

Susan E. McGregor

Practical Python Data Wrangling
and Data Quality

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09150-9

[LSI]

Practical Python Data Wrangling and Data Quality
by Susan E. McGregor

Copyright © 2022 Susan E. McGregor. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jessica Haberman
Development Editor: Jeff Bleiel
Production Editor: Daniel Elfanbaum
Copyeditor: Sonia Saruba
Proofreader: Piper Editorial Consulting, LLC

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Jose Marzan Jr.
Illustrator: Kate Dullea

December 2021: First Edition

Revision History for the First Edition
2021-12-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492091509 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Practical Python Data Wrangling and
Data Quality, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492091509

Table of Contents

Preface. ix

1. Introduction to Data Wrangling and Data Quality. 1
What Is “Data Wrangling”? 2
What Is “Data Quality”? 3

Data Integrity 4
Data “Fit” 5

Why Python? 6
Versatility 6
Accessibility 7
Readability 7
Community 7
Python Alternatives 8

Writing and “Running” Python 8
Working with Python on Your Own Device 11

Getting Started with the Command Line 11
Installing Python, Jupyter Notebook, and a Code Editor 14

Working with Python Online 19
Hello World! 20

Using Atom to Create a Standalone Python File 20
Using Jupyter to Create a New Python Notebook 21
Using Google Colab to Create a New Python Notebook 22

Adding the Code 23
In a Standalone File 23
In a Notebook 23

Running the Code 23
In a Standalone File 23
In a Notebook 24

iii

Documenting, Saving, and Versioning Your Work 24
Documenting 24
Saving 25
Versioning 26

Conclusion 35

2. Introduction to Python. 37
The Programming “Parts of Speech” 38

Nouns ≈ Variables 39
Verbs ≈ Functions 42
Cooking with Custom Functions 46
Libraries: Borrowing Custom Functions from Other Coders 47

Taking Control: Loops and Conditionals 47
In the Loop 48
One Condition… 51

Understanding Errors 55
Syntax Snafus 56
Runtime Runaround 58
Logic Loss 60

Hitting the Road with Citi Bike Data 62
Starting with Pseudocode 63
Seeking Scale 68

Conclusion 70

3. Understanding Data Quality. 71
Assessing Data Fit 73

Validity 74
Reliability 76
Representativeness 77

Assessing Data Integrity 79
Necessary, but Not Sufficient 81
Important 82
Achievable 85

Improving Data Quality 88
Data Cleaning 88
Data Augmentation 89

Conclusion 90

4. Working with File-Based and Feed-Based Data in Python. 91
Structured Versus Unstructured Data 93
Working with Structured Data 97

File-Based, Table-Type Data—Take It to Delimit 97

iv | Table of Contents

Wrangling Table-Type Data with Python 99
Real-World Data Wrangling: Understanding Unemployment 105

XLSX, ODS, and All the Rest 107
Finally, Fixed-Width 114
Feed-Based Data—Web-Driven Live Updates 118
Wrangling Feed-Type Data with Python 120

Working with Unstructured Data 133
Image-Based Text: Accessing Data in PDFs 134
Wrangling PDFs with Python 135
Accessing PDF Tables with Tabula 139

Conclusion 140

5. Accessing Web-Based Data. 141
Accessing Online XML and JSON 143
Introducing APIs 145
Basic APIs: A Search Engine Example 146
Specialized APIs: Adding Basic Authentication 148

Getting a FRED API Key 149
Using Your API key to Request Data 150

Reading API Documentation 151
Protecting Your API Key When Using Python 153

Creating Your “Credentials” File 155
Using Your Credentials in a Separate Script 155
Getting Started with .gitignore 157

Specialized APIs: Working With OAuth 159
Applying for a Twitter Developer Account 160
Creating Your Twitter “App” and Credentials 162
Encoding Your API Key and Secret 167
Requesting an Access Token and Data from the Twitter API 168

API Ethics 172
Web Scraping: The Data Source of Last Resort 173

Carefully Scraping the MTA 176
Using Browser Inspection Tools 178
The Python Web Scraping Solution: Beautiful Soup 180

Conclusion 184

6. Assessing Data Quality. 185
The Pandemic and the PPP 187
Assessing Data Integrity 187

Is It of Known Pedigree? 188
Is It Timely? 189
Is It Complete? 189

Table of Contents | v

Is It Well-Annotated? 201
Is It High Volume? 206
Is It Consistent? 208
Is It Multivariate? 211
Is It Atomic? 213
Is It Clear? 213
Is It Dimensionally Structured? 215

