Pro Python 3

Features and Tools for Professional
Development

Third Edition

J. Burton Browning
Marty Alchin

Apress’

Pro Python 3

Features and Tools for
Professional Development

Third Edition

J. Burton Browning
Marty Alchin

Apress’

Pro Python 3: Features and Tools for Professional Development

J. Burton Browning Marty Alchin
OakIsland, NC, USA Agoura Hills, CA, USA
ISBN-13 (pbk): 978-1-4842-4384-8 ISBN-13 (electronic): 978-1-4842-4385-5

https://doi.org/10.1007/978-1-4842-4385-5
Library of Congress Control Number: 2019936454
Copyright © 2019 by J. Burton Browning and Marty Alchin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green

Development Editor: James Markham

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484243848. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4385-5

This edition is dedicated to Champion Suyaki Mamma Mia of Misibo
and her sister Champion Sienna of Olympia of Misibo, two of the best
Siamese cats who ever owned me.

Table of Contents

About the AUtROIS.......c.uccesmiimsmmsnsmnss s nnnann s XV
About the Technical ReVIEWETccsssssnsssassssassssnsssassssassssassssnsssasssssssssnsssansssannsas xvii
AcKkNOWIEdgmMEeNTSccuuuiissmmmmmmsssnnnmmssssssnnesssssnnsesssssnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns Xix
L1 T LT (1 XXi
Chapter 1: Principles and PhiloSOphY........cccumnsmmmmsmmmmmmmmmssssssssssssssssssssssssssssssssssnns 1
The Zen Of PYINONcceeeccrcer s s s e s s 2
Beautiful IS Better Than UgIYcccuveernvennennnnesnsesssesssssesss e ssssesssss s ssssesssssssssssesessesens 3
Explicit Is Better Than IMPIiCit........c.ccccvivvnnennismrnsessess e s sens 4
Simple Is Better Than COMPIEXccvvererinernesrnesenese s ses s ssssesens 5
Complex Is Better Than Complicated..........ccccvveerrnenerenesnesnesess s s 6

Flat Is Better Than NESTEdc.ccoeeiiinrerererc s s 6
Sparse Is Better TRAN DENSE ... e 8
Readability COUNTS........ccoveerierrrcsere e s 9
Special Cases Aren’t Special Enough to Break the Rules.........ccccoovvvvnininninsnnnnnnsnienens 10
Practicality BeatS PUIILYc.ccorerernsmsrresnsnse s sese s se s sesssssssssessnnes 10
Errors Should Never Pass Silently ..o ssnnes 11
Unless EXPIICItly SIENCEA..........ccoveeerecerrerireser e 14

In the Face of Ambiguity, Refuse the Temptation t0 GUESS.......cccevvriririrn i 15
There Should Be One—and Preferably Only One—Obvious Way 10 Do Itccccccevvevrerncnns 15
Although That Way May Not Be Obvious at First, Unless You’re Dutch...........ccccvcrviiniennenne. 17

NOW IS Better TRAN NEVEN.......ccveecerrerereser e se e s s ssssensnnes 17
Although Never Is Often Better Than Right NOW...........cccverrnnernnenesesesssesesesesesesesssessenens 18

If the Implementation Is Hard to Explain, It’s a Bad Idea..........cccocevrvririnnnnsniennsenienennens 18

If the Implementation Is Easy to Explain, It May Be a Good Idea...........c.ccoooerrenercncrenicen 19
Namespaces Are One Honking Great Idea: Let’s Do More of Those!ccoovvvvvievnccnicnnenn 19

TABLE OF CONTENTS

Don’t RePeat YOUISEIT.......coccuve i n e s s n e e 20
LOOSE COUPIING....coviuierreerinerise st e e bbbt 21
The Samurai PriNCIPIE.......cou it r s e s s 22
The Pareto PriNCIPIE......ccocoiirirr e e s 22
The RODUSINESS PHNCIPIE......cccvreririnririere st s st s e s nne s 23
Backward ComPatibilityccouvvvrierienininienese e s se s s sss e s e e s nnes 25
TaKING [EWIth YOUcccererece et ses et s s s se s s s saese e s sae s e e s saesaesa e e ssesnesaessssenaesnens 26
Chapter 2: Advanced BaSiCS.....ccuusemmmrmsssnnssssssssnssssssssnsssssssnsssssssssnsssssssnnsssssssnnnssss 27
GENEIAl CONCEPLS...cviueereeccrire s e e et b e st e et ae e be e st e e e nne e 27
10=] 21 27

072 T2 311 OO RS 29
TFANSPAIEIICY ..e.uerueireereirere e s e e s e s b e e s R s a e e e e R e be e e e e R Re b e e e e e Re e R e e e e e nenras 30

L0 010 0SSR 32
Catching EXCEPLIONSc..cciiici s e e s 32
EXCEPLion ChaiNScccceeiiiiniirire e s 37
When Everything GOes Right ..o s e snes 39
Proceeding Regardiess of EXCEPLIONSccccccvvrerinnsnicnenss s 41
OPtMIZING LOOPS ...cciiericricsis s s r s e b e s e b e e e nne s 43
The With STATEMENT ... 44
Conditional EXPre@SSIONScccvererenerrrerinereresesseesessesese e s e sessessssssesssssssssessssesessssessssessnns 46

1 (5] 21 (0 49
Sequence UNPacCKiNg.........ccuereiiiinieiennsissese s s st ss e s s srs s snes 50
List COMPreNENSIONSccciiierisin s b s e b e e e s e e nne s 52
GENErAtOr EXPrESSIONS.....ceitisereriesisserese e st se st e s s b et se s s b e se s s ae b e e e naenne s 53
Set COMPrENENSIONScccvceieiirinir s s r s s e s nnas 55
Dictionary ComprenenSIoNS.........coccvcriiinnnnsne e s 56
Chaining lterables TOGELNEr ..o e 56
Zipping lterables TOGETher ... 57

{0 1= 0] TSRS 58
£33 58
NAMEU TUPIES ...t e e s e p e s s 65

TABLE OF CONTENTS

Ordered DICtIONAIIES.........ccoueeererereree e r e e e 66
Dictionaries With DEFAUIScceorrerrer e 67
IMPOIEING COUE.....c.e e e e e r e e e se s e R e e e 68
Fallback IMPOMS.......ccvrerccr e s 68
Importing from the FULUFE ... 70
Using __all__ to Customize IMPOITScceoevcervirre e rcererree s s 71
Relative IMPOITS ... e 74
The __import__() FUNCHON ... 74
The impPortlib MOUIE..........oou e 78
Exciting Python Extensions: Random Number Beacon at NISTcccooorenrnscnnsenesenesenscnenns 79
How to Install the NIST Beacon LiDraryccoveoverrenrnsesresere e 80
Simple Example to Get aValUe..........ccocevvircriiinccrrr e 80
Example to Simulate Rolling Coin Flipping a Certain # Times and Display Heads or Tails 81
TaKing HWIth YOUcovrececcce s s 81
Chapter 3: FUNCLIONSccuiiisemmmmmssssnnmmmsssssnmmmsssssnmmssssssnsessssssssssssssnsssssssnnnssssssnnnsnnss 83
L 0111 1] £ SO SSR 84
Planning for FIEXIDITYcovierrriererirserere s s sas s sae s s ssesaessssessesne s 84
Variable Positional ArgUMENTS.......cocvvririeririnsirere s sesse e s sesse e ssssessessesssssssessessssssessesnes 85
Variable Keyword ArQUMENTSccccvevrieriererisserere e s see e e ssessessssessessesssssssessessssssessesaes 87
Combining Different Kinds of Argumentsccccoovrvrinnnnnnne s sessessessens 89
Invoking Functions with Variable Argumentscccccrrrenninienenn s sessesessesessessessens 92
PaSSING ATQUIMENTS.ccccverieierierere s serese e e s se s ss e s e saesae e s e s sae e e e s aesaese e e s e naeees 93

T (010 1= 1T £ O RS 95
Example: Identifying Argument VAIUESccvvrernnninienennsinse s sesse s ssssessesse s 96
Example: A More CONCISE VEISION.......ccucevererreriererissessesesesessessessessssessessesssssssessesasssssessesses 100
Example: Validating Arguments ... s sssssssssssessnses 102

DT oT0] £ L 105
10T 107

L s o] 0T SRS 109
Decorators With ArQUMENTS.........ccvevririererirrerere e s s saesa e ssesnes 111
Decorators with—or WithoUt—Argumentsccuvvvririnrnrnr e 114

vii

TABLE OF CONTENTS

Example: MeMOIzZation ... s 116
Example: A Decorator to Create DEcOratorscccccvvvevrienrescrnreseneses e ses e sesenns 118
FUNCLION ANNOTALIONScovecrerceree e e 120
EXample: TYPE Safely.......ccocerirrererrr s 121
Factoring Out the Boilerplate...........cccvrinnnninrr e 131
Example: TYPE COBICION.......ccvcerererir et s s e 134
Annotating With DECOrators...........cccuviininininn - 137
Example: Type Safety as @ DeCorator ... 137
(CTS] 1 1] S 143
12T] o0 OSSR 146
INEFOSPECHION ...t 148
Identifying ODJECT TYPES ..covveeerieree e 149
Modules and PACKAGES..........cucvererernereresiesesse s s se s sresessessesnes 150
DOCSIIINGS ...eeveeerereserrese e e e e p e R nr s 151
Exciting Python EXtensions: STatiStiCsccvvrrvriernnniniene s sesse s ses e saens 154
Install Pandas and Matplotlib ..o 154
Make a Text File of Dataccccovrinincnnnsns s 155
Use Pandas 10 Display Data..........cccucvrerennnniniennninsenese s s s sessessessessssessesseees 155
Running Some Data AN@lYSiS.........ccoovvrierieninnnsenesnsnnsese s sese s sessessessssessessesasssssessesaes 156
Plotting with Matplotlihccccvierivniri e 157
TYPES Of CRAMSeevceciccrie e 158
Combine Matplotlib With Pandas...........ccccveeernnnnennnsesnsesssesess s s sessnnes 158
TaKing It WIth YOU......cccevererccerie e s s s sae e e s sae s sa e s nne s 159
Chapter 4: ClasSeSuuussumrsssssnnmmsssssnnnssssssnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnss 161
0] 1] = T 161
Multiple INNEMTANCE.......c.coercrer e 165
Method ReSOIULION OFETcccveeeeecreereree s 166
Example: C3 AlGOrithm ..o s 171
Using super() to Pass Control 10 Other CIASSES.........coueerreererererercrereresesese s 179
INTFOSPECHION.....cve e ————— 184

viil

TABLE OF CONTENTS

HOW Classes Are Created...........covrrnnnmnesrnmsnssssess s e e s s sesssssnsas 186
Creating Classes at RUNTIMEcccvcvierenrsrsere s s s s sne s s e ssesne s 188
METACIASSEScecerucerrieriee e 190
Example: PIUgin FraMEBWOIK.......ccoovvrveriererensereressssessessesaesessessessessssessessesssssssessesassssssssesses 192
Controlling the NAMESPACEceeververierrerrrrerserersesessessessessssessessesssssssessesaesssssssessesssssssesneses 196

ATFDULES ...t bbbt 198
o (0] 0 T<] TSR 198
DTS00 (0] £ SR 201

11113 (oo 204
UNDbouNd MELROMScov e 204
BOUNA METNOUScereeereecrircercse e 205
Class METhOUScccoerrrerriiirererrsse s 207
STAC METNOUS ... 209
Assigning Functions to Classes and INSTanCes.........c.cccvvvnnnnnnse s sessesessenens 210

MaGIC MELNOUScoveriircrer e s ne 211
Creating INSTANCES.......c.ccovcircrr s 211
Example: Automatic SUDCIASSES.........ccucevrninirrr e 213
Dealing With AHFDULEScccvcre s 215
String Representations.........ccuv i e 218

Exciting Python EXtensions: RErators.........cuoorenrnsrnnenmsesersse s 221

TaKing EWIth YOU......coveeercc s nns e 223

Chapter 5: Common ProtocCols........ccccuummmmmmmmsssssssssnnmmssmmssssssssssssssssssssssssssssssssnss 229

5 T 0] 0 =T = 1§ O 226
Mathematical OPErationsccevivvrrrieriererserrere e s sae e e aenaes 228
BitwiSe OPEIAtiONSccecervereereriereresir e re s s s s ssesae e s sre s s e s sae e e e e eaesae e e naennes 234
VarALIONS.cceceice e 236

LT 010 =T O 240
10 0] 0T =103 242
ComPariSON OPEIALIONSccecerereererrerrerersesersese e s s s sse s s e sse s sae e s saesaesessesaesaesssssssesaeses 243

ix

TABLE OF CONTENTS

HEIADIES ... s 244
Example: Repeatable GENEIatorsccevevrrerrerersnsensesesesessesessessesessessessssessessesasssssessesses 248
SEUUBNCES ..eveuerirseririeeriesese s se s e e e e e e e E e ee R e A e e e e R e e b e e e e R e b e e e e ens 250
MAPPINGS ..o e e R e e e e e ne 257
(07211 10 T3S 259
CONTEXE MANAGETSc.vrveeereeneresesessese e ses e sa s s n e e e e n e e e e e 260
Exciting Python EXtENSIONS: SCraAPYcccvcviereriniinienere s sessesse s ssssessessessssessessessesssssssessens 262
INSTANALION......ccivicc e ——————————————— 263
RUNNING SCIAPY ...vvvetereeriese s ssse s s sr s ss s s ses e sn s sn e s ssnssssnsassnsnnis 263
PrOJECT SBLUP . veueitrctrc ettt e 263
Retrieve Web Data With SCrapy ..o ssssessssssessnses 265
View a Web Page Via SCrapyccooucevrerernnesnsmssnesss s sssssssssssessssesessesssssssssssessssessssennes 265
SHEIl OPLIONS ...veveirirer e e e 265
TaKiNG IEWIth YOU......cceeecc ettt s st s sa e s s sa e s nne e 267
Chapter 6: Object Managementccccureemmmnsssnnnmmsssssnmssssssssesssssnsessssssssesssssnnns 269
NamesPaCe DICTIONAIYccccviirrriererin s e e e s s p e nne 270
Example: Borg Pattern..........cociincnicnsr e s 270
Example: Self-Caching Properties ... sesesesess s sesesessssessnses 275
Garbage CollECTION........cccverreiirrerer s e e p e e e nns 280
Reference COUNTING ..o e e e e 281
CyClical RETEIENCEScivereercre st e e e b e e 283
WEAK RETEIBNCES......c.cierecereeereecrerce s e e e e e e nnenens 287

T 41§ S 289
[0 0 SO S S SS 296
SRAIIOW COPIEScviererierie e e e e s e bbb e ae s 297
DT T0 I 0] 01 OSSR OS 299
Exciting Python Extensions: Beautiful SOUP.........cccvvvernrerinesensse s sesse s 301
Installing Beautiful SOUP........cccuvceriiernesiesern s 302
USiNg BEAULITUL SOUP ...covverrrcrerreseriese s s se s s 302
TaKiNg [EWIth YOUccceeececcerere et s sr s e s s e s ene e 303

TABLE OF CONTENTS

Chapter 7: Strings.....ccucccmrrmisnnnnmmssssnnnmmssssssnmssssssnsessssssssessssssssesssssnnssssssnnnssssssnnnnss 305
BYEES .t ————————————————————————— 305
Simple Conversion: Chr() and Ord()......cocvvrrrerrinrinrne e 306
Complex Conversion: The Struct Module..........cccovevricrninn s 307
TOXE e e e R e e e e R Re e R e e e e e e nRe e Re e e e e e nRenas 312
UNICOOE........eeeceecereee e a e e e e e ae e p e ne e e nne e e e 312
ENCOUINGS ..ttt e e e e e e e R e nnn 313
Simple SUDSTIULION........coc e —————— 316
L0111 OSSR 319
Looking Up Values Within ODJECTScccccererernnereneserese s s sessssessanes 321
Distinguishing Types 0f SEHNGScccvorvrrrrererese s 321
Standard Format Specification..........cccvivnininnnsn 322
Example: Plain Text Table of CONENtScccccvvririinin e 324
Custom Format Specification ..o 326
Exciting Python EXtensions: FEEUPAISErccuvrrvsernsesmnesessss s ssssesessssesessesenns 327
FREUPAISEN ..ot e r e r e s s e e e s r e e ae s e e r e neenenanan 327
HOW 10 INSTAILL.....ceeee e 328
HOW 10 USE ... ss s s s nn s 328
TaKing K WIth YOU......coveiice e sn s 329
Chapter 8: Documentation........ccccuseemmrnsssssnnmmsssssnnmmssssssnessssssssessssssnsesssssnssessssnnnnss 331
Proper NAMING ... s s st e p e nne 332
[0 <] 1S 333
D011 11 0L ST 334
Describe What the FUNCLION DOES........cocoevererereeresesisese s 335
EXPIain the ArgUMENTS........covceeeeeer et 335
Don’t Forget the Return VAIUEcoovcrrecrecrecss e 336
Include Any Expected EXCEPLIONS........cccvivrinninin s 336
Documentation Qutside the COUEccucrrrererinrnssnse e 336
Installation and Configurationccuceeerrnnnnnnnes s 337

LT 0] T2 TSRS 337
Reference DOCUMENESccovveerererese s s s sns e nennis 337

TABLE OF CONTENTS

Documentation ULIlItIES........c.cucvrenmrnn s 338
FOrMatling ..c.cveee e 339
1 N 340
R3] 011 O 343

Exciting Python Extensions: NUMPY........cccvoirirse e res e s s s e sne e saenns 343
INSTAII NUMIPY ...ttt s s e e s a e e s a e s ne e s 344
L T 10 1S 344
Working With NUMPY AITAYS.....ccooevierierreererieressee e sessessee s ssessessse e ssessssssesaessesssssssssesassnes 346
SHAtiStICAl MEASUIESceceeecrerirce e 347

TaKing [EWIth YOU......cccovece it e e s s e e 347

Chapter 9: TeSting........ccccmrmssnnnnmmssssnnnmsssssnnsmsssssnnnsssssnnnnssssssnnnsssssnnnnsssssnnnnesssnnnnnss 349

Test-Driven DevelopmEeNt.........cco i e s 349

DOCTRSTS ...ueeeeeerere et r e e Re e e r e nnea 350
FOrmatting Code.......ooucerererncrrnesers s 350
Representing QULPUL.........cov i e 351
Integrating With Documentation............ccovvirnsnncsnes s 353
RUNNING TESTS ...ueivviirreerreesisesese e sr s s sa s e s e 354

The unitteSt MOdUIE ..o ——— 356
LT L0 RS 356
WHEING TESES 1.ueuririerreerrseser et b e s e e r e ne e e nne s 357
Other COMPANISONScoveerriirerreserresesrse e sr s e e sr s sr e s sr s sn e e b e nr s nnnna e nra s 363
Testing Strings and Other Sequence Content..........covceivcvnresnesnese s 363
TeSting EXCEPLIONS......coveireceree e 364
TESHNG IABNTILY ...veeeveeerrcseee e sr e rnre e 366
TEANNG DOWN....cvierreerrsesesre e s s s sr s e e p e e s e pe e nr e e nnennne e 367

Providing @ CUSIOM TESE ClaSSccccvrverreriererinserrerersesessesse s sessessessessssessessessessssessessessssessesaens 368
Changing Test BERAVIOLccuceviiirirere s s s sas e s sae s 368

Exciting Python EXtEnSioNns: PillOW..........ccueereriereriniernsessenesesessesesessssessessesssssssessessesssssssessens 369
How t0 INSTAIl PIIOW (PIL)c.veereerierererere s sesessessesessessesaesasessessessssessessesssssssessesasssssensesaes 369
Image Display: Determine File Size, Type, and Display I.........cccccovvvnvniriennnnseniennsensenenns 369
Image Processing: Crop a Portion of an IMage..........ccveevevrrerieriernsensensesesessessessessssessessenes 370

xii

TABLE OF CONTENTS

Image Processing: Changing Image Orientation.........c.ccocvvvnvrinnnncninic s 370
Image Processing: Filters ... s 371
TaKiNg HWIth YOU ..ot s 371
Chapter 10: Distributionccccninnmeemmmmmnmmmmmsssss s ————————— 373
(oL o SRS 373
GNU General PUDIIC LICENSEcccveeerenenerreseressesessesessesesessessssssessssessssssssssssssssessssssssssnsssanes 373
Affero General PUDIIC LICENSEc.covererenernesesesese e sesse s e s sessesesssssssssesensssssenens 375
GNU Lesser General PUDIC LICENSE........c.cuvrerrseresenesesesesssssssssessssesessssssssssssssesssssssssssssnnes 376
Berkeley Software Distribution LICENSEccvoveervnernsesesnesesesesessesess s sessssesenses 376
OtNEI LICENSES....cucereeerieereeeerse s ses e se s se s s s e s e e nns e 378

[T € T 1 T SO 378
SBIUD. DY et ——————————————————————————— 379
MANIFESTN 1.vovvitctcisscesesesese sttt 382
The Sdist COMMANG..........cccveierierreseree e s sr e e nrnne s 384
DiISTHDULION. ... —————————————— 386
Exciting Python Extensions: SECrets MOGUIEccvevererrerierenessersesessssessese e sessessessessssessessens 387
Random NUMDEIS........coi s 388
PasSWOrd GENErationcccccceevernnnnnses e 388
TaKing It WIth YOU.....cccoeiiiiics e 390
Chapter 11: Sheets: A CSV FramewWork........cccusseuresssssnnssssssssnssssssssnssssssssssssssssnnnss 391
Building a Declarative FrameWOrK........c.c.ccovermrenrnnrenesese s se s sessesenns 392
Introducing Declarative Programming...........cooeeerrenerenernsmsessssesssesessesesssessesesessesessssessens 393

To Build oF NOt 10 BUIlA? ... 394
Building the FramMEWOIK.........c.cvrermrenernesenesesese s sesesesse s s sesss e s e s sessssssssssssssssessssenns 396
Managing OPlioNS........ccveeerrnerrrresere s e re e 397
DefiniNg FIRlUS. ... s 401
Attaching @ Field 10 @ ClaSSccvveerererereserneseseses e sesse s e s ssssesessssessenens 403
Adding @ MELACIASSc.ceeerreerreererere e sr e s e nne s 405
Bringing L TOGEINET ..ot 409
Ordering FIEIAS.........ccouveeereserensesesese s s ne e s 410

xiii

TABLE OF CONTENTS

DeclarativeMeta._ prepare_ ()ccocvcvcrnnnnnnicsn s sssssssesnesnes 411

0] 10 o T (O 414

[0 10 T TS T 418

(0T 0T3 1 (=T 1 OO o | (O 419
ChooSiNg @n OPLION ..o s e e e s 421
Building @ FIield LIDIarycccovorcnininnsnenesn s sss e s st se s s sssssssessessessssessesnens 421
STHNGFIIU ... ————— 423
INTEGEICOIUMIN ... e e e s b e s 424
a0 U] 0 S 424
DECIMAICOIUMIN ... e 425
D2 00 1 426
GEttiNg BACK 10 CSV ... se s s s 431
ChecKing ArQUIMENLTSccooociereeriecresese e se e se e se e e s e sns e neens 433
POPUIALING VAIUESceeeecerceree e 436

L LT3R L L TR 439

L LT L TSR 444
TaKing [EWIth YOU ..o et s s st s st e e 448
1T - 449

Xiv

About the Authors

Dr. J. Burton Browning earned his doctorate from North Carolina State University.
He has conducted research in areas including distance learning, programming, and
instructional technology. As a lifelong learner and someone who has interests in topics
such as programming, photography, robotics, car restoration, woodworking, hunting,
reading, fishing, and archery, he is never at a loss for something to do. The
art and joy of serving as a professor suits his inquisitive nature. Dr. Browning’s
previous publications include works on Cross-Functional Learning Teams (CFLT), the
Utopian School (teacher-led school model), computer programming (several languages),
open-source software, healthcare statistics and data mining, CNC plasma cutter operation,
educational technology, biography, mobile learning, online teaching, and more.

By day, Marty Alchin works as a senior software engineer at Heroku, and
after that, he writes and codes for fun and community. His blog can be found at
http://martyalchin.comand he has profiles on many other services under the name
Gulopine. In particular, his code can be found on GitHub and his random thoughts
are on Twitter. He also accepts tips for his open source work at https://gittip.com/
gulopine.

http://martyalchin.com/
https://gittip.com/gulopine
https://gittip.com/gulopine

About the Technical Reviewer

Michael Thomas has worked in software development

for over 20 years as an individual contributor, team lead,
program manager, and vice president of engineering.
Michael has over 10 years of experience working with mobile
devices. His current focus is in the medical sector, using
mobile devices to accelerate information transfer between
patients and healthcare providers.

xvii

Acknowledgments

This third edition covers some exciting library features available in the Python 3
language. Try the samples and expand on your own projects with what you learn. Do not
be afraid to experiment and have fun!

J. Burton Browning

Iwouldn’t have even started this project if not for the endless encouragement from my
lovely wife, Angel. She’s been my sounding board, my task manager, my copyeditor, and
my own personal cheerleader. There’s no way I could do anything like this without her
help and support.

I'd also like to thank my technical reviewer, George, for everything he’s done to help
me out. He’s gone above and beyond the limits of his role, helping with everything from
code to grammar and even a good bit of style. After enjoying his help on Pro Django,
Iwouldn’t have even signed on for another book without him by my side.

Lastly, I never would’ve considered a book like this if not for the wonderful
community around Python. The willingness of Python programmers to open their minds
and their code is, I believe, unrivaled among our peers. It’s this spirit of openness that
encourages me every day, leading me to discover new things and push myself beyond
the limits of what I knew yesterday.

We learn by doing and by seeing what others have done. I hope that you'll take the
contents of this book and do more with it than what I've done. There’s no better reward
for all this hard work than to see better programmers writing better code.

Marty Alchin

Xix

Introduction

This third edition expands on Marty's original work. Found in each chapter of this third
edition are useful libraries that any Python programmer will find of value. Use what you
learn for your own projects and enjoyment!

J. Burton Browning

When I wrote my first book, Pro Django, I didn’t have much of an idea what my readers
would find interesting. I had gained a lot of information I thought would be useful for
others to learn, but I didn’t really know what would be the most valuable thing they’'d
take away. As it turned out, in nearly 300 pages, the most popular chapter in the book
barely mentioned Django at all. It was about Python.

The response was overwhelming. There was clearly a desire to learn more about
how to go from a simple Python application to a detailed framework like Django. It’s all
Python code, but it can be hard to understand based on even a reasonably thorough
understanding of the language. The tools and techniques involved require some extra
knowledge that you might not run into in general use.

This gave me a new goal with Pro Python: to take you from proficient to professional.
Being a true professional requires more experience than you can get from a book, but I
want to at least give you the tools you'll need. Combined with the rich philosophy of the
Python community, you'll find plenty of information to take your code to the next level.

Marty Alchin

Who This Book Is For

The goal is to bring intermediate programmers to a more advanced level; we wrote
this book with the expectation that you'll already be familiar with Python on some
basic level. You should be comfortable using the interactive interpreter, writing control
structures, and [using] a basic object-oriented approach.

That’s not a very difficult prerequisite. If you've tried your hand at writing a Python
application—even if you haven’t released it into the wild, or even finished it—you likely
have all the necessary knowledge to get started. The rest of the information you'll need is
contained in these pages.

xxi

CHAPTER 1

Principles and Philosophy

Over 350 years ago, the famous Japanese swordsman Miyamoto Musashi wrote The Book
of Five Rings about what he learned from fighting and winning over 60 duels between the
ages of 13 and 29. His book might be related to a Zen Buddhist martial arts instruction
book for sword fighting. In the text, which originally was a five-part letter written to

the students at the martial arts school he founded, Musashi outlines general thoughts,
ideals, and philosophical principles to lead his students to success.

If it seems strange to begin a programming book with a chapter about philosophy, that’s
actually why this chapter is so important. Similar to Musashi’s method, Python was created
to embody and encourage a certain set of ideals that have helped guide the decisions of its
maintainers and its community for nearly 20 years. Understanding these concepts will help
you to make the most out of what the language and its community have to offer.

Of course, we're not talking about Plato or Nietzsche here. Python deals with
programming problems, and its philosophies are designed to help build reliable,
maintainable solutions. Some of these philosophies are officially branded into the
Python landscape, whereas others are guidelines commonly accepted by Python
programmers, but all of them will help you to write code that is powerful, easy to
maintain, and understandable to other programmers.

The philosophies laid out in this chapter can be read from start to finish, but don’t
expect to commit them all to memory in one pass. The rest of this book will refer back to
this chapter by illustrating which concepts come into play in various situations. After all,
the real value of philosophy is in understanding how to apply it when it matters most.

As for practical convention, throughout the book you will see icons for a command
prompt, a script, and scissors. When you see a command prompt icon, the code is
shown as if you were going to try it (and you should) from a command prompt. If you
see a script icon, try the code as a Python script instead. Finally, scissors show only a
code snippet that would need additional snippets to run. The only other conventions
are that you have Python 3.x installed and have at least some computer programming
background.

© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_1

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

The Zen of Python

Perhaps the best-known collection of Python philosophy was written by Tim Peters,
longtime contributor to the language and its newsgroup, comp. lang.python.! This Zen
of Python condenses some of the most common philosophical concerns into a brief list
that has been recorded as both its own Python Enhancement Proposal (PEP) and within
Python itself. Something of an Easter egg, Python includes a module called this.

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one -- and preferably only one -- obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

'See the newsgroup at http://propython.com/comp-lang-python.
2

http://propython.com/comp-lang-python

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

This list was primarily intended as a humorous accounting of Python philosophy,
but over the years, numerous Python applications have used these guidelines to greatly
improve the quality, readability, and maintainability of their code. Just listing the Zen
of Python is of little value, however, so the following sections will explain each idiom in
more detail.

Beautiful Is Better Than Ugly

Perhaps it’s fitting that this first notion is arguably the most subjective of the whole
bunch. After all, beauty is in the eye of the beholder, a fact that has been discussed for
centuries. It serves as a blatant reminder that philosophy is far from absolute. Still,
having something like this in writing provides a goal to strive for, which is the ultimate
purpose of all these ideals.

One obvious application of this philosophy is in Python’s own language structure,
which minimizes the use of punctuation, instead preferring English words where
appropriate. Another advantage is Python’s focus on keyword arguments, which help
clarify function calls that would otherwise be difficult to understand. Consider the
following two possible ways of writing the same code, and consider which one looks
more beautiful:

Oé

is_valid

form != null && form.is valid(true)

is valid = form is not None and form.is valid(include hidden fields=True)

The second example reads a bit more like natural English, and explicitly including
the name of the argument gives greater insight into its purpose. In addition to language
concerns, coding style can be influenced by similar notions of beauty. The name
is valid, for example, asks a simple question, which the method can then be expected
to answer with its return value. A name such as validate would have been ambiguous
because it would be an accurate name even if no value were returned at all.

It’s dangerous, however, to rely too heavily on beauty as a criterion for a design
decision. If other ideals have been considered and you're still left with two workable
options, certainly consider factoring beauty into the equation, but do make sure that
other facets are taken into account first. You'll likely find a good choice using some of the
other criteria long before reaching this point.

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Explicit Is Better Than Implicit

Although this notion may seem easier to interpret, it’s actually one of the trickier
guidelines to follow. On the surface, it seems simple enough: don’t do anything the
programmer didn’t explicitly command. Beyond just Python itself, frameworks and
libraries have a similar responsibility because their code will be accessed by other
programmers, whose goals will not always be known in advance.

Unfortunately, truly explicit code must account for every nuance of a program’s
execution, from memory management to display routines. Some programming
languages do expect that level of detail from their programmers, but Python doesn’t.

In order to make the programmer’s job easier and allow you to focus on the problem at
hand, there need to be some trade-offs.

In general, Python asks you to declare your intentions explicitly rather than issue
every command necessary to make that intention a reality. For example, when assigning
avalue to a variable, you don’t need to worry about setting aside the necessary memory,
assigning a pointer to the value, and cleaning up the memory once it’s no longer in use.
Memory management is a necessary part of variable assignment, so Python takes care of
it behind the scenes. Assigning the value is enough of an explicit declaration of intent to
justify the implicit behavior.

By contrast, regular expressions in the Perl programming language automatically
assign values to special variables any time a match is found. Someone unfamiliar with
the way Perl handles that situation wouldn’t understand a code snippet that relies on
it because variables would seem to come from thin air, with no assignments related to
them. Python programmers try to avoid this type of implicit behavior in favor of more
readable code.

Because different applications will have different ways of declaring intentions, no
single generic explanation will apply to all cases. Instead, this guideline will come up
quite frequently throughout the book, clarifying how it would be applied to various

situations.

7

1

tax = .07 #make a variable named tax that is floating point
print (id(tax)) #shows identity number of tax
print("Tax now changing value and identity number™)

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

tax = .08 ficreate a new variable, in a different location in memory
and mask the first one we created
print (id(tax)) # shows identity of tax
print("Now we switch tax back...")
tax = .07 #change tax back to .07 (mask the second one and reuse first
print (id(tax)) #now we see the original identity of tax

Simple Is Better Than Complex

This is a considerably more concrete guideline, with implications primarily in the
design of interfaces to frameworks and libraries. The goal here is to keep the interface as
straightforward as possible, leveraging a programmer’s knowledge of existing interfaces
as much as possible. For example, a caching framework could use the same interface as
standard dictionaries rather than inventing a whole new set of method calls.

Of course, there are many other applications of this rule, such as taking advantage
of the fact that most expressions can evaluate to true or false without explicit tests. For
example, the following two lines of code are functionally identical for strings, but notice
the difference in complexity between them:

Oé

if value is not None and value !=

if value:

As you can see, the second option is much simpler to read and understand. All of
the situations covered in the first example will evaluate to false anyway, so the simpler
test is just as effective. It also has two other benefits: it runs faster, having fewer tests to
perform, and it also works in more cases, because individual objects can define their
own method of determining whether they should evaluate to true or false.

It may seem like this is something of a convoluted example, but it’s just the type of
thing that comes up quite frequently. By relying on simpler interfaces, you can often
take advantage of optimizations and increased flexibility while producing more
readable code.

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Complex Is Better Than Complicated

Sometimes, however, a certain level of complexity is required in order to get the

job done. Database adapters, for example, don’t have the luxury of using a simple
dictionary-style interface but instead require an extensive set of objects and methods to
cover all of their features. The important thing to remember in those situations is that
complexity doesn’t necessarily require it to be complicated.

The tricky bit with this one, obviously, is distinguishing between the two. Dictionary
definitions of each term often reference the other, considerably blurring the line between
the two. For the sake of this guideline, most situations tend to take the following view of
the two terms:

e Complex: Made up of many interconnected parts
e Complicated: So complex as to be difficult to understand

So in the face of an interface that requires a large number of things to keep track of,
it’s even more important to retain as much simplicity as possible. This can take the form
of consolidating methods onto a smaller number of objects, perhaps grouping objects
into more logical arrangements or even simply making sure to use names that make
sense without having to dig into the code to understand them.

Flat Is Better Than Nested

This guideline might not seem to make sense at first, but it's about how structures are
laid out. The structures in question could be objects and their attributes, packages

and their included modules, or even code blocks within a function. The goal is to keep
things as relationships of peers as much possible, rather than parents and children.
For example, take the following code snippet:

Oé

if x > 0:
if y > 100:
raise ValueError("Value for y is too large.")
else:
return y

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

else:
if x ==
return False
else:
raise ValueError("Value for x cannot be negative.")

In this example, it’s fairly difficult to follow what’s really going on because the nested
nature of the code blocks requires you to keep track of multiple levels of conditions.
Consider the following alternative approach to writing the same code, flattening it out:

7

1

x=1
y=399 # change to 39 and run a second time

def checker(x,y):
if x > 0 and y > 100:
raise ValueError("Value for y is too large.")
elif x > o0:
return y
elif x ==
return False
else:
raise ValueError("Value for x cannot be negative.")

print(checker(x,y))

Put in a function, and flattened out, you can see how much easier it is to follow the
logic in the second example because all of the conditions are at the same level. It even
saves two lines of code by avoiding the extraneous else blocks along the way. While
this idea is common to programming in general, this is actually the main reason for
the existence of the elif keyword; Python’s use of indentation means that complex if
blocks can otherwise quickly get out of hand. With the elif keyword, there is no switch
or select case structure in Python as in C++ or VB.NET. To handle the issue of needing a
multiple selection structure, Python uses a series of if, elif, elif, else as the situation
requires. There have been PEPs suggesting the inclusion of a switch-type structure;

however, none have been successful.

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Caution What might not be as obvious is that the refactoring of this example
ends up testing x > 0 twice, where it was only performed once previously. If that
test had been an expensive operation, such as a database query, refactoring it in
this way would reduce the performance of the program, so it wouldn’t be worth it.
This is covered in detail in a later guideline, “Practicality Beats Purity.”

In the case of package layouts, flat structures can often allow a single import to make
the entire package available under a single namespace. Otherwise, the programmer
would need to know the full structure in order to find the particular class or function
required. Some packages are so complex that a nested structure will help reduce clutter
on each individual namespace, but it’s best to start flat and nest only when problems

arise.

Sparse Is Better Than Dense

This principle largely pertains to the visual appearance of Python source code, favoring
the use of whitespace to differentiate among blocks of code. The goal is to keep highly
related snippets together while separating them from subsequent or unrelated code,
rather than simply having everything run together in an effort to save a few bytes on
disk. Those familiar with JAVA, C++, and other languages that use { } to denote statement
blocks also know that as long as statement blocks lie within the braces, whitespace or
indentation has only readability value and has no effect on code execution.

In the real world, there are plenty of specific concerns to address, such as how to
separate module-level classes or deal with one-line if blocks. Although no single set of
rules will be appropriate for all projects, PEP 8% does specify many aspects of source code
layout that help you adhere to this principle. It provides a number of hints on how to
format import statements, classes, functions, and even many types of expressions.

It’s interesting to note that PEP 8 includes a number of rules about expressions
in particular, which specifically encourage avoiding extra spaces. Take the following
examples, which are straight from PEP 8:

See “PEP 8—Style Guide for Python Code,” http://propython.com/pep-8.
8

http://propython.com/pep-8

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

Yes: if x == 4: print x, y; x, y =y, X
No: if x==4 :printx,y; x,y=y, X

Yes: spam(1)
No: spam (1)

Yes: dict['key'] = list[index]
No: dict ['key'] = list [index]

The key to this apparent discrepancy is that whitespace is a valuable resource and
should be distributed responsibly. After all, if everything tries to stand out in any one
particular way, nothing really does stand out at all. If you use whitespace to separate
even highly related bits of code like the preceding expressions, truly unrelated code isn’t
any different from the rest.

That'’s perhaps the most important part of this principle and the key to applying it to
other aspects of code design. When writing libraries or frameworks, it’s generally better
to define a small set of unique types of objects and interfaces that can be reused across
the application, maintaining similarity where appropriate and differentiating the rest.

Readability Counts

Finally, we have a principle everybody in the Python world can get behind, but that’s
mostly because it’s one of the most vague in the entire collection. In a way, it sums up the
whole of Python philosophy in one deft stroke, but it also leaves so much undefined that
it'’s worth examining it a bit further.

Readability covers a wide range of issues, such as the names of modules, classes,
functions, and variables. It includes the style of individual blocks of code and the whitespace
between them. It can even pertain to the separation of responsibilities among multiple
functions or classes if that separation is done so that it's more readable to the human eye.

That'’s the real point here: code gets read not only by computers, but also by humans
who have to maintain it. Those humans have to read existing code far more often than
they have to write new code, and it’s often code that was written by someone else.
Readability is all about actively promoting human understanding of code.

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Development is much easier in the long run when everyone involved can simply
open up a file and easily understand what’s going on in it. This seems like a given in
organizations with high turnover, where new programmers must regularly read the code
of their predecessors, but it’s true even for those who have to read their own code weeks,
months, or even years after it was written. Once we lose our original train of thought, all
we have to remind us is the code itself, so it’s valuable to take the extra time to make it
easy to read. Another good practice is to add comments and notes in the code. It doesn’t
hurt and certainly can help even the original programmer when sufficient time has
passed such that you can’t remember what you tried or what your intent was.

The best part is how little extra time it often takes. It can be as simple as adding a blank
line between two functions or naming variables with nouns and functions with verbs. It’s
really more of a frame of mind than a set of rules, however. A focus on readability requires
you to always look at your code as a human being would, rather than only as a computer
would. Remember the Golden Rule: do for others what you'd like them to do for you.
Readability is random acts of kindness sprinkled throughout your code.

Special Cases Aren’t Special Enough to Break the Rules

Just as “readability counts” is a banner phrase for how we should approach our code

at all times, this principle is about the conviction with which we must pursue it. It’s all
well and good to get it right most of the time, but all it takes is one ugly chunk of code to
undermine all that hard work.

What's perhaps most interesting about this rule, though, is that it doesn’t pertain
just to readability or any other single aspect of code. It’s really just about the conviction
to stand behind the decisions you've made, regardless of what those are. If you're
committed to backward compatibility, internationalization, readability, or anything else,
don’t break those promises just because a new feature comes along and makes some
things a bit easier.

Practicality Beats Purity

And here’s where things get tricky. The previous principle encourages you to always do
the right thing, regardless of how exceptional one situation might be, where this one
seems to allow exceptions whenever the right thing gets difficult. The reality is a bit more
complicated, however, and merits some discussion.

10

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Up to this point, it seemed simple enough at a glance: the fastest, most efficient code
might not always be the most readable, so you may have to accept subpar performance
to gain code that’s easier to maintain. This is certainly true in many cases, and much of
Python’s standard library is less than ideal in terms of raw performance, instead opting
for pure Python implementations that are more readable and more portable to other
environments, such as Jython or IronPython. On a larger scale, however, the problem
goes deeper than that.

When designing a system at any level, it’s easy to get into a head-down mode, where
you focus exclusively on the problem at hand and how best to solve it. This might involve
algorithms, optimizations, interface schemes, or even refactorings, but it typically boils
down to working on one thing so hard that you don’t look at the bigger picture for a
while. In that mode, programmers commonly do what seems best within the current
context, but when backing out a bit for a better look, those decisions don’t match up with
the rest of the application.

It’s not always easy to know which way to go at this point. Do you try to optimize the
rest of the application to match that perfect routine you just wrote? Do you rewrite the
otherwise perfect function in hopes of gaining a more cohesive whole? Or do you just
leave the inconsistency alone, hoping it doesn’t trip anybody up? The answer, as usual,
depends on the situation, but one of those options will often seem more practical in
context than the others.

Typically, it’s preferable to maintain greater overall consistency at the expense of a
few small areas that may be less than ideal. Again, most of Python’s standard library uses
this approach, but there are exceptions. Packages that require a lot of computational
power or get used in applications that need to avoid bottlenecks will often be written in C
to improve performance, at the cost of maintainability. These packages then need to be
ported over to other environments and tested more rigorously on different systems, but
the speed gained serves a more practical purpose than a purer Python implementation
would allow.

Errors Should Never Pass Silently

Python supports a robust error-handling system, with dozens of built-in exceptions
provided out of the box, but there’s often doubt about when those exceptions should be
used and when new ones are necessary. The guidance provided by this line of the Zen
of Python is quite simple, but as with so many others, there’s much more beneath the
surface.

11

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

The first task is to clarify the definitions of errors and exceptions. Even though these
words, like so many others in the world of computing, are often overloaded with additional
meaning, there’s definite value in looking at them as they’re used in general language.
Consider the following definitions, as found in the Merriam-Webster Dictionary:

e Anactor condition of ignorant or imprudent deviation from a code of
behavior

e A case to which a rule does not apply

The terms have been left out here to help illustrate just how similar the two
definitions can be. In real life, the biggest observed difference between the two terms
is the severity of the problems caused by deviations from the norm. Exceptions are
typically considered less disruptive and thus more acceptable, but both exceptions
and errors amount to the same thing: a violation of some kind of expectation. For the
purposes of this discussion, the term “exception” will be used to refer to any such
departure from the norm.

Note One important thing to realize is that not all exceptions are errors. Some
are used to enhance code flow options, such as using StopIteration, which is
documented in Chapter 5. In code flow usage, exceptions provide a way to indicate
what happened inside a function, even though that indication has no relationship to
its return value.

This interpretation makes it impossible to describe exceptions on their own; they
must be placed in the context of an expectation that can be violated. Every time we write
a piece of code, we make a promise that it will work in a specific way. Exceptions break
that promise, so we need to understand what types of promises we make and how they
can be broken. Take the following simple Python function and look for any promises that
can be broken:

Oé

def validate(data):
if data['username'].startswith(' '):
raise ValueError("Username must not begin with an underscore.")

12

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

The obvious promise here is that of the validate() method: if the incoming data
is valid, the function will return silently. Violations of that rule, such as a username
beginning with an underscore, are explicitly treated as an exception, neatly illustrating
this practice of not allowing errors to pass silently. Raising an exception draws attention
to the situation and provides enough information for the code that called this function to
understand what happened.

The tricky bit here is to see the other exceptions that may get raised. For example,
if the data dictionary doesn’t contain a username key, as the function expects, Python
will raise a KeyError. If that key does exist, but its value isn’t a string, Python will raise
an AttributeError when trying to access the startswith() method. If dataisn’ta
dictionary at all, Python would raise a TypeError.

Most of those assumptions are true requirements for proper operation, but they
don’t all have to be. Let’s assume this validation function could be called from a number
of contexts, some of which may not have even asked for a username. In those cases, a
missing username isn’t actually an exception at all but just another flow that needs to be
accounted for.

With that new requirement in mind, validate() can be slightly altered to no longer
rely on the presence of a username key to work properly. All the other assumptions
should stay intact, however, and should raise their respective exceptions when violated.
Here’s how it might look after this change.

Oé

def validate(data):
if 'username' in data and data['username'].startswith(' '):
raise ValueError("Username must not begin with an underscore.")

And just like that, one assumption has been removed and the function can now run
just fine without a username supplied in the data dictionary. Alternately, you could
now check for a missing username explicitly and raise a more specific exception, if truly
required. How the remaining exceptions are handled depends on the needs of the code
that calls validate(), and there’s a complementary principle to deal with that situation.

13

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Unless Explicitly Silenced

Like any other language that supports exceptions, Python allows the code that triggers
exceptions to trap them and handle them in different ways. In the preceding validation
example, it’s likely that the validation errors should be shown to the user in a nicer way
than a full traceback. Consider a small command-line program that accepts a username
as an argument and validates it against the rules defined previously:

7

1

import sys
def validate(data):
if 'username' in data and data['username'].startswith(' '):
raise ValueError("Username must not begin with an underscore.")
if name_ ==" main_"':
username = sys.argv[1]
try:
validate({ 'username': username})
except (TypeError, ValueError) as e:
print (e)
#out of range since username is empty and there is no
#second [1] position

The syntax used to catch the exception and store it as the variable e in this example
was first made available in Python 3.0. In this example, all those exceptions that might be
raised will simply get caught by this code, and the message alone will be displayed to the
user, not the full traceback. This form of error handling allows for complex code to use
exceptions to indicate violated expectations without taking down the whole program.

EXPLICIT IS BETTER THAN IMPLICIT

In a nutshell, this error-handling system is a simple example of the previous rule favoring
explicit declarations over implicit behavior. The default behavior is as obvious as possible,
given that exceptions always propagate upward to higher levels of code, but can be overridden
using an explicit syntax.

14

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

In the Face of Ambiguity, Refuse the Temptation to Guess

Sometimes, when using or implementing interfaces between pieces of code written by
different people, certain aspects may not always be clear. For example, one common
practice is to pass around byte strings without any information about what encoding they
rely on. This means that if any code needs to convert those strings to Unicode or ensure
that they use a specific encoding, there’s not enough information available to do so.

It’s tempting to play the odds in this situation, blindly picking what seems to be the
most common encoding. Surely it would handle most cases, and that should be enough
for any real-world application. Alas, no. Encoding problems raise exceptions in Python,
so those could either take down the application or they could be caught and ignored,
which could inadvertently cause other parts of the application to think strings were
properly converted when they actually weren't.

Worse yet, your application now relies on a guess. It’s an educated guess, of course,
perhaps with the odds on your side, but real life has a nasty habit of flying in the face of
probability. You might well find that what you assumed to be most common is in fact less
likely when given real data from real people. Not only could incorrect encodings cause
problems with your application, those problems could occur far more frequently than
you realize.

A better approach would be to only accept Unicode strings, which can then
be written to byte strings using whatever encoding your application chooses. That
removes all ambiguity, so your code doesn’t have to guess anymore. Of course, if your
application doesn’t need to deal with Unicode and can simply pass byte strings through
unconverted, it should accept byte strings only, rather than you having to guess an
encoding to use in order to produce byte strings.

There Should Be One—and Preferably Only One—Obvious
Way to Do It

Although similar to the previous principle, this one is generally applied only to
development of libraries and frameworks. When designing a module, class, or function,
it may be tempting to implement a number of entry points, each accounting for a slightly
different scenario. In the byte string example from the previous section, for example,

you might consider having one function to handle byte strings and another to handle
Unicode strings.

15

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

The problem with that approach is that every interface adds a burden on developers
who have to use it. Not only are there more things to remember; it may not always be
clear which function to use even when all the options are known. Choosing the right
option often comes down to little more than naming, which can sometimes be a guess.

In the previous example the simple solution is to accept only Unicode strings,
which neatly avoids other problems, but for this principle, the recommendation is
broader. Stick to simpler, more common interfaces where you can, such as the protocols
illustrated in Chapter 5, adding on only when you have a truly different task to perform.

You might have noticed that Python seems to violate this rule sometimes, most
notably in its dictionary implementation. The preferred way to access a value is to use
the bracket syntax, my dict["key'], but dictionaries also have a get() method, which
seems to do the exact same thing. Conflicts like this come up fairly frequently when
dealing with such an extensive set of principles, but there are often good reasons if
you're willing to consider them.

In the dictionary case, it comes back to the notion of raising an exception when a
rule is violated. When thinking about violations of a rule, we have to examine the rules
implied by these two available access methods. The bracket syntax follows a very basic
rule: return the value referenced by the key provided. It’s really that simple. Anything
that gets in the way of that, such as an invalid key, a missing value, or some additional
behavior provided by an overridden protocol, results in an exception being raised.

The get () method, by contrast, follows a more complicated set of rules. It checks to
see whether the provided key is present in the dictionary; if it is, the associated value is
returned. If the key isn’t in the dictionary, an alternate value is returned instead. By default
the alternate value is None, but that can be overridden by providing a second argument.

By laying out the rules each technique follows, it becomes clearer why there are two
different options. Bracket syntax is the common use case, failing loudly in all but the
most optimistic situations, while get () offers more flexibility for those situations that
need it. One refuses to allow errors to pass silently, while the other explicitly silences
them. Essentially, providing two options allows dictionaries to satisfy both principles.

More to the point, though, is that the philosophy states there should only be one obvious
way to do it. Even in the dictionary example, which has two ways to get values, only one—the
bracket syntax—is obvious. The get () method is available, but it isn’t very well known, and
it certainly isn't promoted as the primary interface for working with dictionaries. It’s okay to
provide multiple ways to do something as long as they’re for sufficiently different use cases,
and the most common use case is presented as the obvious choice.

16

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Although That Way May Not Be Obvious at First, Unless
You’re Dutch

This is a nod to the homeland of Python’s creator and “Benevolent Dictator for Life,” as
he is known, Guido van Rossum. More importantly, however, it’s an acknowledgment
that not everyone sees things the same way. What seems obvious to one person might
seem completely foreign to somebody else, and though there are any number of reasons
for those types of differences, none of them are wrong. Different people are different, and
that’s all there is to it.

The easiest way to overcome these differences is to properly document your work so
that even if the code isn’t obvious, your documentation can point the way. You might still
need to answer questions beyond the documentation, so it’s often useful to have a more
direct line of communication with users, such as a mailing list. The ultimate goal is to
give users an easy way to know how you intend them to use your code. Use the # sign for

«wm wmm

single line comments or triple quotes for block comments to the advantage of you

and your users.

7

1

print('Block comments"')
This

is

3"
block
comment
print('Single line comments too!")

bye for now!

Now Is Better Than Never

We've all heard the saying “Don’t put off til tomorrow what you can do today.” That’s
avalid lesson for all of us, but it happens to be especially true in programming. By the
time we get around to something we've set aside, we might have long since forgotten the
information we need to do it right. The best time to do it is when it’s on our mind.

17

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Okay, so that part was obvious, but as Python programmers, this antiprocrastination
clause has special meaning for us. Python as a language is designed in large part to help
you spend your time solving real problems rather than fighting with the language just to
get the program to work.

This focus lends itself well to iterative development, allowing you to quickly
rough out a basic implementation and then refine it over time. In essence, it’s another
application of this principle because it allows you to get working quickly rather than
trying to plan everything out in advance, possibly never actually writing any code.

Although Never Is Often Better Than Right Now

Even iterative development takes time. It's valuable to get started quickly, but it can be
very dangerous to try to finish immediately. Taking the time to refine and clarify an idea
is essential to getting it right, and failing to do so usually produces code that could be
described as—at best—mediocre. Users and other developers will generally be better off
not having your work at all than having something substandard.

We have no way of knowing how many otherwise useful projects never see the
light of day because of this notion. Whether in that case or in the case of a poorly made
release, the result is essentially the same: people looking for a solution to the same
problem you tried to tackle won't have a viable option to use. The only way to really help
anyone is to take the time required to get it right.

If the Implementation Is Hard to Explain, It’s a Bad Idea

This is something of a combination of two other rules already mentioned: simple is
better than complex, and complex is better than complicated. The interesting thing
about the combination here is that it provides a way to identify when you've crossed
the line from simple to complex or from complex to complicated. When in doubt, run
it by someone else and see how much effort it takes to get them on board with your
implementation.

This also reinforces the importance of communication to good development. In
open source development, like that of Python, communication is an obvious part of the
process, but it’s not limited to publicly contributed projects. Any development team can
provide greater value if its members talk to each other, bounce ideas around, and help
refine implementations. Single-person development teams can sometimes prosper, but
they’re missing out on crucial editing that can only be provided by others.

18

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

If the Implementation Is Easy to Explain, It May Be a
Good Idea

At a glance, this seems to be just an obvious extension of the previous principle, simply
swapping “hard” and “bad” for “easy” and “good.” Closer examination reveals that
adjectives aren’t the only things that changed. A verb changes its form as well: “is”
became “may be.” That may seem like a subtle, inconsequential change, but it’s actually
quite important.

Although Python highly values simplicity, many very bad ideas are easy to explain.
Being able to communicate your ideas to your peers is valuable, but only as a first step
that leads to real discussion. The best thing about peer review is the ability for different
points of view to clarify and refine ideas, turning something good into something great.

Of course, that’s not to discount the abilities of individual programmers. One person
can do amazing things all alone, there’s no doubt about it. But most useful projects
involve other people at some point or another, even if only your users. Once those other
people are in the know, even if they don’t have access to your code, be prepared to
accept their feedback and criticism. Even though you may think your ideas are great,
other perspectives often bring new insight into old problems, which only serves to make

it a better product overall.

Namespaces Are One Honking Great Idea: Let’s Do
More of Those!

In Python, namespaces are used in a variety of ways—from package and module
hierarchies to object attributes—to allow programmers to choose the names of functions
and variables without fear of conflicting with the choices of others. Namespaces avoid
collisions without requiring every name to include some kind of unique prefix, which
would otherwise be necessary.

For the most part, you can take advantage of Python’s namespace handling without
really doing anything special. If you add attributes or methods to an object, Python will
take care of the namespace for that. If you add functions or classes to a module, or a
module to a package, Python takes care of it. But there are a few decisions you can make
to explicitly take advantage of better namespaces.

19

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

One common example is wrapping module-level functions into classes. This creates
a bit of a hierarchy, allowing similarly named functions to coexist peacefully. It also has
the benefit of allowing those classes to be customized using arguments, which can then
affect the behavior of the individual methods. Otherwise, your code might have to rely
on module-level settings that are modified by module-level functions, restricting how
flexible it can be.

Not all sets of functions need to be wrapped up into classes, however. Remember
that flat is better than nested, so as long as there are no conflicts or confusion, it’s usually
best to leave those at the module level. Similarly, if you don’t have a number of modules
with similar functionality and overlapping names, there’s little point in splitting them up
into a package.

Don’t Repeat Yourself

Designing frameworks can be a very complicated process; programmers are often
expected to specify a variety of different types of information. Sometimes, however,
the same information might need to be supplied to multiple different parts of the
framework. How often this happens depends on the nature of the framework involved,
but having to provide the same information multiple times is always a burden and
should be avoided wherever possible.

Essentially, the goal is to ask your users to provide configurations and other
information just once and then use Python’s introspection tools, described in detail in
later chapters, to extract that information and reuse it in the other areas that need it.
Once that information has been provided, the programmer’s intentions are explicitly
clear, so there’s still no guesswork involved at all.

It’s also important to note that this isn’t limited to your own application. If your
code relies on the Django web framework, for instance, you have access to all the
configuration information required to work with Django, which is often quite extensive.
You might only need to ask your users to point out which part of their code to use and
access its structure to get anything else you need.

In addition to configuration details, code can be copied from one function to another
if they share some common behaviors. In accordance with this principle, it’s often better
to move that common code out into a separate utility function. Then, each function that
needs that code can defer to the utility function, paving the way for future functions that
need that same behavior.

20

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

This type of code factoring showcases some of the more pragmatic reasons to avoid
repetition. The obvious advantage to reusable code is that it reduces the number of
places where bugs can occur. Better yet, when you find a bug you can fix it in one place,
rather than worry about finding all the places that same bug might crop up. Perhaps
best of all, having the code isolated in a separate function makes it much easier to test
programmatically, to help reduce the likelihood of bugs occurring in the first place.
Testing is covered in detail in Chapter 9.

Don’t Repeat Yourself (DRY) is also one of the most commonly abbreviated
principles, given that its initials spell a word so clearly. Interestingly, though, it can
actually be used in a few different ways, depending on context.

e An adjective: “Wow, this feels very DRY!”
o A noun: “This code violates DRY”

e Averb: “Let’s DRY this up a bit, shall we?”

Loose Coupling

Larger libraries and frameworks often have to split their code into separate subsystems
with different responsibilities. This is typically advantageous from a maintenance
perspective, with each section containing a substantially different aspect of the code.
The concern here is about how much each section has to know about the others,
because it can negatively affect the maintainability of the code.

It’s not about having each subsystem completely ignorant of the others, nor is it to
avoid them ever interacting at all. Any application written to be that separated wouldn’t
be able to actually do anything of interest. Code that doesn’t talk to other code just can’t
be useful. Instead, it’s more about how much each subsystem relies on how the other
subsystems work.

In a way, you can look at each subsystem as its own complete system, with its own
interface to implement. Each subsystem can then call into the other ones, supplying only
the information pertinent to the function being called and getting the result, all without
relying on what the other subsystem does inside that function.

There are a few good reasons for this behavior, the most obvious being that it helps make
the code easier to maintain. If each subsystem only needs to know how its own functions
work, changes to those functions should be localized enough to not cause problems with
other subsystems that access them. You're able to maintain a finite collection of publicly
reliable interfaces while allowing everything else to change as necessary over time.

21

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Another potential advantage of loose coupling is how much easier it is to split
off a subsystem into its own full application, which can then be included in other
applications later on. Better yet, applications created like this can often be released to the
development community at large, allowing others to utilize your work or even expand on
it if you choose to accept patches from outside sources.

The Samurai Principle

As I stated in the opening to this chapter, the samurai warriors of ancient Japan were
known for following the code of Bushido, which governed most of their actions in
wartime. One particularly well-known aspect of Bushido was that warriors should return
from battle victorious or not at all. The parallel in programming, as may be indicated

by the keyword return, is the behavior of functions in the event that any exceptions are
encountered along the way.

It’s not a unique concept among those listed in this chapter, but rather an extension
of the notion that errors should never pass silently and should avoid ambiguity. If
something goes wrong while executing a function that ordinarily returns a value, any
return value could be misconstrued as a successful call, rather than identifying that an
error occurred. The exact nature of what occurred is very ambiguous and may produce
errors down the road, in code that’s unrelated to what really went wrong.

Of course, functions that don’t return anything interesting don’t have a problem with
ambiguity because nothing is relying on the return value. Rather than allowing those
functions to return without raising exceptions, they're actually the ones that are most in
need of exceptions. After all, if there’s no code that can validate the return value, there’s
no way of knowing that anything went wrong.

The Pareto Principle

In 1906, Italian economist Vilfredo Pareto noted that 80 percent of the wealth in Italy
was held by just 20 percent of its citizens. Since then this idea has been put to the test

in a number of fields beyond economics, and similar patterns have been found. The
exact percentages may vary, but the general observation has emerged over time: the vast
majority of effects in many systems are a result of just a small number of the causes.

22

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

In programming, this principle can manifest itself in a number of different ways.
One of the more common is with regard to early optimization. Donald Knuth, the
noted computer scientist, once said that premature optimization is the root of all evil,
and many people take that to mean that optimization should be avoided until all other
aspects of the code have been finished.

Knuth was referring to a focus solely on performance too early in the process. It’s
useless to try to tweak every ounce of speed out of a program until you've verified that it
even does what it’s supposed to. The Pareto principle teaches us that a little bit of work at
the outset can have a large impact on performance.

Striking that balance can be difficult, but there are a few easy things that can be done
while designing a program, which can handle the bulk of the performance problems
with little effort. Some such techniques are listed throughout the remainder of this book,
under sidebars labeled Optimization.

Another application of the Pareto principle involves prioritization of features in a
complex application or framework. Rather than trying to build everything all at once,
it’s often better to start with the minority of features that will provide the most benefit to
your users. Doing so allows you to get started on the core focus of the application and get
it out to the people who need to use it, while you can refine additional features based on
feedback.

The Robustness Principle

During early development of the Internet, it was evident that many of the protocols
being designed would have to be implemented by countless different programs and
that they’d all have to work together in order to be productive. Getting the specifications
right was important, but getting people to implement them interoperably was even more
important.

In 1980, the Transmission Control Protocol (TCP) was updated with RFC 761, which
included what has become one of the most significant guidelines in protocol design:
be conservative in what you do; be liberal in what you accept from others. It was called
“a general principle of robustness,” but it’s also been referred to as Postel’s law, after its
author, Jon Postel.

3See “title,” http://propython.com/rfc-761.
23

http://propython.com/rfc-761

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

It’s easy to see how this principle would be useful when guiding the implementations
of protocols designed for the Internet. Essentially, programs that follow this principle
will be able to work much more reliably with programs that don’t. By sticking to the rules
when generating output, that output is more likely to be understood by software that
doesn’t necessarily follow the specification completely. Likewise, if you allow for some
variations in the incoming data, incorrect implementations can still send you data you
can understand.

Moving beyond protocol design, an obvious application of this principle is in
functions. If you can be a bit liberal in what values you accept as arguments, you can
accommodate usage alongside other code that provides different types of values. A
common example is a function that accepts floating point numbers, which can work just
as well when given an integer or a decimal because they can both be converted to floats.

The return value is also important to the integration of a function with the code
that calls it. One common way this comes into play is when a function can’t do what it’s
supposed to and thus can’t produce a useful return value. Some programmers will opt to
return None in these cases, but then it’s up to the code that called the function to identify
that and handle it separately. The samurai principle recommends that in these cases, the
code should raise an exception rather than return an unusable value. Because Python
returns None by default, if no other value was returned, it’s important to consider the
return value explicitly.

It's always useful, though, to try to find some return value that would still satisfy
requirements. For example, for a function that’s designed to find all instances of a
particular word within a passage of text, what happens when the given word can’t
be found at all? One option is to return None; another is to raise some WordNotFound
exception.

If the function is supposed to return all instances, however, it should already be
returning a list or an iterator, so finding no words presents an easy solution: return an
empty list or an iterator that produces nothing. The key here is that the calling code can
always expect a certain type of value, and as long as the function follows the robustness
principle, everything will work just fine.

If you're unsure which approach would be best, you can provide two different
methods, each with a different set of intentions. In Chapter 5, I will explain how
dictionaries can support both get() and _getitem () methods, each reacting
differently when a specified key doesn’t exist.

24

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

In addition to code interaction, robustness also applies when dealing with the
people who use the software. If you're writing a program that accepts input from human
beings, whether it is text- or mouse-based, it’s always helpful to be lenient with what
you're given. You can allow command-line arguments to be specified out of order, make
buttons bigger, allow incoming files to be slightly malformed, or anything else that helps
people use the software without sacrificing being explicit.

Backward Compatibility

Programming is iterative in nature, and nowhere is that more noticeable than when you
distribute your code for other people to use in their own projects. Each new version not
only comes with new features but also the risk that existing features will change in some
way that will break code that relies on its behavior. By committing yourself to backward
compatibility, you can minimize that risk for your users, giving them more confidence in
your code.

Unfortunately, backward compatibility is something of a double-edged sword when
it comes to designing your application. On the one hand, you should always try to make
your code the best it can be, and sometimes that involves changes to repair decisions
that were made early on in the process. On the other hand, once you make major
decisions, you need to commit to maintaining those decisions in the long run. The two
sides run contrary to each other, so it’s quite a balancing act.

Perhaps the biggest advantage you can give yourself is to make a distinction between
public and private interfaces. Then, you can commit to long-term support of the public
interfaces, while leaving the private interfaces for more rigorous refinement and change.
Once the private interfaces are more finalized, they can then be promoted to the public
API and documented for users.

Documentation is one of the main differentiators between public and private
interfaces, but naming can also play an important role. Functions and attributes that
begin with an underscore are generally understood to be private in nature, even without
documentation. Adhering to this will help your users look at the source and decide
which interfaces they’d like to use, taking on the risk themselves if they choose to use the
private ones.

25

CHAPTER 1 PRINCIPLES AND PHILOSOPHY

Sometimes, however, even the publicly safe interfaces might need to change in order
to accommodate new features. It’s usually best to wait until a major version number
change, though, and warn users in advance of the incompatible changes that will
occur. Then, going forward, you can commit to the long-term compatibility of the new
interfaces. That’s the approach Python took while working toward its long-awaited 3.0
release.

Taking It With You

The principles and philosophies presented in this chapter represent many of the ideals
that are highly valued by the Python community at large, but they’re of value only when
applied to actual design decisions in real code. The rest of this book will frequently refer
to this chapter, explaining how these decisions went into the code described. In the next
chapter, I'll examine some of the more fundamental techniques that you can build on to
put these principles to work in your code.

26

CHAPTER 2

Advanced Basics

Like any other book on programming, the remainder of this book relies on quite a few
features that may or may not be considered commonplace by readers. You, the reader,
are expected to know a good deal about Python and programming in general, but there
are a variety of lesser-used features that are extremely useful in the operations of many
techniques shown throughout the book.

Therefore, as unusual as it may seem, this chapter focuses on a concept of advanced
basics. The tools and techniques in this chapter aren’t necessarily common knowledge,
but they form a solid foundation for more advanced implementations to follow. Let’s start
off with some of the general concepts that tend to come up often in Python development.

General Concepts

Before getting into more concrete details, it’s important to get a feel for the concepts

that lurk behind the specifics covered later in this chapter. These are different from the
principles and philosophies discussed in Chapter 1 in that they are concerned more with
actual programming techniques, whereas those discussed previously are more generic
design goals.

Think of Chapter 1 as a design guide, whereas the concepts presented in this chapter
are more of an implementation guide. Of course, there’s only so specific a description
like this can get without getting bogged down in too many details, so this section will
defer to chapters throughout the rest of the book for more detailed information.

Iteration

Although there is a nearly infinite number of different types of sequences that might
come up in Python code—more on that later in this chapter and in Chapter 5—most
code that uses them can be placed in one of two categories: those that actually use the
sequence as a whole and those that just need the items within it. Most functions use

27
© J. Burton Browning and Marty Alchin 2019

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_2

CHAPTER 2 ADVANCED BASICS

both approaches in various ways, but the distinction is important in order to understand
what tools Python makes available and how they should be used.

Looking at things from a purely object-oriented perspective, as opposed to
a functional programming perspective, it’s easy to understand how to work with
sequences that your code actually needs to use. You'll have a concrete item such as a
list, set, or dictionary, which not only has data associated with it but also has methods
that allow for accessing and modifying that data. You may need to iterate over it
multiple times, access individual items out of order, or return it from other methods for
other code to use, all of which works well with more traditional object usage.

Then again, you may not actually need to work with the entire sequence as a
whole; you may be interested solely in each item within it. This is often the case when
looping over a range of numbers, for instance, because what’s important is having each
number available within the loop, not having the whole list of numbers available.

The difference between the two approaches is primarily about intention, but
there are technological implications as well. Not all sequences need to be loaded
into memory, and many don’t even need to have a finite upper limit at all, such as a
network stream. This category includes the set of positive odd numbers, squares of
integers, and the Fibonacci sequence, all of which are infinite in length and easily
computable. Therefore, they're best suited for pure iteration, without the need to
populate a list in advance, which also saves a bit of memory.

The main benefit to this is memory allocation. A program designed to print out
the entire range of the Fibonacci sequence only needs to keep a few variables in
memory at any given time, because each value in the sequence can be calculated
from the two previous values. Populating a list of the values, even with a limited
length, requires loading all the included values into memory before iterating over
them. If the full list will never be acted on as a whole, it’s far more efficient to simply
generate each item as it’s necessary and discard it once it’s no longer required in
order to produce new items.

Python as a language offers a few different ways of implementation to iterate over
a sequence without pushing all its values into memory at once. In its standard library,
Python uses those techniques in many of its provided features, which may sometimes
lead to confusion. Python allows you to write a for loop without a problem, but many
sequences won't have the methods and attributes you might expect to see on a list.
To see two types of looping in action, try the following:

28

CHAPTER 2 ADVANCED BASICS

7

1

last_name='Smith'

count=0

for letter in last name:
print(letter,"' ' ,count) # note a space between ' '
count += 1

print('---and the second loop----")
count = 0
while (count<5):
print(last _name[count], ' ', count)
count += 1

The section on iteration later in this chapter covers some of the more common ways
to create iterable sequences and also a simple way to convert those sequences to lists
when you truly do need to operate on the sequence as a whole. Sometimes, however,
it’s useful to have an object that can function in both respects, which requires the use of
caching.

Caching

Outside of computing, a cache is a hidden collection, typically of items either too
dangerous or too valuable to be made directly accessible. The definition in computing is
related, with caches storing data in a way that doesn’t impact a public-facing interface.
Perhaps the most common real-world example is a Web browser, which downloads a
document from the Web when it’s first requested but keeps a copy of that document.
When the user requests that same document again (if the document has not changed)
at a later time, the browser loads the private copy and displays it to the user instead of
hitting the remote server again.

In the browser example, the public interface could be the address bar, an entry in
the user’s favorites or a link from another web site, where the user never has to indicate
whether the document should be retrieved remotely or accessed from a local cache.
Instead, the software uses the cache to reduce the number of remote requests that
need to be made, as long as the document doesn’t change quickly. The details of Web

29

CHAPTER 2 ADVANCED BASICS

document caching are beyond the scope of this book, but it’s a good example of how
caching works in general:

import webbrowser
webbrowser.open new('http://www.python.org/")
#fmore info at: https://docs.python.org/3.4/1library/webbrowser.html

More specifically, a cache should be looked at as a time-saving or performance-
boosting utility that doesn’t explicitly need to exist in order for a feature to work properly.
If the cache gets deleted or is otherwise unavailable the function that utilizes it should
continue to work properly, perhaps with a dip in performance because it needs to refetch
the items that were lost. That also means that code utilizing a cache must always accept
enough information to generate a valid result without the use of the cache.

The nature of caching also means that you need to be careful about ensuring that
the cache is as up-to-date as your needs demand. In the Web browser example, servers
can specify how long a browser should hold on to a cached copy of a document before
requesting a fresh one from the server. In simple mathematical examples, the result can
be cached theoretically forever, because the result should always be the same, given the
same input. Chapter 3 covers a technique called memoization that does exactly that.

A useful compromise is to cache a value indefinitely but update it immediately when
the value is updated. This isn’t always an option, particularly if values are retrieved from
an external source, but when the value is updated within your application, updating the
cache is an easy step to include, which saves the trouble of having to invalidate the cache
and retrieve the value from scratch later on. Doing so can incur a performance penalty,
however, so you'll have to weigh the merits of live updates against the time you might
lose by doing so.

Transparency

Whether describing building materials, image formats, or government actions, transparency
refers to the ability to see through or inside of something, and its use in programming

is no different. For our purposes, transparency refers to the ability of your code to see—
and, in many cases, even edit—nearly everything that the computer has access to.

30

CHAPTER 2 ADVANCED BASICS

Python doesn’t support the notion of private variables typical in many other
programming languages, so all attributes are accessible to any requester. Some languages
consider that type of openness to be a risk to maintainability, instead allowing the code
that implements an object to be solely responsible for that object’s data. Although that
does prevent some occasional misuses of internal data structures, Python doesn’t take
any measures to restrict access to that data.

Although the most obvious use of transparent access is in class instance attributes—
which is where many other languages allow more privacy—Python allows you to inspect
a wide range of aspects of objects and the code that implements them. In fact, you can
even get access to the compiled bytecode that Python uses to execute functions. Here are

just a few examples of information available at runtime:
o Attributes of an object
o The names of attributes available for an object
o The type of an object
e The module in which a class or function was defined
e Thelocation (typically a filename) in which a module was loaded
o The bytecode of a function object

Most of this information is only used internally, but it’s available because there
are potential uses that can’t be accounted for when code is first written. Accessing
or examining that information at runtime is called introspection and is a common
tactic in systems that implement principles such as DRY (Don’t Repeat Yourself). The
definition by Hunt and Thomas for DRY is that “Every piece of knowledge must have
a single, unambiguous, authoritative representation within a system” (The Pragmatic
Programmer, 2000, by A. Hunt and D. Thomas).

The rest of this book contains many different introspection techniques in the
sections where such information is available. For those rare occasions where data should
indeed be protected, Chapters 3 and 4 show how data can show the intent of privacy or
be hidden entirely.

31

CHAPTER 2 ADVANCED BASICS

Control Flow

Generally speaking, the control flow of a program is the path the program takes during
execution. The more common examples of control flow, including of course the sequence
structure, are the if, for, and while blocks, which are used to manage the most
fundamental branches your code could need. Those blocks are also some of the first
things a Python programmer will learn, so this section will instead focus on some of the
lesser-used and underutilized control flow mechanisms.

Catching Exceptions

Chapter 1 explained how Python philosophy encourages the use of exceptions wherever
an expectation is violated, but expectations often vary between different uses. This is
especially common when one application or module relies on another, but it’s also quite
common within a single application. Essentially, any time one function calls another,

it can add its own expectations on top of the exceptions the called function already
handles.

Exceptions are raised with a simple syntax using the raise keyword, but catching
them is slightly more complicated because it uses a combination of keywords. The try
keyword begins a block where you feel exceptions are likely to occur, while the except
keyword marks a block to execute when an exception is raised. The first part is easy,
as try doesn’t have anything to go along with it, and the simplest form of except also
doesn’t require any additional information:

7

1

def count lines(filename):
Count the number of lines in a file. If the file can't be
opened, it should be treated the same as if it was empty.
try:
return len(open(filename, 'r').readlines())
except:
print('exception error reading the file or calculating lines!')

32

CHAPTER 2 ADVANCED BASICS

Something went wrong reading the file
or calculating the number of lines.
return 0
myfile=input('Enter a file to open: ")
print(count lines(myfile))

Any time an exception is raised inside the try block, the code in the except block
will be executed. As it stands, this doesn’t make any distinction among the many various
exceptions that could be raised; no matter what happens, the function will always return
a number. It’s actually fairly rare that you'd want to do that, however, because many
exceptions should in fact propagate up to the caller—errors should never pass silently.
Some notable examples are SystemExit and KeyboardInterrupt, both of which should
usually cause the program to stop running.

In order to account for those and other exceptions that your code shouldn’t interfere
with, the except keyword can accept one or more exception types that should be caught
explicitly. Any others will simply be raised as if you didn’t have a try block at all. This
focuses the except block on just those situations that should definitely be handled, so
your code only has to deal with what it’s supposed to manage. Make the minor changes
to what you just tried, as shown here, to see this in action:

7

1

def count_lines(file name):
Count the number of lines in a file. If the file can't be
opened, it should be treated the same as if it was empty.
try:
return len(open(file name, 'r').readlines())
except IOError:
Something went wrong reading the file.
return 0
my_file=input('Enter a file to open: ")
print(count lines(my file))

33

CHAPTER 2 ADVANCED BASICS

By changing the code to accept IOError explicitly, the except block will only execute
if there was a problem accessing the file from the filesystem. Any other errors, such as a
filename that’s not even a string, will be raised outside of this function, to be handled by
some other piece of code in the call stack.

If you need to catch multiple exception types, there are two approaches. The first and
easiest is to simply catch some base class that all the necessary exceptions derive from.
Because exception handling matches against the specified class and all its subclasses,
this approach works quite well when all the types you need to catch do have a common
base class. In the line counting example, you could encounter either I0Exrror or OSError,
both of which are descendants of EnvironmentExrror:

Oé

def count lines(file name):
Count the number of lines in a file. If the file can't be
opened, it should be treated the same as if it was empty.
try:
return len(open(file name, 'r').readlines())
except EnvironmentError:
Something went wrong reading the file.
return 0

Note Even though we’re only interested in IOError and OSError, all
subclasses of EnvironmentExrror will get caught as well. In this case, that’s fine
because those are the only subclasses of EnvironmentError, but in general
you’ll want to make sure you’re not catching too many exceptions.

