unique test. This provides fine-grained details

about the nature of the tests that were attempted and how they failed. If the final line in

the example doctest were to read just ('a', 1) instead, here’s what would happen:

$ python times2.py

**

File "...", line 11, in __main__.times2

Failed example:

 times2((a, '1'))

Expected:

 (a, '1')

Got:

 (a, '1', a, '1')

**

1 items had failures:

 1 of 3 in __main__.times2

Test Failed 1 failures.

$

When working with more complicated applications and frameworks, however, the

simple input/output paradigm of doctests breaks down fairly quickly. In those situations,

there are two good tests in Python: Pytest and the unittest module. As a matter of

providing an alternative to doctests, we will examine unittest next.

Chapter 9 Testing

356

�The unittest Module
Unlike doctests, which require your tests be formatted in a very specific way, unittest

offers much more flexibility by allowing you to write your tests in real Python code. As is

often the case, this extra power requires more control over how your tests are defined.

In the case of unit tests, this control is provided by way of an object-oriented API for

defining individual tests, test suites, and data fixtures for use with tests.

After importing the unittest module, the first place to start is the TestCase class,

which forms the base of most of the module’s features. You should also examine pytest.org,

but this class should be considered first. The unittest module doesn’t do much on its own,

but when subclassed, it offers a rich set of tools to help define and control your tests.

These tools are a combination of existing methods that you can use to perform individual

tests and new methods you can define to control how your tests work. It all starts by

creating a subclass of the TestCase class:

import unittest

class MultiplicationTestCase(unittest.TestCase):

 pass

�Setting Up
The starting point for most test cases is the setUp() method, which you can define

to perform some tasks at the start of all the tests that will be defined on the class.

Common setup tasks include defining static values that will be compared later, opening

connections to databases, opening files, and loading data to analyze.

This method takes no arguments and doesn’t return anything. If you need to control

its behavior with any parameters, you’ll need to define those in a way that setUp() can

access without them being passed in as arguments. A common technique is to check os.

environ for specific values that affect the behavior of the tests. Another option is to have

customizable settings modules that can be imported in setUp(), which can then modify

the test behavior.

Chapter 9 Testing

https://pytest.org

357

Likewise, any values that setUp() defines for later use can’t be returned using the

standard value. Instead, they can be stored on the TestCase object itself, which will be

instantiated prior to running setUp(). The next section will show that individual tests

are defined as methods on that same object, so any attributes stored during setup will be

available for use by the tests when they execute:

import unittest

class MultiplicationTestCase(unittest.TestCase):

 def setUp(self):

 self.factor = 2

Note I f you look at PEP 8 (Style Guide for Python Code), you’ll notice that
the name setUp() doesn’t follow standard Python naming conventions. The
capitalization style here is based on the Java testing framework, JUnit. Python’s
unit testing system was ported from Java, and some of its style carried over as
well. Be sure to examine this PEP, as it provides some very important information
about readability of code.

�Writing Tests
With the setup in place, you can write some tests to verify whatever behavior you’re

working with. Like setUp(), these are implemented as custom methods on your test case

class. Unlike setUp(), however, there’s no single specific method that must implement

all the tests. Instead, the test framework will look at your test case class for any methods

whose names begin with the word test.

For each method that it finds, the test framework executes setUp() before

executing the test method. This helps ensure that each method can rely on a consistent

environment regardless of how many methods there are, what they each do, or in what

order they’re executed. Completely ensuring consistency requires one other step, but

that will be covered in the next section.

Chapter 9 Testing

358

When writing the body of a test method, the TestCase class offers some utility

methods to describe how your code is supposed to work. These are designed in such a

way that each represents a condition that must be true in order to continue. There are

several of these methods, with each covering a specific type of assertion. If the given

assertion passes, the test will continue to the next line of code; otherwise, the test halts

immediately and a failure message will be generated. Each method provides a default

message to use in case of a failure but also accepts an argument to customize that

message:

•	 assertTrue(expr, msg=None): This method tests that the given

expression evaluates to True. This is the simplest assertion available,

mirroring the built-in assert keyword. Using this method ties failures

into the test framework, however, so it should be used instead. If you

prefer the assert keyword, this method is also available as assert_().

•	 assertFalse(expr, msg=None): The inverse of assertTrue(), this

test will only pass if the provided expression evaluates to False.

•	 fail(msg=None): This method generates a failure message explicitly.

This is useful if the conditions of the failure are more complex than

the built-in methods provide for on their own. Generating a failure is

preferable to raising an exception because it indicates that the code

failed in a way that the test understands, rather than being unknown.

These functions alone provide a basic palette for the rest of your tests. To start

converting the earlier doctest to a unit test, we can start by providing a testNumber()

method to simulate the first test that was performed previously. Like doctests, the

unittest module also provides a simple function to run all the tests found in the given

module; this time, it’s called main():

import unittest

import times2

class MultiplicationTestCase(unittest.TestCase):

 def setUp(self):

 self.factor = 2

 def testNumber(self):

Chapter 9 Testing

359

 self.assertTrue(times2.times2(5) == 10)

if __name__ == '__main__':

 unittest.main()

Tests are typically stored in a module called tests.py. After saving this file, we can

execute it just like the doctest example shown previously:

$ python tests.py

.

--

Ran 1 test in 0.001s

Unlike doctests, unit testing does show some statistics by default. Each period

represents a single test that was run, so complex applications with dozens, hundreds,

or even thousands of tests can easily fill several screens with results. Failures and errors

are also represented here, using E for errors and F for failures. In addition, each failure

will produce a block of text to describe what went wrong. Look what happens when we

change the test expression:

import unittest

import times2

class MultiplicationTestCase(unittest.TestCase):

 def setUp(self):

 self.factor = 2

 def testNumber(self):

 self.assertTrue(times2.times2(5) == 42)

if __name__ == '__main__':

 unittest.main()

$ python tests.py

Chapter 9 Testing

360

The output of running this code, assuming that you are in the same terminal session

and have keyed in the previous functions, will be:

F

==

FAIL: testNumber (__main__.MultiplicationTests)

--

Traceback (most recent call last):

 File "tests.py", line 9, in testNumber

 self.assertTrue(times2(5) == 42)

AssertionError: False is not True

--

Ran 1 test in 0.001s

FAILED (failures=1)

As you can see, it shows exactly which test method generated the failure, with a

traceback to help track down the code flow that led to the failure. In addition, the failure

itself is shown as an AssertionError, with the assertion shown plainly.

In this case, however, the failure message isn’t as useful as it could be. All it reports

is that False is not True. That’s a correct report, of course, but it doesn’t really tell the

whole story. In order to better track down what went wrong, it would be useful to know

what the function actually returned.

To provide more information about the values involved, we’ll need to use a test

method that can identify the different values individually. If they’re not equal, the

test fails just like the standard assertion, but the failure message can now include the

two distinct values so you can see how they’re different. That can be a valuable tool in

determining how and where the code went wrong—which is, after all, the whole point of

testing:

•	 assertEqual(obj1, obj2, msg=None): This checks that both objects

that were passed in evaluate as equal, utilizing the comparison

features shown in Chapter 5, if applicable.

•	 assertNotEqual(obj1, obj2, msg=None): This is similar to

assertEqual(), except that this method will fail if the two objects

are equal.

Chapter 9 Testing

361

•	 assertAlmostEqual(obj1, obj2, *, places=7, msg=None):

Specifically for numeric values, this method rounds the value to the

given number of decimal places before checking for equality. This

helps account for rounding errors and other problems due to floating

point arithmetic.

•	 assertNotAlmostEqual(obj1, obj2, *, places=7, msg=None):

The inverse of the previous method, this test fails if the two numbers

are equal when rounded to the specified number of digits.

With assertEqual() available, we can change testNumber() to produce a more

useful message in the event that the assertion fails:

import unittest

import times2

class MultiplicationTestCase(unittest.TestCase):

 def setUp(self):

 self.factor = 2

 def testNumber(self):

 self.assertEqual(times2.times2(5), 42)

if __name__ == '__main__':

 unittest.main()

F

==

FAIL: testNumber (__main__.MultiplicationTests)

--

Traceback (most recent call last):

 File "tests.py", line 9, in testNumber

 self.assertEqual(times2(5), 42)

AssertionError: 10 != 42

--

Ran 1 test in 0.001s

FAILED (failures=1)

Chapter 9 Testing

362

Behind the scenes, assertEqual() does a couple of interesting things to be as flexible

and powerful as possible. First, by using the == operator, it can compare the two objects

using whatever more efficient method the objects themselves may define. Second, the

formatting of the output can be configured by supplying a custom comparison method.

Several of these customized methods are provided in the unittest module:

•	 assertSetEqual(set1, set2, msg=None): Because unordered

sequences are typically implemented as sets, this method is designed

specifically for sets, using the first set’s difference() method to

determine whether any items are different between the two.

•	 assertDictEqual(dict1, dict2, msg=None): This method is

designed specifically for dictionaries, in order to take their values into

account as well as their keys.

•	 assertListEqual(list1, list2, msg=None): Similar to

assertEqual(), this method is targeted specifically at lists.

•	 assertTupleEqual(tuple1, tuple2, msg=None): Like

assertListEqual(), this is a customized equality check, but this time

tailored for use with tuples.

•	 assertSequenceEqual(seq1, seq2, msg=None): If you’re not

working with a list, tuple, or a subclass of one of them, this method

can be used to do the same job on any object that acts as a sequence.

In addition to these methods provided out of the box, you can add your own to the

test framework, so that assertEqual() can more effectively work with your own types.

By passing a type and a comparison function into the addTypeEqualityFunc() method,

you can register it for use with assertEqual() later on.

Using addTypeEqualityFunc() effectively can be tricky, because it’s valid for

the entire test case class, no matter how many tests there may be inside it. It may be

tempting to add the equality function in the setUp() method, but remember that

setUp() gets called once for each test method that was found on the TestCase class.

If the equality function will be registered for all tests on that class, there’s no point

registering it before each one.

A better solution would be to add the addTypeEqualityFunc() call to the __init__()

method of the test case class. This also has the additional benefit that you can subclass

your own test case class to provide a more suitable base for other tests to work with. That

process is explained in more detail later in this chapter.

Chapter 9 Testing

363

�Other Comparisons
Beyond simple equality, unittest.TestCase includes a few other methods that can be

used to compare two values. Aimed primarily at numbers, these address the question of

whether a tested value is less than or greater than what was expected:

•	 assertGreater(obj1, obj2, msg=None): Similar to the tests for

equality, this tests whether the first object is greater than the second.

Like equality, this also delegates to methods on the two objects, if

applicable.

•	 assertGreaterEqual(obj1, obj2, msg=None): This works just like

assertGreater(), except that the test also passes if the two objects

compare as equal.

•	 assertLess(obj1, obj2, msg=None): This test passes if the first

object compares as less than the second object.

•	 assertLessEqual(obj1, obj2, msg=None): Like assertLess(), this

tests whether the first object is less than the second but also passes if

both are equal.

�Testing Strings and Other Sequence Content
Sequences present an interesting challenge because they’re made up of multiple

individual values. Any value in a sequence could determine the success or failure of a

given test, so it’s necessary to have tools to work with them specifically. First, there are

two methods designed for strings, where simple equality may not always be sufficient:

•	 assertMultiLineEqual(obj1, obj2, msg=None): This is a

specialized form of assertEqual(), designed for multiline strings.

Equality works like any other string, but the default failure message is

optimized to show the differences between the values.

•	 assertRegexpMatches(text, regexp, msg=None): This tests

whether the given regular expression matches the text provided.

Chapter 9 Testing

364

More generally, tests for sequences need to make sure that certain items are present

in the sequence in order to pass. The equality methods shown previously will only work

if the entire sequence must be equal. In the event that some items in the sequence are

important but the rest can be different, we’ll need to use some other methods to verify

that:

•	 assertIn(obj, seq, msg=None): This tests whether the object is

present in the given sequence.

•	 assertNotIn(obj, seq, msg=None): This works like assertIn()

except that it fails if the object exists as part of the given sequence.

•	 assertDictContainsSubset(dict1, dict2, msg=None): This

method takes the functionality of assertIn() and applies it

specifically to dictionaries. Like the assertDictEqual() method, this

specialization allows it to also take the values into account instead of

just the keys.

•	 assertSameElements(seq1, seq2, msg=None): This tests all

the items in two sequences and passes only if the items in both

sequences are identical. This only tests for the presence of individual

items, not their order within each sequence. This will also accept two

dictionaries but will treat it as any other sequence, so it will only look

at the keys in the dictionary, not their associated values.

�Testing Exceptions
So far all of the test methods have taken a positive approach, where the test verifies that

a successful outcome really is successful. It’s just as important to verify unsuccessful

outcomes, however, because they still need to be reliable. Many functions are expected

to raise exceptions in certain situations, and unit testing is just as useful in verifying that

behavior:

•	 assertRaises (exception, callable, *args, **kwargs): Rather

than checking a specific value, this method tests a callable to see

that it raises a particular exception. In addition to the exception type

and the callable to test, it also accepts any number of positional and

keyword arguments. These extra arguments will be passed to the

callable that was supplied, so that multiple flows can be tested.

Chapter 9 Testing

365

•	 assertRaisesRegexp (exception, regex, callable,

*args, **kwargs): This method is slightly more specific than

assertRaises() because it also accepts a regular expression that

must match the exception’s string value in order to pass. The

expression can be passed in as a string or as a compiled regular

expression object.

In our times2 example, there are many types of values that can’t be multiplied by

an integer. Those situations can be part of the explicit behavior of the function, as long

as they’re handled consistently. The typical response would be to raise a TypeError, as

Python does by default. Using the assertRaises() method, we can test for this as well:

import unittest

import times2

class MultiplicationTestCase(unittest.TestCase):

 def setUp(self):

 self.factor = 2

 def testNumber(self):

 self.assertEqual(times2.times2(5), 42)

 def testInvalidType(self):

 self.assertRaises(TypeError, times2.times2, {})

Some situations are a bit more complicated, which can cause difficulties with testing.

One common example is an object that overrides one of the standard operators. You

could call the overridden method by name, but it would be more readable to simply

use the operator itself. Unfortunately, the normal form of assertRaises() requires a

callable, rather than just an expression.

To address this, both of these methods can act as context managers using a with

block. In this form you don’t supply a callable or arguments, but rather just pass in the

exception type and, if using assertRaisesRegexp(), a regular expression. Then, in the

body of the with block, you can add the code that must raise the given exception. This

can also be more readable than the standard version, even for situations that wouldn’t

otherwise require it:

Chapter 9 Testing

366

import unittest

import times2

class MultiplicationTestCase(unittest.TestCase):

 def setUp(self):

 self.factor = 2

 def testNumber(self):

 self.assertEqual(times2.times2(5), 42)

 def testInvalidType(self):

 with self.assertRaises(TypeError):

 times2.times2({})

COMPATIBILITY: PRIOR TO 3.1/2.7

The assertRaises() method was around before Python 2.5, so it will be available in

most Python versions in use today. The regular expression variant, however, was added in

Python 3.1 and backported to Python 2.7. The same functionality could be simulated using a

try/except combination to get access to the error message directly, where its string value

can be verified using a regular expression.

Even though the with statement and context managers were both introduced in Python 2.5,

assertRaises() didn’t support the context management protocol until version 3.1. Because

the assertRaisesRegexp() method didn’t exist until that version either, there was no

support for context managers in earlier versions. To achieve the same effect without context

managers, you’ll need to create a new callable—often a lambda function—to pass into the

test method.

�Testing Identity
The last group contains methods for testing the identity of objects. Rather than just

checking to see if their values are equivalent, these methods check to see if two objects are

in fact the same. One common scenario for this test is when your code caches values for

Chapter 9 Testing

367

use later. By testing for identity, you can verify that a value returned from cache is the same

value that was placed in the cache to begin with, rather than simply an equivalent copy:

•	 assertIs(ob1, obj2, msg=None): This method checks to see if the

two arguments both refer to the same object. The test is performed

using the identity of the objects, so objects that might compare as

equal will still fail if they’re not actually the same object.

•	 assertIsNot(obj1, obj2, msg=None): This inversion of assertIs()

will only pass if the two arguments refer to two different objects. Even

if they would otherwise compare as equal, this test requires them to

have different identities.

•	 assertIsNone(obj, msg=None): This is a simple shortcut for a

common case of assertIs(), where an object is compared to the

built-in None object.

•	 assertIsNotNone(obj, msg=None): The inversion of assertIsNone()

will pass only if the object provided is not the built-in None object.

�Tearing Down
Just as setUp() gets called before each individual test is carried out, the TestCase object

also calls a tearDown() method to clean up any initialized values after testing is carried

out. This is used quite often in tests that need to create and store information outside of

Python during testing. Examples of such information are database rows and temporary

files. Once the tests are complete that information is no longer necessary, so it makes

good sense to clean up after they’ve completed.

Typically, a set of tests that works with files will have to create temporary files along

the way, to verify that they get accessed and modified properly. These files can be

created in setUp() and deleted in tearDown(), ensuring that each test has a fresh copy

when it runs. The same can be done with databases or other data structures.

Note T he key value of setUp() and tearDown() is that they can prepare a
clean environment for each individual test. If you need to set up an environment for
all the tests to share or revert some changes after all tests have completed, you’ll
need to do so before or after starting the testing process.

Chapter 9 Testing

368

�Providing a Custom Test Class
Because the unittest module is designed as a class to be overridden, you can write your

own class on top of it for your tests to use instead. This is a different process than writing

tests because you’re providing more tools for your tests to use. You can override any

of the existing methods that are available on TestCase itself or add any others that are

useful to your code.

The most common way to extend the usefulness of TestCase is to add new methods

to test different functionality than the original class was designed for. A file-handling

framework might include extra methods for testing the size of a given file or perhaps

some details about its contents. A framework for retrieving Web content could include

methods to check HTTP status codes or look for individual tags in HTML documents.

The possibilities are endless.

�Changing Test Behavior
Another powerful technique available when creating a testing class is the ability to

change how the tests themselves are performed. The most obvious way to do this

is to override the existing assertion methods, which can change how those tests are

performed. There are a few other ways to alter the standard behavior, without overriding

the assertion methods.

These additional overrides can be managed in the __init__() method of your

custom class because, unlike setUp(), the __init__() method will only be called once

per TestCase object. That makes it good for those customizations that need to affect all

tests but won’t be affected by any of the tests as they run. One such example, mentioned

previously in this chapter, is the ability to add custom equality comparison methods,

which are registered with the addTypeEqualityFunc() method.

Another modification you can make to the test class is to define what type of

exception is used to identify failures. Normally, all test failures raise an AssertionError

behind the scenes—the same exception used when an assert statement fails. If you

need to change that for any reason, such as to better integrate with a higher-level testing

framework, you can assign a new exception type to the failureException class attribute.