Assessing Data Fit 215
Validity 216
Reliability 219
Representativeness 220

Conclusion 222

7. Cleaning, Transforming, and Augmenting Data. 225
Selecting a Subset of Citi Bike Data 226

A Simple Split 227
Regular Expressions: Supercharged String Matching 229
Making a Date 233

De-crufting Data Files 235
Decrypting Excel Dates 239
Generating True CSVs from Fixed-Width Data 241
Correcting for Spelling Inconsistencies 244
The Circuitous Path to “Simple” Solutions 250
Gotchas That Will Get Ya! 252
Augmenting Your Data 253
Conclusion 256

8. Structuring and Refactoring Your Code. 257
Revisiting Custom Functions 258

Will You Use It More Than Once? 258
Is It Ugly and Confusing? 258
Do You Just Really Hate the Default Functionality? 259

Understanding Scope 259
Defining the Parameters for Function “Ingredients” 262

What Are Your Options? 263
Getting Into Arguments? 263

Return Values 264
Climbing the “Stack” 265
Refactoring for Fun and Profit 267

A Function for Identifying Weekdays 267
Metadata Without the Mess 270

Documenting Your Custom Scripts and Functions with pydoc 277

vi | Table of Contents

The Case for Command-Line Arguments 281
Where Scripts and Notebooks Diverge 284
Conclusion 285

9. Introduction to Data Analysis. 287
Context Is Everything 288
Same but Different 289
What’s Typical? Evaluating Central Tendency 290

What’s That Mean? 290
Embrace the Median 291

Think Different: Identifying Outliers 292
Visualization for Data Analysis 292

What’s Our Data’s Shape? Understanding Histograms 296
The Significance of Symmetry 297
Counting “Clusters” 305

The $2 Million Question 306
Proportional Response 317
Conclusion 321

10. Presenting Your Data. 323
Foundations for Visual Eloquence 324
Making Your Data Statement 326
Charts, Graphs, and Maps: Oh My! 327

Pie Charts 327
Bar and Column Charts 330
Line Charts 335
Scatter Charts 339
Maps 342

Elements of Eloquent Visuals 345
The “Finicky” Details Really Do Make a Difference 345
Trust Your Eyes (and the Experts) 345
Selecting Scales 347
Choosing Colors 347
Above All, Annotate! 348

From Basic to Beautiful: Customizing a Visualization
with seaborn and matplotlib 349

Beyond the Basics 354
Conclusion 355

11. Beyond Python. 357
Additional Tools for Data Review 358

Spreadsheet Programs 358

Table of Contents | vii

OpenRefine 359
Additional Tools for Sharing and Presenting Data 361

Image Editing for JPGs, PNGs, and GIFs 361
Software for Editing SVGs and Other Vector Formats 362

Reflecting on Ethics 363
Conclusion 364

A. More Python Programming Resources. 365

B. A Bit More About Git. 369

C. Finding Data. 375

D. Resources for Visualization and Information Design. 381

Index. 383

viii | Table of Contents

Preface

Welcome! If you’ve picked up this book, you’re likely one of the many millions of
people intrigued by the processes and possibilities surrounding “data”—that incred‐
ible, elusive new “currency” that’s transforming the way we live, work, and even
connect with one another. Most of us, for example, are vaguely aware of the fact that
data—collected by our electronic devices and other activities—is being used to shape
what advertisements we see, what media is recommended to us, and which search
results populate first when we look for something online. What many people may
not appreciate is that the tools and skills for accessing, transforming, and generating
insight from data are readily available to them. This book aims to help those people—
you, if you like—do just that.

Data is not something that is only available or useful to big companies or governmen‐
tal number crunchers. Being able to access, understand, and gather insight from data
is a valuable skill whether you’re a data scientist or a day care worker. The tools
needed to use data effectively are more accessible than ever before. Not only can you
do significant data work using only free software and programming languages, you
don’t even need an expensive computer. All of the exercises in this book, for example,
were designed and run on a Chromebook that cost less than $500. You can even just
use free online platforms through the internet connection at your local library.