Other times, you may want to catch multiple exception types that don’t share a
common base class or perhaps limit it to a smaller list of types. In these cases, you need
to specify each type individually, separated by commas. In the case of count_lines(),
there’s also the possibility of a TypeError that could be raised if the filename passed in

isn’t a valid string:

34

CHAPTER 2 ADVANCED BASICS

Oé

def count lines(file name):

Count the number of lines in a file. If the file can't be
opened, it should be treated the same as if it was empty.
try:

return len(open(file name, 'r').readlines())
except (EnvironmentError, TypeError):

Something went wrong reading the file.

return 0

If you need to access the exception object itself, perhaps to log the message for later,

you can do so by adding an as clause with a name (as e in the next example), which will

be bound to the exception object:

Oé

import logging

def count_lines(file name):

Count the number of lines in a file. If the file can't be
opened, it should be treated the same as if it was empty.
try:
return len(open(file name, 'r').readlines())
except (EnvironmentError, TypeError) as e:
Something went wrong reading the file.
logging.errox(e)
return O

35

CHAPTER 2 ADVANCED BASICS

COMPATIBILITY: PRIOR TO 3.0

In Python 3.0, the syntax for catching exceptions changed to be more explicit, alleviating some
common errors. In older versions, a comma separated the exception types from the variable
used to store the exception object. In order to catch more than one exception type, you’d need
to explicitly wrap the types in parentheses to form a tuple.

It was very easy, therefore, when trying to catch two exception types but not store the value
anywhere, to accidentally forget the parentheses. It wouldn’t be a syntax error but would
instead catch only the first type of exception, storing its value under the name of the second
type of exception. Using except TypeError, ValueError actually stored a TypeError
object under the name ValueExrror!

To resolve the situation, the as keyword was added and became the only way to store an
exception object. Even though this removes the ambiguity, multiple exceptions must still be
wrapped in a tuple for clarity.

Multiple except clauses can be used, allowing you to handle different exception
types in different ways. For example, EnvironmentError OSError's constructor optionally
takes two arguments, an error code and an error message, that combine to form its
complete string representation. In order to log just the error message in that case, but
still correctly handle the TypeError case, two except clauses could be used:

Oé

import logging

def count lines(file name):
Count the number of lines in a file. If the file can't be
opened, it should be treated the same as if it was empty.
try:
return len(open(file name, 'r').readlines())
except TypeError as e:
The filename wasn't valid for use with the filesystem.
logging.error(e)

36

CHAPTER 2 ADVANCED BASICS

return 0
except EnvironmentError as e:
Something went wrong reading the file.
logging.error(e.args[1])
return 0

Exception Chains

Sometimes, while handling one exception, another exception might get raised along the
way. This can happen either explicitly with a raise keyword or implicitly through some
other code that gets executed as part of the handling. Either way, this situation brings up
the question of which exception is important enough to present itself to the rest of the
application. Exactly how that question is answered depends on how the code is laid out,
so let’s take a look at a simple example, where the exception handling code opens and

writes to a log file:

7

1

def get value(dictionary, name):
try:
return dictionary[name]
except Exception as e:
print("exception hit..writing to file")
log = open('logfile.txt', 'w')
log.write('%s\n' % e)
log.close()
names={"Jack":113, "Jill":32,"Yoda":395}
print(get_value(names,"Jackz"))#change to Jack and it runs fine

If anything should go wrong when writing to the log, a separate exception will be
raised. Even though this new exception is important, there was already an exception in
play that shouldn’t be forgotten. To retain the original information, the file exception
gains a new attribute, called __context__, which holds the original exception object.
Each exception can possibly reference one other, forming a chain that represents
everything that went wrong, in order. Consider what happens when get _value() fails,
but logfile.txt is a read-only file:

37

CHAPTER 2 ADVANCED BASICS

Oé

get value({}, 'test")
Traceback (most recent call last):

KeyError: 'test'

During handling of the above exception, another exception occurred:
Traceback (most recent call last):

IOError: [Errno 13] Permission denied: 'logfile.txt'

This is an implicit chain, because the exceptions are linked only by how they’re
encountered during execution. Sometimes you’ll be generating an exception yourself,
and you may need to include an exception that was generated elsewhere. One common
example of this is validating values using a function that was passed in. Validation
functions, as described in Chapters 3 and 4, generally raise a ValueError, regardless of
what was wrong.

This is a great opportunity to form an explicit chain, so we can raise a ValueError
directly, while retaining the actual exception behind the scenes. Python allows this by
including the from keyword at the end of the raise statement:

Oé

def validate(value, validator):
try:
return validator(value)
except Exception as e:
raise ValueError('Invalid value: %s' % value) from e

def validator(value):
if len(value) > 10:
raise ValueError("Value can't exceed 10 characters")

validate('test', validator)
validate(False, validator)
Traceback (most recent call last):

38

CHAPTER 2 ADVANCED BASICS
TypeError: object of type 'bool' has no len()
The above exception was the direct cause of the following exception:

Traceback (most recent call last):
ValueError: invalid value: False

Because this wraps multiple exceptions into a single object, it may seem ambiguous
as to which exception is really being passed around. A simple rule to remember is that
the most recent exception is the one being raised, with any others available by way of the
__context__ attribute. This is easy to test by wrapping one of these functions in a new
try block and checking the type of the exception:

Oé

try:
validate(False, validator)
except Exception as e:

print(type(e))

<class 'ValueError's>

When Everything Goes Right

On the other end of the spectrum, you may find that you have a complex block of code
where you need to catch exceptions that may crop up from part of it, but code after that
part should proceed without any error handling. The obvious approach is to simply
add that code outside of the try/except blocks. Here’s how we might adjust the count_
lines() function to contain the error-generating code inside the try block, while the
line counting takes place after the exceptions have been handled:

Oé

import logging

def count lines(file name):

39

CHAPTER 2 ADVANCED BASICS

Count the number of lines in a file. If the file can't be
opened, it should be treated the same as if it was empty.
try:
file = open(file_name, 'r')
except TypeError as e:
The filename wasn't valid for use with the filesystem.
logging.error(e)
return 0
except EnvironmentError as e:
Something went wrong reading the file.
logging.error(e.args[1])
return 0
return len(file.readlines())

In this particular case, the function will work as expected, so all seems fine.
Unfortunately, it’s misleading because of the nature of this specific case. Because each
of the except blocks explicitly returns a value from the function, the code after the error
handling will only be reached if no exceptions were raised.

Note We could place the file reading code directly after the file is opened, but
then if any exceptions are raised there, they’d get caught using the same error
handling as the file opening. Separating them is a way to better control how
exceptions are handled overall. You may also notice that the file isn’t closed
anywhere here. That will be handled in later sections, as this function continues
expanding.

If, however, the except blocks simply logged the error and moved on, Python would
try to count the lines in the file, even though no file was ever opened. Instead, we need a
way to specify a block of code should be run only if no exceptions were raised at all, so it
doesn’t matter how your except blocks execute. Python provides this feature by way of
the else keyword, which defines a separate block:

40

CHAPTER 2 ADVANCED BASICS

Oé

import logging

def count lines(filename):

Count the number of lines in a file. If the file can't be
opened, it should be treated the same as if it was empty.
try:
file = open(filename, 'r')
except TypeError as e:
The filename wasn't valid for use with the filesystem.
logging.error(e)
return 0
except EnvironmentError as e:
Something went wrong reading the file.
logging.error(e.args[1])
return 0
else:
return len(file.readlines())

Caution Raising an exception isn’t the only thing that tells Python to avoid the
else block. If the function returns a value at any time inside the try block, Python
will simply return the value as instructed, skipping the else block altogether.

Proceeding Regardless of Exceptions

Many functions perform some kind of setup or resource allocation that must be cleaned
up before returning control to external code. In the face of exceptions the cleanup code
might not always be executed, which can leave files or sockets open or perhaps leave

large objects in memory when they're no longer needed.

41

CHAPTER 2 ADVANCED BASICS

To facilitate this, Python also allows the use of a finally block, which gets executed
every time the associated try, except, and else blocks finish. Because count_lines()
opens a file, best practice would suggest that it also explicitly close the file, rather than
waiting for garbage collection to deal with it later. Using finally provides a way to make
sure the file always gets closed.

There is still one thing to consider. So far, count_lines() only anticipates exceptions
that could occur while trying to open the file, even though there’s a common one that
comes up when reading the file: UnicodeDecodeError. Chapter 7 covers a bit of Unicode
and how Python deals with it, but for now, just know that it comes up fairly often. In
order to catch this new exception, it’s necessary to move the readlines () call back into
the try block, but we can still leave the line counting in the else block:

Oé

import logging

def count lines(file name):
Count the number of lines in a file. If the file can't be
opened, it should be treated the same as if it was empty.
file = None # file must always have a value
try:
file = open(file_name, 'r'")
lines = file.readlines()
except TypeError as e:
The filename wasn't valid for use with the filesystem.
logging.error(e)
return 0
except EnvironmentError as e:
Something went wrong reading the file.
logging.error(e.args[1])
return 0
except UnicodeDecodeError as e:
The contents of the file were in an unknown encoding.
logging.error(e)

42

CHAPTER 2 ADVANCED BASICS

return 0
else:
return len(lines)
finally:
if file:
file.close()

Of course, it’s not very likely that you'd have this much error handling in a simple
line counting function. After all, it really only exists because we wanted to return 0 in the
event of any errors. In the real world, you're much more likely to just let the exceptions
run their course outside of count_lines(), letting other code be responsible for how to
handle it.

Tip Some of this handling can be made a bit simpler using a with block,
described later in this chapter.

Optimizing Loops

Because loops of some kind or another are very common in most types of code, it’s
important to make sure that they can run as efficiently as possible. The iteration section
later in this chapter covers a variety of ways to optimize the design of any loops, whereas
Chapter 5 explains how you can control the behavior of for loops. Instead, this section
focuses on the optimization of the while loop.

Typically, while is used to check a condition that may change during the course
of the loop, so that the loop can finish executing once the condition evaluates to false.
When that condition is too complicated to distill into a single expression or when the
loop is expected to break due to an exception, it makes more sense to keep the while
expression always true and end the loop using a break statement where appropriate.

Although any expression that evaluates to true will induce the intended
functionality, there is one specific value you can use to make it even better. Python
knows that True will always evaluate to true, so it makes some additional optimizations
behind the scenes to speed up the loop. Essentially, it doesn’t even bother checking the
condition each time; it just runs the code inside the loop indefinitely, until it encounters
an exception, a break statement, or a return statement:

43

CHAPTER 2 ADVANCED BASICS

7
def echo():
"""Returns everything you type until you press Ctrl-C"""
while True:
try:
print(input'Type Something or CTRL C to exit: ")
except KeyboardInterrupt:
print() # Make sure the prompt appears on a new line.
print('bye for now...:")
break
echo()

The with Statement

The finally block covered in the exception handling section earlier in this chapter is

a convenient way to clean up after a function, but sometimes that’s the only reason to
use a try block in the first place. Sometimes you don’t want to silence any exceptions,
but you still want to make sure the cleanup code executes, regardless of what happens.
Working solely with exception handling, a simpler version of count_lines() mightlook
something like this:

Oé

def count lines(file name):
"""Count the number of lines in a file.

file = open(file name, 'r')
try:

return len(file.readlines())
finally:

file.close()

44

CHAPTER 2 ADVANCED BASICS

If the file fails to open, it will raise an exception before even entering the try block,
while everything else that could go wrong would do so inside the try block, which will
cause the finally block to clean up the file. Unfortunately, it's something of a waste to
use the power of the exception handling system just for that. Instead, Python provides
another option that has some other advantages over exception handling as well.

The with keyword can be used to start a new block of code, much like try, but with a
very different purpose in mind. By using a with block, you're defining a specific context
in which the contents of the block should execute. The beauty of it, however, is that the
object you provide in the with statement gets to determine what that context means.

For example, you can use open() in a with statement to run some code in the context
of that file. In this case, with also provides an as clause, which allows an object to be
returned for use while executing in the current context. Here’s how to rewrite the new
version of count_lines() to take advantage of all of this:

Oé

def count lines(file name):

Count the number of lines in a file.

with open(file_name, 'r') as file:
return len(file.readlines())

That'’s really all that’s left of count_lines() after switching to use the with statement.
The exception handling gets done by the code that manages the with statement,
whereas the file closing behavior is actually provided by the file itself, by way of a context
manager. Context managers are special objects that know about the with statement and
can define exactly what it means to have code executed in their context.

In a nutshell, the context manager gets a chance to run its own code before the with
block executes; then it gets to run some more cleanup code after it’s finished. Exactly
what happens at each of those stages will vary. In the case of open(), it opens the file and
closes it automatically when the block finishes executing.

With files, the context obviously always revolves an open file object, which is made
available to the block using the name given in the as clause. Sometimes, however, the
context is entirely environmental, so there is no such object to use during execution. To
support those cases, the as clause is optional.

45

CHAPTER 2 ADVANCED BASICS

In fact, you can even leave off the as clause in the case of open() without causing any
errors. Of course, you also won't have the file available to your code, so it'd be of little
use, but there’s nothing in Python that prevents you from doing so. If you include an as
clause when using a context manager that doesn’t provide an object, the variable you
define will simply be populated with None instead, because all functions return None if no
other value is specified.

There are several context managers available in Python, some of which will be
detailed throughout the rest of this book. In addition, Chapter 5 shows how you can write
your own context managers so that you can customize the contextual behavior to match
the needs of your own code.

Conditional Expressions

Fairly often, you may find yourself needing to access one of two values, and which one
you use depends on evaluating an expression. For instance, it’s quite common to display
one string to a user if the value exceeds a particular value and a different one otherwise.
Typically, this would be done using an if/else combination, as here:

7
def test value(value):
if value < 100:
return 'The value is just right.'
else:
return 'The value is too big!"
print(test value(55))

Rather than writing this out into four separate lines, it’s possible to condense it into
a single line using a conditional expression. By converting the if and else blocks into
clauses in an expression, Python does the same effect much more concisely:
- /
i
def test value(value):

return 'The value is ' + ('just right.' if value < 100 else 'too big!")
print(test value(55))

46

CHAPTER 2 ADVANCED BASICS

READABILITY COUNTS

If you’re used to this behavior from other programming languages, Python’s ordering may
seem unusual at first. Other languages, such as C++, implement something of the form
expression ? value 1 : value 2.Thatis, the expression to test comes first, followed
by the value to use if the expression is true, then the value to use if the expression is false.

Instead, Python attempts to use a form that more explicitly describes what’s really going on.
The expectation is that the expression will be true most of the time, so the associated value
comes first, followed by the expression, then the value to use if the expression is false. This
takes the entire statement into account by putting the more common value in the place it
would be if there were no expression at all. For example, you end up with things like return
value ...andx = value ...

Because the expression is then tacked on afterward, it highlights the notion that the
expression is just a qualification of the first value. “Use this value whenever this expression is
true; otherwise, use the other one.” It may seem a little odd if you’re used to another language,
but it makes sense when thinking about the equivalent in plain English.

There’s another approach that is sometimes used to simulate the behavior of the
conditional expression described in this section. This was often used in older Python
installations where the if/else expression wasn’t yet available. In its place, many
programmers relied on the behavior of the and and or operators, which could be made
to do something very similar. Here’s how the previous example could be rewritten using

only these operators:

Oé

def test value(value):
return 'The value is ' + (value < 100 and 'just right.' or 'too big!')

This puts the order of components more in line with the form used in other
programming languages. That fact may make it more comfortable for programmers
used to working with those languages, and it certainly maintains compatibility with even
older versions of Python. Unfortunately, it comes with a hidden danger that is often
left unknown until it breaks an otherwise working program with little explanation. To
understand why, let’s examine what’s going on.

47

CHAPTER 2 ADVANCED BASICS

The and operator works like the && operator in many languages, checking to see if
the value to the left of the operator evaluates to true. If it doesn’t, and returns the value to
its left; otherwise, the value to the left is evaluated and returned. So if a value of 50 was
passed into test_value(), the left side evaluates to true, and the and clause evaluates to
the string, ' just right.' Factoring in that process, here’s how the code would look:

Oé

return 'The value is ' + ('just right.' or 'too big!')

From here, the or operator works similarly to and, checking the value to its left to
see if it evaluates to true. The difference is that if the value is true, that value is returned,
without even evaluating the right-hand side of the operator at all. Looking at the
condensed code here, it’s clear that or would then return the string, ' just right.’

By contrast, if the value passed into the test_value() function was 150, the behavior
is changed. Because 150 < 100 evaluates to false, the and operator returns that value,
without evaluating the right-hand side. In that case, here’s the resulting expression:

Oé

return 'The value is ' + (False or 'too big!')

Because False is obviously false, the or operator returns the value to its right instead,
"too big!' This behavior has led many people to rely on the and/or combination for
conditional expressions. But have you noticed the problem? One of the assumptions
being made here causes the whole thing to break down in many situations.

The problem is in the or clause when the left side of the and clause is true. In that
case, the behavior of the or clause depends entirely on the value to the left of the
operator. In the case shown here, it's a nonempty string, which will always evaluate to
true, but what happens if you supply it an empty string, the number 0 o1, worst of all, a
variable that could contain a value you can’t be sure of until the code executes?

What essentially happens is that the left side of the and clause evaluates to true, but
the right side evaluates to false, so the end result of that clause is a false value. Then,
when the or clause evaluates, its left side is false, so it returns the value to its right. In the
end, the expression will always return the item to the right of the or operator, regardless
of the value at the beginning of the expression.

48

CHAPTER 2 ADVANCED BASICS

Because no exceptions are raised, it doesn’t look like anything is actually broken in
the code. Instead, it simply looks like the first value in the expression was false, because
it’s returning the value that you would expect in that case. This may lead you to try to
debug whatever code defines that value, rather than looking at the real problem, which is
the value between the two operators.

Ultimately, what makes it so hard to pin down is that you have to distrust your own
code, removing any assumptions you may have had about how it should work. You have
to really look at it the way Python sees it, rather than how a human would see it.

Iteration

There are generally two ways of looking at sequences: as a collection of items, or as a
way to access a single item at a time. These two aren’t mutually exclusive, but it’s useful
to separate them in order to understand the different features available in each case.
Working on the collection as a whole requires that all the items be in memory at once,
but accessing them one at a time can often be done much more efficiently.

Iteration refers to this more efficient form of traversing a collection, working with
just one item at a time before moving on to the next. Iteration is an option for any type
of sequence, but the real advantage comes in special types of objects that don’t need to
load everything in memory all at once. The canonical example of this is Python’s built-in
range() function, which appears to iterate over the integers that fall within a given range:

>>>for x in range(5):
print(x)

H w N B O

At a glance, it may appear like range() returns a list containing the appropriate
values, but it doesn’t. This shows if you examine its return value on its own, without
iterating over it:

49

CHAPTER 2 ADVANCED BASICS

>>>range(5)
>>>range(0, 5)
>>>list(range(5))
[0, 1, 2, 3, 4]

The range object itself doesn’t contain any of the values in the sequence. Instead, it
generates them one at a time, on demand, during iteration. If you truly want a list that
you can add or remove items from, you can convert one by passing the range object into
anew list object. This internally iterates just like a for loop, so the generated list uses
the same values that are available when iterating over the range itself.

Chapter 5 shows how you can write your own iterable objects that work similarly to
range(). In addition to providing iterable objects, there are a number of ways to iterate
over these objects in different situations, for different purposes. The for loop is the most
obvious technique, but Python offers other forms of syntax as well, which are outlined in
this section.

Sequence Unpacking

Generally, you would assign one value to one variable at a time, so when you have

a sequence, you would assign the entire sequence to a single variable. When the
sequences are small and you know how many items are in the sequence and what each
item will be, this is fairly limiting, because you'll often end up just accessing each item
individually, rather than dealing with them as a sequence.

This is particularly common when working with tuples, where the sequence often
has a fixed length and each item in the sequence has a predetermined meaning. Tuples
of this type are also the preferred way to return multiple values from a function, which
makes it all the more annoying to have to bother with them as a sequence. Ideally, you
should be able to retrieve them as individual items directly when getting the function’s
return value.

To allow for this, Python supports a special syntax called sequence unpacking. Rather
than specifying a single name to assign a value, you can specify a number of names as a
tuple on the left side of the = operator. This will cause Python to unpack the sequence on
the right side of the operator, assigning each value to the related name on the left side:

50

CHAPTER 2 ADVANCED BASICS

>>> 'propython.com'.split('.")

["propython', 'com']

>>> components = 'propython.com'.split('.")
>>> components

["propython', 'com']

>>> domain, tld = 'propython.com'.split('.")
>>> domain

"propython’

>>> tld

"com'

>>> domain, tld = 'www.propython.com'.split('.")
Traceback (most recent call last):

ValueError: too many values to unpack

The error shown at the end of this example illustrates the only significant limitation
of this approach: the number of variables to assign must match the number of items in
the sequence. If they don’t match, Python can’t properly assign the values. If you look at
the tuple as being similar to an argument list, however, there’s another option available.

If you add an asterisk before the final name in the variable list, Python will keep a
list of any values that couldn’t be put into one of the other variables. The resulting list is
stored in the final variable, so you can still assign a sequence that contains more items
than you have explicit variables to hold them. This only works if you have more items in
the sequence than you have variables to assign to. If the reverse is true, you'll still run
into the TypeError shown previously:

>>> domain, *path = 'propython.com/example/url’.split('/")
>>> domain

"propython.com’

>>> path

['example', 'url']

51

CHAPTER 2 ADVANCED BASICS

Note Chapter 3 shows how a similar syntax applies to function arguments as well.

List Comprehensions

When you have a sequence with more items than you really need, it’s often useful to
generate a new list and add just those items that meet a certain criteria. There are a few
ways to do that, the most obvious being to use a simple for loop, adding each item in turn:

>>> output = []
>>> for value in range(10):
if value > 5:
output.append(str(value))

>>> output
[I6I) l7l’ I8I’ I9l]

Unfortunately, that adds four lines and two levels of indentation to your code, even
though it’s an extremely common pattern to use. Instead, Python offers a more concise
syntax for this case, which allows you to express the three main aspects of that code into

a single line:
e Asequence to retrieve values from

e An expression that’s used to determine whether a value should be

included
e An expression that’s used to provide a value to the new list

These are all combined into a syntax called list comprehensions. Here’s how the
preceding example would look, when rewritten to use this construct. The three basic
segments of this form have been highlighted for clarity:

52

CHAPTER 2 ADVANCED BASICS

>>> output = [str(value) for value in range(10) if value » 5]
>>> output
[I6I) '7'J '8I) |9']

Asyou can see, the three portions of the overall form have been rearranged slightly,
with the expression for the final value coming first, followed by the iteration and ending
with the condition for deciding which items are included. You may also consider the
variable that contains the new list to be its own fourth portion of the form, but because
the comprehension is really just an expression, it doesn’t have to be assigned to a name.
It could just as easily be used to feed a list into a function:

>>> min([value for value in range(10) if value > 5])
6

Of course, this seems to violate the whole point of iteration that was pointed out
earlier. After all, the comprehension returns a full list, only to have it thrown away when
min() processes the values. For these situations, Python provides a different option:

generator expressions.

Generator Expressions

Instead of creating an entire list based on certain criteria, it’s often more useful to leverage
the power of iteration for this process as well. Instead of surrounding the compression in
brackets, which would indicate the creation of a proper list, you can instead surround it in
parentheses, which will create a generator. Here’s how it looks in action:

>>> gen = (value for value in range(10) if value > 5)
>>> gen
<generator object <genexpr> at Ox...>

53

CHAPTER 2 ADVANCED BASICS

>>> min(gen)

6

>>> min(gen)

Traceback (most recent call last):

ValueError: min() arg is an empty sequence
>>> min(value for value in range(10) if value > 5)
6

There are a few things going on here, but it’s easier to understand once you've seen
the output so that you have a frame of reference. First off, a generator is really just an
iterable object that you don’t have to create using the explicit interface. Chapter 5 shows
how you can create iterators manually and even how to create generators with more
flexibility, but the generator expression is the simplest way to deal with them.

When you create a generator—whether a generator expression or some other
form—you don’t immediately have access to the sequence. The generator object doesn’t
yet know what values it'll need to iterate over; it won’t know that until it actually starts
generating them. So if you view or inspect a generator without iterating over it, you won't
have access to the full range of values.

In order to retrieve those values, all you need to do is iterate over the generator like
you ordinarily would and it'll happily spit out values as needed. This step is implicitly
performed inside many built-in functions, such as min(). If those functions are able to
operate without building a complete list, you can use generators to dramatically improve
performance over the use of other options. If they do have to create a new list, you're not
losing anything by delaying until the function really needs to create it.

But notice what happens if you iterate over the generator twice. The second time
through, you get an error that you tried to pass in an empty sequence. Remember, a
generator doesn’t contain all the values; it just iterates over them when asked to do so.
Once the iteration is complete and there are no more values left to iterate; the generator
doesn’t restart. Instead, it simply returns an empty list each time it’s called thereafter.

There are two main reasons behind this behavior. First, it’s not always obvious how it
should restart the sequence. Some iterables, such as range(), do have an obvious way to
restart themselves, so those restart when iterated multiple times. Unfortunately, because
there is any number of ways to create generators—and iterators in general—it’s up to the
iterable itself to determine when and how the sequence is reset. Chapter 5 explains this
behavior, and how you can customize it for your own needs, in more detail.

54

CHAPTER 2 ADVANCED BASICS

Second, not all sequences should be reset once they complete. For example, you
might implement an interface for cycling through a collection of active users, which may
change over time. Once your code finishes iterating over the available users, it shouldn’t
simply reset to the same sequence over and over again. The nature of that ever-changing
set of users means that Python itself can’t possibly guess at how to control it. Instead,
that behavior is controlled by more complex iterators.

One final thing to point out about generator expressions: even though they must
always be surrounded by parentheses, those parentheses don’t always need to be
unique to the expression. The last expression in this section’s example simply uses the
parentheses from the function call to enclose the generator expression, which also works
just fine.

This form may seem a little odd at first, but in this simple case, it saves you from
having an extra set of parentheses hanging around. However, if the generator expression
is just one of multiple arguments or if it’s part of a more complex expression, you still
need to include explicit parentheses around the generator expression itself, to make sure
that Python knows your intent.

Set Comprehensions

Sets—described in more detail in their own section under “Collections”—are very
similar to lists in their construction, so you can build a set using a comprehension in
basically the same way as lists. The only significant difference between the two is the use
of curly braces instead of brackets surrounding the expression:

>>> {str(value) for value in range(10) if value > 5}
{I6I) |7l’ l8|’ |9|}

Note Unlike sequences, sets are unordered, so different platforms may display
the items in a different order. The only guarantee is that the same items will be
present in the set, regardless of the platform.

55

CHAPTER 2 ADVANCED BASICS

Dictionary Comprehensions

There’s certainly a theme developing with the construction of comprehensions for
different types, and it’s limited solely to one-dimensional sequences. Dictionaries can
also be a form of sequence, but each item is really a pair of a key and its value. This is
reflected in the literal form, by separating each key from its value by the use of a colon.
Because that colon is the factor that distinguishes the syntax for dictionaries from
that of sets, the same colon is what separates dictionary comprehensions from set
comprehensions. Where you would ordinarily include a single value, simply supply a
key/value pair, separated by a colon. The rest of the comprehension follows the same

rules as the other types:

>>> {value: str(value) for value in range(10) if value > 5}
{8: |8', 9: |9|, 6: l6l’ 7: |7|}

Note Remember, dictionaries are unordered, so their keys work a lot like sets.
If you need a dictionary with keys that can be reliably ordered, see the “Ordered
Dictionaries” section later in this chapter.

Chaining Iterables Together

Working with one iterable is useful enough in most situations, but sometimes you'll need
to access one right after another, performing the same operation on each. The simple
approach would be to just use two separate loops, duplicating the code block for each
loop. The logical next step would be to refactor the code into a function, but now you
have an extra function call in the mix for something that really only needs to be done
inside the loop.

Instead, Python provides the chain() function, as part of its itertools module. The
itertools module includes a number of different utilities, some of which are described
in the following sections. The chain() function, in particular, accepts any number of
iterables and returns a new generator that will iterate over each one in turn:

56

CHAPTER 2 ADVANCED BASICS

>>> import itertools
>>> list(itertools.chain(range(3), range(4), range(5)))
[0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4]

Zipping Iterables Together

Another common operation involving multiple iterables is to merge them together, side
by side. The first items from each iterable would come together to form a single tuple

as the first value returned by a new generator. All of the second items become part of
the second tuple in the generator, and so on. The built-in zip() function provides this

functionality when needed:

>>> list(zip(range(3), reversed(range(5))))
[(0, 4), (1, 3), (2, 2)]

Notice here that even though the second iterable has five values, the resulting
sequence only contains three values. When given iterators of varying lengths, zip() goes
with the least common denominator, so to speak. Essentially, zip() makes sure that
each tuple in the resulting sequence has exactly as many values as there are iterators
to join together. Once the smallest sequence has been exhausted, zip() simply stops
looking through the others.

This functionality is particularly useful in creating dictionaries, because one
sequence can be used to supply the keys, while another supplies the values. Using zip()
can join these together into the proper pairings, which can then be passed directly into a
new dict(). In the next example, 97 in the ASCII table is lowercase “a” and 98 is “b,” up
to, but not including, the last number specified (102), so 101 is “e” The map() function
iterates over a group of values; this is then paired with zip to an index value from values
to build the dictionary:

57

CHAPTER 2 ADVANCED BASICS

>>> keys = map(chr, range(97, 102))

>>> values = range(1, 6)

>>> dict(zip(keys, values))

{*a': 1, 'c': 3, 'b': 2, 'e': 5, 'd: 4}

Collections

There are a number of well-known objects that come standard with the Python
distribution, both as built-ins available to all modules and as part of the standard
package library. Objects such as integers, strings, lists, tuples, and dictionaries are in
common use among nearly all Python programs, but others, including sets named tuples
and some special types of dictionaries, are used less often and may be unfamiliar to
those who haven’t already needed to discover them.

Some of these are built-in types that are always available to every module, whereas
others are part of the standard library included with every Python installation. There
are still more that are provided by third-party applications, some of which have become
fairly commonly installed, but this section will only cover those included with Python
itself.

Sets

Typically, collections of objects are represented in Python by tuples and lists, but sets
provide another way to work with the same data. Essentially a set works much like a list,
but without allowing any duplicates, making it useful for identifying the unique objects
in a collection. For example, here’s how a simple function might use a set to determine
which letters are used in a given string:

>>> def unique_letters(word):
return set(word.lower())

58

CHAPTER 2 ADVANCED BASICS

>>> unique letters('spam')
{'a', 'p') 'SIJ 'm'}

>>> unique_letters('eggs"')
{ISI, lel’ Igl}

Note the following:

First, the built-in set type takes a sequence as its argument, which
populates the set with all the unique elements found in that
sequence. This is valid for any sequence, such as a string as shown in
the example as well as lists, tuples, dictionary keys, or custom iterable
objects.

Second, the items in the set aren’t ordered the same way they
appeared in the original string. Sets are concerned solely with
membership. They keep track of items that are in the set, without
any notion of ordering. That seems like a limitation, but if you need
ordering, you probably want a list anyway. Sets are very efficient
when you only need to know if an item is a member of a collection,
without regard to where it is in the collection or how many times it
has otherwise appeared.

Third, the representation showed when displaying the set in the
interactive shell. As these representations are intended to be
formatted in the same way as you can type into your source file, this
indicates a syntax for declaring sets as literals in your code. It looks
very similar to a dictionary but without any values associated with
the keys. That’s actually a fairly accurate analogy, because a set works
very much like the collection of keys in a dictionary.

Because sets are designed for a different purpose than sequences and dictionaries,

the available operations and methods are a bit different than you might be used to. To

start, however, let’s look at the way that sets behave in relation to other types. Perhaps

the most common use of sets is to determine membership, a task often asked of both

lists and dictionaries. In the spirit of matching expectations, this uses the in keyword,

familiar from other types:

59

CHAPTER 2 ADVANCED BASICS

>>> example = {1, 2, 3, 4, 5}
>>> 4 in example

True

>>> 6 in example

False

In addition, items can be added to or removed from the set later on. The list’s
append() method isn’t suitable for sets, because to append an item is to add it at the
end, which then implies that the order of items in the collection is important. Because
sets aren’t at all concerned with ordering, they instead use the add() method, which just
makes sure that the specified item ends up in the set. If it was already there, add() does
nothing; otherwise, it adds the item to the set, so there are never any duplicates:

>>> example.add(6)
>>> example

{1, 2, 3, 4, 5, 6}
>>>

>>> example

{1, 2, 3, 4, 5, 6}

Dictionaries have the useful update() method, which adds the contents of a new
dictionary to one that already exists. Sets have an update() method as well, performing
the same task:

>>> example.update({6, 7, 8, 9})
>>> example
{1J 2) 3’ 4) 5) 6) 7’ 8) 9}

60

CHAPTER 2 ADVANCED BASICS

Removing items from the set can be done in a few different ways, each serving a
different need. The most direct complement to add() is the remove () method, which
removes a specific item from the set. If that item wasn’t in the set in the first place, it
raises a KeyError:

>>> example.remove(9)
>>> example.remove(9)
Traceback (most recent call last):

KeyError: 9
>>> example
{1J 2) 3) 4) 5) 6) 7) 8}

Many times, however, it doesn’t matter whether the item was already in the set or
not; you may only care that it’s not in the set when you’re done with it. For this purpose
sets also have a discard() method, which works just like remove () but without raising
an exception if the specified item wasn’t in the set:

>>> example.discard(8)
>>> example.discard(8)
>>> example

{1, 2, 3, 4, 5, 6, 7}

Of course, remove() and discard() both assume that you already know what object
you want to remove from the set. To simply remove any item from a set, use the pop()
method, which again is borrowed from the list API but differs slightly. Because sets aren’t
explicitly ordered, there’s no real end of the set for an item to be popped off. Instead, the
set’s pop() method picks one, unpredictably returning it for use outside the set:

61

CHAPTER 2 ADVANCED BASICS

>>> example.pop()
1

>>> example

{2, 3, 4, 5, 6, 7}

Finally, sets also provide a way to remove all items in one shot, resetting it to an
empty state. The clear () method is used for this purpose:

>>> example.clear()
>>> example
set()

Note The representation of an empty set is set(), rather than {}, because
Python needs to maintain a distinction between sets and dictionaries. In order to
preserve compatibility with older code written before the introduction of set literals,
empty curly braces remain dedicated to dictionaries, so sets use their name
instead.

In addition to methods for modifying the contents in place, sets also provide
operations in which two sets combine in some way to return a new set. The most
common of these is a union, in which the contents of two sets are joined together so the
resulting new set contains all items that were in both of the original sets. It’s essentially
the same as using the update() method, except that none of the original sets is altered.

The union of two sets is a lot like a bit-wise OR operation, so Python represents it
with the pipe character (|), which is the same as is used for bit-wise OR (where each byte
is compared). In addition, sets offer the same functionality using the union() method,
which can be called from either set involved:

62

CHAPTER 2 ADVANCED BASICS

>>> {1, 2, 3} | {4, 5, 6}

{1, 2, 3, 4, 5, 6}

>>> {1, 2, 3}.union({4, 5, 6})
{1, 2, 3, 4, 5, 6}

The logical complement to that operation is the intersection, where the result is
the set of all items common to the original sets. Again, this is analogous to a bit-wise
operation, but this time it’s the bit-wise AND, and again, Python uses the ampersand
(&) to represent the operation as it pertains to sets. Sets also have an intersection()
method, which performs the same task:

>»> {1, 2, 3, 4, 5} & {4, 5, 6, 7, 8}

{4, 5}

>>> {1, 2, 3, 4, 5}.intersection({4, 5, 6, 7, 8})
{4, 5}

You can also determine the difference between two sets, resulting in a set of all the
items that exist in one of the sets but not the other. By removing the contents of one set
from another, it works a lot like subtraction, so Python uses the subtraction operator (-)
to perform this operation, along with the difference() method:

>>> {1, 2, 3, 4, 5} - {2, 4, 6}

{1, 3, 5}

>>> {1, 2, 3, 4, 5}.difference({2, 4, 6})
{1, 3, 5}

63

CHAPTER 2 ADVANCED BASICS

In addition to that basic difference, Python sets offer a variation called a symmetric
difference, using the symmetric_difference() method. Using this method, the resulting
set contains all items that were in either set, but not in both. This is equivalent to the
bit-wise exclusive OR operation, commonly referred to as XOR. Because Python uses the
caret (") to represent the XOR operation elsewhere, sets use the same operator as well as
the method:

>»> {1, 2, 3, 4, 5} " {4, 5, 6}

{1, 2, 3, 6}

>>> {1, 2, 3, 4, 5}.symmetric_difference({4, 5, 6})
{1, 2, 3, 6}

Finally, it’s possible to determine whether all the items in one set also exist in
another. If one set contains all the items of another, the first is considered to be a
superset of the other, even if the first set contains additional items not present in the
second. The inverse, where all the items in first are contained in the second, even if the
second has more items, means the first set is a subset of the second.

Testing to see if one set is a subset or a superset of another is performed by two
methods, issubset() and issuperset(), respectively. The same test can be performed
manually by subtracting one set from the other and checking to see if any items remain. If
no items are left the set evaluates to False, and the first is definitely a subset of the second,
and testing for a superset is as simple as swapping the two sets in the operation. Using
these methods avoids creating a new set just to have it reduce to a Boolean anyway:

>>> {1, 2, 3}.issubset({1, 2, 3, 4, 5})

True

>>> {1, 2, 3, 4, 5}.issubset({1, 2, 3})
False

>>> {1, 2, 3}.issuperset({1, 2, 3, 4, 5})
False

64

CHAPTER 2 ADVANCED BASICS

>>> {1, 2, 3, 4, 5}.issuperset({1, 2, 3})
True

>>> not ({1, 2, 3} - {1, 2, 3, 4, 5})
True
>>> not ({1, 2, 3, 4, 5} - {1, 2, 3})
False

Note Looking at how subsets and supersets can be determined using
subtraction, you might notice that two identical sets will always subtract to an
empty set, and the order of the two sets is irrelevant. This is correct, and because
{1, 2, 3} - {1, 2, 3}isalways empty, each set is both a subset and a
superset of the other.

Named Tuples

Dictionaries are extremely useful, but sometimes you may have a fixed set of possible
keys available, so you don’t need that much flexibility. Instead, Python uses named
tuples, which provide some of the same functionality, but they’re much more efficient
because the instances don’t need to contain any of the keys, only the values associated
with them.

Named tuples are created using a factory function from the collections module,
called namedtuple(). Rather than returning an individual object, namedtuple() returns
a new class, which is customized for a given set of names. The first argument is the name
of the tuple class itself, but the second is, unfortunately, less straightforward. It takes a
string of attribute names, which are separated by either a space or a comma:

>>> from collections import namedtuple
>>> Point = namedtuple('Point', 'x y")
>>> point = Point(13, 25)

>>> point

Point(x=13, y=25)

>>> point.x, point.y

65

CHAPTER 2 ADVANCED BASICS

(13, 25)
>>> point[0], point[1]
(13, 25)

As an efficient trade-off between tuples and dictionaries, many functions that need
to return multiple values can do so using named tuples to be as useful as possible.
There’s no need to populate a full dictionary, but values can still be referenced by useful
names rather than integer indexes.

Ordered Dictionaries

If you've ever iterated over the keys of a dictionary or printed its contents to the
interactive prompt, as has been done previously in this chapter, you'll notice that its keys
don’t always follow a predictable order. Sometimes they may look like they’re sorted
numerically or alphabetically, but other times it seems completely random.

Dictionary keys, like sets, are considered to be unordered. Even though there
may occasionally appear to be patterns, these are merely the by-product of the
implementation and aren’t formally defined. Not only is the ordering inconsistent from
one dictionary to another, variations are even more significant when using a different
Python implementation, such as Jython or IronPython.

Most of the time, what you're really looking for from a dictionary is a way to map
specific keys to associated values, so the ordering of the keys is irrelevant. Sometimes,
though, it’s also useful to be able to iterate over those keys in a reliable manner. To offer
the best of both worlds, Python offers the OrderedDict class by way of its collections
module. This provides all the features of a dictionary but with reliable ordering of keys:

>>> from collections import OrderedDict

>>> d = OrderedDict((value, str(value)) for value in range(10) if value > 5)
>>> d

OrderedDict([(6, '6"), (7, '7"), (8, '8"), (9, '9")])

>>> d[10] = "10'

>>> d

66

CHAPTER 2 ADVANCED BASICS

Ordereddict([(6, '6'), (7, '7"), (8, '8"), (9, '9'), (10, "10')])
>>> del d[7]

>>> d

OrderedDict([(6, '6"), (8, '8"), (9, '9"), (10, '10")])

As you can see, the same construction used previously now results in a properly
ordered dictionary that does the right thing even as you add and remove items.

Caution In the example given here, notice that the values for the dictionary
are provided using a generator expression. If you supply a standard dictionary,
that means your supplied values are unordered prior to going into the ordered
database, which will then assume that order was intentional and preserve it.
This also occurs if you supply values as keyword arguments, because those are
passed as a regular dictionary internally. The only reliable way to supply ordering
to OrderedDict() is to use a standard sequence, such as a list or a generator
expression.

Dictionaries with Defaults

Another common pattern using dictionaries is to always assume some default value

in the event that a key can’t be found in the mapping. This behavior can be achieved
either by explicitly catching the KeyError raised when accessing the key or by using the
available get () method, which can return a suitable default if the key wasn’t found. One
such example of this pattern is using a dictionary to track how many times each word
appears in some text:

Oé

def count words(text):
count = {}
for word in text.split(' '):
current = count.get(word, 0) # Make sure we always have a number
count[word] = current + 1
return count

67

CHAPTER 2 ADVANCED BASICS

Instead of having to deal with that extra get () call, the collections module provides
a defaultdict class that can handle that step for you. When you create it, you can pass
in a callable as the single argument, which will be used to create a new value when a
requested key doesn’t exist. In most cases you can just supply one of the built-in types,
which will provide a useful basic value to work with. In the case of count_words (), we
can use int:

Oé

from collections import defaultdict

def count words(text):
count = defaultdict(int)
for word in text.split(' '):
count[word] += 1
return count

Essentially any callable can be used, but the built-in types tend to provide optimal
default values for whatever you need to work with. Using 1ist will give you an empty list,
str returns an empty string, int returns 0, and dict returns an empty dictionary. If you
have more specialized needs, any callable that can be used without any arguments will
work. Chapter 3 introduces lambda functions, which are convenient for cases like this.

Importing Code

Complex Python applications are typically made up of a number of different modules,
often separated into packages to supply more granular namespaces. Importing code from
one module to another is a simple matter, but that’s only part of the story. There are several
additional features available for more specific situations that you're likely to run into.

Fallback Imports

By now, you've seen several points where Python changes over time, sometimes in
backward-incompatible ways. One particular change that tends to come up occasionally
is when a module gets moved or renamed, but still does essentially the same thing

68

CHAPTER 2 ADVANCED BASICS

as before. The only update needed to make your code work with it is to change to the
import location, but you'll often need to maintain compatibility with versions both
before and after the change.

The solution to this problem exploits Python’s exception handling to determine
whether the module exists at the new location. Because imports are processed at runtime,
like any other statement, you can wrap them in a try block and catch an ImportError,
which is raised if the import failed. Here’s how you might import a common hash
algorithm both before and after the change in Python 2.5, which moved its import location:

Oé

try:
Use the new library if available. Added in Python 2.5
from hashlib import md5

except ImportError:
Compatible functionality provided prior to Python 2.5
from md5 import new as md5

Notice here that the import prefers the newer library first. That’s because changes
like this usually have a grace period, where the old location is still available but
deprecated. If you check for the older module first, you'll find it long after the new
module became available. By checking for the new one first, you take advantage of any
newer features or added behaviors as soon as they're available, falling back to older
functionality only when necessary. Using the as keyword allows the rest of the module to
simply reference the name md5 either way.

This technique is just as applicable to third-party modules as it is to Python’s own
standard library, but third-party applications often require different handling. Rather
than determining which module to use, it’s often necessary to distinguish whether the
application is available at all. This is determined the same way as the previous example,
by wrapping the import statement in a try block.

What happens next, however, depends on how your application should behave if
the module is unavailable. Some modules are strictly required, so if it'’s missing, you
should raise an exception directly inside the except ImportError block or simply forgo
exception handling altogether. Other times, a missing third-party module simply means
areduction in functionality. In this case, the most common approach is to assign None to
the variable that would otherwise contain the imported module:

69

CHAPTER 2 ADVANCED BASICS

Oé

try:

import docutils # Common Python-based documentation tools
except ImportError:

docutils = None

Then, when your code needs to utilize features in the imported module, it can use
something like if docutils to see if the module is available, without having to reimport
it.

Importing from the Future

Python'’s release schedule often incorporates new features, but it’s not always a good
idea to just introduce them out of nowhere. In particular, syntax additions and behavior
changes may break existing code, so it’s often necessary to provide a bit of a grace period.
During the transition, these new features are made available by way of a special kind of
import, letting you choose which features are updated for each module.

The special __future_ module allows you to name specific features that you'd like
to use in a given module. This provides a simple compatibility path for your modules,
since some modules can rely on new features while other modules can use existing
features. Typically, the next release after a feature was added to __ future , and it
becomes a standard feature available to all modules.

As a quick example, Python 3.0 changed the way integer division worked. In earlier
versions, dividing one integer from another always resulted in an integer, which often
resulted in a loss of precision if the result would normally produce a remainder. That
makes sense to programmers who are familiar with the underlying C implementation,
but it’s different than what happens if you perform the same calculation on a standard
calculator, so it caused a lot of confusion.

The behavior of division was changed to return floating point values if the division
would contain a remainder, thus matching how a standard calculator would work. Before
making the change across all of Python, however, the division option was added to the
__future module, allowing the behavior to be changed earlier if necessary. Here’s
how an interactive interpreter session might look in Python 2.5. Python 3.x, however, by
default handles it as if you promoted one to a floating point value as in >>> 5/ 2.0:

70

CHAPTER 2 ADVANCED BASICS

>>> 5/ 2 # Python 2.5 uses integer-only division by default

2

>>> from _ future__ import division # This updates the behavior of division
>»> 5/ 2

2.5

The future module supports a number of such features, and new options are
added with each release of Python. Rather than trying to list them all here, in the rest of
this book I will mention them when the features being described were recent enough to
needa _future importin older versions of Python, back to Python 2.5. Full details
on these feature changes can always be found on the “What’s New” page of the Python
documentation.

Note If you try to import a feature from __ future that already exists in
the version of Python you’re using, it doesn’t do anything. The feature is already
available, so no changes have to be made, but it also doesn’t raise any exceptions.

Using _ all__ to Customize Imports

One of the lesser-used features of Python imports is the ability to import the namespace
from one module into that of another. This is achieved by using an asterisk as the portion
of the module to import:

>>> from itertools import *
>>> list(chain([1, 2, 3], [4, 5, 6]))
[1, 2, 3, 4, 5, 6]

!See the “What’s New” page at http://propython.com/whats-new.
71

http://propython.com/whats-new

CHAPTER 2 ADVANCED BASICS

Ordinarily, this would just take all the entries in the imported module’s namespace
that don’t begin with an underscore and dump them into the current module’s
namespace. It can save some typing in modules that make heavy use of the imported
module, because it saves you from having to include the module name every time you
access one of its attributes.

Sometimes, however, it doesn’t make sense for every object to be made available
in this way. In particular, frameworks often include a number of utility functions and
classes that are useful within the framework’s module, but don’t make much sense when
exported to external code. In order to control what objects get exported when you import
a module like this, you can specify _all somewhere in the module.

All that you need to do is supply a list—or some other sequence—that contains
the names of objects that should get imported when the module is imported using an
asterisk. Additional objects can still be imported either by importing the name directly
or by just importing the module itself, rather than anything inside of it. Here’s how an
example module might supply its _all option:

Oé

all

def public_func():
pass

['public_func']

def utility func():
pass

Of course, there would be useful code in both of those functions in the real world.
For the purposes of illustration, though, here’s a quick rundown of the different ways that
you could import that module, which we’ll call example:

»>> import example

>>> example.public_func
<function public_func at ox...>
>>> example.utility func
<function utility func at Ox...>

72

CHAPTER 2 ADVANCED BASICS

»»> from example import *

>>> public_func

<function public_func at Ox...>
>>> utility func

Traceback (most recent call last):

NameError: name 'utility func' is not defined
»>> from example import utility func

>>> utility func

<function utility func at Ox...>

Notice how, in the final case, you can still import it directly using the from syntax,
as long as you specify it explicitly. The only time __all comes into play is if you use
an asterisk. So depending on if you want all functions available, or only one, you have
choices.

EXPLICIT IS BETTER THAN IMPLICIT

It's generally considered bad form to import using the asterisk notation in the first place;

PEP 8, the Python Style Guide, specifically recommends against it. The main issue with it is
that it’s not immediately obvious where the contents of that module came from. If you see a
function used without a module namespace, you can usually look at the top of the module to
see if it was imported; if not, you can safely assume that it was defined in the module. If it was
imported with the asterisk notation, you’d have to either scan the entire module to see if it was
defined or open up the source for the related module to see if it was defined there

On occasion, it can still be useful to import using an asterisk, but it’s best to only do so when
you’re wrapping it in another namespace. As illustrated in Chapter 11, you might allow your
users to import a single root namespace that incorporates objects from several different
modules. Rather than having to update the imports every time something new is added, you
can use asterisk imports in the main module, without introducing any ambiguity in your users’
modules.

73

CHAPTER 2 ADVANCED BASICS

Relative Imports

When starting out with a project, you'll spend most of your time importing from external
packages, so every import is absolute; its path is rooted in your system’s PYTHONPATH.
Once your projects start growing to several modules, you'll be importing from one
another regularly. And once you establish a hierarchy, you might realize that you don'’t
want to include the full import path when sharing code between two modules at similar
parts of the tree.

Python allows you to specify a relative path to the module you’d like to import,
so you can move around an entire package, if necessary, with minimal modifications
required. The preferred syntax for this is to specify part of the module’s path with one
or more periods, indicating how far up the path to look for the module. For example, if
the acme.shopping.cart module needs to import from acme.billing, the two following
import patterns are identical:

Oé

from acme import billing
from .. import billing

A single period allows you to import from the current package, so acme.shopping.
gallery could be imported as from. import gallery. Alternatively, if you're looking to
just import something from that module, you could instead simply prefix the module
path with the necessary periods, then specify the names to import as usual: from.
gallery import Image.

The __import__ () Function

You don’t always have to place your imports at the top of a module. In fact, sometimes
you might not be able to write some of your imports in advance at all. You might be
making decisions about which module to import based on user-supplied settings, or
perhaps you're even allowing users to specify modules directly. These user-supplied
settings are a convenient way to allow for extensibility without resorting to automatic
discovery.

74

In order to support this functionality, Python allows you to import code manually
using the _import () function. It’s a built-in function, so it’s available everywhere,

CHAPTER 2 ADVANCED BASICS

but using it requires some explanation because it’s not as straightforward as some of the

other features provided by Python. You can choose from five arguments to customize

how a module gets imported and what contents are retrieved:

Even though that may seem simple enough, the return value contains a few traps
that can cause quite a bit of confusion. It always returns a module object, but it can
be surprising to see which module is returned and what attributes are available on it.
Because there are a number of different ways to import modules, these variations are
worth understanding. First, let’s examine how different types of module names impact

name: The only argument that is always required, this accepts the
name of the module that should be loaded. If it’s part of a package,
just separate each part of the path with a period, as when using
import path.to.module.

globals: A namespace dictionary that is used to define the context
in which the module name is resolved. In standard import cases, the
return value from the built-in globals () function is used to populate
this argument.

locals: Another namespace dictionary, ideally used to help define
the context in which the module name is resolved. In reality,
however, current implementations of Python simply ignore it. In
the event of future support, the standard import provides the return
value from the built-in locals() function for this argument.

fromlist: A list of individual names that should be imported from
the module, rather than importing the full module.

level: An integer indicating how the path should be resolved with
respect to the module that calls __import (). A value of -1 allows
both absolute and implicit relative imports; 0 allows only absolute
imports; positive values indicate how many levels up the path to use
for an explicit relative import.

the return value.

75

CHAPTER 2 ADVANCED BASICS

In the simplest case, you'd pass in a single module name to __import (), and the
return value is just what you'd expect: the module referenced by the name provided. The
attributes available on that module object are the same as you'd have available if you
imported that name directly in your code: the entire namespace that was declared in that
module’s code.

When you pass in a more complex module path, however, the return value may not
match expectations. Complex paths are provided using the same dot-separated syntax
used in your source files, so importing os . path, for instance, would be achieved by
passing in "os.path". The returned value in that case is 0s, but the path attribute lets
you access the module you're really looking for.

The reason for that variation is that __import () mimics the behavior of Python
source files, in which import os . path makes the os module available under that name.
You can still access 0s.path, but the module that goes into the main namespace is
os.Because _import () works essentially the same way as a standard import, what
you get in the return value is what you would have in the main module namespace
ordinarily.

In order to get just the module at the end of the module path, you can take a couple
of different approaches. The most obvious, although not necessarily direct, would be
to split the given module name on periods, using each portion of the path to get each
attribute layer from the module returned by __import (). Here’s a simple function that
would do the job:

>>> def import child(module name):
module = _ import (module_name)
for layer in module name.split('.')[1:]:
module = getattr(module, layer)
return module

>>> import child('os.path")

<module 'ntpath' from 'C:\Python31\lib\ntpath.py'>
>>> import child('os")

<module 'os' from 'C:\Python31\lib\os.py'>

76

CHAPTER 2 ADVANCED BASICS

Note The exact name of the module referenced by os . path will vary based on
the operating system under which it's imported. For example, it’s called ntpath on
Windows, whereas most Linux systems use posixpath. Most of the contents are
the same, but they may behave slightly differently depending on the needs of the
operating system, and each may have additional attributes that are unique to that
environment.

As you can see, it works for the simple case as well as more complex situations, but
it still goes through a bit more work than is really necessary to do the job. Of course,
the time spent on the loop is fairly insignificant compared to the import itself, but if the
module had already been imported, our import_path() function comprises most of
the process. An alternate approach takes advantage of Python’s own module caching
mechanism to take the extra processing out of the picture:

>>> import sys

>>> def import child(module name):
__import__ (module_name)
return sys.modules[module_name]

>>> import child('os.path")

<module 'ntpath' from 'C:\Python31\lib\ntpath.py'>
>>> import child('os")

<module 'os' from 'C:\Python31\lib\os.py'>

The sys.modules dictionary maps import paths to the module objects that were
generated when importing them. By looking up the module in that dictionary, there’s no
need to mess around with the particulars of the module name.

Of course, this is really only applicable to absolute imports. Relative imports, no
matter how they are referenced, are resolved relative to the module where the import
statement—or in this case, the _import () function call—is located. Because the most
common case is to place import_path() in a common location, relative imports would
be resolved relative to that, rather than the module that called import_path(). That
could mean importing the completely wrong module.

77

CHAPTER 2 ADVANCED BASICS

The importlib Module

In order to address the issues that are raised by using __import () directly, Python
also includes the importlib module, which provides a more intuitive interface to import
modules. The import_module() function is a much simpler way to achieve the same
effectas __import_ (), butin a way that more closely matches expectations.

For absolute imports, import_module() accepts the module path, just like
import (). The difference, however, is that import_module() always returns the last
module in the path, while _import () returns the first one. The extra handling that
was added in the previous section is made completely unnecessary because of this
functionality, so this is a much better approach to use:

>>> from importlib import import_module

>>> import_module('os.path")

<module 'ntpath' from 'C:\Python31\lib\ntpath.py'>
>>> import module('os")

<module 'os' from 'C:\Python31\lib\os.py'>

In addition, import_module() takes relative imports into account by also accepting a
package attribute that defines the reference point from which the relative path should be
resolved. This is easily done when calling the function, simply by passing in the always-
global __name__ variable, which holds the module path that was used to import the
current module in the first place:

Oé

import module('.utils', package=_name_)

78

CHAPTER 2 ADVANCED BASICS

Caution Relative imports don’t work directly inside the interactive interpreter.
The module the interpreter runs in isn’t actually in the filesystem, so there are no
relative paths to work with.

Exciting Python Extensions: Random Number
Beacon at NIST

Most programming languages implement some form of random and pseudo-random
number generator. Python does as well; however, the base algorithm which generates
these random numbers is less robust than could be had elsewhere. As such, the National
Institute of Standards and Technology (NIST) has implemented a randomness beacon
which sends out every 60 seconds to connected users a true random number.

From May 2018, NIST states: “NIST is implementing a source of public randomness.
The service (at https://beacon.nist.gov/home) uses two independent commercially
available sources of randomness, each with an independent hardware entropy
source and SP 800-90-approved components. The Beacon is designed to provide
unpredictability, autonomy, and consistency. Unpredictability means that users cannot
algorithmically predict bits before they are made available by the source. Autonomy
means that the source is resistant to attempts by outside parties to alter the distribution
of the random bits. Consistency means that a set of users can access the source in such a
way that they are confident they all receive the same random string.”?

You could think of the randomness beacon as a good way to obtain somewhat
reliable randomness every 60 seconds for applications requiring a random value, such
as a game. The term “somewhat” is used here to note that NIST says not to use their
service for cryptographic needs, and certainly many people assert that the beacon is not
really secure due to connections between NIST and NSA, and the fact that within the
60-second window the “randomness” could be compromised. However, all that being
said, it is still an interesting and, the authors feel, valid service to have in your toolbox.
To use the service you will need to install the library's required https://www.nist.gov/
programs-projects/nist-randomness-beacon for access first.

2NIST, “NIST Randomness Beacon,” https://www.nist.gov/programs-projects/nist-
randomness-beacon, accessed May 22, 2018.

79

https://beacon.nist.gov/home
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon

CHAPTER 2 ADVANCED BASICS

How to Install the NIST Beacon Library

Regardless of your platform, you can use the NIST beacon with Python. Information
about versions and updates can be found at NIST or https://pypi.org/project/
nistbeacon/0.9.2. Assuming you are using MS Windows and have pip installed and are
online, it is as easy to install as:

pip install nistbeacon (press enter)

Assuming you received no errors from the install, try a few of the following examples
to get a feel for how the beacon works.

Simple Example to Get a Value

In the following example a 512 Hexadecimal (base 16) value is obtained from the
beacon, displayed and converted to decimal. A random value is also obtained, in the
range of 1 through 10, and displayed. Typing record. will display many other function
options if using IDLE or other full-functioning IDEs.

#Get a 512 hex value from the beacon and display it
from nistbeacon import NistBeacon

record = NistBeacon.get last record()

v = record.output value # 512 hex

T = record.pseudo random # pick a pseudo random number

print ('Your random follows: ')

print (r.randint(1,10)) #print 1 - 10 random #random())for floats .0 to 1.0
print()

print ('Hex original value:\n', v, '\n")

d=int(v,16) #convert to decimal

print ('Hex value converted to decimal:\n', d)

80

https://pypi.org/project/nistbeacon/0.9.2
https://pypi.org/project/nistbeacon/0.9.2

CHAPTER 2 ADVANCED BASICS

Example to Simulate Rolling Coin Flipping a Certain #
Times and Display Heads or Tails

In this example a record is obtained every 66 seconds, converted to decimal, then run
against modulus (remainder of integer division) to see if it is “odd” for “even,” to simulate
“heads” or “tails”:

#Coin flip-0-matic
from nistbeacon import NistBeacon
import time
print()
print ('Coin flip 0 or 1 tails or heads')
print()
print ('Run five times"')
for count in range (5):
time.sleep(66) #wait for new beacon every 66 seconds
h = NistBeacon.get last record()
v = h.output_value #512 hex
d=int(v,16) #convert to decimal
coin = d% 2 #modulus of record (0 or 1)
if coin ==
print ('tails')
else:
print ('heads")

Taking It With You

The features laid out in this chapter are just a taste of what Python has to offer if you're
willing to take the time to learn the language. The rest of this book will rely heavily on
what was laid out here, but each chapter will add another layer for future chapters to
build on as well. In that spirit, let’s continue with what you thought was one of the most
basic, unassuming features of Python: functions.

81

CHAPTER 3

Functions

At the core of any programming language is the notion of functions, but we tend to
take them for granted. Sure, there’s the obvious fact that functions allow code to be
encapsulated into individual units, which can be reused rather than being duplicated
all over the place. But Python takes this beyond just the notion of what some languages
allow, with functions being full-fledged objects that can be passed around in data
structures, wrapped in other functions, or replaced entirely by new implementations.

In fact, Python provides enough flexibility with functions that there are actually
several different types of functions, reflecting the various forms of declaration and
purposes. Understanding each of these types of functions will help you decide which
is appropriate for each situation you encounter while working with your own code.
This chapter explains each of them in turn, as well as a variety of features you can take
advantage of to extend the value of each function you create, regardless of its type.

At their core all functions are essentially equal, regardless of which of the following
sections they fit into. The built-in function type forms their basis, containing all the
attributes necessary for Python to understand how to use them:

>>> def example():
pass

>>> type(example)

<type 'function'>

>>> example

<function example at Ox...>

Of course, there are still a number of different types of functions and as many different
ways of declaring them. First off, let’s examine one of the most universal aspects of functions.

83
© J. Burton Browning and Marty Alchin 2019

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_3

CHAPTER 3 FUNCTIONS

Arguments

Most functions need to take some arguments in order to do anything useful. Normally,
that means defining them in order in the function (the declaration’s) signature, and then
supplying them in the same order when calling that function later. Python supports that
model, but also supports passing keyword arguments and even arguments that won’t be
known until the function is called.

One of the most common advantages of Python’s keyword arguments is that you
can pass arguments in a different order than the way they were defined in the function.
You can even skip arguments entirely, as long as they have a default value defined. This
flexibility helps encourage the use of functions that support lots of arguments with

default values.

EXPLICIT IS BETTER THAN IMPLICIT

One way that Python’s keyword arguments encourage being explicit is to only allow arguments
to be passed out of order if they’re passed by keyword. Without keywords, Python needs to use
the position of the argument to know which parameter name to bind to it when the function
runs. Because keywords are just as explicit as positions, the ordering requirement can be lifted
without introducing ambiguity.

In fact, keywords are even more explicit than positions when working with arguments,
because the function call documents the purpose of each argument. Otherwise, you’d have to
look up the function definition in order to understand its arguments. Some arguments may be
understandable in context, but most optional arguments aren’t obvious at a glance, so passing
them with keywords makes for more readable code.

Planning for Flexibility

Planning parameter names, order, and default values is particularly important for
functions intended to be called by someone who didn’t write them, such as those
in distributed applications. If you don’t know the exact needs of the users who will
eventually be using your code, it’s best to move any assumptions you may have into
arguments that can be overridden later.

84

CHAPTER 3 FUNCTIONS

As an extremely simple example, consider a function that appends a prefix to a string:

7
def add_prefix(my string):

"""Adds a 'pro_' prefix before the new string is returned."""
return 'pro ' + my string
final_ string=input('Enter a string so we can put pro_ in front of it!: ')
print(add_prefix(final string))

The 'pro_' prefix here may make sense for the application it was written for, but
what happens when anything else wants to use it? Right now, the prefix is hard-coded
into the body of the function itself, so there’s no available alternative. Moving that
assumption into an argument makes for an easy way to customize the function later:

7
def add prefix(my string, prefix='pro '):
"""Adds a 'pro_' prefix before the string provided, a default value."""
return prefix + my_string
final string=input("Enter a string so we can put pro in front of it!: ")
print(add_prefix(final_string))

The function call without the prefix argument doesn’t need to change, so existing
code works just fine. The section on preloading arguments later in this chapter shows
how even the prefix can be changed and still be used by code that doesn’t know about it.

Of course, this example is far too simple to provide much real-world value, but the
functions illustrated throughout the rest of this book will take advantage of plenty of
optional arguments, showing their value in each situation.

Variable Positional Arguments

Most functions are designed to work on a specific set of arguments, but some can handle
any number of arguments, acting on each in turn. These may be passed into a single
argument as a tuple, list, or other iterable.

85

CHAPTER 3 FUNCTIONS

Take a typical shopping cart, for example. Adding items to the cart could be done one
at a time or in batches. Using a definition of a class, with a function inside, here’s how it
could be done, using a standard argument:

Oé

class ShoppingCart:
def add_to cart(items):
self.items.extend(items)

That would certainly do the trick, but now consider what that means for all the
code that has to call it. The common case would be to add just a single item, but as the
function always accepts a list, it would end up looking something like this:

Oé

cart.add to cart([item])

So we’ve basically sabotaged the majority case in order to support the minority.
Worse yet, if add_to_cart() originally supported just one item and was changed to
support multiples, this syntax would break any existing calls, requiring you to rewrite
them just to avoid a TypeError.

Ideally, the method should support the standard syntax for single arguments, while
still supporting multiple arguments. By adding an asterisk before an argument name,
you can specify that that all remaining positional arguments are collected into one tuple
bound to the argument prefixed with an asterisk that didn’t get assigned to anything
before it. In this case there are no other arguments, so variable positional arguments can
make up the entire argument list:

Oé

def add to cart(*items):
self.items.extend(items)

86

CHAPTER 3 FUNCTIONS

Now, the method can be called with any number of positional arguments rather
than having to group those arguments first into a tuple or list. The extra arguments are
bundled in a tuple automatically before the function starts executing. This cleans up
the common case, while still enabling more arguments as needs require. Here are a few

examples of how the method could be called:

Oé

cart.add to cart(item)
cart.add_to cart(itemi, item2)
cart.add _to cart(item1, item2, item3, item4, items)

There is still one more way to call this function that allows the calling code to support
any number of items as well, but it’s not specific to functions that are designed to accept
variable arguments. See the section on invoking functions with variable arguments for
all the details.

Variable Keyword Arguments

Functions may need to take extra configuration options, particularly if passing those
options to some other library further down the line. The obvious approach would be to
accept a dictionary, which can map configuration names to their values:

Oé

class ShoppingCart:
def init (self, options):
self.options = options

Unfortunately, that ends up with a problem similar to the one we encountered with
positional arguments described in the previous section. The simple case in which you
only override one or two values gets fairly complicated. Here are two ways the function
call could look, depending on preference:

87

CHAPTER 3 FUNCTIONS

Oé

options = {'currency': 'USD'}
cart = ShoppingCart(options)

cart = ShoppingCart({'currency': 'USD'})

Of course, this approach doesn’t scale any prettier than the list provided in the
positional argument problem from the previous section. Also, like the previous problem,
this can be problematic. If the function you're working with were previously set up to
accept some explicit keyword arguments, the new dictionary argument would break
compatibility.

Instead, Python offers the ability to pass a variable number of keyword arguments by
adding two asterisks before the name of the argument that will accept them. This allows
for the much friendlier keyword argument syntax, while still allowing for a fully dynamic
function call. Examine the following stub:

def _init (self, **options):
self.options = options

Now consider what that same stub function from earlier would look like, given that
the function now takes arbitrary keyword arguments:

cart = ShoppingCart(currency="USD")

Caution When working with variable arguments, there’s one difference between
positional and keyword arguments that can cause problems. Positional arguments
are grouped into a tuple, which is immutable, while keyword arguments are placed
into a dictionary, which is mutable (changeable).

88

CHAPTER 3 FUNCTIONS

BEAUTIFUL IS BETTER THAN UGLY

The second function call example here is a classic example of code that would generally be
considered ugly by many Python programmers. The sheer volume of punctuation—quotation
marks around both the key and value, a colon between them, and curly braces around the
whole thing—inside the already necessary parentheses make it very cluttered and difficult to
process at a glance.

E.g. cart = ShoppingCart({'currency': 'USD'})

By switching to keyword arguments, as shown in this section, the appearance of the code

is considerably better aligned with Python’s core values and philosophy. Beauty may be
subjective in its very nature, but certain subjective decisions are praised by the vast majority
of the programmers.

Combining Different Kinds of Arguments

These options for variable arguments combine with the standard options, such as
required and optional arguments. In order to make sure everything meshes nicely,
Python has some very specific rules for defining parameters in a function signature.
There are only four types of arguments, listed here in the order they generally appear in
functions:

o Required arguments

e Optional arguments

e Variable number of positional arguments
e Variable keyword arguments

Putting the required arguments first in the list ensures that positional arguments
satisfy the required arguments prior to getting into the optional arguments. Variable
arguments can only pick up values that didn’t fit into anything else, so they naturally get
defined at the end. Here’s how this stub would look in a typical function definition:

def create element(name, editable=True, *children, **attributes):

89

CHAPTER 3 FUNCTIONS

This same ordering can be used when calling functions, but it has one shortcoming.
In this example, you'd have to supply a value for editable as a positional argument in
order to pass in any children at all. It'd be better to be able to supply them right after the
name, avoiding the optional editable argument entirely most of the time.

To support this, Python also allows variable positional arguments to be placed
among standard arguments. Both required and optional arguments can be positioned
after the variable argument, but now they must be passed by keyword. All the arguments
are still available, but the less common ones become more optional when not required
and more explicit when they do make sense.

IN THE FACE OF AMBIGUITY, REFUSE THE TEMPTATION TO GUESS

By allowing positional arguments in the middle of a list of explicit arguments, Python might
have introduced a considerable ambiguity. Consider a function defined to pass commands
through to an arbitrary argument: perform_action(action, *args, log_output=False). Ordinarily,
you can supply enough positional arguments to reach even the optional arguments, but in this
case, what would happen if you supplied three or more values?

One possible interpretation is to give the first value to the first argument, the last value to
the last argument, and everything else to the variable argument. That could work, but then
it comes down to a guess as to the intent of the programmer making the call. Once you
consider a function with even more arguments behind the variable argument, the possible
interpretations become quite numerous.

Instead, Python strictly enforces that everything after the variable argument becomes
accessible by keyword only. Positional argument values beyond those explicitly defined in the
function go straight into the variable argument, whether just one or dozens were provided. The
implementation becomes easy to explain by having just one way to do it, and it's even more
explicit by enforcing the use of keywords.

An added feature of this behavior is that explicit arguments placed after variable
positional arguments can still be required. The only real difference between the two
types of placement is the requirement of using keyword arguments; whether the
argument requires a value still depends on whether you define a default argument:

90

CHAPTER 3 FUNCTIONS

>>> def join with_prefix(prefix, *segments, delimiter):
return delimiter.join(prefix + segment for segment in segments)

>>> join_with_prefix('P', 'ro', 'ython')
Traceback (most recent call last):

TypeError: join with prefix() needs keyword-only argument delimiter
>>> join with prefix('P', 'ro', 'ython', ' ")
Traceback (most recent call last):

TypeError: join with prefix() needs keyword-only argument delimiter

>>> join with prefix('P', 'ro', 'ython', delimiter=' ")
"Pro Python'

Note If you want to accept keyword-only arguments but you don’t have a good
use for variable positional arguments, simply specify a single asterisk without an
argument name. This tells Python that everything after the asterisk is keyword-
only, without also accepting potentially long sets of positional arguments. One
caveat is that if you also accept variable keyword arguments, you must supply at
least one explicit keyword argument. Otherwise, there’s really no point in using the
bare asterisk notation, and Python will raise a SyntaxError.

In fact, remember that the ordering requirements of required and optional
arguments are solely intended for the case of positional arguments. With the ability to
define arguments as being keyword-only, you're now free to define them as required and
optional in any order, without any complaints from Python. Ordering isn’t important
when calling the function, so it’s also not important when defining the function.
Consider rewriting the previous example to require the prefix as a keyword argument,
while also making the delimiter optional:

91

CHAPTER 3 FUNCTIONS

>>> def join with_prefix(*segments, delimiter=" ', prefix):

return delimiter.join(prefix + segment for segment in segments)
>>> join _with prefix('ro', 'ython', prefix='P")
"Pro Python'

Caution Be careful taking advantage of this level of flexibility, because it’s not
very straightforward compared to how Python code is typically written. It’s certainly
possible, but it runs contrary to what most Python programmers will expect, which
can make it difficult to maintain in the long run.

In all cases, however, variable keyword arguments must be positioned at the end of
the list, after all other types of arguments.

Invoking Functions with Variable Arguments

In addition to being able to define arguments that can accept any number of values, the
same syntax can be used to pass values into a function call. The big advantage to this is
that it’s not restricted to arguments that were defined to be variable in nature. Instead,
you can pass variable arguments into any function, regardless of how it was defined. The
*unpacks an iterable and passes its contents as separate arguments.

The same asterisk (*) notation is used to specify variable arguments, which are then
expanded into a function call as if all the arguments were specified directly. A single
asterisk specifies positional arguments, while two asterisks specify keyword arguments.
This is especially useful when passing in the return value of a function call directly as an
argument, without assigning it to individual variables first:

>>> value = 'ro ython'
>>> join with prefix(*value.split(' '), prefix='P")

92

CHAPTER 3 FUNCTIONS

This example seems obvious on its own, because it’s a variable argument being passed
in to a variable argument, but the same process works just fine on other types of functions
as well. Because the arguments get expanded before getting passed to the function, it can
be used with any function, regardless of how its arguments were specified. It can even be
used with built-in functions and those defined by extensions written in C.

Note You can only pass in one set of variable positional arguments and one set
of variable keyword arguments in a function call. If you have two lists of positional
arguments, for example, you’ll need to join them together yourself and pass that
combined list into the function instead of trying to use the two separately.

Passing Arguments

When you start adding a number of arguments to function calls, many of which are
optional, it becomes fairly common to know some of the argument values that will need
to be passed, even if it’s still long before the function will actually be called. Rather than
having to pass in all the arguments at the time the call is made, it can be quite useful to
apply some of those arguments in advance, so fewer can be applied later.

This concept is officially called partial application of the function, but the function
doesn’t get called at all yet, so it’s really more a matter of preloading some of the
arguments in advance. When the preloaded function is called later, any arguments
passed along are added to those that were provided earlier.

WHAT ABOUT CURRYING?

If you’re familiar with other forms of functional programming, you may have heard of currying,
which may look very similar to preloading arguments. Some frameworks have even provided
functions named curry() that can preload arguments on a function, which leads to even
more confusion. The difference between the two is subtle but important.

With a truly curried function, you must call it as many times as necessary to fill up all of the
arguments. If a function accepts three arguments and you call it with just one argument,
you’d get back a function that accepts two more arguments. If you call that new function,

it still won’t execute your code but will instead load the next argument and return another
function that takes the last remaining argument. Calling that function will finally satisfy all the
arguments, so the actual code will be executed and return a useful value.

93

CHAPTER 3 FUNCTIONS

Partial application returns a function which, when called later, will at least try to execute code,
no matter how many arguments may remain. If there are required arguments that haven'’t
gotten a value yet, Python will raise a TypeError just like it would if you had called it with
missing arguments any other time. So even though there are certainly similarities between the
two techniques, it’s important to understand the difference.

This behavior is provided as part of the built-in functools module, by way of
its partial() function. By passingin a callable and any number of positional and
keyword arguments, it will return a new callable that can be used later to apply those

arguments:

>>> import os
>>> def load file(file, base path="/"', mode="rb"):
return open(os.path.join(base path, file), mode)

>>> f = load file('example.txt')

>>> f.mode

b

>>> f.close()

>>> import functools

>>> load writable = functools.partial(load file, mode='w")
>>> f = load writable('example.txt")

>>> f.mode

W

>>> f.close()

Note The technique of preloading arguments is true for the partial() function,
but the technique of passing one function into another to get a new function back
is generally known as a decorator or higher order function. Decorators, as you'll
see later in this chapter, can perform any number of tasks when called; preloading
arguments is just one example.

94

CHAPTER 3 FUNCTIONS

This is commonly used to customize a more flexible function into something
simpler, so it can be passed into an API that doesn’t know how to access that flexibility.
By preloading the custom arguments beforehand, the code behind the API can call your
function with the arguments it knows how to use, but all the arguments will still come
into play.

Caution When using functools.partial(), you won't be able to provide any
new values for those arguments that were previously loaded. This is, of course,
standard behavior any time you try to supply multiple values for a single argument,
but the situation comes up much more often when you’re not supplying them all in
the same function call. For an alternative approach that addresses this issue, see
the “Decorators” section of this chapter.

Introspection

Python is very transparent, allowing code to inspect many aspects of objects at runtime.
Because functions are objects like any others, there are several things that your code
can glean from them, including the function signature, which specifies parameters.
Obtaining a function’s arguments directly requires going through a fairly complicated
set of attributes that describe Python’s bytecode structures, but thankfully Python also
provides some functions to make it easier.

Many of Python’s introspection features are available as part of the standard inspect
module, with its getfullargspec() function being of use for function arguments. It
accepts the function to be inspected and returns a named tuple of information about
that function’s arguments. The returned tuple contains values for every aspect of an
argument specification:

o args: Alist of explicit argument names

o varargs: The name of the variable positional argument

e varkw: The name of the variable keyword argument

o defaults: A tuple of default values for explicit arguments

o kwonlyargs: A list of keyword-only argument names

95

CHAPTER 3 FUNCTIONS

o kwonlydefaults: A dictionary of default values for keyword-only
arguments

e annotations: A dictionary of argument annotations, which will be
explained later in this chapter

To better illustrate what values are present in each part of the tuple, here’s how it
maps out to a basic function declaration:

>>> def example(a=1, b=1, *c, d, e=2, **f) -> str:
pass

>>> import inspect

>>> inspect.getfullargspec(example)

FullArgSpec(args=['a', 'b'], varargs='c', varkw='f', defaults=(1,),
kwonlyargs=[

'd", 'e'], kwonlydefaults={'e': 2}, annotations={'a': <class 'int'>,
'return': <

class 'str's>})

Example: Identifying Argument Values

Sometimes it can be useful to log what arguments a function will receive, regardless

of which function it is or what its arguments look like. This behavior often comes into
play in systems that generate argument lists based on something other than a Python
function call. Some examples include instructions from a template language and regular
expressions that parse text input.

Unfortunately, positional arguments present a bit of a problem because their values
don’t include the name of the argument they’ll be sent to. Default values also pose a
problem because the function call doesn’t need to include any values at all. Because
the log should include all the values that will be given to the function, both of these
problems will need to be addressed.