As a side effect of using the failureException attribute to generate failures, you

can raise it explicitly using self.failureException to generate a test failure. This is

essentially the same as simply calling self.fail(), but it can be more readable in some

cases to raise an exception rather than call a method.

Chapter 9 Testing

369

�Exciting Python Extensions: Pillow
The Pillow library offers Python programmers great power when dealing with images.

The Pillow (or PIL) Python Imaging Library offers Python programmers great power

when dealing with images. The main site, https://python-pillow.org, offers a great

amount of information about what the library offers, including the three main functions

of image archiving, display, and processing. Of course there is much more that the PIL

library offers.

�How to Install Pillow (PIL)
From a command prompt with administrative privileges, type:

pip3 install pillow (Enter)

Now that you have it installed (if pip3 reported a successful install), let’s try a few of

the features.

�Image Display: Determine File Size, Type, and Display It
Using a JPG image of your choice, try the following:

#PIL example 1

from __future__ import print_function

from PIL import Image

my_image = Image.open("sleepy_sab.jpg")

#this image: http://www.jbbrowning.com/user/pages/02.about/sleepy_sab.JPG

#show data about the image

print(my_image.format, ' Image format')

print(my_image.size, ' Image size')

print(my_image.mode, 'Color mode e.g. RGB, etc.')

#Display the image with the default image application

my_image.show()

It is important to note that PIL will automatically open most standard image types

without any prompting via code.

Chapter 9 Testing

https://python-pillow.org

370

�Image Processing: Crop a Portion of an Image
In this example, we will use the previous jpg image (so if you use a different one the

settings will need to be adjusted) and display the original, and then crop a bit and

display the new image. This crop function expects a tuple with four coordinate points,

0,0 being the upper left:

#PIL example 2

from __future__ import print_function

from PIL import Image

my_image = Image.open("sleepy_sab.jpg")

#Display the image with the default image application

my_image.show()

#Crop a portion of the image from the upper left to

#about halfway and display

#(3456, 2304) is the image size

#0,0 is upper left. Crop wants a tuple so there are (())

region = my_image.crop((0,0,2000,2000))

region.show()

�Image Processing: Changing Image Orientation
You can rotate images as well two different ways (both work the same). In the next

example we will rotate the image 90 degrees:

#PIL example 3

from __future__ import print_function

from PIL import Image

my_image = Image.open("sleepy_sab.jpg")

#Rotate the image 90 degrees

turny=my_image.transpose(Image.ROTATE_90)

turny.show()

Chapter 9 Testing

371

�Image Processing: Filters
There are a number of filters, such as blur and enhance, built in to PIL. Additionally,

there are other filters for color transformations, pixel lookups, and so on. The main PIL

web site has updates for the current version. To see how handy they are, examine the

following example, which embosses the image:

#PIL example 4

from PIL import Image

from PIL import ImageFilter

my_image = Image.open("sleepy_sab.jpg")

#Emboss the image

emmy=my_image.filter(ImageFilter.EMBOSS)

emmy.show()

If you used the suggested image, poor Sabastian looks like a piece of metal artwork!

Are there more things you can do with PIL? Yes! Expand on what you have learned and

try your hand with some of the other filters and processing tools.

�Taking It With You
The tools described in this chapter are just the basis of a functional test suite. As you

write an application, you’ll need to fill in the gaps with the important facets of how your

code should work. Always remember, however, that tests aren’t just for you. By making

sure that new code doesn’t break existing code, you can provide a much better guarantee

for your users once you distribute your code to the public. The next chapter will show

how you can get your code to the masses.

Chapter 9 Testing

373
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_10

CHAPTER 10

Distribution
Once you have a working application, the next step is to decide how and where to

distribute it. You might be writing it for yourself, but most likely you will have a wider

audience and have a set schedule for releasing it. There are a number of decisions to be

made and tasks to be performed before you can do that, however. This process consists

primarily of packaging and distribution, but it begins with licensing.

�Licensing
Before releasing any code to the public, you must decide on a license that will govern

its use. A license will allow you to convey to your users how you intend your code to

be used, how you expect others to use it, what you ask from them in return, and what

rights you expect them to confer on users of their own code after integrating with yours.

These are complex questions that can’t be answered in a universal way for every project.

Instead, you’ll need to consider a number of issues.

Your own philosophy plays a key role, as it affects many other decisions. Some

people intend to earn a living from their code, which could mean the source code won’t

be released at all. Instead, your work could be offered as a service that customers can

pay to use. By contrast, you may be interested in helping people learn to do things better,

faster, easier, or more reliably. Perhaps the most common license is the GPL.

�GNU General Public License
When people think of open source, the GNU General Public License (GPL)1 is often the

first thing to come to mind. As one of the vanguards of the free software movement, its

primary goal is to preserve a certain group of freedoms to the users of software. The GPL

1�See GNU Operating System, “GNU General Public License,” http://propython.com/gpl.

http://propython.com/gpl

374

requires that if you distribute your program to others, you must also make the source

code of that program available to them. That way they’re free to make modifications to

your code as they see fit, in order to better support their own needs.

Furthermore, the promise of the GPL is that any users who do alter your code can

only distribute their modifications under the GPL or a license that ensures at least the

same freedoms. This way users of the software can be confident that if it doesn’t work to

their satisfaction, they have a way to make it better no matter how far removed it may be

from the original author.

Because the GPL places requirements on any modifications made to the original

code and code that links to it, it’s sometimes referred to as “viral.” That’s not necessarily

an insult; it simply refers to the fact that the GPL forces the same license on anything that

uses it. In other words, it spreads through software in much the same way as a traditional

virus. This isn’t unique to the GPL, but it’s the feature many in the business world think

of first when they think of the GPL and open source in general.

Because the goal of the GPL is to preserve freedoms for computer users, it can

be seen as restricting the freedom of programmers. The freedom of a programmer to

distribute an application without divulging the source code restricts the freedom of a

user to modify that code. Of those two opposing forces, the GPL is designed to preserve

the user’s freedoms by placing a number of restrictions on the behavior of programmers.

THE GPL AND PYTHON

The GPL was written primarily for statically compiled languages, such as C and C++, so it

often speaks in terms of code in “object form” that may be “statically linked” to other code.

In other words, when you create a C++ executable, the compiler inserts the code from

the libraries you reference to make a stand-alone program. These terms are central to its

vocabulary, but aren’t as clearly understood when applied to dynamic languages such as

Python. Many Python applications use the GPL because of its overall philosophy, but its terms

have yet to be tested in court in the context of a Python application.

It may seem like such details wouldn’t really matter because Python code is generally

distributed as source code anyway. The term generally here has exceptions, such as if you

used py2exe to make a Windows-compiled Python application. After all, compiled Python

bytecode isn’t compatible with all the various systems in which the code might be used.

Chapter 10 Distribution

375

But because the GPL also applies to any other applications that use the code, these details

become important if, for example, a statically compiled application uses GPL Python code

internally for some features. It has yet to be seen whether such use would trigger the GPL’s

requirements on the distribution of that new application’s source code.

Because these restrictions must also be passed on to any other application that

includes GPL code, the available licenses that can work with it are limited. Any other

license you might consider must include at least the same restrictions as the GPL,

although additional restrictions can be added if necessary. One example of this is the

AGPL.

�Affero General Public License
With the proliferation of the Internet, it’s now quite common for users to interact with

software without ever obtaining a copy of that software directly. Because the GPL relies

on distribution of code to trigger the requirement to also distribute source code, online

services such as web sites and mail systems are exempt from that requirement. Some

have argued that those exemptions violate the spirit of the GPL by exploiting a loophole

in its provisions.

To close that loophole, the Affero General Public License (AGPL) was created. This

license contains all the restrictions of the GPL as well as the added feature that any user

interacting with the software, even by way of a network, will trigger the distribution

clause. That way, web sites that incorporate AGPL code must divulge the source code

for any modifications they’ve made and any additional software that shares common

internal data structures with it. Although a bit slow to be adopted by the masses, certainly

approval by the Open Source Initiative (OSI) gives this license important support.

Note E ven though the terminology and philosophy of the AGPL are very similar
to the GPL, its applicability to Python is a bit more clear. Because just interacting
with the software triggers the terms of the license, it doesn’t matter as much
whether the code is compiled from a static language such as C or built from a
dynamic language such as Python. This also has yet to be tested in court for
Python cases, however.

Chapter 10 Distribution

376

Because the AGPL is more restrictive than the GPL itself, it’s possible for a project

that uses AGPL to incorporate code that was originally licensed with the standard

GPL. All of the protections of the GPL remain intact, while some extra ones are added.

There’s also a variant of the GPL that incorporates fewer restrictions, called the LGPL.

�GNU Lesser General Public License
Because the GPL states that statically linking one piece of code to another triggers its

terms, many small utility libraries were used less often than they might otherwise have

been. These libraries typically don’t constitute an entire application on their own, but

because their usefulness requires tight integration with the host application, many

developers avoided them in order to avoid their own applications being also bound to

the GPL.

The GNU Lesser General Public License (LGPL) was created to handle these cases

by removing the static linking clause. Thus, a library released under the LGPL could be

freely used in a host application without requiring the host be bound by the LGPL or any

other specific license. Even proprietary, commercial applications with no intention of

releasing any source code can incorporate code licensed with the LGPL.

All of the other terms remain intact, however, so any modifications to the LGPL

code must be distributed as source code if the code itself is distributed in any way. For

this reason, many LGPL libraries have extremely flexible interfaces that allow their host

applications as many options as possible without having to modify the code directly.

Essentially, the LGPL leans more toward using the notion of open source to foster a

more open programming community than to protect the rights of the software’s eventual

audience. Further down that road is one of the most liberal open source licenses

available: BSD.

�Berkeley Software Distribution License
The Berkeley Software Distribution (BSD) license provides a way to release code with

the intent of fostering as much adoption as possible. It does this by placing relatively few

limitations on the use, modification, and distribution of the code by other parties. In fact,

the entire text of the license consists of just a few bullet points and a disclaimer. Referring

to BSD as a single license is a misnomer, however, as there are actually a few variations.

In its original form, the license consisted of four points:

Chapter 10 Distribution

377

•	 Distributing the source code to the program requires that the code

retain the original copyright, the text of the license, and its disclaimer.

•	 Distributing the code as a compiled binary program requires the

copyright, license text, and disclaimer be included somewhere in the

documentation or other materials provided with the distributed code.

•	 Any advertising used to promote the final product must attribute the

BSD-licensed code as being included in the product.

•	 Neither the name of the organization that developed the software

nor the names of any of its contributors may be used to specifically

endorse the product without explicit consent beyond the license

itself.

Notice that this contains no requirement that the source code be distributed at all,

even when distributing compiled code. Instead, it only requires that the appropriate

attribution is retained at all times and that it remains clear that there are two separate

parties involved. This allows BSD-licensed code to be included in proprietary,

commercial products with no need to release the source code behind it, making it fairly

attractive to large corporations.

The advertising clause caused some headaches with organizations trying to use BSD-

licensed code, however. The primary problem is that as the code itself changed hands

and was maintained by different organizations, each organization that had a hand in its

development must be mentioned by name in any advertising materials. In some cases

that could be dozens of different organizations, accounting for a significant portion of

advertising space, especially when software often contains quite a few other disclaimers

for other reasons.

To address those concerns, another version of the BSD license was created without

the advertising clause. This license is called the New BSD license, and it includes all

the other requirements of the original. The removal of the advertising clause meant

that changes in management of the BSD-licensed code had very little impact on

organizations using it, which broadened its appeal considerably.

One further reduction of the BSD license is called the Simplified BSD license. In this

variation even the nonendorsement clause is removed, leaving only the requirements

that the text of the license and its disclaimer be included. In order to still avoid untrue

endorsement, the disclaimer in this version includes an extra sentence that clearly states

that the views of both groups are independent of each other.

Chapter 10 Distribution

378

�Other Licenses
The options listed here are some of the more commonly chosen, but there are many

more available. The OSI maintains a list of open source licenses2 that have been

examined and approved as preserving the ideals of open source. In addition, the Free

Software Foundation maintains its own list of licenses3 that have been approved as

preserving the ideals of free software.

Note  The difference between free software and open source is primarily
philosophical, but does have some real-world implications. In a nutshell, free
software preserves the freedom of users of that software, whereas open source
focuses on the software development model. Not all licenses are approved for both
uses, so you may need to decide which is more important to you.

Once you have a license in place, you can start the process of packaging and

distributing your code to others who can make use of it.

�Packaging
It’s not very easy to distribute a bunch of files individually, so you’ll first have to bundle

them up. This process is called packaging, but it shouldn’t be confused with the standard

Python notion of a package. Traditionally, a package is simply a directory with an __

init__.py file in it, which can then be used as a namespace for any modules contained

in that directory.

For the purposes of distribution, a package also includes documentation, tests,

a license, and installation instructions. These are arranged in such a way that the

individual parts can be easily extracted and installed into appropriate locations.

Typically, the structure looks something like this:

2�See Open Source Initiative, “Licenses by Name,” http://propython.com/osi-licenses.
3�See GNU Operating System, “Various Licenses and Comments about Them,”
http://propython.com/fsf-licenses.

Chapter 10 Distribution

http://propython.com/osi-licenses
http://propython.com/fsf-licenses
http://propython.com/fsf-licenses

379

AppName/

 LICENSE.txt

 README.txt

 MANIFEST.in

 setup.py

 app_name/

 __init__.py

 ...

 docs/

 ...

 tests/

 __init__.py

 ...

As you can see, the actual Python code package is a subdirectory of the overall

application package, and it sits as a peer alongside its documentation and tests. The

documentation contained in the docs directory can contain any form of documentation

you prefer, but is usually filled with plain text files formatted using reStructuredText, as

described in Chapter 8. The tests directory contains tests such as those described in

Chapter 9. The LICENSE.txt file contains a copy of your chosen license and README.txt

provides an introduction to your application, its purpose, and its features.

The more interesting features of this overall package are setup.py and MANIFEST.in,

which aren’t otherwise part of the application’s code.

�setup.py
Inside your package, setup.py is the script that will actually install your code into an

appropriate location on a user’s system. In order to be as portable as possible, this script

relies on the distutils package provided in the standard distribution. That package

contains a setup() function that uses a declarative approach to make the process easier

to work with and more generic.

Located within distutils.core, the setup() function accepts a wide array of

keyword arguments, each of which describes a particular feature of the package. Some

pertain to the package as a whole, whereas others list individual contents that are

Chapter 10 Distribution

380

included in the package. Three of these arguments are required for any package to be

distributed using standard tools:

•	 name: This string contains the public name of the package as it will

be displayed to those who are looking for it. Naming a package can

be a complex and difficult task, but as it’s highly subjective, it’s well

beyond the scope of this book.

•	 version: This is a string containing the dot-separated version number

of the application. It’s common for first releases to use a version of

'0.1' and increase from there. The first number is typically a major

version indicating a promise of compatibility. The second is a minor

version number, representing a collection of bug fixes or significant

new features that don’t break compatibility. The third is typically

reserved for security releases that introduce no new functionality or

other bug fixes.

•	 url: This string references the main web site where users can learn

more about the application, find more documentation, request

support, file bug reports, or do other tasks. It typically serves as a

central hub for information and activity surrounding the code.

In addition to these three required elements, there are several optional arguments

that can provide further detail about the application:

•	 author: The name of the author(s) of the application.

•	 author_email: An email address where the author can be reached

directly.

•	 maintainer: If the original author is no longer maintaining the

application, this field contains the name of the person now

responsible for it.

•	 maintainer_email: An email address where the maintainer can be

reached directly.

•	 description: This string provides a brief description of the purpose

of the program. Think of it as a one-line description that could be

shown in a list alongside others.

Chapter 10 Distribution

381

•	 long_description: As its name implies, this is a longer description

of the application. Rather than being used in lists, this one is

typically shown when a user requests more detail about the specific

application. Because this is all specified in Python code, many

distributions simply read the contents of README.txt into this

argument.

Beyond this metadata, the setup() function is responsible for maintaining a list

of all the files necessary to distribute the application, including all Python modules,

documentation, tests, and licenses. Like the other information, these details are supplied

using additional keyword arguments. All paths listed here are relative to the main

package directory where setup.py itself is located:

•	 license: This is the name of a file that contains the full text of the

license under which the program is distributed. Typically that file is

called LICENSE.txt, but by explicitly passing it in as an argument, it

can be named whatever you prefer.

•	 packages: This argument accepts a list of package names where the

actual code is located. Unlike license, these values are Python import

paths, using periods to separate individual packages along the path.

•	 package_dir: If your Python packages aren’t in the same directory

as setup.py, this argument provides a way to tell setup() where to

find them. Its value is a dictionary that maps a package name to its

location in the filesystem. One special key you can use is an empty

string, which will use the associated value as a root directory to look

for any packages that don’t have an explicit path specified.

•	 package_data: If your package relies on data files that aren’t written

in Python directly, those files will only get installed if referenced in

this argument. It accepts a dictionary that maps package names to

their contents, but unlike package_dir, the values in this dictionary

are lists, with each value in the list being a path specification to the

files that should be included. These paths may include asterisks to

indicate broad patterns to match against, similar to what you can

query on the command line.

Chapter 10 Distribution

382

There are other options for more complex configurations, but these should cover

most of the bases. For more information, consult the distutils documentation.4 Once

you have the pieces in place, you’ll have a setup.py that looks something like this:

from distutils.core import setup

setup(name='MyApp',

 version='0.1',

 author='Marty Alchin',

 author_email='marty@propython.com',

 url='http://propython.com/',

 packages=['my_app', 'my_app.utils'],

)

�MANIFEST.in
In addition to setup.py specifying what files should be installed on a user’s system, a

package distribution also includes a number of files that are useful to the user without

being installed directly. These files, such as documentation, should be available to users

with the package but don’t have any code value, so they shouldn’t be installed in an

executable location. The MANIFEST.in file controls how these files should be added to

the package.

MANIFEST.in is a plain text file, populated with a series of commands that tell

distutils what files to include in the package. The filename patterns used in these

commands follows the same conventions as the command line, allowing asterisks to

serve as a wildcard for a broad range of filenames. For example, a simple MANIFEST.in

might include any text files in the package’s docs directory:

include docs/*.txt

This simple instruction will tell disutils to find all the text files in the docs directory

and include them in the final package. Additional patterns could be included by

separating the patterns with a space. There are a few different commands available, each

of which has an include and exclude version available:

4�See Distributing Python Modules, “2. Writing the Setup Script,”
http://propython.com/distutils-setup.

Chapter 10 Distribution

http://propython.com/distutils-setup
http://propython.com/distutils-setup

383

•	 include: The most obvious option, this command will look for all

files that match any of the given patterns and include them in the

package. They’ll be placed in the package at the same location as they

were found in the original directory structure.