The goal of this book is to provide the guidance and confidence that data novices
need to begin exploring the world of data—first by accessing it, then evaluating its
quality. With those foundations in place, we’ll move on to some of the basic methods
of analyzing and presenting data to generate meaningful insight. While these latter
sections will be far from comprehensive (both data analysis and visualization are
robust fields unto themselves), they will give you the core skills needed to gener‐
ate accurate, informative analyses and visualizations using your newly cleaned and
acquired data.

ix

1 For a long time, installing the tools was also a huge obstacle. Now all you need is an internet connection!

Who Should Read This Book?
This book is intended for true beginners; all you need are a basic understanding of
how to use computers (e.g., how to download a file, open a program, copy and paste,
etc.), an open mind, and a willingness to experiment. I especially encourage you to
take a chance on this book if you are someone who feels intimidated by data or
programming, if you’re “bad at math,” or imagine that working with data or learning
to program is too hard for you. I have spent nearly a decade teaching hundreds of
people who didn’t think of themselves as “technical” the exact skills contained in
this book, and I have never once had a student who was genuinely unable to get
through this material. In my experience, the most challenging part of programming
and working with data is not the difficulty of the material but the quality of the
instruction.1 I am grateful both to the many students over the years whose questions
have helped me immeasurably in finding ways to convey this material better, and for
the opportunity to share what I learned from them with so many others through this
book. While a book cannot truly replace the kind of support provided by a human
teacher, I hope it will at least give the tools you need to master the basics—and
perhaps the inspiration to take those skills to the next level.

Folks who have some experience with data wrangling but have reached the limits
of spreadsheet tools or want to expand the range of data formats they can easily
access and manipulate will also find this book useful, as will those with frontend
programming skills (in JavaScript or PHP, for example) who are looking for a way to
get started with Python.

Where Would You like to Go?
In the preface to media theorist Douglas Rushkoff ’s book Program or Be Programmed
(OR Books), he compares the act of programming to that of driving a car. Unless you
learn to program, Rushkoff writes, you are a perpetual passenger in the digital world,
one who “is getting driven from place to place. Only the car has no windows and if
the driver tells you there is only one supermarket in the county, you have to believe
him.”

“You can relegate your programming to others,” Rushkoff continues, “but then you
have to trust them that their programs are really doing what you’re asking, and in a
way that is in your best interests.” More and more these days, the latter assertion is
being thrown into question.

Over the years, I’ve asked several hundred students if they believe anyone can learn to
drive, and the answer has always been yes. At the same time, I have met few people,
apart from myself, who truly believe that anyone can program. Yet driving a motor

x | Preface

https://www.theguardian.com/technology/2021/sep/14/facebook-aware-instagram-harmful-effect-teenage-girls-leak-reveals
https://www.theguardian.com/technology/2021/sep/14/facebook-aware-instagram-harmful-effect-teenage-girls-leak-reveals

vehicle is, in reality, vastly more complex than programming a computer. Why, then,
do so many of us imagine that programming will be “too hard” for us?

For me, this is where the real strength of Rushkoff ’s analogy shows, because his
“windowless car” doesn’t just hide the outside world from the passenger—it also hides
the “driver” from passersby. It’s easy to believe that anyone can drive a car because we
actually see all kinds of people driving cars, every day.

When it comes to programming, though, we rarely get to see who is “behind the
wheel,” which means our ideas about who can and should program are largely defined
by media that portray programmers as typically white and overwhelmingly male. As a
result, those characteristics have come to dominate who does program—but there’s no
reason why it should. Because if you can drive a car—or even punctuate a sentence—I
promise you can program a computer, too.

Who Shouldn’t Read This Book?
As noted previously, this book is intended for beginners. So while you may find
some sections useful if you are new to data analysis or visualization, this volume is
not designed to serve those with prior experience in Python or another data-focused
programming language (like R). Fortunately, O’Reilly has many specialized volumes
that deal with advanced Python topics and libraries, such as Wes McKinney’s Python
for Data Analysis (O’Reilly) or the Python Data Science Handbook by Jake VanderPlas
(O’Reilly).

What to Expect from This Volume
The content of this book is designed to be followed in the order presented, as the con‐
cepts and exercises in each chapter build on those explored previously. Throughout,
however, you will find that exercises are presented in two ways: as code “notebooks”
and as “standalone” programming files. The purpose of this is twofold. First, it allows
you, the reader, to use whichever approach you prefer or find more accessible; sec‐
ond, it provides a way to compare these two methods of interacting with data-driven
Python code. In my experience, Python “notebooks” are extremely useful for getting
up and running quickly but can become tedious if you develop a reliable piece of
code that you wish to run repeatedly. Since the code from one format often cannot
simply be copied and pasted to the other, both are provided in the accompanying
GitHub repo. Data files, too, are available via Google Drive. As you follow along with
the exercises, you will be able to use the format you prefer and will also have the
option of seeing the differences in the code for each format firsthand.

Although Python is the primary tool used in this book, effective data wrangling and
analysis are made easier through the smart use of a range of tools, from text editors
(the programs in which you will actually write your code) to spreadsheet programs.