96

CHAPTER 3 FUNCTIONS

First, the easy part. Any argument values passed by keyword don’t need to be
matched up with anything manually, as the argument names are provided right with
the values. Rather than concerning ourselves with logging at the outset, let’s start with a
function to get all the arguments in a dictionary that can be logged. The function accepts
a function, a tuple of positional arguments, and a dictionary of keyword arguments:

7

def example(a=1, b=1, *c, d, e=2, **f) -> str:
pass

def get arguments(func, args, kwargs):
Given a function and a set of arguments, return a dictionary
of argument values that will be sent to the function.
We are modifying get arguments by adding new parts to it.
arguments = kwargs.copy()
return arguments

print(get_arguments(example, (1,), {'f': 4})) #will yield a result
of: {'f': 4}

That really was easy. The function makes a copy of the keyword arguments instead of
just returning it directly because we’ll be adding entries to that dictionary soon enough.
Next, we have to deal with positional arguments. The trick is to identify which argument
names map to the positional argument values, so that those values can be added to the
dictionary with the appropriate names. This is where inspect.getfullargspec() comes
into play, using zip() to do the heavy lifting:

7

1

def example(a=1, b=1, *c, d, e=2, **f) -> str:
pass

import inspect
def get arguments(func, args, kwargs):

97

CHAPTER 3 FUNCTIONS

Given a function and a set of arguments, return a dictionary
of argument values that will be sent to the function.
arguments = kwargs.copy()

spec = inspect.getfullargspec(func)
arguments.update(zip(spec.args, args))

return arguments
print(get arguments(example, (1,), {'f': 4})) # will output {'a': 1, 'f': 4}

Now that the positional arguments have been dealt with, let’s move on to figuring out
default values. If there are any default values that weren’t overridden by the arguments
provided, the defaults should be added to the argument dictionary, as they will be sent
to the function:

7

import inspect

def example(a=1, b=1, *c, d, e=2, **f) -> str:

pass

def get arguments(func, args, kwargs):
Given a function and a set of arguments, return a dictionary
of argument values that will be sent to the function.
arguments = kwargs.copy()
spec = inspect.getfullargspec(func)
arguments.update(zip(spec.args, args))

if spec.defaults:
for i, name in enumerate(spec.args[-len(spec.defaults):]):
if name not in arguments:
arguments[name] = spec.defaults[i]

return arguments
print(get arguments(example, (1,), {'f': 4})) # will output {'a': 1, 'b': 1, 'f': 4}

98

CHAPTER 3 FUNCTIONS

Because optional arguments must come after required arguments, this addition uses
the size of the defaults tuple to determine the names of the optional argument. Looping
over them, it then assigns only those values that weren’t already provided. Unfortunately,
this is only half of the default value situation. Because keyword-only arguments can take
default values as well, getfullargspec() returns a separate dictionary for those values:

7

import inspect

def example(a=1, b=1, *c, d, e=2, **f) -> str:

pass

def get arguments(func, args, kwargs):
Given a function and a set of arguments, return a dictionary
of argument values that will be sent to the function.
arguments = kwargs.copy()
spec = inspect.getfullargspec(func)
arguments.update(zip(spec.args, args))

for i, name in enumerate(spec.args[-len(spec.defaults)]):
if name not in arguments:
arguments[name] = spec.defaults[i]

if spec.kwonlydefaults:
for name, value in spec.kwonlydefaults.items():
if name not in arguments:
arguments[name] = value

return arguments
print(get_arguments(example, (1,), {'f': 4})) # will yield {'a': 1, 'b': 1,
'e': 2, 'f': 4}

Because default values for keyword-only arguments also come in dictionary form,
it's much easier to apply those because the argument names are known in advance. With
that in place, get_arguments() can produce a more complete dictionary of arguments
that will be passed to the function. Unfortunately, because this returns a dictionary

99

CHAPTER 3 FUNCTIONS

and variable positional arguments have no names, there’s no way to add them to the
dictionary. This limits its usefulness a bit, but it’s still valid for a great many function
definitions.

Example: A More Concise Version

The previous example is certainly functional, but it’s a bit more code than is really
necessary. In particular, it takes a fair amount of work supplying default values when
explicit values aren’t provided. That’s not very intuitive, however, because we usually
think about default values the other way around: they’re provided first, then overridden
by explicit arguments.

The get_arguments () function can be rewritten with that in mind by bringing the
default values out of the function declaration first, before replacing them with any values
passed in as actual arguments. This avoids a lot of the checks that have to be made to
make sure nothing gets overwritten accidentally.

The first step is to get the default values out. Because the defaults and
kwonlydefaults attributes of the argument specification are set to None if no default
values were specified, we actually have to start by setting up an empty dictionary to
update. Then the default values for positional arguments can be added in.

Because this only needs to update a dictionary this time, without regard for what
might be in it already, it’s a bit easier to use a different technique to get the positional
defaults. Rather than using a complex slice that’s fairly difficult to read, we can use a
similar zip() to what was used to get the explicit argument values. By first reversing the
argument list and the default values, they still match up starting at the end:

Y
def example(a=1, b=1, *c, d, e=2, **f) -> str:

pass
def get arguments(func, args, kwargs):
Given a function and a set of arguments, return a dictionary
of argument values that will be sent to the function.

100

CHAPTER 3 FUNCTIONS

arguments = {}
spec = inspect.getfullargspec(func)

if spec.defaults:
arguments.update(zip(reversed(spec.args), reversed(spec.defaults)))

return arguments
print(get arguments(example, (1,), {'f': 4})) # will output {'b': 1}

Adding default values for keyword arguments is much easier because the argument
specification already supplies them as a dictionary. We can just pass that straight into an
update() of the argument dictionary and move on:

L
def example(a=1, b=1, *c, d, e=2, **f) -> str:
pass
def get arguments(func, args, kwargs):
Given a function and a set of arguments, return a dictionary
of argument values that will be sent to the function.
arguments = {}
spec = inspect.getfullargspec(func)

if spec.defaults:

arguments.update(zip(reversed(spec.args), reversed(spec.defaults)))
if spec.kwonlydefaults:

arguments.update(spec.kwonlydefaults)

return arguments
print(get arguments(example, (1,), {'f': 4})) # will output {'b': 1, 'e': 2}

Now all that’s left is to add the explicit argument values that were passed in. The
same techniques used in the earlier version of this function will work here, with the only
exception being that keyword arguments are passed in an update() function instead of
being copied to form the argument dictionary in the first place:

101

CHAPTER 3 FUNCTIONS

7
def example(a=1, b=1, *c, d, e=2, **f) -> str:
pass
def get arguments(func, args, kwargs):
Given a function and a set of arguments, return a dictionary
of argument values that will be sent to the function.
arguments = {}
spec = inspect.getfullargspec(func)

if spec.defaults:

arguments.update(zip(reversed(spec.args), reversed(spec.defaults)))
if spec.kwonlydefaults:

arguments.update(spec.kwonlydefaults)
arguments.update(zip(spec.args, args))
arguments.update(kwargs)

return arguments

print(get _arguments(example, (1,), {'f': 4})) # will output {'a': 1, 'b":
1, 'e': 2, 'f': 4}

With that, we have a much more concise function that works the way we normally
think of default argument values. This type of refactoring is fairly common after you get
more familiar with the advanced techniques available to you. It’s always useful to look
over old code to see if there’s an easier, more straightforward way to go about the task at
hand. This will often make your code faster as well as more readable and maintainable
going forward. Now we'll extend our solution to also validate arguments.

Example: Validating Arguments

Unfortunately, that doesn’t mean that the arguments returned by get_arguments() are
capable of being passed into the function without errors. As it stands, get_arguments()
assumes that any keyword arguments supplied are in fact valid arguments for the

102

CHAPTER 3 FUNCTIONS

function, but that isn’t always the case. In addition, any required arguments that didn’t
get a value will cause an error when the function is called. Ideally, we should be able to
validate the arguments as well.

We can start with get_arguments(), so we have a dictionary of all the values that will
be passed to the function, then we have two validation tasks: make sure all arguments
have values and make sure no arguments were provided that the function doesn’t know
about. The function itself may impose additional requirements on the argument values,
but as a generic utility, we can’t make any assumptions about the content of any of the
provided values.

Let’s start off with making sure all the necessary values were provided. We don’t
have to worry as much about required or optional arguments this time around, since
get_arguments() already makes sure optional arguments have their default values. Any
argument left without a value is therefore required:

Oé

import itertools

def validate arguments(func, args, kwargs):
Given a function and its arguments, return a dictionary
with any errors that are posed by the given arguments.
arguments = get arguments(func, args, kwargs)
spec = inspect.getfullargspec(func)
declared args = spec.args[:]
declared args.extend(spec.kwonlyargs)
errors = {}

for name in declared args:
if name not in arguments:
errors[name] = "Required argument not provided."

return errors

103

CHAPTER 3 FUNCTIONS

With the basics in place to validate that all required arguments have values, the
next step is to make sure the function knows how to deal with all the arguments that
were provided. Any arguments passed in that aren’t defined in the function should be

considered an error:

Oé

import itertools

def validate arguments(func, args, kwargs):
Given a function and its arguments, return a dictionary
with any errors that are posed by the given arguments.
arguments = get arguments(func, args, kwargs)
spec = inspect.getfullargspec(func)
declared args = spec.args[:]
declared args.extend(spec.kwonlyargs)
errors = {}

for name in declared args:
if name not in arguments:
errors[name] = "Required argument not provided."

for name in arguments:
if name not in declared_args:
errors[name] = "Unknown argument provided."

return errors

Of course, because this relies on get_arguments(), it inherits the same limitation
of variable positional arguments. This means validate arguments() may sometimes
return an incomplete dictionary of errors. Variable positional arguments present an
additional challenge that can’t be addressed with this function. A more comprehensive
solution is provided in the section on function annotations.

104

CHAPTER 3 FUNCTIONS

Decorators

When dealing with a large codebase, it’s very common to have a set of tasks that need to

be performed by many different functions, usually before or after doing something more
specific to the function at hand. The nature of these tasks is as varied as the projects that
use them, but here are some of the more common examples of where decorators are

used:
e Access control
e Cleanup of temporary objects
e Error handling
e Caching
o Logging

In all of these cases, there’s some boilerplate code that needs to be executed before
or after what the function’s really trying to do. Rather than copying that code into each
function, it would be better if it could be written once and simply applied to each
function that needs it. This is where decorators come in.

Technically, decorators are just simple functions designed with one purpose: accept
a function and return a function. The function returned can be the same as the one
passed in, or it could be completely replaced by something else along the way. The
most common way to apply a decorator is using a special syntax designed just for this
purpose. Here’s how you could apply a decorator designed to suppress any errors during
the execution of a function:

Oé

import datetime
from myapp import suppress errors

@suppress_errors
def log error(message, log file='errors.log'):

Log an error message to a file.

log = open(log file, 'w")
log.write('%s\t%s\n' % (datetime.datetime.now(), message))

105

CHAPTER 3 FUNCTIONS

This syntax tells Python to pass the log_error() function as an argument to the
suppress_errors() function, which then returns a replacement to use instead. It’s easier
to understand what happens behind the scenes by examining the process used in older
versions of Python, before the @ syntax was introduced in Python 2.4:

Oé

#Python 2.x example
import datetime
from myapp import suppress_errors

def log_error(message, log_file='errors.log'):
Log an error message to a file."""

log = open(log file, 'w")
log.write('%s\t%s\n' % (datetime.datetime.now(), message))
log_error = suppress_errors(log_error)

DON’T REPEAT YOURSELF/READABILITY COUNTS

When using the older decoration approach, notice that the name of the function is written
three different times. Not only is this some extra typing that seems unnecessary; it
complicates matters if you ever need to change the function name, and it only gets worse
the more decorators you add. The newer syntax can apply a decorator without repeating the
function name, no matter how many decorators you use.

0Of course, the @ syntax does have one other benefit, which greatly helps its introduction: it
keeps decorators right near the function’s signature. This makes it easy to see at a glance
which decorators are applied, which more directly conveys the total behavior of the function.
Having them at the bottom of the function requires more effort to understand the complete
behavior, so by moving decorators up to the top, readability is greatly enhanced.

The older option is still available and behaves identically to the @ syntax. The only
real difference is that the @ syntax is only available when defining the function in the
source file. If you want to decorate a function that was imported from elsewhere, you'll
have to pass it into the decorator manually, so it’s important to remember both ways it

can work:

106

CHAPTER 3 FUNCTIONS

Oé

from myapp import log error, suppress_errors
log error = suppress errors(log error)

To understand what commonly goes on inside decorators like log_error(), it’s
necessary to first examine one of the most misunderstood and underutilized features of
Python, and many other languages as well: closures.

Closures

Despite their usefulness, closures can seem to be an intimidating topic. Most
explanations assume prior knowledge of things such as lexical scope, free variables,
upvalues, and variable extent. Also, because so much can be done without ever learning
about closures, the topic often seems mysterious and magical, as if it's the domain of
experts, unsuitable for the rest of us. Thankfully, closures really aren’t as difficult to
understand as the terminology may suggest.

In a nutshell, a closure is a function that’s defined inside another function but is then
passed outside that function where it can be used by other code. There are some other
details to learn as well, but it’s still fairly abstract at this point, so here’s a simple example
of a closure:

7
def multiply by(factor):

"""Return a function that multiplies values by the given factor
def multiply(value):

Multiply the given value by the factor already provided"""
return value * factor
return multiply
times2=multiply by(2)
print(times2(2))

107

CHAPTER 3 FUNCTIONS

Asyou can see, when you callmultiply by() with a value to use as a multiplication
factor, the inner multiply() gets returned to be used later on. Here’s how it would
actually be used, which may help explain why this is useful. If you key in the previous
code line by line from a Python prompt, the following would give you an idea about how
this works:

>>> times2 = multiply by(2)
>>> times2(5)

10

>>> times2(10)

20

>>> times3 = multiply by(3)
>>> times3(5)

15

>>> times2(times3(5))

30

This behavior looks a bit like the argument preloading feature of functools.partial(),
but you don’t need to have a function that takes both arguments at once. The interesting
part of about how this works, however, is that the inner function doesn’t need to accept a
factor argument of its own; it essentially inherits that argument from the outer function.

The fact that an inner function can reference the values of an outer function often
seems perfectly normal when looking at the code, but there are a couple of rules about
how it works that might not be as obvious. First, the inner function must be defined
within the outer function; simply passing in a function as an argument won't work:

Oé

def multiply(value):
return value * factor

def custom operator(func, factor):
return func

multiply by = functools.partial(custom operator, multiply)

108

CHAPTER 3 FUNCTIONS

On the surface, this looks mostly equivalent to the working example shown
previously, but with the added benefit of being able to provide a callable at runtime.
After all, the inner function gets placed inside the outer function and gets returned for
use by other code. The problem is that closures only work if the inner function is actually
defined inside the outer function, not just anything that gets passed in:

>>> times2 = multiply by(2)
>>> times2(5)
Traceback (most recent call last):

NameError: global name 'factor' is not defined

This almost contradicts the functionality of functools.partial (), which works
much like the custom operator() function described here, but remember that
partial() accepts all of the arguments at the same time as it accepts the callable to be
bundled with them. It doesn’t try to pull in any arguments from anywhere else.

Wrappers

Closures come into play heavily in the construction of wrappers, the most common use
of decorators. Wrappers are functions designed to contain another function, adding
some extra behavior before or after the wrapped function executes. In the context of the
closure discussion, a wrapper is the inner function, while the wrapped function is passed
in as an argument to the outer function. Here’s the code behind the suppress_errors()
decorator shown in the previous section:

Oé

def suppress errors(func):

Automatically silence any errors that occur within a function

def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)

109

CHAPTER 3 FUNCTIONS

except Exception:
pass

return wrapper

A few things are going on here, but most of them have already been covered. The
decorator takes a function as its only argument, which isn’t executed until the inner
wrapper function executes. By returning the wrapper instead of the original function, we
form a closure, which allows the same function name to be used even after suppress
errors() is done.

Because the wrapper has to be called as if it were the original function, regardless of
how that function was defined, it must accept all possible argument combinations. This
is achieved by using variable positional and keyword arguments together and passing
them straight into the original function internally. This is a very common practice with
wrappers because it allows maximum flexibility, without caring what type of function it’s
applied to.

The actual work in the wrapper is quite simple: just execute the original function
inside a try/except block to catch any exceptions that are raised. In the event of any
errors it just continues merrily along, implicitly returning None instead of doing anything
interesting. It also makes sure to return any value returned by the original function, so
that everything meaningful about the wrapped function is maintained.

In this case the wrapper function is fairly simple, but the basic idea works for many
more complex situations as well. There could be several lines of code both before and after
the original function is called, perhaps with some decisions about whether it is called at
all. Authorization wrappers, for instance, will typically return or raise an exception without
ever calling the wrapped function, if the authorization failed for any reason.

Unfortunately, wrapping a function means some potentially useful information is
lost. Chapter 5 shows how Python has access to certain attributes of a function, such as
its name, docstring, and argument list. By replacing the original function with a wrapper,
we've actually replaced all of that other information as well. In order to bring some of it
back, we turn to a decorator in the functools module called wraps.

It may seem odd to use a decorator inside a decorator, but it really just solves the
same problem as anything else: there’s a common need that shouldn’t require duplicate
code everywhere it takes place. The functools.wraps() decorator copies the name,
docstring, and some other information over to the wrapped function, so at least some of
it gets retained. It does not copy over the argument list, but it’s better than nothing:

110

CHAPTER 3 FUNCTIONS

Oé

import functools

def suppress_errors(func):
"""Automatically silence any errors that occur within a function

@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception:
pass

return wrapper

What may seem most odd about this construction is that functools.wraps() takes
an argument in addition to the function to which it’s applied. In this case, that argument
is the function to copy attributes from, which is specified on the line with the decorator
itself. This is often useful for customizing decorators for specific tasks, so next we’ll
examine how to take advantage of custom arguments in your own decorators.

Decorators with Arguments

Ordinarily decorators only take a single argument, the function to be decorated. Behind
the scenes, though, Python evaluates the @ line as an expression before applying it as

a decorator. The result of the expression is what’s actually used as a decorator. In the
simple case, the decorator expression is just a single function, so it evaluates easily.
Adding arguments in the form used by functools.wraps() makes the whole statement
evaluate like this:

wrapper = functools.wraps(func)(wrapper)

Looking at it this way, the solution becomes clear: one function returns another. The
first function accepts the extra arguments and returns another function, which is used
as the decorator. This makes implementing arguments on a decorator more complex

111

CHAPTER 3 FUNCTIONS

because it adds another layer to the whole process, but it’s easy to deal with once you see
itin context. Here’s how everything works together in the longest chain you're likely to see:

e A function to accept and validate arguments, and also return a
function that decorates the original

e A decorator to accept a user-defined function
e Awrapper to add extra behavior
o The original function that was decorated

Not all of that will happen for every decorator, but that’s the general approach of
the most complex scenarios. Anything more complicated is simply an expansion of one
of those four steps. As you'll notice, three of the four have already been covered, so the
extra layer imposed by decorator arguments is really the only thing left to discuss.

This new outermost function accepts all the arguments for the decorator, optionally
validates them, and returns a new function as a closure over the argument variables.
That new function must take a single argument, functioning as the decorator. Here’s how
the suppress_errors() decorator might look if it instead accepted a logger function to
report the errors to, rather than completely silencing them:

Oé

import functools

def suppress_errors(log_func=None):

Automatically silence any errors that occur within a function

def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
if log_func is not None:
log_func(str(e))

return wrapper

return decorator

112

CHAPTER 3 FUNCTIONS

This layering allows suppress_errors() to accept arguments prior to being used as
a decorator, but it removes the ability to call it without any arguments. Because that was
the previous behavior, we've now introduced a backward incompatibility. The closest we
can get to the original syntax is to actually call suppress_errors() first, but without any
arguments.

Here’s an example function that processes updates files in a given directory. This is a
task that’s often performed on an automated schedule, so that if something goes wrong,
it can just stop running and try again at the next appointed time:

Oé

import datetime

import os

import time

from myapp import suppress_errors

@suppress_errors()

def process updated files(directory, process, since=None):
Processes any new files in a “directory” using the “process’ function.
If provided, “since” is a date after which files are considered updated.

The process function passed in must accept a single argument: the absolute
path to the file that needs to be processed.
if since is not None:
Cet a threshold that we can compare to the modification time later
threshold = time.mktime(since.timetuple()) + since.microsecond / 1000000
else:
threshold = 0

for filename in os.listdir(directory):
path = os.path.abspath(os.path.join(directory, filename))
if os.stat(path).st mtime > threshold:
process(path)

Unfortunately, this is still a strange situation to end up with, and it really doesn’t look
like anything that Python programmers are used to. Clearly, we need a better solution.

113

CHAPTER 3 FUNCTIONS

Decorators with—or without—Arguments

Ideally, a decorator with optional arguments would be able to be called without
parentheses if no arguments are provided, while still being able to provide the arguments
when necessary. This means supporting two different flows in a single decorator, which
can get tricky if you're not careful. The main problem is that the outermost function must
be able to accept arbitrary arguments or a single function, and it must be able to tell the
difference between the two and behave accordingly.

That brings us to the first task: determining which flow to use when the outer function
is called. One option would be to inspect the first positional argument and check to see if
it’s a function, since decorators always receive the function as a positional argument.

Interestingly, a pretty good distinction can be made based on something mentioned
briefly in the previous paragraph. Decorators always receive the decorated function
as a positional argument, so we can use that as its distinguishing factor. For all other
arguments we can instead rely on keyword arguments, which are generally more explicit
anyway, thus making it more readable as well.

We could do this by way of using *args and **kwargs, but because we know the
positional argument list is just a fixed single argument, it’s easier to just make that the
first argument and make it optional. Then, any additional keyword arguments can be
placed after it. They’ll all need default values, of course, but the whole point here is that
all arguments are optional, so that’s not a problem.

With the argument distinction squared away, all that’s left is to branch into a
different code block if arguments are provided, rather than a function to be decorated.
By having an optional first positional argument, we can simply test for its presence to
determine which branch to go through:

Oé

import functools

def suppress_errors(func=None, log func=None):
"""Automatically silence any errors that occur within a function

def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:

114

CHAPTER 3 FUNCTIONS

return func(*args, **kwargs)
except Exception as e:
if log func is not None:
log func(str(e))

return wrapper

if func is None:
return decorator
else:
return decorator(func)

This now allows suppress_errors() to be called with or without arguments, but it’s
still important to remember that arguments must be passed with keywords. This is an
example in which an argument looks identical to the function being decorated. There’s
no way to tell the difference by examining them, even if we tried.

If a logger function is provided as a positional argument, the decorator will assume
it’s the function to be decorated, so it'll actually execute the logger immediately, with
the function to be decorated as its argument. In essence, you'll end up logging the
function you wanted to decorate. Worse yet, the value you're left with after decorating
the function is actually the return value from the logger, not the decorator. Because
most loggers don’t return anything, it'll probably be None—that’s right, your function
has vanished. Given that you keyed in the aforementioned functions, you can try the
following from a prompt:

>>> def print_logger(message):
print(message)

>>> @suppress_errors(print logger)
... def example():
return variable which does not_exist

<function example at Ox...>
>>> example
>>>

115

CHAPTER 3 FUNCTIONS

This is a side effect of the way the decorator works, and there’s little to be done other
than documenting it and making sure you always specify keywords when applying arguments.

Example: Memoization

To demonstrate how decorators can copy out common behavior into any function you
like, consider what could be done to improve the efficiency of deterministic functions.
Deterministic functions always return the same result given the same set of arguments,
no matter how many times they’re called. Given such a function, it should be possible to
cache the results of a given function call so if it’s called with the same arguments again,
the result can be looked up without having to call the function again.

Using a cache, a decorator can store the result of a function using the argument list
as its key. Dictionaries can’t be used as keys in a dictionary, so only positional arguments
can be taken into account when populating the cache. Thankfully, most functions that
would take advantage of memoization are simple mathematical operations, which are
typically called with positional arguments anyway:

Oé

def memoize(func):
Cache the results of the function so it doesn't need to be called
again, if the same arguments are provided a second time.

cache = {}

@functools.wraps(func)
def wrapper(*args):
if args in cache:
return cache[args]

This line is for demonstration only.
Remove it before using it for real.
print('Calling %s()' % func. name_)

result = func(*args)
cache[args] = result
return result

return wrapper
116

CHAPTER 3 FUNCTIONS

Now, whenever you define a deterministic function, you can use the memoize()
decorator to automatically cache its result for future use. Here’s how it would work for
some simple mathematical operations. Again, given you keyed in the aforelisted stub, try
the following:

>>> @memoize
... def multiply(x, y):
return x * y

>>> multiply(6, 7)

Calling multiply()

42

>>> multiply(6, 7)

42

>>> multiply(4, 3)

Calling multiply()

12

>>> @memoize

... def factorial(x):
result = 1
for i in range(x):

result *= i + 1

return result

>>> factorial(5)
Calling factorial()
120

>>> factorial(5)
120

>>> factorial(7)
Calling factorial()
5040

117

CHAPTER 3 FUNCTIONS

Caution Memoization is best suited for functions with a few arguments, which
are called with relatively few variations in the argument values. Functions that are
called with a large number of arguments or have a lot of variety in the argument
values that are used will quickly fill up a lot of memory with the cache. This can
slow down the entire system, with the only benefit being the minority of cases
where arguments are reused. Also, functions that aren’t truly deterministic will
actually cause problems because the function won’t be called every time.

Example: A Decorator to Create Decorators

Astute readers will have noticed something of a contradiction in the descriptions of
the more complex decorator constructs. The purpose of decorators is to avoid a lot of
boilerplate code and simplify functions, but the decorators themselves end up getting
quite complicated just to support features such as optional arguments. Ideally, we could
put that boilerplate into a decorator as well, simplifying the process for new decorators.
Because decorators are Python functions, just like those they decorate, this is quite
possible. As with the other situations, however, there’s something that needs to be taken
into account. In this case, the function you define as a decorator will need to distinguish
between the arguments meant for the decorator and those meant for the function it
decorates:

Oé

def decorator(declared decorator):
"""Create a decorator out of a function, which will be used as a wrapper.

@functools.wraps(declared decorator)

def final decorator(func=None, **kwargs):
This will be exposed to the rest
of your application as a decorator

def decorated(func):
This will be exposed to the rest
of your application as a decorated

118

CHAPTER 3 FUNCTIONS

function, regardless how it was called
@functools.wraps(func)
def wrapper(*a, **kw):

This is used when actually executing

the function that was decorated

return declared decorator(func, a, kw, **kwargs)

return wrapper

if func is None:
The decorator was called with arguments,
rather than a function to decorate
return decorated
else:
The decorator was called without arguments,
so the function should be decorated immediately
return decorated(func)

return final_decorator

With this in place, you can define your decorators in terms of the wrapper function
directly; then, just apply this decorator to manage the overhead behind the scenes.
Your declared functions must always accept three arguments now, with any additional
arguments added on beyond that. The three required arguments are shown in the
following list:

o The function that will be decorated, which should be called if
appropriate

e Atuple of positional arguments that were supplied to the decorated
function

e Adictionary of keyword arguments that were supplied to the
decorated function

With these arguments in mind, here’s how you might define the suppress_errors()
decorator described previously in this chapter:

119

CHAPTER 3 FUNCTIONS

>>> @decorator
... def suppress errors(func, args, kwargs, log func=None):
try:
return func(*args, **kwargs)
except Exception as e:
if log_func is not None:
log func(str(e))

>>> @suppress_errors
... def example():
return variable which does not_exist

>>> example() # Doesn't raise any errors
>>> def print_logger(message):
print(message)

>>> @suppress_errors(log func=print_logger)
... def example():
return variable which does not exist

>>> example()
global name 'variable which_does not exist' is not defined

Function Annotations

There are typically three aspects of a function that don’t deal with the code within it: a
name, a set of arguments, and an optional docstring. Sometimes, however, that’s not
quite enough to fully describe how the function works or how it should be used. Static-
typed languages—such as Java, for example—also include details about what type of
values are allowed for each of the arguments, as well as what type can be expected for
the return value.

120

CHAPTER 3 FUNCTIONS

Python’s response to this need is the concept of function annotations. Each
argument, as well as the return value, can have an expression attached to it, which
describes a detail that can’t be conveyed otherwise. This could be as simple as a type,
such as int or str, which is analogous to static-typed languages, as shown in the
following example stub:

def prepend rows(rows:list, prefix:str) -»> list:
return [prefix + row for row in rows]

The biggest difference between this example and traditional static-typed languages
isn’t a matter of syntax; it’s that in Python annotations can be any expression, not just a
type or a class. You could annotate your arguments with descriptive strings, calculated
values, or even inline functions—see this chapter’s section on lambdas for details.
Here’s what the previous example might look like if annotated with strings as additional

documentation:

Oé

def prepend rows(rows:"a list of strings to add to the prefix",
prefix:"a string to prepend to each row provided",
) -> "a new list of strings prepended with the prefix":
return [prefix + row for row in rows]

Of course, this flexibility might make you wonder about the intended use for function
annotations, but there isn’t one, and that’s deliberate. Officially, the intent behind
annotations is to encourage experimentation in frameworks and other third-party
libraries. The two examples shown here could be valid for use with type checking and
documentation libraries, respectively.

Example: Type Safety

To illustrate how annotations can be used by a library, consider a basic implementation
of a type safety library that can understand and utilize the function described previously.
It would expect argument annotations to specify a valid type for any incoming
arguments, while the return annotation would be able to validate the value returned by
the function.

121

CHAPTER 3 FUNCTIONS

Because type safety involves verifying values before and after the function is
executed, a decorator is the most suitable option for the implementation. Also, because
all of the type-hinting information is provided in the function declaration, we don’t need
to worry about any additional arguments, so a simple decorator will suffice. The first
task, however, is to validate the annotations themselves, as they must be valid Python
types in order for the rest of the decorator to work properly:

Oé

import inspect

def typesafe(func):
Verify that the function is called with the right argument types and
that it returns a value of the right type, according to its annotations

spec = inspect.getfullargspec(func)

for name, annotation in spec.annotations.items():
if not isinstance(annotation, type):
raise TypeError("The annotation for '%s' is not a type." % name)

return func

So far this doesn’t do anything to the function, but it does check to see that each
annotation provided is a valid type, which can then be used to verify the type of the
arguments referenced by the annotations. This uses isinstance(), which compares an
object to the type it’s expected to be. More information on isinstance() and on types
and classes in general can be found in Chapter 4.

Now that we can be sure all the annotations are valid, it’s time to start validating
some arguments. Given how many types of arguments there are, let’s take them one at a
time. Keyword arguments are the easiest to start out with, since they already come with
their name and value tied together, so that’s one less thing to worry about. With a name,
we can get the associated annotation and validate the value against that. This would also
be a good time to start factoring out some things, as we’ll end up having to use some of
the same things over and over again. Here’s how the wrapper would look to begin with:

122

CHAPTER 3 FUNCTIONS

Oé

import functools
import inspect

def typesafe(func):

Verify that the function is called with the right argument types and
that it returns a value of the right type, according to its annotations
spec = inspect.getfullargspec(func)

annotations = spec.annotations

for name, annotation in annotations.items():
if not isinstance(annotation, type):
raise TypeError("The annotation for '%s' is not a type." % name)

error = "Wirong type for %s: expected %s, got %s."

@functools.wraps(func)
def wrapper(*args, **kwargs):
Deal with keyword arguments
for name, arg in kwargs.items():
if name in annotations and not isinstance(arg, annotations[name]):
raise TypeError(error % (name,
annotations[name].__name__,
type(arg).__name__))
return func(*args, **kwargs)
return wrapper

By now, this should be fairly self-explanatory. Any keyword arguments provided

will be checked to see if there’s an associated annotation. If there is, the provided value

is checked to make sure it’s an instance of the type found in the annotation. The error

message is factored out because it'll get reused a few more times before we're done.

Next up is dealing with positional arguments. Once again, we can rely on zip() to

line up the positional argument names with the values that were provided. Because the

result of zip() is compatible with the items() method of dictionaries, we can actually

use chain() from the itertools module to link them together into the same loop:

123

CHAPTER 3 FUNCTIONS

Oé

Part one: add part two to this to see it in action as a script:

import functools
import inspect
from itertools import chain

def typesafe(func):
Verify that the function is called with the right argument types and
that it returns a value of the right type, according to its annotations
spec = inspect.getfullargspec(func)
annotations = spec.annotations
for name, annotation in annotations.items():
if not isinstance(annotation, type):
raise TypeError("The annotation for '%s' is not a type." % name)

error = "Wrong type for %s: expected %s, got %s."

@functools.wraps(func)
def wrapper(*args, **kwargs):
Deal with keyword arguments
for name, arg in chain(zip(spec.args, args), kwargs.items()):
if name in annotations and not isinstance(arg, annotations[name]):
raise TypeError(error % (name,
annotations[name]. name ,
type(arg). name_))
return func(*args, **kwargs)
return wrapper

Although that takes care of both positional and keyword arguments, it’s not
everything. Because variable arguments can also accept annotations, we have to
account for argument values that don’t line up as nicely with defined argument names.
Unfortunately, there’s something else that must be dealt with before we can do much of
anything on that front.

124

CHAPTER 3 FUNCTIONS

If you're paying really close attention, you might notice a very subtle bug in the
code as it stands. In order to make the code a bit easier to follow and to account for any
arguments that are passed by keywords, the wrapper iterates over the kwargs dictionary
in its entirely, checking for associated annotations. Unfortunately, that leaves us with the
possibility of an unintentional name conflict.

To illustrate how the bug could be triggered, first consider what would be expected
when dealing with variable arguments. Because we can only apply a single annotation
to the variable argument name itself, that annotation must be assumed to apply to all
arguments that fall under that variable argument, whether passed positionally or by
keyword. Without explicit support for that behavior yet, variable arguments should just
be ignored, but here’s what happens with the code as it stands:

7

1

Part two: put this at the end of the script you just keyed in:

@typesafe
def example(*args:int, **kwargs:str):
pass

print(example(spam="eggs')) #fine
print(example(kwargs="spam')) #fine
print(example(args="spam')) # not fine!

output will be:

#Traceback (most recent call last):

#TypeError: Wrong type for args: expected int, got str.

Interestingly, everything works fine unless the function call includes a keyword
argument with the same name as the variable positional argument. Although it may not
seem obvious at first, the problem is actually in the set of values to iterate over in the
wrapper’s only loop. It assumes that the names of all the keyword arguments line up
nicely with annotations.

Basically, the problem is that keyword arguments that are meant for the variable
argument end up getting matched up with annotations from other arguments. For the
most part, this is acceptable because two of the three types of arguments won’t ever
cause problems. Matching it with an explicit argument name simply duplicates what
Python already does, so using the associated annotation is fine, and matching the

125

CHAPTER 3 FUNCTIONS

variable keyword argument name ends up using the same annotation that we were
planning on using anyway.

So the problem only crops up when a keyword argument matches the variable
positional argument name, because that association never makes sense. Sometimes if
the annotation is the same as that of the variable keyword argument, the problem might
never show up, but it’s still there, regardless. Because the code for the wrapper function
is still fairly minimal, it’s not too difficult to see where the problem is occurring.

In the main loop, the second part of the iteration chain is the list of items in the
kwargs dictionary. That means everything passed in by keyword is checked against
named annotations, which clearly isn’t always what we want. Instead, we only want to
loop over the explicit arguments at this point, while still supporting both positions and
keywords. That means we’ll have to construct a new dictionary based on the function
definition, rather than taking the easy way out and relying on kwargs, as we are now.
The outer typesafe() function has been removed from the listing here to make the code
easier to digest in print:

Oé

def wrapper(*args, **kwargs):
Populate a dictionary of explicit arguments passed positionally
explicit_args = dict(zip(spec.args, args))

Add all explicit arguments passed by keyword
for name in chain(spec.args, spec.kwonlyargs):
if name in kwargs:
explicit_args[name] = kwargs[name]

Deal with explicit arguments
for name, arg in explicit args.items():
if name in annotations and not isinstance(arg, annotations[name]):
raise TypeError(error % (name,
annotations[name]. name ,

type(arg). name_))

return func(*args, **kwargs)

126

CHAPTER 3 FUNCTIONS

With that bug out of the way, we can focus on properly supporting variable
arguments. Because keyword arguments have names but positional arguments don't,
we can’t manage both types in one pass like we could with the explicit arguments. The
processes are fairly similar to the explicit arguments, but the values to iterate over are
different in each case. The biggest difference, however, is that the annotations aren’t
referenced by the name of the arguments.

In order to loop over just the truly variable positional arguments, we can simply use
the number of explicit arguments as the beginning of a slice on the positional arguments
tuple. This gets us all positional arguments provided after the explicit arguments or an
empty list if only explicit arguments were provided.

For keyword arguments, we have to be a bit more creative. Because the function
already loops over all the explicitly declared arguments at the beginning, we can use that
same loop to exclude any matching items from a copy of the kwargs dictionary. Then we
can iterate over what's left over to account for all the variable keyword arguments:

Oé

def wrapper(*args, **kwargs):
Populate a dictionary of explicit arguments passed positionally
explicit args = dict(zip(spec.args, args))
keyword_args = kwargs.copy()

Add all explicit arguments passed by keyword
for name in chain(spec.args, spec.kwonlyargs):
if name in kwargs:
explicit args[name] = keyword args.pop(name)

Deal with explicit arguments
for name, arg in explicit args.items():
if name in annotations and not isinstance(arg, annotations[name]):
raise TypeError(error % (name,
annotations[name]. name ,
type(arg). name_))
Deal with variable positional arguments
if spec.varargs and spec.varargs in annotations:
annotation = annotations[spec.varargs]
for i, arg in enumerate(args[len(spec.args):]):

127

CHAPTER 3 FUNCTIONS

if not isinstance(arg, annotation):
raise TypeError(error % ('variable argument %s' % (i + 1),
annotation.__name__,

type(arg).__name__))

Deal with variable keyword arguments
if spec.varkw and spec.varkw in annotations:
annotation = annotations|[spec.varkw]
for name, arg in keyword_args.items():
if not isinstance(arg, annotation):
raise TypeError(error % (name,
annotation.__name__,

type(arg).__name__))

return func(*args, **kwargs)

This covers all explicit arguments as well as variable arguments passed in by position
and keyword. The only thing left is to validate the value returned by the target function.
Thus far the wrapper just calls the original function directly without regard for what it
returns, but by now, it should be easy to see what needs to be done:

Oé

def wrapper(*args, **kwargs):
Populate a dictionary of explicit arguments passed positionally
explicit args = dict(zip(spec.args, args))
keyword args = kwargs.copy()

Add all explicit arguments passed by keyword
for name in chain(spec.args, spec.kwonlyargs):
if name in kwargs:
explicit args[name] = keyword args(name)

Deal with explicit arguments
for name, arg in explicit args.items():
if name in annotations and not isinstance(arg, annotations[name]):

128

CHAPTER 3 FUNCTIONS

raise TypeError(error % (name,
annotations[name]. name ,

type(arg). name_))

Deal with variable positional arguments
if spec.varargs and spec.varargs in annotations:
annotation = annotations[spec.varargs]
for i, arg in enumerate(args[len(spec.args):]):
if not isinstance(arg, annotation):
raise TypeError(error % ('variable argument %s' % (i + 1),
annotation. name ,

type(arg). name_))

Deal with variable keyword arguments
if spec.varkw and spec.varkw in annotations:
annotation = annotations[spec.varkw]
for name, arg in keyword args.items():
if not isinstance(arg, annotation):
raise TypeError(error % (name,
annotation. name_ ,

type(arg). name_))

r = func(*args, **kwargs)
if 'return' in annotations and not isinstance(r, annotations['return']):
raise TypeError(error % ('the return value’',
annotations['return'].__name__,
type(r).__name__))
return r

With that, we have a fully functional type safety decorator, which can validate all

arguments to a function as well as its return value. There’s one additional safeguard

we can include to find errors even more quickly, however. In the same way as the outer

typesafe() function already validates that the annotations are types, that part of the

function is also capable of validating the default values for all provided arguments.

Because variable arguments can’t have default values, this is much simpler than dealing

with the function call itself:

129

CHAPTER 3 FUNCTIONS

Oé

import functools

import inspect

from itertools import chain

def typesafe(func):

130

Verify that the function is called with the right argument types and
that it returns a value of the right type, according to its annotations
spec = inspect.getfullargspec(func)

annotations = spec.annotations

for name, annotation in annotations.items():
if not isinstance(annotation, type):
raise TypeError("The annotation for '%s' is not a type." % name)

error = "Wrong type for %s: expected %s, got %s."
defaults = spec.defaults or ()

defaults_zip = zip(spec.args[-len(defaults):], defaults)
kwonlydefaults = spec.kwonlydefaults or {}

for name, value in chain(defaults_zip, kwonlydefaults.items()):
if name in annotations and not isinstance(value, annotations[name]):
raise TypeError(error % ('default value of %s' % name,
annotations[name].__name__,
type(value).__name_))

@functools.wraps(func)

def wrapper(*args, **kwargs):
Populate a dictionary of explicit arguments passed positionally
explicit args = dict(zip(spec.args, args))
keyword args = kwargs.copy()

Add all explicit arguments passed by keyword
for name in chain(spec.args, spec.kwonlyargs):
if name in kwargs:
explicit args[name] = keyword args.pop(name)

CHAPTER 3 FUNCTIONS

Deal with explicit arguments
for name, arg in explicit args.items():
if name in annotations and not isinstance(arg, annotations[name]):
raise TypeError(error % (name,
annotations[name]. name ,
type(arg). name_))
Deal with variable positional arguments
if spec.varargs and spec.varargs in annotations:
annotation = annotations[spec.varargs]
for i, arg in enumerate(args[len(spec.args):]):
if not isinstance(arg, annotation):
raise TypeError(error % ('variable argument %s' % (i + 1),
annotation. name_ ,
type(arg). name_))
Deal with variable keyword arguments
if spec.varkw and spec.varkw in annotations:
annotation = annotations[spec.varkw]
for name, arg in keyword args.items():
if not isinstance(arg, annotation):
raise TypeError(error % (name,
annotation. name ,
type(arg). name_))
r = func(*args, **kwargs)
if 'return' in annotations and not isinstance(r, annotations['return']):
raise TypeError(error % ('the return value',
annotations['return']. name_ ,
type(r). name_))
return r

return wrapper

Factoring Out the Boilerplate

Looking over the code as it stands, you'll notice a lot of repetition. Each form of

annotation ends up doing the same things: checking to see if the value is appropriate

and raising an exception if it’s not. Ideally, we’d be able to factor that into a separate

131

CHAPTER 3

FUNCTIONS

function that can focus solely on the actual task of validation. The rest of the code is

really just boilerplate, managing the details of finding the different types of annotations.

Because the common code will be going into a new function, the obvious way to tie

it into the rest of the code is to create a new decorator. This new decorator will be placed

on a function that will process the annotation for each value, so we’ll call it annotation_

processor. The function passed into annotation processor will then be used for each

of the annotation types throughout the existing code:

Oé

import functools

import inspect
from itertools import chain

def annotation_decorator(process):

132

Creates a decorator that processes annotations for each argument passed
into its target function, raising an exception if there's a problem.

@functools.wraps(process)
def decorator(func):

spec = inspect.getfullargspec(func)
annotations = spec.annotations

defaults = spec.defaults or ()
defaults zip = zip(spec.args[-len(defaults):], defaults)
kwonlydefaults = spec.kwonlydefaults or {}

for name, value in chain(defaults zip, kwonlydefaults.items()):
if name in annotations:
process(value, annotations[name])
@functools.wraps(func)
def wrapper(*args, **kwargs):
Populate a dictionary of explicit arguments passed positionally
explicit args = dict(zip(spec.args, args))
keyword_args = kwargs.copy()

CHAPTER 3 FUNCTIONS

Add all explicit arguments passed by keyword
for name in chain(spec.args, spec.kwonlyargs):
if name in kwargs:
explicit args[name] = keyword args.pop(name)

Deal with explicit arguments
for name, arg in explicit args.items():
if name in annotations:
process(arg, annotations[name])

Deal with variable positional arguments
if spec.varargs and spec.varargs in annotations:
annotation = annotations[spec.varargs]
for arg in args[len(spec.args):]:
process(arg, annotation)

Deal with variable keyword arguments
if spec.varkw and spec.varkw in annotations:
annotation = annotations[spec.varkw]
for name, arg in keyword args.items():
process(arg, annotation)

r = func(*args, **kwargs)

if 'return' in annotations:
process(x, annotations['return'])

return r

return wrapper

return decorator

Note Because we’re making it a bit more generic, you’ll notice that the initial
portion of the decorator no longer checks that the annotations are valid types. The
decorator itself no longer cares what logic you apply to the argument values, as
that’s all done in the decorated function.

133

CHAPTER 3 FUNCTIONS

Now we can apply this new decorator to a much simpler function to provide a new
typesafe() decorator, which functions just like the one in the previous section:

Oé

@annotation_decorator
def typesafe(value, annotation):
Verify that the function is called with the right argument types and
that it returns a value of the right type, according to its annotations
if not isinstance(value, annotation):
raise TypeError("Expected %s, got %s." % (annotation. name ,
type(value). name_))

The benefit of doing this is that it’s much easier to modify the behavior of the decorator
in the future. In addition, you can now use annotation processor() to create new types
of decorators that use annotation for different purposes, such as type coercion.

Example: Type Coercion

Rather than strictly requiring that the arguments all be the types specified when they’re
passed into the function, another approach is to coerce them to the required types inside
the function itself. Many of the same types that are used to validate values can also be
used to coerce them directly into the types themselves. In addition, if a value can’t be
coerced, the type it’s passed into raises an exception, usually a TypeError, just like our
validation function.

ROBUSTNESS PRINCIPLE

This is one of the more obvious applications of the robustness principle. Your function requires
an argument be of a specific type, but it's much nicer to accept some variations, knowing that
they can be converted to the right type before your function needs to deal with them. Likewise,
coercion also helps ensure that the return value is always of a consistent type that the external
code knows how to deal with.

134

CHAPTER 3 FUNCTIONS

The decorator presented in the previous section provides a good starting point
for adding this behavior to a new decorator, and we can use it to modify the incoming
value according to the annotation that was provided along with it. Because we're
relying on a type constructor to do all the necessary type checking and raise exceptions
appropriately, this new decorator can be much simpler. In fact, it can be expressed in
just one actual instruction:

Oé

@annotation_decorator
def coerce arguments(value, annotation):
return annotation(value)

This is so simple that it doesn’t even require the annotation be a type at all. Any
function or class that returns an object will work just fine, and the value returned will
be passed into the function decorated by coerce_arguments (). Or will it? If you look
back at the annotation_decorator() function as it stands, there’s a minor problem that
prevents it from working the way this new decorator would need it to.

The problem is that in the lines that call the process() function that was passed
into the outer decorator, the return value is thrown away. If you try to use coerce
arguments () with the existing decorator, all you'll get is the exception-raising aspect of
the code, not the value coercion aspect. So, in order to work properly, we'll need to go
back and add that feature to annotation_processor().

There are a few things that need to be done overall, however. Because the annotation
processor will be modifying the arguments that will be eventually sent to the decorated
function, we'll need to set up a new list for positional arguments and a new dictionary for
keyword arguments. Then we have to split up the explicit argument handling, so that we
can distinguish between positional and keyword arguments. Without that, the function
wouldn’t be able to apply variable positional arguments correctly:

Oé

def wrapper(*args, **kwargs):
new_args = []
new_kwargs = {}
keyword args = kwargs.copy()

135

CHAPTER 3 FUNCTIONS

Deal with explicit arguments passed positionally
for name, arg in zip(spec.args, args):
if name in annotations:
new_args.append(process(arg, annotations[name]))

Deal with explicit arguments passed by keyword
for name in chain(spec.args, spec.kwonlyargs):
if name in kwargs and name in annotations:
new_kwargs[name] = process(keyword_args.pop(name),
annotations[name])

Deal with variable positional arguments
if spec.varargs and spec.varargs in annotations:
annotation = annotations[spec.varargs]
for arg in args[len(spec.args):]:
new_args.append(process(arg, annotation))

Deal with variable keyword arguments
if spec.varkw and spec.varkw in annotations:
annotation = annotations[spec.varkw]
for name, arg in keyword args.items():
new_kwargs[name] = process(arg, annotation)

r = func(*new_args, **new_kwaxgs)
if 'return' in annotations:

r = process(xr, annotations['return'])
return r

With those changes in place, the new coerce_arguments() decorator will be able to
replace the arguments on the fly, passing the replacements into the original function.
Unfortunately, if you're still using typesafe() from before, this new behavior causes
problems because typesafe() doesn’t return a value. Fixing that is a simple matter of
returning the original value, unchanged, if the type check was satisfactory:

Oé

@annotation_decorator
def typesafe(value, annotation):

136

CHAPTER 3 FUNCTIONS

Verify that the function is called with the right argument types and

that it returns a value of the right type, according to its annotations

if not isinstance(value, annotation):
raise TypeError("Expected %s, got %s.

% (annotation. name
type(value). name_))
return value

Annotating with Decorators

The natural question to ask is: what happens if you want to use two libraries together?
One might expect you to supply valid types, whereas the other expects a string to use for
documentation. They're completely incompatible with each other, which forces you to
use one or the other, rather than both. Furthermore, any attempt to merge the two, using
a dictionary or some other combined data type, would have to be agreed on by both
libraries, as each would need to know how to get at the information it cares about.

Once you consider how many other frameworks and libraries might take advantage
of these annotations, you can see how quickly the official function annotations fall
apart. It’s still too early to see which applications will actually use it or how they’ll work
together, but it’s certainly worth considering other options that can bypass the problems
completely.

Because decorators can take arguments of their own, it’s possible to use them to
provide annotations for the arguments of the functions they decorate. This way, the
annotations are separate from the function itself and provided directly to the code that
makes sense of them. And because multiple decorators can be stacked together on a
single function, it’s already got a built-in way of managing multiple frameworks.

Example: Type Safety as a Decorator

To illustrate the decorator-based approach to function annotations, let’s consider the
type safety example from earlier. It already relied on a decorator, so we can extend that
to take arguments, using the same types that the annotations provided previously.
Essentially, it'll look something like this:

137

CHAPTER 3 FUNCTIONS

Oé

>>> @typesafe(str, str)
... def combine(a, b):
return a + b

>>> combine('spam', 'alot')
"spamalot’

>>> combine('fail', 1)

Traceback (most recent call last):

TypeError: Wrong type for b: expected str, got int.

It works almost exactly like the true annotated version, except that the annotations
are supplied to the decorator directly. In order to accept arguments, we're going to just
change the first portion of the code a bit so that we can get the annotations from the
arguments instead of inspecting the function itself.

Because annotations come in through arguments to the decorator, we have a new
outer wrapper for receiving them. When the next layer receives the function to be
decorated it can match up the annotations with the function’s signature, providing
names for any annotations passed positionally. Once all the available annotations have
been given the right names, they can be used by the rest of the inner decorator without
any further modifications:

Oé

import functools

import inspect

from itertools import chain

def annotation_decorator(process):
Creates a decorator that processes annotations for each argument passed
into its target function, raising an exception if there's a problem.

def annotator(*args, **kwargs):

138

CHAPTER 3 FUNCTIONS

annotations = kwargs.copy()

@functools.wraps(process)

def decorator(func):
spec = inspect.getfullargspec(func)
annotations.update(zip(spec.args, args))

defaults = spec.defaults or ()
defaults zip = zip(spec.args[-len(defaults):], defaults)
kwonlydefaults = spec.kwonlydefaults or {}

for name, value in chain(defaults zip, kwonlydefaults.items()):
if name in annotations:
process(value, annotations[name])

@functools.wraps(func)

def wrapper(*args, **kwargs):
new_args = []
new_kwargs = {}

keyword _args = kwargs.copy()

Deal with explicit arguments passed positionally
for name, arg in zip(spec.args, args):
if name in annotations:
new_args.append(process(arg, annotations[name]))

Deal with explicit arguments passed by keyword
for name in chain(spec.args, spec.kwonlyargs):
if name in kwargs and name in annotations:
new_kwargs[name] = process(keyword args.pop(name),
annotations[name])

Deal with variable positional arguments
if spec.varargs and spec.varargs in annotations:
annotation = annotations[spec.varargs]
for arg in args[len(spec.args):]:
new_args.append(process(arg, annotation))

Deal with variable keyword arguments
if spec.varkw and spec.varkw in annotations:

139

CHAPTER 3 FUNCTIONS

annotation = annotations[spec.varkw]
for name, arg in keyword args.items():
new_kwargs[name] = process(arg, annotation)
r = func(*new_args, **new_kwargs)
if 'return' in annotations:
r = process(r, annotations['return'])
return r

return wrapper
return decorator
return annotator

That handles most of the situation, but it doesn’t handle return values yet. If you try
to supply a return value using the right name, return, you'll get a syntax error because
it’s a reserved Python keyword. Trying to provide it alongside the other annotations
would require each call to pass annotations using an actual dictionary, where you can
provide the return annotation without upsetting Python’s syntax.

Instead, you'll need to provide the return value annotation in a separate function
call, where it can be the sole argument without any reserved name issues. When working
with most types of decorators, this would be easy to do: just create a new decorator that
checks the return value and be done with it. Unfortunately, as the eventual decorator
you're working with is created outside the control of our code, it’s not so easy.

If you completely detached the return value processing from the argument
processing, the programmer who's actually writing something like the typesafe()
decorator would have to write it twice; once to create the argument-processing decorator
and again to create the return-value-processing decorator. Because that’s a clear
violation of DRY, let’s reuse as much of their work as possible.

Here’s where some design comes into play. We're looking at going beyond just a
simple decorator, so let's figure out how to best approach it so that it makes sense to
those who have to use it. Thinking about the available options, one solution springs to
mind fairly quickly. If we can add the extra annotation function as an attribute of the
final decorator, you'd be able to write the return value annotator on the same line as the
other decorator, but right afterward, in its own function call. Here’s what it might look
like, if you went that route:

140

CHAPTER 3 FUNCTIONS

@typesafe(int, int).returns(int)
def add(a, b):
return a + b

Unfortunately this isn’t an option, for reasons that can be demonstrated without
even adding the necessary code to support it. The trouble is, this formation isn’t allowed
as Python syntax. If typesafe() hadn’t taken any arguments it would work, but there’s
no support for calling two separate functions as part of a single decorator. Instead of
supplying the return value annotation in the decorator itself, let’s look somewhere else.

Another option is to use the generated typesafe() decorator to add a function as
an attribute to the wrapper around the add() function. This places the return value
annotation at the end of the function definition, closer to where the return value is
specified. In addition, it helps clarify the fact that you can use typesafe() to supply
argument decorators without bothering to check the return value, if you want to. Here’s
how it would look:

Oé

@typesafe(int, int)

def add(a, b):
return a + b

add.returns(int)

It’s still very clear and perhaps even more explicit than the syntax that doesn’t work
anyway. As an added bonus, the code to support it is very simple, requiring just a few
lines be added to the end of the inner decorator() function:

Oé

def decorator(func):
from itertools import chain
spec = inspect.getfullargspec(func)
annotations.update(zip(spec.args, args))
defaults = spec.defaults or ()

defaults zip = zip(spec.args[-len(defaults):], defaults)
kwonlydefaults = spec.kwonlydefaults or {}

141

CHAPTER 3 FUNCTIONS

for name, value in chain(defaults zip, kwonlydefaults.items()):
if name in annotations:
process(value, annotations[name])
@functools.wraps(func)
def wrapper(*args, **kwargs):
new args = []
new_kwargs = {}
keyword args = kwargs.copy()

Deal with explicit arguments passed positionally
for name, arg in zip(spec.args, args):
if name in annotations:
new_args.append(process(arg, annotations[name]))

Deal with explicit arguments passed by keyword
for name in chain(spec.args, spec.kwonlyargs):
if name in kwargs and name in annotations:
new_kwargs[name] = process(keyword args.pop(name),
annotations[name])

Deal with variable positional arguments
if spec.varargs and spec.varargs in annotations:
annotation = annotations[spec.varargs]
for arg in args[len(spec.args):]:
new_args.append(process(arg, annotation))

Deal with variable keyword arguments
if spec.varkw and spec.varkw in annotations:
annotation = annotations[spec.varkw]
for name, arg in keyword args.items():
new_kwargs[name] = process(arg, annotation)

r = func(*new_args, **new_kwargs)
if 'return' in annotations:

r = process(r, annotations['return'])
return r

142

CHAPTER 3 FUNCTIONS

def return_annotator(annotation):
annotations['return'] = annotation
wrapper.returns = return_annotator

return wrapper

Because this new returns () function will be called before the final typesafe()
function ever will, it can simply add a new annotation to the existing dictionary. Then,
when typesafe() does get called later, the internal wrapper can just continue working
like it always did. This just changes the way the return value annotation is supplied,
which is all that was necessary.

Because all of this behavior was refactored into a separate decorator, you can
apply this decorator to coerce_arguments() or any other similarly purposed function.
The resulting function will work the same way as typesafe(), only swapping out the
argument handling with whatever the new decorator needs to do.

Generators

Chapter 2 introduced the concept of generator expressions and stressed the importance
of iteration. Whereas generator expressions are useful for simple situations, you'll often
need more sophisticated logic to determine how the iteration should work. You may
need finer-grained control over the duration of the loop, the items getting returned,
possible side effects that get triggered along the way, or any number of other concerns
you may have.

Essentially, you need a real function, but with the benefits of a proper iterator and
without the cognitive overhead of creating the iterator yourself. This is where generators
come in. By allowing you to define a function that can produce individual values one at
a time, rather than just a single return value, you have the added flexibility of a function
and the performance of an iterator.

Generators are set aside from other functions by their use of the yield statement.
This is somewhat of an analog to the typical return statement, except that yield doesn’t
cause the function to stop executing completely. It pushes one value out of the function,
which gets consumed by the loop that called the generator; then, when that loop starts
over, the generator starts back up again. It picks up right where it left off, running until it
finds another yield statement or the function simply finishes executing.

143

CHAPTER 3 FUNCTIONS

The basics are best illustrated by an example, so consider a simple generator that
returns the values in the classic Fibonacci sequence. The sequence begins with 0 and
1; each following number is produced by adding up the two numbers before it in the
sequence. Therefore, the function only ever needs to keep two numbers in memory
at a time, no matter how high the sequence goes. In order to keep it from continuing
on forever, however, it’s best to require a maximum number of values it should return,
making a total of three values to keep track of.

It’s tempting to set up the first two values as special cases, yielding them one at a
time before even starting into the main loop that would return the rest of the sequence.
That adds some extra complexity, however, which can make it pretty easy to accidentally
introduce an infinite loop. Instead, we'll use a couple other seed values, -1 and 1, which
can be fed right into the main loop directly. They’ll generate 0 and 1 correctly when the
loop’s logic is applied.

Next, we can add a loop for all the remaining values in the sequence, up until the
count is reached. Of course, by the time the loop starts two values have already been
yielded, so we have to decrease count by 2 before entering the loop. Otherwise, we’d end
up yielding two more values than were requested:

7

1

Part one: add part two to see it in action:

def fibonacci(count):
These seed values generate 0 and 1 when fed into the loop
a, b=-1,1

while count > 0O:
Yield the value for this iteration
c=a+b
yield c

Update values for the next iteration
a, b=>b, c
count -= 1

With the generator in place, you can iterate over the values it produces, simply by
treating it like you would any other sequence. Generators are iterable automatically,
so a standard for loop already knows how to activate it and retrieve its values. Before

144

CHAPTER 3 FUNCTIONS

you add part two, do a hand trace of -1 and 1 through the structure you and can see
exactly how it operates.

7

1

Part two: add to end of previous code and run:

for x in fibonacci(3):
print(x)

output is

#0

#1

#1

for x in fibonacci(7):
print(x)

#output is

#0

#1

#1

#2

#3

#5

#8

Unfortunately, the main benefit of generators can also, at times, be somewhat of a
burden. Because there’s no complete sequence in memory at any given time, generators
always have to pick up where they left off. Most of the time, however, you'll completely
exhaust the generator when you iterate over it the first time, so when you try to put it into
another loop, you won'’t get anything back at all.

L

1

Add this to the end after part two and run:

fib = fibonacci(7)
print(list(fib)) # output [0, 1, 1, 2, 3, 5, 8]
print(list(fib)) # output []

145

CHAPTER 3 FUNCTIONS

This behavior can seem a bit misleading at first, but most of the time, it’s the
only behavior that makes sense. Generators are often used in places where the entire
sequence isn’t even known in advance or it may change after you iterate over it. For
example, you might use a generator to iterate over the users currently accessing a
system. Once you've identified all the users, the generator automatically becomes stale
and you need to create a new one, which refreshes the list of users.

Note If you've used the built-in range () function (or xrange() prior to Python
3.0) often enough, you may have noticed that it does restart itself if accessed
multiple times. That behavior is provided by moving one level lower in the iteration
process, by implementing the iterator protocol explicitly. It can’t be achieved with
simple generators, but Chapter 5 shows that you can have greater control over
iteration of the objects you create.

Lambdas

In addition to providing features on their own, functions are often called on to provide
some extra minor bit of functionality to some other feature. For example, when sorting a
list, you can configure Python’s behavior by supplying a function that accepts a list item
and returns a value that should be used for comparison. This way, given a list of House
objects, for instance, you can sort by price:

Oé

>>> def get price(house):
return house.price

>>> houses.sort(key=get _price)

Unfortunately, this seems like a bit of a waste of the function’s abilities, plus it
requires a couple of extra lines of code and a name that never gets used outside of the
sort() method call. A better approach would be if you could specify the key function
directly in line with the method call. This not only makes it more concise, it also places
the body of the function right where it will be used, so it’s a lot more readable for these
types of simple behaviors.

146

CHAPTER 3 FUNCTIONS

In these situations, Python’s lambda form is extremely valuable. Python provides a
separate syntax, identified by the keyword 1lambda. This allows you to define a function
without a name as a single expression, with a much simpler feature set. Before diving
into the details of the syntax, here’s what it looks like in the house-sorting example.
Think of it as a one-line minifunction. Try the following:

>>> g=lambda x: x*x
>>> g(8) # which returns 8 * 8

As you can see, this is a considerably compressed form of a function definition.
Following the 1ambda keyword is a list of arguments, separated by commas. In the
sort example only one argument is needed, and it can be named anything you like,
such as any other function. They can even have default values if necessary, using the
same syntax as regular functions. Arguments are followed by a colon, which notes the
beginning of the lambda’s body. If no arguments are involved, the colon can be placed
immediately after the 1ambda keyword:

>>> a = lambda: 'example’

>>> a

<function <lambda> at ox. .>

>>> a()

"example’

>>> b = lambda x, y=3: x +y

>>> b()

Traceback (most recent call last):

TypeError: <lambda>() takes at least 1 positional argument (0 given)
>>> b(5)

8

>>> b(5, 1)

6

147

CHAPTER 3 FUNCTIONS

Asyou’ll have likely discovered by now, the body of the lambda is really just its return
value. There’s no explicit return statement, so the entire body of the function is really just
a single expression used to return a value. That’s a big part of what makes the lambda
form so concise, yet easily readable, but it comes at a price: only a single expression is
allowed. You can’t use any control structures, such as try, with, or while blocks; you can’t
assign variables inside the function body; and you can’t perform multiple operations
without them also being tied to the same overall expression.

This may seem extremely limiting, but in order to still be readable, the function
body must be kept as simple as possible. In situations in which you need the additional
control flow features, you'll find it much more readable to specify it in a standard function,
anyway. Then you can pass that function in where you might otherwise use the lambda.
Alternatively, if you have a portion of the behavior that’s provided by some other function,
but not all of it, you're free to call out to other functions as part of the expression.

Introspection

One of the primary advantages of Python is that nearly everything can be examined

at runtime, from object attributes and module contents to documentation and even
generated bytecode. Peeking at this information is called introspection, and it permeates
nearly every aspect of Python. The following sections define some of the more general
introspection features that are available, while more specific details are given in the
remaining chapters.

The most obvious attribute of a function that can be inspected is its name. It’s also
one of the simplest, made available at the __name__ attribute. The return is the string
used to define the function. In the case of lambdas, which have no names, the __name__
attribute is populated with the standard string '<lambda>':

>>> def example():
pass

>>> example. name__
"example’

>>> (lambda: None). name_ _
"<lambda>"

148

CHAPTER 3 FUNCTIONS

Identifying Object Types

Python’s dynamic nature can sometimes make it seem difficult to ensure you're getting
the right type of value or to even know what type of value it is. Python does provide some
options for accessing that information, but it’s necessary to realize those are two separate
tasks, so Python uses two different approaches.

The most obvious requirement is to identify what type of object your code was given.
For this Python supplies its built-in type() function, which accepts an object to identify.
The return value is the Python class that was used to create the given object, even if that
creation was done implicitly, by way of a literal value:

>>> type('example")

<type 'str'>
>>> class Test:
pass

>>> type(Test)
<type 'classobj'>
>>> type(Test())
<type 'instance'>

Chapter 4 explains in detail what you can do with that class object once you have it,
but the more common case is to compare an object against a particular type you expect
to receive. This is a different situation because it doesn’t really matter exactly what type
the objectis. As long as the value is an instance of the right type, you can make correct
assumptions about how it behaves.

There are a number of different utility functions available for this purpose, most of
which are covered in Chapter 4. This section and the next chapter will make use of one of
them fairly frequently, so it merits some explanation here. The isinstance() function
accepts two arguments: the object to check and the type you're expecting it to be. The
result is a simple True or False, making it suitable for if blocks:

149

CHAPTER 3 FUNCTIONS

>>> def test(value):
if isinstance(value, int):
print('Found an integer!")

>>> test('0")
>>> test(0)
Found an integer!

Modules and Packages

Functions and classes that are defined in Python are placed inside of modules, which in
turn are often part of a package structure. Accessing this structure when importing code
is easy enough, using documentation or even just peeking at the source files on disk.
Given a piece of code, however, it’s often useful to identify where it was defined in the
source code.

For this reason, all functions and classes have a __module__ attribute, which
contains the import location of the module where the code was defined. Rather than
just supplying the name of the module, the math.sin. module also includes the full
path to where the module resides. Essentially, it’s enough information for you to pass it
straight into any of the dynamic importing features shown in Chapter 2.

Working with the interactive interpreter is something of a special case because
there’s no named source file to work with. Any functions or classes defined there will
have the specialname '__main__ ' returned from the __module__ attribute:

>>> def example():
pass

>>> example
<function example at ox...>
>>> example. module

__main__

150

CHAPTER 3 FUNCTIONS

Docstrings

Because you can document your functions with docstrings included right alongside the
code, Python also stores those strings as part of the function object. By accessing the
__doc__ attribute of a function, you can read a docstring into code, which can be useful
for generating a library’s documentation on the fly. Consider the following example,
showing simple docstring access on a simple function:

7

1

def example():
"""This is just an example to illustrate docstring access.

pass
print(example. doc) # which outputs This is just an example to
illustrate docstring access.

Next, try the following from a prompt:

>>> def divide(x, y):

divide(integer, integer) -> floating point

This is a more complex example, with more comprehensive documentation.

return float(x) / y # Use float()for compatibility prior to 3.0

>>> divide. doc__
“\n divide(integer, integer) -> floating point\n\n This is a more

complex example, with more comprehensive documentation.\n
>>> print(divide. doc_)

divide(integer, integer) -> floating point

151

CHAPTER 3 FUNCTIONS

This is a more complex example, with more comprehensive documentation.

Asyou can see, simple docstrings are easy to handle just by readingin __doc__and
using it however you need to. Unfortunately, more complex docstrings will retain all
whitespace, including newlines, making them more challenging to work with. Worse
yet, your code can’t know which type of docstring you're looking at without scanning
it for certain characters. Even if you're just printing it out to the interactive prompt,
you still have an extra line before and after the real documentation, as well as the same
indentation as was present in the file.

To handle complex docstrings more gracefully, like the one shown in the example,
the inspect module mentioned previously also has a getdoc () function, designed
to retrieve and format docstrings. It strips out whitespace both before and after the
documentation, as well as any indentation that was used to line up the docstring
with the code around it. Here’s that same docstring again, but formatted with
inspect.getdoc():

>>> import inspect
>>> print(inspect.getdoc(divide))

divide(integer, integer) -> floating point
This is a more complex example, with more comprehensive documentation.

We still have to use print() at the interactive prompt because the newline character
is still retained in the result string. All inspect.getdoc() strips out is the whitespace
that was used to make the docstring look right alongside the code for the function. In
addition to trimming the space at the beginning and end of the docstring, getdoc() uses
a simple technique to identify and remove whitespace used for indentation.

Essentially, getdoc() counts the number of spaces at the beginning of each line
of code, even if the answer is 0. Then it determines the lowest value of those counts
and removes that many characters from each line that remains after the leading and
trailing whitespace has been removed. This allows you to keep other indentation in
the docstring intact, as long as it’s greater than what you need to align the text with the
surrounding code. Here’s an example of an even more complex docstring, so you can see
how inspect.getdoc() handles it:

152

CHAPTER 3 FUNCTIONS

>>> def clone(obj, count=1):

clone(obj, count=1) -> list of cloned objects

Clone an object a specified number of times, returning the cloned
objects as a list. This is just a shallow copy only.

obj
Any Python object
count
Number of times the object will be cloned

>>> clone(object(), 2)

[<object object at 0x12345678>, <object object at 0x87654321>]
import copy
return [copy.copy(obj) for x in count]

>>> print(inspect.getdoc(clone))
clone(obj, count=1) -> list of cloned objects
Clone an object a specified number of times, returning the cloned
objects as a list. This is just a shallow copy only.
obj
Any Python object
count
Number of times the object will be cloned

>>> clone(object(), 2)
[<object object at 0x12345678>, <object object at 0x87654321>]

153

CHAPTER 3 FUNCTIONS

Notice how the descriptions of each argument are still indented four spaces, just
like they appeared to be in the function definition. The shortest lines had just four total
spaces at the beginning, while those had eight, so Python stripped out the first four,
leaving the rest intact. Likewise, the example interpreter session was indented by two
extra spaces, so the resulting string maintains a two-space indentation.

Oh, and don’t worry too much about the copy function justyet. Chapter 6 describes
in detail how to make and manage copies of objects when necessary.

Exciting Python Extensions: Statistics

Most people working with statistical analysis might not consider Python as a first choice.
Since Python is a general-purpose language and other languages such as R, SAS, or
SPSS are aimed at statistics directly, this makes sense. However, Python, via it’s rich set
of libraries, might be a good choice, especially since it is so user-friendly and handles
data acquisition with ease. It is integrated well with other languages. However, let’s see
how easy it is to work with statistical analysis with Python. One library to use is Pandas
(Python Data Analysis Library).

Install Pandas and Matplotlib

Use PIP to install Pandas.
1) From an escalated command prompt, type: pip install pandas (enter)

This will also install NumPy and datautils, which will be needed.
Assuming you had no errors, make a file and try a test read to
make sure it works.

2) Type: pip install matplotlib (enter)

154

CHAPTER 3 FUNCTIONS

Make a Text File of Data

First, we will make a CSV (comma separated values) text file with some hypothetical
data. This could be data from the Internet, or a database, and so on. You might well have
a spreadsheet (e.g., Excel or OpenOffice) of data you want to work with. These packages
make it easy to “save as” CSV format. For now, use your favorite text editor.

1) Start Notepad (Windows) and enter the following, saving as a text
file to the same folder where you are going to save your Python file
to read it. Make sure the text file and Python file are in the same
folder!

"Subject”,"Gender"”,"Level”,"GPA","Major", "Age"
"1","female"”,"Freshmen”,3.9,"History",23
"2","male","Senior"”,3.9,"History",18
"3","male"”,"Senior”,2.5,"Psy",21

"4" "male","Freshmen",2.0,"Math",32
"5","female","Junior"”,3.5,"Chem"”,19
"d","male","FPeshmen",3.0,"History",20

2) Save the file as “students.csv” and make sure a txt extension is not
appended to the file name; the complete file name should only be

“students.csv’”.

Use Pandas to Display Data

Now, let’s test and see if we can read our CSV data and display it to the screen. Once this
works, we can work with the data a bit. Create a Python script and run the following,

giving the Python file a valid name of your own choice:

import pandas
data = pandas.read csv('students.csv', sep=',', na_values=".")
print (data)

155

CHAPTER 3 FUNCTIONS

Your output should be similar to the following:

Subject Gender Level GPA Major Age
0 l female Freshmen 3.9 History 23
| 2 male Senior 3.9 History 8
2 3 male Senior 2.5 Psy 21
3 2 male Freshmen 2.0 Math 32
4 S female Junior 3.5 Chem 19
5 6 male Freshmen 3.0 History 20

Output from reading students.csv data file using Pandas.

Running Some Data Analysis

In this next example, let’s look at the average age of the students who are in different majors.
The statistics library’s make this easy, in this case the function is mean() and groupby():

import pandas

data = pandas.read csv('students.csv', sep=",

print (data)

groupby major = data.groupby('Major")

for major, student age in groupby major['Age']:
print('The average age for', major, 'majors is:

n n
, ha_values=".")

, student age.mean())

Subject Gender Level GPA Major Age
0 1 female Freshmen 3.9 History 23
1 2 male Senior 3.9 History 18
2 3 male Senior 2.5 Psy 21
= 4 male Freshmen 2.0 Math 32
4 5 female Junior 3.5 Chem 19
S 6 male Freshmen 3.0 History 20
The average age for Chem majors is: 19.0
The average age for History majors is: 20.333333333333332
The average age for Math majors is: 32.0
The average age for Psy majors is: 21.0

Average student age output for various majors.

156

CHAPTER 3 FUNCTIONS

The unique() function will show you only unique values for a given column of data.
For example, using our students.csv file, we can list only the majors that are in the
dataset. Note that the column field is case-sensitive, so you would want to either display
or view the original CSV file to make sure your case is correct. In this case a capital M is
needed in Major, or it would not function properly:

import pandas

data = pandas.read csv('students.csv', sep=",', na_values=".")
dif majors = data.Major.unique()

print(dif majors)

Next, you might want to only access certain columns of data. Consider the following,
where only the Major and GPA columns of data will be extracted and displayed:

import pandas

data = pandas.read csv('students.csv', sep="',
major gpa = data[['Major', 'GPA']].head(10)
print (major_gpa)

, na_values=".")

Plotting with Matplotlib

The Matplotlib library will allow you to visualize your numeric data, which is very
important with trying to convey information to the general population. In fact,
visualizing data can help even data experts to find hidden meaning from the information.
Try the following example to see how easy it is to visualize a series of data values
graphically:

import matplotlib.pyplot as plt
plt.plot([1,8,2,9,6]) # x values

plt.ylabel('Data readings for five hours') #y values
plt.show()

157

CHAPTER 3 FUNCTIONS

Types of Charts

There are many types of charts available. A quick visit to Matplotlib.org will show new
additions and features of the library for pyplot, which are evolving at a rapid pace.
Consider the following to see just a few of the many types of charts available to you from
this library:

#Pie chart example

import matplotlib.pyplot as plt

#Data sets 1 - 5

sets = 'D1', 'D2', 'D3', 'D4', 'D5'
data = [5, 10, 15, 20, 50]

plt.pie(data, labels=sets)

plt.show()

There are many others such as bar, hist (histogram), box, density, area, scatter, and
XKCD-style charts (comic web site with Pythonish humor). The format is similar to pie.

Combine Matplotlib with Pandas

Now that we have the basics down for visualizing data let’s visualize a larger data set,
which would be a bit more practical: you would not normally type every value into your
code, but would be reading from a CSV file or similar, perhaps obtained from an Internet
site. We will combine data visualization with Pandas. In the following example we add a
few functions such as tick and title and make a histogram of students in age ranges from
the students.csv data set. Pandas and Matplotlib with pyplot are good tools to use in
combination:

import pandas
import matplotlib.pyplot as plt
data = pandas.read csv('students.csv', sep=',', na_values=".")

age = data[['Age']]
print(age)

plt.hist(age)
plt.xticks(range(18,33))
plt.title('Ages of students')
plt.show()

158

http://matplotlib.org

CHAPTER 3 FUNCTIONS

The Pandas and Matplotlib documentation and main web site of course will describe
other functions available, but this will get you using Pandas features so that you can
easily integrate other features you might need into your applications as needed.

Taking It with You

Although Python functions may seem to be quite simple on the surface, you now know
how to define and manage them in ways that really fit your needs. Of course, you're
probably looking to incorporate functions into a more comprehensive object-oriented
program, and for that, we’ll need to look at how Python’s classes work.

159

CHAPTER 4

Classes

In Chapter 3 you reviewed how functions allow you to define code that can be reused.
This allowed for general code streamlining by not having to retype “chunks” of code.
However, it’s often more useful to combine those same functions into logical groupings
that define the behavior and attributes of a particular type of object. This is standard
object-oriented (OO) programming, which is implemented in Python by way of types
and classes. These, like functions, may seem simple enough on the surface, but there’s a
considerable amount of power behind them that you can leverage.

The most basic idea of a class is that it encapsulates the behavior of an object,
whereas an instance of the class represents the data for the object. Therefore, even
though data may well change from one instance to another, behavior determined by the
underlying class will remain the same across those instances. Defining, extending, and
altering that behavior is the focus of this chapter.

Inheritance

The simplest way to use classes is to define a single class for a single type of object. That
works well for many simple applications, but you're likely to find the need for finer-
grained control over the behavior of objects. In particular, it's common to have a single
common set of behaviors for a large collection of objects, but you then need to modify
them or add new ones for a smaller set of more specific objects.

To facilitate this, Python allows each class to specify one or more base classes that
will provide the fundamental behavior. Then, the new class being defined can add new
behaviors or override any existing ones. By default, all objects descend from the built-in
object type, although that doesn’t really do anything useful on its own. It’s really just a
foundation type that underpins the entire system, as everything else inherits from it.