•	 exclude: The opposite of include, this will tell distutils to ignore

any files that match any of the patterns given here. This provides a

way to avoid including some files, without having to explicitly list

every included file in an include command. A common example

would exclude TODO.txt in a package that specifically includes all

text files.

•	 recursive-include: This command requires a directory as its first

argument, prior to any filename patterns. It then looks inside that

directory and any of its subdirectories for any files that match the

given patterns.

•	 recursive-exclude: Like recursive-include, this command takes a

directory first, followed by filename patterns. Any files that are found

by this command are not included in the package, even if they’re

found by one of the inclusion commands.

•	 global-include: This command finds all the paths in the project,

regardless of where they may be within the path structure. By looking

inside directories, it works much like recursive-include, but

because it looks through all directories, it doesn’t need to take any

argument other than the filename patterns to look for.

•	 global-exclude: Like global-include, this finds matching files

anywhere in the source project, but the files found are excluded from

the final package.

•	 graft: Rather than looking for matching files, this command accepts

a set of directories that are simply included in the package in their

entirety.

•	 prune: Like graft, this command takes a set of directories, but it

excludes them from the package completely, even if there were

matching files inside.

Chapter 10 Distribution

384

With both setup.py and MANIFEST.in in place, distutils provides an easy way to

bundle up the package and prepare it for distribution.

�The sdist Command
To finally create the distributable package, your new setup.py is actually executable

directly from a command line. Because this script is also used to install the package

later, you must specify what command you’d like it to carry out. Users who obtain the

package later will use the install command, but to package up a source distribution,

the command is sdist:

$ python setup.py sdist

running sdist

...

This command processes the declarations made in setup.py as well as the

instructions from MANIFEST.in to create a single archive file that contains all of the files

you’ve specified for distribution. The type of archive file you get by default depends

on the system you’re running, but sdist provides a few options that you can specify

explicitly. Simply pass in a comma-separated list of formats to the --format option to

generate specific types:

•	 zip: The default on Windows machines, this format creates a zip file.

•	 gztar: The default on Unix machines, including Mac OS, this creates

a gzipped tarball. To also create this archive on a Windows system,

you’ll need an implementation of tar installed, such as the one

available through Cygwin.5

•	 bztar: This command uses the alternative bzip compression on the

archive tarball. This also requires an implementation of tar installed.

•	 ztar: This uses the simpler compress algorithm to compress the

tarball. As with the others, an implementation of tar is required to

use this option.

•	 tar: Rather than using compression, this option simply bundles up a

tarball if an implementation of the tar utility is available.

5�See Cygwin, http://propython.com/cygwin.

Chapter 10 Distribution

http://propython.com/cygwin

385

When you run the sdist command, archive files for each of the formats you specified

will be created and placed inside a new dist directory within your project. The names of

each archive will simply use the name and version you supplied in setup.py, separated

by a hyphen. The example provided earlier would result in files such as MyApp-0.1.zip.

Let’s try all of the preceding steps in one example. Follow along with each step to

create your zip package:

	 1.	 Create a folder you can easily access via a command prompt such

as c:\test.

	 2.	 In the folder, create the following two files named setup.py and

MyApp.py:

#setup.py

from distutils.core import setup

setup(name='MyApp',

 version='0.1',

 author='Alchin and Browning',

 author_email='authors@propython.com',

 url='http://www.propython.com/',

)

MyApp.py

print("Hello Burton and Marty!")

gone=input("Enter to close: ")

	 3.	 Shell out to a command prompt, change into the test directory,

and execute the command:

python setup.py sdist (Enter)

	 4.	 Press Enter. (If it does not start Python, you will need to check

your search path and ensure that your system can find Python.)

This will create a dist directory in the test folder with the zip file for

your package.

Of course that was a very simple overview, but you have the flexibility to add a

manifest file, change compression options, and so on.

Chapter 10 Distribution

386

�Distribution
Once you have these files in place, you’ll need a way to distribute them to the public.

One option is to simply host your own web site and serve up the files from there. That’s

typically the best way to market your code to a wide audience because you have an

opportunity to put the documentation online in a more readable way, show examples of

it in use, offer testimonials from people who are already using it, and anything else you

can come up with.

The only problem with simply hosting it yourself is that it becomes fairly difficult

to find using automated tools. Many packages will rely on the presences of other

applications, so it’s often useful to be able to install them directly from inside a script,

without having to navigate to a web site and find the right link to download. Ideally, they

would be able to translate a unique package name into a way to download that package

and install it without assistance.

This is where the Python Package Index (PyPI)6 comes into play. The secret code

name of PyPI is “cheeseshop,” which is an allusion to the Monty Python Cheese shop skit

where John Cleese tries to purchase cheese from the shop Michael Palin is running . . .

which has none available.

PyPI is an online collection of Python packages that all follow a standardized

structure, so they can be discovered more easily. Each has a unique name that can be

used to locate it, and the index keeps track of which version is the latest and references

the URL to that package. All you need to do is add your package to the index and it will

be much easier for your users to work with.

Uploading to PyPI for the first time requires registration on the site. A PyPI account

will allow you to manage your application details later and upload new versions and

updates. Once you have an account, you can run python setup.py register to set up

a page for your application at PyPI. This is an interactive script that will offer you three

options for registering your account:

•	 Use an existing PyPI account. If you’ve created an account on the PyPI

web site already, you can specify your username and password here.

•	 Register a new PyPI account. If you’d rather create an account at the

command line, you can enter your details here and have the account

created during registration.

6�See Python Package Index (PyPl), http://propython.com/pypi.

Chapter 10 Distribution

http://propython.com/pypi

387

•	 Generate a new PyPI account. If you’d like to take a simpler approach,

this option will take the username you’re already using in your

operating system, generate a password automatically, and register an

account for that combination.

Once you choose your option, the register script will offer to save your account

information locally, so you won’t have to go through that step every time. With an

account in place, the script will register the application with PyPI, using the information

in setup.py. In particular, the name and long_description fields will combine to form a

simple web page, with other details shown in a list.

With a page in place to hold the application, the last step is to upload the code itself

using the upload command. This must be done as part of a distribution build, even if

you had previously built a distribution. That way, you can specify exactly what type of

distributions you’d like to send to PyPI. For example, you can upload packages for both

Windows and non-Windows users in a single step:

$ python setup.py sdist --format=zip,gztar upload

The distribution files are named according to the name of the application and its

version number at the time the distribution was created. The entry in PyPI also contains

a reference to the version number, so you can’t upload the same distribution type of the

same version more than once. If you try, you’ll get an error from setup.py indicating that

you’ll need to create a new version number in order to upload a changed distribution.

�Exciting Python Extensions: Secrets Module
The Secrets module offers Python programmers some handy random number and

password generating tools. Its main feature though is the cryptographically strong nature

of the random number algorithm.

The secrets module, introduced in Python 3.6, has many functions available in it.

One is random number generation. And while this has been covered with some other

libraries, it is still interesting to examine.

Your computer operating system will factor in on the exact nature of the random

numbers generated, but generally for cryptographic work, this random library will

do a better job than the other random number generators available in Python. Such

cryptographic uses would include: passwords, authentication, and tokens. Read on to

see how handy this module is.

Chapter 10 Distribution

388

�Random Numbers
There are quite a few random token and random number generation options. To see

how they work, consider that the next example will pick a random number between 0

and 100.

#Secrets example 1

from secrets import *

x=1

while (x <= 10):

 print(randbelow(100))

 x+=1

In the preceding example we selected 10 random values from 1 to 100. Not exciting,

but a better cryptographic representation of random values. Next we will consider

random password generation.

�Password Generation
In this next example, we will use both the string library and the secrets library to

generate a password with ASCII letter, digits, punctuation, and uppercase letters:

#Generate six digit passwd with letters, digits, punct, and upper

import string

from secrets import *

chars = string.ascii_letters + string.digits + string.punctuation + string.

ascii_uppercase

password = ".join(choice(chars) for i in range(6))

print (password)

Chapter 10 Distribution

389

If you needed a token for cryptographic work, there are options including urlsafe.

Consider the following example:

#Generate a token value which is URL-safe

from secrets import *

value = token_urlsafe(10)

print('token is: ',value)

Here we are using choice, but with this library you might try the following:

#Generate a secrets random choice

from secrets import *

value = choice(['one', 'two', 'three'])

print (value)

Lastly, if you wanted to enter values and select a random set from them, try the

following:

#Generate a random choice based on only certain values

from secrets import *

foo=input('Enter 10 random values to choose from: ')

wow=“.join([choice(foo) for i in range(3)])

print('These are three exciting choices at random:> ',wow)

There’s nothing here to save the world from a zombie apocalypse, but these

examples are still very interesting uses of the Python secrets module.

Chapter 10 Distribution

390

�Taking It With You
As you can see, the process of packaging and distributing a Python application using

PyPI is actually fairly straightforward. Beyond PyPI, it’s usually a good idea to put

together a dedicated project web site, where you can better promote and support your

code. Always remember that distribution isn’t the last step. Your users will expect a

certain amount of support and interaction as they use your code and hope to improve it,

so it’s best to find a medium that supports those goals for you and your users.

Applications of all different sizes, audiences, and goals are fair game for distribution.

It doesn’t matter if you’re writing a small utility to help automate common tasks or an

entire framework to power a set of features for other users’ code. The next chapter will

show you how to build such a framework from start to finish, building on many of the

techniques shown throughout this book.

Chapter 10 Distribution

391
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_11

CHAPTER 11

Sheets: A CSV Framework
Of course, the most important thing in programming is the program. Tools, techniques,

philosophy, and advice don’t offer much at all if they’re never applied to solve a real-

world problem. Sometimes that problem is very specific, but other times it’s merely a

specific example of a more general problem. These general problems are typically the

subject of libraries and frameworks, which can provide the base for a more specific

application.

This puts frameworks in an interesting position, because they’re focused more on

serving the needs of developers rather than ordinary users. The goal is to provide a

foundation and a set of tools to aid someone else in the development of a more specific

application. Supporting a wider array of uses requires more advanced techniques than

would ordinarily be used to solve the problem directly.

In order to be useful to other developers, however, the ideal goal is to provide a sort

of translation service so that the advanced techniques used by the framework allow

other developers to use simpler techniques to perform those more advanced tasks.

In this respect framework design is very similar to other forms of design, but rather

than focusing primarily on a visual user interface, the focus is on the application’s

programming interface, the API.

It’s important to look at frameworks like this, because if you’re writing a framework

your audience is looking for a tool to save them time and energy, so that they can focus

on their unique needs. The framework should provide a set of features in a way that

encourages integration with other types of applications, so it’s necessary to think in

terms of how those other applications should work.

392

There are countless examples of frameworks in use already, serving a wide variety of

needs. They all address a general class of problem, such as Django1 for Web development,

SQLAlchemy2 for database interaction, and Twisted3 for working with network protocols.

These each take different approaches with the style and form of the interfaces they expose

to developers, highlighting the various ways a framework can operate.

This chapter will show a framework that uses a declarative syntax similar to the ones

used in Django and Elixir. The choice of this approach is based largely on style, and

even though there are other approaches you could use, investigating one in detail will

highlight many of the decisions that must be made when writing a framework. You’ll

see all the techniques shown in this book combine to form a single, cohesive whole,

exposing a public API that provides a number of useful features.

The particular problem that this chapter will address is the need to work with files

that store information as rows of comma-separated values, more commonly referred to

as CSV files. These are available for tasks like separating values on a line, separating lines

themselves, and encoding individual values within each line, which is how it becomes a

very complex topic.

Python already does a lot to help with CSV files by providing a csv module.4 Rather

than attempting to duplicate its functionality, we can use csv to do most of the heavy lifting

behind the scenes. What we’re going to do instead is build a layer on top of csv to make it

easier to work with and integrate with other applications. Essentially, we’re just providing a

new API on top of an existing one, in the hopes that we can make it a bit friendlier.

�Building a Declarative Framework
There are several steps involved in building a framework using a declarative syntax

similar to that of Django or Elixir, but the process itself really isn’t all that difficult.

Making decisions along the way, however, is where things get tricky. In this chapter we

will outline the various steps required to build such a framework, as well as examples of

many of the decisions you’ll have to make. Each will have to be made specifically for your

own project, however.

1�See Django, http://propython.com/django.
2�See “The Python SQL Toolkit and Object Relational Mapper,” http://propython.com/sqlalchemy.
3�See Twisted Matrix Labs, http://propython.com/twisted.
4�See “CSV File Reading and Writing,” http://propython.com/csv-module.

Chapter 11 Sheets: A CSV Framework

http://propython.com/django
http://propython.com/sqlalchemy
http://propython.com/twisted
http://propython.com/csv-module

393

But you won’t be all on your own. Each decision point along the way will outline the

pros and cons of various options so that you can be confident about making an informed

choice. Making the right decisions at the outset will help to ensure that your framework will

withstand future upgrades, as well as criticisms from those who may not agree with you. Just

make sure you have valid, real-world reasoning behind your decisions and you’ll be fine.

Rather than leaving you with nothing but theory, this chapter will step through

the creation of a framework that’s simple enough to introduce the essential concepts,

without having to dwell too long on matters specific to its purpose. It also needs to be a

good example of when a declarative framework should be used, which first requires us to

understand what it is we’re really looking at. The word step is an important term for you

to understand as the examples that follow will be added to, and why they are scripts.

�Introducing Declarative Programming
At its core, a declarative framework is a helper to make declarative programming

easier—or in some cases, possible. Of course, that definition is useless without defining

what makes it declarative, but thankfully very little introduction is necessary. After all,

you’ve already seen declarative programming in action and have probably been using it

for quite some time, perhaps without even realizing it.

Declarative programming is the practice of telling a program what you want

(declaring), rather than telling it what to do (instructing). This distinction is really

more about the programmer than the program, in that there are often no special

syntax, parsing, or processing rules and no single way to define what does and doesn’t

qualify. It’s most often defined as the opposite of imperative programming, where the

programmer is expected to outline every step the computer needs to perform.

With this in mind, it’s easy to note that higher-level interpreted languages, such

as Python, are much better suited for declarative programming than their lower-level

cousins, such as C. In fact, many forms of it are built right in. Rather than having to

declare a memory location, specify its type, and then store a value in memory at that

location, you can simply assign a variable and Python does the rest. What follows makes

a string variable named foo with “bar” stored in it:

>>> foo = 'bar'

Chapter 11 Sheets: A CSV Framework

394

That’s just one form of declarative programming, using one syntax. When we talk

about declarative frameworks in Python, however, it usually refers to using a class

declaration to configure the framework, rather than a long and complicated set of

configuration directives. Whether or not that’s the right approach for your needs requires

a bit more discussion of the pros and cons.

�To Build or Not to Build?
Declarative frameworks have been a rising trend in the Python world in the past few

years, but it’s important to understand that they are not always the best approach to a

given problem. Like anything else, deciding whether to use a declarative framework

requires understanding what it really is, what it does, and what it means for your needs.

Declarative frameworks do a great job of wrapping a lot of complex behavior into

a simple class declaration. This can be a great time-saver, but it can also seem a lot like

magic, something that the Python community is constantly battling against. Whether

this is good or bad depends entirely on how closely your API matches what users will

expect from a class declaration and how well you document the areas where those

expectations may fail.

By having a class as the primary method of conveying your intentions to the

framework, it’s reasonable to expect that instances will have meaning. Most often, an

instance refers to a specific set of data that conforms to a format defined by the class

declaration. If your application acts on just a single set of well-defined data, there’s little

use in having individual instances.

Declarative classes are designed to create many different configurations using the

same framework, each designed for a particular configuration of data. If you only have

one data format to work with—even if you’ve got loads of data—it just doesn’t make

sense to write a framework built for configurability. Just write a solution for your type of

data and use it.

In other cases, you may not be able to describe the structure of a data set in advance

but instead have to adjust the structure based on the data provided. In these cases there’s

little value in offering a class declaration, since no single declaration would suffice for

the needs of the data you’re working with.

Chapter 11 Sheets: A CSV Framework

395

A primary value of objects is the ability to perform actions on their contents by way

of instance methods. Because a declarative framework results in customized classes that

produce individual instances, it stands to reason that these instances should be able to

perform useful tasks that would be more difficult without the framework’s assistance.

This not only increases their usefulness, but it also helps ensure that the resulting

instances match with users’ expectations.

To review, a declarative framework is a valuable approach if you have:

•	 Many potential configurations

•	 Each configuration known in advance

•	 Many instances of any given configuration

•	 Actions that can be performed on a given instance

The CSV framework described in this chapter needs to deal with a vast array of

possible configurations of columns and structure, with many example files of each type.

Actions such as loading and saving data are common, whereas others are unique to

specific configurations.

Once completed, this framework will allow applications to specify CSV

configurations as classes such as the following, and interact with them using methods

automatically attached to the class.

To make sure you have the proper library, go to https://pypi.python.org/pypi/

Sheets/ and download the Sheets ZIP file. Unzip it and put all folders and files in your

Python 3.x Lib directory (or use pip to install it):

import sheets

class EmployeeSheet(sheets.Row):

 first_name = sheets.StringColumn()

 last_name = sheets.StringColumn()

 hire_date = sheets.DateColumn()

 salary = sheets.FloatColumn()

So let’s get started.

Chapter 11 Sheets: A CSV Framework

https://pypi.python.org/pypi/Sheets
https://pypi.python.org/pypi/Sheets

396

�Building the Framework
There are three primary components of any declarative framework, though one of them

may come in different forms, or possibly not at all:

•	 A base class: Because declarative frameworks are all about declaring

classes, having a common base class to inherit from gives the frame

a place to hook in and process declarations as they’re encountered

by Python. A metaclass attached to this base class provides the

necessary machinery to inspect the declaration at runtime and make

the appropriate adjustments. The base class is also responsible

for representing instances of whatever structure your framework

encapsulates, often with various methods attached to simply

common procedures.

•	 Various field types: Inside the class declaration are a number of

attributes, typically called fields. For some applications it may

make more sense to call them something more specific, but for

this discussion, fields will suffice. These fields are used to manage

individual data attributes in the structures represented by your

framework, and often come in different flavors, each tailored to a

different general type of data such as strings, numbers, and dates.

Another important aspect of fields is that they must be able to know

the order in which they get instantiated, so the ordering specified in

the declaration is the same ordering used later on.

•	 An options container: Not strictly a necessary component, most

frameworks have use for some type of class-wide options, which

shouldn’t be specified on every individual field, as that wouldn’t

be very DRY. Because subclassing doesn’t provide any options

except the choice of base classes, some other structure must be

used to manage these options. How these options are declared

and processed can vary greatly from one framework to another;

there’s no syntactic or semantic standard whatsoever. As a matter of

convenience, this container often also manages the fields attached to

the class.