Preface | xi

https://www.npr.org/sections/money/2014/10/21/357629765/when-women-stopped-coding
https://www.oreilly.com/library/view/python-for-data/9781491957653/
https://www.oreilly.com/library/view/python-for-data/9781491957653/
https://www.oreilly.com/library/view/python-data-science/9781491912126/

Because of this, there are occasional exercises in this book that rely on other free
and/or open source tools besides Python. Wherever these are introduced, I will offer
some context as to why that tool has been chosen, along with sufficient instructions
to complete the example task.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Monospaced

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Monospaced bold

Shows commands or other text that should be typed literally by the user.

Monospaced italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xii | Preface

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/PracticalPythonDataWranglingAndQuality.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

The code in this book is here to help you develop your skills. In general, if example
code is offered with this book, you may use it in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Practical Python Data
Wrangling and Data Quality by Susan E. McGregor (O’Reilly). Copyright 2022 Susan
E. McGregor, 978-1-492-09150-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

Preface | xiii

https://github.com/PracticalPythonDataWranglingAndQuality
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi‐
tional information. You can access this page at https://www.oreilly.com/library/view/
practical-python-data/9781492091493.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
As I mentioned previously, this book owes much to my many students over the years
who were brave enough to try something new and ask sincere questions along the
way. The process of writing this book (to say nothing of the text itself) was made
immeasurably better by my editor, Jeff Bleiel, whose pleasantness, flexibility, and light
touch tempered my excesses while making space for my personal style. I am also
grateful for the thoughtful and generous comments of my reviewers: Joanna S. Kao,
Anne Bonner, and Randy Au.

I would also like to thank Jess Haberman, who offered me the chance to make this
material my own, as well as Jacqueline Kazil and Katharine Jarmul, who helped put
me in her way. I’d also like to thank Jeannette Wing and Cliff Stein and the staff at
Columbia University’s Data Science Institute, whose interest in this work has already
helped it generate exciting new opportunities. And of course, I want to thank my
friends and relations for their interest and support, even—and especially—when they
had no idea what I was talking about.

xiv | Preface

https://www.oreilly.com/library/view/practical-python-data/9781492091493
https://www.oreilly.com/library/view/practical-python-data/9781492091493
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Finally, I’d want to thank my family (including the children too young to read this)
for staying supportive even when the Sad SpongeBob days set in. You make the work
worth doing.

Preface | xv

CHAPTER 1

Introduction to Data Wrangling
and Data Quality

These days it seems like data is the answer to everything: we use the data in product
and restaurant reviews to decide what to buy and where to eat; companies use the
data about what we read, click, and watch to decide what content to produce and
which advertisements to show; recruiters use data to decide which applicants get
job interviews; the government uses data to decide everything from how to allocate
highway funding to where your child goes to school. Data—whether it’s a basic table
of numbers or the foundation of an “artificial intelligence” system—permeates our
lives. The pervasive impact that data has on our experiences and opportunities every
day is precisely why data wrangling is—and will continue to be—an essential skill
for anyone interested in understanding and influencing how data-driven systems
operate. Likewise, the ability to assess—and even improve—data quality is indispen‐
sable for anyone interested in making these sometimes (deeply) flawed systems work
better.

Yet because both the terms data wrangling and data quality will mean different things
to different people, we’ll begin this chapter with a brief overview of the three main
topics addressed in this book: data wrangling, data quality, and the Python program‐
ming language. The goal of this overview is to give you a sense of my approach to
these topics, partly so you can determine if this book is right for you. After that,
we’ll spend some time on the necessary logistics of how to access and configure the
software tools and other resources you’ll need to follow along with and complete
the exercises in this book. Though all of the resources that this book will reference
are free to use, many programming books and tutorials take for granted that readers
will be coding on (often quite expensive) computers that they own. Since I really
believe that anyone who wants to can learn to wrangle data with Python, however, I
wanted to make sure that the material in this book can work for you even if you don’t

1

have access to a full-featured computer of your own. To help ensure this, all of the
solutions you’ll find here and in the following chapters were written and tested on a
Chromebook; they can also be run using free, online-only tools using either your own
device or a shared computer, for example, at school or a public library. I hope that by
illustrating how accessible not just the knowledge but also the tools of data wrangling
can be will encourage you to explore this exciting and empowering practice.

What Is “Data Wrangling”?
Data wrangling is the process of taking “raw” or “found” data, and transforming
it into something that can be used to generate insight and meaning. Driving every
substantive data wrangling effort is a question: something about the world you want
to investigate or learn more about. Of course, if you came to this book because you’re
really excited about learning to program, then data wrangling can be a great way to
get started, but let me urge you now not to try to skip straight to the programming
without engaging the data quality processes in the chapters ahead. Because as much
as data wrangling may benefit from programming skills, it is about much more than
simply learning how to access and manipulate data; it’s about making judgments,
inferences, and selections. As this book will illustrate, most data that is readily
available is not especially good quality, so there’s no way to do data wrangling without
making choices that will influence the substance of the resulting data. To attempt data
wrangling without considering data quality is like trying drive a car without steering:
you may get somewhere—and fast!—but it’s probably nowhere you want to be. If
you’re going to spend time wrangling and analyzing data, you want to try to make
sure it’s at least likely to be worth the effort.