161
© J. Burton Browning and Marty Alchin 2019

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_4

CHAPTER 4 CLASSES

Like most object-oriented languages, Python lets you define as many subclasses as
you’d like for a given class, and you can subclass those as well, going as many levels deep
as necessary. This vertical approach to inheritance is appropriate for most applications,
because it maximizes the usefulness of the base classes. When a single, typically large,
set of behaviors needs to be reused across a variety of other classes, vertical inheritance
proves quite useful. Try a very simple Python class with an explicit constructor:

&~
class Contact:
def _init (self, 1Name, fName): # explicit constructor for class

self.lastName = 1Name
self.firstName = fName

worker1 = Contact("Smith", "James")
print(workeri.lastName, workerl.firstName)

Python also has some built-in functions to modify your classes.. This is a peek ahead
to the “Attributes” section of this chapter, but these functions are getattr(obj, name)
to access the attribute of an object; setattr(obj, name, value) to set the attribute of an
object; hasattr(obj, name) to check for existence; and, finally, delattr(obj, name) to delete
an attribute in an object. Public properties are, of course, accessible once the object is
created:

7
class Contact:
def init (self, 1Name, fName): # explicit constructor for class

self.lastName = 1Name
self.firstName = fName

workerl = Contact('Smith', 'James")

print(worker1.lastName, workeri.firstName) # object.public property

newLast=raw_input('Enter new last name: ')

setattr(worker1, 'lastName',newLast) # set attribute with new value

print(worker1.lastName, workeri.firstName)

print(getattr(worker1, 'lastName')) # get existing attribute

162

CHAPTER 4 CLASSES

Asyet another example, consider a common scenario involving a contact management
application. At the root of all else you would have a Contact class, because, by definition,
everything in the application is a contact. It would have a set of fields and behaviors
associated with it, which cover only those things that are pertinent to all contacts,
according to the needs of your application:

Oé

class Contact:
name = TextField()
email = EmailAddressField()
phone = PhoneNumberField()

def send_mail(self, message):
Email sending code would go here

For now, don’t worry about the specifics of where each of the field classes come from
or how they work in the application. If you're interested, Chapter 11 demonstrates one
possible framework for writing classes like this. The key for now is that each of the fields
represents a single piece of data relating to the class at hand. Values might be provided
by user input, results from a database query, or even random value generator; what’s
important is the structure of the class and how subclasses will work with it.

Even with just a contact in place, you can create a useful application based on those
core fields and behaviors. Providing additional features means adding support for
different types of contacts. For instance, real people have a first name, last name, and
perhaps a cell phone, whereas companies will often have only a single name and phone
number. Likewise, companies will do business in particular industries, which wouldn’t

make any sense in the case of individuals:

Oé

class Person(Contact):
first name = TextField()
last _name = TextField()
name = ComputedString('%(last name)s, %(first name)s")
cell phone = PhoneNumberField()
class Company(Contact):

industry = TextField()
163

CHAPTER 4 CLASSES

Now we have a basic hierarchy beginning to take shape. People are different from
companies, and they each have different fields that are appropriate to each case.
Python’s inheritance system automatically pulls the fields from the Contact class and
makes them available on the Person and Company classes. You can subclass these as well,
providing such Person types as Employee, Friend, and FamilyMember:

Oé

class Employee(Person):
employer = RelatedContact(Company)
job_title = TextField()
office email = EmailAddressField()
office phone = PhoneNumberField()
extension = ExtensionField()

class Friend(Person):
relationship = TextField()

class FamilyMember (Person):
relationship = TextField()
birthday = DateField()

Notice here that even though both Friend and FamilyMember have relationship fields
that work identically to each other, FamilyMember doesn’t inherit from Friend. It’s not
necessarily true that a family member will also be a friend, so the class structure reflects
that. Each new subclass is automatically considered to be a more specific example of
the class it extends, so it’s important that the inheritance scheme reflects the actual
relationships being codified.

This may seem like a philosophical detail, but it has real ramifications in code as
well. As will be shown in the “Introspection” section in this chapter, Python code can
take a look at the inheritance structure of classes, so any mismatches can cause your
code to confuse one type of class for another. The best way to avoid those problems is to
think about how the objects you're representing actually relate to one another and try to
recreate those relationships in code.

164

CHAPTER 4 CLASSES

Multiple Inheritance

Python also supports a horizontal approach to class inheritance, by allowing a subclass
to define more than one base class at a time. This way, a class can obtain behaviors
from many various classes without having to go several levels deep. Of course, that
means taking a different logical approach because you're no longer defining classes by
increasing specificity. Instead, in some uses of multiple inheritance, you're essentially
building up each class as a set of components.

Building up classes like this is particularly well suited for applications in which your
classes share some common behaviors but are not otherwise related to each other in a
hierarchical manner. In order to make sense, this typically requires a large number of
classes to be built from a reasonably large number of components. Because that’s not the
way most applications are put together, it’s rarely used this way in the wild.

Instead, multiple inheritance is often called on to apply support classes, called
mixins. Mixin classes don’t provide full functionality on their own; they instead supply
just a small add-on feature that could be useful on a wide range of different classes. One
example might be a mixin that returns None when you try to access any attribute that
isn’t available on the object, rather than raising an AttributeError:

Oé

class NoneAttributes:
def getattr (self, name):
return None

The getattr () method, which will be described in more detail in the “Magic
Methods” section later in this chapter, is called whenever an attribute is requested that
isn’t available on the object. Because it works as a fallback, it’s an obvious choice for
a mixin; the real class provides its own functionality, with the mixin adding onto that
where applicable:

Oé

class Example(BaseClass, NoneAttributes):
pass

e = Example()
e.does _not_exist
165

CHAPTER 4 CLASSES

In typical applications, a vertical hierarchy will provide most of the functionality,
with mixins adding some extras where necessary. Because of the potential number of
classes involved when accessing attributes, it becomes even more important to fully
understand how Python decides which class is used for each attribute and method
that was accessed. To put it another way, you need to know the order in which Python
resolves which method to use.

Method Resolution Order

Given a class hierarchy, Python needs to determine which class to use when attempting
to access an attribute by name. To do this, Python has rules that govern how to order
a set of base classes when a new class is defined. For most basic usage of classes you
don’t really need to know how this works, but if you work with multilevel or multiple
inheritance, the details in this section will help you understand what's really going on.
In the simple vertical-only scenario, it’s easy to imagine how the Method Resolution
Order (MRO) would be created. The class you're actually working with would be first in
line, followed by its base class, followed by the base class of the base class, and so on up
the line until you get back to the root object type.
At each step in the chain, Python checks to see if the class has an attribute with the
name being requested, and if it does, that’s what you get. If not, it moves on to the next
one. This is easy to see with a simple example. Key this in from a prompt and try it:

>>> class Book:
def init (self, title):
self.title = title
self.page = 1
def read(self):
return 'There sure are a lot of words on page %s.' % self.page
def bookmark(self, page):
self.page = page

>>> class Novel(Book):
pass

166

CHAPTER 4 CLASSES

>>> class Mystery(Novel):
def read(self):
return "Page %s and I still don't know who did it!" % self.page

>>> bookl = Book('Pro Python")

>>> book1.read()

'There sure are a lot of words on page 1.'
>>> book1.bookmark(page=52)

>>> book1.read()

'There sure are a lot of words on page 52.'
>>> book2 = Novel('Pride and Prejudice')

>>> book2.read()

'‘There sure are a lot of words on page 1.'
>>> book3 = Mystery('Murder on the Orient Express')
>>> book3.read()

"Page 1 and I still don't know who did it!"
>>> book3.bookmark(page=352)

>>> book3.read()

"Page 352 and I still don't know who did it!"

Asyou can see, when calling read() on a Mystery object, you get the method that’s
defined directly on that class, while using bookmark() on that same class uses the
implementation from Book. Likewise, Novel doesn’t define anything on its own—it’s just
there to make for a more meaningful hierarchy—so all of the methods you have access
to actually come from Book. To put it more directly, the MRO for Mystery is [Mystery,
Novel, Book], while the MRO for Novel is simply [Novel, Book].

So what happens when you take a horizontal approach using multiple inheritance?
For the sake of simplicity, we'll start with just a single layer of inheritance for each of the
supplied base classes so that it’s a purely horizontal approach. In this case Python goes
from left to right, in the order the classes were defined as base classes. Here’s what the
previous example looks like once we add a purchase() method, which would allow the
user to buy a copy of the book. If you still have the previous terminal session open, try
the next bit to add on to what we have done:

167

CHAPTER 4 CLASSES

>>> class Product:
def purchase(self):
return 'Wow, you must really like it!'

>>> class BookProduct(Book, Product):
pass

>>> class MysteryProduct(Mystery, Product):
def purchase(self):
return 'Whodunnit?'

>>> productl = BookProduct('Pro Python")

>>> producti.purchase()

'Wow, you must really like it!'

>>> product2 = MysteryProduct('Murder on the Orient Express')
>>> product2.purchase()

‘Whodunnit?’

Thus far, each MRO has been very straightforward and easy to understand, even if
you didn’t know what was going on behind the scenes. Unfortunately, things get more
complex when you start combining both forms of inheritance. It doesn’t even take a very
complicated example to illustrate the problem; consider what happens when you inherit
from one class that has a base class of its own and a mixin that stands alone:

Oé

class A:
def test(self):
return ‘A’
class B(A):
pass
class C:
def test(self):
return 'C'

168

CHAPTER 4 CLASSES

This is simple enough, but if you create a new class, D, which subclasses both B
and C, what would happen if you call its test () method? As always, it’s easy enough to
test this out in the interactive interpreter, where you'll see that the answer depends on
which one you put first. Make sure you are in the same session, and have keyed in the
aforementioned code, and then try the following to see the results:

>>> class D(B, C):
pass

>>> D().test()

IAI

>>> class D(C, B):
pass

;;; D().test()
0

On the surface, it seems easy to assume that Python simply goes depth first; it looks
at the first base class and follows it all the way down, looking for the requested attribute,
moving on to the next base class only when it can’t find what it needs. That observation
is certainly true for this and many other cases, but it’s still not the whole story. What's
really going on takes the whole inheritance scheme into account.

Before clarifying the full algorithm, however, let’s get one thing out of the way.

The first namespace Python looks at is always the instance object. If the attribute

isn’t found there, it goes to the actual class that provides that object’s behavior. These
two namespaces are always the first two to be checked, regardless of any inheritance
structure that may be in use. Python try to locate it through class inheritance only if the
attribute isn’t found there.

Rather than looking at the whole inheritance structure as a kind of tree, Python tries
to flatten it out to a single list, with each class appearing just once. This is an important
distinction because it’s possible for two base classes to subclass the same class deeper in
the chain, but looking at that class twice would only cause confusion later on. To resolve
this and other potential issues, there needs to be a single, flat list to work with.

169

CHAPTER 4 CLASSES

The first step is to identify all the different paths that can be taken to get from a class
to its basemost class. There will always be at least one path, even if there’s no base class,
for two reasons. For one, the MRO for a given class always includes the class itself in
the first position. This may seem obvious from earlier descriptions, but the rest of the
algorithm will make it clear why this is important to state explicitly. Also, every class
implicitly inherits from object, so that’s at the end of every MRO.

So, for just a simple class, A, which doesn’t inherit from anything, its MRO is just a
simple two-element list: [A, object].If you have another class, B, which subclasses A,
its MRO becomes fairly obvious as well, being [B, A, object]. Once you introduce a bit
of multiple inheritance, it’s possible for the same class to appear more than once in the
overall tree, so we need some extra work in order to sort out the MRO.

Consider a new class, C, which inherits from both B and A. Now A shows up under two
different branches and at two different distances from the new class, C.

Note It might not make sense to do this because B already inherits from A.
Remember, however, that you may not always know in advance what the base
classes are doing behind the scenes. You might extend classes that were passed
into your code from elsewhere or were generated dynamically, such as will be
shown later in this chapter. Python doesn’t know how your classes are laid out, so
it has to be able to account for all the possibilities.

Oé

>>> class A:
pass

>>> class B(A):
pass

>>> class C(B, A):
pass

170

CHAPTER 4 CLASSES

The MRO for object is obviously just [object], and A has already been shown to
be [A, object], as youwould expect. Bis clearly [B, A, object], but what about C?
Looking at it depth-first, you might guess [C, B, A, object] once the duplicate A is
removed. Taking a breadth-first (horizontal before vertical) approach, you'd come up
with [C, A, B, object].

So which way does Python go? The truth is, neither of those is accurate; Python uses
an algorithm called C3. This algorithm takes all the inheritance into account, reducing
it by one layer at a time, until only a single list remains. At each level, C3 processes the
class lists that were created for all of that level’s parent classes. Because of this, it starts at
the most generic class, object, and continues outward from there.

With Cin place, we can finally see how the algorithm works in detail. By the time
Python encounters C, both A and B have already been processed, so their MROs are
known. In order to combine them, C3 looks at the first class in each of the parent MROs
to see if it can find a candidate for inclusion in the MRO for C. Of course, that begs the
question of what exactly constitutes a valid candidate.

The only criteria used to identify a candidate class is whether it exists in only the first
position in any of the MRO lists being considered. It doesn’t have to be in all of them, but
if it’s present, it must be the first in the list. If it’s in any other position in any of the lists,
C3 will skip it until its next pass. Once it finds a valid entry, it pulls that into the new MRO
and looks for the next one using the same procedure.

Example: C3 Algorithm

Because algorithms are really just code, let’s put together a simple C3 function that will
perform the necessary linearization—reducing the inheritance tree into a single list.
Before diving into the full implementation, however, let’s first take a look at what the
function call would look like, so we know what data it'll be working with. For C, it would
look like this:

C3(C, [B, A, object], [A, object], [B, A])

The first argument is the class itself, which is followed by the known MRO lists for its
parent classes, in the order they were defined on the class. The last argument, however,
is simply the list of parent classes themselves, without their full MROs. As will be shown
in a slight modification of C later, this extra argument is necessary to resolve some
ambiguities.

171

CHAPTER 4 CLASSES

As with any function, there are a few boring details that need to be put in place
before the real heavy lifting can be done. In the case of C3, there will be some
modification of the MRO lists along the way, and we don’t want those modifications to
affect the code that called the C3 function, so we have to make copies of them to work
with. In addition, we need to set up a new list to contain the final MRO being generated
by the algorithm:

Oé

def C3(cls, *mro_lists):
Make a copy so we don't change existing content
mro lists = [list(mro list[:]) for mro list in mro lists]
Set up the new MRO with the class itself
mro = [cls]
The real algorithm goes here.

return mro

We can’tjustusemro_list[:] here because that only copies the outer list. All the
other lists that were contained inside that list would remain, so any modifications to
them would be visible outside the function. By using a list comprehension and copying
each of the internal lists, we get copies of all the lists involved, so they can be safely
altered.

THE ROBUSTNESS PRINCIPLE

If you’re already aware of Python’s copy module—or you’ve skipped ahead to Chapter 6—you
may wonder why we don’t just use copy .deepcopy(mro_list) instead. At the very least,
you may be wondering what that extra list(mro_list[:]) is for, because we’re passing in lists
already. By explicitly casting each of the internal sequences to lists and wrapping it all in a

list comprehension, we can allow the function to accept any valid sequence types, including
tuples, which aren’t able to be modified after being created (like a constant perhaps). This
makes the C3 function much more liberal in what it accepts.

172

CHAPTER 4 CLASSES

With the housekeeping out of the way, we can move on to the main algorithm.
Because we don’t know in advance how many classes are in each MRO, it’s best to wrap
the main workload in a simple while True loop, which will execute indefinitely, so we
can control its flow using break and continue. Of course, this means you shouldn'’t try
executing this code until a bit later on, until we have the necessary control code in place.

The first task inside that loop will be to loop over each MRO list, get its first class, and
see if it’s in any position other than first in any of the other lists. If it is, that class isn’t a
valid candidate yet and we need to move on to the first class in the next list. Here’s the
loop necessary to perform those first steps:

Oé

import itertools

def C3(cls, *mro_lists):
Make a copy so we don't change existing content
mro lists = [list(mro list[:]) for mro list in mro lists]

Set up the new MRO with the class itself
mro = [cls]

while True:
for mro_list in mro_lists:
Get the first item as a potential candidate for the MRO.
candidate = mro_list[o]

if candidate in itertools.chain(*(x[1:] for x in mro_lists)) :
The candidate was found in an invalid position, so we
move on to the next MRO list to get a new candidate.
continue

return mro

The chain used here reduces all the non-first classes in all the MRO lists down to a
single list, so it’s easier to test whether the current candidate is valid or not. Of course,
the current code only responds if the candidate is invalid. If it wasn’t found in that chain,
it’s a valid candidate and can be promoted to the final MRO right away.

173

CHAPTER 4 CLASSES

In addition, we need to remove that candidate from the MRO list where it was found,
as well as any of the others it might be found in. This is made a bit easier by the fact
that we know it can only be the first item in any of the lists and that it won’t be in any of
them that were already processed in this round. We can therefore just look at each of the
remaining candidates and remove the class that was promoted. In any case, none of the
other MRO lists should be processed for a new candidate this time around, so we also
need to add a continue:

Oé

while True:
Reset for the next round of tests
candidate_found = False

for mro_list in mro lists:
if not len(mro_list):
Any empty lists are of no use to the algorithm.
continue

Get the first item as a potential candidate for the MRO.
candidate = mro list[0]

if candidate_found:
Candidates promoted to the MRO are no longer of use.
if candidate in mro:
mro_list.pop(0)
Don't bother checking any more candidates if one was found.
continue

if candidate in itertools.chain(*(x[1:] for x in mro lists)) :
The candidate was found in an invalid position, so we
move on to the next MRO list to get a new candidate.
continue

else:
The candidate is valid and should be promoted to the MRO.
mro.append(candidate)
mro_list.pop(0)
candidate_found = True

174

CHAPTER 4 CLASSES

Note Now that we’re removing items from the MRO lists, we also have to add in
an extra bit of code to handle the situation in which one of the lists was completely
emptied. Because there’s nothing of value in an empty list, the loop just moves on
to the next one.

With the candidate selection now complete, the only things left are to tell the
algorithm when its job is done and it should exit the loop. As it stands it will empty the
lists completely, but continue looping through them forever, without ever returning the
new MRO. The key to identifying this situation is that it will indeed empty all the lists.
Therefore, we can check the remaining MRO lists to see if any classes remain. If not, it’s
done and can end the loop:

Oé

while True:
Reset for the next round of tests
candidate_found = False

for mro list in mro_ lists:
if not len(mro list):
Any empty lists are of no use to the algorithm.
continue

Get the first item as a potential candidate for the MRO.
candidate = mro list[0]

if candidate found:
Candidates promoted to the MRO are no longer of use.
if candidate in mro:
mro_list.pop(0)
Don't bother checking any more candidates if one was found.
continue

if candidate in itertools.chain(*(x[1:] for x in mro lists)) :
The candidate was found in an invalid position, so we
move on to the next MRO list to get a new candidate.
continue

175

CHAPTER 4 CLASSES

else:
The candidate is valid and should be promoted to the MRO.
mro.append(candidate)
mro_list.pop(0)
candidate found = True

if not sum(len(mro_list) for mro_list in mro_lists):
There are no MROs to cycle through, so we're all done.
note any() returns false if no items so it could replace sum(len)
break

This loop, inside the C3 function mentioned already, can successfully create an
MRO for any valid Python inheritance scheme. Going back to the function call for the C
class mentioned previously, we'd get the following result. Notice that we’re using strings
here instead of the actual classes, to make it easier to illustrate. Nothing about the C3
algorithm is actually tied to classes anywayj; it’s all just about flattening out a hierarchy
that may contain duplicates:

>>> C3('C', ['B', 'A", 'object'], ['A", 'object'], ['B', 'A'])
[ICI) IBI’ IAI’ Iobjectl]

That’s all well and good, but there’s another related situation that needs some
attention as well: what happens when C inherits from A before B? One would logically
assume that any attributes found on A would be used before those on B, even though B’s
MRO puts B before A. That would violate an important consistency in class inheritance:
the order of items in an MRO should be preserved in all of its future subclasses.

Those subclasses are allowed to add new items to their MRO, even inserting them
in between items in the MRO of the base class, but all the MROs involved should still
retain the same ordering they had originally. So when doing something like C(A, B), the
correct result would actually be inconsistent with user expectations.

That'’s why the C3 algorithm requires that the base classes themselves be added to
the list of MROs that are passed in. Without them, we could invoke the C3 algorithm with
this new construct and get the same result that was obtained with the original ordering:

>>»> C3('C', ['B", "A", 'object'], ['A", 'object'])
['C', 'B', 'A", 'object']
>>> €3('C', ['A", 'object'], ['B"', 'A', 'object'])
['C', 'B", 'A", 'object']

176

CHAPTER 4 CLASSES

Even though it seems like the two should do different things, they would actually
end up doing the same thing. By adding in the extra class list at the end, however, the
behavior of C3 changes a bit. The first candidate is A, which is found in the second
position in the MRO of B, so A is skipped for this round. The next candidate is B, which is
found in the list added in the final argument, so that’s skipped, too. When the final list is
examined, A is skipped once again.

This means C3 completes a full loop without finding any valid candidates, which is
how it detects inappropriate constructs like C(A, B).Without a valid candidate, no items
are removed from any of the lists and the main loop would run again with exactly the same
data. Without any extra handling for the invalid case, our current Python implementation
of C3 will simply continue on indefinitely. It would be better to raise an exception. First,
however, let’s validate this assumption by examining Python’s own behavior with C(A, B).
Assuming that you keyed in the previous examples, try the following:

>>> class A:
pass

>>> class B(A):
pass

>>> class C(A, B):
pass

Traceback (most recent call last):

TypeError: Cannot create a consistent method resolution
order (MRO) for bases B, A

Sure enough, Python’s class system disallows this construct in an effort to force
developers to only make classes that make sense. Duplicating this functionality in
our own C3 class is fairly easy now that we know how to identify an invalid situation.
All we have to do is check at the end of the loop and see whether a valid candidate
was found. If not, we can raise a TypeError:

177

CHAPTER 4 CLASSES

Oé

import itertools

def C3(cls, *mro lists):
Make a copy so we don't change existing content
mro lists = [list(mro list[:]) for mro list in mro lists]

Set up the new MRO with the class itself

mro

[cls]

while True:

178

Reset for the next round of tests
candidate_found = False

for mro list in mro_ lists:

if not len(mro list):
Any empty lists are of no use to the algorithm.
continue

Get the first item as a potential candidate for the MRO.
candidate = mro list[0]

if candidate found:
Candidates promoted to the MRO are no longer of use.
if candidate in mro:
mro list.pop(0)
Don't bother checking any more candidates if one was found.
continue

if candidate in itertools.chain(*(x[1:] for x in mro lists)) :
The candidate was found in an invalid position, so we
move on to the next MRO list to get a new candidate.
continue

else:
The candidate is valid and should be promoted to the MRO.
mro.append(candidate)
mro list.pop(0)
candidate _found = True

CHAPTER 4 CLASSES

if not sum(len(mro list) for mro list in mro lists):
There are no MROs to cycle through, so we're all done.
break

if not candidate_found:
No valid candidate was available, so we have to bail out.
break
raise TypeError("Inconsistent MRO")

return mro

With this last piece in place, our C3 implementation matches the behavior of
Python’s own, covering all the bases. Most arbitrary class inheritance structures can be
reduced to a valid MRO, so you typically don’t need to worry too much about how the
algorithm works. There is one feature of classes, however—the super() function—that
relies on the MRO extensively.

Using super() to Pass Control to Other Classes

One of the most common reasons to create a subclass is to override the behavior of some
existing method. It could be as simple as logging every time the method is called, or as
complex as completely replacing its behavior with a different implementation. In the
case of the former, where you're simply tweaking existing behavior, it’s quite useful to be
able to use the original implementation directly so that you don’t have to reinvent the
wheel just to make some minor changes.

To achieve this, Python supplies the built-in super() function, which is all too
often misunderstood. The common explanation of super () is that it allows you to call a
method on a base class within the overridden method on a subclass. That description
works to a point, but before explaining it more fully let’s examine how it behaves in the
simple case, to see what that even means:

7
class A(object):
def afunction(self):

print('afunction from Class A')
class B(A):

179

CHAPTER 4 CLASSES

def _init (self):
print('B is constructed!!!"') # constructor for B
def afunction(self):
return super(B, self).afunction()
sample1=B()
print(samplel.afunction())

In this simple example, super () returns the base class of the method. To build on
what we just read about, super () looks at the next class in the MRO, in this case class
A. Notice that we say “overridden,” as we have two functions named afunction.

Next, consider an application that needs to create a dictionary that automatically
returns None for any keys that don’t already have a value associated with them. This is
fairly similar to defaultdict, but it doesn’t have to create a new value each time; it just
returns None:

Oé

>>> class NoneDictionary(dict):
def getitem_ (self, name):
try:
return super(NoneDictionary, self). getitem_ (name)
except KeyError:
return None

>>> d = NoneDictionary()
>>> d["example’]

>>> d['example'] = True
>>> d['example']

True

Before getting too much further, it’s important to realize what super () is really doing
here. In some languages, super () is simply a language feature that gets compiled into
some special code to access methods from other classes. In Python, however, super ()
returns an actual object, which has a set of attributes and methods that are based on

where it was used.

180

CHAPTER 4 CLASSES

From this simple example, it does seem that super () just provides access to a
method on the base class, but remember that there can be any number of base classes
involved, with more than one specified on each class. Given the complex nature of some
inheritance structures, it should be clear by now that Python would use the MRO to
determine which method to use. What may not be obvious, however, is which MRO is
used when looking up the method.

Just looking at it, you might think that Python uses the MRO of the class where
super () was used, which would be NoneDictionary in the example given here. Because
most cases will look very much like that example, that assumption will be accurate
enough to account for most cases. However, more complicated class hierarchies raise
the question of what happens when the MRO gets changed in subclasses. Consider the
following set of classes; however, start a new Python session, as these class definitions
are a bit different than our first example:

>>> class A:
def test(self):
return 'A’

>>> class B(A):
def test(self):
return 'B->' + super(B, self). test()

;;; B().test()
'B->A"

In this example, using super () inside of B refers to its base class, A, as expected.
Its test () method includes a reference to itself, so we'll be able to see along the way if
things change. Along with B, we could define another class, C, which also subclasses A.
To illustrate things a bit better down the road, C will implement its own test() method,
without using super ():

181

CHAPTER 4 CLASSES

>>> class C(A):
def test(self):
return 'C'

;;; C().test()
e

Of course, there’s nothing unusual or problematic about this so far, as it doesn’t
interact with A or B in any way. Where things get interesting is when we create a new
class, D, which subclasses both B and C. It doesn’t need a test() method, so we just leave
its body blank, making it as simple as a class can be. Let’s see what happens to test()

now:

>>> class D(B, C):
pass

;;; D().test()
'B->C'

Now we can finally see what’s going on. We can see that test() is called on B,
causing its reference in the output, but when it calls super () . test(), it refers to the
method of C, rather than the one on A. If Python simply used the MRO of the class where
the method was defined, it would reference A, not C. Instead, because it uses C, we can
gain some insight into how super () really works.

In the most common case, which includes the usage shown here, super () takes two
arguments: a class and an instance of that class. As our example has shown, the instance
object determines which MRO will be used to resolve any attributes on the resulting
object. The provided class determines a subset of that MRO, because super () only uses
those entries in the MRO that occur after the class provided.

182

CHAPTER 4 CLASSES

The recommended usage is to provide the class where super () was used as the
first argument, and the standard self as the second argument. The resulting object will
retain the instance namespace dictionary of self, but it only retrieves attributes that
were defined on the classes found later in the MRO than the class provided. Technically,
however, you could pass in a different class and get different results:

>>> class B(A):
def test(self):
return 'B->' + super(C, self). test()

>>> class D(B, C):
pass

;;; D().test()
'B->A"

In this example, where B actually references C in its invocation of super (), the
resulting MRO skips C, moving straight onto A, which is shown by calling test () again.
This is a dangerous thing to do in common practice, however, as shown when trying to
use B on its own:

>>> B().test()
Traceback (most recent call last):

TypeError: super(type, obj): obj must be an instance or subtype of type

Because self isn’t a subclass of C in this case, C isn’t anywhere in the MRO, so super ()
can’t determine where it should start looking for attributes. Rather than creating a
useless object that just throws an AttributeError for everything, super () fails when first
called, providing a better error message.

183

CHAPTER 4 CLASSES

WARNING: BE CAREFUL WITH YOUR ARGUMENTS

One common mistake when using supexr () is to use it on a method that won’t always have
the same signature across all the various classes. In our examples here, the test() method
doesn’t take any arguments, so it’s easy to make sure it’s the same across the board. Many
other cases, such as __getitem_ (), shown previously, are standard protocols that should
never have their function signatures significantly changed by any subclass. Chapter 5 shows
many of these cases in more detail.

Unfortunately you can’t always know what another class will do, so using super() can
sometimes cause problems by providing the wrong arguments to the class given. Of course,
this really isn’t any different than passing in an object that has a different protocol than what
another function expects.

The reason it’s worth noting with super() is that it’s easy to assume you know what function
you're actually calling. Without a solid understanding of how MROs work and how super ()
determines which attributes to use, problems can seem to come up out of nowhere. Even with
a thorough knowledge of these topics, however, the only real defense against such problems
is an agreement among all the classes involved to not change method signatures.

Introspection

Given all the different inheritance options available, it’s appropriate that Python
provides a number of tools to identify what structure a class uses. The most obvious
introspection task for use with classes is to determine whether an object is an instance
of a given class. This behavior is provided using the built-in isinstance() function,
which takes any arbitrary object as its first argument and a Python class as its second
argument. Only if the given class is anywhere in the inheritance chain of the object’s
class will isinstance() return True:

>>> isinstance(10, int)

True

>>> isinstance('test', tuple)
False

184

CHAPTER 4 CLASSES

A natural complement to isinstance() is the ability to determine whether one
class has another class somewhere in its inheritance chain. This feature, provided by the
built-in subclass() function, works just like isinstance(), except that it operates on
a class rather than an instance of it. If the first class contains the second anywhere in its
inheritance chain, issubclass() returns True:

>>> issubclass(int, object)
True
>>> class A:

pass

>>> class B(A):
pass

>>> issubclass(B, A)
True
>>> issubclass(B, B)
True

That last example may seem odd, as B clearly can’t be a subclass of itself, but this
behavior is to remain consistent with isinstance(), which returns True if the type of the
provided object is the exact class provided along with it. In a nutshell, the relationship
between the two can be described using a simple expression, which is always true:

isinstance(obj, cls) == issubclass(type(obj), cls)

If you'd like more information about the inheritance structure for a particular
class, there are a few different tools at your disposal. If you'd like to know what base
classes were defined for a particular class, simply accessits __bases__ attribute, which
will contain those base classes in a tuple. It only provides the immediate base classes,
however, without any of the classes that were extended deeper than that:

185

CHAPTER 4 CLASSES

>>> B.__bases
(<class ' main_ .A'>,)

On the other side of the coin, every class also hasa __subclasses () method,
which returns a list of all the subclasses of the class you're working with. Like __bases_,
this only goes one level away from the class you're working with. Any further subclasses
need to use some other mechanism to keep track of subclasses, some of which will be
discussed later in this book:

>>> A.__subclasses_ ()
[<class '__main_ .B'>]

If you'd like even more information and control, every class also hasan __mro
attribute, which contains the full MRO for that class, in a tuple. As mentioned previously,
this also includes the actual class you pass in along with any of its parent classes. You
might even try this on the first example with super () used earlier:

>>> B.__mro__
(<class '_main_ .B'>, <class ' main_ .A'>, <class 'object'>)

How Classes Are Created

Defining a class in Python works differently than in many other languages, although the
differences are not always apparent. It seems quite simple: you supply a name, possibly
a base class to inherit from, some attributes, and some methods. But when Python
encounters that declaration, the process that takes place actually has more in common
with functions than you may realize.

To start with, the body of a class declaration is a code block. Just like if, for, and
while, the body of a class block can contain any valid Python code, which will execute

186

CHAPTER 4 CLASSES

from top to bottom. It will follow function calls, perform error handling, read files, or
anything else you ask it to do. In fact, if blocks can be quite useful inside of a class declaration:

>>> try:
import custom_library
. except ImportError:
custom_library = None

>>> class Custom:
if custom_library is not None:
has_library = True
else:
has_library = False

>>> Custom.has_library
False

Tip This example is useful for demonstration purposes only. If you’re looking to
achieve the exact effect shown here, it's much more pragmatic to simply assign
the expression custom_library is not None directly to the has_library
attribute. It returns a Boolean value anyway, so the end result is identical, but it’s a
much more common approach to the task at hand.

After Python finishes executing the inner code, you'll notice that has_library
becomes an attribute of the class object that’s made available to the rest of your code.
This is possible because Python'’s class declarations work a little bit like functions.
When a new class is found, Python starts by creating a new namespace for the block
of code inside it. While executing the code block, any assignments are made in that
new namespace. Then the namespace created is used to populate a new object, which
implements the new class.

187

CHAPTER 4 CLASSES

Creating Classes at Runtime

The previous section alluded to the fact that Python creates type objects while
executing code, compiling and interpreting. As with nearly everything else that happens
at runtime, you can hook into that process yourself and use it to your advantage. Doing
so takes advantage of what Python does behind the scenes when encountering a class.

The really important stuff happens just after the contents of the class are processed.
At this point Python takes the class namespace and passes it, along with some other
pieces of information, to the built-in type(), which creates or “instantiates” the new
class object. This means that all classes are actually subclasses of type (), which sits at
the base of all of them. Specifically, there are three pieces of information that type()
uses to instantiate a class:

¢« The name of the class that was declared
o The base classes the defined class should inherit from
e The namespace dictionary populated when executing the class body

This information is all that’s necessary to represent the entire class, and even though
Python obtains this information automatically by inspecting the class declaration, you
can create a type by passing in these values directly.

The name is easiest, as it’s just a string with the name of the class. Base classes get
slightly more involved, but they’re still fairly simple: just supply a sequence containing
existing class objects that the new class should inherit from. The namespace dictionary
is just that: a dictionary, which happens to contain everything that should be attached to
the new class by name. Here’s an example of how the same class could be created in two
different ways:

Oé

>>> class Example(int):
spam = 'eggs’

>>> Example

<class ' main__.Example'>

»»> Example = type('Example', (int,), {'spam': 'eggs'})
>>> Example

<class ' main__.Example'>

188

CHAPTER 4 CLASSES

DON’T REPEAT YOURSELF

You'll notice that this example ends up having to write the name Example twice, which may

seem to violate the DRY principle. Remember, however, that there are really two things going

on here, and the two aren’t tied to each other. First, the class is being created, which requires
us to supply a name. Second, the new class gets bound to a name in the namespace.

This example uses the same name for both operations, partly for convenience and partly for
compatibility with the native class declaration above it. However, the namespace assignment
is completely separate from class creation, so any name could be used. In fact, most of the
time you won’t even know the name of the class in advance, so you’ll aimost always use a
different name in practice anyway.

Like most times, you have low-level access to a common feature, type(), which gives
you plenty of chances to create problems. One of the three arguments to type() is the
name of the class to create, so it’s possible to create multiple classes with the same name.

In addition, by passing in the attribute namespace, you can supply anew __module
attribute to mimic its presence in a different module. It won’t actually put the class in the
specified module, but it will fool any code that introspects the module later on. Having
two classes with both the same name and module could potentially cause problems with
tools that introspect modules to determine their structure and hierarchy.

Of course, it’s possible to encounter these problems even without using type()
directly. If you create a class, assign it to a different name, and then create a new class
with the same name as the original, you can have the exact same naming problem. Also,
Python lets you supplya _module attribute within a standard class declaration, so you
can even create clashes in code that’s not under your control.

Even though it’s possible to run into these problems without resorting to type()
directly, the warning here is that type () makes it much easier to accidentally encounter
problems. Without it, you'd have to write code that specifically exploits the preceding
points in order to create naming conflicts. With type(), however, the values supplied
might come from user input, customization settings, or any number of other places, and
the code won’t look like it has any problems of this nature.

189

CHAPTER 4 CLASSES

Unfortunately there are no real safeguards against these types of problems, but
there are some things you can do to help reduce the risks. One approach would be to
wrap all custom class creation inside of a function that keeps track of which names
have been assigned and reacts appropriately when a duplicate is created. A more
pragmatic option is simply to make sure any introspecting code is capable of handling
a case where duplicates are encountered. Which approach to use will depend on the
needs of your code.

Metaclasses

Thus far, classes have been defined as being processed by the built-in type, which
accepts the class name, its base classes, and a namespace dictionary. But type is just

a class like anything else; it’s only special in that it’s a class used to create classes—a
metaclass. Like any other class, though, it can be subclassed to provide customized
behavior for our application. Because the metaclass receives the full class declaration as
soon as Python encounters it, you can unlock some pretty powerful features.

By subclassing type you can create your own metaclass, which can customize the
creation of new classes to better suit the needs of your application. Like any class-based
customization, this is done by creating a subclass of type and overriding any methods
that make sense for the task at hand. In most cases, this is either _new_ () or _init ().
The “Magic Methods” section later in this chapter will explain the difference between the
two, but for this discussion we'll justuse __init (), since it’s easier to work with.

As mentioned previously, type() takes three arguments, all of which must be
accounted for in any subclasses. To start off simple, consider the following metaclass,
which prints out the name of every class it encounters:

Oé

>>> class SimpleMetaclass(type):
def _init (cls, name, bases, attrs):
print(name)
super(SimpleMetaclass, cls). init (name, bases, attrs)

190

CHAPTER 4 CLASSES

This alone is enough to capture a class declaration. Using super () here makes sure
that any other necessary initialization also takes place. Even though type doesn’t do
anything initsown _init (), remember from earlier in this chapter that this class
could be part of a bigger inheritance structure. Using super () makes sure that the class
gets initialized properly, regardless of what “properly” really means in the given context.

To apply this metaclass to a new class and print out its name, Python allows the class
definition to specify a metaclass right alongside its parent classes. It looks like a keyword
argument, but this isn’t a function call, so it’s actually part of the syntax of a class
declaration. Here’s an example of how our SimpleMetaclass would work:

Oé

>>> class Example(metaclass=SimpleMetaclass):
pass

>>> Example

All that was needed here was to supply the metaclass in the class definition, and
Python automatically ships that definition off to the metaclass for processing. The only
difference between this and a standard class definition is that it uses SimpleMetaclass
instead of the standard type.

Note The firstargumenttothe init () method on a metaclass is typically
called cls, although you might think it should be self because _init ()
operates an instance object, rather than a class. That’s true in general, and this
case is actually no exception. The only difference here is that the instance is

a class object itself, which is an instance of type, so using self would still be
accurate. However, because of the differences between classes and objects, we
still refer to class objects as cls, rather than self, so they stay well separated.

Metaclasses can be difficult to understand without real-world examples to illustrate
their usefulness. Let’s take a look at how a simple metaclass can be used to provide a
powerful framework for registering and using plugins.

191

CHAPTER 4 CLASSES

Example: Plugin Framework

As an application grows flexibility becomes increasingly important, so attention often
turns to plugins and whether the application can accommodate that level of modularity.
There are many ways to implement plugin systems and individual plugins, but they all
have three core features in common.

First, you need a way to define a place where plugins can be used. In order to plug
something in, there needs to be a socket for the plug to fit into. In addition, it should be
very obvious how to implement individual plugins along the way. Lastly, the framework
needs to provide an easy way to access all the plugins that were found, so they can all be
used. Other features may be added on top, but these are what make a plugin framework.

There are several approaches that would satisfy these requirements, but because
plugins are really a form of extension, it makes sense to have them extend a base
class. This makes the first requirement fairly simple to define: the point where plugins
can attach themselves would be a class. As a class it takes advantage of Python’s own
extension features, not only through the built-in subclass syntax but also by allowing
the base class to provide some methods that constitute default functionality or offer
help for common plugin needs. Here’s how such a plugin mount point might look for an
application that validates user input:

Oé

class InputValidator:
A plugin mount for input validation.
Supported plugins must provide a validate(self, input) method, which
receives
input as a string and raises a ValueError if the input was invalid. If the
input was properly valid, it should just return without error. Any return
value will be ignored.
def validate(self, input):
The default implementation raises a NotImplementedError
to ensure that any subclasses must override this method.
raise NotImplementedError

192

CHAPTER 4 CLASSES

Even without any of the framework-level code that makes the plugins work, this
example demonstrates one of the most important aspects of an extensible system:
documentation. Only by properly documenting a plugin mount can you expect plugin
authors to correctly adhere to its expectations. The plugin framework itself doesn’t make
any assumptions about what requirements your application will have, so it’s up to you to
document them.

With a mount point written, individual plugins can easily be created simply by
writing a subclass of the mount point that’s already in place. By providing new or
overridden methods to satisfy the documented requirements, they can add their own
little slice of functionality to the overall application. Here’s an example validator that
ensures the provided input only consists of ASCII characters:

Oé

class ASCIIValidator(InputValidator):

Validate that the input only consists of valid ASCII characters.

>>> v = ASCIIValidator()

>>> v.validate('sombrero")

>>> v.validate('jalapefo")
Traceback (most recent call last):

UnicodeDecodeError: 'ascii' codec can't decode character '\xfi' in position
6: ordinal not in range(128)
def validate(self, input):
If the encoding operation fails, str.enc ode() raises a
UnicodeDecodeError, which is a subclass of ValueError.
input.encode('ascii')

Tip Notice that this also provides its own documentation. Because plugins

are also classes all their own, they can be subclassed by even more specialized
plugins down the road. This makes it important to include thorough documentation
even at this level, to help ensure proper usage later.

193

CHAPTER 4 CLASSES

Now that we have two of the three components out of the way, the only thing left
before tying it all together is to illustrate how to access any plugins that were defined.
Because our code will already know about the plugin mount point, that makes an
obvious place to access them, and as there could be anywhere from zero to hundreds
of plugins, it’s optimal to iterate over them, without caring how many there are. Here’s
an example function that uses any and all available plugins to determine whether some
input provided by a user is valid:

Oé

def is_valid(input):
for plugin in InputValidator.plugins:
try:
plugin().validate(input)
except ValueError:
A ValueError means invalidate input
return False
All validators succeeded
return True

Having plugins means you can extend the functionality of even a simple function
like this without having to touch its code again later. Simply add a new plugin, make
sure it gets imported, and the framework does the rest. With that, we finally get around
to explaining the framework and how it ties all these pieces together. Because we're
working with classes whose definitions specify more than just their behavior, a metaclass
would be an ideal technique.

All the metaclass really needs to do is recognize the difference between a plugin
mount class and a plugin subclass and register any plugins in a list on the plugin mount,
where they can be accessed later. If that sounds too simple, it’s really not. In fact, the
entire framework can be expressed in just a few lines of code, and it only takes one extra
line of code on the plugin mount to activate the whole thing:

194

CHAPTER 4 CLASSES

Oé

class PluginMount(type):
Place this metaclass on any standard Python class to turn it into a plugin
mount point. All subclasses will be automatically registered as plugins.
def init (cls, name, bases, attrs):
if not hasattr(cls, 'plugins'):
The class has no plugins list, so it must be a mount point,
so we add one for plugins to be registered in later.
cls.plugins = []
else:
Since the plugins attribute already exists, this is an
individual plugin, and it needs to be registered.
cls.plugins.append(cls)

That’s all that’s necessary to supply the entire plugin framework. When the metaclass
is activated on the plugin mount, the __init () method recognizes that the plugins
attribute doesn’t yet exist, so it creates one and returns without doing anything else.
When a plugin subclass is encountered the plugins attribute is available by virtue of its
parent class, so the metaclass adds the new class to the existing list, thus registering it for
later use.

Adding this functionality to the inputValidator mount point described previously is
as simple as adding the metaclass to its class definition.

class InputValidator(metaclass=PluginMount):

Individual plugins are still defined as standard plugins, without additional effort
required. Because metaclasses are inherited by all subclasses, the plugin behavior is
added automatically.

195

CHAPTER 4 CLASSES

Controlling the Namespace

Metaclasses can also be used to help control how Python processes the class declaration.
Rather than waiting for the class to be created before acting on it, another tactic is to
process the raw components of the class while Python is going through them. This is
made possible by a special metaclass called __prepare ().

By supplyinga _prepare () method on your metaclass, you can get early access
to the class declaration. In fact, this happens so early that the body of the class definition
hasn’t even been processed yet. The __prepare () method receives just the class
name and a tuple of its base classes. Rather than getting the namespace dictionary as an
argument, _prepare__ () is responsible for returning that dictionary itself.

The dictionary returned by __prepare () is used as the namespace while Python
executes the body of the class definition. This allows you to intercept each attribute as
soon as it’s assigned to the class, so it can be processed immediately. Ordinarily this is
used to return an ordered dictionary, so that attributes can be stored in the order they
were declared within the class. For reference, take a look at how a metaclass would work
without using __prepare_ ():

>>> from collections import OrderedDict
>>> class OrderedMeta(type):
def _init (cls, name, bases, attrs):
print(attrs)

>>> class Example(metaclass=OrderedMeta):

b=1
a=2
c=173

{'a': 2, ' module ': ' main_ ', 'b': 1, 'c': 3}

The default behavior returns a standard dictionary, which doesn’t keep track of how
the keys are added. Adding a simple __prepare__ () method provides all that’s needed to
keep the ordering intact after the class is processed:

196

CHAPTER 4 CLASSES

>>> class OrderedMeta(type):
@classmethod
def prepare (cls, name, bases):
return OrderedDict()
def _init (cls, name, bases, attrs):
print(attrs)

>>> class Example(metaclass=OrderedMeta):

b=1
a=2
c=3

6;éeredDict([('__module__', ' main_ '), ('B', 1), ('A', 2), ('c', 3)])

Note The module__attribute is at the beginning of the attribute list because
it gets added just after __prepare () is called, before Python starts processing
the body of the class.

WITH GREAT POWER COMES GREAT RESPONSIBILITY

By controlling the object used for the namespace dictionary, you can have a tremendous
amount of control over how the entire class declaration behaves. Every time a line in a class
references a variable or assigns an attribute, the custom namespace can intercede and
change the standard behavior. One possibility is to provide decorators that can be used when
defining methods within the class, without requiring a separate import to make them available
to the class definition. Likewise, you can control how attributes are assigned by changing their
names, wrapping them in helper objects, or removing them from the namespace completely.

197

CHAPTER 4 CLASSES

This amount of power and flexibility can be easily abused to provide a level of magic not
seen elsewhere. To a developer simply using your code without fully understanding how

it’s implemented, it’ll look like Python itself is wildly inconsistent. Worse yet, any significant
changes you make to the behavior of the class declaration could impact the behavior of other
tools your users might try to combine with yours. Chapter 5 shows how you can enable these
features by extending your dictionary, but be very careful when doing so.

Attributes

Once an object is instantiated, any data associated with it is kept within a new
namespace dictionary that’s specific to that instance. Access to this dictionary is
handled by attributes, which make for easier access than using dictionary keys. Just like
dictionary keys, attribute values can be retrieved, set, and deleted as necessary.

Typically, accessing an attribute requires you to know the name of the attribute in
advance. The syntax for attributes doesn’t offer the same flexibility as dictionary keys
in providing variables instead of literals, so it can seem limited if you need to get or set
an attribute with a name that came from somewhere else. Instead of offering a special
syntax for working with attributes in this way, Python provides a trio of functions.

The first, getattr(), retrieves the value to which an attribute refers, given a variable
that contains the name of the attribute. The next, setattr(), takes both the name
of an attribute and its value and attaches that value to the attribute with the given
name. Finally, delattr() allows you to delete an attribute value given the name as its
argument. With these functions, you can work with any attribute on any object without
knowing the attribute names when writing code.

Properties

Rather than only acting as a proxy to the standard namespace dictionary, properties
allow attributes to be powered by methods that can access the full power of Python.
Typically, properties are defined using the built-in @property decorator function.
Applied to a method, it forces the method to be called whenever the function’s name is
accessed as an attribute name:

198

CHAPTER 4 CLASSES

>>> class Person:
def _init_ (self, first_name, last_name):
self.first name = first name
self.last name = last name
@property
def name(self):
return '%s, %s' % (self.last name, self.first name)

>>> p = Person('Marty', 'Alchin')

>>> p.name

'Alchin, Marty'

>>> p.name = 'Alchin, Martin' # Update it to be properly legal
Traceback (most recent call last):

AttributeError: can't set attribute

That last error isn’t terribly descriptive, but basically properties defined this way only
retrieve attribute values, not set them. Function calls are only one way, so to set the value
we'll need to add another method that handles that side of things. This new method
would accept another variable: the value that should be set on the attribute.

In order to mark the new method as the setter for a property, it’s decorated much
like the getter property. Rather than using a built-in decorator, though, the getter gains a
setter attribute that can be used to decorate the new method. This fits with the typical
noun-based naming convention of decorators, while also describing which property will
be managed:

>>> class Person:
def _init_ (self, first name, last_name):
self.first name = first name
self.last name = last name

@property

199

CHAPTER 4 CLASSES

def name(self):
return '%s, %s' % (self.last name, self.first name)
cee @®name.setter
cos def name(self, value):
cos return '%s, %s' % (self.last_name, self.first_name)

>>> p = Person('Marty', 'Alchin')

>>> p.name

'Alchin, Marty'

>>> p.name = 'Alchin, Martin' # Update it to be properly legal
3> p.name

'"Alchin, Martin'

Just make sure that the setter method is named the same as the original getter
method, or it won’t work properly. The reason for this is that name.setter doesn’t
actually update the original property with the setter method. Instead, it copies the getter
onto the new property and assigns them both to the name given to the setter method.
Exactly what this means behind the scenes will be explained better in the next section on
descriptors.

In addition to getting and setting values, a property can also delete the current value,
using a decorator similar to the setter. By applying name.deleter to a method that only
accepts the usual self, you can use that method to delete values from the attribute. For
the Person class shown here, that means clearing out both first name and last_name
together:

>>> class Person:
def _init (self, first name, last name):
self.first name = first name
self.last_name = last_name
@property
def name(self):
return '%s, %s' % (self.last name, self.first name)
@name.setter

200

CHAPTER 4 CLASSES

def name(self, value):
return '%s, %s' % (self.last name, self.first name)
coe @name.deleter
cos def name(self):
ceo del self.first_name
coe del self.last_name

>>> p = Person('Marty', 'Alchin')

>>> p.name

‘Alchin, Marty'

>>> p.name = 'Alchin, Martin' # Update it to be properly legal
>>> p.name

"Alchin, Martin'

%> del p.name

%> p.name

Traceback (most recent call last):

AttributeError: 'Person' object has no attribute 'last name'

Descriptors

One potential problem with properties is that they require all the methods to be defined
as part of the class definition. It’s great for adding functionality to a class if you have
control over the class yourself, but when building a framework for inclusion in other
code, we'll need another approach. Descriptors allow you to define an object that can
behave in the same way as a property on any class to which it’s assigned.

In fact, properties are implemented as descriptors behind the scenes, as are methods,
which will be explained in the next section. This makes descriptors perhaps one of the
most fundamental aspects of advanced class behavior. They work by implementing any of
three possible methods, dealing with getting, setting, and deleting values.

The first, _get (), manages retrieval of attribute values, but unlike a property, a
descriptor can manage attribute access on both the class and its instances. In order to
identify the difference, _get () receives both the object instance and its owner class
as arguments. The owner class will always be provided, but if the descriptor is accessed
directly on the class instead of an instance, the instance argument will be None.

201

CHAPTER 4 CLASSES

A simple descriptor using only the _get () method can be used to always provide
an up-to-date value when requested. The obvious example, then, is an object that
returns the current date and time without requiring a separate method call:

>>> import datetime
>>> class CurrentTime:
def _get (self, instance, owner):
return datetime.datetime.now()

>>> class Example:
time = CurrentTime()

>>> Example().time

datetime.datetime(2009, 10, 31, 21, 27, 5, 236000)
>>> import time

>>> time.sleep(5 * 60) # Wait five minutes

>>> Example().time

datetime.datetime(2009, 10, 31, 21, 32, 15, 375000)

Therelated _set () method manages setting a value on the attribute managed
by the descriptor. Unlike _get (), this operation can only be performed on instance
objects. If you assign a value to the given name on the class instead, you'll actually
overwrite the descriptor with the new value, removing all of its functionality from the
class. This is intentional, because without it, there would be no way to modify or remove
a descriptor once it’s been assigned to a class.

Because it doesn’t need to accept the owner class, _set () only receives the
instance object and the value being assigned. The class can still be determined by
accessing the _class__ attribute on the instance object provided, though, so there’s no
information lost. With both __get () and __set_ () defined on a descriptor, we can do
something more useful. For example, here’s a basic descriptor that behaves just like an
attribute, except that it logs every time its value is changed:

202

CHAPTER 4 CLASSES

>>> import datetime
>>> class LoggedAttribute:
def init (self):
self.log = []
self.value map = {}
def _set (self, instance, value):
self.value map[instance] = value
log value = (datetime.datetime.now(), instance, value)
self.log.append(log value)
def _get (self, instance, owner):
if not instance:
return self # This way, the log is accessible
return self.value map[instance]

>>> class Example:
value = LoggedAttribute()

>>> e = Example()

>>> e.value = 'testing'

>>> e.value

"testing'

>>> Example.value.log

[(datetime.datetime(2009, 10, 31, 21, 49, 59, 933000), <_main .Example object a
t ox...>, 'testing')]

Before going on, there are a few important things to notice here. First, when setting a
value on the descriptor, _set () adds it to a dictionary on itself, using the instance as
a key. The reason for this is that the descriptor object is shared among all the instances
of the class it’s attached to. If you were to set the value to the descriptor’s self, that value
would be shared among all those instances as well.

203

CHAPTER 4 CLASSES

Note Using a dictionary is just one way to make sure that instances are handled,
but it’s not the best. It's used here because the preferred method, assigning
directly to the instance’s namespace dictionary, is only an option once you know
the name of the attribute. Descriptors on their own don’t have access to that name,
so the dictionary is used here instead. Chapter 11 shows an approach to address
this problem based on metaclasses.

Also, notice that __get () returns self if no instance was passed in. Because the
descriptor works based on setting values, it has no additional value to contribute when
called on the class. Most of the time, when a descriptor is in this situation it makes more
sense to raise an AttributeError to prevent users from trying something that doesn’t
make sense. Doing so here would mean the value log would never be available, so the
descriptor returns itself.

In addition to getting and setting values, descriptors can also delete values from
the attribute or the attribute itself. The _delete () method manages this behavior,
and because it only works on instances and doesn’t care about the value, it receives the
instance object as its only argument.

In addition to managing attributes, descriptors are also used to implement one of the
most important aspects of object-oriented programming: methods.

Methods

When a function is defined in a class, it’s considered to be a method. Even though it still
works like a function in general, it has class information available to it because functions
are actually descriptors as well. Within the category of methods, however, there are two
distinct types: bound and unbound methods.

Unbound Methods

Because descriptors can be accessed from the class as well as its instances, methods
can be accessed from both as well. When accessing a function on a class, it becomes an
unbound method. The descriptor receives the class, but methods typically require the
instance, so they're referred to as unbound when accessed without one.

204

CHAPTER 4 CLASSES

Calling it an unbound method is really more of a naming convention than any formal
declaration. What you get when accessing the method on a class is just the function
object itself:

>>> class Example:
def method(self):
return 'done!'

>>> type(Example.method)
<class 'function'>

>>> Example.method
<function method at 0x...>

self isn't passed automatically

>>> Example.method()

Traceback (most recent call last):

TypeError: method() takes exactly 1 position argument (0 given)

It’s still callable just like any other standard function, but it also carries information
about what class it’s attached to. Notice that the self argument in an unbound method
isn’t passed automatically, as there’s no instance object available to bind to it.

Bound Methods

Once the class is instantiated, each method descriptor returns a function that’s bound
to that instance. It’s still backed by the same function, and the original unbound method
is still available on the class, but the bound method now automatically receives the
instance object as its first argument:

205

CHAPTER 4 CLASSES

>>> ex = Example()

>>> type(ex.method)

<class 'method'>

>>> ex.method

<bound method Example.method of < main__ .Example object at Ox...>>

self gets passed automatically now

>>> ex.method()
"done!"

And the underlying function is still the same

>>> Example.method is ex.method. func__
True

is and == have related yet different functionality and == could have
replaced is in this instance, yet since is checks to see if two arguments
refer to the same object versus == checks to see if two object have same
value, is works better for our needs.

As you can see, bound methods are still backed by the same function as unbound
methods. The only real difference is that bound methods have an instance to receive as
the first argument. It’s important to realize also that the instance object is passed as a
positional argument, so the argument name doesn’t need to be self to work properly,
but it’s a well-established standard that you should follow whenever possible.

Tip Because bound methods accept an instance as the first argument, method
binding can be faked by explicitly providing an instance as the first argument to
an unbound method. It all looks the same to the method, and it can be a useful
approach when passing functions around as callbacks.

Sometimes, however, the method doesn’t need access to the instance object,
regardless of whether the class has been instantiated. These methods fall into two
separate types.

206

CHAPTER 4 CLASSES

Class Methods

When a method only needs access to the class it’s attached to, it’s considered a class
method, which Python supports through the use of a built-in @classmethod decorator.
This ensures that the method will always receive the class object as its first positional
argument, regardless of whether it’s called as an attribute of the class or one of its

instances:

>>> class Example:
@classmethod
def method(cls):
return cls

>>> Example.method()

<class __main__.Example at Ox...>
>>> Example().method()

<class __main__.Example at Ox...>

Once the @classmethod decorator has been applied—see the section later in this
chapter for information on decorators—the method() method will never receive an
instance of Example as its first argument, but will always be the class itself or one of its
subclasses. The cls argument will always be whatever class was used to call the method,
rather than just the one where the method was defined.

Although it may not be clear from the previous example, class methods are actually
bound instance methods, just like those described in the previous sections. Because
all classes are actually instances of a built-in type, class methods are bound to the class
itself:

Oé

>>> Example.method
<bound method type.method of <class ' _main__.Example'>>

207

CHAPTER 4 CLASSES

Class methods can also be created in another, slightly more indirect way. Because all
classes are really just instances of metaclasses, you can define a method on a metaclass. All
instance classes will then have access to that method as a standard bound method. There’s
no need to use the @classmethod decorator, because the method is already bound to the
class using the standard behavior described previously. Here’s how it works:

>>> class ExampleMeta(type):
def method(cls):
return cls

>>> class Example(metaclass=ExampleMeta):
pass

>>> Example.method

<bound method ExampleMeta.method of <class ' main__ .Example'>>
>>> Example.method()

<class __main__.Example at Ox...>

The actual behavior of a method constructed this way is identical to a regular class
method in most respects because they're built the same way internally. They can be called
from the class itself, rather than requiring an instance, and they always receive the class
object as an implicit first argument. The difference, however, is that class methods can still be
called from instances, whereas a bound class method can only be called from the class itself.

The reason for this behavior is that the method is defined in the metaclass namespace,
which only puts it in the MRO of instances of that metaclass. All classes that reference
the metaclass will have access to the method, but it’s not actually in their definitions.
Methods decorated with @classmethod are placed directly in the namespace of the class
where they're defined, which makes them available to instances of that class as well.

Even though this difference in visibility seems like metaclass-based class methods are
just an inferior version of standard decorated class methods, there are two reasons why
they may be beneficial to an application. First, class methods are generally expected to be
called as attributes of the class, and are rarely called from instance objects. That’s not a
universal rule, and it’s certainly not enough to justify the use of a metaclass on its own, but
it’s worth noting.

208

CHAPTER 4 CLASSES

Perhaps more importantly, many applications that already use a metaclass also need
to add class methods to any class that uses that metaclass. In this case, it makes sense
to just define the methods on the existing metaclass, rather than using a separate class
to hold the class methods. This is especially useful when that extra class wouldn’t have
anything valuable to add on its own; if the metaclass is the important part, it’s best to
keep everything there.

Static Methods

Occasionally, even the class is more information than is necessary for a method to do
its job. This is the case for static methods, which are often implemented for the sake

of establishing a namespace for functions that could otherwise be implemented at the
module level. Using the staticmethod decorator, the method won't receive any implicit
arguments at any time:

>>> class Example:
@staticmethod
def method():
print('static!")

>>> Example.method
<function method at 0x...>
>>> Example.method()
static!

As you can see, static methods don’t really look like methods at all. They're just
standard functions that happen to sit in a class. The next section shows how a similar
effect can be achieved on instances by taking advantage of Python’s dynamic nature.

209

CHAPTER 4 CLASSES

Assigning Functions to Classes and Instances

Python allows most attributes to be overwritten simply by assigning a new value, which
presents an interesting opportunity for methods:

>>> def dynamic(obj):
return obj

>>> Example.method = dynamic
>>> Example.method()
Traceback (most recent call last):

TypeError: dynamic() takes exactly 1 positional argument (0 given)
>>> ex = Example()

>>> ex.method()

<__main__.Example object at Ox...>

Notice here that the function assigned to the class still needs to be written to accept
an instance as its first argument. Once assigned, it works just like a regular instance
method, so the argument requirement doesn’t change at all. Assigning to instances
works similarly in syntax, but because the function never gets assigned to a class, there’s
no binding involved at all. A function assigned directly to an instance attribute works just
like a static method that was attached to the class:

>>> def dynamic():
print('dynamic!")

>>> ex.method = dynamic

>>> ex.method()

dynamic!

>>> ex.method

<function dynamic at ox...>

210

CHAPTER 4 CLASSES

Magic Methods

Objects in Python can be created, manipulated, and destroyed in a number of different
ways, and most of the available behaviors can be modified by implementing some extra
methods on your own custom classes. Some of the more specialized customizations can
be found in Chapter 5, but there are several of these special methods that are common
to all types of classes. These methods can be categorized according to what aspect of
classes they deal with, so the following sections each cover a few different methods.

Creating Instances

The transition from a class to an object is called instantiation. An instance is little more
than a reference to the class that provides behavior and a namespace dictionary that’s
unique to the instance being created. When creating a new object without overriding any
special methods, the instance namespace is just an empty dictionary, waiting for data.

Therefore, the first method most classes implementis __init (), with the purpose
of initializing the namespace with some useful values. Sometimes these are just
placeholders until more interesting data arrives, while at other times the interesting data
comes into the method directly, in the form of arguments. This happens because any
arguments passed in to the class instantiation get passed right alongto __init () along
the way:

>>> class Example:
def init (self):
self.initialized = True

>>> e = Example()
>>> e.initialized = True
>>> class Example2:
def init (self, name, value=“):
self.name = name
self.value = value

211

CHAPTER 4 CLASSES

>>> e = Example2()
Traceback (most recent call last):

TypeError: init () takes at least 2 positional arguments (1 given)
>>> e = Example2('testing")

>>> e.name

"testing'

>>> e.value

Like any Python function, you're free to do whatever you like inside of _init_ (),
but keep in mind that’s intended to initialize the object, nothing more. Once __init ()
has finished executing the object should be ready to be used for more practical purposes,
but anything beyond basic setup should be deferred to other more explicit methods.

Of course, the real definition of initialization could mean different things to different
objects. For most objects, you'll only need to set a few attributes to either some default
values or to the values passedinto __init (), as shown in the previous example. Other
times, those initial values may require calculations, such as converting different units of
time into seconds, so everything’s normalized.

In some less common cases initialization may include more complicated tasks, such as
data validation, file retrieval, or even network traffic. For example, a class for working with
aweb service might take an API token as its only argumentto __init (). It might then
make a call to the web service to convert that token into an authenticated session, which
would allow other operations to take place. All of the other operations require separate
method calls, but the authentication that underlies all of them could happenin __init_ ().

The main concern with doing too muchin _init () is that there’s no indication
that anything’s going on, short of documentation. Unfortunately, some users just won'’t
read your documentation no matter how hard you try; they may still expect initialization
to be a simple operation, and they might be surprised to see errors if they don’t have a
valid network connection, for example. See the example in the next section for one way
to address this.

Even though init () is probably the most well-known magic method of all, it’s
not the first that gets executed when creating a new object. After all, remember that
init_ () is about initialization an object, not creating it. For the latter, Python provides
the new_ () method, which gets most of the same arguments but is responsible for
actually creating the new object prior to initializing it.

212

CHAPTER 4 CLASSES

Rather than working with the typical instance object self, the first argument to
__new__ () is actually the class of the object being created. This makes it look a lot like
a class method, but you don’t need to use any decorators to make it work this way—it’s
a special case in Python. Technically, however, it’s a static method, so if you try to call
it directly you'll always need to supply the class; it will never be sent implicitly, like it
would be if it were a true class method.

After the class parameter—typically named cls, like a regular class method—the
__new__ () method receives all the same arguments that __init () would receive.
Whatever you pass in to the class when trying to create the object will be passed along to
__new__ () to help define it. These arguments are often useful when customizing the new
object for the needs at hand.

This is often different from initialization, because __new__ () is typically used to
change the very nature of the object being created, rather than just setting up some
initial values. To illustrate, consider an example in which the class of an object can
change depending on what values are passed in when creating it.

Example: Automatic Subclasses

Some libraries consist of a large variety of classes, most of which share a common set

of data, but with perhaps different behaviors or other data customizations. This often
requires users of the library to keep track of all the different classes and determine which
features of their data correspond to the appropriate classes.

Instead, it can be much more helpful to provide a single class the user can
instantiate which actually returns an object that can be of different classes depending
on arguments. Using __new__ () to customize the creation of new objects, this can be
achieved rather simply. The exact behavior will depend on the application at hand, but
the basic technique is easy to illustrate with a generic example.

Consider a class that picks a subclass randomly whenever it’s instantiated into an
object. This isn’t the most practical use, of course, but it illustrates how the process
could work. Using random. choice() to pick from the values available from using
__subclasses__ (), it then instantiates the subclass it finds, rather than the one
defined:

213

CHAPTER 4 CLASSES

>>> import random
>>> class Example:
def _new_ (cls, *args, **kwargs):
cls = random.choice(cls. subclasses ())
return super(Example, cls). new_ (cls, *args, **kwargs)

>>> class Spam(Example):
pass

>>> class Eggs(Example):
pass

>>> Example()
<__main__.Eggs object at Ox...>
>>> Example()
<_main__.Eggs object at ox...>
>>> Example()
<__main__.Spam object at Ox...>
>>> Example()
<__main__.Eggs object at Ox...>
>>> Example()
<__main__.Spam object at Ox...>
>>> Example()
<__main__.Spam object at Ox...>

In another real-world example, you could pass in the contents of a file to a single
File class and have it automatically instantiate a subclass whose attributes and methods
are built for the format of the file provided. This can be especially useful for large classes
of files, such as music or images, that behave similarly in most respects on the surface
but have underlying differences that can be abstracted away.

214

CHAPTER 4 CLASSES

Dealing with Attributes

With an object in use, one of the more common needs is to interact with its attributes.
Ordinarily this is as simple as just assigning and accessing attributes directly, given their
name, such as instance.attribute. There are a few cases in which this type of access
isn’t sufficient on its own, so you need more control.

If you don’t know the name of the attribute at the time you write the application, you
can supply a variable for the name if you use the built-in getattr () function instead.
For example, instance.attribute would become getattr(instance, attribute name),
where the value for attribute_name can be provided from anywhere, as long as it’s a
string.

That approach only handles the case in which you're given a name as a string and
you need to look up the instance attribute referenced by that name. On the other side
of the equation, you can also tell a class how to deal with attributes it doesn’t explicitly
manage. This behavior is controlled by the _getattr () method.

If you define this method, Python will call it whenever you request an attribute that
hasn’t already been defined. It receives the name of the attribute that was requested, so
your class can decide what should be done with it. One common example is a dictionary
that allows you to retrieve values by attribute instead of just using the standard
dictionary syntax:

>>> class AttributeDict(dict):
def getattr (self, name):
return self[name]

>>> d = AttributeDict(spam="eggs")
>>> d["spam’']

'eggs’

>>> d.spam

'eggs'

215

CHAPTER 4 CLASSES

Note A not-so-obvious feature of _getattr () is thatit only gets called

for attributes that don’t actually exist. If you set the attribute directly, referencing
that attribute will retrieve it without calling __getattr (). If you need to catch
every attribute regardless, use _ getattribute () instead. It takes the same
arguments and functions just like _ getattr (), except that it gets called even
if the attribute is already on the instance.

Of course, a dictionary that allows attribute access isn’t terribly useful if attributes
are read-only. In order to complete the picture, we should support storing values in
attributes as well. Even beyond this simple dictionary example, there are a variety of
needs for customizing what happens when you set a value to an attribute. As expected,
Python provides a parallel in the form of the _setattr () method.

This new method takes an extra argument because there’s also a value that needs to
be managed. By defining _setattr (), you can intercept these value assignments and
handle them however your application needs. Applying this to AttributeDict is just as
simple as the previous example:

>>> class AttributeDict(dict):
def getattr (self, name):
return self[name]
cos def _ setattr__(self, name, value):
ces self[name] = value

>>> d = AttributeDict(spam="eggs")
>>> d['spam']

'eggs'

>>> d.spam

'eggs'

>>> d.spam = ‘ham'

»>> d.spam

"ham'

216

CHAPTER 4 CLASSES

Tip Just like getattr () provides for accessing attributes with a variable in
place of a hardcoded name, Python provides setattr() for setting attributes. Its
arguments match those of _setattr (), as it takes the object, the attribute
name, and the value.

Even though that might look like a complete picture of attribute access, there’s still
one component missing. When you no longer have use for an attribute and would like
to remove it from the object altogether, Python provides the del statement. When you're
working with fake attributes managed by these special methods, however, del on its own
doesn’t work.

For dealing with this situation, Python hooks into the _delattr () method if one
is present. Because the value is no longer relevant, this method only accepts the name of
the attribute along with the standard self. Adding this to the existing AttributeDict is easy:

>>> class AttributeDict(dict):
def getattr (self, name):
return self[name]
def setattr (self, name, value):
. self[name] = value
cos def _ delattr__(self, name):
cos del self[name]

>>> d = AttributeDict(spam="eggs")
>>> d['spam']

‘eggs’

>>> d.spam

‘eggs’

>>> d.spam = ‘ham'

>>> d.spam

"ham'

»>> del d.spam

»>> d.spam

217

CHAPTER 4 CLASSES

Traceback (most recent call last):

KeyError: 'spam’

WARNING: RAISE THE RIGHT EXCEPTION

This error message brings up an important point about working with these types of overridden
attributes. It’s very easy to overlook how exceptions are handled inside your function, so you
may end up raising an exception that doesn’t make any sense; if an attribute doesn’t exist, you
would reasonably expect to see an AttributeError, rather than a KeyError.

This may seem like an arbitrary detail, but remember that most code explicitly catches
specific types of exceptions, so if you raise the wrong type, you could cause other code to
take the wrong path. Therefore, always make sure to raise AttributeExrror explicitly
when encountering something that’s the equivalent of a missing attribute. Depending

on what the fake attribute does, it might be a KeyError, IOError, or perhaps even a
UnicodeDecodeError, for example.

This will come up at various points throughout this book and elsewhere in the real world.
Chapter 5 covers a variety of protocols in which it’s just as important to get the exceptions
right as the arguments.

String Representations

Of all the different object types that are possible in Python, easily the most common is
the string. From reading and writing files to interacting with web services and printing
documents, strings dominate many aspects of software execution. Even though most of
our data exists in other forms along the way, sooner or later most of it gets converted
to a string.

In order to make that process as simple as possible, Python provides an extra
hook to convert an object to its string representation. The _ str () method, when
implemented on a class, allows its instances to be converted to a string using the built-in
str() function, which is also used when using print() or string formatting. Details on
those features and more can be found in Chapter 7, but for now, look athow __str ()
works in a simple class:

218

CHAPTER 4 CLASSES

First, without __str_ ()

>>> class Book:
def init (self, title):
self.title = title

>>> Book('Pro Python")
<__main__.Book object at Ox...>
>>> str(Book('Pro Python"))

<__main__.Book object at 0Ox...>'
And again, this time with _str ()

>>> class Book:
def init (self, title):
ces self.title = title
coe def __str__(self):
ave return self.title

>>> Book('Pro Python")
<__main__.Book object at Ox...>
>>> str(Book('Pro Python'))
'Pro Python'

The addition of _str__ () allows the class to specify what aspects of the object
should be displayed when representing the object as a string. In this example it was the
title of a book, but it could also be the name of a person, the latitude and longitude of a
geographic location, or anything else that succinctly identifies the object among a group
of its peers. It doesn’t have to contain everything about the object, but there needs to be
enough to distinguish one from another.

Notice also that when the expression in the interactive interpreter doesn’t include the
call to str(), it doesn’t use the value returned by _str__ (). Instead, the interpreter uses
a different representation of the object, which is intended to more accurately represent the
code nature of the object. For custom classes this representation is fairly unhelpful, only
showing the name and module of the object’s class and its address in memory.

219

CHAPTER 4 CLASSES

For other types, however, you'll notice that the representations can be quite useful in
determining what the object is all about. In fact, the ideal goal for this representation is
to present a string that, if typed back into the console, would recreate the object. This is
extremely useful for getting a feel for the objects in the interactive console:

>>> dict(spam="eggs")
{"spam': 'eggs'}

>>> list(range(5))
[0, 1, 2, 3, 4]

>>> set(range(5))

{o, 1, 2, 3, 4}

>>> import datetime

>>> datetime.date.today()
datetime.date(2009, 10, 31)
>>> datetime.time(12 + 6, 30)
datetime.time(18, 30)

This alternate representation is controlled by the _repr () method, and is used
primarily in cases just like this, to describe an object inside the interactive console. It’s
automatically triggered when referencing an object on its own in the interpreter and is
sometimes used in logging applications where __str () often doesn’t provide enough
detail.

For the built-ins such as lists and dictionaries, the representation is a literal
expression that can reproduce the object easily. For other simple objects that don’t
contain very much data, the date and time examples show that simply providing an
instantiation call will do the trick. Of course, datetime would have to be imported first,
but it gets the job done.

In cases in which the data represented by the object is too numerous to condense
into a simple representation like this, the next best thing is to provide a string,
surrounded in angle brackets, which describes the object in a more reasonable amount
of detail. This is often a matter of showing the class name and a few pieces of data that
would identify it. For the Book example, which in the real world would have many more
attributes, it could look like this:

220

CHAPTER 4 CLASSES

>>> class Book:

def _init (self, title, author=None):
self.title = title
self.author = author

def _str (self):
return self.title

def repr (self):
return '<%s by %s>' % (self.title, self.author or '<Unknown
Author>")

>>> Book('Pro Python', author='Marty Alchin')
<Book: Pro Python by Marty Alchin>

>>> str(Book('Pro Python', author='Marty Alchin'))
"Pro Python'

Exciting Python Extensions: Iterators

An iterator is an object that can be iterated over; in other terms, you could say it is an
“iterable” or “loopable” item. A list, tuple, and string are iterable; they hold more than
one item, and thus are iterable containers. There are two iterator objects in Python. The
first, a sequence iterator, works on an arbitrary sequence. The second object iterates over
callable objects items with a sentinel value ending the process. Let’s see them in action
to understand this a bit more.

A very simple example is an enhanced for loop which iterates over all of the items
(you must have more than one) in the container. Consider the following:

my string=('Hello Python!")
for item in my_string:
print(item)
my list=[1,2,3,4]
for item in my list:
print (item, end=" ")
#Note newline after printing is replaced with space

221

CHAPTER 4 CLASSES

print()
my tuple='Fred','Wilma', 1, 3
for item in my_tuple:

print (item)

Now, if you had a text file in the same folder as the Python script, such as perhaps a
CSV file with data, you could do something like the following:

for the line in open("file.csv”):
print (the line)

With Python iterators you can also combine structures for enhanced functionality.
Do keep it readable. Note that we are looping through a string and counting the
instances of the letter “b.”

#Combine control structures

my string=('ababaaaabbbbaaaabb")

counter=0

for character in [char for char in my string if char == 'b']:
counter +=1

print('There were ', counter, ' letter b')

Another example might be Caesar cipher encryption:

#Secret message Ceasar cipher!
my string = input('Type secret message: ")
print (my string)
new string = ' '
z=input('How much to Ceasar shift by? ')
for letter in my_string:

x=ord(letter)

t=x+int(z)

print (chr(t),)

222

CHAPTER 4 CLASSES

Now let’s look at the iteration protocol. The next function iterates with the first item
and continues to the last, but it returns a Stoplteration error when it tries to print item
four, which is not present in the list:

Simple iteration over a list
simple list = [1, 3, 2]
iter(simple list)

simple iter

counter = 1

while counter <=4:
print(next(simple iter))
counter +=1

Now, you could add try and except to keep this running, but this shows how things
work at a general level. Time spent working with iterators will pay off well.

Taking It With You

A thorough understanding of classes unlocks a world of possibilities for your
applications, whether they’re simple personal projects or large frameworks built for
mass distribution. In addition to all this freedom, there is a set of established protocols
that can allow your classes to work just like some of Python’s most well-known types.

223

CHAPTER 5

Common Protocols

Most of the time, you'll want to define objects that are highly customized to the needs
of your application. This often means coming up with your own interfaces and APIs
that are unique to your own code. The flexibility to do this is essential to the expansion
capabilities of any system, but there is a price. Everything new that you invent must be
documented and understood by those who need to use it.

Understanding how to use the various classes made available by a framework can be
quite a chore for users of that framework, even with proper documentation. A good way
to ease the burden on users is to mimic interfaces they're already familiar with. There are
many existing types that are standard issue in Python programming, and most of them
have interfaces that can be implemented in custom classes.

Methods are the most obvious way to implement an existing interface, but with
many of the built-in types, most of the operations are performed with native Python
syntax rather than explicit method calls. Naturally, these syntactic features are backed
by actual methods behind the scenes, so they can be overridden to provide custom
behaviors.

The following sections show how the interfaces for some of the most common types
used in Python can be imitated in custom code. This is by no means an exhaustive list
of all the types that ship with Python, nor is every method represented. Instead, this
chapter is a reference for those methods that aren’t so obvious because they're masked

by syntactic sugar.