Chapter 11 Sheets: A CSV Framework

397

As a syntactic aid, most declarative frameworks also make sure that all three of these

components can be imported from one single location. This allows end-user code to

have a much simpler import block, while also containing all the necessary components

on a single, identifiable namespace. The name of this namespace should be something

meaningful, so it’s easy to read in end-user code. The name of the framework itself is

often an ideal choice, but it’s important to be descriptive, so make sure it all makes sense

when reading it over.

Although deciding what to call the framework can be deferred to later in the process,

it helps to have a name in mind early on, if only to name the package that will contain

the modules described in the following sections. Using a placeholder like csv would

work fine for now, but because Python has its own csv module—which we’ll be relying

on as well—reusing this name would cause a great many problems. Because CSV files

are commonly used to exchange data among spreadsheet applications, we’ll call our

little framework sheets.

It would seem that our journey should start with the base class, but really any of

the three components can be a reasonable place to start. It often depends on which

piece requires the most thought, does the most work, or needs to be tested first. For this

discussion we’ll start with the options container, as it can be created without relying on

the implementation details of the other components. This avoids leaving too many vague

references to functionality that hasn’t been described yet.

�Managing Options
The primary purpose of an options component is to store and manage options for a

given class declaration. These options are not specific to any one field but rather apply

to the entire class, or are used as default values that individual fields can optionally

override. For now, we’ll set aside the question of how these options will be declared and

simply focus on the container itself and its associated needs.

On the surface, options are simply a map of names to values, so we could use a

simple dictionary. After all, Python has a fantastic dictionary implementation and simple

is most certainly better than complex. However, writing our own class affords us a few

extra features that will be very handy.

Chapter 11 Sheets: A CSV Framework

398

For starters, we can validate the options that are defined for a given class. They can

be validated based on their individual values, their combination with other options, their

appropriateness for the given execution environment, and whether or not they’re known

options at all. With a dictionary, we’re stuck simply allowing any type of value for any

option, even if it makes no sense.

Mistakes in options would then only be known when code that relies on them

chokes because they’re incorrect or missing, and those types of errors typically aren’t

very descriptive. Validating on a custom object means we can provide much more useful

messages to users who try to use incorrect or invalid options.

Using a custom class also means we add our own custom methods to perform

tasks that, although useful, are either repetitive or don’t really belong anywhere else.

A validation method can verify that all the included options are appropriate, displaying

useful messages if not. Remember also that the options container often manages fields,

so there are some methods that can be added for that purpose; these are described later

in this section.

In fact, by combining those two features, the options class can even validate

field declarations in the context of provided options. Try doing that with an ordinary

dictionary.

Because it may end up encapsulating quite a bit of functionality, we’ll set up a

new module for our options container, unambiguously named options.py. Like most

classes, the bulk of the work will be done in the __init__() method. For our purposes,

this will accept all known options, store them away as attributes, and set up some

other attributes that will be used by other methods later on. Validation is generally

only useful when actively defining options, so that belongs in its own method so as not

to bog down this one.

And so we come to the next decision in your framework: what options should

you accept? Different frameworks will obviously have different requirements, and it’s

important to lay them out as completely as you can at the outset. Don’t worry, you can

always add more; it’s better to get them in place earlier rather than later.

One useful rule of thumb is that options should always have defaults. Asking your

users to not only write a class and provide fields but also provide options every time will

get frustrating, especially if the required option often has the same value. In general,

if something is truly required and doesn’t have some reasonable default, it should be

supplied as an argument to the methods that require it, rather than defined as an option

on the class.

Chapter 11 Sheets: A CSV Framework

399

We’re building a framework to interface with CSV files, so there are a number of

options available. Perhaps the most obvious is the character encoding of the file, but

Python already converts file content to Unicode when the file is opened in text mode.

The open() function accepts an encoding argument that allows all the same encodings

available with a string’s encode() method. It defaults to UTF-8, which should suffice for

most common needs.

Note T he encoding used when reading the file seems like a perfect candidate
for an option, so you can override the default UTF-8 behavior. Unfortunately, the
standard CSV interface requires that the file be already open when it’s passed
in, so if our framework follows the same interface, we have no control over the
encoding. The only way to control it would be to change the interface to accept a
filename rather than an open file object.

One common variation in CSV files is whether they contain a header row, containing

titles for the various columns. Because we’ll be defining columns as fields later on in the

framework, we don’t really need that header row, so we can skip it. But only if we know

it’s there. A simple Boolean, defaulting to False for the more common case, will do the

trick nicely:

class Options:

 """

 A container for options that control how a CSV file should be handled when

 converting it to a set of objects.

 has_header_row

 A Boolean indicating whether the file has a row containing header

 values. If True, that row will be skipped when looking for data.

 Defaults to False.

 """

 def __init__(self, has_header_row=False):

 self.has_header_row = has_header_row

Chapter 11 Sheets: A CSV Framework

400

There we have a simple, but useful, options container. At this point the only benefit

it has over a dictionary is that it automatically prohibits any options other than the ones

we’ve specified. We’ll come back and add a more rigorous validation method later.

If you’re familiar with Python’s csv module, you may already know that it contains a

variety of options as part of its support for different dialects. Because sheets will actually

defer to that module for much of its functionality, it makes sense to support all of the

same options, in addition to our own. In fact, it even makes sense to rename our Options

class Dialect instead, to better reflect the vocabulary already in use.

Rather than listing all of the options supported by csv separately, however, let’s take

a bit more forward-thinking approach. We’re relying on code outside our control, and

it’s a bit of a maintenance hassle to try to keep up with any changes that code might

introduce in the future. In particular, we can support any existing options as well as any

future options, by simply passing any additional options straight to csv itself.

In order to accept options without naming them, we turn to Python’s support for

extra keyword arguments using the double-asterisk syntax. These extra options can

be stored away as a dictionary, which will be passed into the csv functions later on.

Accepting them as a group of keyword arguments rather than a single dictionary helps

unify all of the options, which will be important once we actually parse options out of the

class declaration:

class Dialect:

 """

 A container for dialect options that control how a CSV file should be

 handled when converting it to a set of objects.

 has_header_row

 A Boolean indicating whether the file has a row containing header

 values. If True, that row will be skipped when looking for data.

 Defaults to False.

 For a list of additional options that can be passed in, see documentation

 for the dialects and formatting parameters of Python's csv module at

 http://docs.python.org/library/csv.html#dialects-and-formatting-parameters

 """

Chapter 11 Sheets: A CSV Framework

401

 def __init__(self, has_header_row=False, **kwargs):

 self.has_header_row = has_header_row

 self.csv_dialect = kwargs

This class will grow some more features later on, but that’s enough to get things

started. We’ll come back to it a few more times before we’re done, but for now, let’s move

on to what may well be the meatiest part of our little framework: fields.

�Defining Fields
Fields are generally just containers for specific pieces of data. Because it’s such a

generic term, different disciplines may use something more specific to refer to the same

concept. In databases, they’re called columns. In forms, they’re often called inputs.

When executing a function or a program, they’re called arguments. To maintain some

perspective beyond this one framework, this chapter will refer to all such data containers

as fields, even though for sheets itself, the term “column” will make more sense when

naming the individual classes.

The first thing to define is a base field class, which will describe what it means to be a

field. Without any details of any particular data type, this base class manages how fields

fit in with the rest of the system, what API they’ll have, and how subclasses are expected

to behave. Because our framework is calling them columns, we’ll start a new module

called columns.py and get to work.

Fields are Python objects that are instantiated as part of the class declaration and

assigned as attributes of the class. Therefore, the __init__() method is the first entry

point into field functionality and the only point where the field can be configured as part

of the declaration. Arguments to __init__() may vary depending on a field’s type, but

there are often at least a few arguments that are applicable to all fields, and can thus be

processed by the base class.

First, each field can have a title. This allows for more readable and understandable

code but also provides a way for other tools to automatically document the fields with

more useful information than just the field’s attribute name. Planning for validation

wouldn’t hurt, so we’ll also add a way to indicate whether the field is required:

Chapter 11 Sheets: A CSV Framework

402

class Column:

 """

 An individual column within a CSV file. This serves as a base for attributes

 and methods that are common to all types of columns. Subclasses of Column

 will define behavior for more specific data types.

 """

 def __init__(self, title=None, required=True):

 self.title = title

 self.required = required

Notice that the title is optional. If no title is provided, a simple one can be gleaned

from the attribute name the field is assigned to. Unfortunately, the field doesn’t know

what that name is yet, so we’ll have to come back for that functionality later. We also

assume that most fields will be required, so that’s the default, to be overridden on a per-

field basis.

Tip R equired fields may not immediately seem to have much value for a CSV
framework, since the data comes from files rather than directly from users,
but they can be useful. For some things like sheets, it can eventually validate
incoming files or the data that’s about to be saved to an outgoing file. It’s generally
a good feature to include at the outset for any framework, to support features that
can be added later.

You may already have other arguments in mind for your framework’s fields. If so,

feel free to add them in now, following the same basic pattern. Don’t worry about

planning for everything at the outset, though; there will be plenty of opportunity to

add more later on. Next on the agenda is to get the fields properly connected to their

associated classes.

Chapter 11 Sheets: A CSV Framework

403

�Attaching a Field to a Class
We need to set up the hook for getting additional data from the class the field is assigned

to, including the field’s name. This new attach_to_class() method is—as its name

suggests—responsible for attaching the field to the class where it was assigned. Even

though Python automatically adds the attributes to the class where they’re assigned,

that assignment doesn’t convey anything to the attribute, so we’ll have to do so in the

metaclass.

First, we need to decide what information the attribute needs to know about how it

was assigned. After preparing for a title in the previous section, it’s clear that the attribute

will need to know what name it was given when assigned. By obtaining that name

directly in code, we can avoid the trouble of having to write the name out separately as

an argument to the attribute instantiation.

The long-term flexibility of the framework will also depend on providing as

much information as possible to attributes, so that they can easily provide advanced

functionality by introspecting the classes they’re attached to. Unfortunately, the name

alone doesn’t say anything about the class where the attribute now resides, so we’ll have

to provide that in the metaclass as well.

Finally, the options that were defined earlier, such as encoding, will have some

bearing on the attribute’s behavior. Rather than expecting the attribute to have to

retrieve those options based on the class that was passed in, it’s easier to simply accept

the options as another argument. This leaves us with an attach_to_class() that looks

something like this:

class Column:

 """

 An individual column within a CSV file. This serves as a base for attributes

 and methods that are common to all types of columns. Subclasses of Column

 will define behavior for more specific data types.

 """

 def __init__(self, title=None, required=True):

 self.title = title

 self.required = required

Chapter 11 Sheets: A CSV Framework

404

 def attach_to_class(self, cls, name, options):

 self.cls = cls

 self.name = name

 self.options = options

This alone will allow other methods of the attribute object to access a wealth of

information, such as the name of the class, what other attributes and methods were

declared on it, what module it was defined in and more. The first task we’ll need to

perform with that information is somewhat more mundane, however, as we still need to

deal with the title. If no title was specified when the attribute was created, this method

can use the name to define one:

class Column:

 """

 An individual column within a CSV file. This serves as a base for attributes

 and methods that are common to all types of columns. Subclasses of Column

 will define behavior for more specific data types.

 """

 def __init__(self, title=None, required=True):

 self.title = title

 self.required = required

 def attach_to_class(self, cls, name, options):

 self.cls = cls

 self.name = name

 self.options = options

 if self.title is None:

 # Check for None so that an empty string will skip this behavior

 self.title = name.replace('_', ' ')

This addition takes an attribute name with underscores and converts it to a title using

multiple words. We could impose other conventions, but this is simple enough to work

with, accurate for most situations, and fits in with common naming conventions. This

simple approach will cover most use cases without being difficult to understand or maintain.

Chapter 11 Sheets: A CSV Framework

405

As the comment indicates, the if test for this new feature goes against standard

idioms by explicitly checking for None rather than simply letting an unspecified title

evaluate to False. Doing things the “right” way here would remove the ability to specify

an empty string as a title, which can explicitly indicate that no title is necessary.

Checking for None allows empty strings to still retain that string as the title, rather

than having it replaced by the attribute name. One example of the usefulness of an

empty title would be as a way to indicate that the column doesn’t need to be presented

in a display of the file’s data. It’s also a good example of where comments can be crucial

to understanding the intent of a piece of code.

Tip E ven though this attach_to_class() method doesn’t use the options
that were provided, it’s generally a good idea to include it in the protocol. The next
section will show that the options will be available as an attribute of the class, but
it’s a bit more clear to pass it in as its own argument. If your framework needs to
apply these class-level options to individual fields, it’ll be easier to accept it as an
argument than to extract it form the class.

�Adding a Metaclass
With the attach_to_class() method in place, we must now move on to the other side of

the equation. After all, attach_to_class() can only receive information; the metaclass

is responsible for providing that information. Until now, we haven’t even started looking

at the metaclass for this framework, so we need to start with the basics.

All metaclasses start out the same, by subclassing type. In this case, we’ll also add an

__init__() method because all we need is to process the contents of the class definition

after Python has finished with them. First up, the metaclass needs to identify any options

that were defined in the class and create a new Dialect object to hold them. There are a

few ways to go about this.

The most obvious option would be to simply define options as class-level attributes.

That would make defining the individual classes easy later on, but it would impose

some problems that may not be as obvious. For one, it would clutter up the main class

namespace. If you tried to create a class to process CSV files containing information about

coded documents, you might reasonably have a column named encoding. Because we also

have a class option named encoding, we’d have to name our column something else in

order to avoid one of them overwriting the other and causing problems.

Chapter 11 Sheets: A CSV Framework

406

On a more practical note, it’s easier to pick out options if they’re contained in their

own namespace. By being able to easily identify which attributes are options, we can

pass them all in as arguments to Dialect and immediately know if any were missing or

if invalid names were specified. So the task now is to determine how to provide a new

namespace for options, while still declaring them as part of the main class.

The simplest solution is to use an inner class. Alongside any other attributes and

methods, we can add a new class, named Dialect, to contain the various option

assignments. This way, we can let Python create and manage the extra namespace for us,

so that all we have to do is look for the name Dialect in the attribute list and pull it out.

Tip E ven though the inner Dialect class inhabits the main namespace
alongside other attributes and methods, there’s much less chance of a clash
because it’s only one name instead of several. Furthermore, we use a name that
starts with a capital letter, which is discouraged for attribute and method names,
so that there’s even less chance of collision. Because Python names are case-
sensitive, you’re free to define an attribute called dialect (note the small “d”) on
the class without fear of bumping into this Dialect class.

To extract this new Dialect class, we’ll turn to the first implementation of a

metaclass in this framework. Because this will help form the base class for future

inheritance, we’ll put the code into a new module, named base.py:

from sheets import options

class RowMeta(type):

 def __init__(cls, name, bases, attrs):

 if 'Dialect' in attrs:

 # Filter out Python's own additions to the namespace

 items = attrs['Dialect'].__dict__.items()

 items = dict((k, v) for (k, v) in items if not k.startswith('__'))

 else:

 # No dialect options were explicitly defined

 items = {}

 dialect = options.Dialect(**items)

Chapter 11 Sheets: A CSV Framework

407

Now that the options have been pulled out of the class definition and have populated

a Dialect object, we’ll need to do something with that new object. We know from the

definition of attach_to_class() in the previous section that it gets passed into that

method for each field attribute that was defined, but what else?

In the spirit of retaining as much information as possible for later, we’ll keep it

assigned to the class itself. But because the capitalized name doesn’t work as well as an

attribute name, it’s best to rename it to something more suitable. Because it also forms

a private interface to the inner workings of the framework, we can prefix the new name

with an underscore to further prevent any accidental name clashes:

from sheets import options

class RowMeta(type):

 def __init__(cls, name, bases, attrs):

 if 'Dialect' in attrs:

 # Filter out Python's own additions to the namespace

 items = attrs.pop('Dialect').__dict__.items()

 items = {k: v for k, v in items if not k.startswith('__')}

 else:

 # No dialect options were explicitly defined

 items = {}

 cls._dialect = options.Dialect(**items)

This simple change removes it from the class namespace where it was given the

original name and instead inserts it under a new name, _dialect. Both names avoid

clashes with common attribute names, but this change makes it use a more standard

private attribute name. Previously, it used the standard style for naming a class because

that’s how it’s defined.

With that, we finally have all the pieces in places to continue working with the field

attributes. The first task is to locate them in the class definition and call attach_to_

class() on any that are found. This is easily accomplished with a simple loop through

the attributes:

Chapter 11 Sheets: A CSV Framework

408

from sheets import options

class RowMeta(type):

 def __init__(cls, name, bases, attrs):

 if 'Dialect' in attrs:

 # Filter out Python's own additions to the namespace

 items = attrs.pop('Dialect').__dict__.items()

 items = {k: v for k, v in items if not k.startswith('__')}

 else:

 # No dialect options were explicitly defined

 items = {}

 cls._dialect = options.Dialect(**items)

 for key, attr in attrs.items():

 if hasattr(attr, 'attach_to_class'):

 attr.attach_to_class(cls, key, cls._dialect)

This simple metaclass contains a loop that just checks each attribute to see if it has

an attach_to_class() method. If it does, the method is called, passing in the class

object and the name of the attribute. This way all the columns can get the information

they need very early on in the process.

DUCK TYPING

This metaclass uses hasattr( ) to check for the existence of an attach_to_class( ) method,

rather than simply checking to see if the attribute is an instance of Column. All instances

of Column should indeed have the necessary method, but by using hasattr( ) instead,

we open it up for any type of object. You could add attach_to_class( ) to other types of

attributes, descriptors, and even methods and gain quick and easy access to more advanced

functionality. The metaclass only checks for precisely what it needs, leaving the rest open

for flexibility, which is a primary benefit of duck typing. The name is from the concept of the

application of the well-known duck test, which states “If it waddles like a duck and quacks

like a duck, then it must be a duck,” to determine if an object should be used.

Chapter 11 Sheets: A CSV Framework

409

Now all that’s necessary to fill out the rest of base.py is to include a true base class

that individual CSV definitions can subclass. Because each subclass is a single row in a

spreadsheet, we can name the base class Row to indicate its purpose. All it needs to do at

the moment is include RowMeta as its metaclass, and it’ll automatically get the necessary

behavior:

#in base.py

class Row(metaclass=RowMeta):

 pass

�Bringing It Together
Technically, all the pieces are now in place to demonstrate at least the basics of a

working system, but there’s still one important piece to take care of. Currently we have

three different modules, each with some of the parts that need to be exposed in a public

API. Ideally, all of the important bits should be available from one central import instead

of three or potentially even more.