Just as importantly, though, there’s no better way to learn a new skill than to connect
it to something you genuinely want to get “right,” because that personal interest
is what will carry you through the inevitable moments of frustration. This doesn’t
mean that question you choose has to be something of global importance. It can
be a question about your favorite video games, bands, or types of tea. It can be a
question about your school, your neighborhood, or your social media life. It can be a
question about economics, politics, faith, or money. It just has to be something that
you genuinely care about.

Once you have your question in hand, you’re ready to begin the data wrangling pro‐
cess. While the specific steps may need adjusting (or repeating) depending on your
particular project, in principle data wrangling involves some or all of the following
steps:

1. Locating or collecting data1.
2. Reviewing the data2.
3. “Cleaning,” standardizing, transforming, and/or augmenting the data3.

2 | Chapter 1: Introduction to Data Wrangling and Data Quality

1 We’ll cover these in detail in Chapters 4 and 5, respectively.

4. Analyzing the data4.
5. Visualizing the data5.
6. Communicating the data6.

The time and effort required for each of these steps, of course, can vary considerably:
if you’re looking to speed up a data wrangling task you already do for work, you may
already have a dataset in hand and know basically what it contains. Then again, if
you’re trying to answer a question about city spending in your community, collecting
the data may be the most challenging part of your project.

Also, know that, despite my having numbered the preceding list, the data wrangling
process is really more of a cycle than it is a linear set of steps. More often than not,
you’ll need to revisit earlier steps as you learn more about the meaning and context
of the data you’re working with. For example, as you analyze a large dataset, you may
come across surprising patterns or values that cause you to question assumptions
you may have made about it during the “review” step. This will almost always mean
seeking out more information—either from the original data source or completely
new ones—in order to understand what is really happening before you can move on
with your analysis or visualization. Finally, while I haven’t explicitly included it in the
list, it would be a little more accurate to start each of the steps with Researching and.
While the “wrangling” parts of our work will focus largely on the dataset(s) we have
in front of us, the “quality” part is almost all about research and context, and both of
these are integral to every stage of the data wrangling process.

If this all seems a little overwhelming right now—don’t worry! The examples in
this book are built around real datasets, and as you follow along with coding and
quality-assessment processes, this will all begin to feel much more organic. And if
you’re working through your own data wrangling project and start to feel a little lost,
just keep reminding yourself of the question you are trying to answer. Not only will
that remind you why you’re bothering to learn about all the minutiae of data formats
and API access keys,1 it will also almost always lead you intuitively to the next “step”
in the wrangling process—whether that means visualizing your data or doing just a
little more research in order to improve its context and quality.

What Is “Data Quality”?
There is plenty of data out in the world and plenty of ways to access and collect it.
But all data is not created equal. Understanding data quality is an essential part of
data wrangling because any data-driven insight can only be as good as the data it was
built upon.2 So if you’re trying to use data to understand something meaningful about

What Is “Data Quality”? | 3

2 In the world of computing, this is often expressed as “garbage in/garbage out.”

the world, you have to first make sure that the data you have accurately reflects that
world. As we’ll see in later chapters (Chapters 3 and 6, in particular), the work of
improving data quality is almost never as clear-cut as the often tidy-looking, neatly
labeled rows and columns of data you’ll be working with.

That’s because—despite the use of terms like machine learning and artificial intelli‐
gence—the only thing that computational tools can do is follow the directions given
to them, using the data provided. And even the most complex, sophisticated, and
abstract data is irrevocably human in its substance, because it is the result of human
decisions about what to measure and how. Moreover, even today’s most advanced
computer technologies make “predictions” and “decisions” via what amounts to large-
scale pattern matching—patterns that exist in the particular selections of data that
the humans “training” them provide. Computers do not have original ideas or make
creative leaps; they are fundamentally bad at many tasks (like explaining the “gist”
of an argument or the plot of a story) that humans find intuitive. On the other
hand, computers excel at performing repetitive calculations, very very fast, without
getting bored, tired, or distracted. In other words, while computers are a fantastic
complement to human judgment and intelligence, they can only amplify them—not
substitute for them.