225
© J. Burton Browning and Marty Alchin 2019

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_5

CHAPTER5 COMMON PROTOCOLS

Basic Operations

Even though there are a wide variety of object types available in Python, most of
them share a common set of operations. These are considered to be something of a
core feature set, representing some of the most common high-level aspects of object
manipulation, many of which are just as applicable to simple numbers as they are to
many other objects.

One of the simplest and most common needs in all of programming, Python
included, is to evaluate an expression to a Boolean value so that it can be used to make
simple decisions. Typically this is used in if blocks, but these decisions also come
into play when using while, and Boolean operations such as and and or. When Python
encounters one of these situations, it relies on the behavior of the __bool () method to
determine the Boolean equivalent of an object.

The bool () method, if implemented, accepts just the usual self and must
return either True or False. This allows any object to determine whether it should
be considered to be true or false in a given expression, using whatever methods or
attributes are appropriate:

>>> bool(0)
False
>>> bool(1)
True
>>> bool(5)
True

As another example, consider that a class representing a rectangle might use its area
to determine whether the rectangle is considered true or false. Therefore, _bool ()
only has to check whether there exists a nonzero width and a nonzero height, since with
abool 0is false and any other positive value, typically 1, is true. Here we use the built-in
bool(), whichuses bool () to convert the value to a Boolean:

226

CHAPTER 5

>>> class Rectangle:

def _init (self, width, height):
self.width = width
self.height = height

def _bool (self):
if self.width and self.height:

return True

return False

>>> bool(Rectangle(10, 15))
True

>>> bool(Rectangle(0, 0))
False

>>> bool(Rectangle(0, 15))
False

COMMON PROTOCOLS

Tip The bool () method isn’t the only way to customize Python’s Boolean
behavior. If, instead, an object providesa _1en_ () method, which is described
in the section on sequences later in this chapter, Python will fall back to that and
consider any nonzero lengths to be true, while lengths of zero are false.

With the truthfulness of objects taken into account, you automatically get control

over the behavior of such operators as and, or, and not. Therefore, there are no separate

methods to override in order to customize those operators.

In addition to being able to determine the truthfulness of an object, Python

offers a great deal of flexibility in other operations as well. In particular, the standard

mathematical operations can be overridden because many of them can apply to a variety

of objects beyond just numbers.

227

CHAPTER5 COMMON PROTOCOLS

Mathematical Operations

Some of the earliest forms of math stemmed from observations about the world around
us. Therefore, most of the math we learned in elementary school applies just as easily

to other types of objects as it does to numbers. For example, addition could be seen as
simply putting two things together (concatenation), such as tying two strings together to
make a single longer string.

If you only look at it mathematically, you could say that you're really just adding two
lengths together, resulting in a single, greater length. But when you look at what really
just happened, you now have a brand-new string, which is different from the two strings
that went into it originally.

This analogy extends easily into Python strings as well, which can be concatenated
using standard addition, rather than requiring a separate, named method. Similarly, if
you need to write the same string out multiple times, you can simply multiply it the same
way you would a regular number. These types of operations are very common in Python
because they can be a simple way to implement common tasks:

55> 2 + 2

4

>>> "two' + "two'
"twotwo'

>»>> 2 %2

4

>>> 'two' * 2
"twotwo'

Like _bool (), these behaviors are controlled by special methods of their own.
Most of them are fairly straightforward, accepting the usual self as well as an other
argument. These methods are bound to the object on the left side of the operator, with
the additional other being the object on the right side.

The four basic arithmetic operations—addition, subtraction, multiplication, and
division—are represented in Python using the standard operators +, -, *, and /. Behind
the scenes, the first three are powered by implementations of the _add (), _sub_ (),
and _mul () methods. Division is a bit more complicated, and we’ll get to that shortly,
but for now, let’s take a look at how this operator overloading works.

228

CHAPTER5 COMMON PROTOCOLS

Consider a class that acts as a simple proxy around a value. There’s not much use for
something like this in the real world, but it’s a good starting point to explain a few things:

>>> class Example:
def init (self, value):
self.value = value
def _add_ (self, other):
return self.value + other

>>> Example(10) + 20
30

This is just one example of a few basic arithmetic operations that are available for
your code to customize. You'll find more advanced operations detailed throughout the
remainder of this chapter; Table 5-1 lists these basic arithmetic operators.

Table 5-1. Basic Arithmetic Operators

Operation Operator Custom Method
Addition + _add__()
Subtraction - _sub_ ()
Multiplication . _mul_ ()
Division / __truediv_ ()

Here’s where things get interesting, because you'll notice that the method for division
isn’t__div__ (), as you might expect. The reason for this is that division comes in two
different flavors. The kind of division you get when you use a calculator is called frue
division in Python, which uses the _truediv__ () method, which works as you'd expect.

However, true division is the only arithmetic operation that can take two integers
and return a noninteger. In some applications, it’s useful to always get an integer back
instead. If you're displaying an application’s progress as a percentage, for instance, you
don’t really need to display the full floating point number.

229

CHAPTER5 COMMON PROTOCOLS

Instead an alternative operation is available called floor division; you may also have
heard it referred to as integer division. If the result of true division would land between
two integers, floor division will simply return the lower of the two, so that it always
returns an integer. Floor division, as you might expect, is implemented with a separate
__floordiv_ () and is accessed using the // operator:

>»> 5/ 4
1.25

>»> 5 // 4
1

There’s also a modulo operation, which is related to division. In the event that
a division operation would result in a remainder, using modulo would return that
remainder, so modulo returns only the remainder of division. This uses the % operator,
implemented using __mod__ (). This is used by strings to perform standard variable
interpretation, even though that has nothing to do with division:

>>> 20 // 6

3

>>> 20 % 6

2

>>> 'test¥s' % 'ing'
"testing’

In effect, you can use floor division and a modulo operation to obtain the integer
result of a division operation as well as its remainder, which retains all the information
about the result. This is sometimes preferable to true division, which would simply
produce a floating point number. For example, consider a function that takes a number

of minutes and has to return a string containing the number of hours and minutes:

230

CHAPTER5 COMMON PROTOCOLS

>>> def hours_and_minutes(minutes):
return minutes // 60, minutes % 60

>>> hours_and_minutes(60)
(1, 0)
>>> hours_and minutes(137)
(2, 17)
>>> hours_and minutes(42)
(0, 42)

In fact, this basic task is common enough that Python has its own function for it:
divmod(). By passing in a base value and a value to divide it by, you can get the results of
floor division and a modulo operation at the same time. Rather than simply delegating
to those two methods independently, however, Python will try to calla__divmod ()
method, which allows a custom implementation to be more efficient.

In lieu of a more efficient implementation, the __divmod () method can be
illustrated using the same technique as the hours_and_minutes() function. All we have
to do is accept a second argument in order to take the hard-coded 60 out of the method:

>>> class Example:
def init (self, value):
self.value = value
def divmod (self, divisor):
return self.value // divisor, self.value % divisor

>>> divmod(Example(20), 6)

(3, 2)

There’s also an extension of multiplication called exponentiation, where a value is
multiplied by itself a number of times. Given its relationship to multiplication, Python

231

CHAPTER5 COMMON PROTOCOLS

uses a double-asterisk ** notation to perform the operation. It's implemented using a
__pow__ () method, because real-world math typically calls it raising a value to a power
of some other value:

>>> class Example:

def _init (self, value):
self.value = value

def _pow (self, power):
val = 1
for x in range(power):

val *= self.value

return val

>>> Example(5) ** 3
125

Unlike the other operations, exponentiation can be performed in one other way as
well, by way of the built-in pow() function. The reason there’s a different operator is that
it allows for an extra argument to be passed in. This extra argument is a value that should
be used to perform a modulo operation after the exponentiation has been performed.
This extra behavior allows for a more efficient way to perform such tasks as finding prime
numbers, which is commonly used in cryptography:

>>> 5 ** 3

125

>>> 125 % 50

25

>>> 5 ¥ 3 % 50
25

>>> pow(5, 3, 50)
25

232

CHAPTER5 COMMON PROTOCOLS

In order to support this behavior with the __pow__ () method, you can optionally
accept an extra argument, which will be used to perform the modulo operation. This
new argument must be optional in order to support the normal ** operator. There’s
no reasonable default value that can be used blindly without causing problems with
standard exponentiation, so it should default to None to determine whether the modulo
operation should be performed

>>> class Example:
def _init (self, value):
self.value = value
def _pow (self, power, modulo=None):
val = 1
for x in range(power):
val *= self.value
if modulo is not None:
val %= modulo
return val

>>> Example(5) ** 3

125

>>> Example(5) ** 3 % 50
25

>>> pow(Example(5), 3, 50)
25

Caution Aswiththe divmod () implementation shown previously, this
example is not a very efficient approach at solving the problem. It does produce
the correct values, but it should be used only for illustration.

233

CHAPTER5 COMMON PROTOCOLS

Bitwise Operations

Bitwise operations are used in situations in which you are working on binary files,
cryptography, encoding, hardware drivers, and networking protocols. As such, they are
often associated with low-level programming; however, they are certainly not exclusively
reserved for that domain. With bitwise operations, a separate group of operations act on
values not as numbers directly, but rather as a sequence of individual bits. At that level,
there are a few different ways of manipulating values that are applicable to not only
numbers but some other types of sequences as well. The simplest bitwise manipulation
is a shift, where the bits within a value are moved to the right or to the left, resulting in a
new value.

In binary arithmetic, shifting bits one place to the left multiplies the value by two.
This is just like in decimal math: if you move all the digits in a number one place to the
left and fill in the gap on the right with a zero, you've essentially multiplied the value by
ten. This behavior exists for any numbered base, but computers work in binary, so the
shifting operations do as well.

Shifting is achieved using the << and >> operators for left and right, respectively. The
right-hand side of the operator indicates how many positions the bits should be shifted.
Internally, these operations are supported by the _ 1shift () and _rshift ()
methods, each of which accepts the number of positions to shift as its only additional
argument:

>»> 10 << 1
20

>>> 10 >> 1
5

In addition to shuffling the bits around, there are a few operations that compare
the bits in each value to each other, resulting in a new value that represents some
combination of the two individual values. The four bitwise comparison operations are 8,
, *, and ~, referred to AND, OR, XOR (exclusive OR), and inversion, respectively.

234

CHAPTER5 COMMON PROTOCOLS

An AND comparison returns 1 only if both of the individual bits being compared
are 1. If it’s any other combination, the result is 0. This behavior is often used to create
a bitmask, where you can reset all irrelevant values to 0 by applying AND to a value that
has 1 for each of the useful bits and 0 for the rest. This will clear out any bits you aren’t
interested in, allowing for easy comparisons with sets of binary flags. Supporting this
behavior in your code requires the presence ofan __and__ () method.

OR comparisons return 1 if either of the individual bits being compared is 1. It
doesn’t matter if both of them are 1; as long as at least one of them is 1, the result will
be 1. This is often used to join sets of binary flags together, so that all the flags from
both sides of the operator are set in the result. The method required to support this
functionalityis _or ().

The standard OR operator is sometimes called an inclusive OR, to contrast it with its
cousin, the exclusive OR, which is typically abbreviated as XOR. In an XOR operation,
the result is 1 only if one of the individual bits was 1 but not the other. If both bits are 1 or
both bits are 0, the result will be 0. XOR is supported by the _ xor__ () method.

Finally, Python also offers bitwise inversion, where each of the bits gets flipped to
the opposite value from what it is currently; 1 becomes 0, and vice versa. Numerically,
this swaps between negative and positive values, but it doesn’t simply change the sign.
Here’s an example of how numbers react when inverted using the ~ operator:

>>> ~42
-43

>>> ~-256
255

This behavior is based on the way computers work with signed values. The most
significant bit is used to determine whether the value is positive or negative, so flipping
that bit changes the sign. The change in the absolute value after inversion is due to a
lack of -0. When 0 is inverted it becomes -1 rather than -0, so all other values follow
suit after that.

In custom code, inversion is typically most useful when you have a known set of all
possible values, along with individual subsets of those values. Inverting these subsets
would remove any existing values and replace them with any values from the master set
that weren't previous in the subset.

235

CHAPTER5 COMMON PROTOCOLS

This behavior can be provided by supplyingan __invert () method on your
object. Unlike the other bitwise methods, however, _invert () is unary, so it doesn’t
accept any additional arguments beyond the standard self.

Note The inversion behavior described here is valid for numbers that are
encoded using the two’s-complement method for working with signed numbers.
There are other options! available that can behave differently than what’s shown
here if a custom number class provides the __invert () method to do so. By
default, Python works only with the two’s-complemented encoding method.

Variations

In addition to the normal behavior of operations, there are a couple different ways they
can also be accessed. The most obvious issue is that the methods are typically bound to
the value on the left-hand side of the operator. If your custom object gets placed on the
right-hand side instead, there’s a good chance that the value on the left won’t know how
to work with it, so you'll end up with a TypeError instead of a usable value.

This behavior is understandable but unfortunate, because if the custom object
knows how to interact with the other value, it should be able to do so regardless of their
positions. To allow for this, Python gives the value on the right-hand side of the operator
a chance to return a valid value.

When the left-hand side of the expression fails to yield a value, Python then checks
to see if the value on the right is of the same type. If it is, there’s no reason to expect that
it would be able to do any better than the first time around, so Python simply raises the
TypeError. Ifit’s a different type, however, Python will call a method on the right-hand
value, passing in the left-hand value as its argument.

This process swaps the arguments around, binding the method to the value on the
right-hand side. For some operations, such as subtraction and division, the order of
the values is important, so Python uses a different method to indicate the change in
ordering. The names of these separate methods are mostly the same as the left-hand
methods, but with an r added after the first two underscores:

'http://en.wikipedia.org/wiki/Signed number representations.

236

http://en.wikipedia.org/wiki/Signed_number_representations

CHAPTER5 COMMON PROTOCOLS

>>> class Example:
def _init_ (self, value):
self.value = value
def add (self, other):
return self.value + other

>>> Example(20) + 10

30

>>> 10 + Example(20)

Traceback (most recent call last):

TypeError: unsupported operand type(s) for +: 'int' and 'Example'
>>> class Example:

def init (self, value):

self.value = value

def add (self, other):
. return self.value + other
cos def __radd__(self, other):
ces return self.value + other

>>> Example(20) + 10
30
>>> 10 + Example(20)
30

Tip In cases like this in which the order of the values doesn’t affect the result,
you can actually just assign the left-hand method to the name of the right-hand
method. Just remember that not all operations work that way, so you can’t blindly
copy the method to both sides without ensuring that it makes sense.

237

CHAPTER5 COMMON PROTOCOLS

Another common way to use these operators is to modify an existing value and
assign the result right back to the original value. As has been demonstrated without
explanation earlier in this chapter, an alternative form of assignment is catered to these
modifications. By simply appending = to the operator you need, you can assign the result
of the operation to the value on the left-hand side:

>>> value = 5
>>> value *= 3
>>> value

15

By default, this form of augmented assignment uses the standard operator methods
in the same way as was described previously in this chapter. However, that requires
creating a new value after the operation, which is then used to rebind an existing value.
Instead, it can sometimes be advantageous to modify the value in place, as long as you
can identify when this assignment is taking place.

Like the right-hand side methods, in-place operators use essentially the same
method names as the standard operators, but this time with an i after the underscores.
There’s no right-hand side equivalent of this operation, however, because the
assignment is always done with the variable on the left-hand side. With everything taken
into account, Table 5-2 lists the available operators, along with the methods required to
customize their behavior.

238

CHAPTER5 COMMON PROTOCOLS

Table 5-2. Available Operators

Operation Operator Left-hand Right-hand In-line

Addition + _add_ () __radd_ () __dadd_ ()
Subtraction - _sub_ () _rsub_ () __isub_ ()
Multiplication * ~mul () _rmul_ () _imul ()
True division / __truediv_ () _ rtruediv_ () _ itruediv_ ()
Floor division // _floordiv__ () _ rfloordiv_ () _ ifloordiv_ ()
Modulo % _mod__ () _rmod__ () __imod__ ()
Division & modulo divmod() _ divmod () _ rdivmod () N/A
Exponentiation ok _pow_ () __rpow_ () _ipow_ ()

Left binary shift << _Ishift () __rlshift () _ ilshift_ ()
Right binary shift >> _rshift () __rrshift () _ irshift ()
Bitwise AND & _and_ () _rand_ () __dand_ ()
Bitwise OR | _or_() _ror_ () _dor ()
Bitwise XOR A _xor_ () _rxor_ () __ixor_ ()
Bitwise inversion ~ _dnvert_ () N/A N/A

Note There’s no in-line method for the division and modulo operation because
it’s not available as an operator that supports assignment. It’s only called as the
divmod () method, which has no in-line capabilities. Also, bitwise inversion is a
unary operation, so there’s no right-side or in-line method available.

Even though these operations are primarily focused on numbers, many of them also
make sense for other types of objects. There is another set of behaviors, however, that
really only makes sense for numbers and objects that can act like numbers.

239

CHAPTER5 COMMON PROTOCOLS

Numbers

Underneath it all computers are all about numbers, so it’s only natural that they play
an important role in most applications. Beyond the operations outlined in the previous
section, there are many various behaviors exhibited by numbers that may not be as
obvious.

The most basic behavior a custom number can have is to convince Python that it is in
fact a number. This is necessary when trying to use an object as an index in a sequence.
Python requires that all indexes be integers, so there needs to be a way to coerce an
object into an integer for the sake of being used as an index. For this Python uses an
__index__ () method, raising a TypeError if it doesn't exist or it returns something other
than an integer:

>>> sequence = [1, 2, 3, 4, 5]
>>> sequence[3.14]
Traceback (most recent call last):

TypeError: list indices must be integers, not float
>>> class FloatIndex(float):
def _index (self):
For the sake of example, return just the integer portion
return int(self)

>>> sequence[FloatIndex(3.14)]
4

>>> sequence[3]

4

In addition to simple index access, _index__ () is used to coerce an integer for
the sake of slicing and to generate a starting value for conversion using the built-in
bin(), hex(), and oct() functions. When looking to explicitly force an integer in other
situations, you can use the _int__ () method, which is used by the built-in int()
function. Other type conversions can be performed using __float () to support
float() and _ complex () for complex().

240

CHAPTER5 COMMON PROTOCOLS

One of the most commonly required operations when converting one number to
another is rounding. Unlike int (), which blindly truncates any part of the value that’s
not an integer, rounding affords more control over what type of value you end up with
and how much precision is retained.

When you pass a decimal or a floating point number into int (), the effect is
essentially just a floor operation. Like floor division mentioned previously, a floor
operation takes a number between two integers and returns the lower of the two. The
math module contains a floor () function to perform this operation.

As you might expect, this reliesona _ floor () method on a custom object to
perform the floor operation. It doesn’t require any arguments beyond the usual self and
should always return an integer. Python doesn’t actually enforce any requirements on
the return value, however, so if you're working with some subclass of integers, you can
return one of those instead.

By contrast, you may need to go with the higher of the two, which would be a ceiling
operation. This is done using math.ceil() and implemented with the _ceil ()
method. Like _ floor (), it doesn’t take any additional arguments and returns an
integer.

More likely, you'll need to round a value to a specific number of digits. This is
achieved using the round() function, which is a built-in function, rather than being
located in the math module. It takes up to two arguments and is implemented using the
__round__ () method on a custom object.

The first argument to round() is the object that __round _ () will be bound to, so
it comes through as the standard self. The second argument is a bit more nuanced,
however. It's the number of digits to the right of the decimal point that should be
considered significant, and thus retained in the result. If it's not provided, round()
should assume that none of those digits are significant and return an integer:

>>> round(3.14, 1)
3.1

>>> round(3.14)

3

>>> round(3.14, 0)
3.0

241

CHAPTER5 COMMON PROTOCOLS

>>> import decimal

>>> round(decimal.Decimal('3.14"), 1)
Decimal('3.1")

>>> round(decimal.Decimal('3.14"))

3

Asyou can see, there’s actually a difference between passing a second argument of 0
and not passing one at all. The return value is essentially the same, but when not passing
itin, you should always get an integer. When passing in a 0 instead, you'll get whatever
type you pass in, but with only the significant digits included.

In addition to rounding digits to the right of the decimal point, round() can act on
the other side as well. By passing in a negative number, you can specify the number of
digits to the left of the decimal point that should be rounded away, leaving the other
digits remaining:

>>> round(256, -1)
260
>>> round(512, -2)
500

Sign Operations

There is also a selection of unary operations that can be used to adjust the sign of a
value. The first, -, negates the sign, swapping between positive and negative values.
Customization of this behavior is made available by providinga _neg_ () method,
which accepts no extra arguments beyond self.

To complement the negative sign, Python also supports a positive sign, using +.
Because numbers are ordinarily assumed to be positive, this operator actually doesn’t do
anything on its own; it simply returns the number unchanged. In the event that a custom
object needs an actual behavior attached to this, however, a__pos__ () method can
provide it.

242

CHAPTER5 COMMON PROTOCOLS

Finally, a number can also have an absolute value, which is generally defined as its
distance from zero. The sign is irrelevant, and all values become positive. Therefore,
applying abs () to a number removes the negative sign if present but leaves positive
values unchanged. This behavior is modified by an __abs__ () method.

Comparison Operations

The operations shown thus far have been concerned with returning a modified value,
based at least in part on one or more existing values. Comparison operators, by contrast,
return either True or False, based on the relationship between two values.

The most basic comparison operators, is and is not, operate directly on the
internal identity of each object. Because the identity is typically implemented as the
object’s address in memory, which can’t be changed by Python code, there’s no way
to override this behavior. Its use is generally reserved for comparison with known
constants, such as None.

The operators that are available represent the standard numerical comparisons,
which detect if one value is higher, lower, or exactly equal to another. The most versatile
is testing for equality, using ==. Its versatility comes from the fact that it’s not limited to
numerical values because many other types can have objects that are considered equal
to each other. This behavior is controlled by an __eq__ () method.

Inequality is represented in Python by the != operator, which behaves just as you
would expect. What you might not expect, however, is that this functionality is not tied to
== in any way. Rather than simply calling __eq__ () and inverting its result, Python relies
on aseparate __ne__ () method to handle inequality testing. Therefore, if you implement
__eq__(), always remember to supply __ne__ () as well to ensure that everything works
as expected.

In addition, you can compare one value as less than or greater than another, using <
and >, which are implemented using 1t () and _ gt (), respectively. Equality can
also be combined with these, so that one value can be greater than or equal to another,
for instance. These operations use <= and >= and are supported by _1te () and
gte ().

These comparisons are often used for objects that are predominantly represented by
a number, even if the object itself is much more than that. Dates and times are notable
examples of objects that are easily comparable because they're each essentially a series
of numbers that can each be compared individually if needed:

243

CHAPTER5 COMMON PROTOCOLS

>>> import datetime

>>> a = datetime.date(2019, 10, 31)
>>> b = datetime.date(2017, 1, 1)
>>> a ==

False

>»>ac<b

True

Strings are an interesting case with regard to comparisons. Even though a string isn’t
numeric in an obvious sense, each character in a string is simply another representation
of a number, so string comparisons also work. These comparisons drive the sorting
features of strings.

lterables

It may seem like sequences are the obvious next choice, but there’s a more generic form
to consider first. An object is considered iterable if it can yield objects one at a time,
typically within a for loop. This definition is intentionally simple, because at a high level,
iterables really don’t go beyond that. Python does have a more specific definition of
iterables, however.

In particular, an object is iterable if passing it into the built-in iter () function
returns an iterator. Internally, iter () inspects the object passed in, looking first for an
__iter () method. If such a method is found, it’s called without any arguments and
is expected to return an iterator. There’s another step that will take place if _iter ()
wasn'’t available, but for now, let’s focus on iterators.

Even though the object is considered iterable, it’s the iterator that does all the real
work, but there’s really not that much to it. There’s no requirement for whatthe __init
() method should look like, because it gets instantiated within the _iter () method
of its master object. The required interface consists of just two methods.

244

CHAPTER5 COMMON PROTOCOLS

The first method, perhaps surprisingly, is _iter (). Iterators should always be
iterable on their own as well, so they must provide an _iter () method. There’s
usually no reason to do anything special in this method, though, so it’s typically
implemented to just return self. If you don’t supply _iter () on the iterator the
main object will still be iterable in most cases, but some code will expect its iterator to be
usable on its own as well.

More importantly, an iterator must always provide a __next__ () method, where
all the real work happens. Python will call __next__ () to retrieve the next value from
the iterator, with that value being used in the body of whatever code called the iterator.
When that code needs a new value, typically for the next pass in aloop, itcalls __next
() again to get a new value. This process continues until one of a few things happens.

If Python encounters anything that causes the loop to complete while the iterator
still has items it could produce, the iterator just stands by, waiting for some other code
to ask for another item. If that never happens, eventually there will be no more code that
knows about the iterator at all, so Python will remove it from memory. Chapter 6 covers
this garbage collection process in greater detail.

There are a few different cases where an iterator might not be given a chance to
finish. The most obvious is a break statement, which would stop the loop and continue
on afterward. Additionally, a return or a raise statement would implicitly break out of
any loop it’s part of, so the iterator is left in the same state as when a break occurs.

More commonly, however, the loop will just let the iterator run until it doesn’t have
any more items to produce. When using a generator, this case is handled automatically
when the function returns without yielding a new value. With an iterator, this behavior
must be provided explicitly.

Because None is a perfectly valid object that could reasonably be yielded from an
iterator, Python can’tjustreactto __next () failing to return a value. Instead, the
StopIteration exception provides a way for _next_ () to indicate that there are no
more items. When this is raised the loop is considered complete, and execution resumes
on the next line after the end of the loop.

To illustrate how all of this fits together, let’s take a look at the behavior of the built-
in range() function. It's not a generator because you can iterate over it multiple times.
To provide similar functionality we need to return an iterable object instead, which can
then be iterated as many times as necessary:

245

CHAPTER5 COMMON PROTOCOLS

class Range:
def _init_ (self, count):
self.count = count
def iter (self):
return RangeIter(self.count)

class RangeIter:
def init (self, count):
self.count = count
self.current = 0

def iter (self):
return self

def _next_(self):
value = self.current
self.current += 1
if self.current > self.count:
raise StopIteration
return value

>>> def range_gen(count):
for x in range(count):
yield x

>>> r = range_gen(5)
>>> 1list(r)

[OJ 1) 2’ 3) 4]

>>> 1list(r)

[]

>>> 1 = Range(5)

>>> 1list(r)

[0, 1, 2, 3, 4]

>>> list(r)

[0, 1, 2, 3, 4]

246

CHAPTER5 COMMON PROTOCOLS

Iterators are the most powerful and flexible way to implement an iterable, so they're
generally preferred, but there’s also another way to achieve a similar effect. What makes
an object iterable is the fact that iter() returns an iterator, so it’s worth noting that
iter() supports a certain kind of special case.

If an object doesn’thave an __iter () method, but containsa _getitem ()
method instead, Python can use that in a special iterator that exists just to handle that
case. We'll get to more details in the next section on sequences, but the basic idea is that
__getitem () accepts an index and is expected to return the item in that position.

If Python finds __getitem () instead of _iter (), it will automatically create an
iterator designed to work with it. This new iterator calls __getitem () several times,
each with a value from a series of numbers, beginning with zero, until __getitem ()
raises an IndexError. Therefore, our custom Range iterable can be rewritten quite
simply:

class Range:
def _init_ (self, count):
self.count = count

def getitem_ (self, index):
if index < self.count:
return index
raise IndexError

>>> 1 = Range(5)
>>> 1list(r)

[0, 1, 2, 3, 4]
>>> 1list(r)

[0, 1, 2, 3, 4]

Note Python will only use this _getitem () behaviorif iter () isnot
present. If both are provided on a class, the _iter () method will be used to
control the iteration behavior.

247

CHAPTER5 COMMON PROTOCOLS

Example: Repeatable Generators

The ability to iterate over an object multiple times is very common among explicitly
iterable object types, but generators are often more convenient to work with. If you need
to have a generator that can restart itself each different time the iterator is accessed, it
may seem like you're stuck either losing out on that functionality or adding a bunch of
otherwise unnecessary code that exists solely to allow for proper iteration.

Instead, like many other behaviors, we can rely on Python’s standard way to augment
a function and factor it out into a decorator. When applied to a generator function, this
new decorator can handle everything necessary to create an iterable that triggers the
generator from the beginning each time a new iterator is requested:

def repeatable(generator):
A decorator to turn a generator into an object that can be
iterated multiple times, restarting the generator each time.
class RepeatableGenerator:
def _init_ (self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
def _iter (self):
return iter(generator(*self.args, **self.kwargs))

return RepeatableGenerator

>>> @repeatable
. def generator(max):
for x in range(max):
yield x

248

CHAPTER5 COMMON PROTOCOLS

>>> g = generator(5)
>>> list(g)

[0, 1, 2, 3, 4]

>>> list(g)

[0, 1, 2, 3, 4]

By creating a new class that can be instantiated when the generator function is
called, its __iter () method will get called instead of the generator’s. This way,
the generator can be called from scratch each time a new loop begins, yielding a
new sequence rather than trying to pick up where it left off, which would often mean
returning an empty sequence.

Caution Even though most generators return a similar sequence each time
through and can be restarted without worry, not all of them behave that way. If a
generator changes its output based on when it’s called, picks up where it left off
on subsequent calls or produces side effects, this decorator is not recommended.
By changing the behavior to explicitly restart the decorator each time, the new
generator could yield unpredictable results.

There’s one problem with the code as it stands, however. The @repeatable decorator
receives a function but returns a class, which works fine in the example provided but
has some very troubling implications. To start, remember from Chapter 3 that wrapper
functions have new properties, a problem that can be fixed using the @functools.wraps
decorator.

Before we can even consider using another decorator, however, we have to solve the
bigger problem: we're returning a completely different type than the original function.
By returning a class instead of a function, we’ll cause problems with any code that
expects it to be a function, including other decorators. Worse yet, the class returned can’t
be used as a method because it doesn’thave a __get () method to bind it to its owner
class or an instance of it.

To solve these issues, we have to introduce a wrapper function around the class,
which will instantiate the object and return it. This way, we can use @functools.wraps to
retain as much of the original decorator as possible. Better yet, we can then also return a
function, which can be bound to classes and instances without any trouble:

249

CHAPTER5 COMMON PROTOCOLS

ﬂg&

import functools

def repeatable(generator):
A decorator to turn a generator into an object that can be
iterated multiple times, restarting the generator each time.
class RepeatableGenerator:
def _ init_ (self, *args, **kwargs):
self.args = args
self.kwargs = kwargs

def iter (self):
return iter(generator(*self.args, **self.kwargs))

@functools.wraps(generator)
def wrapper(*args, **kwargs):

return RepeatableGenerator(*args, **kwargs)
return wrapper

Sequences

After numbers, sequences are perhaps some of most commonly used data structures

in all of programming, including Python. Lists, tuples, and even strings are sequences
that share a common set of features, which are actually a specialized type of iterator. In
addition to being able to yield a series of items individually, sequences have additional
attributes and behaviors supporting the fact that they know about the entire set of items
all at once.

These extra behaviors don’t necessarily require that all the items be loaded into
memory at the same time. The efficiency gains achieved through iteration are just as
valid with sequences as with any other iterable, so that behavior doesn’t change. Instead,
the added options simply refer to collection as a whole, including its length and the
ability to get a subset of it, as well as accessing individual items without getting the whole
sequence.

250

CHAPTER5 COMMON PROTOCOLS

The most obvious feature of a sequence is the ability to determine its length.
For objects that can contain any arbitrary items, this requires knowing—or perhaps
counting—all those items. For others, the object can use some other information to
reach the same result. Customization of this behavior is achieved by providing a
__len_ () method, which is called internally when the object is passed into the built-in
len() function.

To continue along the same lines as previous examples, here’s how a simple
replacement Range class could use knowledge of its configuration to return the length
without having to yield a single value:

Oé

class Range:
def init (self, max):
self.max = max

def iter (self):
for x in range(self.max):
yield x

def __len_ (self):
return self.max

Because sequences contain a fixed collection of items, they can be iterated not only
from start to finish but also in reverse. Python provides the reversed() function, which
takes a sequence as its only argument and returns an iterable that yields items from the
sequence in reverse. There may be particular efficiency gains to be had, so a custom
sequence object can provide a__reversed () method to customize the internal
behavior of reversed().

Taking this notion to the Range class again, it’s possible to provide a reversed range
using an alternative form of the built-in range():

Oé

class Range:
def init (self, max):
self.max = max

251

CHAPTER5 COMMON PROTOCOLS

def iter (self):
for x in range(self.max):
yield x

def _ _reversed__(self):
for x in range(self.max - 1, -1, -1):
yield x

Now that we have the ability to iterate over a sequence both forward and backward
as well as report its length, the next step is to provide access to individual items. In a
plain iterable, you can only access items by retrieving them one at a time as part of a
loop. With all the values in the sequence known in advance, a custom class can provide
access to any item at any time.

The most obvious task is to retrieve an item given an index that’s known in advance.
For example, if a custom object contained the arguments passed in on the command
line, the application would know the specific meaning of each argument and would
typically access them by index rather than simply iterating over the whole sequence.
This uses the standard sequence[index] syntax, with its behavior controlled by the
__getitem () method.

With _getitem (), individual items can be picked out of the sequence or retrieved
from some other data structure if necessary. Continuing on the Range theme again,
__getitem_ () can calculate what the appropriate value should be without cycling
through the sequence. In fact, it can even support the full range of arguments that are
available to the built-in range():

class Range:
def init (self, a, b=None, step=1):
Define a range according to a starting value, an end value and a step.
If only one argument is provided, it's taken to be the end value. If
two arguments are passed in, the first becomes a start value, while the
second is the end value. An optional step can be provided to control
how far apart each value is from the next.

252

CHAPTER5 COMMON PROTOCOLS

if b is not None:

self.start = a

self.end = b
else:

self.start = 0

self.end = a
self.step = step

def getitem (self, key):
value = self.step * key + self.start
if value < self.end:
return value
else:
raise IndexError(“"key outside of the given range")

>>> 1 = Range(5)
>>> 1list(r)

[0, 1, 2, 3, 4]
>>> 1[3]

>>> 1 = Range(3, 17, step=4)

>>> list(r)

[3, 7, 11, 15]

>>> r[2]

11

>>> r[4]

Traceback (most recent call last):

IndexError: indexed value outside of the given range

In the event that the index passed in is beyond the range of available items,
getitem () should raise an IndexError. Highly specialized applications could define
a more specific subclass and raise that instead, but most use cases will simply catch
IndexError on its own.

In addition to matching the expectations of most Python programmers, properly raising
IndexError is essential to allow a sequence to be used as an iterable without implementing
__iter ().Python will simply pass in integer indexes until the _getitem () method
raises an IndexError, at which point it will stop iterating over the sequence.

253

CHAPTER5 COMMON PROTOCOLS

Beyond just accessing a single item at a time, a sequence can provide access to
subsets of its contents by way of slicing. When using the slicing syntax, _getitem ()
receives a special slice object instead of an integer index. A slice object has dedicated
attributes for the start, stop, and step portions of the slice, which can be used to
determine which items to return. Here’s how this affects the Range object we've been
examining:

Oé

class Range:
def _init (self, a, b=None, step=1):
Define a range according to a starting value, an end value and a step.
If only one argument is provided, it's taken to be the end value. If
two arguments are passed in, the first becomes a start value, while the
second is the end value. An optional step can be provided to control
how far apart each value is from the next.

if b is not None:

self.start = a

self.end = b
else:

self.start = 0

self.end = a
self.step = step

def getitem (self, key):
if isinstance(key, slice):
r = range(key.start or 0, key.stop, key.step or 1)
return [self.step * val + self.start for val in r]
value = self.step * key + self.start
if value < self.end:
return value
else:
raise IndexError("key outside of the given range")

254

CHAPTER5 COMMON PROTOCOLS

The next logical step is to allow an individual item in the sequence to be
set according to its index. This in-place assignment uses essentially the same
sequence[index] syntax but as the target of an assignment operation. It’s supported by a
custom objectinits __setitem () method, which accepts both the index to access and
the value to store at that index.

Like getitem (), however, setitem () canalso accepta slice objectasits
index, rather than an integer. Because a slice defines a subset of the sequence, however,
the value that’s passed is expected to be another sequence. The values in this new
sequence will then take the place of those in the subset referenced by the slice.

Things aren’t exactly as they seem, however, because the sequence being assigned
to the slice doesn’t actually need to have the same number of items as the slice itself. In
fact, it can be of any size, whether larger or smaller than the slice it’s being assigned to.
The expected behavior of _setitem () is simply to remove the items referenced by the
slice, then place the new items in that gap, expanding or contracting the size of the total
list as necessary to accommodate the new values.

Note The setitem () method is only intended for replacing existing values
in the sequence, not for strictly adding new items. To do that you’ll need to also
implement append() and insert(), using the same interfaces as standard lists.

Removing an item from a list can be achieved in one of two different ways. The
explicit method for this is remove () (e.g., my_list(range(10, 20)).remove(5)), which takes
the index of the item that should be removed. The remaining items that were positioned
after the removed item are then shifted to the left to fill in the gap. This same behavior is
also available using a del sequence[index] statement.

Implementing remove () is straightforward enough, given that it’s an explicit method
call. The simple case for del works just like remove(), butusinga _delitem ()
method instead. In fact, if deleting a single item was all that mattered, you could simply
assign an existing remove () method to the __delitem _attribute, and it would work as
expected. Unfortunately, slicing complicates matters slightly.

Deleting items from a slice works just like the first portion of the slicing behavior of
__setitem_ (). Instead of replacing the items in the slice with a new sequence, however,
the sequence should simply shift its items to close up the gap.

255

CHAPTER5 COMMON PROTOCOLS

With all the different ways to make changes to the contents of a sequence, the
last—but not least—important feature is to test whether an item is a part of the
given sequence. By default, Python will simply iterate over the sequence—using the
techniques listed previously in the section on iterables—until it either finds the item
being tested or exhausts all the values provided by the iterator. This allows a membership
test to be performed on iterables of any type, without being limited to full sequences.

In order to be more efficient, sequences can override this behavior as well, by
providinga _contains__ () method. Its signature looks like _getitem (), but rather
than accepting an indey, it accepts an object and returns True if the given object is
present in the sequence or False otherwise. In the Range example examined previously,
theresult of _contains__ () can be calculated on the fly, based on the configuration of
the object:

class Range:
def init (self, a, b=None, step=1):
Define a range according to a starting value, an end value and a step.
If only one argument is provided, it's taken to be the end value. If
two arguments are passed in, the first becomes a start value, while the
second is the end value. An optional step can be provided to control
how far apart each value is from the next.
if b is not None:
self.start = a
self.end = b
else:
self.start
self.end = a

]
o

self.step = step

def _ contains_ (self, num):
return self.start <= num < self.end and \
not (num - self.start) % self.step

256

CHAPTER5 COMMON PROTOCOLS

>>> list(range(5, 30, 7))
[5, 12, 19, 26]

>>> 5 in Range(5, 30, 7)
True

>>> 10 in Range(5, 30, 7)
False

>>> 33 in Range(5, 30, 7)
False

Many of the methods presented here for sequences are also valid for the next
container type, which maps a collection of keys to associated values.

Mappings

Whereas sequences are contiguous collections of objects, mappings work a bit
differently. In a mapping the individual items are actually a pair, consisting of both a key
and a value. Keys don’t have to be ordered because iterating over them isn’t generally the
point. Instead, the goal is to provide fast access to the value referenced by a given key.
The key is typically known in advance, and most common usage expects it.

Accessing a value by its key uses the same syntax as using indexes in sequences.

In fact, Python doesn’t know or care if you're implementing a sequence, a mapping or
something completely different. The same methods, _getitem (), setitem_ (),
and __delitem (), are reused to support the obj[key] syntax regardless of which
type of object is used. That doesn’t mean the implementations of these methods can be
identical, however.

For a mapping, a key is used as the index. Even though there’s no difference in syntax
between the two, keys support a wider range of allowed objects. In addition to plain
integers, a key may be any hashable Python object such as dates, times, or strings; of
these, strings are by far the most common. It’s up to your application, however, to decide
whether there should be any limitations on what keys to accept.

Python supports so much flexibility, in fact, that you can even use the standard slicing
syntax without regard to what values are involved in the slice. Python simply passes along
whatever objects were referenced in the slice, so it’s up to the mapping to decide how to
deal with them. By default, lists handle slices by explicitly looking for integers, using
index_ () if necessary to coerce objects into integers. For dictionaries, by contrast, slice
objects aren’t hashable, so dictionaries don’t allow them to be used as keys.

257

CHAPTER5 COMMON PROTOCOLS

Tip For the most part you can accept anything in a custom dictionary, even if you
intend to use only a specific type, such as strings, as your keys. As long as it only
gets used in your own code, it won’t make any difference because you’re in control
of all its uses. If you make modifications that prove to be useful outside of your
application, other developers will make use of it for their own needs. Therefore, you
should restrict the available keys and values only if you really need to; otherwise,
it’s best to leave options open, even for yourself.

Even though this chapter hasn’t generally covered any methods that are called
directly as part of the public interface, mappings have three methods that provide
particularly useful access to internal components, which should always be implemented.
These methods are necessary because mappings essentially contain two separate
collections—keys and values—which are then joined together by association, whereas
sequences only contain a single collection.

The first of these extra methods, keys (), iterates over all the keys in the mapping
without regard to their values. By default, the keys can be returned in any order, but
some more specialized classes could choose to provide an explicit order for these keys.
This same behavior is provided by iteration over the mapping object itself, so be sure to
always supply an __iter () method that does the same thing as keys ().

The next method, values(), is complementary, iterating over the values side of
the mapping instead. Like the keys, these values generally aren’t assumed to be in
any sort of order. In practice, the C implementation of Python uses the same order as
it does for the keys, but order is never guaranteed, even between the keys and values
of the same object.

In order to reliably get all the keys and values in their associated pairs, mappings
provide an items () method. This iterates over the entire collection, yielding each pair
as a tuple in the form of (key, value).Because this is often more efficient than iterating
over the keys and using mapping[key] to get the associated value, all mappings should
provide an items () method and make it as efficient as possible.

258

CHAPTER5 COMMON PROTOCOLS

Callables

In Python, both functions and classes can be called to execute code at any time, but
those aren’t the only objects that can do so. In fact, any Python class can be made
callable by simply attaching a single extra method to the class definition. This method,
appropriately named __call (), accepts the usual self along with any arguments that
should be passed along in the method call.

There are no special requirements for what arguments __call () can accept
because it works like any other method when it’s being called. The only difference is that
it also receives the object it’s attached to as the first argument:

>>> class CallCounter:
def init (self):
self.count = 0
def call (self, *args, **kwargs):
self.count += 1
return 'Number of calls so far: %s' % self.count
def reset(self):
self.count = 0

>>> counter = CallCounter()
>>> counter()

"Number of calls so far: 1'
>>> counter()

‘Number of calls so far: 2'
>>> counter()

"Number of calls so far: 3'
>>> counter.reset()

>>> counter()

"Number of calls so far: 1'

259

CHAPTER5 COMMON PROTOCOLS

Caution Asa method itself, call () can also be decorated any number of
times, but remember that it’s still a method, even though it is invoked by calling the
object directly. As a method, any decorators applied to it must be able to deal with
the first argument being an instance of the object.

Asforwhat call () can do, the sky is the limit. Its purpose is solely to allow an
object to be callable; what happens during that call depends entirely on the needs at hand.
This example shows that it can also take any additional arguments you may need, like any
other method or function. Its greatest strength, however, is that it allows you to essentially
provide a function that can be customized on its own, without the need for any decorators.

Context Managers

As mentioned briefly in Chapter 2, objects can also be used as context managers for
use in a with statement. This allows an object to define what it means to work within
the context of that object, setting things up prior to executing the contained code and
cleaning up after execution has finished.

One common example is file handling, because a file must be opened for a specific
type of access before it can be used. Then it also needs to be closed when it’s no longer in
use, to flush any pending changes to disk. This makes sure other code can open the same
file later on, without conflicting with any open references. What happens between those
two operations is said to be executed within the context of the open file.

As mentioned, there are two distinct steps to be performed by a context manager.
First, the context needs to be initialized, so that the code that executes inside the with
block can make use of the features provided by the context. Just prior to execution of the
interior code block, Python will call the _enter__ () method on the object. This method
doesn’t receive any additional arguments, just the instance object itself. Its responsibility
is then to provide the necessary initialization for the code block, whether that means
modifying the object itself or making global changes.

If the with statement includes an as clause, the return value of the __enter ()
method will be used to populate the variable referenced in that clause. It’s important to
realize that the object itself won’t necessarily be that value, even though it may seem that
way looking at the syntax for the with statement. Using the return value of _enter ()
allows the context object to be more flexible, although that behavior can be achieved by
simply returning self.

260

CHAPTER5 COMMON PROTOCOLS

Once the code inside the with block finishes executing, Python will call the __exit_ ()
method on the object. This method is then responsible for cleaning up any changes
that were made during __enter_ (), returning the context to whatever it was prior to
processing the with statement. In the case of files, this would mean closing the file, but it
could be virtually anything.

Of course, there are a few ways that execution within the with block can complete.
The most obvious is if the code simply finishes on its own, without any problems or
other flow control. Statements such as return, yield, continue, and break can also stop
execution of the code block, in which case __exit () will still be called because the
cleanup is still necessary. In fact, even if an exception is raised, _exit () is still given a
chance to reverse any changes that were applied during __enter ().

In order to identify whether the code finished normally or stopped early by way of an
exception, the _exit () method will be given three additional arguments. The first is
the class object for the exception that was raised, followed by the instance of that class,
which is what was actually raised in the code. Finally, _exit () will also receive a
traceback object, representing the state of execution as of when the exception was raised.

All three of those arguments are always passed in, so any implementations of __
exit () mustaccept them all. If execution completed without raising any exceptions,
the arguments will still be provided, but their values will simply be None. Having access
to both the exception and a traceback allows your implementation of _exit () to
intelligently react to whatever went wrong and what led to the problem.

Tip The exit () method doesn’t suppress any exceptions on its own. If
exit () completes without a return value, the original exception, if any, will be
reraised automatically. If you need to explicitly catch any errors that occur within
the with block, simply return True from __exit () instead of letting it fall off
the end, which would return an implicit None.

To show one simple example, consider a class that uses the context management
protocol to silence any exceptions that are raised within the with block. In this case,
__enter_ () doesn’t need to do anything because the exception handling will be done
in__exit_ ():

261

CHAPTER5 COMMON PROTOCOLS

>>> class SuppressErrors:

def init (self, *exceptions):

if not exceptions:
exceptions = (Exception,)

self.exceptions = exceptions

def _enter (self):
pass

def exit (self, exc_class, exc_instance, traceback):
if isinstance(exc_instance, self.exceptions):
return True
return False

>>> with SuppressErrors():
1/ 0 # Raises a ZeroDivisionError

>>> with SuppressErrors(IndexError):
a = [11 2, 3]
print(a[4])

>>> with SuppressErrors(KeyError):
a=[1, 2, 3]
print(a[4])

Traceback (most recent call last):

IndexError: list index out of range

Exciting Python Extensions: Scrapy

If you ever have the need to extract data from the Internet, most specifically making

sense of data on web sites, then a web-scraping tool will be of great benefit. Scrapy is

an open source and full featured tool for web scraping. If you have heard of “spiders” or

“web crawling,” then you already are familiar with other terms for web scraping, but they

262

CHAPTER5 COMMON PROTOCOLS

are all the same. In the big scope of things, a web-scraping tool is one part of working
with big data. Web scraping allows you to data mine information from the Internet while
other tools would allow you to clean it up and others to categorize the raw and cleaned
data you obtained. Python makes it easy to build a scaper. Read on to see how to get your
raw data with Scrapy.

Installation

First you will need to install the libraries for the web-scraping tool Scrapy. To do this, get
to an escalated command prompt (Windows) and type:

pip install scrapy (Enter)

MacOS and Linux will be similar; just check the scrapy.org site for details.

Running Scrapy

You can run a spider directly via the run spider command or you can create a project
directory that can hold one or more spiders. For quick work, such as just running

one spider, it is just one simple command: scrapy runspider my_spider.py. However,
sometimes you may want a project directory so that you can store configuration
information and multiple spiders in an orderly manner. For our purposes, one spider will
more than suffice.

Project Setup

The initial process will be to find and download web pages and then extract information,
based on given criteria, from the pages. To do this you will want your spider in a folder of
your choice to organize everything into one area. Make a folder on your system you can
easily navigate to from a command prompt for this example. For example, if on the root
of your C: drive is on MS Windows:

md firstspider (Enter)

263

https://www.scrapy.org

CHAPTER5 COMMON PROTOCOLS

It really does not matter where you make the folder, but do make sure you are able
to navigate to it. Next, using your Python IDLE IDE, write the following very basic spider
code and save the file as scraper.py to the folder you just created:

import scrapy

filename scraper.py

class QuotesSpider(scrapy.Spider):
name = "quotes”

def start requests(self):
urls = ["http://quotes.toscrape.com/page/1/"]
for url in urls:
yield scrapy.Request(url=url, callback=self.parse)

def parse(self, response):
print('\nURL we went to: ', response, '\n')

Now, running the aforementioned code is not very exciting. For our purposes, Scrapy
will run better via the command line using the Scrapy command interface. It is very
similar to how you would run a Python script from the command line. With Python it
would be python name_of file.py and with Scrapy it will be similar, from within the
folder you just created and where you saved your file to: scrapy runspider scraper.py
(Enter). If everything runs properly, you should see something similar to the following:

2018-87-20 09:50:55 [scrapy.core.enginel] DEBUG: Crawled (208> <{GET http://quotesg
.toscrape.con/page/1/> {referer: None>

URL we went to: <208 http://quotes.toscrape.com/pages1/>

2018-87-20 09:50:55 [scrapy.core.enginel INFO: Closing spider (finished)
2018-087-20 09:50:55 [scrapy statscollectors] INFO: Dumping Scrapy stats:
K’downloader/request_bytes’ : 225,

’downloader/request_count’: 1,

’downloader/request_method_count/GET’: 1,

’downloader/response_hytes’: 2333,

’downloader/response_count’: 1,

‘downloader/response_status_count/280°: 1,

’finish_reason’: ’finished’.

’finish_time’: datetime.datetimed(2018, 7, 20, 13, 50, 55, 719471),

’log_count/DEBUG’ = 2,

’log_count/INFO’: 7?7,

’response_received_count’: 1,

’scheduler/dequeued’: 1,

’scheduler/dequeved/memory”’ = 1,

*scheduler/enqueuved’ = 1,

scheduler/enqueuedfmemo»y" 1,

‘start_time’ : datetime. datetlme(ZBia 7. 28, 13, 58, 55, 255135>>
2018-07-20 89:50:55 [scrapy.core. englne] INFO: Splder closed <(finished>

Figure 5-1. Screen capture running the sample scraper via the terminal

264

CHAPTER5 COMMON PROTOCOLS

If you received any errors, it could be that your path or search drive to find Scrapy
is not set. If on Windows and you receive a win32api error, you will need to most likely
install pypiwin32. Complete this if needed by typing from an escalated command
prompt:

pip install pypiwin32api (Enter)

By itself, this was only exciting in that there were (hopefully) no errors and we
showed the URL we went to. That being said, let’s now perform a bit more productive

work.

Retrieve Web Data with Scrapy

Scrapy has a command line interface that is quite handy. Of course you will write your
spider(s) in Python, but the Scrapy shell can help you with what to write in your spider
code. Consider how to view a web page with Scrapy.

View a Web Page via Scrapy

From an escalated command prompt, scrapy view http://quotes.toscrape.com/page/1/
will cause Scrapy to load the URL you specify, in a browser. This is handy because you
may want to check a site before having Scrapy extract data from it. Note the title of the
page; we will extract only that next.

Shell Options

You will, of course, what to know what Scrapy shell options are available. To see them,
use the interactive shell and enter from the command linescrapy shell http://quotes.
toscrape.com/page/1/. You now see options. Try from the command prompt: response.
css(‘title’). Note that you are still in the Scrapy interactive shell, and note that the title,
from the HTML markup tags, is returned. Use CTRL Z to exit the shell.

To perform the same thing programmatically with Python, consider the following:
import scrapy

class QuotesSpider(scrapy.Spider):
name = "quotes"
def start requests(self):

265

﻿http://www.quotes.toscrape.com/page/1/﻿
﻿http://www.quotes.toscrape.com/page/1/﻿
﻿http://www.quotes.toscrape.com/page/1/﻿

CHAPTER5 COMMON PROTOCOLS

urls = [
"http://quotes.toscrape.com/page/1/"]
for url in urls:
yield scrapy.Request(url=url, callback=self.parse)

def parse(self, response):
print()
print("Title will follow: \n")
print(response.css("title"))
print()

This will give use the extracted title from the page, with markup tags.

= v ToEX
127.0.0.1:6023

218-07-20 B89:04:44 [scrapy.core.enginel] DEBUG: Crawled (288> <{GET http://quotes
.toscrape.com/page/1/> (referer: None)

itle will follow:

[§§§}ector xpath=’descendant-or-self::title’ data=’<{title>Quotes to Scrape{/titl

918-987-20 09:04:44 [scrapy.core.engine] INFO: Closing spider (finished)
818-07-20 B89:84:44 [scrapy.statscollectors] INFO: Dumping Scrapy stats:

Figure 5-2. CLI output of title

Now, to clean it up a bit, change the line:
print(response.css("title"))
to:
print(response.css("title").extract_first(),)

Then save and rerun the spider, and you will note a much cleaner and usable output
of the HTML tags and the title. The extract_first() method returns a string of the first
occurrence found.

Of course, this is just a bit to get you started with Scrapy. You can do much more with
it; use what you have learned to expand your web-scraping skills. The best place to find
more information would be at the docs.scrapy.org site for more information on methods
and features of Scrapy. In fact, the Quotes URL used in this example is the same used in
the Scrapy sites tutorials.

266

https://www.docs.scrapy.org

CHAPTER5 COMMON PROTOCOLS

Taking It With You

There is perhaps one thing that is most important to understand about all the protocols
listed in this chapter: they aren’t mutually exclusive. It is possible—and sometimes
very advantageous—to implement multiple protocols on a single object. For example, a
sequence can also be used as a callable and a context manager if both of those behaviors
make sense for a given class.

This chapter has dealt primarily with the behaviors of objects, as provided by their
classes; the next chapter will cover how you can manage those objects and their data
once they have been instantiated in working code.

267

CHAPTER 6

Object Management

Creating an instance of a class is only the beginning; once you have an object, there are

a number of things you can do with it. This is obvious, of course, because objects have

methods and attributes that are intended to control their behavior, but those are defined

by each class. Objects, as a whole, have an additional set of features that allow you to

manage them in a number of different ways.

In order to understand these features, it’s first necessary to understand what

actually constitutes an object. At a high level, an object is simply the product of data and

behavior, but internally, Python considers an object to be a combination of three specific

things (five if you add base cclasses and attributes):

Identity: Each object is unique, with an identity that can be used

to compare objects to each other without having to look at any

other details. This comparison, using the is operator, is very strict,
however, without access to any of the subtleties outlined in Chapter 5.
In actual implementations, an object’s identity is simply its address in
memory, so no two objects can ever have the same identity.

Type: The subject of the previous two chapters, an object’s type
is defined by its class and any base classes that support it. Unlike
identity, a type is shared among all of its instances; each object
simply contains a reference to its class.

Value: With a shared type to provide behavior, each object also has a
value that makes it distinct among its peers. This value is provided by
a namespace dictionary that is specific to a given object, where any
aspect of its individuality can be stored and retrieved. This is different
from the identity, however, because the value is designed to work
with the type to do useful things; identity is unrelated to the type at
all, so it doesn’t have anything to do with the behaviors specified for
the class.

© J. Burton Browning and Marty Alchin 2019
J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_6

269

CHAPTER6 OBJECT MANAGEMENT

These three things can be referenced and, in some cases, changed to suit the needs
of an application. An object’s identity can’t be modified at any time, so its value is
constant for the life of the object. But once the object is destroyed, its identity can—and
often will—be reused for a future object, which then retains that identity until the object
is destroyed.

If you want to retrieve an identity at any time, you can pass the object into the built-
in id() function because the object itself doesn’t know anything about its identity (ID
method). In fact, the identity isn’t related to anything specific to the object; none of its
attributes have any bearing on its identity. Therefore, you won’t get the same identity
if you instantiate what would otherwise be an identical object. It also varies based on
available memory, so in one session the location (returned as an integer) will most likely
be different during another session. Types have been covered thoroughly in the previous
two chapters, so the next obvious component is the value, which is implemented by way
of a namespace dictionary.

Namespace Dictionary

As hinted at previously, an object’s namespace is implemented as a dictionary that is
created for each new object as it’s being instantiated. This is then used to store values for
all the attributes on the object, thus comprising the value for the object as a whole.

Unlike the identity, however, this namespace dictionary can be accessed and
modified at runtime, as it’s available as the _dict__attribute on an object. In fact,
because it’s an attribute, it can even be replaced with a new dictionary altogether. This is
the basis of what’s commonly referred to as the Borg pattern, named after the collective
consciousness from the Star Trek universe.

Example: Borg Pattern

Like its namesake, the Borg pattern allows a large number of instances to share a single
namespace. In this way the identity for each object remains distinct, but its attributes—
and thus its behaviors—are always the same as all of its peers. This primarily allows

a class to be used in applications in which it could be instantiated several times, with
potential modifications made to it each time. By using the Borg pattern these changes
can be accumulated in a single namespace, so each instance reflects all the changes that
have been made to each object.

270

CHAPTER6 OBJECT MANAGEMENT

This is achieved by attaching a dictionary to the class and then assigning that
dictionary to the namespace of each object as it is being instantiated. As Chapter 4
demonstrated, this can be achieved like this: __init () and new_ ().Because
both methods execute during instantiation of the object, they seem to be equally viable
options. However, let’s take a look at how they would each work individually.

The init () method is the usual place to start because it's much better
understood and more widely adopted. This method typically initializes instance
attributes, so the dictionary assignment would need to take place prior to any other
initialization. That’s easy enough to do, however, by simply placing it at the beginning of
the method. Here’s how this would work:

>>> class Borg:
_namespace = {}
def _init (self):
self. dict = Borg. namespace
Do more interesting stuff here.

>>> a = Borg()

>>> b = Borg()

>>> hasattr(a, 'attribute')
False

>>> b.attribute = 'value'
>>> hasattr(a, 'attribute')
True

>>> a.attribute

"value'

>>> Borg. namespace
{'attribute': 'value'}

This certainly does the job, but there are a few pitfalls with the approach, particularly
when you start working with inheritance. All subclasses would need to make sure they
use super () in order to call the initialization procedures from the Borg class. If any
subclass fails to do so, it won’t use the shared namespace; nor will any of its subclasses,
even if they do use super (). Furthermore, subclasses should use super () before

271

CHAPTER6 OBJECT MANAGEMENT

doing any attribute assignments of their own. Otherwise, those assignments will get
overwritten by the shared namespace.

That only applies when Borg is applied to other classes that know about it, however.
The problem is even more pronounced when working with Borg as a mixin, because it
would get applied alongside classes that don’t know about it—and they shouldn’t have to.
But because they can get combined anyway, it's worth examining what would happen:

>>> class Base:
def init (self):
print('Base")

>>> class Borg:
_namespace = {}
def _init (self, *args, **kwargs):
self. dict = Borg. namespace
print('Borg")

>>> class Testing(Borg, Base):
pass

>>> Testing()

Borg

<_main__.Testing object at Ox...>

>>> class Testing(Base, Borg):
pass

>>> Testing()
Base
<_main__.Testing object at Ox...>

As you can see, this exhibits the typical problem when not using super (), where the
order of base classes can completely exclude the behaviors of one or more of them. The
solution, of course, is to just use super (), but in the case of mixins, you typically don’t
have control over both the classes involved. Adding super () would suffice in the case of

272

CHAPTER6 OBJECT MANAGEMENT

Borg coming before its peer, but mixins are usually applied after their peers, so it doesn’t
really help much.

With all this in mind, it's worth considering the alternative __new__ () method. All
methods are vulnerable to the same types of problems that were shown for _init (),
but at least we can reduce the chance of collisions that would cause those problems.
Because the __new__ () method is less commonly implemented, the odds of running into
conflicting implementations are much smaller.

When implementing the Borg pattern with __new__ (), the object must be created
along the way, usually by calling _new () on the base object. In order to play nicely
with other classes as a mixin, however, it’s still better to use super () here as well. Once the
object is created, we can replace its namespace dictionary with one for the entire class:

>>> class Base:
def init (self):
print('Base")

>>> class Borg:
_namespace = {}
def _new_ (cls, *args, **kwargs):
print('Borg")
obj = super(Borg, cls). new_ (cls, *args, **kwargs)
obj. dict = cls. namespace
return obj

>>> class Testing(Borg, Base):
pass

>>> Testing()

Borg

Base

<_main__.Testing object at Ox...>

>>> class Testing(Base, Borg):
pass

273

CHAPTER6 OBJECT MANAGEMENT

>>> Testing()

Borg

Base

<_main__.Testing object at Ox...>
>>> a = Testing()

Borg

Base

>>> b = Testing()

Borg

Base

>>> a.attribute = 'value'
>>> b.attribute

"value'

Now, Borg comes first in the most common situations, without any unusual
requirements on any classes that operate alongside them. There’s still one problem with
this implementation, however, and it’s not very obvious from this example. As a mixin,
Borg could be applied in any class definition, and you might expect that its namespace
behavior would be limited to that defined class and its subclasses.

Unfortunately, that’s not what would happen. Because the namespace dictionary is
on Borg itself, it'll be shared among all the classes that inherit from Borg at all. In order to
break that out and apply it only to those classes where Borg is applied, a slightly different
technique is necessary.

Because the _new () method receives the class as its first positional argument,
the Borg mixin can use that object as a namespace on its own, thereby splitting up the
managed dictionary into individual namespaces, with one for each class that is used. In a
nutshell, Borg. new__ () must create a new dictionary for each new class it encounters,
assigning it to a value in the existing _namespace dictionary, using the class object as its key:

>>> class Borg:
_namespace = {}
def new (cls, *args, **kwargs):
obj = super(Borg, cls). new_ (cls, *args, **kwargs)
cos obj.__dict__ = cls._namespace.setdefault(cls, {})

274

CHAPTER6 OBJECT MANAGEMENT

return obj

>>> class TestOne(Borg):
pass

>>> class TestTwo(Borg):

pass
>>> a = TestOne()
>>> b = TestOne()
>>> a.spam = 'eggs'
>>> b.spam
'eggs’
>>> ¢ = TestTwo()
>>> c.spam

Traceback (most recent call last):

AttributeError: 'TestTwo' object has no attribute 'spam’
>>> c.spam = 'burger’

>>> d = TestTwo()

>>> d.spam

'burger’

>>> a.spam

‘eggs’

Asyou can see, by using cls as a kind of namespace of its own, we can
compartmentalize the managed values on a per-class basis. All instances of TestOne
share the same namespace, whereas all instances of TestTwo share a separate
namespace, so there’s never any overlap between the two.

Example: Self-Caching Properties

Even though attributes are the primary means of accessing an object’s namespace
dictionary, remember from Chapter 4 that attribute access can be customized using
special methods, such as __getattr () and setattr (). Those methods are what
Python actually uses when accessing an attribute, and it’s up to those methods to look

275

CHAPTER6 OBJECT MANAGEMENT

things up in the namespace dictionary internally. If you were to define them in pure
Python, they'd look a lot like this:

Oé

class object:
def getattr (self, name):
try:
return self. dict [name]
except KeyError:
raise AttributeError('%s object has no attribute named %s'
% (self. class . module , name))

def _ setattr (self, name, value):
self. dict [name] = value

def delattr (self, name):
try:
del self. dict [name]
except KeyError:
raise AttributeError('%s object has no attribute named %s’
% (self. class . module , name))

As you can see, every access to the attribute performs a lookup in the namespace,
raising an error if it wasn’t there. This means that in order to retrieve an attribute, its
value must have been created and stored previously. For most cases this behavior is
appropriate, but in some cases the attribute’s value can be a complex object that’s
expensive to create, and it might not get used very often, so it’s not very advantageous to
create it along with its host object.

One common example of this situation is an Object-Relational Mapping (ORM) sitting
between application code and a relational database. When retrieving information about
a person, for instance, you'd get a Person object in Python. That person might also have
a spouse, children, a house, an employer, or even a wardrobe filled with clothing, all of
which could also be represented in the database as related to the person you've retrieved.

If we were to access all of that information as attributes, the simple approach
described previously would require all of that data to be pulled out of the database every
time a person is retrieved. Then, all of that data must be collected into separate objects
for each of the types of data: Person, House, Company, Clothing, and probably a host
276

CHAPTER6 OBJECT MANAGEMENT

of others. Worse yet, each of those related objects has other relationships that would
be accessible as attributes, which can quickly seem like you need to load up the entire
database every time a query is made.

Instead, the obvious solution is to load that information only when requested. By
keeping track of a unique identifier for the person, along with a set of queries that know
how to retrieve the related information, methods can be added that will be able to
retrieve that information when necessary.

Unfortunately, methods are expected to perform their task every time they're
called. If you need the person’s employer, for example, you'd have to call a Person.get
employer () method, which would make a query in the database and return the result.
If you call the method again another query is made, even though it’s often unnecessary.
This could be avoided by storing the employer as a separate variable, which could be
reused instead of calling the method again, but that doesn’t hold up once you start
passing the Person object around to different functions that might have different needs.

Instead, a more preferable solution would be to make an attribute that starts out with
as little information as possible—perhaps even none at all. Then, when that attribute
is accessed, the database query is made, returning the appropriate object. This related
object can then be stored in the main object’s namespace dictionary, where it can be
accessed directly later on, without having to hit the database again.

Querying a database when accessing an attribute is a fairly easy task, actually.
Applying the @property decorator to a method will produce the desired effect, calling
the function whenever the attribute is accessed. Caching its return value requires a bit
more finesse, however, but it’s really fairly simple: simply overwrite the existing value if
there’s already one in the object’s namespace or create a new one otherwise.

This could be simply added into the behavior of an existing property, as it only
requires a few extra lines of code to support. Here’s all it would take:

Oé

class Example:
@property
def attribute(self):
if 'attribute' not in self. dict_:
Do the real work of retrieving the value
self. dict ['attribute'] = value
return self. dict ['attribute']

277

CHAPTER6 OBJECT MANAGEMENT

Caution When caching property values like this, be careful to check that

the computed value shouldn’t change based on the value of other attributes.
Computing a full name based on first and last names, for example, is a poor
candidate for caching because changing the first name or last name should change
the value of the full name as well; caching would prevent incorrect behavior.

Notice, however, that this really just performs a little work before the real code and
a little bit afterward, making it an ideal task for a decorator. Here’s what that decorator
could look like:

Oé

import functools

def cachedproperty(name):
def decorator(func):
@property
@functools.wraps(func)
def wrapper(self):
if name not in self. dict :
self. dict [name] = func(self)
return self. dict [name]
return wrapper
return decorator

Once applied to a function, cachedproperty () will work like a standard property,
but with the caching behavior applied automatically. The one difference you'll
notice, however, is that you must supply the name of the attribute as an argument to
cachedproperty() in addition to naming the function that you're decorating. Assuming
you typed in the previous function, here’s how it would look:

>>> class Example:
@cachedproperty('attr")
def attr(self):

278

CHAPTER6 OBJECT MANAGEMENT

print('Getting the value!")
return 42

>>> e = Example()
>>> e.attr
Getting the value!
42

>>> e.attr

42

Why must the name be supplied twice? The problem, as mentioned in previous
chapters, is that descriptors, including properties, don’t get access to the names they’re
given. Because the cached value is stored in the object namespace according to the
name of the attribute, we need a way to pass that name into the property itself. This is a
clear violation of DRY, however, so let’s see what other techniques are available and what
their pitfalls would be.

One option would be to store a dictionary on the cached property descriptor directly,
using object instances as keys. Each descriptor would get a unique dictionary, and
each key would be a unique object, so you'd be able to store as many values as you have
objects that have the attribute attached:

Oé

def cachedproperty(func):
values = {}

@property
@functools.wraps(func)
def wrapper(self):
if self not in values:
values[self] = func(self)
return values[self]
return wrapper

This new decorator allows you to cache an attribute without having to specify the
name. If you're skeptical about it, however, you might wonder about storing those values
in a single dictionary for all objects, without referencing the name of the attribute. After

279

CHAPTER6 OBJECT MANAGEMENT

all, that would seem to mean that if you had more than one cached property on a single
object, their values would overwrite each other and you'd have all sorts of confusion.

That’s not a problem in this situation, however, because the dictionary is created
inside of the cachedproperty() function, which means each property gets its own
dictionary name values. This way there’s no chance of collision, no matter how many
cached properties you place on an object. The dictionary will be shared only if you
assign an existing property to a new name without redefining it. In that case, the second
name should always behave exactly like the first, and the cache described here will still
maintain that behavior.

However, there is one other problem with this property that may not be so obvious.
Believe it or not, this contains a memory leak, which could be severely harmful if it gets
used in a large part of an application without being fixed (this will be discussed shortly in
more detail).

In some cases the best fix will be to simply go back to the first form described in
this chapter, where the attribute’s name is provided explicitly. Because the name isn’t
provided to a descriptor, this approach would require the use of a metaclass. Of course,
metaclasses are overkill for simple situations like this, but in cases in which a metaclass
is used for other reasons anyway, having the name available can be quite useful.
Chapter 11 showcases a framework that uses the metaclass approach to great effect.

In order to avoid using a metaclass, it’s first necessary to understand what the
memory leak is, why it’s happening, and how we can avoid it. It all has to do with how
Python removes objects from memory when they’re no longer in use, a process called
garbage collection.

Garbage Collection

Unlike lower-level languages like C, Python doesn’t require you to manage your own
memory usage. You don’t have to allocate a certain amount of memory for an object or
remove your claim on that memory when the object is no longer needed. In fact, you
often don’t even need to worry about how much memory an object will take up or how
to determine when it’s no longer needed. Python handles those gritty details behind the
scenes.

Garbage collection is easy to understand: Python deletes any objects that are
identified as garbage, clearing whatever memory they were using so that memory is
available for other objects. Without this process every object created would stay in

280

CHAPTER6 OBJECT MANAGEMENT

memory forever, and you'd slowly—or quickly—run out of memory, at which point
everything comes to a grinding halt.

As you probably noticed, effective garbage collection first requires the ability
to reliably identify an object as garbage. Even with the ability to remove garbage
from memory, failing to recognize garbage will cause memory leaks to creep into
an application. The last example in the previous section contains a simple situation
that can cause Python to not notice when an object becomes garbage, so we need to
examine how that gets determined. It is important to note that because Python is not a
strongly typed language (you do not explicitly declare a variables type), variables that are
changed during a command session are rereferenced if you redeclare the variable with a
previously used value during that session. The next terminal prompt example shows this
by showing the location of the variable in memory, and as you will note it changes back
with the original value:

>>> x=10

>>> type(x)

<class 'int'>

>>> id(x) #location of x

1368047320

>>> x="foobar"

>>> type(x)

<class 'str'>

>>> id(x) #location of x as a string instead of int
62523328

>>> x=10

>>> id(x) #back to the original location of x as an int at 10
1368047320

Reference Counting

At a high level, an object is considered garbage when it’s no longer accessible by any
code. In order to determine whether an object is accessible, Python counts how many
data structures refer to the object at any given time.

281

CHAPTER6 OBJECT MANAGEMENT

The most obvious way to reference an object is to assign it in any namespace,
including modules, classes, objects, and even dictionaries. Other types of references
include any kind of container object, such as a list, tuple, or set. Even less obvious is that
every function has its own namespace, which can contain references to objects, even
in the case of closures. Essentially, anything that provides access to an object increases
its reference count. In turn, removing an object from such a container decreases its
reference count.

To illustrate, here are a few examples of situations that would create new references:

>>>a = [1, 2, 3]
>>> b = {'example': a}
>»> C=a

After executing these three lines of code, there are now three references to the list [1,
2, 3].Two of them are fairly obvious, when it was assigned to a and later reassigned
to c. The dictionary at b also has a reference to that list, however, as the value of its
"example’ key. That dictionary, in turn, has just one reference, having been assigned as
the value of b.

The del statement is perhaps the most obvious way to remove a reference to an
object, but it’s not the only option. If you replace a reference to one object with a
reference to another (rebind it), you'll also implicitly remove the reference to the first
object. For example, if we were to run these two lines of code, we end with just one
reference to the list shown as a:

>>> del ¢
>>> a = None

Even though it’s no longer available in the root namespace, that list is still available
as part of the dictionary, which itself is still accessible as b. Therefore, they each have
just one reference, and neither will be garbage collected. If you were to del b right now,
the reference count for the dictionary becomes zero and will be eligible for garbage
collection. Once that’s been collected, the reference count for the list is reduced to zero
and is collected as garbage.

282

CHAPTER6 OBJECT MANAGEMENT

Tip By default, Python simply clears out the memory that was occupied by the

object. You don’t need to do anything in order to support that behavior, and it works
just fine for most cases. In the rare event that an object has some special needs to
address when it's deleted, the _del () method can provide this customization.

Instead of deleting objects, there are a number of other things you can do with
them as well. Here’s a look at a very different situation that can alter the way reference
counting works.

Cyclical References

Consider the scenario in which you have a dictionary that refers to a list as one of its values.
Because lists are containers as well, you could actually append the dictionary as a value to
the list. What you end up with is a cyclical reference, where each object refers to the other.
To extend the previous examples, let’s examine what would happen with this line of code:

>>> b['example'].append(b)

Prior to this the dictionary and the list had one reference each, but now the
dictionary gains another reference by being included as a member of the inner list.

This situation will work just fine in normal operation, but it does present an interesting
problem when it comes to garbage collection.

Remember that using del b would decrease the reference count of the dictionary by
one, but now that the list also contains a reference to that same dictionary, its reference
count goes from two to one, rather than dropping to zero. With a reference count above
zero, the dictionary wouldn’t be considered garbage and it would stay in memory, along
with its reference to the list. Therefore, the list also has a reference count of one, keeping
itin memory.

What's the problem here? Well, after you delete the reference at the variable b, the
references those two objects have to each other are now the only references they have in
the entire Python interpreter. They're completely cut off from any code that will continue
executing, but because garbage collection uses reference counts, they’ll stay in memory
forever unless something else is done.

283

CHAPTER6 OBJECT MANAGEMENT

To address this, Python’s garbage collection comes with code designed to spot these
structures when they occur, so they can be removed from memory as well. Any time a set
of objects is referenced only by other objects in that set—and not from anywhere else in
memory—it's flagged as a reference cycle. This allows the garbage collection system to
reclaim the memory it was using.

Things start to get really tricky when you implement __del (), however. Ordinarily,
__del () works just fine because Python can intelligently figure out when to delete
the object. Therefore, _del () can be executed in a predictable manner, even when
multiple objects are deleted within a short span.

When Python encounters a reference cycle that’s inaccessible from any other code, it
doesn’t know the order to delete the objects in that cycle. This becomes a problem with
the custom __del () method, because it could act on related objects as well. If one
object is part of an orphaned reference cycle, any related objects are all also scheduled
for deletion, so which one should fire first?

After all, each object in the cycle could reference one or more of the other objects in
that same cycle. Without an object to be considered first, Python would have to simply
guess which one it should be. Unfortunately, that leads to behavior that is not only
unpredictable but also unreliable across the many times it could occur.

Therefore, Python has to take one of only two predictable, reliable courses of action.
One option would be to simply ignore the _del () method and delete the object
justasitwould ifthe del () method wasn’t found. Unfortunately, that changes the
behavior of the object based on things outside that object’s control.

The other option, which Python does take, is to leave the object in memory. This
avoids the problem of trying to order a variety of __del () methods while maintaining
the behavior of the object itself. The problem, however, is that this is in fact a memory leak,
and it’s only there because Python can’t make a reliable assumption about your intentions.

IN THE FACE OF AMBIGUITY, REFUSE THE TEMPTATION TO GUESS

This situation with __del () in a cyclical reference is a perfect example of ambiguity
because there’s no clear way to handle the situation. Rather than guess, Python sidesteps it by
simply leaving the objects in memory. It’s not the most memory-efficient way to address the
problem, but consistency is far more important in situations like this. Even though it potentially
means more work for the programmer, that extra work results in much more explicit, reliable
behavior.

284

CHAPTER6 OBJECT MANAGEMENT

There are three ways you can avoid this problem. First, you can avoid having any
objectswith _del () methods involved in any cyclical references. The easiest way to
accomplish that is to avoid the _del () method entirely. Most of the common reasons
to customize an object’s teardown are more appropriately handled using a context
manager.

In those rare cases in which __del () proves necessary, the second option is to
simply avoid having the objects appear in reference cycles. That’s not always easy to do,
however, because it requires you to have complete control over all the ways the object
might be used. That might work for some highly internalized implementation details, but
ifit’s part of a public interface, it’s probably not an option.

Finally, if you can’t prevent the cycles from being orphaned, Python does provide a
way that you can still detect them and have a chance to clean them up on a regular basis.
Once all other references are removed and the garbage collection cycle runs, Python
keeps the entire cycle alive by placing each object involved into a special list, available in
the gc module.

The gc module provides a few options that are useful for getting into the guts of
the garbage collection system, but the factor at hand here is the garbage attribute. This
attribute contains objects that are otherwise unreachable but are part of a cycle that
includes __del () somewhere along the line. Accessing them as part of gc.garbage
allows you to try to break the cycle after the fact, which will allow their memory to be
relinquished.