If you haven’t already, create an __init__.py module in the same directory as the

other scripts mentioned so far. That file can be empty and still have the ability to import

all the packages individually, but with a little effort, it can be put to better use. Because

this is the file imported when simply importing the package name directly, we can use

that as a trigger to pull in the useful bits from all the other files:

Open up __init__.py and put this code in it:

from sheets.base import *

from sheets.options import *

from sheets.columns import *

Chapter 11 Sheets: A CSV Framework

410

Note O rdinarily, using an asterisk to import everything is a bad idea because it
can make it more difficult to identify what came from where. Because this module
is only importing code and not doing anything with it, that problem doesn’t really
apply. As long as the package is imported on its own, such as import sheets,
there won’t be any confusion as to where the objects come from. And because we
don’t have to mention any of the objects by name, this will hold for anything we
may add to those modules as well.

Now we have enough working parts to show that the framework can function, at least

at a very basic level. If we create an example.py one directory up from the framework

code itself, so that sheets is on the PYTHONPATH, we can now create a class that does

some very simple work to show that it’s starting to come together:

import sheets

class Example(sheets.Row):

 title = sheets.Column()

 description = sheets.Column()

if __name__ == '__main__':

 print(Example._dialect)

 print(Example.title)

All this really does so far is allow us to name the columns, however. In order to line

them up with data in CSV files, we need to know the order in which the fields were

defined in the class.

�Ordering Fields
As it stands, the fields are all available as attributes of the class itself. This allows you to get

some information about individual fields, but only if you know the name of the field. Without

a name, you’d have to inspect all the attributes on the class and check which of them are

instances of Column or its subclasses. Even if you do that, however, you still don’t know the

order in which they were defined, so it’s impossible to line them up with data from a CSV file.

Chapter 11 Sheets: A CSV Framework

411

In order to address both of those issues we need to set up a list of columns, where

each of the columns can be stored in the order in which it was defined. But first we need

to be able to identify that order at runtime, without the benefit of being able to ask the

developer. There are at least three different ways to do this, each with its own benefits.

�DeclarativeMeta.__prepare__( )
Chapter 4 showed that metaclasses can control the behavior of the class namespace

while Python is processing the block of code that makes up the class definition.

By including a __prepare__() method on the declarative metaclass—in this case,

RowMeta—we can provide an ordered dictionary, which can then keep the order

of attribute assignments itself. It’s as simple as importing an ordered dictionary

implementation and returning it from a custom __prepare__() method:

from collections import OrderedDict

from sheets import options

class RowMeta(type):

 def __init__(cls, name, bases, attrs):

 if 'Dialect' in attrs:

 # Filter out Python's own additions to the namespace

 items = attrs.pop('Dialect').__dict__.items()

 items = {k: v for k, v in items if not k.startswith('__')}

 else:

 # No dialect options were explicitly defined

 items = {}

 cls._dialect = options.Dialect(**items)

 for key, attr in attrs.items():

 if hasattr(attr, 'attach_to_class'):

 attr.attach_to_class(cls, key, cls._dialect)

 @classmethod

 def __prepare__(self, name, bases):

 return OrderedDict()

Chapter 11 Sheets: A CSV Framework

412

That only gets us part of the way, however. Now the namespace dictionary contains

all the class attributes, and it knows the order in which they were defined, but it doesn’t

address the issue of having a simple list of just the CSV columns. The namespace

dictionary will also hold all the methods and other miscellaneous attributes that were

defined, so we’ll still need to grab the columns out of it and put them into another list.

One obvious way to do that would be to look at each attribute in the dictionary and

check to see whether it’s a column or not. That’s the same process mentioned earlier

in this section, but the difference now is that you can hide the complexity inside the

metaclass.

Because __init__() runs after the entire body has been processed, its attrs argument

will be an ordered dictionary containing all the attributes. All that’s left is to loop over them

and pull out any columns that were found. Again, in the spirit of duck typing, we’ll use the

presence of attach_to_class() to determine which attributes are columns. In fact, we can

use the existing loop and just inject the new code into the inner if block.

In order to use it in the real world it will need to be placed somewhere more useful,

such as the Dialect object stored in the _dialect attribute of the class. Rather than

simply assigning a list externally, it makes more sense to have Dialect manage that itself

by giving it an add_column() method that we can call from the metaclass instead:

class Dialect:

 """

 A container for dialect options that control how a CSV file should be

 handled when converting it to a set of objects.

 has_header_row

 A Boolean indicating whether the file has a row containing header

 values. If True, that row will be skipped when looking for data.

 Defaults to False.

 For a list of additional options that can be passed in, see documentation

 for the dialects and formatting parameters of Python's csv module at

 http://docs.python.org/library/csv.html#dialects-and-formatting-parameters

 """

 def __init__(self, has_header_row=False, **kwargs):

Chapter 11 Sheets: A CSV Framework

413

 self.has_header_row = has_header_row

 self.csv_dialect = kwargs

 self.columns = []

 def add_column(self, column):

 self.columns.append(column)

Now that Dialect knows how to keep a record of fields, it’s only a small matter

to change RowMeta to add the columns to the dialect as they’re found. Because the

namespace is already sorted according to when the attributes were assigned, we can

be sure that they’ll be attached to the class in the right order. Thus, we can simply add a

quick call to the dialect’s add_column() in the column’s attach_to_class() method:

class Column:

 """

 An individual column within a CSV file. This serves as a base for attributes

 and methods that are common to all types of columns. Subclasses of Column

 will define behavior for more specific data types.

 """

 def __init__(self, title=None, required=True):

 self.title = title

 self.required = required

 def attach_to_class(self, cls, name, dialect):

 self.cls = cls

 self.name = name

 self.dialect = dialect

 if self.title is None:

 # Check for None so that an empty string will skip this behavior

 self.title = name.replace('_', ' ')

 dialect.add_column(self)

Note T his example also changes the name of the options attribute to dialect
instead, to be consistent with the rest of the framework.

Chapter 11 Sheets: A CSV Framework

414

Now our code has an easy way to get at the columns that were provided to the

class, in their original order. There’s one fairly significant flaw with it, however: the

__prepare__() technique is only available in Python starting with version 3.0. Because

there was no equivalent functionality before then, any older versions will need to use a

completely different approach to the problem.

We can make use of a basic principle of Python’s class processing: the body of a

class is executed as a block of code. That means that each of the column attributes are

instantiated in the order they were written in the class definition. The Column class

already has a block of code that runs when the attribute is instantiated, which can be

extended a bit to keep track of each instantiation.

�Column.__init__( )
The most obvious choice is where we already have code: the __init__() method. It gets

called for each Column object as it is instantiated, so it makes a convenient place to keep

track of the order those objects are encountered. The actual process is fairly simple. All

it takes is a counter that can be maintained in one place regardless of which column

is being processed, and a small bit of code to increment that counter every time a new

column is found:

class Column:

 """

 An individual column within a CSV file. This serves as a base for attributes

 and methods that are common to all types of columns. Subclasses of Column

 will define behavior for more specific data types.

 """

 # This will be updated for each column that's instantiated.

 counter = 0

 def __init__(self, title=None, required=True):

 self.title = title

 self.required = required

 self.counter = Column.counter

 Column.counter += 1

Chapter 11 Sheets: A CSV Framework

415

 def attach_to_class(self, cls, name, dialect):

 self.cls = cls

 self.name = name

 self.dialect = dialect

 if self.title is None:

 # Check for None so that an empty string will skip this behavior

 self.title = name.replace('_', ' ')

 dialect.add_column(self)

This code handles part of the problem. Now, each column has a counter attribute

that indicates its position among the rest.

SIMPLE IS BETTER THAN COMPLEX

Actually, that counter will be maintained across all columns, regardless of which class they’re

assigned to. Even though that’s technically a bit of overkill, it doesn’t actually hurt anything.

Each group of columns will still be ordered appropriately among its peers, so they can be

sorted properly without a problem. More important, resetting the counter for each class would

significantly complicate the code.

First, we’d need a separate counter for each class that can have columns attached to it.

Columns don’t know about which class they’re assigned to until attach_to_class()

is called, so we’d have to put some code in there to determine when a new class is being

processed. But because that takes place after the counter was already incremented in

__init__(), it would need to reset the counter while assigning it to a new location for the

new class.

It’s definitely possible to keep a separate counter for each individual class, but doing so

doesn’t really add anything to the process. Because the simpler form is just as functional for

most cases, the added complexity just isn’t worth it. If you have a long-running process that

creates Row subclasses dynamically on a regular basis, it’s possible the counter will overflow

and cause problems. In such a case, you’ll need to take these additional steps to make sure

everything continues to work properly.

Chapter 11 Sheets: A CSV Framework

416

The next step is to use that counter to force the ordering of the columns as they’re

stored on the Dialect object. In the __prepare__() approach the namespace handled

the ordering on its own, so there wasn’t anything else to do. Here we need to sort the list

of fields explicitly, using the counter attribute to determine the order.

We can’t do it right away in __init__() because that gets a dictionary of all the

attributes, not just the columns. It doesn’t know which attributes are columns until they’re

processed using their attach_to_class() methods. Sorting the list after processing

all the columns with attach_to_class() instead would provide a complete list of just

columns in the correct order. Here’s what you’ll need to add to the RowMeta class:

from sheets import options

class RowMeta(type):

 def __init__(cls, name, bases, attrs):

 if 'Dialect' in attrs:

 # Filter out Python's own additions to the namespace

 items = attrs.pop('Dialect').__dict__.items()

 items = {k: v for k, v in items if not k.startswith('__')}

 else:

 # No dialect options were explicitly defined

 items = {}

 cls._dialect = options.Dialect(**items)

 for key, attr in attrs.items():

 if hasattr(attr, 'attach_to_class'):

 attr.attach_to_class(cls, key, cls._dialect)

 # Sort the columns according to their order of instantiation

 cls._dialect.columns.sort(key=lambda column: column.counter)

This function call may look a little more complicated than it really is. It’s just invoking

a standard sort() operation but with a function that will be called to determine what

value to use when sorting items. We could add a method to Column that just returns the

counter and use that, but because it’s only used here, a lambda function will do the same

job inline.

Chapter 11 Sheets: A CSV Framework

417

SIMPLE IS BETTER THAN COMPLEX

Another option is to actually sort the list while processing attach_to_class(). The default

attach_to_class() implementation shown previously already calls add_column() on the

provided Dialect object, so that’s a good place to do the job. Unfortunately, doing so requires

a few extra steps. It doesn’t make sense to try to sort the whole list every time a new column

is added, but we can use the bisect module in the standard library to keep the order more

efficiently.

The bisect module provides an insort() method, which inserts a new item into an existing

sequence while preserving a useful order to those items. Unlike a standard sort(), however,

this function doesn’t accept a key argument but instead relies on comparing two items using

the < operator. If one item compares as less than another, it gets placed further ahead in the

sequence. That makes sense, but without the use of an explicit key, we’d need to implement

an __lt__() method on the Column class to support insort().

Sorting after the fact only requires one additional line of code, while trying to sort throughout

would introduce another import and another method on the Column class. The only thing

we’d gain by going that route is the ability to see the order of all the columns that have been

processed so far, but because new columns may be placed anywhere within that order, it’s not

really that useful until all the columns have been processed. Therefore, it’s best to keep things

simple and just sort the list once afterward.

Most of the code that was added in this approach is necessary whenever __

prepare__() isn’t available, regardless of any other preferences. The only area where we

really have any room to use a different approach is where the counter value is updated.

There are a few different ways to go about managing that value.

So far we’ve used the __init__() method of the Column class because that’s always

called during instantiation and it already had a basic implementation anyway. The

trouble is that many __init__() methods are only used to save argument values as

attributes on the object, so programmers have come to expect similar behavior. Aside

from managing the counter, our own __init__() method matches that expectation

perfectly.

So if a programmer wants to write a new column that doesn’t use any of the same

arguments as the base Column class, it’s easy to write an __init__() method that simply

doesn’t call super(). Without using super() to fire the original __init__() method, that

Chapter 11 Sheets: A CSV Framework

418

new column won’t be ordered properly. Its counter attribute will always be the same as

whatever was processed right before it, so sort() won’t be able to reliably determine

where it belongs.

You could argue that the problem here is with the programmers’ assumption that __

init__() doesn’t do anything of value, but that’s not a very productive approach to the

problem. There are still a couple of ways that we can try to make things easier for users of

the frameworks that can help avoid problems if someone neglects to use super().

�Column.__new__( )
Thinking about instantiation without __init__(), the next clear choice is __new__(),

which is called earlier in the process. Using __new__() provides a chance to do the same

work without competing with __init__(), so they can be independent of each other.

The initialization of the object can still take place in __init__(), leaving __new__() to

manage the counter value:

class Column:

 """

 An individual column within a CSV file. This serves as a base for attributes

 and methods that are common to all types of columns. Subclasses of Column

 will define behavior for more specific data types.

 """

 # This will be updated for each column that's instantiated.

 counter = 0

 def __new__(cls, *args, **kwargs):

 # Keep track of the order each column is instantiated

 obj = super(Column, cls).__new__(cls, *args, **kwargs)

 obj.counter = Column.counter

 Column.counter += 1

 return obj

 def __init__(self, title=None, required=True):

 self.title = title

 self.required = required

Chapter 11 Sheets: A CSV Framework

419

 def attach_to_class(self, cls, name, dialect):

 self.cls = cls

 self.name = name

 self.dialect = dialect

 if self.title is None:

 # Check for None so that an empty string will skip this behavior

 self.title = name.replace('_', ' ')

 dialect.add_column(self)

The code in __new__() grows a bit from what was used in __init__() previously

because __new__() is responsible for creating and returning the new object. Therefore,

we need to create the object explicitly before assigning the counter to it. Then, the

method needs to explicitly return the new object in order for it to be accessible by

anything else.

Using __new__() instead of __init__() is merely a way to reduce the odds of

colliding with a custom implementation. It may be less likely, but it’s still possible for a

subclass to provide __new__() on its own, and doing so without using super() would

still cause problems. There’s still one other option that separates the counting behavior

even further.

�CounterMeta.__call__( )
It is important to understand that there is also another method that gets called when

instantiating a class. Technically the class object itself is being called as a function, which

means that there’s a __call__() method somewhere that would be called. Because

__call__() is only executed as an instance method, but instantiation takes place when

calling a class, we need to look at the class as an instance of something else: a metaclass.

That means that we can create a metaclass to support the counter functionality

entirely outside the Column class. A simple CounterMeta class with a __call__() method

can keep track of the counter on its own, and Column can then use that as its metaclass.

The body of this method looks essentially just like __new__() because it’s called as pretty

much the same part of the process. It needs to create the object by using super() and

return it explicitly:

Chapter 11 Sheets: A CSV Framework

420

class CounterMeta(type):

 """

 A simple metaclass that keeps track of the order that each instance

 of a given class was instantiated.

 """

 counter = 0

 def __call__(cls, *args, **kwargs):

 obj = super(CounterMeta, cls).__call__(*args, **kwargs)

 obj.counter = CounterMeta.counter

 CounterMeta.counter += 1

 return obj

Now that all of this functionality is isolated to a metaclass, the Column class gets a bit

simpler. It can get rid of all the counter-handling code, including the entire __new__()

method. All it needs now to maintain the counting behavior is to use CounterMeta as its

metaclass:

class Column(metaclass=CounterMeta):

 """

 An individual column within a CSV file. This serves as a base for attributes

 and methods that are common to all types of columns. Subclasses of Column

 will define behavior for more specific data types.

 """

 def __init__(self, title=None, required=True):

 self.title = title

 self.required = required

 def attach_to_class(self, cls, name, dialect):

 self.cls = cls

 self.name = name

 self.dialect = dialect

Chapter 11 Sheets: A CSV Framework

421

 if self.title is None:

 # Check for None so that an empty string will skip this behavior

 self.title = name.replace('_', ' ')

 dialect.add_column(self)

In fact, this CounterMeta is now capable of providing this counting behavior for any

class that needs it. By simply applying the metaclass, every instance of the given class

will have a counter attribute attached to it. Then you can use that counter to sort the

instances according to when they were instantiated, just like the columns in the sheets

framework.

�Choosing an Option
Of the options presented here, it’s not always easy to determine which to choose. With

each layer of added flexibility comes added complexity, and it’s always best to keep

things as simple as possible. When working in a Python 3.x environment, __prepare__()

is definitely the way to go. It doesn’t require any additional classes to support it; it

doesn’t need to sort the list of columns after the fact; and it works without touching the

Column class at all.

The options for earlier 2.x versions of Python are more subjective. Which one you

choose depends largely on how much you expect of your target audience and how much

complexity you’re willing to allow into your code. The simpler solutions require more

vigilance on the part of your users, so you’ll need to decide what’s most important.

Because this book is designed for use with Python 3.x, the remaining examples of the

code will use __prepare__(). Of course, the ability to order a set of fields is only useful

once you have a collection of fields to work with.

�Building a Field Library
In most declarative frameworks, sheets included, a primary function of fields is to

convert data between native Python objects and some other data format. In our case, the

other format is a string contained in the CSV file, so we need a way to convert between

those strings and the objects the fields represent. Before we get into the details of specific

field types, we need to set up a couple methods for managing data conversion.

Chapter 11 Sheets: A CSV Framework

422

The first method, to_python(), takes a string from the file and converts that string

into a native Python value. This step is performed for each column, every time a row is

read in from the file, to ensure that you can work with the correct type of value in Python.

Because that behavior will be different for various types, delegating to a method like

to_python() allows you to change this specific behavior on individual classes without

having to do so all on one Column class.

The second method is to_string(), which works as an inverse to to_python()

and will be called when saving a CSV file with values assigned in Python. Because the

csv module works with strings by default, this method is used to provide any special

formatting required by a particular CSV format. Delegating to this method means that

each column can have its own options to suit the data that belongs in that field.

Even though each type of data behaves differently, the base Column class can support

a simple use case by default. The csv module only works with files that are opened in

text mode, so Python’s own file access manages the conversion to Unicode while reading

data. That means the value that comes from csv is already a string and can be used easily:

class Column:

 """

 An individual column within a CSV file. This serves as a base for attributes

 and methods that are common to all types of columns. Subclasses of Column

 will define behavior for more specific data types.

 """

 def __init__(self, title=None, required=True):

 self.title = title

 self.required = required

 def attach_to_class(self, cls, name, dialect):

 self.cls = cls

 self.name = name

 self.dialect = dialect

 if self.title is None:

 # Check for None so that an empty string will skip this behavior

 self.title = name.replace('_', ' ')

 dialect.add_column(self)

Chapter 11 Sheets: A CSV Framework

423

 def to_python(self, value):

 """

 Convert the given string to a native Python object.

 """

 return value

 def to_string(self, value):

 """

 Convert the given Python object to a string.