What this means is that it is up to the humans involved in data collection, acquisition,
and analysis to ensure its quality so that the outputs of our data work actually mean
something. While we will go into significant detail around data quality in Chapter 3, I
do want to introduce two distinct (though equally important) axes for evaluating data
quality: (1) the integrity of the data itself, and (2) the “fit” or appropriateness of the
data with respect to a particular question or problem.

Data Integrity
For our purposes, the integrity of a dataset is evaluated using the data values and
descriptors that make it up. If our dataset includes measurements over time, for
example, have they been recorded at consistent intervals or sporadically? Do the
values represent direct individual readings, or are only averages available? Is there a
data dictionary that provides details about how the data was collected, recorded, or
should be interpreted—for example, by providing relevant units? In general, data that
is complete, atomic, and well-annotated—among other things—is considered to be of
higher integrity because these characteristics make it possible to do a wider range of
more conclusive analyses. In most cases, however, you’ll find that a given dataset is
lacking on any number of data integrity dimensions, meaning that it’s up to you to try
to understand its limitations and improve it where you can. While this often means
augmenting a given dataset by finding others that can complement, contextualize, or

4 | Chapter 1: Introduction to Data Wrangling and Data Quality

extend it, it almost always means looking beyond “data” of any kind and reaching
out to experts: the people who designed the data, collected it, have worked with it
previously, or know a lot about the subject area your data is supposed to address.

Data “Fit”
Even a dataset that has excellent integrity, however, cannot be considered high quality
unless it is also appropriate for your particular purpose. Let’s say, for example, that
you were interested in knowing which Citi Bike station has had the most bikes
rented and returned in a given 24-hour period. Although the real-time Citi Bike API
contains high-integrity data, it’s poorly suited to answering the particular question of
which Citi Bike station has seen the greatest turnover on a given date. In this case,
you would be much better off trying to answer this question using the Citi Bike “trip
history” data.

Of course, it’s rare that a data fit problem can be solved so simply; often we have
to do a significant amount of integrity work before we can know with confidence
that our dataset is actually fit for our selected question or project. There’s no way
to bypass this time investment, however: shortcuts when it comes to either data
integrity or data fit will inevitably compromise the quality and relevance of your data
wrangling work overall. In fact, many of the harms caused by today’s computational
systems are related to problems of data fit. For example, using data that describes one
phenomenon (such as income) to try to answer questions about a potentially related
—but fundamentally different—phenomenon (like educational attainment) can lead
to distorted conclusions about what is happening in the world, with sometimes
devastating consequences. In some instances, of course, using such proxy measures is
unavoidable. An initial medical diagnosis based on a patient’s observable symptoms
may be required to provide emergency treatment until the results of a more definitive
test are available. While such substations are sometimes acceptable at the individual
level, however, the gap between any proxy measure and the real phenomenon multi‐
plies with the scale of the data and the system it is used to power. When this happens,
we end up with a massively distorted view of the very reality our data wrangling
and analysis hoped to illuminate. Fortunately, there are a number of ways to protect
against these types of errors, as we’ll explore further in Chapter 3.

What Is “Data Quality”? | 5

http://gbfs.citibikenyc.com/gbfs/gbfs.json
https://s3.amazonaws.com/tripdata/index.html
https://s3.amazonaws.com/tripdata/index.html

3 Disclosure: many ProPublica staffers, including the lead reporter on this series, are former colleagues of mine.
4 The “Machine Bias” series generated substantial debate in the academic community, where some took issue

with ProPublica’s definition of bias. Much more importantly, however, the controversy spawned an entirely
new area of academic research: fairness and transparency in machine learning and intelligence.

Unpacking COMPAS
One high-profile example of the harms that can be caused by using bad proxy data
in a large-scale computational system was demonstrated a number of years ago by
a group of journalists at ProPublica, a nonprofit investigative news organization.3 In
the series “Machine Bias”, reporters examined discrepancies in the way that an algo‐
rithmic tool called the Correctional Offender Management Profiling for Alternative
Sanctions, or COMPAS, made re-offense predictions for Black and white defendants
who were up for parole. In general, Black defendants with similar criminal histories
to white defendants were given higher risk scores, in large part because the data used
to predict—or “model”—their risk of re-offense treated arrest rates as a proxy for
crime rates. But because patterns of arrest were already biased against Black Ameri‐
cans (i.e., Black people were being arrested for “crimes”—like walking to work—that
white people were not being arrested for), the risk assessments the tool generated
were biased, too.4

Unfortunately, similar examples of how poor data “fit” can create massive harms are
not hard to come by. That’s why assessing your data for both integrity and fit is such
an essential part of the data wrangling process: if the data you use is inappropriate,
your work may not be just wrong but actively harmful.