Consider the following example, which also shows the usage of gc.collect(),

a module-level function that manually runs the garbage collector so that cyclical
references are detected and placed in gc. garbage accordingly:

>>> import gc
>>> class Example:
def init (self, value):
self.value = value
def _repr (self):
return 'Example %s' % self.value
def del (self):
print('Deleting %r' % self)

285

CHAPTER6 OBJECT MANAGEMENT

>>> e = Example(1)
>»> e

Example 1

>>> del e

>>> gc.collect()
Deleting Example 1
0

Now let's try it with a cyclical reference

>>> e = Example(2)
>»> e.attr = e

>>> del e

>>> gc.collect()

2

>>> gc.garbage

From here, we can break the cycle and remove it from memory

>>> e = gc.garbage[0]
>>> del e.attr

>>> del e

>>> gc.collect()

0

>>> gc.garbage

Don't forget to clear out gc.garbage as well

>>> gc.garbage[:] = []
Deleting Example 2
>>> gc.garbage

[]

In the real world, however, _del () israrely needed, and it’s even more rare to run
into very severe problems with cyclical references. Far more common, however, is the
need to adjust how references themselves are created and what to do when you don’t
really need a reference all your own.

286

CHAPTER6 OBJECT MANAGEMENT

Weak References

As we've seen, assigning an object creates a reference to it, and those references keep
that object alive in memory. But what happens when you need to access an object but
you don’t care to keep it alive? For this, Python provides the concept of a weak reference:
you get a reference to the object without increasing its reference count.

By getting a reference without increasing the object’s reference count, you can
perform operations on that object without getting in the way of how it would ordinarily
be deleted. This can be very important for applications that register objects for use later.
The registry itself keeps references to all the registered objects, which ordinarily wouldn’t
get deleted, because the application that knows about the object typically doesn’t know
anything about the registration system.

Creating a weak reference is fairly simple, thanks to the weakref module in the
standard library. The ref() class within that module creates a weak reference to
whatever object is passed into it, allowing that reference to be used later. To provide
access to the original object, a weak reference is a callable object that takes no arguments
and returns the object.

In order to see what was supposed to happen, we have to first store a reference to
that object outside the weak reference. That way we cannot only create a weak reference
that has access to the object, but we can then delete the additional reference to see how
the weak reference behaves:

>>> import weakref
>>> class Example:
pass

>>> e = Example()

>>> e

<__main__.Example object at Ox...>
>>> ref = weakref.ref(e)

>>> ref

<weakref at ...; to 'Example' at ...>
>>> ref()

<__main__.Example object at Ox...>

287

CHAPTER 6 OBJECT MANAGEMENT
>>> del e

>>> ref

<weakref at ...; dead>
>>> ref()

>>>

Asyou can see, as long as there’s at least one other reference keeping the object alive,
the weak reference has easy access to it. Once the object is deleted elsewhere, the weak
reference object itself is still available, but it simply returns None when called. We could make
the example even simpler as well, by passing a new object directly into the weak reference:

>>> ref = weakref.ref(Example())
>>> ref

<weakref at ...; dead>

>>> ref()

>>>

Wait, what just happened? Where did the Example object go? This simple example
illustrates one of the most common problems you're likely to encounter with weak
references. Because you're instantiating the object as part of the call to ref(), the only
reference that gets created for that object is inside of ref().

Ordinarily that would be fine, but that particular reference doesn’t help keep the
object alive, so the object is immediately marked for garbage collection. The weak
reference provides access to the object only if there’s something else to keep it alive, so
in this case, the reference simply returns None when called. That situation may seem
obvious, but there are a few others that may come up when you least expect them.

One such situation that can come up involves creating a weak reference inside of a

function:

>>> def example():
e = Example()
ref = weakref.ref(e)

288

CHAPTER6 OBJECT MANAGEMENT

return ref

>>> e = example()

>»> e

<weakref at ...; dead>
>>> e()

>>>

Asyou can see, even though the example() function stores a strong reference
inside itself, the weak reference goes dead immediately. The problem here is that every
function gets a brand-new namespace every time it executes, and it’s deleted when the
function finishes, because execution is the only thing keeping it alive.

By default, all assignments in the function take place in that namespace, so once it’s
destroyed any objects assigned are destroyed as well unless they have references stored
elsewhere. In this case the only other reference to the Example object is weak, so the
object gets destroyed once the example() function returns.

The recurring theme here is that weak references can cause problems when used
along with any kind of implicit reference removal. We've discussed two already, but there
are other similar situations as well. For example, a for loop automatically assigns at
least one variable each time the loop begins, overwriting any values that were previously
assigned to the same name. Because that also destroys the reference to whatever object
was used in the previous iteration, a weak reference created inside the loop isn’t enough
to keep that object alive.

Pickling

So far we've only discussed how objects are handled inside of Python, but it’s often
necessary to exchange data with external processes such as files, databases, and network
protocols. Most of the time the structure of that data outside of Python is already
established, so your application will need to adhere to that structure. Other times,
however, the only reason to send the data into something else is to store it for a while and
read it back into Python later. The Pickle command is used to convert a Python object
such as a list or dictionary into a persistent character stream that can be reloaded later to
recreate the object for use in a different Python application. It is used for serializing and
deserializing a Python object to and from a file.

289

CHAPTER6 OBJECT MANAGEMENT

In this case, the external system really doesn’t care what your data is or how it’s
structured. As long as it’s a data type that system can understand, it should be usable.
You should note that def functions and classes cannot be pickled. Because the most
flexible and widely supported data type is a string, it’s necessary to export Python’s data
structures to strings. For this, Python provides the pickle module. PEP 3137 has some
very interesting details on byte types and strings by Guido.

In the real world, pickling is a way of preserving food so it can be stored for long
periods of time and consumed much later. Without preservation techniques like
pickling, food would have to be consumed almost immediately after it’s produced. The
same is true for data: it’s easy to consume shortly after it’s produced, but saving it for
later requires some extra work.

The action of pickling is performed by using the pickle module’s dump() or dumps()
functions. Both of these functions can take any object as the first argument, but they
differ in where they output the string representing that object. In the case of dump(),

a second required argument specifies a writable file-like object that the function will
use as the destination for the pickled value. The dumps () function, by contrast, simply
returns the string directly, allowing the code that called the function to decide where to
put it. Beyond that the two functions are identical, and the examples throughout the rest
of this section will use dumps (), as it shows the output much more easily:

>>> import pickle

>>> pickle.dumps(1)
b'\x80\x03K\x01."

>>> pickle.dumps(42)

b'\x80\x03K*."

>>> pickle.dumps('42")
b'\x80\x03X\x02\x00\x00\x0042g\x00. '

As you can see, the pickled output can contain more information than the original
objects value because it also needs to store the type, so the object can be reconstituted
later.

Once a value has been pickled, the resulting string can be stored or passed around
however your application requires. Once it’s time to retrieve the object back into Python,
the pickle module provides two addition functions, load() and loads (). The difference

290

CHAPTER6 OBJECT MANAGEMENT

between the two is similar to the dump functions: 1load() accepts a readable file-like
object, while loads () accepts a string:

>>> pickled = pickle.dumps(42)
>>> pickled

b'\x80\x03K*."

>>> pickle.loads(pickled)

42

Dumping objects into pickled strings and loading them back again are just the
external tasks, however. Like in the many protocols described previously, Python
allows individual objects to control how they’re pickled and restored. Because pickling
represents a sort of snapshot of the object at the time it was pickled, these functions are
named to refer to the state of the object at a given time.

The first method to consideris __getstate (), which controls what gets included
in the pickled value. It doesn’t take any additional arguments and returns whatever value
Python should include in the pickled output. For complex objects the value will typically
be a dictionary or perhaps a tuple, but it’'s completely up to each class to define what
values are pertinent to the object.

For example, a currency conversion class might contain a number to use as the
current amount as well as a string to indicate the currency being represented. In
addition, it would likely have access to a dictionary of current exchange rates, so that
it can convert the amount to a different currency. If a reference to that dictionary were
placed on the object itself, Python would pickle it all together:

>>> class Money:
def init (self, amount, currency):
self.amount = amount
self.currency = currency
self.conversion = {'USD': 1, 'CAD': .95}
def _str (self):
return '%.2f %s' % (self.amount, self.currency)

291

CHAPTER6 OBJECT MANAGEMENT

def _repr (self):
return 'Money(%r, %r)' % (self.amount, self.currency)
def in_currency(self, currency):
ratio = self.conversion[currency] / self.conversion[self.
currency]
return Money(self.amount * ratio, currency)

>>> us_dollar = Money(250, 'USD")

>>> us_dollar

Money (250, 'USD")

>>> us_dollar.in_currency('CAD")

Money(237.5, 'CAD")

>>> pickled = pickle.dumps(us_dollar)

>>> pickled

b'\x80\x03c__main__ \nMoney\ng\x00)\x81q\x01}q\x02 (X\x08\x00\x00\
x00currencyq\x03
X\x03\x00\x00\x00USDq\x04X\x06\x00\x00\x00amountq\x05K\xfaX\n\x00\x00\
x00convers

iong\x06}q]\x07 (h\x04Kx01X\x03\x00\x00\x00CADq\x08G? \xeeffffffuub."

As you can see, this is already quite an expansive pickled value, and that’s with just
having two currencies stored in the dictionary. Because the currency conversion values
aren’t specific to the instance at hand—and they’ll change over time anyway—there’s no
reason to store them in the pickled string, so we can use __getstate () to provide just
those values that are actually important.

If you look closely at the pickled output of the existing Money object, you'll notice that
the attribute names are also included because Python doesn’t know if they’re important.
In lieu of any explicit instructions from __getstate_ (), itincludes as much information
as possible, to be sure the object can be recreated later. Because we already know that
there are just two values that are necessary, we can return just those two values as a tuple:

>>> class Money:
def _init (self, amount, currency):
self.amount = amount

292

CHAPTER6 OBJECT MANAGEMENT

self.currency = currency
self.conversion = {'USD': 1, 'CAD': .95}
def str (self):
return '%.2f %s' % (self.amount, self.currency)
def repr (self):
cen return 'Money(%r, %r)' % (self.amount, self.currency)
cos def __getstate__(self):
cos return self.amount, self.currency
def in_currency(self, currency):
ratio = self.conversion[currency] / self.conversion[self.
currency]
return Money(self.amount * ratio, currency)

>>> us_dollar = Money(250, 'USD")

>>> us_dollar

Money (250, 'USD")

>>> us_dollar.in_currency('CAD")

Money(237.5, 'CAD')

>>> pickled = pickle.dumps(us_dollar)

>>> pickled
b'\x80\x03c__main__\nMoney\ng\x00)\x81q\x01K\xfaX\x03\x00\x00\x00USDq\x02\
x869\x

03b."

As you can see, this cuts the size of the pickled output to just over a third of what
it was before. In addition to being more efficient, it’s more practical because it doesn’t
contain unnecessary information. Other attributes that should avoid being pickled are
initialization values, system-specific details, and other transient information that are
simply related to the object’s value rather than being part of that value directly.

That’s only half of the equation, however. Once you have customized the pickled
output of an object, it can’t be retrieved back into a Python object without also
customizing that side of things. After all, by storing the value as a tuple, we’ve removed
some of the hints Python used to rebuild the object, so we have to provide an alternative.

As you might have guessed, the complementto _getstate ()is _setstate ().
The setstate () method accepts just one additional argument: the state of the
object to restore. Because __getstate_ () can return any object to represent state,

293

CHAPTER6 OBJECT MANAGEMENT

there’s no specific type that will also be passed into __setstate (). It’snotat all
random, however; the value passed into __setstate () will be exactly the same value
that was returned from __getstate ().

In the case of our currency converter, the state is represented by a 2-tuple containing
the amount and currency:

>>> class Money:
def _init (self, amount, currency):
self.amount = amount
self.currency = currency
self.conversion = {'USD': 1, 'CAD': .95}
def str (self):
return '%.2f %s' % (self.amount, self.currency)
def _repr (self):
return 'Money(%r, %r)' % (self.amount, self.currency)
def getstate (self):
return self.amount, self.currency
cos def __setstate__(self, state):
ces self.amount = state[0]
cos self.currency = state[1]
def in_currency(self, currency):
ratio = self.conversion[currency] / self.conversion[self.
currency]
return Money(self.amount * ratio, currency)

>>> us_dollar = Money(250, 'USD")

>>> pickled = pickle.dumps(us dollar)
»»> pickle.loads(pickled)

Money(250, 'USD')

And with that, the Money class now fully controls how its value gets pickled and
unpickled. That should be the end of it, right? Well, just to be sure, let’s test that in_
currency() method again, because that’s an important aspect of its behavior:

294

CHAPTER6 OBJECT MANAGEMENT

Oé

>>> us_dollar = pickle.loads(pickled)
>>> us_dollar

Money (250, 'USD")

>>> us_dollar.in currency('CAD")
Traceback (most recent call last):

AttributeError: 'Money' object has no attribute 'conversion'

So why didn’t this work? When unpickling an object, Python doesn’tcall __init ()
along the way because that step is only supposed to take place when setting up new
objects. Because the pickled object was already initialized once before the state was
saved, it would usually be wrong to try to initialize it again. Instead, you can include
initialization behaviors like that inside of __setstate_ () to ensure that everything is
still properly in place:

>>> class Money:
def init (self, amount, currency):
self.amount = amount
self.currency = currency
cos self.conversion = self.get_conversions()
def str (self):
return '%.2f %s' % (self.amount, self.currency)
def _repr (self):
return 'Money(%r, %r)' % (self.amount, self.currency)
def getstate (self):
return self.amount, self.currency
def setstate (self, state):
self.amount = state[0]
self.currency = state[1]

oo self.conversion = self.get_conversions()
cos def get_conversions(self):
ces return {'USD': 1, 'CAD': .95}

295

CHAPTER6 OBJECT MANAGEMENT

def in_currency(self, currency):
ratio = self.conversion[currency] / self.conversion[self.
currency]
return Money(self.amount * ratio, currency)

>>> us_dollar = Money(250, 'USD")

>>> pickled = pickle.dumps(us_dollar)
>>> pickle.loads(pickled)

Money (250, 'USD")

»»> us_dollar.in_currency('CAD")
Money(237.5, 'CAD')

Of course, all of this is only useful if you're copying an object to be stored or sent to
a non-Python consumer outside. If all you'll need to do is work with it inside of Python
itself, you can simply copy the object internally.

Copying
Mutable objects come with one potentially prominent drawback: changes made to an
object are visible from every reference to that object. All mutable objects work this way
because of how Python references objects, but that behavior isn’t always the most useful.
In particular, when working with objects passed in as arguments to a function, the code
that called the function will often expect the object to be left unchanged. If the function
needs to make modifications in the course of its work, you'll need to take some extra care.
In order to make changes to an object without those changes showing up elsewhere,
you'll need to copy the object first. Some objects provide a mechanism for this right out of
the box. Lists, for instance, support slicing to retrieve items from the list into a new list. That
behavior can be used to get all the items at once, creating a new list with those same items.
Simply leave out the start and end values, and the slice will copy the list automatically:

>>> a = [1, 2, 3]
>>> b = a[:]

>»> b

[1, 2, 3]

296

CHAPTER6 OBJECT MANAGEMENT

>>> b.append(4)
>»> b

[1, 2, 3, 4]
>>> a

[1, 2, 3]

Similarly, dictionaries have their own way to copy their contents, although not using
a syntax like lists use. Instead, dictionaries provide a copy() method, which returns a
new dictionary with all the same keys and values:

>>> a = {1: 2, 3: 4}
>>> b = a.copy()

>>> b[5] =6

>>> b

{1: 2, 3: 4, 5: 6}
>>> a

{1: 2, 3: 4}

Not all objects include this type of copying behavior internally, but Python allows
you to copy any object, even if it doesn’t have its own copying mechanism.

Shallow Copies

To get a copy of any arbitrary object, Python provides a copy module. The simplest
function available in that module is also named copy (), and it provides the same basic
behavior as the techniques shown in the previous section. The difference is that rather
than being a method on the object you want to copy, copy . copy() allows you to pass in
any object and get a shallow copy of it. Not only can you copy a wider variety of objects,
you can do so without needing to know anything about the objects themselves:

>>> import copy
>>> class Example:
def _init (self, value):

297

CHAPTER6 OBJECT MANAGEMENT

self.value = value

>>> a = Example('spam")
>>> b = copy.copy(a)
>>> b.value = 'eggs'
>>> a.value

"'spam’

>>> b.value

'eggs'

Of course, this is just a shallow copy. Remember from the beginning of this chapter
that an object is really the combination of three components: an identity, a type, and
avalue. When you make a copy of an object, what you're really doing is creating a new
object with the same type, but with a new identity and a new—but identical—value.

For mutable objects, that value typically contains references to other objects, such as
the items in a list or the keys and values in a dictionary. The value for the copied object
may have a new namespace, but it contains all the same references. Therefore, when you
make changes to a member of the copied object, those changes get reflected in all other
references to that same object, just like any other namespace. To illustrate, consider a
dictionary that contains lists as its values:

>>>»a={'a": [1, 2, 3], 'b": [4, 5, 6]}
>»> b = a.copy()

>>> a['a'].append(4) #Copy to a and b
>>> b['b"].append(7) #Copy to a and b
>>> a

{'a': [1, 2, 3, 4], 'b": [4, 5, 6, 7]}
>>> b

{*a": [1, 2, 3, 4], 'b': [4, 5, 6, 7]}

Asyou can see, the copy only goes one level deep, so it’s considered to be “shallow.”
Beyond the object’s own namespace only references get copied, not the objects themselves.
This is true for all types of objects, not just the lists and dictionaries shown here. In fact,
custom objects can even customize this behavior by providinga _copy () method.

298

CHAPTER6 OBJECT MANAGEMENT

The copy() functionwill call __copy () with no arguments if it exists, so that method can
determine which values get copied and how they’re handled.

Typically, shallow copies are useful when the first layer is the only part of a value you
need to change, particularly when it makes more sense to specifically keep the rest of the
objects intact. The basic example case for this is sorting a list, where a new list must be
created in order to sort the items, but those items themselves should remain as they were.

To illustrate, consider a custom implementation of Python’s built-in sorted()
method, which sorts the items into a new list while keeping the original unchanged:

>>> def sorted(original list, key=None):
copied list = copy.copy(original list)
copied list.sort(key=key)
return copied list

>>> a = [3, 2, 1]
>>> b = sorted(a)
>>> a

[3, 2, 1]

>»> b

[1, 2, 3]

Of course, this still relies on the object passed in being a list, but it illustrates how
shallow copies can be useful. In other situations you may need to modify the whole
structure as deep as you can get.

Deep Copies

It’s often necessary for algorithms to need to reorganize data in large structures in order
to solve a particular problem. Sorting, indexing, aggregating, and rearranging data are all
common tasks to perform in these more complex operations. Because the goal is simply
to return some analysis of that data, the original structure needs to remain intact. We
need a deeper copy than what we’ve examined so far.

For these situations Python’s copy module also contains a deepcopy () method,
which copies not only the original structure but also the objects that are referenced by

299

CHAPTER6 OBJECT MANAGEMENT

it. In fact, it looks recursively through all those objects for any other objects, copying
each in turn. This way you're free to modify the copy however you like, without fear of
modifying the original or any modifications to the original being reflected in the copy:

>>> original = [[1, 2, 3], [1, 2, 3]]
>>> shallow _copy = copy.copy(original)
>>> deep_copy = copy.deepcopy(original)
>>> original[0].append(4)

>>> shallow_copy

[[1, 2, 3, 4], [1, 2, 3]]

>>> deep_copy

[[1, 2, 3], [1, 2, 3]]

It’s not truly recursive, however, because full recursion would sometimes make for
infinite loops if the data structure had a reference to itself at any time. Once a particular
object is copied Python makes a note of it, so that any future references to that same
object can simply be changed to refer to the new object rather than create a brand-new
one every time (deepcopy function).

Not only does that avoid recursively copying the same object if it's somehow a
member of itself; it also means that any time the same object is found more than once
in the structure, it will only be copied once and referenced as many times as necessary.
That means the copied structure will have the same behavior as the original with regard
to how changes are reflected in referenced objects:

>»> a = [1, 2, 3]
>>> b = [a, a]
>>> b

[[1, 2, 3], [1, 2, 3]]

>>> b[0].append(4)

>>> b

[[1, 2, 3, 4], [1, 2, 3, 4]]
>>> ¢ = copy.deepcopy(b)

>>> ¢

300

CHAPTER6 OBJECT MANAGEMENT

[[1: 2, 3, 4]: [1) 2, 3, 4]]

>>> c[0].append(5)

> C

[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]

This is a must for algorithms that rely on objects being present in multiple places of
a structure. Each copy will behave the same as the original in that regard, so there’s no
worry about how many times it gets copied before an algorithm starts working with it.

One other problem that can come up with deep copies is that Python doesn’t know
what might or might not be important, so it copies everything, which might end up being
far more than you need. In order to control that behavior, custom objects can specify the
deep copying behavior separately from shallow copies.

By supplyinga _deepcopy () method, an object can specify which values are
pertinent to the copy, much like how _ getstate () works for pickling. The biggest
difference from _getstate (), andfrom _copy () aswell, isthat _deepcopy ()
also accepts a second argument, which will be a dictionary used to manage the identity
of objects during copies. Because the deep copy should only copy each object once and
use references any other time that object is used, this identity namespace provides a way
to keep track of which objects are indeed the same because it maps their identities to the
objects themselves.

Exciting Python Extensions: Beautiful Soup

Beautiful Soup is a de facto standard library for working with HTML and XML
documents. It is a file parser or screen-scraper that gives you great control in shaping
files to meet your data extraction needs. In Chapter 5 you used Scrapy for web scraping.
The documents you obtained can be easily cleaned to remove markup language with
Beautiful Soup. This is a great library to use in conjunction with other Python extensions
such as Scrapy. Consider that you would obtain the data with a tool like Scrapy and then
clean it with Beautiful Soup. Beautiful Soup has some powerful searching capabilities as
well, but let’s just focus on the parsing ability.

301

CHAPTER6 OBJECT MANAGEMENT

Installing Beautiful Soup

Documentation for the extension is available at https://www.crummy.com/software/
BeautifulSoup

pip install beautifulsoupq (Enter)

Of course, with other operating systems you would use the appropriate install tool;
with Elementary or Ubuntu, for example, it would be sudo apt-get name-of-package.

Using Beautiful Soup

Make sure your install is working first by running from a Python interactive prompt:
from bs4 import BeautifulSoup (Enter)

If no errors result, then your libraries are installed. If you receive errors check that
you do not have another Python installation, such as Anaconda, or path issues.

As an example of the power of Beautiful Soup, we will take the HTML file harvested
in Chapter 5 with Scrapy and clean it up so that it is a text file only, with the markup
tags removed. This will create a file that is much better suited to data analysis such as
searching for key words or occurrences. Key in and run the following code, with the
quotes.html file we created in the previous chapter in the same folder, and you will see
raw HTML output and prettified Beautiful Soup output:

from bs4 import BeautifulSoup
path="quotes-1.html'

filedata=open(path, 'r',errors="ignore")
page=filedata.read()

soup = BeautifulSoup(page, 'lxml")
print(soup.prettify()) # show raw HTML markup

print('\n\nAnd a cleaner version:\n")
print(soup.get text()) # return plain text only

What you should see is the raw HTML text, then the cleaned-up version via Beautiful
Soup. Note that some extraneous data was left (but not much) that we could not clean

302

https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup

CHAPTER6 OBJECT MANAGEMENT

up via a looping structure. Next let’s only search for items that have a HTML ‘span’ tag,
count the occurrences, and print a cleaner output of only those selected items:

from bs4 import BeautifulSoup
path="quotes-1.html'

filedata=open(path, 'r',errors="ignore")
page=filedata.read()

soup = BeautifulSoup(page, 'lxml")
print('\nWe found this many span tags: ',len(soup.find all('span')))
print('\n\nShow only span tag items\n\n")

print(soup.find all('span'))

print('--------mmmmmmea ")

print('\nNow clean up the span tags\n\n')

for item in soup.find all('span'):
print(item.text)

In this last example we searched for a tag, then used an enhanced for to print
the individual items, with the tags removed via item.text. Is there more you could do
with Beautiful Soup? Certainly, but this should serve as a good stepping-off point to
experiment more.

Taking It With You

Every application knows how to deal with objects at a basic level, but with the
techniques shown in this chapter you'll be able to move on to managing large collections
of objects, spanning a wide variety of different types. In the next chapter, we’ll shift from
a macro-level view of objects to a micro-level examination of one specific type of object:
the humble string.

303

CHAPTER 7

Strings

Given the fundamental nature of strings in all forms of programming, it should come as
no surprise that Python’s string features can fill an entire chapter. Whether it’s interacting
with users by way of keyboard input, sending content over the Web, analyzing big data,
or participating in a Turing test,' strings can and are used for many applications.

With all this emphasis on strings, Python makes sure to include a wide variety of
features to support them. Some of these features are built right into the string objects
themselves, while others are provided by modules in the standard library and many
third-party libraries, such as Boost, offer even more options. This chapter, however,
will focus on Python built-in string functions rather than investigating third-party
applications.

The first thing to understand about Python strings is that there are actually two
different formats to consider: bytes and Unicode strings. Let’s examine bytes first.

Bytes

At a very basic level, a string is really just a sequence of individual bytes. In this general
sense, bytes are used for every piece of data a computer processes. Numbers, strings,
and more complex objects are all stored as bytes at some point, and anything more
structured is built on top of a sequence of bytes. In a byte string, represented in Python
by a bytes object, each character represents exactly one byte, so it’s easy to interact with
files and other interfaces to the outside world.

While standard strings—described later in the section on text—are identified as
literals simply with a pair of straight single quotes ('example'), byte string literals
include a b before the first quote. This is used in the source code as well as the repr ()
output for these values:

'See “xx,” http://propython.com/turing test/.

305
© J. Burton Browning and Marty Alchin 2019

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_7

http://propython.com/turing_test

CHAPTER 7 STRINGS

>>> b'example' #the keyword print is assumed since it is a command prompt
statement versus a script.
b'example'

The primary use of bytes is to convey nontextual information such as numbers,
dates, sets of flags, and a number of other things. Even though Python doesn’t directly
know how to deal with those particular values, a bytes object will make sure that they
pass through unchanged, so that your own code can handle each situation appropriately.
Without any assumptions about the intentions of the data, bytes offer you maximum
flexibility, but that means you’ll need some way to convert data back and forth between
bytes and something with more meaning to your application.

Simple Conversion: chr() and ord()

At a basic level a byte is really just a number, which happens to be represented by a
character of some kind. Python considers numbers and characters to be two different
things, but their values are equivalent, so it’s fairly easy to convert between them. Given
a single byte, you can pass it into the built-in ord(#) function, which will return its

equivalent integer value:

>>> ord(b'A")

65

>>> ord(b'!")

33

>>> list(b'Example")

[69, 120, 97, 109, 112, 108, 101]

Notice what happens when iterating over a sequence of bytes. Rather than one-
character byte strings, you actually get the raw integers immediately, removing the
need for ord() at all. This works well when converting single-byte values from bytes to
numbers, but going in the other direction requires the built-in chr () function. As an
inverse to ord(), it returns a single character based on the integer value you pass in:

306

CHAPTER 7 STRINGS

>>> chr(65)

IAI

>>> chr(33)

I!I

>>> [chr(o) for o in [69, 120, 97, 109, 112, 108, 101]]

[IEI, IXI’ Ial’ Iml’ lpl’ Ill) lel]

>>> “.join(chr(o) for o in [69, 120, 97, 109, 112, 108, 101])
'Example’

There’s one important thing to notice here: the string returned by chr () is a regular
string, rather than a byte string, as evidenced by the lack of a b prefix. As you'll see in
the section on text later in this chapter, standard strings work a bit differently from byte
strings. The biggest problem for our purposes here, however, is that a standard string
doesn’t always equate directly to a single byte, so it’s possible to get things wrong. In
order to get things to work more reliably and get some extra features on top of it, we can
use the struct module.

Complex Conversion: The Struct Module

In addition to the problem with chr () returning standard strings, a big problem with

the ord()/chr() combination is that it can only be reliably used when working with
individual bytes. When converting numbers to bytes, that limits it to values from 0 to 255.
In order to support a wider range of values and some other interesting features, Python
provides the struct module.

Similarly to how chr () and ord() represent a pair to convert values between byte
strings and native Python values, struct.pack() writes out byte strings, while struct.
unpack() reads those values back into Python. Unlike those simpler functions, however,
the struct module uses a format string to specify how values should get converted. This
format has its own sort of simple syntax to control what types of values to use and how
they work.

Because we came by struct to overcome some difficulties with chr (), we'll start by
looking at how struct.pack() can provide the intended functionality. The format to use
for a single, unsigned byte is B, and here’s how you'd use it in practice:

307

CHAPTER 7 STRINGS

>>> import struct

>>> struct.pack(b'B"', 65)

b'A'

>>> struct.pack(b'B', 33)

b'!"

>>> struct.pack(b'BBBBBBB', 69, 120, 97, 109, 112, 108, 101)
b'Example’

As you can see, the first argument is the format string itself, with one character for
each argument that should get converted into the byte string. All additional arguments
are used to provide the values that should be converted. Therefore, for each format
specifier, you'll need to include an argument at the equivalent position.

As mentioned, B specifies an unsigned value, which means there can be no negative
values. With this you could provide values from 0 to 255, but nothing below 0. A signed
value, by contrast, allows negative values by using one of the eight bits in the byte to
identify whether the value is positive or negative. There are still 256 unique values,
but the range is shifted a bit so that half the values are on each side of the sign. With 0
being considered a positive value, a signed byte can contain values from -128 to 127. To
complement unsigned bytes, the format specifier for signed bytes is b:

>>> struct.pack(b'b', 65)

b'A’

>>> struct.pack(b'Bb', 65, -23)
b'A\xe9’

>>> struct.pack(b'B', 130)
b'\x82'

>>> struct.pack(b'b', 130)
Traceback (most recent call last):

struct.error: byte format requires -128 <= number <= 127

308

CHAPTER 7 STRINGS

Of course, B and b are only valid for single byte values, limited to 256 total values. To
support larger numbers you can use H and h for two-byte numbers, allowing up to 65,536
values. Just like the single-byte option, the uppercase format assumes an unsigned value,
whereas the lowercase format assumes a signed value:

>>> struct.pack(b'Hh', 42, -137)
b' *\xo0ow\xff"

Now that a single value can span multiple bytes, there comes the question of which
byte comes first. One of the two bytes contains the 256 smallest values, while the other
contains the values 0 to 256 but multiplied by 256. Therefore, getting the two mixed up
can greatly affect the value that gets stored or retrieved. This is easy enough to see by
taking a quick look at the inverse function, struct.unpack():

>>> struct.unpack(b'H', b'*\x00")
(42,)

>>> struct.unpack(b'H', b'\x00*")
(10752,)

As you can see, the function call for struct.unpack() looks very similar to struct.
pack(), but there are a couple notable differences. First, there are always only two
arguments to unpack(), because the second argument is the raw byte string. This string
can contain multiple values to be pulled out, but it’s still passed as just one argument,
unlike pack().

Instead the return value is a tuple, which could contain multiple values. Therefore,
struct.unpack() is a true inverse of struct.pack(); that is, you can pass the result
from one into the call to the other and get the same value you passed in the first time.
All you need is to ensure that you use the same format string in each of the individual
function calls:

309

CHAPTER 7 STRINGS

>>> struct.unpack(b'Hh', struct.pack(b'Hh', 42, -42))

(42, -42)

>>> struct.pack(b'Hh', *struct.unpack(b'Hh', b'*\x00\x00*"))
b'*\x00\x00*"

So what's the problem with values spanning multiple bytes? After all, these examples
show that values can be converted to a string and back without worrying about how
those strings are created or parsed. Unfortunately, it’s only easy because we're currently
working only within Python, which has an implementation that is consistent with itself.
If you have to work with strings, such as file contents, that need to be used with other
applications, you'll need to make sure you match up with what those applications expect.

Therefore, struct formats also allow you to explicitly specify the endianness of a
value. Endianness is the term for how the bytes of a value are ordered; in a big-endian
value, the most significant byte—the byte that provides the largest part of the number—
gets stored first. For little-endian values, the least significant byte is stored first.

To distinguish between the two, the format specification can take a prefix. If you
place a < before the format, you can explicitly declare it to be little-endian. Conversely,
using > will mark it as big-endian. If neither option is supplied, as in the previous
examples, the default behavior is to use the same endianness as the system in which
Python is executing, which is typically little-endian on modern systems. This allows you
to control the way values are treated for both pack() and unpack(), covering both sides

of the conversion process:

>>> struct.pack(b'<H', 42)
b'*\x00'

>>> struct.pack(b'>H', 42)
b'\x00*'

>>> struct.unpack(b'<H', b'*\x00")
(42,)

>>> struct.unpack(b'>H"', b'*\x00")
(10752,)

310

CHAPTER 7 STRINGS

Now that it’s possible to control the ordering of multiple-byte numbers, it’s easier
to work with larger values. In addition to the one- and two-byte integers discussed
previously, struct supports four-byte values using I and i, whereas eight-byte values
can be specified using Q and q. Like the others, uppercase letters indicate unsigned
values, whereas lowercase letters indicate signed values.

The struct module goes beyond just conversion of integers, however. You can also
convert floating-point values using the f format, or perhaps even the b format for greater
precision. In fact, you can use struct to work with strings inside strings as well, giving
you some extra flexibility. Use the s format code, combined with a numeric prefix, to
indicate the size of the string to read or write:

>>> struct.pack(b'7s", b'example")
b'example'

>>> struct.unpack(b'7s', b'example")
(b'example',)

>>> struct.pack(b'10s', b'example")
b'example\x00\x00\x00'

As you can see, pack() will add in null bytes to fill in as many bytes as necessary to
match the prefix supplied in the format. But why would you want to use struct to turn
a string into a string? The benefit is that you can pack and unpack multiple values at a
time, so the string might just be part of the structure. Consider a simple byte string that
contains a person’s contact information:

>>>import struct

>>>first_name = 'Marty’

>>> last_name = 'Alchin’

>>> age = 28

>>> struct.pack(b'10s10sB", bytes(first name, 'utf8'), bytes(last name,
'utf8'), age)

>>> data

b'Alchin\x00\x00\x00\x00Marty\x00\x00\x00\x00\x00\x1c"

311

CHAPTER 7 STRINGS

If you're looking to work with strings in this manner, however, you're more likely
working with text, in which the string has meaning as a whole rather than its characters
being conversions of some other types of values. The format of how you do this changed
a bit in Python 3.2, so now you must encode string (str) text to byte strings, normally utf8
encoding.

Text

Conceptually, text is a collection of written words. It’s a linguistic concept that existed
long before computing, but once it became clear that computers would need to work
with text, it was necessary to determine how to represent text in a system designed for
numbers. When programming was still young, text was limited to a set of characters
known as the American Standard Code for Information Interchange (ASCII), or EBCDIC,
or others.

Notice the reference to “American”; this set of 127 characters—only 95 of them
printable—is designed to address only the needs of the English language. ASCII only
covered seven bits of each byte, so there was some room for potential future expansion,
but even another 128 values weren’t enough. Some applications employed special tricks
to convey additional letters by adding accents and other marks, but the standard was still
very limited in scope.

Unicode

To resolve this limitation, the Unicode standard emerged as an alternative that could
contain most of the characters used in the vast majority of the world’s languages. In order
for Unicode to support as many code points as it needs, each code point takes up more
than one byte, unlike in ASCII. When loaded in memory, this isn’t a problem because it’s
only used within Python, which only has one way of managing those multiple-byte values.

Note The Unicode standard is actually made up of more than a million individual
“code points” rather than characters. A code point is a number that represents
some facet of written text, which can be a regular character, a symbol, or a
modifier, such as an accented character. Some characters are even present at
multiple code points for compatibility with systems in use prior to the introduction
of Unicode.

312

CHAPTER 7 STRINGS

By default, all standard strings in Python are Unicode, supporting a wide array of
languages in the process. The byte strings shown in the previous section all required the
use of a b prefix to distinguish them as different from standard Unicode strings.

The trouble comes when writing those values out to strings that can be read by other
systems because not all systems use the same internal representation of Unicode strings.
Instead, there are several different encodings that can be used to collapse a Unicode
string into a series of bytes for storage or distribution.

Encodings

Much like how multiple bytes can be used to store a number larger than one byte would
allow, Unicode text can be stored in a multiple-byte format. Unlike numbers, though, text
generally contains a large number of individual characters, so storing each as up to four
bytes would mean a long passage of text could end up much larger than it may seem.

To support text as efficiently as possible, it quickly became clear that not all text
requires the full range of available characters. This book, for example, is written in
English, which means the vast majority of its content lies within the ASCII range. As
such, most of it could go from four bytes per character down to just one.

ASCII is one example of a text encoding. In this particular case, a small set of
available characters is mapped to specific values from 0 to 127. The characters chosen
are intended to support English, so it contains all the available letters in uppercase and
lowercase variants, all 10 numerals and a variety of punctuation options. Any text that
contains just these values can be converted to bytes using the ASCII encoding.

The encoding process itself is managed using a string’s encode () method. Simply
pass in the name of an encoding and it will return a byte string representing the text in
the given encoding. In the case of ASCII, the representation of the byte string looks just
like the input text, because each byte maps to exactly one character:

>>> 'This is an example, with punctuation and UPPERCASE.'.encode('ascii')
b'This is an example, with punctuation and UPPERCASE.'

313

CHAPTER 7 STRINGS

By mapping each byte to a single character, ASCII is very efficient, but it only works if
the source text contains those characters specified in the encoding. Certain assumptions
had to be made about what characters were important enough to include in such a small
range. Other languages will have their own characters that take priority, so they use
different encodings in order to be as efficient as ASCII is for English (UTF-8 is the most
popular).

Some languages, including Chinese and Japanese, have so many characters that
there’s no way a single byte could hope to represent them. Some encodings for these
languages use two bytes for every character, further highlighting how different the
various text encodings can be. Because of this, an encoding designed for a particular
language often can’t be used for text outside of that language.

To address this, there are some more generic Unicode-focused encodings. Because
of the sheer number of available characters, these encodings use a variable-length
approach. In UTF-8, the most common of these, characters within a certain range can be
represented in a single byte. Other characters require two bytes, while still others can use
three or even four bytes. UTF-8 is desirable because of a few particular traits it exhibits:

e It can support any available Unicode code point, even if it isn't
commonly in actual text. That feature isn’t unique to UTF-8, but it
definitely sets it apart from other language-specific encodings, such
as ASCILI.

e The more common the character is in actual use, the less space
its code point takes. In a collection of mostly English documents,
for example, UTF-8 can be nearly as efficient as ASCII. Even when
encoding non-English text most languages share certain common
characters, such as spaces and punctuation, which can be encoded
with a single byte. When it has to use two bytes, it’s still more efficient
than an in-memory Unicode object.

o The single-byte range precisely coincides with the ASCII standard,
making UTF-8 completely backward compatible with ASCII text. All
ASCII text can be read as UTF-8, without modification. Likewise, text
that only contains characters that are also available in ASCII can be
encoded using UTF-8 and still be accessed by applications that only
understand ASCII.

314

CHAPTER 7 STRINGS

For these reasons, among others, UTF-8 has emerged as a very common encoding
(since 2008) for applications that need to support multiple languages or where the
language of the application isn’t known at the time it’s being designed. That may
seem like an odd situation to be in, but it comes up fairly frequently when looking at
frameworks, libraries, and other large-scale applications. They could be deployed in
any environment on the planet, so they should do as much as possible to support other
languages. Chapter 8 will describe, in more detail, the steps an application can take to
support multiple languages.

The consequences of using the wrong encoding or decoding can vary depending on
the needs of the application, the encoding used, and the text passed in. For example,
ASCII text can be decoded using UTF-8 without a problem, yielding a perfectly valid
Unicode string. Reversing that process is not always as forgiving, because a Unicode
string can contain code points outside the valid ASCII range:

>>> ascii = 'This is a test'.encode('ascii')

>>> ascii

b'This is a test'

>>> ascii.decode('utf-8")

'This is a test'

>>> unicode = 'This is a test: \u20ac' # A manually encoded Euro symbol
>>> unicode.encode('utf-8")

b'This is a test: \xe2\x82\xac'

>>> unicode.encode('ascii')

Traceback (most recent call last):

UnicodeEncodeError: 'ascii' codec can't encode character '\u20ac' in
position 16
: ordinal not in range(128)

At other times text can seem to be encoded or decoded properly, only to have the
resulting text be gibberish. Typically, however, problems like that arise when upgrading
an application to include proper Unicode support, but existing data wasn’t encoded
consistently. Building an application for Unicode from the ground up doesn’t completely
eliminate the possibility of these problems, but it greatly helps avoid them.

315

CHAPTER 7 STRINGS

Simple Substitution

There are different ways to produce a string with information that’s only available at
runtime. Perhaps the most obvious is to concatenate multiple strings together using
the + operator, but that only works if all the values are strings. Python won’t implicitly
convert other values to strings to be concatenated, so you'd have to convert them
explicitly, by first passing them into the st () function, for example.

As an alternative, Python strings also support a way to inject objects into a string.
This uses placeholders inside a string to denote where objects should go, along with
a collection of objects that should fill them in. This is called string substitution, and is
performed using the % operator, using a custom __mod__ () method, as described in
Chapter 5.

Placeholders consist of a percent sign and a conversion format, optionally with
some modifiers between them to specify how the conversion should take place. This
scheme allows the string to specify how objects should get converted, rather than having
to call separate function explicitly. The most common of these formats is %s, which is
equivalent to using the str () function directly:

>>> 'This object is %s' % 1

'This object is 1'

>>> 'This object is %s' % object()

'This object is <object object at ox...>'

Because this is equivalent to calling str () directly, the value placed into the
string is the result of calling the object’s __str () method. Similarly, if you use the
%1 placeholder inside the substitution string, Python will call the object’s __repr ()
method instead. This can be useful for logging arguments to a function, for example. Try
the next example as a script:

7

1

def func(*args):
for i, arg in enumerate(args):
print('Argument %s: %r' % (i, arg))

316

CHAPTER 7 STRINGS

func('example', {}, [1, 2, 3], object())
Your output will look like the following:
Argument 0: 'example'

Argument 1: {}

Argument 2: [1, 2, 3]

Argument 3: <object object at Ox...>

This example also illustrates how multiple values can be placed in the string at once,
by wrapping them in a tuple. They’re matched up with their counterparts in the string
according to their position, so the first object goes in the first placeholder and so on.
Unfortunately, this feature can also be a stumbling block at times, if you're not careful.
The most common error occurs when attempting to inject a tuple into the substitution
string:

>>> def log(*args):
print('Logging arguments: %r' % args)

>>> log('test")

"Logging arguments: 'test'"

>>> log('test', 'ing')

Traceback (most recent call last):

TypeError: not all arguments converted during string formatting

What'’s going on here is that Python makes no distinction between a tuple that was
written as such in the source code and one that was merely passed from somewhere
else. Therefore, string substitution has no way of knowing what your intention is. In this
example, the substitution works fine as long as only one argument is passed in because
there’s exactly one placeholder in the string. As soon as you pass in more than one
argument, it breaks.

In order to resolve this, you'll need to build a one-item tuple to contain the tuple you
want to place in the string. This way the string substitution always gets a single tuple,
which contains one tuple to be placed in a single placeholder:

317

CHAPTER 7 STRINGS

>>> def log(*args):
print('Logging arguments: %r' % (args,))

>>> log('test")

"Logging arguments: ('test',)"

>>> log('test', 'ing')

"Logging arguments: ('test', 'ing')"

With the tuple situation sorted out, it’s worth noting that objects can be inserted by
keyword as well. Doing so requires the substitution string to contain the keywords in
parentheses, immediately following the percent sign. Then, to pass in values to inject,
simply pass in a dictionary of objects, rather than a tuple:

>>> def log(*args):
for i, arg in enumerate(args):
print('Argument %(i)s: %(arg)r' % {'i': i, 'arg': arg})

>>> log('test")
Argument 0: 'test'

>>> log('test', 'ing')
Argument 0: 'test'

Argument 1: "ing

In addition to being able to more easily rearrange placeholders in the substitution
string, this feature allows you to include just those values that are important. If you have
a dictionary with more values than you need in the string, you can reference only the
ones you need. Python will simply ignore any values that aren’t mentioned by name in
the string. This is in contrast to the positional option, where supplying more values than
you’'ve marked in the string will result in a TypeError.

318

CHAPTER 7 STRINGS

Formatting

For a more powerful alternative to the simple string substitution described in the
previous section, Python also includes a robust formatting system for strings. Rather
than relying on a less obvious operator, string formatting uses an explicit format ()
method on strings. In addition, the syntax used for the formatting string is considerably
different from what was used in simple substitution previously.

Instead of using a percent sign and a format code, format () expects its placeholders
to be surrounded by curly braces. What goes inside those braces depends on how you
plan to pass in the values and how they should be formatted. The first portion of the
placeholder determines whether it should look for a positional argument or a keyword
argument. For positional arguments the content is a number, indicating the index of the
value to work with, while for keyword arguments, you supply the key that references the
appropriate value:

>>> 'This is argument 0: {0}'.format('test')

'This is argument 0: test'

>>> 'This is argument key: {key}'.format(key='value")
'This is argument key: value'

This may look a lot like the older substitution technique, but it has one major
advantage already. Because formatting is initiated with a method call, rather than an
operator, you can specify both positional and keyword arguments together. That way you
can mix and match indexes and keys in the format string if necessary, referencing them
in any order.

As an added bonus, that also means that not all positional arguments need to be
referenced in the string in order to work properly. If you supply more than you need,
format () will just ignore anything it doesn’t have a placeholder for. This makes it much
easier to pass a format string into an application that will call format () on it later, with
arguments that may come from another source. One such example is a customizable
validation function that accepts an error message during customization:

319

CHAPTER 7 STRINGS

>>> def exact match(expected, error):
def validator(value):
if value != expected:
raise ValueError(error.format(value, expected))
return validator

>>> validate zero = exact match(o, 'Expected {1}, got {0}")
>>> validate zero(0)

>>> validate zero(1)

Traceback (most recent call last):

ValueError: Expected 0, got 1

>>> validate zero = exact match(o, '{o} != {1}")
>>> validate zero(1)

Traceback (most recent call last):

ValueError: 1 != 0

>>> validate zero = exact match(o, '{0} is not the right value')
>>> validate zero(1)

Traceback (most recent call last):

ValueError: 1 is not the right value

As you can see, this feature lets the validator function call format () using all
of the information it has available at the time, leaving it up to the format string to
determine how to lay it out. With the other string substitution, you'd be forced to use
keywords to achieve the same effect because positional arguments just didn’t work
the same way.

320

CHAPTER 7 STRINGS

Looking Up Values Within Objects

In addition to being able to reference the objects being passed in, the format string syntax
allows you to refer to portions of those objects specifically. The syntax for this looks much
like it would in regular Python code. To reference an attribute, separate its name from the
object reference with a period. To use an indexed or keyword value, supply the index or
keyword inside square brackets; just don’t use quotes around the keyword:

>>> import datetime
>>> def format time(time):
return '{0.minute} past {0.hour}'.format(time)

>>> format_time(datetime.time(8, 10))
'10 past 8'

>>> '{0[spam]}'.format({"'spam': 'eggs'})
'eggs’

Distinguishing Types of Strings

You may remember that simple substitution required you to specify either %s or %1 to
indicate whetherthe _str () method orthe _repr () method should be used to
convert an object to a string, while the examples given thus far haven’t included such a
hint. By default, format () willuse _str (), but that behavior can still be controlled as
part of the format string. Immediately following the object reference, simply include an
exclamation point, followed by either s or r:

>>> validate test = exact match('test', 'Expected {1!r}, got {o!r}")
>>> validate test('invalid')
Traceback (most recent call last):

ValueError: Expected 'test', got 'invalid'

321

CHAPTER 7 STRINGS

Standard Format Specification

Where this new string formatting really differs from the previous substitution feature is in
the amount of flexibility available to format the output of objects. After the field reference
and the string type mentioned in previous sections, you can include a colon, followed by
a string that controls the formatting of the referenced object. There’s a standard syntax
for this format specification, which is generally applicable to most objects.

The first option controls the alignment of the output string, which is used when
you need to specify a minimum number of characters to output. Supplying a left angle
bracket (<) produces a left-aligned value; a right angle bracket (>) aligns to the right; and
a caret (") centers the value. The total width can be specified as a number afterward:

>>> import os.path

>>> '{0:>20}{1}".format(*os.path.splitext('contents.txt"))

' contents.txt’

>>> for filename in ['contents.txt', 'chapter.txt', 'index.txt']:
print('{0:<10}{1}".format(*os.path.splitext(filename)))

contents .txt
chapter .txt
index Jtxt

Notice here that the default behavior of the length specification is to pad the output
with spaces to reach the necessary length. That, too, can be controlled by inserting
a different character before the alignment specifier. For example, some plain-text
document formats expect headings to be centered within a length of equal signs or
hyphens. This is easy to accomplish using string formatting:

>>> def heading(text):
return '{0:="40}".format(text)

>>> heading('Standard Format Specification')

322

CHAPTER 7 STRINGS

>>> heading('This is a longer heading, beyond 40 characters')
'This is a longer heading, beyond 40 characters'

The second call here demonstrates an important property of the length format; if the
argument string is longer than the length specified, format () will lengthen the output to
match, rather than truncating the text. That creates a bit of a problem with the heading
example, however, because if the input was too long, the output doesn’t contain any of
the padding characters at all. This can be fixed by explicitly adding one character each
at the beginning and end of the string and reducing the placeholder’s length by two to
compensate:

>>> def heading(text):
return '={0:="38}=".format(text)

>>> heading('Standard Format Specification')

>>> heading('This is a longer heading, beyond 40 characters')
'=This is a longer heading, beyond 40 characters='

Now the heading will always be at least 40 characters wide but also always have at
least one equals sign on each side of the text, even if it runs long. Unfortunately, doing so
now requires writing the equal sign three times in the format string, which becomes a bit
of a maintenance hassle once we consider that sometimes the padding character will be
a hyphen.

Solving one part of this problem is simple: because we’re explicitly numbering the
placeholders, we can pass in the padding character as an argument and just reference
that argument twice in the format string; once at the beginning and once at the end.
That alone doesn’t really solve the problem, however, because it leaves the core problem
untouched: how to replace just part of the argument reference for the text.

To solve that problem, the format specification also allows argument references to
be nested. Inside the placeholder for the text portion, we can add another placeholder
at the position reserved for the padding character; Python will evaluate that one first,
before trying to evaluate the other. While we’'re at it, this also allows us to control how
many characters the output will fill up:

323

CHAPTER 7 STRINGS

>>> def heading(text, padding='=", width=40):
return '{1}{o:{2}"{2}}{1}".format(text, padding, width - 2)

>>> heading('Standard Format Specification')

>>> heading('This is a longer heading, beyond 40 characters')
'=This is a longer heading, beyond 40 characters='
>>> heading('Standard Format Specification', padding='-', width=60)

Example: Plain Text Table of Contents

Although there are many forms of documentation, plain text is perhaps the most
common, as it doesn’t require any additional software to view. Navigating large chunks
of documentation can be difficult, however, because of the lack of links or page numbers
for a table of contents. Line numbers could be used instead of page numbers, but a
properly formatted table of contents can still be tedious to maintain.

Consider a typical table of contents, in which the title of a section is left-aligned and
the page or line number is right-aligned, and the two are joined by a line of periods to
help guide the eye from one to the other. Adding or removing lines from such a format is
simple, but every time you change the name or location of a section you not only have to
change the relevant information; you also need to update the line of periods in-between,
which is less than ideal.

String formatting can come in handy here because you can specify both alignment
and padding options for multiple values within a string. With this, you can set up a
simple script that formats the table of contents for you automatically. The key to doing
this, however, is to realize what you're working with.

On the surface, it seems like the goal is just as mentioned: to left-align the section
title, right-align the line number, and place a line of periods in between. Unfortunately,
there’s no option to do exactly that, so we'll need to look at it a bit differently. By having
each part of the string be responsible for part of the padding, it’s fairly easy to achieve the
desired effect:

324

CHAPTER 7 STRINGS

>>> '{0:.<50}".format('Example")

o 1111 1
>>> "{0:.<50}".format('Longer Example")

"Longer Example....coeiiiiiiiiiiiiiiiiiiiiiiiieenn. '
>>> '{0:.>10}"'.format(20)

RPN 20"

>>> '{0:.>10}".format(1138)

P 1138’

With these two parts in place, they just need to be combined in order to create a
full line in the table of contents. Many plain text documents are limited to 80 characters
in a single line, so we can expand it a bit to give some breathing room for longer titles.
In addition, 10 digits is a bit much to expect for line numbers even in extremely long
documents, so that can be reduced in order to yield more space for the titles as well:

>>> def contents_line(title, line number=1):
return '{0:.<70}{1:.>5}"'.format(title, line number)

>>> contents line('Installation', 20)

B0 o - o 20"
>>> contents line('Usage', 112)
L0 ST 112

Calling this function one line at a time isn’t a realistic solution in the long run,
however, so we'll create a new function that can accept a more useful data structure to
work with. It doesn’t need to be complicated, so we’ll just use a sequence of two-tuples,
each consisting of a section title and its corresponding line number:

>>> contents = (('Installation', 20), ('Usage', 112))

325

CHAPTER 7 STRINGS

>>> def format_contents(contents):
for title, line number in contents:
yield '{0:.<70}{1:.>5}".format(title, line number)

>>> for line in format contents(contents):
print(line)

Custom Format Specification

The true strength of the new formatting system, however, is that format () isn’t actually
in control of the formatting syntax described in the previous section. Like many of the
features described in Chapter 4, it instead delegates that control to a method on the
objects passed in as arguments.

This method, _ format (), accepts one argument, which is the format specification
that was written into the format string where the object is being placed. It doesn’t get
the entire bracketed expression, however, just the bit after the colon. This is true for all
objects, as you can see by calling it directly on a brand-new instance of object. As of
Python 3.3 and higher the format for this changed, so make sure you are using Python
3.3 or higher before trying the next example:

>>> object(). format (")
'=====<object object at 0x0209F158>======'

Because of this, the standard format specification options described in the previous
section aren’t the only way to do things. If you have a custom need, you can override
that behavior by replacing that method on the class you're working with. You can either
extend the existing behavior or write a completely new one.

For example, you could have a class to represent a verb, which can have a present or
a past tense. This Verb class could be instantiated with a word to use for each tense, and
then be used in expressions to form complete sentences:

326

CHAPTER 7 STRINGS

>>> class Verb:
def _init_ (self, present, past=None):
self.present = present
self.past = past
def _ format (self, tense):
if tense == 'past':
return self.past
else:
return self.present

>>> format = Verb('format', past='formatted")

>>> message = 'You can {O:present} strings with {0:past} objects.'
>>> message.format(format)

"You can format strings with formatted objects.'

>>> save = Verb('save', past='saved')

>>> message.format(save)

'You can save strings with saved objects.'

In this example there’s no way for the placeholder string to know how to format a past
tense verb, so it delegates that responsibility to the verb passed in. This way, the string can
be written once and used many times with different verbs, without skipping a beat.

Exciting Python Extensions
Feedparser

RSS feeds (Rich Site Summary) are published feeds on information such as blogs, news,
and media. Also known as feeds, web feeds, or channels, they could include summarized
information or headlines. Suffice to say they are a first step in keeping up-to-date in an
information-overloaded world. The Python feedparser library handles formats including
Atom, RDE and RSS. From what we have already learned, accessing this data will be
handy, and if used in conjunction with Beautiful Soup or other libraries, can yield much

information.

327

CHAPTER 7 STRINGS

How to Install

Use pip to install the libraries:
pip install feedparser (Enter)

Make sure you are at an escalated Windows command prompt. Linux and Mac will
be similar. With no errors during the install, you are now set to use Feedparser.

How to Use

For this example we will harvest data from the “Anytime Fitness blog.” The sample code
will extract the title, subtitle, number of RSS entries, and their names. Of course you
could do more, and you could just write the data to a file for later use by another library
to extract key data. Try it out to see how easy it is:

7

1

#feedparser example

import feedparser
main site is: http://blog.anytimefitness.com/
c = feedparser.parse('http://feeds.feedburner.com/anytimefitnessofficial")
#all elements of the channel are now in container c
#print the title and subtitle and list # of elements of the feed
print (c['feed']['title'])
print (c['feed']['subtitle'])
print ("There are this many entries: ", len(c['entries']))
print()
for item in c['entries']:
title = item.title
print (title)

try others such as item.summary, item.description, item.link, etc.
write the data to a file for use with BeautifulSoup, etc.

In this example cis a container of named entries such as title, subtitle, and so on.
Also, this container has an integer number of times in it (len).

328

CHAPTER 7 STRINGS

Taking It With You

Because strings are so common throughout all kinds of programming, you'll find
yourself with a wide range of needs. The features shown in this chapter will help you
make better use of your strings, but the proper combination of techniques is something
that can’t be written for you. As you go forward with your code, you'll need to keep an
open mind about which techniques to use so that you can choose what'’s best for your
needs.

So far, these chapters have focused on how to use various aspects of Python to
perform complex and useful tasks so that your applications can be that much more
powerful. The next chapter will show you how to verify whether those tasks are being
performed properly.

329

CHAPTER 8

Documentation

Documentation is arguably the most difficult part of any project. Code tends to come
fairly easy to programmers, but documentation requires a different set of skills because
the audience is strictly human. The magnitude of the differences can vary greatly
between projects and audiences. Sometimes all that’s necessary is some example code,
whereas other topics can fill entire books and still have plenty left to cover.

The language of documentation is very different from that of code, so it can
be difficult to excel at both. This causes many programmers to take the path of
least resistance, opting for tools that automatically generate some minimal form of
documentation from the code itself, so that the extra work is kept to a minimum.
Although that can seem sufficient, such tools can only do so much because they're
limited by what the code alone can tell them. Javadoc for JAVA and Epydoc for Python
are examples of such tools.

This chapter will show the tools available to help describe your code and its features
for human understanding. There are several options available, some of which go
alongside the code itself, while others accompany it on the outside. These can be used
individually or in combination to form a full set of documentation for any project. How
much of each is necessary will differ based on the needs of each application, but each
has its place.

Each section in this chapter will highlight how to document your code with the
available tools, along with the benefits and drawbacks of each approach. The most
important thing to remember about documentation, however, is that it’s all about
presenting what people need to know about your application and how to use it. You
must always consider how your code works and what your users will need to know to
interact with it. Only then can you pick the approaches that are best for your needs.

331
© J. Burton Browning and Marty Alchin 2019

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_8

CHAPTER 8 DOCUMENTATION

Proper Naming

The simplest form of documentation is to properly name the various aspects of your
code. With very few exceptions, every single class, function, and variable is given a name
when it’s defined. Because these names are already required, all it takes is a little extra
thought to make sure they’re accurate and easy to understand. To illustrate how valuable
this can be, take a look at a function signature with vague, generic names and see if you
can guess what it does:

Oé

def action(vari, var2):

Given some code inside the body of the function, you might be able to get a good
idea of its purpose, but the signature itself does nothing to help. In fact, the only
reason the code in the body would be more helpful is that it would typically use more
standardized features available from elsewhere. For instance, loops and slicing are easily
recognizable, as are methods from commonly used objects, such as a string’s format ()
method. These are just clues to help make an educated guess, however; the naming
should make it obvious:

Oé

def find words(text, word):

Just picking some more descriptive names makes the purpose of the function and its
arguments much clearer. As a rule of thumb, classes and variables should be named as
singular nouns, such as Book, Person, Restaurant, index, and first_name. Functions,
by contrast, should be given verbs as names, such as find(), insert(), and process_
user().

PEP 8,! also included as an appendix in this book, offers some more specific
guidelines for naming various types of objects. See its “Naming Conventions” section
for details. Once you get inside a block of code things aren’t always as easy to follow, so
comments can help clarify.

!See “PEP 8: Style Guide for Python Code,” http://www.python.org/dev/peps/pep-0008.

332

http://www.python.org/dev/peps/pep-0008

CHAPTER 8 DOCUMENTATION

Comments

In classes and functions that are very long or complex, the name alone is often not
sufficient to convey all the things the code is doing. Variable names can certainly help,
but that usually only explains what the code does; it’s typically more useful to explain
why the code does what it does. Both of these can be addressed by placing comments in
your code.

Comments are one of the most basic forms of documentation a programmer can use,
yet they’re also among the most powerful. Comments are placed directly alongside the
rest of your code, where it’s easiest to write and is often most helpful. Comments offer a
convenient way to make small notes where they’'re most relevant, which can help make
complex code easier to understand later on.

Python’s comments are separated from code by the # symbol. All of the text that
follows that symbol is treated as a comment, all the way to the end of the line. This allows
comments to either take up a whole line or attach to the end of a line of code. Unlike
some other languages, Python doesn’t have any true syntax for multiline comments
unless you use a docstring triple quoted string, as tweeted by Guido van Rossum in 2011.
(A more detailed discussion of docstrings follows shortly, so hold on for more details.)
Formally for strings, each line of a longer comment must be preceded by a # symbol.
Note both methods here:

7

1

def foo(): #example of a docstring comment
"""alkaj
laksjf
alkdfj"""
x=1
print (x) # shows value for x
foo() # does nothing

333

CHAPTER 8 DOCUMENTATION

Oé

This function doesn't really do anything useful. It's only here to show
how multi-line comments work in Python. Notice how each line has to have
a separate # to indicate that it's a comment.

def example():
pass

Like naming conventions, the Python Style Guide has a lot to say on how comments
should be formatted. See the “Comments” heading of PEP 8 for details.

Perhaps the biggest limitation of comments is that they’re only available when
viewing the source file directly. Because comments don’t have any impact on the
execution of the code, there are no introspection tools available to read them at runtime.
For that, we turn to docstrings.

Docstrings

In the previous section, as well as in Chapters 3 and 4, we referred briefly to docstrings
and how they’re used in code. A docstring is placed at the beginning of a module,
function, or class; rather than assigning it to a variable, however, you can just leave the
string as its own statement. As long as it’s the first thing in the code block, Python will
interpret it as a docstring:

Oé

def find_words(text, word):
Locate all instances of a word in a given piece of text.
Return a list of indexes where the words were found.
If no instances of the word were found, return an empty list.

text -- a block of text to search
word -- an individual word to search for

334

CHAPTER 8 DOCUMENTATION

This information could be presented in a set of comments, but there’s one major
advantage of using docstrings instead: Python makes them available in code. In keeping
with the spirit of transparency, docstrings can be accessed at runtime through the
__doc__ attribute of modules, classes, and functions. Perhaps the most obvious benefit
this brings is that the various automatic documentation generators get a lot more
information to work with. Better yet, that information is written specifically for humans,
which can greatly improve the quality of the final output.

Exactly how it’s written, however, is entirely up to you. Aside from where docstrings
can be placed in your code, Python makes no assumptions or requirements about the
format or structure of their contents. PEP 257,% also provided as an appendix, provides a
number of recommendations, but the final decision is left up to you. The goal is to help
people understand how to use your code, however, so there are a few particulars that
everyone should follow.

Describe What the Function Does

As simple as it sounds, it can sometimes be difficult to step back from how the code
works and simply describe what it does. For most functions you should be able to
describe it in one sentence, preferably on a single line. Common examples are “add an
item to the collection” and “cache an object for later use.” The details of how the code
achieves that goal are best left out of the docstring.

Explain the Arguments

Argument names are limited to one or two words. This works well as a simple
reminder of their purpose, but more information is usually needed to understand
their purposes in the first place. This is particularly important for optional
arguments, which often help control how the function works. Even if the argument
names are self-explanatory, including a brief description helps maintain consistency
across your documentation.

2See “PEP 257: Docstring Conventions,” http://www.python.org/dev/peps/pep-0257.

335

http://www.python.org/dev/peps/pep-0257

CHAPTER 8 DOCUMENTATION

Don’t Forget the Return Value

Any time a function returns a value, the nature of that value should be documented.

It should include the return value’s type as well as any relevant details about how the
object will be formed. For example, find words () returns a list, but that list contains
indexes where the words were found, rather than returning the words themselves, so that
behavior is documented.

Also, make sure that if the return value differs slightly based on what input was given
or what other conditions the function works with, the different forms of return values are
given. For example, a function to retrieve an object by name might be given a name that
doesn’t match any existing objects. In that case, it’s important to document whether the
function will create a new object or raise an exception.

Include Any Expected Exceptions

Every piece of code contains opportunities for exceptions to be raised. Sometimes those
exceptions are actually part of the code’s expected functionality, such as when looking
for an object by a name that doesn’t match anything. In these cases, the exceptions
should be documented right alongside the return values. These explicit exceptions are
frequently caught by the code that calls your function, so it’s necessary to indicate which
ones will be raised, as well as the circumstances under which they’ll be raised.

Documentation Qutside the Code

One thing you'll notice about the recommendations in the previous section is that they
aren’t specific to docstrings. You should also document your application outside of the
code, and that documentation needs to include all the same details. What makes this
external documentation different is how the information is presented, and it will also
include additional information not covered inside the code itself.

This general class of documentation can cover a wide variety of topics, many of
which wouldn’t make any sense inside the code. After all, someone who'’s reading your
code is likely to have something already in mind to look for. They’ll be looking for more
information about a specific module, class, or function that they already know how to find.
Other users will have a broader range of needs, from installation and tutorials to more
topical references that show how to combine multiple features toward a certain goal.

336

CHAPTER 8 DOCUMENTATION

Installation and Configuration

Before anyone can use your software, they will need to obtain it and get it working. This
almost goes without saying, but not quite. There are a number of issues that users need
to tackle before they can use your code, and you need to make sure that those issues are
addressed as thoroughly as possible.

Obtaining the code is the first step. However you choose to distribute your code,
you’ll need to make sure your users know how to get it. Sometimes it will be a simple
one-line command, but in other cases it may require first obtaining other applications
such as version control software to get the latest code without waiting for a release.
Chapter 10 will describe some of the more common ways to distribute your code, along
with what your choices will mean for the users who need to retrieve it.

Tutorials

After getting an application, many users want to immediately get an idea of how to use it.
Everybody appreciates immediate gratification, so you can use their first experience with
your software as an opportunity to accomplish something quickly. Tutorials are a great
way to walk your users through the most common features of your application.

A tutorial can often showcase the greatest strengths of an application, so it can
also be your first chance to convince someone to try it out in the first place. This is
particularly true with libraries and frameworks, which are designed to be integrated
into other code rather than be used independently. If your audience can get a quick feel
for how your approach can help them work with their own code, it will make a lasting

impression.

Reference Documents

Once your users have a good idea of how your application can help them and have
gotten a bit of experience under their belts, their needs change again. At this point they
no longer need to be convinced to use your software, and they're ready to move beyond
learning how to use it. Now they need reminders of how all the features work, how those
features work together, and how they can integrate with the tasks they’re really trying to

perform.

337

CHAPTER 8 DOCUMENTATION

Different readers will look for different forms of reference documentation. Some may
prefer method-level arguments and return values, like those contained in docstrings,
whereas others may get more out of a broader overview, written in plain language.

Some readers, like you, even enjoy a physical book, easy to pick up and flip through at a
moment’s notice.

With all of these different preferences, it’s unlikely that you'll be able to write
reference documentation in a way that will suit all tastes. As the author, it’s your job to
determine what type of documentation best suits your application. Look to your own
preferences for the type of documentation you like to read most, as that’s likely to be
in the same spirit of the software you create. Just write the way you’d like to read. The
users who like your documentation are likely to be the very same ones who will like your
software.

Note One important thing to remember is that you may not need reference
documentation at all. For very simple applications, a tutorial alone may be enough
to illustrate and explain all the available features.

Documentation Utilities

Some of the most challenging aspects of documentation have nothing to do with your
application or how you plan to write about it. Beyond those concerns, tasks such as
formatting, referencing, and presenting documentation can consume quite a bit of time
and energy. The more documents you need to write, the harder these tasks become.
The third-party docutils package® provides a comprehensive set of tools to make this
process more manageable.

The crown jewel of the docutils package is reStructuredText, more often referred
to as ReST or simply RST. reStructuredText is a markup language designed for writing
technical documents, taking what its developers call a What You See Is What You Mean
(WYSIWYM) approach. This is in contrast with the more traditional What You See Is
What You Get (WYSIWYG), where editing based on the visual layout and formatting of
the document.

3See “Docutils: Documentation Utilities,” http://docutils.sourceforge.net.

338

http://docutils.sourceforge.net

CHAPTER 8 DOCUMENTATION

In WYSIWYM, the goal is to indicate the structure and intentions of the document,
without regard to exactly how it will be presented. Much like HTML, separating
content from its presentation allows you to focus on what'’s really important about your
documentation and leave the details of visual style for later. reStructuredText uses a
more text-friendly approach than HTML, however, so that even unformatted documents
are easily readable.

READABILITY COUNTS

In keeping with Python philosophy, reStructuredText focuses on readability at all times, even
before the document gets formatted into its final format. The structure of a document and the
instructions are designed to be understandable and easy to remember and format.

Formatting

The most basic unit of any type of document is the paragraph, so reStructuredText makes
them the easiest to work with. All you need to do is write a block of text with each line of
text starting immediately below the one before it. The number of lines and the length of
each line are irrelevant, as long as there are no completely blank lines between any lines
of text in a given paragraph.

Blank lines are reserved for separating paragraphs from each other and from other
types of content. This forms a simple way to distinguish one paragraph from another.
You can use multiple blank lines if you'd like, but only one is required. Indenting a
paragraph indicates a quoted passage from another document, which will typically also
be indented in the output. To illustrate, here are a couple of simple paragraphs written
for reStructuredText:

The reStructuredText format is very simple when it comes down to it. It's all
about readability and flexibility. Common needs, such as paragraphs and inline
formatting, are simple to write, read and maintain. More complex features are
possible, and they use a simple, standardized syntax.

After all, the Zen of Python says:

Simple is better than complex.
Complex is better than complicated.

339

CHAPTER 8 DOCUMENTATION

Most application documentation will also include blocks of code along with regular
text. This is particularly useful for tutorials, in which a block of code can be built up in
pieces, with explanations in between. Distinguishing between a paragraph and a block
of code is based on a double colon at the end of a normal paragraph, followed by an
indented block of code. This will end the first paragraph with a colon and format the
indented text as code:

The reStructuredText format is very simple when it comes down to it. It's all
about readability and flexibility. Common needs, such as paragraphs and inline
formatting, are simple to write, read and maintain. More complex features are
possible, and they use a simple, standardized syntax.

After all, the Zen of Python says::

Simple is better than complex.
Complex is better than complicated.

Note You'll notice that the example shown here isn’t actually code. The
double-colon format technically distinguishes a block of text as preformatted.

This prevents the reStructuredText parser from doing any additional processing

on that block. Therefore, even though it’s most useful for including code in your
documentation, it can be used for anything that already has its own formatting that
should remain intact.

Inside an individual paragraph, you can also format text in all the ways you'd expect.
Rather than directly marking things for italics or bold, this formatting requires the use
of additional punctuation before and after the text you'd like to format. Surrounding
aword or phrase with asterisks marks it as emphasized, which will typically render in
italics. Using an extra pair of asterisks beyond that will indicate strong emphasis, often
rendering as bold.

Links

When working with large amounts of documentation, one of the most important features
you can offer is linking multiple documents together. The reStructuredText format offers
several different ways to link to additional information, whether footnotes, other sections

340

CHAPTER 8 DOCUMENTATION

in the same document, or completely different documents. The simplest form of link you
can include is a URL, which will be converted into a link when rendering the document.
Other types of links require a bit more formatting.

Links take the form of an underscore following the text that should be used as the
link. The target of the link is specified differently, depending on where that target is
located. In the most common case, in which a document links to some external web
page, the link target is placed in what might appear to be its own paragraph, with a
structure that tells the parser that it’s a link instead of an actual paragraph:

Oé

This paragraph shows the basics of how a link is formed in reStructuredText.
You can find additional information in the official documentation .

. _documentation: http://docutils.sf.net/docs/

This will cause the word “documentation” to be used as the link itself, referencing
the target given on the bottom line. You'll usually need to use more than one word for
the text of a link, but this doesn’t provide a way to specify how much text should be
included. To do that, you'll need to enclose the text in backticks (*). The underscore then
goes outside the enclosure, immediately following the second backtick:

Oé

This paragraph shows the basics of how a link is formed in reStructuredText.
You can find additional information in the “official documentation™ .

. _official documentation: http://docutils.sf.net/docs/

In this case, the link target is specified immediately below the paragraph where
the link should be placed. This particular case can be simplified a bit by creating an
anonymous link, which no longer requires rewriting the link text underneath. In order
to distinguish it from a regular link, you'll need to use two underscores after the link text
instead of just one. Then, the link target is specified with only two underscores at the
beginning of the line:

341

CHAPTER 8 DOCUMENTATION

Oé

This paragraph shows the basics of how a link is formed in reStructuredText.
You can find additional information in the “official documentation™

__ http://docutils.sf.net/docs/

READABILITY COUNTS

There’s also another way to specify external links that’s even more space-efficient: place the
link target directly alongside the link text, inside the paragraph itself. Links formatted this way
still use backticks to set the link apart from the rest of the text, but the link target goes inside
the backticks as well, after being enclosed in angle brackets. To distinguish it as a link, two
underscores are still used, so it is parsed as an anonymous link—for example, ~Pro Python
<http://propython.com/>"

The problem with this approach is that having the URL inside the paragraph can be very
distracting when reading the source code for the document, even though the target will be
hidden from view from the final output. Furthermore, named link targets can all be placed at
the end of the document, so they don’t even have to interrupt the flow from one paragraph to
another.

Rather than referencing external documents, you can also include footnotes to be
placed at the end of the same document or in an attached bibliography. Defining this
type of link works much like standard links except that the link text is set apart by square
brackets. Between the brackets, the text can either be just a number or a small piece of
text, which will be used to reference the related information elsewhere.

Then, at the end of the document, the referenced information can be included in a
format similar to named link targets. Rather than using an underscore to signify it, the
reference text from earlier in the document is enclosed in square brackets again. After
that, simply write the related text in the paragraph. This can be used for references to
traditional publications, such as books, as well as for minor additions to further clarify

the main text:

342

http://propython.com

CHAPTER 8 DOCUMENTATION

Oé

The reStructuredText format isn't part of Python itself, but it's popular enough
that even published books [1] reference it as an integral part of the Python
development process.

. [1] Alchin, Marty. *Pro Python*. Apress, 2010.

In addition to these options, docutils allows reStructuredText to be expanded to
provide other features. One application that provides some additional features is Sphinx.

Sphinx

The base features provided by reStructuredText are designed to work with individual
documents. Even though it’s easy to reference other documents, those references must
be explicitly included in each document. If you write a complex application that requires
multiple documents, each one will need to know the full structure of all the documents
in order to reference them.
Sphinx* is an application that attempts to address that problem by working with
the documents as a whole collection. In this way it's somewhat similar to other, more
popular automated systems such as Javadoc and Doxygen, but Sphinx is designed to
get its content from dedicated files rather than directly from the code itself. It can also
include content based on code, but the main goal is to write documentation on its own.
By managing references across documents more effectively, Sphinx can generate
an entire documentation package at once. This can be a web site full of linked HTML
documents or even a single PDF document that includes all the documents as individual
sections. In addition, Sphinx offers a variety of styling options, with many already
supplied by a growing community.

Exciting Python Extensions: NumPy

As noted on the main site for NumPy, it is “the fundamental package for scientific
computing with Python.” As such, it offers much power to a Python programmer.

*See “Sphinx: Python Documentation Generator,” http://sphinx.pocoo.org.

343

http://sphinx.pocoo.org

CHAPTER 8 DOCUMENTATION

NumPy is the most fundamental package for scientific computing and data
manipulation with Python. If you need to work in Python with standard arrays, than
Numpy is the ticket. Typically, it will be used in conjunction with SciPy, and is one of
the core packages in SciPy. One thing about the base Python implementation is that it
does not have standard array structures as other languages do. By “standard” we mean
arrays that hold like data (e.g., all integer, all character, etc.). So, to the rescue is NumPy.
However, it does much more. Let’s try a few of the interesting features in NumPy. First
you will need to install it.

Install NumPy

If using Windows, try this from an escalated command prompt type:
pip install numpy (enter)

It should respond that it installed correctly or that it was already installed.

Using NumPy

First, standard non-Python arrays are handy things. Python uses Lists, Dictionary’s, and
Tuples; they are powerful, yet sometimes an old-fashioned array is just the thing to solve
a problem. A NumPy array is just like one you might use in C++ or other languages in
that they contain the same type of data elements (each is an int, float, character, etc.). It
also cannot be changed with regard to size, unless you delete it and recreate a larger one.
Itis also interesting to note that a NumPy array is smaller in terms of memory usage than
the same structure stored as a list.

Python array-like structures and standard arrays each offer their own unique
benefits. So if you need a standard array, you can create them with NumPy with ease:

L

1

Try the following:

#NumPy create a 1 dimensional numeric array from a list
import numpy as mynp

my list = [1,2,3,4,5]

arrayl = mynp.array(my list)

344

CHAPTER 8 DOCUMENTATION

#Print array and its type
print (arrayi)
print(type(array1))

In the preceding example, each item in the list is treated as a numeric value.
However, if you change one value in the list to alphanumeric, the entire array becomes a
character array:

7

1

#NumPy create a 1 dimensional character array from a list
import numpy as mynp

my list = [1,2,3,'a",5]

arrayl = mynp.array(my list)

#Print array and its type
print (arrayi)
print(type(array1))

So in this conversion it would not work well if you were performing some math
manipulations on the values in the array, as in the next example:

7

1

#Add one to each value
import numpy as mynp

my list = [1,2,3,4,5]

arrayl = mynp.array(my list)

#Print array and its type
print (array1)
print('With one added two each: ")
for item in array1:
print (item + 1)

Since each was a numeric value in the array, we could add one to it and display the
result. If you wanted to specify the array type, as you would with another language such
as C++, you might do the following:

345

CHAPTER 8 DOCUMENTATION

7

#NumPy 1 dimensional array from a list as floating-point values
#and make it a float array

import numpy as mynp

my list = [1.1,2.1,3.1,4.1,5.1]

arrayl = mynp.array(my list, dtype='float')

#Print the array
print (array1)

You can also convert from one type to another with astype, as in arrayl.astype(‘int’)
or other valid data types such as bool, str, or float. Or, you could convert the array back to
a list with array1.tolist().