 """

 return value

Now we can start implementing them for individual data types.

�StringField
The most obvious field to start with is a string, because it can encompass any number

of more specific forms of data. Titles, names, places, descriptions, and comments are

just some examples of the more specific values you might find in these fields, but from a

technical standpoint they all work the same way. The sheets framework doesn’t have to

care what form of strings you’ll be dealing with, only that they are in fact all strings.

The csv module provides strings on its own, so this class doesn’t really have to do

much. In fact, to_python() and to_string() don’t need any custom implementation at

all because they only need to return what they’re given. The most important thing that’s

offered by a StringColumn is actually the name itself.

By having an attribute that’s named according to the type of data it interacts with, the

attribute becomes somewhat self-documenting. Rather than just using a generic Column

to describe how strings are passed back and forth, you can use a StringColumn to be

clear about how it works:

class StringColumn(Column):

 """

 A column that contains data formatted as generic strings.

 """

 pass

Chapter 11 Sheets: A CSV Framework

424

In fact, you could even call the base class StringColumn instead of just Column,

because it does the job on its own. Unfortunately that would cause its own confusion when

subclassing it, by requiring something like an IntegerColumn to subclass StringColumn. To

keep things clearer, the base class will remain Column and each subclass will add only the

necessary features on top of it, even though there’s nothing useful to add beyond the name.

�IntegerColumn
The next field type to add manages integers. Numbers are used quite a bit in

spreadsheets, storing everything from ages to sales figures to inventory counts. Much

of the time, those numbers will be plain integers that can be converted easily using the

built-in int() function:

class IntegerColumn(Column):

 """

 A column that contains data in the form of numeric integers.

 """

 def to_python(self, value):

 return int(value)

IntegerColumn doesn’t actually need to implement a to_string() method because

the csv module automatically calls str() on whatever value is given to it. Because

that’s all we’d do in a to_string() method anyway, we can just leave it out and let the

framework handle that task. As you’ll see with other columns, to_string() is most

useful when the column can specify a more explicit format to use. Simply writing out a

number doesn’t require that much flexibility.

�FloatColumn
Many numbers in spreadsheets have finer granularity than integers, requiring additional

information to convey the value beyond the decimal point. Floating point numbers are a

decent way to handle those values, and supporting them as a column is just as easy as it

was with IntegerColumn. We can simply replace all the instances of int with float and

be done:

Chapter 11 Sheets: A CSV Framework

425

class FloatColumn(Column):

 """

 A column that contains data in the form of floating point numbers.

 """

 def to_python(self, value):

 return float(value)

Of course, floating point numbers have their share of problems when it comes to

viewing them or adding them together in many cases. This is caused by a lack of defined

precision in the decimal point: it floats around according to how well a given value can

be represented in code. To be more explicit and avoid things like rounding errors, we

turn to DecimalColumn.

�DecimalColumn
Like FloatColumn, this can work with numbers beyond just the integers. Instead

of working with floating point numbers, however, DecimalColumn will rely on the

functionality of the decimal module provided with Python. Decimal values preserve as

much detail in the original number as possible, which helps prevent rounding errors.

This makes decimals much more suitable for use with monetary spreadsheets.

In Python, decimals are provided using the decimal module, which provides a Decimal

class to manage individual numbers. Therefore, DecimalColumn needs to convert numbers

from text in CSV files to Decimal objects in Python and back again. Like floats, Decimal

already converts to strings well enough on its own, so the only conversion DecimalColumn

really needs to do is from strings to Decimal when reading values. Because Decimal is

designed to work with strings, it’s just as easy as the other columns shown so far:

import decimal

class DecimalColumn(Column):

 """

Chapter 11 Sheets: A CSV Framework

426

 A column that contains data in the form of decimal values,

 represented in Python by decimal.Decimal.

 """

 def to_python(self, value):

 return decimal.Decimal(value)

There’s one difference about this method from those in the other classes, however.

Each of the others has the added side effect of raising a ValueError if the value can’t

be properly converted, which we can use later to support validation. Decimal does

validate during instantiation, but it raises an exception from the decimal module,

InvalidOperation. In order to match the behavior of the others, we’ll need to catch that

and reraise it as a ValueError:

import decimal

class DecimalColumn(Column):

 """

 A column that contains data in the form of decimal values,

 represented in Python by decimal.Decimal.

 """

 def to_python(self, value):

 try:

 return decimal.Decimal(value)

 except decimal.InvalidOperation as e:

 raise ValueError(str(e))

Even though DecimalColumn supports a more specialized data type, the code behind

it is still fairly simple. Supporting dates, by contrast, requires some added complexity.

�DateColumn
Dates are also extremely common in spreadsheet documents, storing everything from

employee paydays and holidays to meeting agendas and attendance. Like decimal

values, dates require the use of a separate class to provide a native Python data type,

Chapter 11 Sheets: A CSV Framework

427

but there’s one significant difference: dates don’t have a universally accepted string

representation. There are some standards that are fairly well established, but there are

still plenty of variations, from the placement of the date components to the punctuation

used to separate them.

In order to support the necessary flexibility, a new DateColumn would need to accept

a format string during instantiation, which can be used to parse values from the file as

well as construct strings to store in the file. Python dates already use a flexible format

string syntax,5 so there’s no need to invent a new one just for sheets. In order to specify

the format during instantiation, however, we’ll need to override __init__():

class DateColumn(Column):

 """

 A column that contains data in the form of dates,

 represented in Python by datetime.date.

 format

 A strptime()-style format string.

 See http://docs.python.org/library/datetime.html for details

 """

 def __init__(self, *args, format='%Y-%m-%d', **kwargs):

 super(DateColumn, self).__init__(*args, **kwargs)

 self.format = format

Notice that the format object has a default value, which makes it optional. It’s

usually best to provide defaults like this for field attributes so that users can get up and

running quickly. The default value used here was chosen because it is fairly common

and it places the values in order from the least specific to the most specific—from year

to day, respectively. That helps reduce the ambiguity we might otherwise encounter

across cultures that format dates differently. Because the goal is to work with existing

data, however, it’s always possible for a specific Row class to override this behavior with

whatever format is used by a given file.

5�See “strftime() and strptime () Behavior,” http://propython.com/datetime-formatting.

Chapter 11 Sheets: A CSV Framework

http://propython.com/datetime-formatting

428

Now that the format is available on the DateColumn object, the next step, as it was

for the others, is to make a to_python() method. Python’s datetime object accepts each

component of the date as a separate argument, but because to_python() only gets a

string, we’ll need another way to do it. The alternative comes in the form of a datetime

class method called strptime().

The strptime() method accepts a string value as its first argument and a format string

as its second. The value is then parsed according to the format string and a datetime

object is returned. We don’t actually need a full datetime, however, so we can also use that

object’s date() method to return just the date portion of the value as a date object:

import datetime

class DateColumn(Column):

 """

 A column that contains data in the form of dates,

 represented in Python by datetime.date.

 format

 A strptime()-style format string.

 See http://docs.python.org/library/datetime.html for details

 """

 def __init__(self, *args, format='%Y-%m-%d', **kwargs):

 super(DateColumn, self).__init__(*args, **kwargs)

 self.format = format

 def to_python(self, value):

 """

 Parse a string value according to self.format

 and return only the date portion.

 """

 return datetime.datetime.strptime(value, self.format).date()

Note  datetime is the name of the module as well as the name of the class, so
that’s why it’s written twice.

Chapter 11 Sheets: A CSV Framework

429

There’s a subtle problem with to_python() as it’s written here, however. All the

other column types so far can accept both a string and a native object as values in to_

python(), but strptime() will fail with a TypeError if you pass in a date object instead

of a string. In order to construct a row in Python and save it in a file, we’ll need to be able

to accept a datetime object here, which will be converted to a string later, when saving.

Because to_python() is supposed to return a native object, this is a very simple

task. All it takes is checking whether the value passed in is already a date object. If it is,

to_python() can simply return that without doing any more work. Otherwise, it can

continue on with the conversion:

class DateColumn(Column):

 """

 A column that contains data in the form of dates,

 represented in Python by datetime.date.

 format

 A strptime()-style format string.

 See http://docs.python.org/library/datetime.html for details

 """

 def __init__(self, *args, format='%Y-%m-%d', **kwargs):

 super(DateColumn, self).__init__(*args, **kwargs)

 self.format = format

 def to_python(self, value):

 """

 Parse a string value according to self.format

 and return only the date portion.

 """

 if isinstance(value, datetime.date):

 return value

 return datetime.datetime.strptime(value, self.format).date()

Chapter 11 Sheets: A CSV Framework

430

Writing the to_python() method was actually the most troublesome part of the

DateColumn class. Converting an existing date value to a string is even simpler because

there’s an instance method, strftime(), available to do the job. It just accepts a format

and returns a string containing the formatted value:

import datetime

class DateColumn(Column):

 """

 A column that contains data in the form of dates,

 represented in Python by datetime.date.

 format

 A strptime()-style format string.

 See http://docs.python.org/library/datetime.html for details

 """

 def __init__(self, *args, format='%Y-%m-%d', **kwargs):

 super(DateColumn, self).__init__(*args, **kwargs)

 self.format = format

 def to_python(self, value):

 """

 Parse a string value according to self.format

 and return only the date portion.

 """

 if isinstance(value, datetime.date):

 return value

 return datetime.datetime.strptime(value, self.format).date()

 def to_string(self, value):

 """

 Format a date according to self.format and return that as a string.

 """

 return value.strftime(self.format)

Chapter 11 Sheets: A CSV Framework

431

Tip A useful way to remember the difference between the two method names is
that p stands for “parse” and f stands for “format.”

We could go on adding more and more fields, but the ones shown here cover the

basic forms of data found in most CSV files, as well as most of the techniques necessary

to build your own field attributes in a declarative framework. Next, we’ll need to set up

the CSV functionality in order to bring these data types to life.

�Getting Back to CSV
So far this chapter has been fairly generic, showing tools and techniques that can be

applied to any variety of declarative class frameworks. In order to put them to real-world

use, we need to get back to the problem of parsing CSV files. Much of the work done in

this section will also be applicable to other frameworks, but will be presented in a way

specific to CSV.

The first thing to do is take a look at how Python’s own csv module works. There’s

no sense completely reinventing the wheel. It’s important to understand the existing

interface so that we can match it as closely as possible. The csv module’s functionality is

provided in two basic object types: readers and writers.

Readers and writers are configured in similar ways. They both accept a file argument,

an optional dialect, and any number of keyword arguments that specify individual dialect

parameters to override the main dialect. The main difference between readers and writers

is that readers require a file to be opened for read access and writers require write access.

For readers, the file argument is typically a file object but may in fact be any iterable

object that yields a single string for each iteration. Because the csv module also handles

more complex newline usage, such as newlines encoded within a value, you should

always open the file with the argument newline=" to make sure Python’s own newline

handling doesn’t get in the way. In the next example, make sure that you have the

example.csv file in the directory you are running this from:

>>> import csv

>>> reader = csv.reader(open('example.csv', newline="))

Chapter 11 Sheets: A CSV Framework

432

Once instantiated for use with a particular file and dialect, a CSV reader object has

an extremely simple interface: it’s an iterable object. Iterating over a reader will yield

each row in the CSV file as a data structure that’s usable outside the csv module. The

standard csv.reader yields a list of values for each row, because the only thing it knows

about is the position of each value in the row.

A more advanced options is csv.DictReader, which also accepts a sequence of

column names during instantiation, so that each row can be produced as a dictionary.

Our framework goes even further, yielding an object with each value from the file

converted to a native Python data type and made available as an attribute.

Writer objects, by contrast, are slightly more complex. Because simple iteration only

allows reading values, rather than writing them, writers rely on a couple of methods to

do the necessary work. The first, writerow(), writes out a single row to the file, as its

name suggests. Its companion, writerows(), accepts a sequence of rows, which will be

written to the file in the order they’re found in the sequence.

Exactly what constitutes a row will differ based on what type of writer is used. As

with readers, the csv module provides some different options. The standard csv.writer

accepts a simple sequence of values for each row, placing each value on the row in the

position it’s found in the list. The more complex DictWriter accepts a dictionary, which

uses the sequence of column names passed in during instantiation to determine where

in the row each value should be written.

The interface for working with our framework should look as much as possibly

like the interfaces to these standard readers and writers. A sheets reader should be an

iterable object that yields instances of the custom class where all the column attributes

were defined. Likewise, the writer should accept instances of that same class. In both

cases, the order of the column attributes in the class definition will be used to determine

where the values go.

One key factor of both the reader and the writer, however, is the notion of a row

object. So far, we don’t have any such object for the sheets framework, so we need to

create one. As a class-based framework, sheets is already well equipped to build an

object that can represent a row. The columns and dialect are already defined on a class,

so the ideal way to create an object would be to simply instantiate that class with a set of

values. This will bring in aspects of the dialect and column classes described in earlier

sections in order to produce a usable object.

Chapter 11 Sheets: A CSV Framework

433

The obvious place to implement this behavior is __init__(), but from there things

get a little tricky. The first question is how to accept the values that will populate the

attributes. Because we don’t yet know anything about the layout of any particular Row

subclass, we’ll have to accept all arguments and deal with the requirements in the __

init__() method itself.

�Checking Arguments
As with any function, arguments to __init__() can be passed positionally or by

keyword, but that decision has particular impact here because the object can be

instantiated in one of two ways. When instantiating from a CSV file, as the next section

will show, it’s easiest to pass the values in positionally. When building an instance

manually, however, it’s highly convenient to be able to pass values in by keyword as well.

Therefore, it’s best to accept all positional and keyword arguments and manage them

internally.

Two cases of invalid arguments are clear at the outset: too many positional

arguments and keyword arguments that don’t match any column names. Each of these

cases requires a separate bit of code to support it, but they’re both fairly easy to work

with. For the positional case, we can simply check the number of arguments against the

number of columns:

class Row(metaclass=RowMeta):

 def __init__(self, *args, **kwargs):

 # First, make sure the arguments make sense

 if len(args) > len(self._dialect.columns):

 msg = "__init__() takes at most %d arguments (%d given)"

 raise TypeError(msg % (len(self._dialect.columns), len(args)))

That takes care of the case where too many positional arguments are passed in, using

the same error message Python would issue when the arguments are defined explicitly.

The next step is to make sure that all of the provided keyword arguments match up with

existing column names. This is easy to test by cycling through the keyword argument

names and checking to see if each is also present in the list of column names.

Chapter 11 Sheets: A CSV Framework

434

Because the dialect only stores a list of columns, and not the list of column names,

it’s easiest to make a new list of column names here before testing them. Additional

code to be added to __init__() later will also make use of this new list, so it’s best to

create it now:

class Row(metaclass=RowMeta):

 def __init__(self, *args, **kwargs):

 # First, make sure the arguments make sense

 column_names = [column.name for column in self._dialect.columns]

 if len(args) > len(column_names):

 msg = "__init__() takes at most %d arguments (%d given)"

 raise TypeError(msg % (len(column_names), len(args)))

 for name in kwargs:

 if name not in column_names:

 msg = "__init__() got an unexpected keyword argument '%s'"

 raise TypeError(msg % name)

That takes care of the obvious cases, but there’s still one situation not yet covered:

keyword arguments that target columns that also have positional arguments. To address

this concern, we’ll look at the behavior of Python itself. When confronted with an

argument passed positionally and by keyword, Python raises a TypeError, rather than be

forced to decide which of the two values to use:

>>> def example(x):

... return x

...

>>> example(1)

1

>>> example(x=1)

1

Chapter 11 Sheets: A CSV Framework

435

>>> example(1, x=1)

Traceback (most recent call last):

 ...

TypeError: example() got multiple values for keyword argument 'x'

Providing that same behavior of our own __init__() is a bit more complex than

the previous examples, but it’s still fairly straightforward. We just need to look at each of

the positional arguments and check whether there’s a keyword argument matching the

corresponding column name.

A useful shortcut for situations like this is to use a slice on the column name array to

get only as many names as there are positional arguments. This way, we don’t have to

look through more names than necessary, and it eliminates the separate step of having

to look up the column name by index inside the loop:

class Row(metaclass=RowMeta):

 def __init__(self, *args, **kwargs):

 # First, make sure the arguments make sense

 column_names = [column.name for column in self._dialect.columns]

 if len(args) > len(column_names):

 msg = "__init__() takes at most %d arguments (%d given)"

 raise TypeError(msg % (len(column_names), len(args)))

 for name in kwargs:

 if name not in column_names:

 msg = "__init__() got an unexpected keyword argument '%s'"

 raise TypeError(msg % name)

 for name in column_names[:len(args)]:

 if name in kwargs:

 msg = "__init__() got multiple values for keyword argument '%s'"

 raise TypeError(msg % name)

With all the argument checking out of the way, __init__() can continue on with

certainty that no invalid arguments were provided. From here, we can use those

arguments to populate the values on the object itself.

Chapter 11 Sheets: A CSV Framework

436

�Populating Values
There are actually two steps involved in populating the values on the object. The first is

due to __init__() accepting both positional and keyword arguments. By offering both

options, we now have arguments in two separate locations: args and kwargs. In order to

set the values in one pass, we’ll need to combine them into a single structure.

Ideally, that structure would be a dictionary because it combines the names and

values, so we’ll need to move positional arguments into the dictionary already provided

by kwargs. For that, we’ll need an index for each of the values passed in positionally and

a reference to the corresponding column name, so the value can be assigned to the

right name.

The last check from the previous section already provides that loop, so we can reuse

that block to assign the value to kwargs. The only change we need to make to the loop is

to use enumerate() to get the index of each column as well as its name. That index can

then be used to get the value from args:

class Row(metaclass=RowMeta):

 def __init__(self, *args, **kwargs):

 # First, make sure the arguments make sense

 column_names = [column.name for column in self._dialect.columns]

 if len(args) > len(column_names):

 msg = "__init__() takes at most %d arguments (%d given)"

 raise TypeError(msg % (len(column_names), len(args)))

 for name in kwargs:

 if name not in column_names:

 msg = "__init__() got an unexpected keyword argument '%s'"

 raise TypeError(msg % name)

 for i, name in enumerate(column_names[:len(args)]):

 if name in kwargs:

 msg = "__init__() got multiple values for keyword argument '%s'"

 raise TypeError(msg % name)

 kwargs[name] = args[i]

Chapter 11 Sheets: A CSV Framework

437

Now, kwargs has all the values passed into the constructor, each mapped to the

appropriate column name. Next, we’ll need to convert those values to the appropriate

Python values before assigning them to the object. To do that we’ll need the actual

column objects, rather than just the list of names we’ve been working with so far.