Why Python?
If you’re reading this book, chances are you’ve already heard of the Python pro‐
gramming language, and you may even be pretty certain that it’s the right tool for
starting—or expanding—your work on data wrangling. Even if that’s the case, I think
it’s worth briefly reviewing what makes Python especially suited to the type of data
wrangling and quality work that we’ll do in this book. Of course if you haven’t heard
of Python before, consider this an introduction to what makes it one of the most
popular and powerful programming languages in use today.

Versatility
Perhaps one of the greatest strengths of Python as a general programming language
is its versatility: it can be easily used to access APIs, scrape data from the web,
perform statistical analyses, and generate meaningful visualizations. While many

6 | Chapter 1: Introduction to Data Wrangling and Data Quality

https://propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://fusion.tv/story/5568/florida-citys-stop-frisk-nabs-thousands-of-kids-finds-5-year-olds-suspicious

other programming languages do some of these things, few do all of them as well as
Python.

Accessibility
One of Python creator Guido van Rossum’s goals in designing the language was to
make “code that is as understandable as plain English”. Python uses English keywords
where many other scripting languages (like R and JavaScript) use punctuation. For
English-language readers, then, Python may be both easier and more intuitive to
learn than other scripting languages.

Readability
One of the core tenets of the Python programming language is that “readability
counts”. In most programming languages, the visual layout of the code is irrelevant
to how it functions—as long as the “punctuation” is correct, the computer will under‐
stand it. Python, by contrast, is what’s known as “whitespace dependent”: without
proper tab and/or space characters indenting the code, it actually won’t do anything
except produce a bunch of errors. While this can take some getting used to, it enfor‐
ces a level of readability in Python programs that can make reading other people’s
code (or, more likely, your own code after a little time has passed) much less difficult.
Another aspect of readability is commenting and otherwise documenting your work,
which I’ll address in more detail in “Documenting, Saving, and Versioning Your
Work” on page 24.

Community
Python has a very large and active community of users, many of whom help create
and maintain “libraries” of code that enormously expand what you can quickly
accomplish with your own Python code. For example, Python has popular and
well-developed code libraries like NumPy and Pandas that can help you clean and
analyze data, as well as others like Matplotlib and Seaborn to create visualizations.
There are even powerful libraries like Scikit-Learn and NLTK that can do the heavy
lifting of machine learning and natural language processing. Once you have a handle
on the essentials of data wrangling with Python that we’ll cover in this book (in which
we will use many of the libraries just mentioned), you’ll probably find yourself eager
to explore what’s possible with many of these libraries and just a few lines of code.
Fortunately, the same folks who write the code for these libraries often write blog
posts, make video tutorials, and share code samples that you can use to expand your
Python work.

Similarly, the size and enthusiasm of the Python community means that finding
answers to both common (and even not-so-common) problems and errors that
you may encounter is easy—detailed solutions are often posted online. As a result,

Why Python? | 7

https://en.wikipedia.org/wiki/Guido_van_Rossum#Python
https://en.wikipedia.org/wiki/Zen_of_Python
https://en.wikipedia.org/wiki/Zen_of_Python

troubleshooting Python code can be easier than for more specialized languages with a
smaller community of users.

Python Alternatives
Although Python has much to recommend it, you may also be considering other
tools for your data-wrangling needs. The following is a brief overview of some tools
you may have heard of, along with why I chose Python for this work instead:

R
The R programming language is probably Python’s nearest competitor for data
work, and many teams and organizations rely on R for its combination of data
wrangling, advanced statistical modeling, and visualization capabilities. At the
same time, R lacks some of the accessibility and readability of Python.

SQL
Simple Query Language (SQL) is just that: a language designed to “slice and dice”
database data. While SQL can be powerful and useful, it requires data to exist in a
particular format to be useful and is therefore of limited use for “wrangling” data
in the first place.

Scala
Although Scala is well suited for dealing with large datasets, it has a much steeper
learning curve than Python, and a much smaller user community. The same is
true of Julia.

Java, C/C++
While these have large user communities and are very versatile, they lack the
natural language and readability bent of Python and are oriented more toward
building software than doing data wrangling and analysis.

JavaScript
In a web-based environment, JavaScript is invaluable, and many popular visuali‐
zation tools (e.g., D3) are built using variations of JavaScript. At the same time,
JavaScript does not have the same breadth of data analysis features as Python and
is generally slower.