Working With NumPy Arrays

You can address an array in a similar fashion to other Python structures. In this next
example we will extract one element and find truth to a question, based on each element
in the array:

L

#NumPy create a 1 dimensional array from a list
#and make it a float array

import numpy as mynp

my list = [1.1,2.1,3.1,4.1,5.1]

arrayl = mynp.array(my list, dtype='float")

#Print the array

print (array1)

print("Print second element of array")
print (arrayi[1])

print("Print if element is > 2")

print (array1l > 2)

346

CHAPTER 8 DOCUMENTATION

Statistical Measures

NumPy has some statistical functions built in, such as the standards min, max, and
mean. With regard to random numbers (such as for random participant selection in a
study or cryptographic work), the random library built in to NumPy is very similar to the
enhanced features of C++’s random library. Use a numeric array to try it out:

L

1

#NumPy stats functions

import numpy as mynp

my list = [1,2,7,4,5]

arrayl = mynp.array(my list, dtype='int")

print ('Minimum:> ',arrayi.min())

print ('Max:> ',arrayl.max())

print ('Mean of all values:> ',arrayi.mean())

#if you want only pseudo-randoms set a seed value
#np.random.seed(100) # uncomment for pseudo-randoms

print('Random int between 1 and 100):> ',mynp.random.randint(0, 100))

Taking It With You

The tools shown here serve only as a base for the real work of documenting your
code. The real work of documentation requires taking a step back from the code itself
so that you can see your application the way your users and other developers would
see it. Keeping that in mind, it’s often useful to read documentation for other similar
applications. That will give you a good idea of what your users are used to seeing, the
types of questions they need answered, and how to distinguish your application as a
superior alternative to the existing options.

On the other end of the spectrum, you can also help your users by taking a very close
look at your code. Putting your code under the tightest scrutiny will allow you to write
tests. The next chapter will show how tests can verify that your application works the way
it should and that your documentation stays as accurate as possible.

347

CHAPTER 9

Testing

Writing an application is only part of the process; it’s also important to check that all of
the code works as it should. You can visually inspect the code, but it’s better to execute it
in a variety of situations that may arise in the real world to make sure it behaves properly.
This process is called unit testing, because the goal is to test the smallest available units
of execution.

Typically, the smallest unit is a function or method, many of which combine to form
a full application. By breaking it down into individual units, you can minimize how
much each test is responsible for. This way a failure of any particular unit doesn’t involve
hundreds of lines of code, so it’s easier to track down exactly what’s going wrong.

Testing each individual unit can be a lengthy process for large applications, given
how many scenarios you may need to take into account. Rather than try to get through
all of it manually, you can automate the process by letting your code do the heavy lifting.
Writing a test suite allows you to easily try all the different paths your code might take,
verifying that each behaves as it should.

Test-Driven Development

One of the more extreme examples of automated testing is the practice of test-driven
development, often referred to simply as TDD. As the name implies, this practice uses
automated testing to drive the development process. Whenever a new feature is written,
tests for that feature are written first—tests that will fail right away. Once the tests are in
place, you would write code to make sure those tests pass.

One value of this approach is that it encourages you to understand the desired
behavior more thoroughly before setting out to write the code. For example, a function
that processes text might have a number of common input strings, each with a desired
output. Writing the test first encourages you to think about the output string for each
available input string, without regard to how the string is processed internally. By shifting

349
© J. Burton Browning and Marty Alchin 2019

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_9

CHAPTER9 TESTING

the focus away from code at the outset, it’s easier to see the big picture. The benefit of
a focus on the interface (names, functions, method signatures, etc.) early is not to be
underrated, since changes here are harder than implementation changes later.

The more obvious advantage, however, is that it ensures that every piece of code
in an application has a set of tests associated with it. When code comes first, it’s all
too easy to run a few basic scenarios manually and then move on to coding the next
feature. Tests can get lost in the shuffle, even though they’re essential to the long-term
health of the project. Getting into the habit of writing tests first is a good way to make
sure they do get written.

Unfortunately, many developers find test-driven development far too strict for
practical work. As long as the tests get written as comprehensively as possible, however,
your code will reap the benefits. One of the easiest ways to do this is to write doctests.

Doctests

The topic of documentation was covered in Chapter 8, but one particular aspect of it can
be useful for testing. Because Python supports docstrings that can be processed by code
instead of just by people, the content within those strings can be used to perform basic
tests as well.

In order to play double duty alongside regular documentation, doctests must look
like documentation while still being something that can be parsed, executed, and
verified for correctness. One format fits that bill very conveniently, and it’s been in use
throughout this book. Doctests are formatted as interactive interpreter sessions, which
already contain both input and output in an easily identifiable format.

Formatting Code

Even though the overall format of a doctest is identical to the interpreter sessions shown
throughout this book, there are some specific details that are important to identify. Each
line of code to execute begins with three right-angle brackets (>>>) and a single space,
followed by the code itself:

>»>a =2

350

CHAPTER9 TESTING

Just like the interactive interpreter, any code that extends beyond one line is
indicated by new lines beginning with three periods (. . .) rather than brackets. You can
include as many of these as necessary to complete multiline structures, such as lists and

dictionaries, as well as function and class definitions:

Oé

»»> b = ('example',
'value')
>>> def test():
return b * a

All of the lines that start with periods like this are combined with the last line that
started with angle brackets, and they’re all evaluated together. That means you can
leave extra lines if necessary, anywhere in the structure or even after it. This is useful
for mimicking the output of an actual interpreter session, which requires a blank line to
indicate when indented structures, such as functions or classes, are completed:

Oé

»»> b = ('example',

"value')
>>> def test():
return b * a

Representing Output

With the code in place, we just need to verify that its output matches what is expected.
In keeping with the interpreter format, output is presented beneath one or more lines of
input code. The exact formatting of the output will depend on the code being executed,
but it’s the same as you'd see when typing the code into the interpreter directly:

351

CHAPTER9 TESTING

Oé

> a

2

>»> b

("example', 'value')

>>> test()

('example', 'value', 'example', 'value')

In these examples, the output string is equivalent to passing the return value from
the expression into the built-in repr () function. Therefore, strings will always be quoted,
and many specific types will have a different format than if you print them directly.
Testing the output of str() can be achieved simply by calling stx () in the line of code.
Alternatively, the print() function is also supported and works just as you'd expect:

Oé

»»> for value in test():
print(value)

example

value

example

value

In examples like this, all lines of the output are checked against what was actually
returned or printed by the code provided. This provides a very readable way to deal with
sequences, as shown here. For longer sequences, as well as situations in which output
is allowed to change from one run to another, output may also include three periods as
ellipses, indicating a place where additional content should be ignored:

Oé

»»> for value in test():
print(value)
example

value
352

CHAPTER9 TESTING

This form is particularly useful when testing exceptions: the interpreter output
includes file paths, which will nearly always change from one system to another, and
aren’t relevant to most tests. In these cases what'’s important to test is that the exception
is raised, that it’s the correct type, and that its value, if any, is correct:

Oé

»>> for value in test:
print(value)
Traceback (most recent call last):

TypeError: 'function' object is not iterable

As the output format here suggests, the doctest will verify the first and last lines of the
exception output, while ignoring the entire traceback in between. Because the traceback
details are typically irrelevant to the documentation as well, this format is also much
more readable.

Integrating With Documentation

Because the tests are meant to be built into documentation, there needs to be a way to
make sure that only the tests are executed. In order to distinguish between the two without
interrupting the flow of documentation, tests are set aside by nothing more than an extra
newline. You'd always have to use one newline to avoid them all running together on a
single line, so adding an extra simply leaves one blank line between the two:

7

This is an example of placing documentation alongside tests in a single string.
Additional documentation can be placed between snippets of code, and it won't
disturb the behavior or validity of the tests.

print("Hello, world!")

353

CHAPTER9 TESTING

Running Tests

The actual execution of doctests is provided by the doctest module. In the simplest
form, you can run a single function to test an entire module. This is useful when
writing a set of tests for a file that was already written, because you can easily test the
file individually after writing new tests. Simply import doctest and run its testmod()
function to test the module. Here’s an example module that contains a couple types of
doctests:

Oé

def times2(value):
Multiplies the provided value by two. Because input objects can override
the behavior of multiplication, the result can be different depending on
the type of object passed in.
>>> times2(5)
10
>>> times2('test")
"testtest’
>>> times2(('a', 1))
(‘a', 1, 'a', 1)

return value * 2

if _name__ == ' main_ ':
import doctest

doctest.testmod()

The docstring in times2() function includes tests, and because it’s available as
amodule-level function, the testmod() can see it and execute the tests. This simple
construct allows you to call the module directly from the command line and see the
results of all doctests in the module. For example, if this module was called times2.py,
you could invoke it from the command line as follows:

354

CHAPTER9 TESTING

Oé

$ python times2.py
$

By default, the output only contains errors and failures, so if all the tests pass, there
won't be any output at all. Failures are reported on individual tests, with each input/
output combination being considered a unique test. This provides fine-grained details
about the nature of the tests that were attempted and how they failed. If the final line in
the example doctest were to read just ('a’, 1) instead, here’s what would happen:

Oé

$ python times2.py
K3k ok ok ok ok ok >k >k ok ok k ok ok >k >k ok ok Sk sk sk >k >k ok ok ok Sk ok >k >k ok sk Sk Sk sk >k >k ok ok ok Sk sk >k >k ok sk ok sk sk >k >k ok ok ok ok sk ok >k ok ok ok sk ok >k >k ko k ok ok >k
File "...", line 11, in _main__ .times2
Failed example:
times2((a, '1"))
Expected:
(a, "17)
Got:
(a) '1': a, ll')
K3k 3k ok ok >k ok ok >k sk sk ok sk ok ok ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk Sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ksk sk sk sk sk k
1 items had failures:
1 of 3 in _main_ .times2
Test Failed 1 failures.

$

When working with more complicated applications and frameworks, however, the
simple input/output paradigm of doctests breaks down fairly quickly. In those situations,
there are two good tests in Python: Pytest and the unittest module. As a matter of
providing an alternative to doctests, we will examine unittest next.

355

CHAPTER9 TESTING

The unittest Module

Unlike doctests, which require your tests be formatted in a very specific way, unittest
offers much more flexibility by allowing you to write your tests in real Python code. As is
often the case, this extra power requires more control over how your tests are defined.
In the case of unit tests, this control is provided by way of an object-oriented API for
defining individual tests, test suites, and data fixtures for use with tests.

After importing the unittest module, the first place to start is the TestCase class,
which forms the base of most of the module’s features. You should also examine pytest.org,
but this class should be considered first. The unittest module doesn’t do much on its own,
but when subclassed, it offers a rich set of tools to help define and control your tests.
These tools are a combination of existing methods that you can use to perform individual
tests and new methods you can define to control how your tests work. It all starts by
creating a subclass of the TestCase class:

Oé

import unittest

class MultiplicationTestCase(unittest.TestCase):
pass

Setting Up

The starting point for most test cases is the setUp() method, which you can define

to perform some tasks at the start of all the tests that will be defined on the class.
Common setup tasks include defining static values that will be compared later, opening
connections to databases, opening files, and loading data to analyze.

This method takes no arguments and doesn’t return anything. If you need to control
its behavior with any parameters, you'll need to define those in a way that setUp() can
access without them being passed in as arguments. A common technique is to check os.
environ for specific values that affect the behavior of the tests. Another option is to have
customizable settings modules that can be imported in setUp (), which can then modify
the test behavior.

356

https://pytest.org

CHAPTER9 TESTING

Likewise, any values that setUp() defines for later use can’t be returned using the
standard value. Instead, they can be stored on the TestCase object itself, which will be
instantiated prior to running setUp(). The next section will show that individual tests
are defined as methods on that same object, so any attributes stored during setup will be
available for use by the tests when they execute:

Oé

import unittest

class MultiplicationTestCase(unittest.TestCase):
def setUp(self):
self.factor = 2

Note If you look at PEP 8 (Style Guide for Python Code), you’ll notice that

the name setUp() doesn’t follow standard Python naming conventions. The
capitalization style here is based on the Java testing framework, JUnit. Python’s
unit testing system was ported from Java, and some of its style carried over as
well. Be sure to examine this PEP, as it provides some very important information
about readability of code.

Writing Tests

With the setup in place, you can write some tests to verify whatever behavior you're
working with. Like setUp(), these are implemented as custom methods on your test case
class. Unlike setUp (), however, there’s no single specific method that must implement
all the tests. Instead, the test framework will look at your test case class for any methods
whose names begin with the word test.

For each method that it finds, the test framework executes setUp() before
executing the test method. This helps ensure that each method can rely on a consistent
environment regardless of how many methods there are, what they each do, or in what
order they're executed. Completely ensuring consistency requires one other step, but
that will be covered in the next section.

357

CHAPTER9 TESTING

When writing the body of a test method, the TestCase class offers some utility
methods to describe how your code is supposed to work. These are designed in such a
way that each represents a condition that must be true in order to continue. There are
several of these methods, with each covering a specific type of assertion. If the given
assertion passes, the test will continue to the next line of code; otherwise, the test halts
immediately and a failure message will be generated. Each method provides a default
message to use in case of a failure but also accepts an argument to customize that

message:

o assertTrue(expr, msg=None): This method tests that the given
expression evaluates to True. This is the simplest assertion available,
mirroring the built-in assert keyword. Using this method ties failures
into the test framework, however, so it should be used instead. If you
prefer the assert keyword, this method is also available as assert ().

o assertFalse(expr, msg=None): The inverse of assertTrue(), this
test will only pass if the provided expression evaluates to False.

o fail(msg=None): This method generates a failure message explicitly.
This is useful if the conditions of the failure are more complex than
the built-in methods provide for on their own. Generating a failure is
preferable to raising an exception because it indicates that the code
failed in a way that the test understands, rather than being unknown.

These functions alone provide a basic palette for the rest of your tests. To start
converting the earlier doctest to a unit test, we can start by providing a testNumber ()
method to simulate the first test that was performed previously. Like doctests, the
unittest module also provides a simple function to run all the tests found in the given
module; this time, it’s called main():

Oé

import unittest
import times2
class MultiplicationTestCase(unittest.TestCase):
def setUp(self):
self.factor = 2
def testNumber(self):

358

CHAPTER9 TESTING

self.assertTrue(times2.times2(5) == 10)

if __name__ == '__main__"':
unittest.main()

Tests are typically stored in a module called tests.py. After saving this file, we can
execute it just like the doctest example shown previously:

Oé

$ python tests.py

Ran 1 test in 0.001s

Unlike doctests, unit testing does show some statistics by default. Each period
represents a single test that was run, so complex applications with dozens, hundreds,
or even thousands of tests can easily fill several screens with results. Failures and errors
are also represented here, using E for errors and F for failures. In addition, each failure
will produce a block of text to describe what went wrong. Look what happens when we
change the test expression:

Oé

import unittest
import times2
class MultiplicationTestCase(unittest.TestCase):
def setUp(self):
self.factor = 2
def testNumber(self):
self.assertTrue(times2.times2(5) == 42)
if name_ =="_ main_"':
unittest.main()

$ python tests.py

359

CHAPTER9 TESTING

The output of running this code, assuming that you are in the same terminal session
and have keyed in the previous functions, will be:

Traceback (most recent call last):
File "tests.py", line 9, in testNumber
self.assertTrue(times2(5) == 42)
AssertionError: False is not True
Ran 1 test in 0.001s
FAILED (failures=1)

As you can see, it shows exactly which test method generated the failure, with a
traceback to help track down the code flow that led to the failure. In addition, the failure
itself is shown as an AssertionError, with the assertion shown plainly.

In this case, however, the failure message isn’t as useful as it could be. All it reports
is that False is not True. That’s a correct report, of course, but it doesn’t really tell the
whole story. In order to better track down what went wrong, it would be useful to know
what the function actually returned.

To provide more information about the values involved, we’ll need to use a test
method that can identify the different values individually. If they're not equal, the
test fails just like the standard assertion, but the failure message can now include the
two distinct values so you can see how they’re different. That can be a valuable tool in
determining how and where the code went wrong—which is, after all, the whole point of
testing:

o assertEqual(obj1, obj2, msg=None): This checks that both objects
that were passed in evaluate as equal, utilizing the comparison
features shown in Chapter 5, if applicable.

o assertNotEqual(obj1, obj2, msg=None): This is similar to
assertEqual(), except that this method will fail if the two objects
are equal.

360

CHAPTER9 TESTING

o assertAlmostEqual(obj1, obj2, *, places=7, msg=None):
Specifically for numeric values, this method rounds the value to the
given number of decimal places before checking for equality. This
helps account for rounding errors and other problems due to floating
point arithmetic.

o assertNotAlmostEqual(obj1, obj2, *, places=7, msg=None):
The inverse of the previous method, this test fails if the two numbers
are equal when rounded to the specified number of digits.

With assertEqual() available, we can change testNumber () to produce a more
useful message in the event that the assertion fails:

Oé

import unittest
import times2
class MultiplicationTestCase(unittest.TestCase):
def setUp(self):
self.factor = 2
def testNumber(self):
self.assertEqual(times2.times2(5), 42)
if name_ ==" main_':
unittest.main()

Traceback (most recent call last):
File "tests.py", line 9, in testNumber
self.assertEqual(times2(5), 42)
AssertionError: 10 != 42
Ran 1 test in 0.001s
FAILED (failures=1)

361

CHAPTER9 TESTING

Behind the scenes, assertEqual() does a couple of interesting things to be as flexible
and powerful as possible. First, by using the == operator, it can compare the two objects
using whatever more efficient method the objects themselves may define. Second, the
formatting of the output can be configured by supplying a custom comparison method.
Several of these customized methods are provided in the unittest module:

o assertSetEqual(set1, set2, msg=None): Because unordered
sequences are typically implemented as sets, this method is designed
specifically for sets, using the first set’s difference() method to
determine whether any items are different between the two.

o assertDictEqual(dict1, dict2, msg=None): This method is
designed specifically for dictionaries, in order to take their values into
account as well as their keys.

o assertListEqual(list1, list2, msg=None): Similar to
assertEqual(), this method is targeted specifically at lists.

o assertTupleEqual(tuple1, tuple2, msg=None):Like
assertListEqual(), thisis a customized equality check, but this time
tailored for use with tuples.

o assertSequenceEqual(seql, seq2, msg=None):Ifyou're not
working with a list, tuple, or a subclass of one of them, this method
can be used to do the same job on any object that acts as a sequence.

In addition to these methods provided out of the box, you can add your own to the
test framework, so that assertEqual() can more effectively work with your own types.
By passing a type and a comparison function into the addTypeEqualityFunc() method,
you can register it for use with assertEqual() later on.

Using addTypeEqualityFunc() effectively can be tricky, because it’s valid for
the entire test case class, no matter how many tests there may be inside it. It may be
tempting to add the equality function in the setUp() method, but remember that
setUp() gets called once for each test method that was found on the TestCase class.

If the equality function will be registered for all tests on that class, there’s no point
registering it before each one.

A better solution would be to add the addTypeEqualityFunc() calltothe init ()
method of the test case class. This also has the additional benefit that you can subclass
your own test case class to provide a more suitable base for other tests to work with. That
process is explained in more detail later in this chapter.

362

CHAPTER9 TESTING

Other Comparisons

Beyond simple equality, unittest.TestCase includes a few other methods that can be
used to compare two values. Aimed primarily at numbers, these address the question of
whether a tested value is less than or greater than what was expected:

o assertGreater(obji, obj2, msg=None): Similar to the tests for
equality, this tests whether the first object is greater than the second.
Like equality, this also delegates to methods on the two objects, if
applicable.

o assertGreaterkEqual(obj1, obj2, msg=None): This works just like
assertGreater(), except that the test also passes if the two objects
compare as equal.

o assertless(obj1, obj2, msg=None): This test passes if the first
object compares as less than the second object.

o assertlessEqual(obj1, obj2, msg=None): Like assertlLess(), this
tests whether the first object is less than the second but also passes if
both are equal.

Testing Strings and Other Sequence Content

Sequences present an interesting challenge because they're made up of multiple

individual values. Any value in a sequence could determine the success or failure of a
given test, so it’s necessary to have tools to work with them specifically. First, there are
two methods designed for strings, where simple equality may not always be sufficient:

o assertMultilLineEqual(obj1, obj2, msg=None): Thisisa
specialized form of assertEqual(), designed for multiline strings.

Equality works like any other string, but the default failure message is
optimized to show the differences between the values.

o assertRegexpMatches(text, regexp, msg=None): This tests
whether the given regular expression matches the text provided.

363

CHAPTER9 TESTING

More generally, tests for sequences need to make sure that certain items are present
in the sequence in order to pass. The equality methods shown previously will only work
if the entire sequence must be equal. In the event that some items in the sequence are
important but the rest can be different, we’ll need to use some other methods to verify
that:

o assertIn(obj, seq, msg=None): This tests whether the object is
present in the given sequence.

o assertNotIn(obj, seq, msg=None): This works like assertIn()
except that it fails if the object exists as part of the given sequence.

o assertDictContainsSubset(dict1, dict2, msg=None): This
method takes the functionality of assertIn() and applies it
specifically to dictionaries. Like the assertDictEqual() method, this
specialization allows it to also take the values into account instead of
just the keys.

o assertSameElements(seql, seq2, msg=None): This tests all
the items in two sequences and passes only if the items in both
sequences are identical. This only tests for the presence of individual
items, not their order within each sequence. This will also accept two
dictionaries but will treat it as any other sequence, so it will only look
at the keys in the dictionary, not their associated values.

Testing Exceptions

So far all of the test methods have taken a positive approach, where the test verifies that
a successful outcome really is successful. It’s just as important to verify unsuccessful
outcomes, however, because they still need to be reliable. Many functions are expected
to raise exceptions in certain situations, and unit testing is just as useful in verifying that
behavior:

o assertRaises (exception, callable, *args, **kwargs):Rather
than checking a specific value, this method tests a callable to see
that it raises a particular exception. In addition to the exception type
and the callable to test, it also accepts any number of positional and
keyword arguments. These extra arguments will be passed to the
callable that was supplied, so that multiple flows can be tested.

364

CHAPTER9 TESTING

o assertRaisesRegexp (exception, regex, callable,
*args, **kwargs): This method is slightly more specific than
assertRaises() because it also accepts a regular expression that
must match the exception’s string value in order to pass. The
expression can be passed in as a string or as a compiled regular
expression object.

In our times2 example, there are many types of values that can’t be multiplied by
an integer. Those situations can be part of the explicit behavior of the function, as long
as they’re handled consistently. The typical response would be to raise a TypeError, as
Python does by default. Using the assertRaises() method, we can test for this as well:

Oé

import unittest
import times2
class MultiplicationTestCase(unittest.TestCase):
def setUp(self):
self.factor = 2
def testNumber(self):
self.assertEqual(times2.times2(5), 42)
def testInvalidType(self):
self.assertRaises(TypeExrror, times2.times2, {})

Some situations are a bit more complicated, which can cause difficulties with testing.
One common example is an object that overrides one of the standard operators. You
could call the overridden method by name, but it would be more readable to simply
use the operator itself. Unfortunately, the normal form of assertRaises() requires a
callable, rather than just an expression.

To address this, both of these methods can act as context managers using a with
block. In this form you don’t supply a callable or arguments, but rather just pass in the
exception type and, if using assertRaisesRegexp(), a regular expression. Then, in the
body of the with block, you can add the code that must raise the given exception. This
can also be more readable than the standard version, even for situations that wouldn’t
otherwise require it:

365

CHAPTER9 TESTING

Oé

import unittest
import times2
class MultiplicationTestCase(unittest.TestCase):
def setUp(self):
self.factor = 2
def testNumber(self):
self.assertEqual(times2.times2(5), 42)
def testInvalidType(self):
with self.assertRaises(TypeError):
times2.times2({})

COMPATIBILITY: PRIOR TO 3.1/2.7

The assertRaises () method was around before Python 2.5, so it will be available in
most Python versions in use today. The regular expression variant, however, was added in
Python 3.1 and backported to Python 2.7. The same functionality could be simulated using a
try/except combination to get access to the error message directly, where its string value
can be verified using a regular expression.

Even though the with statement and context managers were both introduced in Python 2.5,
assertRaises() didn’t support the context management protocol until version 3.1. Because
the assertRaisesRegexp() method didn't exist until that version either, there was no
support for context managers in earlier versions. To achieve the same effect without context
managers, you'll need to create a new callable—often a lambda function—to pass into the
test method.

Testing Identity

The last group contains methods for testing the identity of objects. Rather than just
checking to see if their values are equivalent, these methods check to see if two objects are
in fact the same. One common scenario for this test is when your code caches values for

366

CHAPTER9 TESTING

use later. By testing for identity, you can verify that a value returned from cache is the same
value that was placed in the cache to begin with, rather than simply an equivalent copy:

o assertIs(obi, obj2, msg=None): This method checks to see if the
two arguments both refer to the same object. The test is performed
using the identity of the objects, so objects that might compare as
equal will still fail if they’re not actually the same object.

o assertIsNot(obj1, obj2, msg=None): This inversion of assertIs()
will only pass if the two arguments refer to two different objects. Even
if they would otherwise compare as equal, this test requires them to
have different identities.

o assertIsNone(obj, msg=None): This is a simple shortcut for a
common case of assertIs(), where an object is compared to the
built-in None object.

o assertIsNotNone(obj, msg=None): The inversion of assertIsNone()
will pass only if the object provided is not the built-in None object.

Tearing Down

Just as setUp() gets called before each individual test is carried out, the TestCase object
also calls a tearDown () method to clean up any initialized values after testing is carried
out. This is used quite often in tests that need to create and store information outside of
Python during testing. Examples of such information are database rows and temporary
files. Once the tests are complete that information is no longer necessary, so it makes
good sense to clean up after they've completed.

Typically, a set of tests that works with files will have to create temporary files along
the way, to verify that they get accessed and modified properly. These files can be
created in setUp() and deleted in tearDown(), ensuring that each test has a fresh copy
when it runs. The same can be done with databases or other data structures.

Note The key value of setUp() and tearDown() is that they can prepare a
clean environment for each individual test. If you need to set up an environment for
all the tests to share or revert some changes after all tests have completed, you'll
need to do so before or after starting the testing process.

367

CHAPTER9 TESTING

Providing a Custom Test Class

Because the unittest module is designed as a class to be overridden, you can write your
own class on top of it for your tests to use instead. This is a different process than writing
tests because you're providing more tools for your tests to use. You can override any

of the existing methods that are available on TestCase itself or add any others that are
useful to your code.

The most common way to extend the usefulness of TestCase is to add new methods
to test different functionality than the original class was designed for. A file-handling
framework might include extra methods for testing the size of a given file or perhaps
some details about its contents. A framework for retrieving Web content could include
methods to check HTTP status codes or look for individual tags in HTML documents.
The possibilities are endless.

Changing Test Behavior

Another powerful technique available when creating a testing class is the ability to
change how the tests themselves are performed. The most obvious way to do this

is to override the existing assertion methods, which can change how those tests are
performed. There are a few other ways to alter the standard behavior, without overriding
the assertion methods.

These additional overrides can be managed in the __init () method of your
custom class because, unlike setUp(), the _init () method will only be called once
per TestCase object. That makes it good for those customizations that need to affect all
tests but won't be affected by any of the tests as they run. One such example, mentioned
previously in this chapter, is the ability to add custom equality comparison methods,
which are registered with the addTypeEqualityFunc() method.

Another modification you can make to the test class is to define what type of
exception is used to identify failures. Normally, all test failures raise an AssertionError
behind the scenes—the same exception used when an assert statement fails. If you
need to change that for any reason, such as to better integrate with a higher-level testing
framework, you can assign a new exception type to the failureException class attribute.

As a side effect of using the failureException attribute to generate failures, you
can raise it explicitly using self.failureException to generate a test failure. This is
essentially the same as simply calling self.fail(), but it can be more readable in some
cases to raise an exception rather than call a method.

368

CHAPTER9 TESTING

Exciting Python Extensions: Pillow

The Pillow library offers Python programmers great power when dealing with images.

The Pillow (or PIL) Python Imaging Library offers Python programmers great power
when dealing with images. The main site, https://python-pillow.org, offers a great
amount of information about what the library offers, including the three main functions
of image archiving, display, and processing. Of course there is much more that the PIL
library offers.

How to Install Pillow (PIL)

From a command prompt with administrative privileges, type:
pip3 install pillow (Enter)

Now that you have it installed (if pip3 reported a successful install), let’s try a few of
the features.

Image Display: Determine File Size, Type, and Display It

Using a JPG image of your choice, try the following:

L

#PIL example 1

from future import print function

from PIL import Image

my image = Image.open("sleepy sab.jpg")

#this image: http://www.jbbrowning.com/user/pages/02.about/sleepy sab.JPG
#show data about the image

print(my_image.format, ' Image format')
print(my_image.size, ' Image size')
print(my_image.mode, 'Color mode e.g. RGB, etc."')
#Display the image with the default image application
my_image.show()

It is important to note that PIL will automatically open most standard image types
without any prompting via code.

369

https://python-pillow.org

CHAPTER9 TESTING

Image Processing: Crop a Portion of an Image

In this example, we will use the previous jpg image (so if you use a different one the
settings will need to be adjusted) and display the original, and then crop a bit and
display the new image. This crop function expects a tuple with four coordinate points,
0,0 being the upper left:

L

#PIL example 2

from _ future import print function

from PIL import Image

my image = Image.open("sleepy sab.jpg")

#Display the image with the default image application
my image.show()

#Crop a portion of the image from the upper left to
#about halfway and display

#(3456, 2304) is the image size

#0,0 is upper left. Crop wants a tuple so there are (())
region = my image.crop((0,0,2000,2000))

region.show()

Image Processing: Changing Image Orientation

You can rotate images as well two different ways (both work the same). In the next
example we will rotate the image 90 degrees:

L

#PIL example 3

from _ future _ import print function
from PIL import Image

my image = Image.open("sleepy sab.jpg")
#Rotate the image 90 degrees
turny=my_image.transpose(Image.ROTATE 90)
turny. show()

370

CHAPTER9 TESTING

Image Processing: Filters

There are a number of filters, such as blur and enhance, built in to PIL. Additionally,
there are other filters for color transformations, pixel lookups, and so on. The main PIL
web site has updates for the current version. To see how handy they are, examine the
following example, which embosses the image:

w5

#PIL example 4

from PIL import Image

from PIL import ImageFilter

my image = Image.open("sleepy sab.jpg")
#Emboss the image
emmy=my_image.filter(ImageFilter.EMBOSS)
emmy . show()

If you used the suggested image, poor Sabastian looks like a piece of metal artwork!
Are there more things you can do with PIL? Yes! Expand on what you have learned and
try your hand with some of the other filters and processing tools.

Taking It With You

The tools described in this chapter are just the basis of a functional test suite. As you
write an application, you'll need to fill in the gaps with the important facets of how your
code should work. Always remember, however, that tests aren’t just for you. By making
sure that new code doesn’t break existing code, you can provide a much better guarantee
for your users once you distribute your code to the public. The next chapter will show
how you can get your code to the masses.

371

CHAPTER 10

Distribution

Once you have a working application, the next step is to decide how and where to
distribute it. You might be writing it for yourself, but most likely you will have a wider
audience and have a set schedule for releasing it. There are a number of decisions to be
made and tasks to be performed before you can do that, however. This process consists
primarily of packaging and distribution, but it begins with licensing.

Licensing

Before releasing any code to the public, you must decide on a license that will govern

its use. A license will allow you to convey to your users how you intend your code to

be used, how you expect others to use it, what you ask from them in return, and what
rights you expect them to confer on users of their own code after integrating with yours.
These are complex questions that can’t be answered in a universal way for every project.
Instead, you'll need to consider a number of issues.

Your own philosophy plays a key role, as it affects many other decisions. Some
people intend to earn a living from their code, which could mean the source code won'’t
be released at all. Instead, your work could be offered as a service that customers can
pay to use. By contrast, you may be interested in helping people learn to do things better,
faster, easier, or more reliably. Perhaps the most common license is the GPL.

GNU General Public License

When people think of open source, the GNU General Public License (GPL)! is often the
first thing to come to mind. As one of the vanguards of the free software movement, its
primary goal is to preserve a certain group of freedoms to the users of software. The GPL

'See GNU Operating System, “GNU General Public License,” http://propython.com/gpl.

373
© J. Burton Browning and Marty Alchin 2019

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_10

http://propython.com/gpl

CHAPTER 10 DISTRIBUTION

requires that if you distribute your program to others, you must also make the source
code of that program available to them. That way they're free to make modifications to
your code as they see fit, in order to better support their own needs.

Furthermore, the promise of the GPL is that any users who do alter your code can
only distribute their modifications under the GPL or a license that ensures at least the
same freedoms. This way users of the software can be confident that if it doesn’t work to
their satisfaction, they have a way to make it better no matter how far removed it may be
from the original author.

Because the GPL places requirements on any modifications made to the original
code and code that links to it, it's sometimes referred to as “viral” That’s not necessarily
an insult; it simply refers to the fact that the GPL forces the same license on anything that
uses it. In other words, it spreads through software in much the same way as a traditional
virus. This isn’t unique to the GPL, but it’s the feature many in the business world think
of first when they think of the GPL and open source in general.

Because the goal of the GPL is to preserve freedoms for computer users, it can
be seen as restricting the freedom of programmers. The freedom of a programmer to
distribute an application without divulging the source code restricts the freedom of a
user to modify that code. Of those two opposing forces, the GPL is designed to preserve
the user’s freedoms by placing a number of restrictions on the behavior of programmers.

THE GPL AND PYTHON

The GPL was written primarily for statically compiled languages, such as C and C++, so it
often speaks in terms of code in “object form” that may be “statically linked” to other code.
In other words, when you create a C++ executable, the compiler inserts the code from

the libraries you reference to make a stand-alone program. These terms are central to its
vocabulary, but aren’t as clearly understood when applied to dynamic languages such as
Python. Many Python applications use the GPL because of its overall philosophy, but its terms
have yet to be tested in court in the context of a Python application.

[t may seem like such details wouldn’t really matter because Python code is generally
distributed as source code anyway. The term generally here has exceptions, such as if you
used py2exe to make a Windows-compiled Python application. After all, compiled Python
bytecode isn’t compatible with all the various systems in which the code might be used.

374

CHAPTER 10 DISTRIBUTION

But because the GPL also applies to any other applications that use the code, these details
become important if, for example, a statically compiled application uses GPL Python code
internally for some features. It has yet to be seen whether such use would trigger the GPL's
requirements on the distribution of that new application’s source code.

Because these restrictions must also be passed on to any other application that
includes GPL code, the available licenses that can work with it are limited. Any other
license you might consider must include at least the same restrictions as the GPL,
although additional restrictions can be added if necessary. One example of this is the
AGPL.

Affero General Public License

With the proliferation of the Internet, it's now quite common for users to interact with
software without ever obtaining a copy of that software directly. Because the GPL relies
on distribution of code to trigger the requirement to also distribute source code, online
services such as web sites and mail systems are exempt from that requirement. Some
have argued that those exemptions violate the spirit of the GPL by exploiting a loophole
in its provisions.

To close that loophole, the Affero General Public License (AGPL) was created. This
license contains all the restrictions of the GPL as well as the added feature that any user
interacting with the software, even by way of a network, will trigger the distribution
clause. That way, web sites that incorporate AGPL code must divulge the source code
for any modifications they’'ve made and any additional software that shares common
internal data structures with it. Although a bit slow to be adopted by the masses, certainly
approval by the Open Source Initiative (OSI) gives this license important support.

Note Even though the terminology and philosophy of the AGPL are very similar
to the GPL, its applicability to Python is a bit more clear. Because just interacting
with the software triggers the terms of the license, it doesn’t matter as much
whether the code is compiled from a static language such as C or built from a
dynamic language such as Python. This also has yet to be tested in court for
Python cases, however.

375

CHAPTER 10 DISTRIBUTION

Because the AGPL is more restrictive than the GPL itself, it’s possible for a project
that uses AGPL to incorporate code that was originally licensed with the standard
GPL. All of the protections of the GPL remain intact, while some extra ones are added.
There’s also a variant of the GPL that incorporates fewer restrictions, called the LGPL.

GNU Lesser General Public License

Because the GPL states that statically linking one piece of code to another triggers its
terms, many small utility libraries were used less often than they might otherwise have
been. These libraries typically don’t constitute an entire application on their own, but
because their usefulness requires tight integration with the host application, many
developers avoided them in order to avoid their own applications being also bound to
the GPL.

The GNU Lesser General Public License (LGPL) was created to handle these cases
by removing the static linking clause. Thus, a library released under the LGPL could be
freely used in a host application without requiring the host be bound by the LGPL or any
other specific license. Even proprietary, commercial applications with no intention of
releasing any source code can incorporate code licensed with the LGPL.

All of the other terms remain intact, however, so any modifications to the LGPL
code must be distributed as source code if the code itself is distributed in any way. For
this reason, many LGPL libraries have extremely flexible interfaces that allow their host
applications as many options as possible without having to modify the code directly.

Essentially, the LGPL leans more toward using the notion of open source to foster a
more open programming community than to protect the rights of the software’s eventual
audience. Further down that road is one of the most liberal open source licenses
available: BSD.

Berkeley Software Distribution License

The Berkeley Software Distribution (BSD) license provides a way to release code with

the intent of fostering as much adoption as possible. It does this by placing relatively few
limitations on the use, modification, and distribution of the code by other parties. In fact,
the entire text of the license consists of just a few bullet points and a disclaimer. Referring
to BSD as a single license is a misnomer, however, as there are actually a few variations.
In its original form, the license consisted of four points:

376

CHAPTER 10 DISTRIBUTION

o Distributing the source code to the program requires that the code
retain the original copyright, the text of the license, and its disclaimer.

o Distributing the code as a compiled binary program requires the
copyright, license text, and disclaimer be included somewhere in the
documentation or other materials provided with the distributed code.

¢ Any advertising used to promote the final product must attribute the
BSD-licensed code as being included in the product.

e Neither the name of the organization that developed the software
nor the names of any of its contributors may be used to specifically
endorse the product without explicit consent beyond the license
itself.

Notice that this contains no requirement that the source code be distributed at all,
even when distributing compiled code. Instead, it only requires that the appropriate
attribution is retained at all times and that it remains clear that there are two separate
parties involved. This allows BSD-licensed code to be included in proprietary,
commercial products with no need to release the source code behind it, making it fairly
attractive to large corporations.

The advertising clause caused some headaches with organizations trying to use BSD-
licensed code, however. The primary problem is that as the code itself changed hands
and was maintained by different organizations, each organization that had a hand in its
development must be mentioned by name in any advertising materials. In some cases
that could be dozens of different organizations, accounting for a significant portion of
advertising space, especially when software often contains quite a few other disclaimers
for other reasons.

To address those concerns, another version of the BSD license was created without
the advertising clause. This license is called the New BSD license, and it includes all
the other requirements of the original. The removal of the advertising clause meant
that changes in management of the BSD-licensed code had very little impact on
organizations using it, which broadened its appeal considerably.

One further reduction of the BSD license is called the Simplified BSD license. In this
variation even the nonendorsement clause is removed, leaving only the requirements
that the text of the license and its disclaimer be included. In order to still avoid untrue
endorsement, the disclaimer in this version includes an extra sentence that clearly states
that the views of both groups are independent of each other.

377

CHAPTER 10 DISTRIBUTION

Other Licenses

The options listed here are some of the more commonly chosen, but there are many
more available. The OSI maintains a list of open source licenses? that have been
examined and approved as preserving the ideals of open source. In addition, the Free
Software Foundation maintains its own list of licenses® that have been approved as

preserving the ideals of free software.

Note The difference between free software and open source is primarily
philosophical, but does have some real-world implications. In a nutshell, free
software preserves the freedom of users of that software, whereas open source
focuses on the software development model. Not all licenses are approved for both
uses, so you may need to decide which is more important to you.

Once you have a license in place, you can start the process of packaging and
distributing your code to others who can make use of it.

Packaging

It’s not very easy to distribute a bunch of files individually, so you'll first have to bundle
them up. This process is called packaging, but it shouldn’t be confused with the standard
Python notion of a package. Traditionally, a package is simply a directory with an __
init__.pyfilein it, which can then be used as a namespace for any modules contained
in that directory.

For the purposes of distribution, a package also includes documentation, tests,
a license, and installation instructions. These are arranged in such a way that the
individual parts can be easily extracted and installed into appropriate locations.
Typically, the structure looks something like this:

*See Open Source Initiative, “Licenses by Name,” http://propython.com/osi-licenses.

3See GNU Operating System, “Various Licenses and Comments about Them,”
http://propython.com/fsf-licenses.

378

http://propython.com/osi-licenses
http://propython.com/fsf-licenses
http://propython.com/fsf-licenses

CHAPTER 10 DISTRIBUTION

AppName/
LICENSE.txt
README. txt
MANIFEST.in
setup.py
app_name/

__init__.py

docs/

tests/
__init__ .py

As you can see, the actual Python code package is a subdirectory of the overall
application package, and it sits as a peer alongside its documentation and tests. The
documentation contained in the docs directory can contain any form of documentation
you prefer, but is usually filled with plain text files formatted using reStructuredText, as
described in Chapter 8. The tests directory contains tests such as those described in
Chapter 9. The LICENSE. txt file contains a copy of your chosen license and README . txt
provides an introduction to your application, its purpose, and its features.

The more interesting features of this overall package are setup.py and MANIFEST.1in,
which aren’t otherwise part of the application’s code.

setup.py

Inside your package, setup.py is the script that will actually install your code into an
appropriate location on a user’s system. In order to be as portable as possible, this script
relies on the distutils package provided in the standard distribution. That package
contains a setup() function that uses a declarative approach to make the process easier
to work with and more generic.

Located within distutils.core, the setup() function accepts a wide array of
keyword arguments, each of which describes a particular feature of the package. Some
pertain to the package as a whole, whereas others list individual contents that are

379

CHAPTER 10 DISTRIBUTION

included in the package. Three of these arguments are required for any package to be

distributed using standard tools:

name: This string contains the public name of the package as it will
be displayed to those who are looking for it. Naming a package can
be a complex and difficult task, but as it’s highly subjective, it’s well
beyond the scope of this book.

version: This is a string containing the dot-separated version number
of the application. It's common for first releases to use a version of
'0.1" and increase from there. The first number is typically a major
version indicating a promise of compatibility. The second is a minor
version number, representing a collection of bug fixes or significant
new features that don’t break compatibility. The third is typically
reserved for security releases that introduce no new functionality or
other bug fixes.

url: This string references the main web site where users can learn
more about the application, find more documentation, request
support, file bug reports, or do other tasks. It typically serves as a
central hub for information and activity surrounding the code.

In addition to these three required elements, there are several optional arguments

that can provide further detail about the application:

380

author: The name of the author(s) of the application.

author_email: An email address where the author can be reached
directly.

maintainer: If the original author is no longer maintaining the
application, this field contains the name of the person now
responsible for it.

maintainer_email: An email address where the maintainer can be
reached directly.

description: This string provides a brief description of the purpose
of the program. Think of it as a one-line description that could be
shown in a list alongside others.

CHAPTER 10 DISTRIBUTION

long description: As its name implies, this is a longer description
of the application. Rather than being used in lists, this one is
typically shown when a user requests more detail about the specific
application. Because this is all specified in Python code, many
distributions simply read the contents of README . txt into this
argument.

Beyond this metadata, the setup() function is responsible for maintaining a list

of all the files necessary to distribute the application, including all Python modules,

documentation, tests, and licenses. Like the other information, these details are supplied

using additional keyword arguments. All paths listed here are relative to the main

package directory where setup.py itself is located:

license: This is the name of a file that contains the full text of the
license under which the program is distributed. Typically that file is
called LICENSE. txt, but by explicitly passing it in as an argument, it
can be named whatever you prefer.

packages: This argument accepts a list of package names where the
actual code is located. Unlike license, these values are Python import
paths, using periods to separate individual packages along the path.

package dir: If your Python packages aren’t in the same directory
as setup. py, this argument provides a way to tell setup() where to
find them. Its value is a dictionary that maps a package name to its
location in the filesystem. One special key you can use is an empty
string, which will use the associated value as a root directory to look
for any packages that don’t have an explicit path specified.

package data: If your package relies on data files that aren’t written
in Python directly, those files will only get installed if referenced in
this argument. It accepts a dictionary that maps package names to
their contents, but unlike package dir, the values in this dictionary
are lists, with each value in the list being a path specification to the
files that should be included. These paths may include asterisks to
indicate broad patterns to match against, similar to what you can
query on the command line.

381

CHAPTER 10 DISTRIBUTION

There are other options for more complex configurations, but these should cover
most of the bases. For more information, consult the distutils documentation.* Once
you have the pieces in place, you'll have a setup.py that looks something like this:

from distutils.core import setup

setup(name="MyApp',
version='0.1",
author="Marty Alchin',
author email="marty@propython.com',
url="http://propython.com/"',
packages=["my app', 'my app.utils'],

MANIFEST.in

In addition to setup.py specifying what files should be installed on a user’s system, a
package distribution also includes a number of files that are useful to the user without
being installed directly. These files, such as documentation, should be available to users
with the package but don’t have any code value, so they shouldn’t be installed in an
executable location. The MANIFEST. in file controls how these files should be added to
the package.

MANIFEST.inis a plain text file, populated with a series of commands that tell
distutils what files to include in the package. The filename patterns used in these
commands follows the same conventions as the command line, allowing asterisks to
serve as a wildcard for a broad range of filenames. For example, a simple MANIFEST.in
might include any text files in the package’s docs directory:

include docs/*.txt

This simple instruction will tell disutils to find all the text files in the docs directory
and include them in the final package. Additional patterns could be included by
separating the patterns with a space. There are a few different commands available, each
of which has an include and exclude version available:

See Distributing Python Modules, “2. Writing the Setup Script,”
http://propython.com/distutils-setup.

382

http://propython.com/distutils-setup
http://propython.com/distutils-setup

CHAPTER 10 DISTRIBUTION

include: The most obvious option, this command will look for all
files that match any of the given patterns and include them in the
package. They’ll be placed in the package at the same location as they
were found in the original directory structure.

exclude: The opposite of include, this will tell distutils to ignore
any files that match any of the patterns given here. This provides a
way to avoid including some files, without having to explicitly list
every included file in an include command. A common example
would exclude TODO.txt in a package that specifically includes all
text files.

recursive-include: This command requires a directory as its first
argument, prior to any filename patterns. It then looks inside that
directory and any of its subdirectories for any files that match the
given patterns.

recursive-exclude: Like recursive-include, this command takes a
directory first, followed by filename patterns. Any files that are found
by this command are not included in the package, even if they're
found by one of the inclusion commands.

global-include: This command finds all the paths in the project,
regardless of where they may be within the path structure. By looking
inside directories, it works much like recursive-include, but
because it looks through all directories, it doesn’t need to take any
argument other than the filename patterns to look for.

global-exclude: Like global-include, this finds matching files
anywhere in the source project, but the files found are excluded from
the final package.

graft: Rather than looking for matching files, this command accepts
a set of directories that are simply included in the package in their
entirety.

prune: Like graft, this command takes a set of directories, but it
excludes them from the package completely, even if there were
matching files inside.

383

CHAPTER 10 DISTRIBUTION

With both setup.py and MANIFEST.in in place, distutils provides an easy way to
bundle up the package and prepare it for distribution.

The sdist Command

To finally create the distributable package, your new setup.py is actually executable
directly from a command line. Because this script is also used to install the package
later, you must specify what command you'd like it to carry out. Users who obtain the
package later will use the install command, but to package up a source distribution,
the command is sdist:

$ python setup.py sdist
running sdist

This command processes the declarations made in setup.py as well as the
instructions from MANIFEST. in to create a single archive file that contains all of the files
you've specified for distribution. The type of archive file you get by default depends
on the system you're running, but sdist provides a few options that you can specify
explicitly. Simply pass in a comma-separated list of formats to the - -format option to
generate specific types:

o zip: The default on Windows machines, this format creates a zip file.

o gztar: The default on Unix machines, including Mac OS, this creates
a gzipped tarball. To also create this archive on a Windows system,
you’ll need an implementation of tar installed, such as the one
available through Cygwin.’

e bztar: This command uses the alternative bzip compression on the
archive tarball. This also requires an implementation of tar installed.

o ztar: This uses the simpler compress algorithm to compress the
tarball. As with the others, an implementation of tar is required to
use this option.

o tar: Rather than using compression, this option simply bundles up a
tarball if an implementation of the tar utility is available.

See Cygwin, http://propython.com/cygwin.
384

http://propython.com/cygwin

CHAPTER 10 DISTRIBUTION

When you run the sdist command, archive files for each of the formats you specified

will be created and placed inside a new dist directory within your project. The names of

each archive will simply use the name and version you supplied in setup.py, separated

by a hyphen. The example provided earlier would result in files such as MyApp-0.1.zip.

7

1

Let’s try all of the preceding steps in one example. Follow along with each step to

create your zip package:

1.

Create a folder you can easily access via a command prompt such
as c:\test.

In the folder, create the following two files named setup.py and
MyApp.py:

#setup.py
from distutils.core import setup
setup(name="MyApp',
version='0.1",
author="Alchin and Browning',
author_email="authors@propython.com',
url="http://www.propython.com/",

)

MyApp.py

print("Hello Burton and Marty!")
gone=input("Enter to close: ")

Shell out to a command prompt, change into the test directory,
and execute the command:

python setup.py sdist (Enter)

Press Enter. (If it does not start Python, you will need to check
your search path and ensure that your system can find Python.)

This will create a dist directory in the test folder with the zip file for

your package.

Of course that was a very simple overview, but you have the flexibility to add a

manifest file, change compression options, and so on.

385

CHAPTER 10 DISTRIBUTION

Distribution

Once you have these files in place, you'll need a way to distribute them to the public.
One option is to simply host your own web site and serve up the files from there. That’s
typically the best way to market your code to a wide audience because you have an
opportunity to put the documentation online in a more readable way, show examples of
itin use, offer testimonials from people who are already using it, and anything else you
can come up with.

The only problem with simply hosting it yourself is that it becomes fairly difficult
to find using automated tools. Many packages will rely on the presences of other
applications, so it’s often useful to be able to install them directly from inside a script,
without having to navigate to a web site and find the right link to download. Ideally, they
would be able to translate a unique package name into a way to download that package
and install it without assistance.

This is where the Python Package Index (PyPI)® comes into play. The secret code
name of PyPI is “cheeseshop,” which is an allusion to the Monty Python Cheese shop skit
where John Cleese tries to purchase cheese from the shop Michael Palin is running.. . .
which has none available.

PyPlis an online collection of Python packages that all follow a standardized
structure, so they can be discovered more easily. Each has a unique name that can be
used to locate it, and the index keeps track of which version is the latest and references
the URL to that package. All you need to do is add your package to the index and it will
be much easier for your users to work with.

Uploading to PyPI for the first time requires registration on the site. A PyPI account
will allow you to manage your application details later and upload new versions and
updates. Once you have an account, you can run python setup.py register to setup
a page for your application at PyPI. This is an interactive script that will offer you three
options for registering your account:

e Use an existing PyPI account. If you've created an account on the PyPI
web site already, you can specify your username and password here.

e Register a new PyPI account. If you'd rather create an account at the
command line, you can enter your details here and have the account
created during registration.

°See Python Package Index (PyPl), http://propython.com/pypi.
386

http://propython.com/pypi

CHAPTER 10 DISTRIBUTION

o Generate a new PyPI account. If you'd like to take a simpler approach,
this option will take the username you're already using in your
operating system, generate a password automatically, and register an
account for that combination.

Once you choose your option, the register script will offer to save your account
information locally, so you won’t have to go through that step every time. With an
account in place, the script will register the application with PyPI, using the information
in setup.py. In particular, the name and long_description fields will combine to form a
simple web page, with other details shown in a list.

With a page in place to hold the application, the last step is to upload the code itself
using the upload command. This must be done as part of a distribution build, even if
you had previously built a distribution. That way, you can specify exactly what type of
distributions you'd like to send to PyPI. For example, you can upload packages for both
Windows and non-Windows users in a single step:

$ python setup.py sdist --format=zip,gztar upload

The distribution files are named according to the name of the application and its
version number at the time the distribution was created. The entry in PyPI also contains
areference to the version number, so you can’t upload the same distribution type of the
same version more than once. If you try, you'll get an error from setup.py indicating that
you’ll need to create a new version number in order to upload a changed distribution.

Exciting Python Extensions: Secrets Module

The Secrets module offers Python programmers some handy random number and
password generating tools. Its main feature though is the cryptographically strong nature
of the random number algorithm.

The secrets module, introduced in Python 3.6, has many functions available in it.
One is random number generation. And while this has been covered with some other
libraries, it is still interesting to examine.

Your computer operating system will factor in on the exact nature of the random
numbers generated, but generally for cryptographic work, this random library will
do a better job than the other random number generators available in Python. Such
cryptographic uses would include: passwords, authentication, and tokens. Read on to
see how handy this module is.

387

CHAPTER 10 DISTRIBUTION

Random Numbers

There are quite a few random token and random number generation options. To see
how they work, consider that the next example will pick a random number between 0
and 100.

L

#Secrets example 1

from secrets import *

x=1

while (x <= 10):
print(randbelow(100))
X+=1

In the preceding example we selected 10 random values from 1 to 100. Not exciting,
but a better cryptographic representation of random values. Next we will consider
random password generation.

Password Generation

In this next example, we will use both the string library and the secrets library to
generate a password with ASCII letter, digits, punctuation, and uppercase letters:

7
)
#Generate six digit passwd with letters, digits, punct, and upper
import string
from secrets import *
chars = string.ascii_letters + string.digits + string.punctuation + string.
ascil uppercase
password = ".join(choice(chars) for i in range(6))
print (password)

388

CHAPTER 10 DISTRIBUTION

If you needed a token for cryptographic work, there are options including urisafe.
Consider the following example:

7

#Generate a token value which is URL-safe
from secrets import *

value = token urlsafe(10)

print('token is: ',value)

Here we are using choice, but with this library you might try the following:

~
|
#Generate a secrets random choice
from secrets import *
value = choice(['one', 'two', 'three'])
print (value)

Lastly, if you wanted to enter values and select a random set from them, try the
following:

7
)
#Generate a random choice based on only certain values
from secrets import *
foo=input('Enter 10 random values to choose from: ')
wow="“.join([choice(foo) for i in range(3)])
print('These are three exciting choices at random:> ' ,wow)

There’s nothing here to save the world from a zombie apocalypse, but these
examples are still very interesting uses of the Python secrets module.

389

CHAPTER 10 DISTRIBUTION

Taking It With You

As you can see, the process of packaging and distributing a Python application using
PyPI is actually fairly straightforward. Beyond PyP], it’s usually a good idea to put
together a dedicated project web site, where you can better promote and support your
code. Always remember that distribution isn’t the last step. Your users will expect a
certain amount of support and interaction as they use your code and hope to improve it,
so it’s best to find a medium that supports those goals for you and your users.

Applications of all different sizes, audiences, and goals are fair game for distribution.
It doesn’t matter if you're writing a small utility to help automate common tasks or an
entire framework to power a set of features for other users’ code. The next chapter will
show you how to build such a framework from start to finish, building on many of the
techniques shown throughout this book.

390

CHAPTER 11

Sheets: A CSV Framework

Of course, the most important thing in programming is the program. Tools, techniques,
philosophy, and advice don’t offer much at all if they're never applied to solve a real-
world problem. Sometimes that problem is very specific, but other times it’s merely a
specific example of a more general problem. These general problems are typically the
subject of libraries and frameworks, which can provide the base for a more specific
application.

This puts frameworks in an interesting position, because they're focused more on
serving the needs of developers rather than ordinary users. The goal is to provide a
foundation and a set of tools to aid someone else in the development of a more specific
application. Supporting a wider array of uses requires more advanced techniques than
would ordinarily be used to solve the problem directly.

In order to be useful to other developers, however, the ideal goal is to provide a sort
of translation service so that the advanced techniques used by the framework allow
other developers to use simpler techniques to perform those more advanced tasks.

In this respect framework design is very similar to other forms of design, but rather
than focusing primarily on a visual user interface, the focus is on the application’s
programming interface, the API.

It’s important to look at frameworks like this, because if you're writing a framework
your audience is looking for a tool to save them time and energy, so that they can focus
on their unique needs. The framework should provide a set of features in a way that
encourages integration with other types of applications, so it’s necessary to think in
terms of how those other applications should work.

391
© J. Burton Browning and Marty Alchin 2019

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5_11

CHAPTER 11 SHEETS: A CSV FRAMEWORK

There are countless examples of frameworks in use already, serving a wide variety of
needs. They all address a general class of problem, such as Django’ for Web development,
SQLAlchemy? for database interaction, and Twisted?® for working with network protocols.
These each take different approaches with the style and form of the interfaces they expose
to developers, highlighting the various ways a framework can operate.

This chapter will show a framework that uses a declarative syntax similar to the ones
used in Django and Elixir. The choice of this approach is based largely on style, and
even though there are other approaches you could use, investigating one in detail will
highlight many of the decisions that must be made when writing a framework. You'll
see all the techniques shown in this book combine to form a single, cohesive whole,
exposing a public API that provides a number of useful features.

The particular problem that this chapter will address is the need to work with files
that store information as rows of comma-separated values, more commonly referred to
as CSV files. These are available for tasks like separating values on a line, separating lines
themselves, and encoding individual values within each line, which is how it becomes a
very complex topic.

Python already does a lot to help with CSV files by providing a csv module.* Rather
than attempting to duplicate its functionality, we can use csv to do most of the heavy lifting
behind the scenes. What we're going to do instead is build a layer on top of csv to make it
easier to work with and integrate with other applications. Essentially, we're just providing a
new API on top of an existing one, in the hopes that we can make it a bit friendlier.

Building a Declarative Framework

There are several steps involved in building a framework using a declarative syntax
similar to that of Django or Elixir, but the process itself really isn’t all that difficult.
Making decisions along the way, however, is where things get tricky. In this chapter we
will outline the various steps required to build such a framework, as well as examples of
many of the decisions you'll have to make. Each will have to be made specifically for your
own project, however.

!See Django, http://propython.com/django.

2See “The Python SQL Toolkit and Object Relational Mapper,” http://propython.com/sqlalchemy.
3See Twisted Matrix Labs, http://propython.com/twisted.

*See “CSV File Reading and Writing,” http://propython.com/csv-module.

392

http://propython.com/django
http://propython.com/sqlalchemy
http://propython.com/twisted
http://propython.com/csv-module

CHAPTER 11 SHEETS: A CSV FRAMEWORK

But you won't be all on your own. Each decision point along the way will outline the
pros and cons of various options so that you can be confident about making an informed
choice. Making the right decisions at the outset will help to ensure that your framework will
withstand future upgrades, as well as criticisms from those who may not agree with you. Just
make sure you have valid, real-world reasoning behind your decisions and you'll be fine.

Rather than leaving you with nothing but theory, this chapter will step through
the creation of a framework that’s simple enough to introduce the essential concepts,
without having to dwell too long on matters specific to its purpose. It also needs to be a
good example of when a declarative framework should be used, which first requires us to
understand what it is we're really looking at. The word step is an important term for you
to understand as the examples that follow will be added to, and why they are scripts.

Introducing Declarative Programming

At its core, a declarative framework is a helper to make declarative programming
easier—or in some cases, possible. Of course, that definition is useless without defining
what makes it declarative, but thankfully very little introduction is necessary. After all,
you've already seen declarative programming in action and have probably been using it
for quite some time, perhaps without even realizing it.

Declarative programming is the practice of telling a program what you want
(declaring), rather than telling it what to do (instructing). This distinction is really
more about the programmer than the program, in that there are often no special
syntax, parsing, or processing rules and no single way to define what does and doesn’t
qualify. It's most often defined as the opposite of imperative programming, where the
programmer is expected to outline every step the computer needs to perform.

With this in mind, it’s easy to note that higher-level interpreted languages, such
as Python, are much better suited for declarative programming than their lower-level
cousins, such as C. In fact, many forms of it are built right in. Rather than having to
declare a memory location, specify its type, and then store a value in memory at that
location, you can simply assign a variable and Python does the rest. What follows makes
a string variable named foo with “bar” stored in it:

>>> foo = 'bar'

393

CHAPTER 11 SHEETS: A CSV FRAMEWORK

That’s just one form of declarative programming, using one syntax. When we talk
about declarative frameworks in Python, however, it usually refers to using a class
declaration to configure the framework, rather than a long and complicated set of
configuration directives. Whether or not that’s the right approach for your needs requires
a bit more discussion of the pros and cons.

To Build or Not to Build?

Declarative frameworks have been a rising trend in the Python world in the past few
years, but it’s important to understand that they are not always the best approach to a
given problem. Like anything else, deciding whether to use a declarative framework
requires understanding what it really is, what it does, and what it means for your needs.

Declarative frameworks do a great job of wrapping a lot of complex behavior into
a simple class declaration. This can be a great time-saver, but it can also seem a lot like
magic, something that the Python community is constantly battling against. Whether
this is good or bad depends entirely on how closely your API matches what users will
expect from a class declaration and how well you document the areas where those
expectations may fail.

By having a class as the primary method of conveying your intentions to the
framework, it’s reasonable to expect that instances will have meaning. Most often, an
instance refers to a specific set of data that conforms to a format defined by the class
declaration. If your application acts on just a single set of well-defined data, there’s little
use in having individual instances.

Declarative classes are designed to create many different configurations using the
same framework, each designed for a particular configuration of data. If you only have
one data format to work with—even if you've got loads of data—it just doesn’t make
sense to write a framework built for configurability. Just write a solution for your type of
data and use it.

In other cases, you may not be able to describe the structure of a data set in advance
but instead have to adjust the structure based on the data provided. In these cases there’s
little value in offering a class declaration, since no single declaration would suffice for
the needs of the data you're working with.

394

CHAPTER 11 SHEETS: A CSV FRAMEWORK

A primary value of objects is the ability to perform actions on their contents by way
of instance methods. Because a declarative framework results in customized classes that
produce individual instances, it stands to reason that these instances should be able to
perform useful tasks that would be more difficult without the framework’s assistance.
This not only increases their usefulness, but it also helps ensure that the resulting
instances match with users’ expectations.

To review, a declarative framework is a valuable approach if you have:

e Many potential configurations
o Each configuration known in advance
e Many instances of any given configuration

e Actions that can be performed on a given instance

The CSV framework described in this chapter needs to deal with a vast array of
possible configurations of columns and structure, with many example files of each type.
Actions such as loading and saving data are common, whereas others are unique to
specific configurations.

Once completed, this framework will allow applications to specify CSV
configurations as classes such as the following, and interact with them using methods
automatically attached to the class.

To make sure you have the proper library, go to https://pypi.python.org/pypi/
Sheets/ and download the Sheets ZIP file. Unzip it and put all folders and files in your
Python 3.x Lib directory (or use pip to install it):

L

import sheets

class EmployeeSheet(sheets.Row):
first name = sheets.StringColumn()
last _name = sheets.StringColumn()
hire date = sheets.DateColumn()
salary = sheets.FloatColumn()

So let’s get started.

395

https://pypi.python.org/pypi/Sheets
https://pypi.python.org/pypi/Sheets

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Building the Framework

There are three primary components of any declarative framework, though one of them
may come in different forms, or possibly not at all:

e A base class: Because declarative frameworks are all about declaring
classes, having a common base class to inherit from gives the frame
a place to hook in and process declarations as they’re encountered
by Python. A metaclass attached to this base class provides the
necessary machinery to inspect the declaration at runtime and make
the appropriate adjustments. The base class is also responsible
for representing instances of whatever structure your framework
encapsulates, often with various methods attached to simply

common procedures.

o Various field types: Inside the class declaration are a number of
attributes, typically called fields. For some applications it may
make more sense to call them something more specific, but for
this discussion, fields will suffice. These fields are used to manage
individual data attributes in the structures represented by your
framework, and often come in different flavors, each tailored to a
different general type of data such as strings, numbers, and dates.
Another important aspect of fields is that they must be able to know
the order in which they get instantiated, so the ordering specified in
the declaration is the same ordering used later on.

e Anoptions container: Not strictly a necessary component, most
frameworks have use for some type of class-wide options, which
shouldn’t be specified on every individual field, as that wouldn’t
be very DRY. Because subclassing doesn’t provide any options
except the choice of base classes, some other structure must be
used to manage these options. How these options are declared
and processed can vary greatly from one framework to another;
there’s no syntactic or semantic standard whatsoever. As a matter of
convenience, this container often also manages the fields attached to
the class.

396

CHAPTER 11 SHEETS: A CSV FRAMEWORK

As a syntactic aid, most declarative frameworks also make sure that all three of these
components can be imported from one single location. This allows end-user code to
have a much simpler import block, while also containing all the necessary components
on a single, identifiable namespace. The name of this namespace should be something
meaningful, so it’s easy to read in end-user code. The name of the framework itself is
often an ideal choice, but it's important to be descriptive, so make sure it all makes sense
when reading it over.

Although deciding what to call the framework can be deferred to later in the process,
it helps to have a name in mind early on, if only to name the package that will contain
the modules described in the following sections. Using a placeholder like csv would
work fine for now, but because Python has its own csv module—which we’ll be relying
on as well—reusing this name would cause a great many problems. Because CSV files
are commonly used to exchange data among spreadsheet applications, we'll call our
little framework sheets.

It would seem that our journey should start with the base class, but really any of
the three components can be a reasonable place to start. It often depends on which
piece requires the most thought, does the most work, or needs to be tested first. For this
discussion we’ll start with the options container, as it can be created without relying on
the implementation details of the other components. This avoids leaving too many vague
references to functionality that hasn’t been described yet.

Managing Options

The primary purpose of an options component is to store and manage options for a
given class declaration. These options are not specific to any one field but rather apply
to the entire class, or are used as default values that individual fields can optionally
override. For now, we'll set aside the question of how these options will be declared and
simply focus on the container itself and its associated needs.

On the surface, options are simply a map of names to values, so we could use a
simple dictionary. After all, Python has a fantastic dictionary implementation and simple
is most certainly better than complex. However, writing our own class affords us a few
extra features that will be very handy.

397

CHAPTER 11 SHEETS: A CSV FRAMEWORK

For starters, we can validate the options that are defined for a given class. They can
be validated based on their individual values, their combination with other options, their
appropriateness for the given execution environment, and whether or not they’re known
options at all. With a dictionary, we're stuck simply allowing any type of value for any
option, even if it makes no sense.

Mistakes in options would then only be known when code that relies on them
chokes because they’re incorrect or missing, and those types of errors typically aren’t
very descriptive. Validating on a custom object means we can provide much more useful
messages to users who try to use incorrect or invalid options.

Using a custom class also means we add our own custom methods to perform
tasks that, although useful, are either repetitive or don’t really belong anywhere else.

A validation method can verify that all the included options are appropriate, displaying
useful messages if not. Remember also that the options container often manages fields,
so there are some methods that can be added for that purpose; these are described later
in this section.

In fact, by combining those two features, the options class can even validate
field declarations in the context of provided options. Try doing that with an ordinary
dictionary.

Because it may end up encapsulating quite a bit of functionality, we’ll set up a
new module for our options container, unambiguously named options.py. Like most
classes, the bulk of the work will be done in the __init () method. For our purposes,
this will accept all known options, store them away as attributes, and set up some
other attributes that will be used by other methods later on. Validation is generally
only useful when actively defining options, so that belongs in its own method so as not
to bog down this one.

And so we come to the next decision in your framework: what options should
you accept? Different frameworks will obviously have different requirements, and it’s
important to lay them out as completely as you can at the outset. Don’t worry, you can
always add more; it’s better to get them in place earlier rather than later.

One useful rule of thumb is that options should always have defaults. Asking your
users to not only write a class and provide fields but also provide options every time will
get frustrating, especially if the required option often has the same value. In general,
if something is truly required and doesn’t have some reasonable default, it should be
supplied as an argument to the methods that require it, rather than defined as an option
on the class.

398

CHAPTER 11 SHEETS: A CSV FRAMEWORK

We're building a framework to interface with CSV files, so there are a number of
options available. Perhaps the most obvious is the character encoding of the file, but
Python already converts file content to Unicode when the file is opened in text mode.
The open() function accepts an encoding argument that allows all the same encodings
available with a string’s encode () method. It defaults to UTF-8, which should suffice for
most common needs.

Note The encoding used when reading the file seems like a perfect candidate
for an option, so you can override the default UTF-8 behavior. Unfortunately, the
standard CSV interface requires that the file be already open when it’s passed
in, so if our framework follows the same interface, we have no control over the
encoding. The only way to control it would be to change the interface to accept a
filename rather than an open file object.

One common variation in CSV files is whether they contain a header row, containing
titles for the various columns. Because we’ll be defining columns as fields later on in the
framework, we don’t really need that header row, so we can skip it. But only if we know
it’s there. A simple Boolean, defaulting to False for the more common case, will do the
trick nicely:

L

1

class Options:
A container for options that control how a CSV file should be handled when
converting it to a set of objects.
has_header row
A Boolean indicating whether the file has a row containing header
values. If True, that row will be skipped when looking for data.
Defaults to False.

def init (self, has_header row=False):
self.has_header_row = has_header_row

399

CHAPTER 11 SHEETS: A CSV FRAMEWORK

There we have a simple, but useful, options container. At this point the only benefit
it has over a dictionary is that it automatically prohibits any options other than the ones
we've specified. We'll come back and add a more rigorous validation method later.

If you're familiar with Python’s csv module, you may already know that it contains a
variety of options as part of its support for different dialects. Because sheets will actually
defer to that module for much of its functionality, it makes sense to support all of the
same options, in addition to our own. In fact, it even makes sense to rename our Options
class Dialect instead, to better reflect the vocabulary already in use.

Rather than listing all of the options supported by csv separately, however, let’s take
a bit more forward-thinking approach. We're relying on code outside our control, and
it’s a bit of a maintenance hassle to try to keep up with any changes that code might
introduce in the future. In particular, we can support any existing options as well as any
future options, by simply passing any additional options straight to csv itself.

In order to accept options without naming them, we turn to Python’s support for
extra keyword arguments using the double-asterisk syntax. These extra options can
be stored away as a dictionary, which will be passed into the csv functions later on.
Accepting them as a group of keyword arguments rather than a single dictionary helps
unify all of the options, which will be important once we actually parse options out of the
class declaration:

7

1

class Dialect:
A container for dialect options that control how a CSV file should be
handled when converting it to a set of objects.

has_header_row
A Boolean indicating whether the file has a row containing header
values. If True, that row will be skipped when looking for data.
Defaults to False.

For a list of additional options that can be passed in, see documentation
for the dialects and formatting parameters of Python's csv module at
http://docs.python.oxg/library/csv.htmliidialects-and-formatting-parameters

400

CHAPTER 11 SHEETS: A CSV FRAMEWORK

def _init (self, has_header row=False, **kwargs):
self.has_header row = has_header row
self.csv_dialect = kwargs

This class will grow some more features later on, but that’s enough to get things
started. We'll come back to it a few more times before we’re done, but for now, let’s move
on to what may well be the meatiest part of our little framework: fields.

Defining Fields

Fields are generally just containers for specific pieces of data. Because it’s such a

generic term, different disciplines may use something more specific to refer to the same
concept. In databases, they’re called columns. In forms, they're often called inputs.
When executing a function or a program, they’re called arguments. To maintain some
perspective beyond this one framework, this chapter will refer to all such data containers
as fields, even though for sheets itself, the term “column” will make more sense when
naming the individual classes.

The first thing to define is a base field class, which will describe what it means to be a
field. Without any details of any particular data type, this base class manages how fields
fit in with the rest of the system, what API they’ll have, and how subclasses are expected
to behave. Because our framework is calling them columns, we’ll start a new module
called columns.py and get to work.

Fields are Python objects that are instantiated as part of the class declaration and
assigned as attributes of the class. Therefore, the _init () method is the first entry
point into field functionality and the only point where the field can be configured as part
of the declaration. Arguments to __init () may vary depending on a field’s type, but
there are often at least a few arguments that are applicable to all fields, and can thus be
processed by the base class.

First, each field can have a title. This allows for more readable and understandable
code but also provides a way for other tools to automatically document the fields with
more useful information than just the field’s attribute name. Planning for validation
wouldn’t hurt, so we'll also add a way to indicate whether the field is required:

401

CHAPTER 11 SHEETS: A CSV FRAMEWORK

7

1

class Column:
An individual column within a CSV file. This serves as a base for attributes
and methods that are common to all types of columns. Subclasses of Column
will define behavior for more specific data types.

def _init (self, title=None, required=True):
self.title = title
self.required = required

Notice that the title is optional. If no title is provided, a simple one can be gleaned
from the attribute name the field is assigned to. Unfortunately, the field doesn’t know
what that name is yet, so we’ll have to come back for that functionality later. We also
assume that most fields will be required, so that’s the default, to be overridden on a per-
field basis.

Tip Required fields may not immediately seem to have much value for a CSV
framework, since the data comes from files rather than directly from users,

but they can be useful. For some things like sheets, it can eventually validate
incoming files or the data that’s about to be saved to an outgoing file. It’s generally
a good feature to include at the outset for any framework, to support features that
can be added later.

You may already have other arguments in mind for your framework’s fields. If so,
feel free to add them in now, following the same basic pattern. Don’t worry about
planning for everything at the outset, though; there will be plenty of opportunity to
add more later on. Next on the agenda is to get the fields properly connected to their
associated classes.

402

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Attaching a Field to a Class

We need to set up the hook for getting additional data from the class the field is assigned
to, including the field’s name. This new attach_to class() method is—as its name
suggests—responsible for attaching the field to the class where it was assigned. Even
though Python automatically adds the attributes to the class where they're assigned,
that assignment doesn’t convey anything to the attribute, so we’ll have to do so in the
metaclass.

First, we need to decide what information the attribute needs to know about how it
was assigned. After preparing for a title in the previous section, it’s clear that the attribute
will need to know what name it was given when assigned. By obtaining that name
directly in code, we can avoid the trouble of having to write the name out separately as
an argument to the attribute instantiation.

The long-term flexibility of the framework will also depend on providing as
much information as possible to attributes, so that they can easily provide advanced
functionality by introspecting the classes they're attached to. Unfortunately, the name
alone doesn’t say anything about the class where the attribute now resides, so we’ll have
to provide that in the metaclass as well.

Finally, the options that were defined earlier, such as encoding, will have some
bearing on the attribute’s behavior. Rather than expecting the attribute to have to
retrieve those options based on the class that was passed in, it’s easier to simply accept
the options as another argument. This leaves us with an attach_to class() thatlooks
something like this:

7

class Column:

An individual column within a CSV file. This serves as a base for attributes
and methods that are common to all types of columns. Subclasses of Column
will define behavior for more specific data types.

def init (self, title=None, required=True):
self.title = title
self.required = required

403

CHAPTER 11 SHEETS: A CSV FRAMEWORK

def attach_to_class(self, cls, name, options):
self.cls = cls
self.name = name
self.options = options

This alone will allow other methods of the attribute object to access a wealth of
information, such as the name of the class, what other attributes and methods were
declared on it, what module it was defined in and more. The first task we’ll need to
perform with that information is somewhat more mundane, however, as we still need to
deal with the title. If no title was specified when the attribute was created, this method
can use the name to define one:

L

1

class Column:
An individual column within a CSV file. This serves as a base for attributes
and methods that are common to all types of columns. Subclasses of Column
will define behavior for more specific data types.

def init (self, title=None, required=True):
self.title = title
self.required = required
def attach to class(self, cls, name, options):
self.cls = cls
self.name = name
self.options = options
if self.title is None:
Check for None so that an empty string will skip this behavior
self.title = name.replace(’'_', ' ')

This addition takes an attribute name with underscores and converts it to a title using
multiple words. We could impose other conventions, but this is simple enough to work
with, accurate for most situations, and fits in with common naming conventions. This
simple approach will cover most use cases without being difficult to understand or maintain.

404

CHAPTER 11 SHEETS: A CSV FRAMEWORK

As the comment indicates, the if test for this new feature goes against standard
idioms by explicitly checking for None rather than simply letting an unspecified title
evaluate to False. Doing things the “right” way here would remove the ability to specify
an empty string as a title, which can explicitly indicate that no title is necessary.

Checking for None allows empty strings to still retain that string as the title, rather
than having it replaced by the attribute name. One example of the usefulness of an
empty title would be as a way to indicate that the column doesn’t need to be presented
in a display of the file’s data. It’s also a good example of where comments can be crucial
to understanding the intent of a piece of code.

Tip Even though this attach _to class() method doesn’t use the options
that were provided, it’s generally a good idea to include it in the protocol. The next
section will show that the options will be available as an attribute of the class, but
it’s a bit more clear to pass it in as its own argument. If your framework needs to
apply these class-level options to individual fields, it’ll be easier to accept it as an
argument than to extract it form the class.

Adding a Metaclass

With the attach_to class() method in place, we must now move on to the other side of
the equation. After all, attach_to class() can only receive information; the metaclass
is responsible for providing that information. Until now, we haven'’t even started looking
at the metaclass for this framework, so we need to start with the basics.

All metaclasses start out the same, by subclassing type. In this case, we’ll also add an
__init_ () method because all we need is to process the contents of the class definition
after Python has finished with them. First up, the metaclass needs to identify any options
that were defined in the class and create a new Dialect object to hold them. There are a
few ways to go about this.

The most obvious option would be to simply define options as class-level attributes.
That would make defining the individual classes easy later on, but it would impose
some problems that may not be as obvious. For one, it would clutter up the main class
namespace. If you tried to create a class to process CSV files containing information about
coded documents, you might reasonably have a column named encoding. Because we also
have a class option named encoding, we’d have to name our column something else in
order to avoid one of them overwriting the other and causing problems.