There’s still one minor issue to consider. Looping through the columns gets us all

the columns that were defined for the class, but kwargs only contains the values that

were passed into the object. We’ll need to decide what to do for columns that don’t have

a value available. When pulling in data from a CSV file, this won’t usually be a problem

because every row in the file should have an entry for each column. But when populating

an object in Python, to be saved in a file later, it’s often useful to assign the attributes

after instantiating the object.

Therefore, the most flexible approach here is to simply assign None to any of the

columns that don’t have a value. Checking for required fields can be performed as a

separate step later, when we get to validating fields for other things as well. For now,

assigning None will work just fine:

class Row(metaclass=RowMeta):

 def __init__(self, *args, **kwargs):

 # First, make sure the arguments make sense

 column_names = [column.name for column in self._dialect.columns]

 if len(args) > len(column_names):

 msg = "__init__() takes at most %d arguments (%d given)"

 raise TypeError(msg % (len(column_names), len(args)))

 for name in kwargs:

 if name not in column_names:

 msg = "__init__() got an unexpected keyword argument '%s'"

 raise TypeError(msg % name)

 for i, name in enumerate(column_names[:len(args)]):

 if name in kwargs:

 msg = "__init__() got multiple values for keyword argument '%s'"

 raise TypeError(msg % name)

 kwargs[name] = args[i]

Chapter 11 Sheets: A CSV Framework

438

 # Now populate the actual values on the object

 for column in self._dialect.columns:

 try:

 value = column.to_python(kwargs[column.name])

 except KeyError:

 # No value was provided

 value = None

 setattr(self, column.name, value)

With this functionality finally in place, you can see the Row class in action on its own.

It’s now capable of managing a set of columns, accepting values as inputs, converting

them to Python objects while loading, and assigning those values to the appropriate

attributes:

>>> import sheets

>>> class Author(sheets.Row):

... name = sheets.StringColumn()

... birthdate = sheets.DateColumn()

... age = sheets.IntegerColumn()

...

>>> ex = Author('Marty Alchin', birthdate='1981-12-17', age='28')

>>> ex.name

'Marty Alchin'

>>> ex.birthdate

datetime.date(1981, 12, 17)

>>> ex.age

28

Now we can finally implement the code to actually interact with CSV files.

Chapter 11 Sheets: A CSV Framework

439

�The Reader
Using the csv module directly, you obtain a reader by instantiating a class and passing in

a file and the necessary configuration options. The sheets framework allows each custom

Row class to specify all the columns and dialect parameters directly on the class, so that

now contains everything we need. The direct analogy with csv would be to pass a file and a

Row class into a function that then returns a reader object capable of reading the file.

The trouble with that approach is that it requires any code that wants to use the

reader to import the sheets module in order to get the function that creates the reader

object. Instead, we can get by with just the Row class itself by providing a class method

that can do the necessary work. Then, the only argument that method needs to accept

is the file to read. To match the existing csv naming conventions, we’ll call this new

method reader().

In order to work like the standard readers, our own reader() will need to return an

iterable object that yields a row for each iteration. That’s a simple requirement to fulfill,

and it can be done without even involving any new objects. Remember that generator

functions actually return an iterable object when they’re first called. The body of a

generator is then executed on each iteration of a loop, which makes an ideal way to

support a CSV reader.

In order to get the values from a CSV file, reader() can rely on the existing csv

module’s own reader functionality. The standard csv.reader returns a list for each row

in the file, regardless of what the actual values mean or what their names should be.

Because a row class can already process arguments that are stored in sequences such as

lists, it’s very simple to bind the two together:

import csv

class Row(metaclass=RowMeta):

 def __init__(self, *args, **kwargs):

 # First, make sure the arguments make sense

 column_names = [column.name for column in self._dialect.columns]

 if len(args) > len(column_names):

 msg = "__init__() takes at most %d arguments (%d given)"

 raise TypeError(msg % (len(column_names), len(args)))

Chapter 11 Sheets: A CSV Framework

440

 for name in kwargs:

 if name not in column_names:

 msg = "__init__() got an unexpected keyword argument '%s'"

 raise TypeError(msg % name)

 for i, name in enumerate(column_names[:len(args)]):

 if name in kwargs:

 msg = "__init__() got multiple values for keyword argument '%s'"

 raise TypeError(msg % name)

 kwargs[name] = args[i]

 # Now populate the actual values on the object

 for column in self._dialect.columns:

 try:

 value = column.to_python(kwargs[column.name])

 except KeyError:

 # No value was provided

 value = None

 setattr(self, column.name, value)

 @classmethod

 def reader(cls, file):

 for values in csv.reader(file):

 yield cls(*values)

This neglects one important aspect of reading from CSV files, however. There are

enough variations in how values are stored within a file that you may need to specify

some options to control how the file is processed. Earlier, the Dialect class provided

a way to specify those options on the Row class, so now we need to pass some of those

options along in the call to csv.reader(). In particular, these are the options stored in

the dialect’s csv_dialect attribute:

@classmethod

 def reader(cls, file):

 for values in csv.reader(file, **cls._dialect.csv_dialect):

 yield cls(*values)

Chapter 11 Sheets: A CSV Framework

441

That covers the options that the csv module already knows about, but remember

that our own Dialect class allows for another option to indicate whether the file has a

header row. In order to support that feature in the reader, we’ll need to add some extra

code that skips the first row if the dialect indicates that row would be a header:

@classmethod

 def reader(cls, file):

 csv_reader = csv.reader(file, **cls._dialect.csv_dialect)

 # Skip the first row if it's a header

 if cls._dialect.has_header_row:

 csv_reader.__next__()

 for values in csv_reader:

 yield cls(*values)

Because all the reader needs to provide is an iterable that yields a row for each

object, this method now does everything it needs to. It’s not very forward-thinking,

however. Because we’re building a framework that may need to be improved later, it’s

always a good idea to at least consider future expansion.

Rather than relying solely on a generator function, a more flexible approach would

be to create a new iterable class that will do the same job. As we’ll see in the next section,

the writer will need a separate class as well, so building this new iterable will create a

pair of classes that will be easier to understand. First, the reader() method gets a whole

lot simpler:

 @classmethod

 def reader(cls, file):

 return Reader(cls, file)

That delegates all the real work to a new Reader class, which must implement

__iter__() and __next__() in order to function as an iterator. There are a few things

that need to be stored away in __init__() first, however, including the row class that can

create each instance and a csv.reader object to actually read the file:

Chapter 11 Sheets: A CSV Framework

442

class Reader:

 def __init__(self, row_cls, file):

 self.row_cls = row_cls

 self.csv_reader = csv.reader(file, **row_cls._dialect.csv_dialect)

The __iter__() method is easy to support because the Reader itself will be the

iterator. Therefore, all that’s necessary is to return self:

class Reader:

 def __init__(self, row_cls, file):

 self.row_cls = row_cls

 self.csv_reader = csv.reader(file, **row_cls._dialect.csv_dialect)

 def __iter__(self):

 return self

Because __next__() will be called for each iteration, its logic can be a bit simpler for

the obvious task of returning individual row objects. All it needs to do is call __next__()

on the csv.reader’s iterator, passing the values into the row class that was stored in

__init__():

class Reader:

 def __init__(self, row_cls, file):

 self.row_cls = row_cls

 self.csv_reader = csv.reader(file, **row_cls._dialect.csv_dialect)

 def __iter__(self):

 return self

 def __next__(self):

 return self.row_cls(*self.csv_reader.__next__())

Chapter 11 Sheets: A CSV Framework

443

You’ll remember from Chapter 5 that when manually building an iterator, you have

to be careful to raise a StopIteration exception in order to avoid an infinite loop. In this

case, we don’t have to do that directly because the csv.reader will do that on its own.

Once it runs out of records, our own __next__() method just needs to let StopIteration

go by without being caught.

The last feature to implement is the header row, which gets slightly more complex.

In the generator function shown earlier, it’s easy to just deal with the header row before

getting into the real loop. As a manual iterator, we have to manage it separately because

__next__() will get called from the beginning for each record.

To do so, we’ll need to keep a Boolean attribute that indicates whether we still need

to skip the header row. At the beginning, that attribute will be the same as the dialect’s

has_header_row attribute, but once the header row has been skipped, that attribute

needs to be reset so that __next__() can yield a valid record every other time:

class Reader:

 def __init__(self, row_cls, file):

 self.row_cls = row_cls

 self.csv_reader = csv.reader(file, **row_cls._dialect.csv_dialect)

 self.skip_header_row = row_cls._dialect.has_header_row

 def __iter__(self):

 return self

 def __next__(self):

 # Skip the first row if it's a header

 if self.skip_header_row:

 self.csv_reader.__next__()

 self.skip_header_row = False

 return self.row_cls(*self.csv_reader.__next__())

You can test it by supplying a simple CSV file and reading it in. Consider a file

containing a rough table of contents, with a column for the chapter number and another

for the chapter title. Here’s how you could write a Row to represent that file and parse the

contents:

Chapter 11 Sheets: A CSV Framework

444

>>> import sheets

>>> class Content(sheets.Row):

... chapter = sheets.IntegerColumn()

... title = sheets.StringColumn()

...

>>> file = open('contents.csv', newline=“)

>>> for entry in Content.reader(file):

... print('%s: %s' % (entry.chapter, entry.title))

...

1: Principles and Philosophy

2: Advanced Basics

3: Functions

4: Classes

5: Protocols

6: Object Management

7: Strings

8: Documentation

9: Testing

10: Distribution

11: Sheets: A CSV Framework

This completes the transition from rows in a CSV file to individual Python objects.

Because each of the rows in an instance of the Content class, you can also define

whatever other methods you like and have those available when processing entries from

the file. For the other side of the framework, we need a writer to move those objects back

into a CSV file.

�The Writer
Unlike the reader, the interface for a CSV writer requires some instance methods, so the

implementation is a bit more complex. A generator method won’t cut it this time around,

so we’ll need to add a new class to the mix in order to manage the file writing behavior.

We can still rely on the csv module’s own behavior to do most of the heavy lifting, so this

new class only has to manage the additional features of the sheets framework.

Chapter 11 Sheets: A CSV Framework

445

The first part of the interface is simple. To mirror the availability of the reader, the

writer should be accessible from a method on the Row subclass. This method will also

take a file object, but this time it must return a new object rather than doing anything

with that file right away. That makes the implementation of this writer() method simple

on its own:

 @classmethod

 def writer(cls, file):

 return Writer(file, cls._dialect)

Note T he SheetWriter can’t get by with just the file, because it’s separate
from Row and wouldn’t otherwise have access to any of the dialect options.

This obviously doesn’t do anything useful yet, however, so the main task is to create

and fill out the SheetWriter class. There are two necessary methods to satisfy the writer

interface, writerow() and writerows(). The former is responsible for taking a single

object and writing out a row to the file, while the latter accepts a sequence of objects,

writing them each out as a separate row in the file.

Before starting on either of those methods, Writer needs some basic initialization.

The first obvious information it will need access to is the list of columns for the class.

Beyond that, it’ll also need the CSV options, but those are only necessary to create a

writer using the csv module itself, just like the reader did. Finally, it needs access to the

one option that csv doesn’t know about its own, has_header_row:

class Writer:

 def __init__(self, file, dialect):

 self.columns = dialect.columns

 self._writer = csv.writer(file, dialect.csv_dialect)

 self.needs_header_row = dialect.has_header_row

Chapter 11 Sheets: A CSV Framework

446

Before moving on to the all-important writerow() method, notice the header row

option is actually named needs_header_row when assigned to the class. This allows

writerow() to use that attribute as a flag to indicate whether the header row still needs

to be written. If no row is needed in the first place, it starts as False, but if it comes in as

True, it can be flipped to False once the header has actually be written to the file.

To write the header row itself, we can also defer to the csv.writer instead that will

be used later to write the value rows. The csv module doesn’t care what the overall

structure of the file is, so we can pass in a row of header values and it’ll be processed the

same way as all the other rows. Those header values come from the title attribute of

each column on the class, but we can use the string’s title() method to make them a

bit friendlier:

class Writer:

 def __init__(self, file, dialect):

 self.columns = dialect.columns

 self._writer = csv.writer(file, dialect.csv_dialect)

 self.needs_header_row = dialect.has_header_row

 def writerow(self, row):

 if self.needs_header_row:

 values = [column.title.title() for column in self.columns]

 self._writer.writerow(values)

 self.needs_header_row = False

With the header out of the way, writerow() can move on to write the actual row that

was passed into the method. The code to support the header already lays out most of

what needs to be done. The only difference is that rather than getting the title of each

column, the list comprehension needs to get the corresponding value from the row

object that was passed in:

class Writer:

 def __init__(self, file, dialect):

 self.columns = dialect.columns

Chapter 11 Sheets: A CSV Framework

447

 self._writer = csv.writer(file, dialect.csv_dialect)

 self.needs_header_row = dialect.has_header_row

 def writerow(self, row):

 if self.needs_header_row:

 values = [column.title.title() for column in self.columns]

 self._writer.writerow(values)

 self.needs_header_row = False

 values = [getattr(row, column.name) for column in self.columns]

 self._writer.writerow(values)

Finally, the writer also needs a writerows() method that can take a sequence of

objects and write them out as individual rows. The hard work is already done, so all

writerows() needs to do is call writerow() for each object that was passed into the

sequence:

class Writer:

 def __init__(self, file, dialect):

 self.columns = dialect.columns

 self._writer = csv.writer(file, dialect.csv_dialect)

 self.needs_header_row = dialect.has_header_row

 def writerow(self, row):

 if self.needs_header_row:

 values = [column.title.title() for column in self.columns]

 self._writer.writerow(values)

 self.needs_header_row = False

 values = [getattr(row, column.name) for column in self.columns]

 self._writer.writerow(values)

 def writerows(self, rows):

 for row in rows:

 self.writerow(row)

Chapter 11 Sheets: A CSV Framework

448

With a CSV reader and writer, the sheets framework is complete. You can add more

column classes to support additional data types or add more dialect options based on

more specific needs you may have, but the framework on the whole is intact. You can

verify the full functionality by reading an existing file and writing it back out to a new file.

As long as all the dialect parameters match the file’s structure, the contents of the two

files will be identical:

>>> import sheets

>>> class Content(sheets.Row):

... chapter = sheets.IntegerColumn()

... title = sheets.StringColumn()

...

>>> input = open('contents.csv', newline=“)

>>> reader = Content.reader(input)

>>> output = open('compare.csv', 'w', newline=“)

>>> writer = Content.writer(output)

>>> writer.writerows(reader)

>>> input.close()

>>> output.close()

>>> open('contents.csv').read() == open('compare.csv').read()

True

�Taking It With You
In this chapter you’ve seen how to plan, build, and customize a framework using many

of the tools Python makes available. What was a complicated task that would have had

to be repeated multiple times has been reduced to a reusable and extendable tool. This

is just one example of how the techniques in this book can combine for such a complex

task, however. The rest is up to you.

Chapter 11 Sheets: A CSV Framework

449
© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5

Index

A
add() method, 60
add_column() method, 412
addTypeEqualityFunc() method, 362, 368
Affero General Public License (AGPL), 375
American Standard Code for Information

Interchange (ASCII), 312–313
annotation_processor(), 134
append() method, 60
Arithmetic operations, 228, 229
ASCII, see American Standard Code for

Information Interchange (ASCII)
attach_to_class() method, 403

B
Backward compatibility, 25–26
Berkeley Software Distribution (BSD)

license, 376
Bitwise operations, 234–236
__bool__() method, 227
Bound methods, 205–206
break statement, 43
Built-in function type, 83
Built-in id() function, 270
Built-in type() function, 149
Byte string

chr() and ord(), 306
standard strings, 305
struct module, 307

C
Cache, 29
Callables, 259
__call__() method, 419
chain() function, 56
Classes

attributes
descriptors, 201
functions, 198
“get” and “set” functions, 198,

202, 204
properties, 198

creation
code block, 186–187
individual plugin, 195
metaclasses, 190, 196
namespace controlling, 196
plugin framework, 192
plugin mount class and plugin

subclass, 194
runtime, 188

inheritance
contact class, 163–164
“get” and “set” functions, 162
introspection, 184
MRO (see Method resolution order

(MRO))
multiple inheritance, 165
Person and Company classes, 164
Python class, 162

https://doi.org/10.1007/978-1-4842-4385-5

450

iterators, 221–223
magic methods

attributes, 215
automatic subclasses, 213
delattr() method, 217
setattr() function, 215–216
getattr() function, 215
instantiation creation, 211
repr() method, 220
string representations, 218
str() function, 218–219

methods
assigning functions, 210
bound methods, 205–206
class methods, 207
static methods, 209
unbound methods, 204–205

Class methods, 207–209
clear() method, 62
coerce_arguments() decorator, 135, 136
Collections module

default dictionaries, 67
named tuples, 65
ordered dictionaries, 66
sets

add()method, 60
append() method, 60
clear() method, 62
difference()method, 63
discard() method, 61
in keyword, 59
intersection() method, 63
issubset() method, 64
issuperset()method, 64
letters determination, 58
pop() method, 61
remove() method, 61

union() method, 62
update() method, 60, 62

Comma Separated Values (CSV) files
argument checking

column name array, 435
keyword arguments, 434, 436
positional arguments, 433

declarative programming (see
Declarative programming)

enumerate() method, 436
kwargs, 436
looping, 437
reader() method

Content class, 443–444
csv_dialect attribute, 440
Dialect class, 441
iterable object, 439
__iter__() method, 441–442
__next__() method, 441–443
row class, 439, 440

reader objects, 431
row class, 438
writer() method

contents, 448
row subclass, 445
title() method, 446
writerow() method, 445–447

writer objects, 432
Comparison operations, 243
Context managers, 260
Control flow

catching exceptions
EnvironmentError, 34
except keyword, 32–33
IOError, 33
OSError, 34
raise keyword, 32
SystemExit, 33

Classes (cont.)