405

CHAPTER 11 SHEETS: A CSV FRAMEWORK

On a more practical note, it’s easier to pick out options if they're contained in their
own namespace. By being able to easily identify which attributes are options, we can
pass them all in as arguments to Dialect and immediately know if any were missing or
ifinvalid names were specified. So the task now is to determine how to provide a new
namespace for options, while still declaring them as part of the main class.

The simplest solution is to use an inner class. Alongside any other attributes and
methods, we can add a new class, named Dialect, to contain the various option
assignments. This way, we can let Python create and manage the extra namespace for us,
so that all we have to do is look for the name Dialect in the attribute list and pull it out.

Tip Even though the inner Dialect class inhabits the main namespace
alongside other attributes and methods, there’s much less chance of a clash
because it’s only one name instead of several. Furthermore, we use a name that
starts with a capital letter, which is discouraged for attribute and method names,
so that there’s even less chance of collision. Because Python names are case-
sensitive, you're free to define an attribute called dialect (note the small “d”) on
the class without fear of bumping into this Dialect class.

To extract this new Dialect class, we'll turn to the first implementation of a
metaclass in this framework. Because this will help form the base class for future
inheritance, we’ll put the code into a new module, named base. py:

7

1

from sheets import options

class RowMeta(type):
def init (cls, name, bases, attrs):

if 'Dialect' in attrs:
Filter out Python's own additions to the namespace
items = attrs['Dialect']. dict .items()
items = dict((k, v) for (k, v) in items if not k.startswith(' "))

else:
No dialect options were explicitly defined
items = {}

dialect = options.Dialect(**items)

406

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Now that the options have been pulled out of the class definition and have populated
aDialect object, we'll need to do something with that new object. We know from the
definition of attach_to class() in the previous section that it gets passed into that
method for each field attribute that was defined, but what else?

In the spirit of retaining as much information as possible for later, we’ll keep it
assigned to the class itself. But because the capitalized name doesn’t work as well as an
attribute name, it’s best to rename it to something more suitable. Because it also forms
a private interface to the inner workings of the framework, we can prefix the new name
with an underscore to further prevent any accidental name clashes:

L

from sheets import options

class RowMeta(type):
def init (cls, name, bases, attrs):

if 'Dialect’ in attrs:
Filter out Python's own additions to the namespace
items = attrs.pop('Dialect'). dict .items()
items = {k: v for k, v in items if not k.startswith(' ")}

else:
No dialect options were explicitly defined
items = {}

cls._dialect = options.Dialect(**items)

This simple change removes it from the class namespace where it was given the
original name and instead inserts it under a new name, _dialect. Both names avoid
clashes with common attribute names, but this change makes it use a more standard
private attribute name. Previously, it used the standard style for naming a class because
that’s how it’s defined.

With that, we finally have all the pieces in places to continue working with the field
attributes. The first task is to locate them in the class definition and call attach_to_
class() on any that are found. This is easily accomplished with a simple loop through
the attributes:

407

CHAPTER 11 SHEETS: A CSV FRAMEWORK

7

1

from sheets import options

class RowMeta(type):
def init (cls, name, bases, attrs):

if 'Dialect' in attrs:
Filter out Python's own additions to the namespace
items = attrs.pop('Dialect'). dict .items()
items = {k: v for k, v in items if not k.startswith(' ')}

else:
No dialect options were explicitly defined
items = {}

cls. dialect = options.Dialect(**items)

for key, attr in attrs.items():
if hasattr(attr, 'attach_to_class'):
attr.attach_to_class(cls, key, cls._dialect)

This simple metaclass contains a loop that just checks each attribute to see if it has
an attach_to_class() method. If it does, the method is called, passing in the class
object and the name of the attribute. This way all the columns can get the information
they need very early on in the process.

DUCK TYPING

This metaclass uses hasattr() to check for the existence of an attach_to_class() method,
rather than simply checking to see if the attribute is an instance of Column. All instances

of Column should indeed have the necessary method, but by using hasattr() instead,

we open it up for any type of object. You could add attach_to_class() to other types of
attributes, descriptors, and even methods and gain quick and easy access to more advanced
functionality. The metaclass only checks for precisely what it needs, leaving the rest open
for flexibility, which is a primary benefit of duck typing. The name is from the concept of the
application of the well-known duck test, which states “If it waddles like a duck and quacks
like a duck, then it must be a duck,” to determine if an object should be used.

408

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Now all that’s necessary to fill out the rest of base. py is to include a true base class
that individual CSV definitions can subclass. Because each subclass is a single row in a
spreadsheet, we can name the base class Row to indicate its purpose. All it needs to do at
the moment is include RowMeta as its metaclass, and it'll automatically get the necessary
behavior:

w5

#in base.py

class Row(metaclass=RowMeta):
pass

Bringing It Together

Technically, all the pieces are now in place to demonstrate at least the basics of a
working system, but there’s still one important piece to take care of. Currently we have
three different modules, each with some of the parts that need to be exposed in a public
API. Ideally, all of the important bits should be available from one central import instead
of three or potentially even more.

If you haven't already, create an __init .py module in the same directory as the
other scripts mentioned so far. That file can be empty and still have the ability to import
all the packages individually, but with a little effort, it can be put to better use. Because
this is the file imported when simply importing the package name directly, we can use
that as a trigger to pull in the useful bits from all the other files:

L
Openup __init__ .pyand put this code in it:

from sheets.base import *
from sheets.options import *
from sheets.columns import *

409

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Note Ordinarily, using an asterisk to import everything is a bad idea because it
can make it more difficult to identify what came from where. Because this module
is only importing code and not doing anything with it, that problem doesn’t really
apply. As long as the package is imported on its own, such as import sheets,
there won’t be any confusion as to where the objects come from. And because we
don’t have to mention any of the objects by name, this will hold for anything we
may add to those modules as well.

Now we have enough working parts to show that the framework can function, at least
at a very basic level. If we create an example.py one directory up from the framework
code itself, so that sheets is on the PYTHONPATH, we can now create a class that does
some very simple work to show that it’s starting to come together:

7

1
import sheets

class Example(sheets.Row):
title = sheets.Column()
description = sheets.Column()

if _name__ == "' main_ "':
print(Example. dialect)

print(Example.title)

All this really does so far is allow us to name the columns, however. In order to line
them up with data in CSV files, we need to know the order in which the fields were
defined in the class.

Ordering Fields

As it stands, the fields are all available as attributes of the class itself. This allows you to get
some information about individual fields, but only if you know the name of the field. Without
aname, you'd have to inspect all the attributes on the class and check which of them are
instances of Column or its subclasses. Even if you do that, however, you still don’t know the
order in which they were defined, so it’s impossible to line them up with data from a CSV file.

410

CHAPTER 11 SHEETS: A CSV FRAMEWORK

In order to address both of those issues we need to set up a list of columns, where
each of the columns can be stored in the order in which it was defined. But first we need
to be able to identify that order at runtime, without the benefit of being able to ask the
developer. There are at least three different ways to do this, each with its own benefits.

DeclarativeMeta.__prepare__ ()

Chapter 4 showed that metaclasses can control the behavior of the class namespace
while Python is processing the block of code that makes up the class definition.
Byincludinga prepare_ () method on the declarative metaclass—in this case,
RowMeta—we can provide an ordered dictionary, which can then keep the order

of attribute assignments itself. It's as simple as importing an ordered dictionary
implementation and returning it from a custom __prepare__ () method:

7

1
from collections import OrderedDict
from sheets import options

class RowMeta(type):
def init (cls, name, bases, attrs):
if 'Dialect' in attrs:
Filter out Python's own additions to the namespace

items = attrs.pop('Dialect'). dict .items()

items = {k: v for k, v in items if not k.startswith(' ')}
else:

No dialect options were explicitly defined

items = {}

cls. dialect = options.Dialect(**items)
for key, attr in attrs.items():
if hasattr(attr, 'attach to class'):
attr.attach to class(cls, key, cls. dialect)

@classmethod
def _ prepare__(self, name, bases):
return OrderedDict()

411

CHAPTER 11 SHEETS: A CSV FRAMEWORK

That only gets us part of the way, however. Now the namespace dictionary contains
all the class attributes, and it knows the order in which they were defined, but it doesn’t
address the issue of having a simple list of just the CSV columns. The namespace
dictionary will also hold all the methods and other miscellaneous attributes that were
defined, so we'll still need to grab the columns out of it and put them into another list.

One obvious way to do that would be to look at each attribute in the dictionary and
check to see whether it’s a column or not. That’s the same process mentioned earlier
in this section, but the difference now is that you can hide the complexity inside the
metaclass.

Because _init () runs after the entire body has been processed, its attrs argument
will be an ordered dictionary containing all the attributes. All that’s left is to loop over them
and pull out any columns that were found. Again, in the spirit of duck typing, we’ll use the
presence of attach_to class() to determine which attributes are columns. In fact, we can
use the existing loop and just inject the new code into the inner if block.

In order to use it in the real world it will need to be placed somewhere more useful,
such as the Dialect object stored in the _dialect attribute of the class. Rather than
simply assigning a list externally, it makes more sense to have Dialect manage that itself
by giving it an add_column() method that we can call from the metaclass instead:

L

class Dialect:

A container for dialect options that control how a CSV file should be
handled when converting it to a set of objects.

has_header_row
A Boolean indicating whether the file has a row containing header
values. If True, that row will be skipped when looking for data.
Defaults to False.

For a list of additional options that can be passed in, see documentation
for the dialects and formatting parameters of Python's csv module at
http://docs.python.org/library/csv.html#dialects-and-formatting-parameters

def _init (self, has_header row=False, **kwargs):

412

CHAPTER 11 SHEETS: A CSV FRAMEWORK

self.has_header row = has_header row
self.csv_dialect = kwargs
self.columns = []

def add_column(self, column):
self.columns.append(column)

Now that Dialect knows how to keep a record of fields, it’s only a small matter
to change RowMeta to add the columns to the dialect as they're found. Because the
namespace is already sorted according to when the attributes were assigned, we can
be sure that they’ll be attached to the class in the right order. Thus, we can simply add a
quick call to the dialect’s add_column() in the column’s attach_to_class() method:
7

1

class Column:
An individual column within a CSV file. This serves as a base for attributes
and methods that are common to all types of columns. Subclasses of Column
will define behavior for more specific data types.
def _init (self, title=None, required=True):
self.title = title
self.required = required

def attach to class(self, cls, name, dialect):

self.cls = cls

self.name = name

self.dialect = dialect

if self.title is None:
Check for None so that an empty string will skip this behavior
self.title = name.replace(' ', ' ")

dialect.add_column(self)

Note This example also changes the name of the options attribute to dialect
instead, to be consistent with the rest of the framework.

413

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Now our code has an easy way to get at the columns that were provided to the
class, in their original order. There’s one fairly significant flaw with it, however: the
__prepare__ () technique is only available in Python starting with version 3.0. Because
there was no equivalent functionality before then, any older versions will need to use a
completely different approach to the problem.

We can make use of a basic principle of Python’s class processing: the body of a
class is executed as a block of code. That means that each of the column attributes are
instantiated in the order they were written in the class definition. The Column class
already has a block of code that runs when the attribute is instantiated, which can be
extended a bit to keep track of each instantiation.

Column.__init_ ()

The most obvious choice is where we already have code: the _init () method. It gets
called for each Column object as it is instantiated, so it makes a convenient place to keep
track of the order those objects are encountered. The actual process is fairly simple. All
it takes is a counter that can be maintained in one place regardless of which column

is being processed, and a small bit of code to increment that counter every time a new
column is found:

7

1

class Column:
An individual column within a CSV file. This serves as a base for attributes
and methods that are common to all types of columns. Subclasses of Column
will define behavior for more specific data types.
This will be updated for each column that's instantiated.
counter = 0
def init (self, title=None, required=True):
self.title = title
self.required = required
self.counter = Column.counter
Column.counter += 1

414

CHAPTER 11 SHEETS: A CSV FRAMEWORK

def attach to class(self, cls, name, dialect):

self.cls = cls

self.name = name

self.dialect = dialect

if self.title is None:
Check for None so that an empty string will skip this behavior
self.title = name.replace(' ', ' ")

dialect.add_column(self)

This code handles part of the problem. Now, each column has a counter attribute
that indicates its position among the rest.

SIMPLE IS BETTER THAN COMPLEX

Actually, that counter will be maintained across all columns, regardless of which class they’re
assigned to. Even though that’s technically a bit of overkill, it doesn’t actually hurt anything.
Each group of columns will still be ordered appropriately among its peers, so they can be
sorted properly without a problem. More important, resetting the counter for each class would
significantly complicate the code.

First, we’d need a separate counter for each class that can have columns attached to it.
Columns don’t know about which class they’re assigned to until attach _to class()

is called, so we’d have to put some code in there to determine when a new class is being
processed. But because that takes place after the counter was already incremented in
__init_ (), it would need to reset the counter while assigning it to a new location for the
new class.

It’s definitely possible to keep a separate counter for each individual class, but doing so
doesn’t really add anything to the process. Because the simpler form is just as functional for
most cases, the added complexity just isn’t worth it. If you have a long-running process that
creates Row subclasses dynamically on a regular basis, it’s possible the counter will overflow
and cause problems. In such a case, you’ll need to take these additional steps to make sure
everything continues to work properly.

415

CHAPTER 11 SHEETS: A CSV FRAMEWORK

The next step is to use that counter to force the ordering of the columns as they’'re
stored on the Dialect object. Inthe _ prepare () approach the namespace handled
the ordering on its own, so there wasn’t anything else to do. Here we need to sort the list
of fields explicitly, using the counter attribute to determine the order.

We can’t do it right away in __init () because that gets a dictionary of all the
attributes, not just the columns. It doesn’t know which attributes are columns until they’re
processed using their attach_to class() methods. Sorting the list after processing
all the columns with attach_to class() instead would provide a complete list of just
columns in the correct order. Here’s what you'll need to add to the RowMeta class:

L

1

from sheets import options

class RowMeta(type):
def init (cls, name, bases, attrs):
if 'Dialect' in attrs:
Filter out Python's own additions to the namespace
items = attrs.pop('Dialect'). dict .items()

items = {k: v for k, v in items if not k.startswith(' ")}
else:

No dialect options were explicitly defined

items = {}

cls. dialect = options.Dialect(**items)
for key, attr in attrs.items():
if hasattr(attr, 'attach to class'):
attr.attach to class(cls, key, cls. dialect)
Sort the columns according to their order of instantiation
cls._dialect.columns.sort(key=lambda column: column.counter)

This function call may look a little more complicated than it really is. It’s just invoking
a standard sort () operation but with a function that will be called to determine what
value to use when sorting items. We could add a method to Column that just returns the
counter and use that, but because it’s only used here, a 1ambda function will do the same
job inline.

416

CHAPTER 11 SHEETS: A CSV FRAMEWORK

SIMPLE IS BETTER THAN COMPLEX

Another option is to actually sort the list while processing attach _to _class(). The default
attach_to class() implementation shown previously already calls add_column() on the
provided Dialect object, so that’s a good place to do the job. Unfortunately, doing so requires
a few extra steps. It doesn’t make sense to try to sort the whole list every time a new column
is added, but we can use the bisect module in the standard library to keep the order more
efficiently.

The bisect module provides an insort () method, which inserts a new item into an existing
sequence while preserving a useful order to those items. Unlike a standard sort (), however,
this function doesn’t accept a key argument but instead relies on comparing two items using
the < operator. If one item compares as less than another, it gets placed further ahead in the
sequence. That makes sense, but without the use of an explicit key, we’d need to implement
an 1t () method on the Column class to support insort().

Sorting after the fact only requires one additional line of code, while trying to sort throughout
would introduce another import and another method on the Column class. The only thing
we’d gain by going that route is the ability to see the order of all the columns that have been
processed so far, but because new columns may be placed anywhere within that order, it’s not
really that useful until all the columns have been processed. Therefore, it’s best to keep things
simple and just sort the list once afterward.

Most of the code that was added in this approach is necessary whenever
prepare_ () isn’t available, regardless of any other preferences. The only area where we
really have any room to use a different approach is where the counter value is updated.
There are a few different ways to go about managing that value.

So far we've used the __init_ () method of the Column class because that’s always
called during instantiation and it already had a basic implementation anyway. The
trouble is that many __init () methods are only used to save argument values as
attributes on the object, so programmers have come to expect similar behavior. Aside
from managing the counter, our own __init () method matches that expectation
perfectly.

So if a programmer wants to write a new column that doesn’t use any of the same
arguments as the base Column class, it’s easy to write an __init_ () method that simply
doesn’t call super (). Without using super () to fire the original _init () method, that

417

CHAPTER 11 SHEETS: A CSV FRAMEWORK

new column won't be ordered properly. Its counter attribute will always be the same as
whatever was processed right before it, so sort () won’t be able to reliably determine
where it belongs.

You could argue that the problem here is with the programmers’ assumption that
init () doesn’t do anything of value, but that’s not a very productive approach to the
problem. There are still a couple of ways that we can try to make things easier for users of
the frameworks that can help avoid problems if someone neglects to use super().

Column.__new_ ()

Thinking about instantiation without __init (), the next clear choiceis _new_ (),
which is called earlier in the process. Using __new__ () provides a chance to do the same
work without competing with __init_ (), so they can be independent of each other.
The initialization of the object can still take placein __init (), leaving new_ () to
manage the counter value:

7

1

class Column:
An individual column within a CSV file. This serves as a base for attributes
and methods that are common to all types of columns. Subclasses of Column
will define behavior for more specific data types.
This will be updated for each column that's instantiated.
counter = 0
def __new__(cls, *args, **kwargs):
Keep track of the order each column is instantiated
obj = super(Column, cls).__new__(cls, *args, **kwargs)
obj.counter = Column.counter
Column.counter += 1
return obj

def _init (self, title=None, required=True):
self.title = title
self.required = required

418

CHAPTER 11 SHEETS: A CSV FRAMEWORK

def attach to class(self, cls, name, dialect):

self.cls = cls

self.name = name

self.dialect = dialect

if self.title is None:
Check for None so that an empty string will skip this behavior
self.title = name.replace(' ', ' ")

dialect.add_column(self)

The codein __new_ () grows a bit from what wasused in __init () previously
because _new__ () is responsible for creating and returning the new object. Therefore,
we need to create the object explicitly before assigning the counter to it. Then, the
method needs to explicitly return the new object in order for it to be accessible by
anything else.

Using __new_ () instead of _init () is merely a way to reduce the odds of
colliding with a custom implementation. It may be less likely, but it’s still possible for a
subclass to provide __new__ () on its own, and doing so without using super () would
still cause problems. There’s still one other option that separates the counting behavior
even further.

CounterMeta._ call__ ()

Itis important to understand that there is also another method that gets called when
instantiating a class. Technically the class object itself is being called as a function, which
means that there’sa __call () method somewhere that would be called. Because
__call () is only executed as an instance method, but instantiation takes place when
calling a class, we need to look at the class as an instance of something else: a metaclass.

That means that we can create a metaclass to support the counter functionality
entirely outside the Column class. A simple CounterMeta classwitha call () method
can keep track of the counter on its own, and Column can then use that as its metaclass.
The body of this method looks essentially justlike _new__ () because it’s called as pretty
much the same part of the process. It needs to create the object by using super () and
return it explicitly:

419

CHAPTER 11 SHEETS: A CSV FRAMEWORK

7

1

class CounterMeta(type):
A simple metaclass that keeps track of the order that each instance
of a given class was instantiated.

counter = 0

def call (cls, *args, **kwargs):
obj = super(CounterMeta, cls). call (*args, **kwargs)
obj.counter = CounterMeta.counter
CounterMeta.counter += 1
return obj

Now that all of this functionality is isolated to a metaclass, the Column class gets a bit
simpler. It can get rid of all the counter-handling code, including the entire __new__ ()
method. All it needs now to maintain the counting behavior is to use CounterMeta as its
metaclass:

7

1

class Column(metaclass=CounterMeta):
An individual column within a CSV file. This serves as a base for attributes
and methods that are common to all types of columns. Subclasses of Column
will define behavior for more specific data types.
def init (self, title=None, required=True):
self.title = title
self.required = required

def attach to class(self, cls, name, dialect):
self.cls = cls
self.name = name
self.dialect = dialect

420

CHAPTER 11 SHEETS: A CSV FRAMEWORK

if self.title is None:
Check for None so that an empty string will skip this behavior
self.title = name.replace(' ', ' ")

dialect.add_column(self)

In fact, this CounterMeta is now capable of providing this counting behavior for any
class that needs it. By simply applying the metaclass, every instance of the given class
will have a counter attribute attached to it. Then you can use that counter to sort the
instances according to when they were instantiated, just like the columns in the sheets
framework.

Choosing an Option

Of the options presented here, it’s not always easy to determine which to choose. With
each layer of added flexibility comes added complexity, and it’s always best to keep
things as simple as possible. When working in a Python 3.x environment, __prepare ()
is definitely the way to go. It doesn’t require any additional classes to support it; it
doesn’t need to sort the list of columns after the fact; and it works without touching the
Column class at all.

The options for earlier 2.x versions of Python are more subjective. Which one you
choose depends largely on how much you expect of your target audience and how much
complexity you're willing to allow into your code. The simpler solutions require more
vigilance on the part of your users, so you'll need to decide what’s most important.

Because this book is designed for use with Python 3.x, the remaining examples of the
code willuse __prepare (). Of course, the ability to order a set of fields is only useful
once you have a collection of fields to work with.

Building a Field Library

In most declarative frameworks, sheets included, a primary function of fields is to
convert data between native Python objects and some other data format. In our case, the
other format is a string contained in the CSV file, so we need a way to convert between
those strings and the objects the fields represent. Before we get into the details of specific
field types, we need to set up a couple methods for managing data conversion.

421

CHAPTER 11 SHEETS: A CSV FRAMEWORK

The first method, to_python(), takes a string from the file and converts that string
into a native Python value. This step is performed for each column, every time a row is
read in from the file, to ensure that you can work with the correct type of value in Python.
Because that behavior will be different for various types, delegating to a method like
to_python() allows you to change this specific behavior on individual classes without
having to do so all on one Column class.

The second method is to_string(), which works as an inverse to to_python()
and will be called when saving a CSV file with values assigned in Python. Because the
csv module works with strings by default, this method is used to provide any special
formatting required by a particular CSV format. Delegating to this method means that
each column can have its own options to suit the data that belongs in that field.

Even though each type of data behaves differently, the base Column class can support
a simple use case by default. The csv module only works with files that are opened in
text mode, so Python’s own file access manages the conversion to Unicode while reading
data. That means the value that comes from csv is already a string and can be used easily:

L

1

class Column:
An individual column within a CSV file. This serves as a base for attributes
and methods that are common to all types of columns. Subclasses of Column
will define behavior for more specific data types.
def init (self, title=None, required=True):
self.title = title
self.required = required

def attach to class(self, cls, name, dialect):

self.cls = cls

self.name = name

self.dialect = dialect

if self.title is None:
Check for None so that an empty string will skip this behavior
self.title = name.replace(' ', ' ")

dialect.add column(self)

422

CHAPTER 11 SHEETS: A CSV FRAMEWORK

def to_python(self, value):

Convert the given string to a native Python object.
return value
def to_string(self, value):

Convert the given Python object to a string.

return value

Now we can start implementing them for individual data types.

StringField

The most obvious field to start with is a string, because it can encompass any number
of more specific forms of data. Titles, names, places, descriptions, and comments are
just some examples of the more specific values you might find in these fields, but from a
technical standpoint they all work the same way. The sheets framework doesn’t have to
care what form of strings you'll be dealing with, only that they are in fact all strings.

The csv module provides strings on its own, so this class doesn’t really have to do
much. In fact, to_python() and to_string() don’t need any custom implementation at
all because they only need to return what they’re given. The most important thing that’s
offered by a StringColumn is actually the name itself.

By having an attribute that’s named according to the type of data it interacts with, the
attribute becomes somewhat self-documenting. Rather than just using a generic Column
to describe how strings are passed back and forth, you can use a StringColumn to be
clear about how it works:

7

1

class StringColumn(Column):

A column that contains data formatted as generic strings.

pass

423

CHAPTER 11 SHEETS: A CSV FRAMEWORK

In fact, you could even call the base class StringColumn instead of just Column,
because it does the job on its own. Unfortunately that would cause its own confusion when
subclassing it, by requiring something like an IntegerColumn to subclass StringColumn. To
keep things clearer, the base class will remain Column and each subclass will add only the
necessary features on top of it, even though there’s nothing useful to add beyond the name.

IntegerColumn

The next field type to add manages integers. Numbers are used quite a bit in
spreadsheets, storing everything from ages to sales figures to inventory counts. Much
of the time, those numbers will be plain integers that can be converted easily using the
built-in int () function:

7

1

class IntegerColumn(Column):

A column that contains data in the form of numeric integers.
def to_python(self, value):
return int(value)

IntegerColumn doesn’t actually need to implement a to_string() method because
the csv module automatically calls str () on whatever value is given to it. Because
that’s all we’d do in a to_string() method anyway, we can just leave it out and let the
framework handle that task. As you'll see with other columns, to_string() is most
useful when the column can specify a more explicit format to use. Simply writing out a
number doesn’t require that much flexibility.

FloatColumn

Many numbers in spreadsheets have finer granularity than integers, requiring additional
information to convey the value beyond the decimal point. Floating point numbers are a
decent way to handle those values, and supporting them as a column is just as easy as it
was with IntegerColumn. We can simply replace all the instances of int with float and
be done:

424

CHAPTER 11 SHEETS: A CSV FRAMEWORK

7

1

class FloatColumn(Column):

A column that contains data in the form of floating point numbers.
def to python(self, value):
return float(value)

Of course, floating point numbers have their share of problems when it comes to
viewing them or adding them together in many cases. This is caused by a lack of defined
precision in the decimal point: it floats around according to how well a given value can
be represented in code. To be more explicit and avoid things like rounding errors, we
turn to DecimalColumn.

DecimalColumn

Like FloatColumn, this can work with numbers beyond just the integers. Instead

of working with floating point numbers, however, DecimalColumn will rely on the
functionality of the decimal module provided with Python. Decimal values preserve as
much detail in the original number as possible, which helps prevent rounding errors.
This makes decimals much more suitable for use with monetary spreadsheets.

In Python, decimals are provided using the decimal module, which provides a Decimal
class to manage individual numbers. Therefore, DecimalColumn needs to convert numbers
from text in CSV files to Decimal objects in Python and back again. Like floats, Decimal
already converts to strings well enough on its own, so the only conversion DecimalColumn
really needs to do is from strings to Decimal when reading values. Because Decimal is
designed to work with strings, it’s just as easy as the other columns shown so far:

7

import decimal
class DecimalColumn(Column):

425

CHAPTER 11 SHEETS: A CSV FRAMEWORK

A column that contains data in the form of decimal values,
represented in Python by decimal.Decimal.
def to_python(self, value):

return decimal.Decimal(value)

There’s one difference about this method from those in the other classes, however.
Each of the others has the added side effect of raising a ValueError if the value can’t
be properly converted, which we can use later to support validation. Decimal does
validate during instantiation, but it raises an exception from the decimal module,
InvalidOperation. In order to match the behavior of the others, we’ll need to catch that
and reraise it as a ValueError:

7

1

import decimal

class DecimalColumn(Column):
A column that contains data in the form of decimal values,
represented in Python by decimal.Decimal.

def to_python(self, value):
try:
return decimal.Decimal(value)
except decimal.InvalidOperation as e:
raise ValueError(stx(e))

Even though DecimalColumn supports a more specialized data type, the code behind
it is still fairly simple. Supporting dates, by contrast, requires some added complexity.

DateColumn

Dates are also extremely common in spreadsheet documents, storing everything from
employee paydays and holidays to meeting agendas and attendance. Like decimal
values, dates require the use of a separate class to provide a native Python data type,

426

CHAPTER 11 SHEETS: A CSV FRAMEWORK

but there’s one significant difference: dates don’t have a universally accepted string
representation. There are some standards that are fairly well established, but there are
still plenty of variations, from the placement of the date components to the punctuation
used to separate them.

In order to support the necessary flexibility, a new DateColumn would need to accept
a format string during instantiation, which can be used to parse values from the file as
well as construct strings to store in the file. Python dates already use a flexible format
string syntax,® so there’s no need to invent a new one just for sheets. In order to specify
the format during instantiation, however, we'll need to override __init ():

L

1

class DateColumn(Column):
A column that contains data in the form of dates,
represented in Python by datetime.date.
format
A strptime()-style format string.
See http://docs.python.org/library/datetime.html for details
def _init (self, *args, format='%Y-%m-%d', **kwargs):
super (DateColumn, self). init (*args, **kwargs)
self.format = format

Notice that the format object has a default value, which makes it optional. It’s
usually best to provide defaults like this for field attributes so that users can get up and
running quickly. The default value used here was chosen because it is fairly common
and it places the values in order from the least specific to the most specific—from year
to day, respectively. That helps reduce the ambiguity we might otherwise encounter
across cultures that format dates differently. Because the goal is to work with existing
data, however, it’s always possible for a specific Row class to override this behavior with
whatever format is used by a given file.

*See “strftime() and strptime () Behavior,” http://propython.com/datetime-formatting.

427

http://propython.com/datetime-formatting

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Now that the format is available on the DateColumn object, the next step, as it was
for the others, is to make a to_python() method. Python’s datetime object accepts each
component of the date as a separate argument, but because to_python() only gets a
string, we’ll need another way to do it. The alternative comes in the form of a datetime
class method called strptime().

The strptime() method accepts a string value as its first argument and a format string
as its second. The value is then parsed according to the format string and a datetime
object is returned. We don’t actually need a full datetime, however, so we can also use that
object’s date() method to return just the date portion of the value as a date object:

7

import datetime

class DateColumn(Column):

A column that contains data in the form of dates,

represented in Python by datetime.date.

format
A strptime()-style format string.
See http://docs.python.org/library/datetime.html for details

def _init_ (self, *args, format='%Y-%m-%d', **kwargs):
super(DateColumn, self). init (*args, **kwargs)
self.format = format

def to_python(self, value):

Parse a string value according to self.format
and return only the date portion.

return datetime.datetime.strptime(value, self.format).date()

Note datetime is the name of the module as well as the name of the class, so
that’s why it’s written twice.

428

CHAPTER 11 SHEETS: A CSV FRAMEWORK

There’s a subtle problem with to_python() as it’s written here, however. All the
other column types so far can accept both a string and a native object as values in to_
python(), but strptime() will fail with a TypeError if you pass in a date object instead
of a string. In order to construct a row in Python and save it in a file, we'll need to be able
to accept a datetime object here, which will be converted to a string later, when saving.

Because to_python() is supposed to return a native object, this is a very simple
task. All it takes is checking whether the value passed in is already a date object. Ifit is,
to_python() can simply return that without doing any more work. Otherwise, it can
continue on with the conversion:

L

1

class DateColumn(Column):
A column that contains data in the form of dates,
represented in Python by datetime.date.
format
A strptime()-style format string.
See http://docs.python.org/library/datetime.html for details
def _init (self, *args, format='%Y-%m-%d', **kwargs):
super (DateColumn, self). init (*args, **kwargs)
self.format = format

def to_python(self, value):

Parse a string value according to self.format
and return only the date portion.
if isinstance(value, datetime.date):
return value
return datetime.datetime.strptime(value, self.format).date()

429

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Writing the to_python() method was actually the most troublesome part of the

DateColumn class. Converting an existing date value to a string is even simpler because

there’s an instance method, strftime(), available to do the job. It just accepts a format

and returns a string containing the formatted value:

7

1

import datetime

class DateColumn(Column):

430

A column that contains data in the form of dates,

represented in Python by datetime.date.
format

def

def

def

A strptime()-style format string.
See http://docs.python.org/library/datetime.html for details

__init_ (self, *args, format="%Y-%m-%d', **kwargs):
super (DateColumn, self). init_(*args, **kwargs)
self.format = format
to_python(self, value):
Parse a string value according to self.format
and return only the date portion.
if isinstance(value, datetime.date):
return value
return datetime.datetime.strptime(value, self.format).date()
to_string(self, value):

Format a date according to self.format and return that as a string.

return value.strftime(self.format)

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Tip A useful way to remember the difference between the two method names is
that p stands for “parse” and f stands for “format.”

We could go on adding more and more fields, but the ones shown here cover the
basic forms of data found in most CSV files, as well as most of the techniques necessary
to build your own field attributes in a declarative framework. Next, we'll need to set up
the CSV functionality in order to bring these data types to life.

Getting Back to CSV

So far this chapter has been fairly generic, showing tools and techniques that can be
applied to any variety of declarative class frameworks. In order to put them to real-world
use, we need to get back to the problem of parsing CSV files. Much of the work done in
this section will also be applicable to other frameworks, but will be presented in a way
specific to CSV.

The first thing to do is take a look at how Python’s own csv module works. There’s
no sense completely reinventing the wheel. It's important to understand the existing
interface so that we can match it as closely as possible. The csv module’s functionality is
provided in two basic object types: readers and writers.

Readers and writers are configured in similar ways. They both accept a file argument,
an optional dialect, and any number of keyword arguments that specify individual dialect
parameters to override the main dialect. The main difference between readers and writers
is that readers require a file to be opened for read access and writers require write access.

For readers, the file argument is typically a file object but may in fact be any iterable
object that yields a single string for each iteration. Because the csv module also handles
more complex newline usage, such as newlines encoded within a value, you should
always open the file with the argument newline=" to make sure Python’s own newline
handling doesn’t get in the way. In the next example, make sure that you have the
example.csv file in the directory you are running this from:

>>> import csv
»»> reader = csv.reader(open('example.csv', newline="))

431

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Once instantiated for use with a particular file and dialect, a CSV reader object has
an extremely simple interface: it’s an iterable object. Iterating over a reader will yield
each row in the CSV file as a data structure that’s usable outside the csv module. The
standard csv.reader yields a list of values for each row, because the only thing it knows
about is the position of each value in the row.

A more advanced options is csv.DictReader, which also accepts a sequence of
column names during instantiation, so that each row can be produced as a dictionary.
Our framework goes even further, yielding an object with each value from the file
converted to a native Python data type and made available as an attribute.

Writer objects, by contrast, are slightly more complex. Because simple iteration only
allows reading values, rather than writing them, writers rely on a couple of methods to
do the necessary work. The first, writerow(), writes out a single row to the file, as its
name suggests. Its companion, writerows (), accepts a sequence of rows, which will be
written to the file in the order they’re found in the sequence.

Exactly what constitutes a row will differ based on what type of writer is used. As
with readers, the csv module provides some different options. The standard csv.writer
accepts a simple sequence of values for each row, placing each value on the row in the
position it’s found in the list. The more complex DictWriter accepts a dictionary, which
uses the sequence of column names passed in during instantiation to determine where
in the row each value should be written.

The interface for working with our framework should look as much as possibly
like the interfaces to these standard readers and writers. A sheets reader should be an
iterable object that yields instances of the custom class where all the column attributes
were defined. Likewise, the writer should accept instances of that same class. In both
cases, the order of the column attributes in the class definition will be used to determine
where the values go.

One key factor of both the reader and the writer, however, is the notion of a row
object. So far, we don’t have any such object for the sheets framework, so we need to
create one. As a class-based framework, sheets is already well equipped to build an
object that can represent a row. The columns and dialect are already defined on a class,
so the ideal way to create an object would be to simply instantiate that class with a set of
values. This will bring in aspects of the dialect and column classes described in earlier
sections in order to produce a usable object.

432

CHAPTER 11 SHEETS: A CSV FRAMEWORK

The obvious place to implement this behavioris __init (), but from there things
get a little tricky. The first question is how to accept the values that will populate the
attributes. Because we don’t yet know anything about the layout of any particular Row
subclass, we’ll have to accept all arguments and deal with the requirements in the
init () method itself.

Checking Arguments

As with any function, arguments to __init () can be passed positionally or by
keyword, but that decision has particular impact here because the object can be
instantiated in one of two ways. When instantiating from a CSV file, as the next section
will show, it’s easiest to pass the values in positionally. When building an instance
manually, however, it’s highly convenient to be able to pass values in by keyword as well.
Therefore, it’s best to accept all positional and keyword arguments and manage them
internally.

Two cases of invalid arguments are clear at the outset: too many positional
arguments and keyword arguments that don’t match any column names. Each of these
cases requires a separate bit of code to support it, but they’re both fairly easy to work
with. For the positional case, we can simply check the number of arguments against the

number of columns:

w5
class Row(metaclass=RowMeta):
def __init__(self, *args, **kwargs):
First, make sure the arguments make sense
if len(args) » len(self._dialect.columns):

msg = "__init__() takes at most %d arguments (%d given)"
raise TypeError(msg % (len(self._dialect.columns), len(axgs)))

That takes care of the case where too many positional arguments are passed in, using
the same error message Python would issue when the arguments are defined explicitly.
The next step is to make sure that all of the provided keyword arguments match up with
existing column names. This is easy to test by cycling through the keyword argument
names and checking to see if each is also present in the list of column names.

433

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Because the dialect only stores a list of columns, and not the list of column names,
it's easiest to make a new list of column names here before testing them. Additional
code to be added to __init () later will also make use of this new list, so it’s best to
create it now:

L
class Row(metaclass=RowMeta):
def init (self, *args, **kwargs):
First, make sure the arguments make sense
column_names = [column.name for column in self._dialect.columns]
if len(args) > len(column_names):
msg = " init () takes at most %d arguments (%d given)"
raise TypeError(msg % (len(column_names), len(args)))
for name in kwargs:
if name not in column_names:
msg = "__init__() got an unexpected keyword argument '%s'"
raise TypeError(msg % name)

That takes care of the obvious cases, but there’s still one situation not yet covered:
keyword arguments that target columns that also have positional arguments. To address
this concern, we’ll look at the behavior of Python itself. When confronted with an
argument passed positionally and by keyword, Python raises a TypeError, rather than be
forced to decide which of the two values to use:

>>> def example(x):
return x

>>> example(1)

1

>>> example(x=1)
1

434

CHAPTER 11 SHEETS: A CSV FRAMEWORK

>>> example(1, x=1)
Traceback (most recent call last):

TypeError: example() got multiple values for keyword argument 'x'

Providing that same behavior of our own __init () is a bit more complex than
the previous examples, but it’s still fairly straightforward. We just need to look at each of
the positional arguments and check whether there’s a keyword argument matching the
corresponding column name.

A useful shortcut for situations like this is to use a slice on the column name array to
get only as many names as there are positional arguments. This way, we don’t have to
look through more names than necessary, and it eliminates the separate step of having
to look up the column name by index inside the loop:

L
1
class Row(metaclass=RowMeta):
def _init (self, *args, **kwargs):
First, make sure the arguments make sense
column_names = [column.name for column in self. dialect.columns]

if len(args) > len(column_names):

msg = " _init () takes at most %d arguments (%d given)"
raise TypeError(msg % (len(column names), len(args)))

for name in kwargs:
if name not in column_names:
n

msg = " __init_ () got an unexpected keyword argument '%s'"
raise TypeError(msg % name)

for name in column_names|[:len(args)]:
if name in kwargs:

msg = "__init_ () got multiple values for keyword argument '%s'"
raise TypeError(msg % name)

With all the argument checking out of the way, _init_ () can continue on with
certainty that no invalid arguments were provided. From here, we can use those
arguments to populate the values on the object itself.

435

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Populating Values

There are actually two steps involved in populating the values on the object. The first is
dueto _init () accepting both positional and keyword arguments. By offering both
options, we now have arguments in two separate locations: args and kwargs. In order to
set the values in one pass, we'll need to combine them into a single structure.

Ideally, that structure would be a dictionary because it combines the names and
values, so we’ll need to move positional arguments into the dictionary already provided
by kwargs. For that, we’ll need an index for each of the values passed in positionally and
areference to the corresponding column name, so the value can be assigned to the
right name.

The last check from the previous section already provides that loop, so we can reuse
that block to assign the value to kwargs. The only change we need to make to the loop is
to use enumerate() to get the index of each column as well as its name. That index can
then be used to get the value from args:

L

1

class Row(metaclass=RowMeta):
def _init (self, *args, **kwargs):
First, make sure the arguments make sense
column_names = [column.name for column in self. dialect.columns]
if len(args) > len(column_names):
msg = " init () takes at most %d arguments (%d given)"
raise TypeError(msg % (len(column_names), len(args)))
for name in kwargs:
if name not in column_names:
msg = " init_ () got an unexpected keyword argument '%s'"
raise TypeError(msg % name)
for i, name in enumerate(column_names|[:len(args)]):
if name in kwargs:
msg = " _init () got multiple values for keyword argument '%s'"
raise TypeError(msg % name)

kwargs[name] = args[i]

436

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Now, kwargs has all the values passed into the constructor, each mapped to the
appropriate column name. Next, we'll need to convert those values to the appropriate
Python values before assigning them to the object. To do that we’ll need the actual
column objects, rather than just the list of names we’ve been working with so far.

There’s still one minor issue to consider. Looping through the columns gets us all
the columns that were defined for the class, but kwargs only contains the values that
were passed into the object. We'll need to decide what to do for columns that don’t have
a value available. When pulling in data from a CSV file, this won’t usually be a problem
because every row in the file should have an entry for each column. But when populating
an object in Python, to be saved in a file later, it’s often useful to assign the attributes
after instantiating the object.

Therefore, the most flexible approach here is to simply assign None to any of the
columns that don’t have a value. Checking for required fields can be performed as a
separate step later, when we get to validating fields for other things as well. For now,
assigning None will work just fine:

7
class Row(metaclass=RowMeta):
def init (self, *args, **kwargs):
First, make sure the arguments make sense
column_names = [column.name for column in self. dialect.columns]
if len(args) > len(column_names):
msg = " init () takes at most %d arguments (%d given)"
raise TypeError(msg % (len(column_names), len(args)))
for name in kwargs:
if name not in column_names:
msg = " __init_ () got an unexpected keyword argument '%s'"
raise TypeError(msg % name)
for i, name in enumerate(column_names[:len(args)]):
if name in kwargs:
msg = " _init () got multiple values for keyword argument '%s'"
raise TypeError(msg % name)

kwargs[name] = args[i]

437

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Now populate the actual values on the object
for column in self._dialect.columns:
try:
value = column.to_python(kwargs[column.name])
except KeyErrox:
No value was provided
value = None
setattr(self, column.name, value)

With this functionality finally in place, you can see the Row class in action on its own.
It's now capable of managing a set of columns, accepting values as inputs, converting
them to Python objects while loading, and assigning those values to the appropriate
attributes:

>>> import sheets

>>> class Author(sheets.Row):
name = sheets.StringColumn()
birthdate = sheets.DateColumn()
age = sheets.IntegerColumn()

>>> ex = Author('Marty Alchin', birthdate='1981-12-17', age='28")
>>> ex.name

'Marty Alchin'

>>> ex.birthdate

datetime.date(1981, 12, 17)

>>> ex.age

28

Now we can finally implement the code to actually interact with CSV files.

438

CHAPTER 11 SHEETS: A CSV FRAMEWORK

The Reader

Using the csv module directly, you obtain a reader by instantiating a class and passing in
a file and the necessary configuration options. The sheets framework allows each custom
Row class to specify all the columns and dialect parameters directly on the class, so that
now contains everything we need. The direct analogy with csv would be to pass a file and a
Row class into a function that then returns a reader object capable of reading the file.

The trouble with that approach is that it requires any code that wants to use the
reader to import the sheets module in order to get the function that creates the reader
object. Instead, we can get by with just the Row class itself by providing a class method
that can do the necessary work. Then, the only argument that method needs to accept
is the file to read. To match the existing csv naming conventions, we’ll call this new
method reader().

In order to work like the standard readers, our own reader () will need to return an
iterable object that yields a row for each iteration. That’s a simple requirement to fulfill,
and it can be done without even involving any new objects. Remember that generator
functions actually return an iterable object when they’re first called. The body of a
generator is then executed on each iteration of a loop, which makes an ideal way to
support a CSV reader.

In order to get the values from a CSV file, reader () can rely on the existing csv
module’s own reader functionality. The standard csv.reader returns a list for each row
in the file, regardless of what the actual values mean or what their names should be.
Because a row class can already process arguments that are stored in sequences such as
lists, it’s very simple to bind the two together:

L

1

import csv

class Row(metaclass=RowMeta):
def _init (self, *args, **kwargs):
First, make sure the arguments make sense
column_names = [column.name for column in self. dialect.columns]
if len(args) > len(column_names):

msg = " init () takes at most %d arguments (%d given)"
raise TypeError(msg % (len(column names), len(args)))

439

CHAPTER 11 SHEETS: A CSV FRAMEWORK

for name in kwargs:
if name not in column_names:

msg = " __init_ () got an unexpected keyword argument '%s'"
raise TypeError(msg % name)

for i, name in enumerate(column_names[:len(args)]):
if name in kwargs:
msg = " _init () got multiple values for keyword argument '%s'"
raise TypeError(msg % name)

kwargs[name] = args[i]

Now populate the actual values on the object
for column in self. dialect.columns:
try:
value = column.to_python(kwargs[column.name])
except KeyError:
No value was provided
value = None
setattr(self, column.name, value)

@classmethod
def reader(cls, file):
for values in csv.reader(file):
yield cls(*values)

This neglects one important aspect of reading from CSV files, however. There are
enough variations in how values are stored within a file that you may need to specify
some options to control how the file is processed. Earlier, the Dialect class provided
a way to specify those options on the Row class, so now we need to pass some of those
options along in the call to csv.reader(). In particular, these are the options stored in
the dialect’s csv_dialect attribute:

7

1

@classmethod
def reader(cls, file):
for values in csv.reader(file, **cls._dialect.csv_dialect):
yield cls(*values)

440

CHAPTER 11 SHEETS: A CSV FRAMEWORK

That covers the options that the csv module already knows about, but remember
that our own Dialect class allows for another option to indicate whether the file has a
header row. In order to support that feature in the reader, we'll need to add some extra
code that skips the first row if the dialect indicates that row would be a header:

"
@classmethod

def reader(cls, file):
csv_reader = csv.reader(file, **cls._dialect.csv_dialect)

Skip the first row if it's a header
if cls._dialect.has_header_row:
csv_reader.__next_ ()

for values in csv_reader:
yield cls(*values)

Because all the reader needs to provide is an iterable that yields a row for each
object, this method now does everything it needs to. It’s not very forward-thinking,
however. Because we're building a framework that may need to be improved later, it’s
always a good idea to at least consider future expansion.

Rather than relying solely on a generator function, a more flexible approach would
be to create a new iterable class that will do the same job. As we'll see in the next section,
the writer will need a separate class as well, so building this new iterable will create a
pair of classes that will be easier to understand. First, the reader () method gets a whole
lot simpler:

Y
@classmethod

def reader(cls, file):
return Reader(cls, file)

That delegates all the real work to a new Reader class, which must implement
__iter ()and_next () inorder to function as an iterator. There are a few things
that need to be stored away in __init () first, however, including the row class that can
create each instance and a csv.reader object to actually read the file:

441

CHAPTER 11 SHEETS: A CSV FRAMEWORK

7

1

class Reader:
def init (self, row cls, file):
self.row _cls = row cls
self.csv_reader = csv.reader(file, **row_cls._dialect.csv_dialect)

The iter () method is easy to support because the Reader itself will be the
iterator. Therefore, all that’s necessary is to return self:

7

1

class Reader:
def init (self, row cls, file):
self.row cls = row cls
self.csv_reader = csv.reader(file, **row cls. dialect.csv_dialect)

def __iter_ (self):
return self

Because __next_ () will be called for each iteration, its logic can be a bit simpler for
the obvious task of returning individual row objects. All it needs to dois call __next_ ()

on the csv.reader’s iterator, passing the values into the row class that was stored in
init ():

7

1

class Reader:
def init (self, row cls, file):
self.row _cls = row cls
self.csv_reader = csv.reader(file, **row cls. dialect.csv_dialect)

def iter (self):
return self

def _ next__(self):
return self.row_cls(*self.csv_reader.__next_ ())

442

CHAPTER 11 SHEETS: A CSV FRAMEWORK

You'll remember from Chapter 5 that when manually building an iterator, you have
to be careful to raise a StopIteration exception in order to avoid an infinite loop. In this
case, we don’t have to do that directly because the csv.reader will do that on its own.
Once it runs out of records, our own __next__ () method just needs to let StopIteration
go by without being caught.

The last feature to implement is the header row, which gets slightly more complex.
In the generator function shown earlier, it’s easy to just deal with the header row before
getting into the real loop. As a manual iterator, we have to manage it separately because
__next__ () will get called from the beginning for each record.

To do so, we’ll need to keep a Boolean attribute that indicates whether we still need
to skip the header row. At the beginning, that attribute will be the same as the dialect’s
has_header row attribute, but once the header row has been skipped, that attribute
needs to be reset so that __next () canyield a valid record every other time:

L
class Reader:
def init (self, row cls, file):
self.row_cls = row cls
self.csv_reader = csv.reader(file, **row cls. dialect.csv dialect)
self.skip_header_row = row_cls._dialect.has_header_row
def iter (self):
return self
def next (self):
Skip the first row if it's a header
if self.skip_header_row:
self.csv_reader.__next_ ()
self.skip_header_row = False
return self.row_cls(*self.csv_reader.__next__())

You can test it by supplying a simple CSV file and reading it in. Consider a file
containing a rough table of contents, with a column for the chapter number and another
for the chapter title. Here’s how you could write a Row to represent that file and parse the
contents:

443

CHAPTER 11 SHEETS: A CSV FRAMEWORK

>>> import sheets

>>> class Content(sheets.Row):
chapter = sheets.IntegerColumn()
title = sheets.StringColumn()

>>> file = open('contents.csv', newline=“)
>>> for entry in Content.reader(file):
print('%s: %s' % (entry.chapter, entry.title))

Principles and Philosophy
Advanced Basics

Functions

Classes

Protocols

Object Management

Strings

Documentation

W 00N O U1 & W N B e

: Testing
10: Distribution
11: Sheets: A CSV Framework

This completes the transition from rows in a CSV file to individual Python objects.
Because each of the rows in an instance of the Content class, you can also define
whatever other methods you like and have those available when processing entries from
the file. For the other side of the framework, we need a writer to move those objects back
into a CSV file.

The Writer

Unlike the reader, the interface for a CSV writer requires some instance methods, so the
implementation is a bit more complex. A generator method won't cut it this time around,
so we'll need to add a new class to the mix in order to manage the file writing behavior.
We can still rely on the csv module’s own behavior to do most of the heavy lifting, so this
new class only has to manage the additional features of the sheets framework.

444

CHAPTER 11 SHEETS: A CSV FRAMEWORK

The first part of the interface is simple. To mirror the availability of the reader, the
writer should be accessible from a method on the Row subclass. This method will also
take a file object, but this time it must return a new object rather than doing anything
with that file right away. That makes the implementation of this writer () method simple
on its own:

7

1

@classmethod
def writer(cls, file):
return Writer(file, cls._dialect)

Note The SheetWriter can’t get by with just the file, because it’s separate
from Row and wouldn’t otherwise have access to any of the dialect options.

This obviously doesn’t do anything useful yet, however, so the main task is to create
and fill out the SheetWriter class. There are two necessary methods to satisfy the writer
interface, writerow() and writerows(). The former is responsible for taking a single
object and writing out a row to the file, while the latter accepts a sequence of objects,
writing them each out as a separate row in the file.

Before starting on either of those methods, Writer needs some basic initialization.
The first obvious information it will need access to is the list of columns for the class.
Beyond that, it'll also need the CSV options, but those are only necessary to create a
writer using the csv module itself, just like the reader did. Finally, it needs access to the
one option that csv doesn’t know about its own, has_header row:

"
class Writer:
def init (self, file, dialect):
self.columns

self. writer = csv.writer(file, dialect.csv dialect)
self.needs_header_row = dialect.has_header_row

dialect.columns

445

CHAPTER 11 SHEETS: A CSV FRAMEWORK

Before moving on to the all-important writerow() method, notice the header row
option is actually named needs_header row when assigned to the class. This allows
writerow() to use that attribute as a flag to indicate whether the header row still needs
to be written. If no row is needed in the first place, it starts as False, but if it comes in as
True, it can be flipped to False once the header has actually be written to the file.

To write the header row itself, we can also defer to the csv.writer instead that will
be used later to write the value rows. The csv module doesn’t care what the overall
structure of the file is, so we can pass in a row of header values and it’ll be processed the
same way as all the other rows. Those header values come from the title attribute of
each column on the class, but we can use the string’s title() method to make them a
bit friendlier:

7
class Writer:
def _init (self, file, dialect):
self.columns = dialect.columns
self. writer = csv.writer(file, dialect.csv_dialect)
self.needs_header row = dialect.has_header row

def writerow(self, row):
if self.needs_header_row:
values = [column.title.title() for column in self.columns]
self. writer.writerow(values)
self.needs_header_row = False

With the header out of the way, writerow() can move on to write the actual row that
was passed into the method. The code to support the header already lays out most of
what needs to be done. The only difference is that rather than getting the title of each
column, the list comprehension needs to get the corresponding value from the row
object that was passed in:

L

1

class Writer:
def init (self, file, dialect):
self.columns = dialect.columns
446

CHAPTER 11 SHEETS: A CSV FRAMEWORK

self. writer = csv.writer(file, dialect.csv_dialect)
self.needs header row = dialect.has_header row

def writerow(self, row):
if self.needs header row:
values = [column.title.title() for column in self.columns]
self. writer.writerow(values)
self.needs header row = False
values = [getattr(row, column.name) for column in self.columns]
self._writer.writerow(values)

Finally, the writer also needs a writerows () method that can take a sequence of

objects and write them out as individual rows. The hard work is already done, so all

writerows() needs to do is call writerow() for each object that was passed into the

sequence:

7

1

class Writer:

def _init (self, file, dialect):
self.columns = dialect.columns
self. writer = csv.writer(file, dialect.csv_dialect)

self.needs_header row = dialect.has_header row

def writerow(self, row):
if self.needs header row:
values = [column.title.title() for column in self.columns]
self. writer.writerow(values)
self.needs header row = False
values = [getattr(row, column.name) for column in self.columns]
self. writer.writerow(values)

def writerows(self, rows):
for row in rows:
self.writexrow(row)

447

CHAPTER 11 SHEETS: A CSV FRAMEWORK

With a CSV reader and writer, the sheets framework is complete. You can add more
column classes to support additional data types or add more dialect options based on
more specific needs you may have, but the framework on the whole is intact. You can
verify the full functionality by reading an existing file and writing it back out to a new file.
As long as all the dialect parameters match the file’s structure, the contents of the two
files will be identical:

>>> import sheets

>>> class Content(sheets.Row):
chapter = sheets.IntegerColumn()
title = sheets.StringColumn()

>>> input = open('contents.csv', newline=*)

>>> reader = Content.reader(input)

>>> output = open('compare.csv', 'w', newline=“)

>>> writer = Content.writer(output)

>>> writer.writerows(reader)

>>> input.close()

>>> output.close()

>>> open('contents.csv').read() == open('compare.csv').read()
True

Taking It With You

In this chapter you've seen how to plan, build, and customize a framework using many
of the tools Python makes available. What was a complicated task that would have had
to be repeated multiple times has been reduced to a reusable and extendable tool. This
is just one example of how the techniques in this book can combine for such a complex
task, however. The rest is up to you.

448

Index

A

add() method, 60

add_column() method, 412

addTypeEqualityFunc() method, 362, 368

Affero General Public License (AGPL), 375

American Standard Code for Information
Interchange (ASCII), 312-313

annotation_processor(), 134

append() method, 60

Arithmetic operations, 228, 229

ASCII, see American Standard Code for
Information Interchange (ASCII)

attach_to_class() method, 403

B

Backward compatibility, 25-26
Berkeley Software Distribution (BSD)
license, 376

Bitwise operations, 234-236
__bool__() method, 227
Bound methods, 205-206
break statement, 43
Built-in function type, 83
Built-in id() function, 270
Built-in type() function, 149
Byte string

chr() and ord(), 306

standard strings, 305

struct module, 307

© J. Burton Browning and Marty Alchin 2019

C

Cache, 29
Callables, 259

_ call__ () method, 419

chain() function, 56
Classes
attributes
descriptors, 201
functions, 198
“get” and “set” functions, 198,
202,204
properties, 198
creation
code block, 186-187
individual plugin, 195
metaclasses, 190, 196
namespace controlling, 196
plugin framework, 192
plugin mount class and plugin
subclass, 194
runtime, 188
inheritance
contact class, 163-164
“get” and “set” functions, 162
introspection, 184
MRO (see Method resolution order
(MRO))
multiple inheritance, 165
Person and Company classes, 164
Python class, 162

449

J. B. Browning and M. Alchin, Pro Python 3, https://doi.org/10.1007/978-1-4842-4385-5

https://doi.org/10.1007/978-1-4842-4385-5

INDEX

Classes (cont.)

iterators, 221-223

magic methods
attributes, 215
automatic subclasses, 213
delattr() method, 217
setattr() function, 215-216
getattr() function, 215
instantiation creation, 211
repr() method, 220
string representations, 218
str() function, 218-219

methods
assigning functions, 210
bound methods, 205-206
class methods, 207
static methods, 209
unbound methods, 204-205

union() method, 62
update() method, 60, 62
Comma Separated Values (CSV) files
argument checking
column name array, 435
keyword arguments, 434, 436
positional arguments, 433
declarative programming (see
Declarative programming)
enumerate() method, 436
kwargs, 436
looping, 437
reader() method
Content class, 443-444
csv_dialect attribute, 440
Dialect class, 441
iterable object, 439
__iter_ () method, 441-442

Class methods, 207-209 _ next__ () method, 441-443
clear() method, 62 row class, 439, 440
coerce_arguments() decorator, 135, 136 reader objects, 431

Collections module row class, 438

default dictionaries, 67

named tuples, 65

ordered dictionaries, 66

sets
add()method, 60
append() method, 60
clear() method, 62
difference()method, 63
discard() method, 61
in keyword, 59
intersection() method, 63
issubset() method, 64
issuperset()method, 64
letters determination, 58
pop() method, 61
remove() method, 61

450

writer() method
contents, 448
row subclass, 445
title() method, 446
writerow() method, 445-447
writer objects, 432
Comparison operations, 243
Context managers, 260
Control flow
catching exceptions
EnvironmentError, 34
except keyword, 32-33
IOError, 33
OSError, 34
raise keyword, 32
SystemExit, 33

try keyword, 32
TypeError, 34
conditional expressions
and operator, 48
false value, 48
if/else function, 46
or operator, 48
count_lines() function, 39
definition, 32
except blocks, 40
exception chains, 37
optimizing loops, 43
UnicodeDecodeError, 42
with statement, 44
copy() method, 297
CounterMeta class, 419
count_lines(), 34
CSV framework, 395
custom_operator() function, 109
Cyclical counting, 283-286

D

Declarative framework, 392-393
Declarative programming
advantage, 394
base class, 396
class declaration, 394
end-user code, 397
example.py, 410
fields
arguments, 401
attach_to_class() method, 403
base class, 401
columns, 401
definition, 396
__init_ () method, 401
title, 401

INDEX

__init__.py module, 409
instance methods, 395
managing options
component, 397
custom class, 398
dialects, 400
dictionary implementation, 397
encode() method, 399
header row, 399
__init_ () method, 398
open() function, 399
validation method, 398
metaclasses (see Metaclasses)
options container, 396
placeholder, 397
string variable, 393
valuable approach, 395
deepcopy() method, 299-301

__del__() method, 284-286

discard() method, 61
Distribution
licensing
AGPL, 375
BSD license, 376
free software
foundation, 378
GPL, 373
LGPL, 376
0OSI, 378
online documentation, 386
packaging
definition, 378
documentation, 378-379
MANIFEST.in, 382-383
sdist command, 384
setup.py, 379
tests directory, 379
PyPI, 386

451

INDEX

divmod() method, 231, 239
Django and Elixir approach, 392
Doctest module
code formatting, 350
docstrings, 350
documentation, 353
print() function, 352
repr() function, 352
testmod() function, 354
times2() function, 354
Documentation
comments, 333
docstrings, 334
external

installation and configuration, 337

reference documents, 337
tutorials, 337
proper naming, 332
utilities
formatting, 339
links, 340
Sphinx, 343

Don’t Repeat Yourself (DRY), 20-21, 31

Double-asterisk syntax, 400
dump()/dumps() functions, 290

E

elif keyword, 7
__enter__() method, 260
enumerate() method, 436
example() function, 289
__exit_ () method, 261

F

Feedparser, 327-328
Fibonacci sequence, 28

452

Field library
Column class, 422, 423
DateColumn class
date() method, 428
format object, 427
strptime() method, 428

to_python() method, 429-430

DecimalColumn, 425
FloatColumn, 424
IntegerColumn, 424
StringField, 423
to_python() method, 422
to_string() method, 422
_ floordiv__(), 230
Floor division, 230
Functions
annotations
annotation_processor, 132
coercion, 134
decorators, 137
typesafe() decorator, 134

type safety, 121, 137, 139-143

arguments
flexibility, 84
get_arguments(), 100, 102
introspection, 95
invoking functions, 92
positional arguments, 90
preloading, 93
Python’s keyword, 84
required arguments, 89
update() function, 101
values, 96
variable keyword, 87, 92
variable positional, 85, 90
decorators
arguments, 111
closures, 107

creation, 118
log_error() function, 106
memoization, 116
@ syntax, 106
with/without
arguments, 114
wrappers, 109
generators, 143
introspection
definition, 148
docstrings, 151
modules and packages, 150
object types, 149
Lambdas, 146
programming language, 83
functools.partial(), 109
functools.wraps()
decorator, 110, 111

G H
Garbage collection
cyclical references
del b, 283
__del__() method, 284-286
gc.collect(), 285
gc.module, 285-286
example() function, 289
namespace, 289
reference counting, 281-283
weak reference, 287
General Public License (GPL), 373
get() method, 16
get_arguments(), 99, 100, 103-104
__getattr__() method, 275
getdoc() function, 152
__getitem__() method, 253
__getstate__() method, 291-292, 295-296

INDEX

,J,K
Image processing
changing orientation, 370
crop function, 370
filters, 371
__import__() function, 74
Importing code
asterisk, 71
fallback, 68
future module, 70
__import__() function, 74
importlib module, 78
relative imports, 74
importlib module, 78
import_module() function, 78
import_path() function, 77
__index__() method, 240
IndexError, 253
__init_ () method, 271, 273, 362,
368, 401, 405
insort() method, 417
inspect.getdoc(), 152
intersection() method, 63
Introspection techniques, 31
__invert_ () method, 236
isinstance() function, 122, 149, 184
issubset() method, 64
issuperset() method, 64
_ iter_ () method, 244, 249, 442
Iterables
break statement, 245
built-in range() function, 245
generators, 248
__getitem__() method, 247
__init_ () method, 244
__iter_ () method, 244
_ next_ () method, 245

453

INDEX

Iteration

L

category, 27

chaining iterables, 56
definition, 49

dictionary comprehensions, 56
for loop, 50

generator expressions, 53

list comprehensions, 52
looping, 28

memory allocation, 28
object-oriented perspective, 28
range() function, 49

sequence unpacking, 50

set comprehensions, 55
zipping iterables, 57

Lambda function, 416

Lesser General Public License (LGPL), 376

List comprehensions, 52-53
log_error(), 106, 107

map() function, 57
Mappings, 257
math.ceil(), 241
Matplotlib library, 157
Memoization, 30

memoize() decorator, 117

Metaclasses

attach_to_class() method, 407
class-level attributes, 405
encoding, 405

hasattr(), 408

dialect class, 406

inner class, 406

loop, 408

454

RowMeta, 409

Method resolution order (MRO)
base class, 166
breadth-first approach, 171
C3 algorithm, 176
C3 function, 172, 176
candidate class, 171
candidate removing, 174
candidate selection, 175
horizontal approach, 167
non-first classes, 173
parent classes, 171
purchase() method, 167
simple two-element list, 170
super() function, 179-182
test() method, 169, 182-183
TypeError, 177
while True loop, 173

min() processes, 53

min() function, 54

__mod__() method, 316

multiply_by(), 108

N

namedtuple()function, 65
Namespace dictionary
Borg pattern
__init_ () method, 271, 273

__new__() method, 273-275

__dict__ attribute, 270

self-caching properties
cachedproperty(), 278-280
__getattr__ () method, 275
ORM, 276
Person.get_employer()

method, 277

@property, 277-278
_ setattr__() method, 275

_ new__() method, 273-275, 420
New BSD license, 377
_ next__() method, 245, 442
Numbers
comparison operations, 243
__floor__() method, 241
__index__()method, 240
__int_ () method, 240
_ round__() method, 241
sign operations, 242
TypeError, 240
NumPy
arrays, 344-346
installation, 344
scientific computing and data
manipulation, 344
statistical functions, 347

O

Object management

Beautiful Soup, 301-303

copying
built-in sorted() method, 299
copy() method, 297
deepcopy() method, 299-301
shallow copy, 297

drawback, 296

garbage collection (see Garbage

collection)
identity, 269

namespace dictionary (see Namespace

dictionary)
object type, 269
pickling
_currency() method, 294
dumps() function, 290

__getstate__() method, 291-292,

295-296

INDEX

load() and loads()
functions, 290
__setstate__ () method, 293
value, 269
Object-Relational Mapping (ORM), 276
open() function, 399
Open Source Initiative (OSI), 375
Operations
bitwise, 234
__bool__() method, 226
mathematical operations
arithmetic, 228
floor division, 230
modulo operation, 230
__pow__() method, 233
rectangle, 226
variations, 236
OrderedDict class, 66
Ordered fields
Column.__init_ ()
attach_to_class(), 417
Column object, 414, 415
Dialect object, 416
__init_ () method, 414, 417
insort() method, 417
RowMeta class, 416
Column.__new_ (), 418
CounterMeta.__call_ (), 419
DeclarativeMeta.__prepare__()
add_column() method, 412
Column class, 414
namespace dictionary, 412
RowMeta, 411
options, 421

PQ

Pareto Principle, 22
Pickle command, 289
455

INDEX

pop() method, 61
__pow__() method, 232-233
Preloading arguments, 93
__prepare__() method, 411
Principles and philosophy, Python
backward compatibility, 25
DRY, 20
loose coupling, 21
Pareto Principle, 22
Robustness Principle, 23
Samurai Principle, 22
Zen of Python
bracket syntax, 16
code blocks, 7
code snippet, 6
comp.lang.python, 2
complexity, 6
documentation, 17
elif keyword, 7
encoding, 15
error handling, 14
explicit code, 4
flat structures, 8
get() method, 16
implementation, 11, 18
interface, 5
is_valid code, 3
iterative development, 18
keyword arguments, 3
namespace handling, 19
PEP-8, 8
readability Counts, 9-10
robust error-handling system, 11
Unicode strings, 16
validate() method, 13
Pseudo-random number generator, 79
Python 3.0, 36
Python Enhancement Proposal (PEP), 2

456

Python extensions
Beacon components, 79
charts type, 158
get value, 80
Matplotlib library, 157
mean() and groupby(), 156
NIST Beacon, installation, 80
Pandas and Matplotlib,
installation, 154
Pandas to display data, 155
statistics, 154
text file, 155
Python Imaging Library (PIL), 369
Python Package Index (PyPI), 386
Python’s introspection, 95-96
Python’s keyword
arguments, 84

R

readlines (), 42

Reference counting, 281-283
remove() method, 61

return statement, 43
returns() function, 143
Robustness principle, 23

_ round__() method, 241

S

Samurai principle, 22
Scrapy
installation, 263
project setup, 263, 265
retrieve web data, 265
running, 263
shell options, 265-266
web page, view, 265

Secrets module
password generation, 388-389
random number algorithm, 387, 388
self.fail(), 368
Sequences
additional attributes and behaviors, 250
built-in len() function, 251
class range, 256
_ contains__() method, 256
__delitem__() method, 255
__getitem__() method, 252-253
__len_ () method, 251
reversed() function, 251
_ setitem__() method, 255
Sequence structure, 32
_ setattr__() method, 275
_ setitem__() method, 255
_ setstate__ () method, 293
setup() function, 379
Shallow copies, 297-299
Sign operations, 242
Simplified BSD license, 377
sort() method call, 146
sort() operation, 416
Sphinx, 343
startswith() method, 13
Static methods, 209
str() function, 316
strftime() method, 430
String representation, 218
Strings
bytes
chr() and ord(), 306
standard strings, 305
struct module, 307
formatting
custom format, 326
customizable validation function, 319

INDEX

explicit format() method, 319
format(), 320
keyword arguments, 319
object reference, 321
plain text table of contents, 324
positional arguments, 319
__repr__() method, 321
standard format, 322
_ str__() method, 321
simple substitution, 316
text
encodings, 313
unicode, 312
strptime() method, 428
Struct module, 307
subclass() function, 185
suppress_errors() decorator, 109, 112, 119
suppress_errors() function, 106, 113
symmetric_difference() method, 64

T

tearDown() method, 367
Testing
custom test class, 368
definition, 349
doctest module
code formatting, 350
docstrings, 350
documentation, 353
print() function, 352
repr() function, 352
testmod() function, 354
times2() function, 354
test-driven development, 349-350
unittest module
addTypeEqualityFunc()
method, 362

457

INDEX

Testing (cont.)
assertEqual(), 361
assertion, 358
AssertionError, 360
assertRaises(), 364-365
assertRaisesRegexp(), 365
comparison methods, 363
identity, 366
main() function, 358
sequence content, 364
setUp() method, 356
strings, 363
tearDown() method, 367
TestCase class, 356
tests.py, 359
with block, 365
testmod() function, 354
testNumber() method, 358
tests.py module, 359
test_value() function, 48
title() method, 446
to_python() method, 422
to_string() method, 422
Transmission Control
Protocol (TCP), 23
Transparency, 30-31
__truediv__() method, 229
typesafe() decorator, 140-141
typesafe() function, 126, 129, 143

U

Unbound methods, 204-205
union() method, 62
Unittest module

addTypeEqualityFunc() method, 362

assertEqual(), 361
assertion, 358

458

AssertionError, 360
assertRaises(), 364-365
assertRaisesRegexp(), 365
comparison methods, 363
identity, 366
main() function, 358
sequence content, 364
setUp() method, 356
strings, 363
tearDown() method, 367
TestCase class, 356
tests.py, 359
with block, 365
update() function, 101
update() method, 60, 62
UTE-8, 314

\"

validate() method, 13
Variable arguments, 89, 92, 104
Variable keyword arguments, 92

w

Weak references, 287-289
What You See Is What You Mean

(WYSIWYM) approach, 338

Wrapped function, 109
writerows() method, 446-447

XY

XOR operation, 64

y4

zip() function, 57

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Principles and Philosophy
	The Zen of Python
	Beautiful Is Better Than Ugly
	Explicit Is Better Than Implicit
	Simple Is Better Than Complex
	Complex Is Better Than Complicated
	Flat Is Better Than Nested
	Sparse Is Better Than Dense
	Readability Counts
	Special Cases Aren’t Special Enough to Break the Rules
	Practicality Beats Purity
	Errors Should Never Pass Silently
	Unless Explicitly Silenced
	In the Face of Ambiguity, Refuse the Temptation to Guess
	There Should Be One—and Preferably Only One—Obvious Way to Do It
	Although That Way May Not Be Obvious at First, Unless You’re Dutch
	Now Is Better Than Never
	Although Never Is Often Better Than Right Now
	If the Implementation Is Hard to Explain, It’s a Bad Idea
	If the Implementation Is Easy to Explain, It May Be a Good Idea
	Namespaces Are One Honking Great Idea: Let’s Do More of Those!

	Don’t Repeat Yourself
	Loose Coupling
	The Samurai Principle
	The Pareto Principle
	The Robustness Principle
	Backward Compatibility
	Taking It With You

	Chapter 2: Advanced Basics
	General Concepts
	Iteration
	Caching
	Transparency

	Control Flow
	Catching Exceptions
	Exception Chains
	When Everything Goes Right
	Proceeding Regardless of Exceptions
	Optimizing Loops
	The with Statement
	Conditional Expressions

	Iteration
	Sequence Unpacking
	List Comprehensions
	Generator Expressions
	Set Comprehensions
	Dictionary Comprehensions
	Chaining Iterables Together
	Zipping Iterables Together

	Collections
	Sets
	Named Tuples
	Ordered Dictionaries
	Dictionaries with Defaults

	Importing Code
	Fallback Imports
	Importing from the Future
	Using __all__ to Customize Imports
	Relative Imports
	The __import__() Function
	The importlib Module

	Exciting Python Extensions: Random Number Beacon at NIST
	How to Install the NIST Beacon Library
	Simple Example to Get a Value
	Example to Simulate Rolling Coin Flipping a Certain # Times and Display Heads or Tails

	Taking It With You

	Chapter 3: Functions
	Arguments
	Planning for Flexibility
	Variable Positional Arguments
	Variable Keyword Arguments
	Combining Different Kinds of Arguments
	Invoking Functions with Variable Arguments
	Passing Arguments
	Introspection
	Example: Identifying Argument Values
	Example: A More Concise Version
	Example: Validating Arguments

	Decorators
	Closures
	Wrappers
	Decorators with Arguments
	Decorators with—or without—Arguments
	Example: Memoization
	Example: A Decorator to Create Decorators

	Function Annotations
	Example: Type Safety
	Factoring Out the Boilerplate
	Example: Type Coercion
	Annotating with Decorators
	Example: Type Safety as a Decorator

	Generators
	Lambdas
	Introspection
	Identifying Object Types
	Modules and Packages
	Docstrings

	Exciting Python Extensions: Statistics
	Install Pandas and Matplotlib
	Make a Text File of Data
	Use Pandas to Display Data
	Running Some Data Analysis
	Plotting with Matplotlib
	Types of Charts
	Combine Matplotlib with Pandas

	Taking It with You

	Chapter 4: Classes
	Inheritance
	Multiple Inheritance
	Method Resolution Order
	Example: C3 Algorithm
	Using super() to Pass Control to Other Classes
	Introspection

	How Classes Are Created
	Creating Classes at Runtime
	Metaclasses
	Example: Plugin Framework
	Controlling the Namespace

	Attributes
	Properties
	Descriptors

	Methods
	Unbound Methods
	Bound Methods
	Class Methods
	Static Methods
	Assigning Functions to Classes and Instances

	Magic Methods
	Creating Instances
	Example: Automatic Subclasses
	Dealing with Attributes
	String Representations

	Exciting Python Extensions: Iterators
	Taking It With You

	Chapter 5: Common Protocols
	Basic Operations
	Mathematical Operations
	Bitwise Operations
	Variations

	Numbers
	Sign Operations
	Comparison Operations

	Iterables
	Example: Repeatable Generators

	Sequences
	Mappings
	Callables
	Context Managers
	Exciting Python Extensions: Scrapy
	Installation
	Running Scrapy
	Project Setup
	Retrieve Web Data with Scrapy
	View a Web Page via Scrapy
	Shell Options

	Taking It With You

	Chapter 6: Object Management
	Namespace Dictionary
	Example: Borg Pattern
	Example: Self-Caching Properties

	Garbage Collection
	Reference Counting
	Cyclical References
	Weak References

	Pickling
	Copying
	Shallow Copies
	Deep Copies

	Exciting Python Extensions: Beautiful Soup
	Installing Beautiful Soup
	Using Beautiful Soup

	Taking It With You

	Chapter 7: Strings
	Bytes
	Simple Conversion: chr() and ord()
	Complex Conversion: The Struct Module

	Text
	Unicode
	Encodings

	Simple Substitution
	Formatting
	Looking Up Values Within Objects
	Distinguishing Types of Strings
	Standard Format Specification
	Example: Plain Text Table of Contents
	Custom Format Specification

	Exciting Python Extensions
	Feedparser
	How to Install
	How to Use

	Taking It With You

	Chapter 8: Documentation
	Proper Naming
	Comments
	Docstrings
	Describe What the Function Does
	Explain the Arguments
	Don’t Forget the Return Value
	Include Any Expected Exceptions

	Documentation Outside the Code
	Installation and Configuration
	Tutorials
	Reference Documents

	Documentation Utilities
	Formatting
	Links
	Sphinx

	Exciting Python Extensions: NumPy
	Install NumPy
	Using NumPy
	Working With NumPy Arrays
	Statistical Measures

	Taking It With You

	Chapter 9: Testing
	Test-Driven Development
	Doctests
	Formatting Code
	Representing Output
	Integrating With Documentation
	Running Tests

	The unittest Module
	Setting Up
	Writing Tests
	Other Comparisons
	Testing Strings and Other Sequence Content
	Testing Exceptions
	Testing Identity
	Tearing Down

	Providing a Custom Test Class
	Changing Test Behavior

	Exciting Python Extensions: Pillow
	How to Install Pillow (PIL)
	Image Display: Determine File Size, Type, and Display It
	Image Processing: Crop a Portion of an Image
	Image Processing: Changing Image Orientation
	Image Processing: Filters

	Taking It With You

	Chapter 10: Distribution
	Licensing
	GNU General Public License
	Affero General Public License
	GNU Lesser General Public License
	Berkeley Software Distribution License
	Other Licenses

	Packaging
	setup.py
	MANIFEST.in
	The sdist Command

	Distribution
	Exciting Python Extensions: Secrets Module
	Random Numbers
	Password Generation

	Taking It With You

	Chapter 11: Sheets: A CSV Framework
	Building a Declarative Framework
	Introducing Declarative Programming
	To Build or Not to Build?

	Building the Framework
	Managing Options
	Defining Fields
	Attaching a Field to a Class
	Adding a Metaclass
	Bringing It Together

	Ordering Fields
	DeclarativeMeta.__prepare__()
	Column.__init__()
	Column.__new__()
	CounterMeta.__call__()
	Choosing an Option

	Building a Field Library
	StringField
	IntegerColumn
	FloatColumn
	DecimalColumn
	DateColumn

	Getting Back to CSV
	Checking Arguments
	Populating Values
	The Reader
	The Writer

	Taking It With You

	Index