Index

451

try keyword, 32
TypeError, 34

conditional expressions
and operator, 48
false value, 48
if/else function, 46
or operator, 48

count_lines() function, 39
definition, 32
except blocks, 40
exception chains, 37
optimizing loops, 43
UnicodeDecodeError, 42
with statement, 44

copy() method, 297
CounterMeta class, 419
count_lines(), 34
CSV framework, 395
custom_operator() function, 109
Cyclical counting, 283–286

D
Declarative framework, 392–393
Declarative programming

advantage, 394
base class, 396
class declaration, 394
end-user code, 397
example.py, 410
fields

arguments, 401
attach_to_class() method, 403
base class, 401
columns, 401
definition, 396
__init__() method, 401
title, 401

__init__.py module, 409
instance methods, 395
managing options

component, 397
custom class, 398
dialects, 400
dictionary implementation, 397
encode() method, 399
header row, 399
__init__() method, 398
open() function, 399
validation method, 398

metaclasses (see Metaclasses)
options container, 396
placeholder, 397
string variable, 393
valuable approach, 395

deepcopy() method, 299–301
__del__() method, 284–286
discard() method, 61
Distribution

licensing
AGPL, 375
BSD license, 376
free software

foundation, 378
GPL, 373
LGPL, 376
OSI, 378

online documentation, 386
packaging

definition, 378
documentation, 378–379
MANIFEST.in, 382–383
sdist command, 384
setup.py, 379
tests directory, 379

PyPI, 386

Index

452

divmod() method, 231, 239
Django and Elixir approach, 392
Doctest module

code formatting, 350
docstrings, 350
documentation, 353
print() function, 352
repr() function, 352
testmod() function, 354
times2() function, 354

Documentation
comments, 333
docstrings, 334
external

installation and configuration, 337
reference documents, 337
tutorials, 337

proper naming, 332
utilities

formatting, 339
links, 340
Sphinx, 343

Don’t Repeat Yourself (DRY), 20–21, 31
Double-asterisk syntax, 400
dump()/dumps() functions, 290

E
elif keyword, 7
__enter__() method, 260
enumerate() method, 436
example() function, 289
__exit__() method, 261

F
Feedparser, 327–328
Fibonacci sequence, 28

Field library
Column class, 422, 423
DateColumn class

date() method, 428
format object, 427
strptime() method, 428
to_python() method, 429–430

DecimalColumn, 425
FloatColumn, 424
IntegerColumn, 424
StringField, 423
to_python() method, 422
to_string() method, 422

__floordiv__(), 230
Floor division, 230
Functions

annotations
annotation_processor, 132
coercion, 134
decorators, 137
typesafe() decorator, 134
type safety, 121, 137, 139–143

arguments
flexibility, 84
get_arguments(), 100, 102
introspection, 95
invoking functions, 92
positional arguments, 90
preloading, 93
Python’s keyword, 84
required arguments, 89
update() function, 101
values, 96
variable keyword, 87, 92
variable positional, 85, 90

decorators
arguments, 111
closures, 107

Index

453

creation, 118
log_error() function, 106
memoization, 116
@ syntax, 106
with/without

arguments, 114
wrappers, 109

generators, 143
introspection

definition, 148
docstrings, 151
modules and packages, 150
object types, 149

Lambdas, 146
programming language, 83

functools.partial(), 109
functools.wraps()

decorator, 110, 111

G, H
Garbage collection

cyclical references
del b, 283
__del__() method, 284–286
gc.collect(), 285
gc.module, 285–286

example() function, 289
namespace, 289
reference counting, 281–283
weak reference, 287

General Public License (GPL), 373
get() method, 16
get_arguments(), 99, 100, 103–104
__getattr__() method, 275
getdoc() function, 152
__getitem__() method, 253
__getstate__() method, 291–292, 295–296

I, J, K
Image processing

changing orientation, 370
crop function, 370
filters, 371

__import__() function, 74
Importing code

asterisk, 71
fallback, 68
__future__ module, 70
__import__() function, 74
importlib module, 78
relative imports, 74

importlib module, 78
import_module() function, 78
import_path() function, 77
__index__() method, 240
IndexError, 253
__init__() method, 271, 273, 362,

368, 401, 405
insort() method, 417
inspect.getdoc(), 152
intersection() method, 63
Introspection techniques, 31
__invert__() method, 236
isinstance() function, 122, 149, 184
issubset() method, 64
issuperset() method, 64
__iter__() method, 244, 249, 442
Iterables

break statement, 245
built-in range() function, 245
generators, 248
__getitem__() method, 247
__init__() method, 244
__iter__() method, 244
__next__() method, 245

Index

454

Iteration
category, 27
chaining iterables, 56
definition, 49
dictionary comprehensions, 56
for loop, 50
generator expressions, 53
list comprehensions, 52
looping, 28
memory allocation, 28
object-oriented perspective, 28
range() function, 49
sequence unpacking, 50
set comprehensions, 55
zipping iterables, 57

L
Lambda function, 416
Lesser General Public License (LGPL), 376
List comprehensions, 52–53
log_error(), 106, 107

M
map() function, 57
Mappings, 257
math.ceil(), 241
Matplotlib library, 157
Memoization, 30
memoize() decorator, 117
Metaclasses

attach_to_class() method, 407
class-level attributes, 405
encoding, 405
hasattr(), 408
dialect class, 406
inner class, 406
loop, 408

RowMeta, 409
Method resolution order (MRO)

base class, 166
breadth-first approach, 171
C3 algorithm, 176
C3 function, 172, 176
candidate class, 171
candidate removing, 174
candidate selection, 175
horizontal approach, 167
non–first classes, 173
parent classes, 171
purchase() method, 167
simple two-element list, 170
super() function, 179–182
test() method, 169, 182–183
TypeError, 177
while True loop, 173

min() processes, 53
min() function, 54
__mod__() method, 316
multiply_by(), 108

N
namedtuple()function, 65
Namespace dictionary

Borg pattern
__init__() method, 271, 273
__new__() method, 273–275

__dict__ attribute, 270
self-caching properties

cachedproperty(), 278–280
__getattr__() method, 275
ORM, 276
Person.get_employer()

method, 277
@property, 277–278
__setattr__() method, 275

Index

455

__new__() method, 273–275, 420
New BSD license, 377
__next__() method, 245, 442
Numbers

comparison operations, 243
__floor__() method, 241
__index__()method, 240
__int__() method, 240
__round__() method, 241
sign operations, 242
TypeError, 240

NumPy
arrays, 344–346
installation, 344
scientific computing and data

manipulation, 344
statistical functions, 347

O
Object management

Beautiful Soup, 301–303
copying

built-in sorted() method, 299
copy() method, 297
deepcopy() method, 299–301
shallow copy, 297

drawback, 296
garbage collection (see Garbage

collection)
identity, 269
namespace dictionary (see Namespace

dictionary)
object type, 269
pickling

_currency() method, 294
dumps() function, 290
__getstate__() method, 291–292,

295–296

load() and loads()
functions, 290

__setstate__() method, 293
value, 269

Object-Relational Mapping (ORM), 276
open() function, 399
Open Source Initiative (OSI), 375
Operations

bitwise, 234
__bool__() method, 226
mathematical operations

arithmetic, 228
floor division, 230
modulo operation, 230
__pow__() method, 233

rectangle, 226
variations, 236

OrderedDict class, 66
Ordered fields

Column.__init__()
attach_to_class(), 417
Column object, 414, 415
Dialect object, 416
__init__() method, 414, 417
insort() method, 417
RowMeta class, 416

Column.__new__(), 418
CounterMeta.__call__(), 419
DeclarativeMeta.__prepare__()

add_column() method, 412
Column class, 414
namespace dictionary, 412
RowMeta, 411

options, 421

P, Q
Pareto Principle, 22
Pickle command, 289

Index

456

pop() method, 61
__pow__() method, 232–233
Preloading arguments, 93
__prepare__() method, 411
Principles and philosophy, Python

backward compatibility, 25
DRY, 20
loose coupling, 21
Pareto Principle, 22
Robustness Principle, 23
Samurai Principle, 22
Zen of Python

bracket syntax, 16
code blocks, 7
code snippet, 6
comp.lang.python, 2
complexity, 6
documentation, 17
elif keyword, 7
encoding, 15
error handling, 14
explicit code, 4
flat structures, 8
get() method, 16
implementation, 11, 18
interface, 5
is_valid code, 3
iterative development, 18
keyword arguments, 3
namespace handling, 19
PEP-8, 8
readability Counts, 9–10
robust error-handling system, 11
Unicode strings, 16
validate() method, 13

Pseudo-random number generator, 79
Python 3.0, 36
Python Enhancement Proposal (PEP), 2

Python extensions
Beacon components, 79
charts type, 158
get value, 80
Matplotlib library, 157
mean() and groupby(), 156
NIST Beacon, installation, 80
Pandas and Matplotlib,

installation, 154
Pandas to display data, 155
statistics, 154
text file, 155

Python Imaging Library (PIL), 369
Python Package Index (PyPI), 386
Python’s introspection, 95–96
Python’s keyword

arguments, 84

R
readlines (), 42
Reference counting, 281–283
remove() method, 61
return statement, 43
returns() function, 143
Robustness principle, 23
__round__() method, 241

S
Samurai principle, 22
Scrapy

installation, 263
project setup, 263, 265
retrieve web data, 265
running, 263
shell options, 265–266
web page, view, 265

Index

457

Secrets module
password generation, 388–389
random number algorithm, 387, 388

self.fail(), 368
Sequences

additional attributes and behaviors, 250
built-in len() function, 251
class range, 256
__contains__() method, 256
__delitem__() method, 255
__getitem__() method, 252–253
__len__() method, 251
reversed() function, 251
__setitem__() method, 255

Sequence structure, 32
__setattr__() method, 275
__setitem__() method, 255
__setstate__() method, 293
setup() function, 379
Shallow copies, 297–299
Sign operations, 242
Simplified BSD license, 377
sort() method call, 146
sort() operation, 416
Sphinx, 343
startswith() method, 13
Static methods, 209
str() function, 316
strftime() method, 430
String representation, 218
Strings

bytes
chr() and ord(), 306
standard strings, 305
struct module, 307

formatting
custom format, 326
customizable validation function, 319

explicit format() method, 319
format(), 320
keyword arguments, 319
object reference, 321
plain text table of contents, 324
positional arguments, 319
__repr__() method, 321
standard format, 322
__str__() method, 321

simple substitution, 316
text

encodings, 313
unicode, 312

strptime() method, 428
Struct module, 307
subclass() function, 185
suppress_errors() decorator, 109, 112, 119
suppress_errors() function, 106, 113
symmetric_difference() method, 64

T
tearDown() method, 367
Testing

custom test class, 368
definition, 349
doctest module

code formatting, 350
docstrings, 350
documentation, 353
print() function, 352
repr() function, 352
testmod() function, 354
times2() function, 354

test-driven development, 349–350
unittest module

addTypeEqualityFunc()
method, 362

Index

458

assertEqual(), 361
assertion, 358
AssertionError, 360
assertRaises(), 364–365
assertRaisesRegexp(), 365
comparison methods, 363
identity, 366
main() function, 358
sequence content, 364
setUp() method, 356
strings, 363
tearDown() method, 367
TestCase class, 356
tests.py, 359
with block, 365

testmod() function, 354
testNumber() method, 358
tests.py module, 359
test_value() function, 48
title() method, 446
to_python() method, 422
to_string() method, 422
Transmission Control

Protocol (TCP), 23
Transparency, 30–31
__truediv__() method, 229
typesafe() decorator, 140–141
typesafe() function, 126, 129, 143

U
Unbound methods, 204–205
union() method, 62
Unittest module

addTypeEqualityFunc() method, 362
assertEqual(), 361
assertion, 358

AssertionError, 360
assertRaises(), 364–365
assertRaisesRegexp(), 365
comparison methods, 363
identity, 366
main() function, 358
sequence content, 364
setUp() method, 356
strings, 363
tearDown() method, 367
TestCase class, 356
tests.py, 359
with block, 365

update() function, 101
update() method, 60, 62
UTF-8, 314

V
validate() method, 13
Variable arguments, 89, 92, 104
Variable keyword arguments, 92

W
Weak references, 287–289
What You See Is What You Mean

(WYSIWYM) approach, 338
Wrapped function, 109
writerows() method, 446–447

X, Y
XOR operation, 64

Z
zip() function, 57

Testing (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Principles and Philosophy
	The Zen of Python
	Beautiful Is Better Than Ugly
	Explicit Is Better Than Implicit
	Simple Is Better Than Complex
	Complex Is Better Than Complicated
	Flat Is Better Than Nested
	Sparse Is Better Than Dense
	Readability Counts
	Special Cases Aren’t Special Enough to Break the Rules
	Practicality Beats Purity
	Errors Should Never Pass Silently
	Unless Explicitly Silenced
	In the Face of Ambiguity, Refuse the Temptation to Guess
	There Should Be One—and Preferably Only One—Obvious Way to Do It
	Although That Way May Not Be Obvious at First, Unless You’re Dutch
	Now Is Better Than Never
	Although Never Is Often Better Than Right Now
	If the Implementation Is Hard to Explain, It’s a Bad Idea
	If the Implementation Is Easy to Explain, It May Be a Good Idea
	Namespaces Are One Honking Great Idea: Let’s Do More of Those!

	Don’t Repeat Yourself
	Loose Coupling
	The Samurai Principle
	The Pareto Principle
	The Robustness Principle
	Backward Compatibility
	Taking It With You

	Chapter 2: Advanced Basics
	General Concepts
	Iteration
	Caching
	Transparency

	Control Flow
	Catching Exceptions
	Exception Chains
	When Everything Goes Right
	Proceeding Regardless of Exceptions
	Optimizing Loops
	The with Statement
	Conditional Expressions

	Iteration
	Sequence Unpacking
	List Comprehensions
	Generator Expressions
	Set Comprehensions
	Dictionary Comprehensions
	Chaining Iterables Together
	Zipping Iterables Together

	Collections
	Sets
	Named Tuples
	Ordered Dictionaries
	Dictionaries with Defaults

	Importing Code
	Fallback Imports
	Importing from the Future
	Using __all__ to Customize Imports
	Relative Imports
	The __import__() Function
	The importlib Module

	Exciting Python Extensions: Random Number Beacon at NIST
	How to Install the NIST Beacon Library
	Simple Example to Get a Value
	Example to Simulate Rolling Coin Flipping a Certain # Times and Display Heads or Tails

	Taking It With You

	Chapter 3: Functions
	Arguments
	Planning for Flexibility
	Variable Positional Arguments
	Variable Keyword Arguments
	Combining Different Kinds of Arguments
	Invoking Functions with Variable Arguments
	Passing Arguments
	Introspection
	Example: Identifying Argument Values
	Example: A More Concise Version
	Example: Validating Arguments

	Decorators
	Closures
	Wrappers
	Decorators with Arguments
	Decorators with—or without—Arguments
	Example: Memoization
	Example: A Decorator to Create Decorators

	Function Annotations
	Example: Type Safety
	Factoring Out the Boilerplate
	Example: Type Coercion
	Annotating with Decorators
	Example: Type Safety as a Decorator

	Generators
	Lambdas
	Introspection
	Identifying Object Types
	Modules and Packages
	Docstrings

	Exciting Python Extensions: Statistics
	Install Pandas and Matplotlib
	Make a Text File of Data
	Use Pandas to Display Data
	Running Some Data Analysis
	Plotting with Matplotlib
	Types of Charts
	Combine Matplotlib with Pandas

	Taking It with You

	Chapter 4: Classes
	Inheritance
	Multiple Inheritance
	Method Resolution Order
	Example: C3 Algorithm
	Using super() to Pass Control to Other Classes
	Introspection

	How Classes Are Created
	Creating Classes at Runtime
	Metaclasses
	Example: Plugin Framework
	Controlling the Namespace

	Attributes
	Properties
	Descriptors

	Methods
	Unbound Methods
	Bound Methods
	Class Methods
	Static Methods
	Assigning Functions to Classes and Instances

	Magic Methods
	Creating Instances
	Example: Automatic Subclasses
	Dealing with Attributes
	String Representations

	Exciting Python Extensions: Iterators
	Taking It With You

	Chapter 5: Common Protocols
	Basic Operations
	Mathematical Operations
	Bitwise Operations
	Variations

	Numbers
	Sign Operations
	Comparison Operations

	Iterables
	Example: Repeatable Generators

	Sequences
	Mappings
	Callables
	Context Managers
	Exciting Python Extensions: Scrapy
	Installation
	Running Scrapy
	Project Setup
	Retrieve Web Data with Scrapy
	View a Web Page via Scrapy
	Shell Options

	Taking It With You

	Chapter 6: Object Management
	Namespace Dictionary
	Example: Borg Pattern
	Example: Self-Caching Properties

	Garbage Collection
	Reference Counting
	Cyclical References
	Weak References

	Pickling
	Copying
	Shallow Copies
	Deep Copies

	Exciting Python Extensions: Beautiful Soup
	Installing Beautiful Soup
	Using Beautiful Soup

	Taking It With You

	Chapter 7: Strings
	Bytes
	Simple Conversion: chr() and ord()
	Complex Conversion: The Struct Module

	Text
	Unicode
	Encodings

	Simple Substitution
	Formatting
	Looking Up Values Within Objects
	Distinguishing Types of Strings
	Standard Format Specification
	Example: Plain Text Table of Contents
	Custom Format Specification

	Exciting Python Extensions
	Feedparser
	How to Install
	How to Use

	Taking It With You

	Chapter 8: Documentation
	Proper Naming
	Comments
	Docstrings
	Describe What the Function Does
	Explain the Arguments
	Don’t Forget the Return Value
	Include Any Expected Exceptions

	Documentation Outside the Code
	Installation and Configuration
	Tutorials
	Reference Documents

	Documentation Utilities
	Formatting
	Links
	Sphinx

	Exciting Python Extensions: NumPy
	Install NumPy
	Using NumPy
	Working With NumPy Arrays
	Statistical Measures

	Taking It With You

	Chapter 9: Testing
	Test-Driven Development
	Doctests
	Formatting Code
	Representing Output
	Integrating With Documentation
	Running Tests

	The unittest Module
	Setting Up
	Writing Tests
	Other Comparisons
	Testing Strings and Other Sequence Content
	Testing Exceptions
	Testing Identity
	Tearing Down

	Providing a Custom Test Class
	Changing Test Behavior

	Exciting Python Extensions: Pillow
	How to Install Pillow (PIL)
	Image Display: Determine File Size, Type, and Display It
	Image Processing: Crop a Portion of an Image
	Image Processing: Changing Image Orientation
	Image Processing: Filters

	Taking It With You

	Chapter 10: Distribution
	Licensing
	GNU General Public License
	Affero General Public License
	GNU Lesser General Public License
	Berkeley Software Distribution License
	Other Licenses

	Packaging
	setup.py
	MANIFEST.in
	The sdist Command

	Distribution
	Exciting Python Extensions: Secrets Module
	Random Numbers
	Password Generation

	Taking It With You

	Chapter 11: Sheets: A CSV Framework
	Building a Declarative Framework
	Introducing Declarative Programming
	To Build or Not to Build?

	Building the Framework
	Managing Options
	Defining Fields
	Attaching a Field to a Class
	Adding a Metaclass
	Bringing It Together

	Ordering Fields
	DeclarativeMeta.__prepare__()
	Column.__init__()
	Column.__new__()
	CounterMeta.__call__()
	Choosing an Option

	Building a Field Library
	StringField
	IntegerColumn
	FloatColumn
	DecimalColumn
	DateColumn

	Getting Back to CSV
	Checking Arguments
	Populating Values
	The Reader
	The Writer

	Taking It With You

	Index