Writing and “Running” Python
To follow along with the exercises in this book, you’ll need to get familiar with the
tools that will help you write and run your Python code; you’ll also want a system for
backing up and documenting your code so you don’t lose valuable work to an errant

8 | Chapter 1: Introduction to Data Wrangling and Data Quality

5 Remember that even a misplaced space character can cause problems in Python.
6 This same software can also be used to create notebooks in R and other scripting languages.

keystroke,5 and so that you can easily remind yourself what all that great code can do,
even when you haven’t looked at it for a while. Because there are multiple toolsets for
solving these problems, I recommend that you start by reading through the following
sections and then choosing the approach (or combination of approaches) that works
best for your preferences and resources. At a high level, the key decisions will be
whether you want to work “online only”—that is, with tools and services you access
via the internet—or whether you can and want to be able to do Python work without
an internet connection, which requires installing these tools on a device that you
control.

We all write differently depending on context: you probably use a different style
and structure when writing an email than when sending a text message; for a job
application cover letter you may use a whole different tone entirely. I know I also use
different tools to write depending on what I need to accomplish: I use online docu‐
ments when I need to write and edit collaboratively with coworkers and colleagues,
but I prefer to write books and essays in a super-plain text editor that lives on my
device. More particular document formats, like PDFs, are typically used for contracts
and other important documents that we don’t want others to be able to easily change.

Just like natural human languages, Python can be written in different types of docu‐
ments, each of which supports slightly different styles of writing, testing, and running
your code. The primary types of Python documents are notebooks and standalone
files. While either type of document can be used for data wrangling, analysis, and
visualization, they have slightly different strengths and requirements. Since it takes
some tweaking to convert one format to the other, I’ve made the exercises in this
book available in both formats. I did this not only to give you the flexibility of
choosing the document type that you find easiest or most useful but also so that you
can compare them and see for yourself how the translation process affects the code.
Here’s a brief overview of these document types to help you make an initial choice:

Notebooks
A Python notebook is an interactive document used to run chunks of code, using
a web browser window as an interface. In this book, we’ll be using a tool called
“Jupyter” to create, edit, and execute our Python notebooks.6 A key advantage of
using notebooks for Python programming is that they offer a simple way to write,
run, and document your Python code all in one place. You may prefer notebooks
if you’re looking for a more “point and click” programming experience or if
working entirely online is important to you. In fact, the same Python notebooks
can be used on your local device or in an online coding environment with
minimal changes, meaning that this option may be right for you if you (1) don’t

Writing and “Running” Python | 9

have access to a device where you’re able to install software, or (2) you can install
software but you also want to be able to work on your code when you don’t have
your machine with you.

Standalone files
A standalone Python file is really any plain-text file that contains Python code.
You can create such standalone Python files using any basic text editor, though
I strongly recommend that you use one specifically designed for working with
code, like Atom (I’ll walk through setting this up in “Installing Python, Jupyter
Notebook, and a Code Editor” on page 14). While the software you choose for
writing and editing your code is up to you, in general the only place you’ll be
able to run these standalone Python files is on a physical device (like a computer
or phone) that has the Python programming language installed. You (and your
computer) will be able to recognize standalone Python files by their .py file
extension. Although they might seem more restrictive at first, standalone Python
files can have some advantages. You don’t need an internet connection to run
standalone files, and they don’t require you to upload your data to the cloud.
While both of those things are also true of locally run notebooks, you also don’t
have to wait for any software to start up when running standalone files. Once
you have Python installed, you can run standalone Python files instantly from
the command line (more on this shortly)—this is especially useful if you have
a Python script that you need to run on a regular basis. And while notebooks’
ability to run bits of code independently of one another can make them feel a
bit more approachable, the fact that standalone Python files also always run your
code “from scratch” can help you avoid the errors or unpredictable results that
can occur if you run bits of notebook code out of order.

Of course, you don’t have to choose just one or the other; many people find that note‐
books are especially useful for exploring or explaining data (thanks to their interactive
and reader-friendly format), while standalone files are better suited for accessing,
transforming, and cleaning data (since standalone files can more quickly and easily
run the same code on different datasets, for example). Perhaps the bigger question
is whether you want to work online or locally. If you don’t have a device where you
can install Python, you’ll need to work in cloud-based notebooks; otherwise you can
choose to use either (or both!) notebooks or standalone files on your device. As noted
previously, notebooks that can be used either online or locally, as well as standalone
Python files, are available for all the exercises in this book to give you as much
flexibility as possible, and also so you can compare how the same tasks get done in
each case!

10 | Chapter 1: Introduction to Data Wrangling and Data Quality

7 The numbers here are called version numbers, and they increase sequentially as the Python language is
changed and upgraded over time. The first number (3) indicates the “major” version, and the second number
(9) indicates the “minor” version. Unlike regular decimals, it’s possible for the minor version to be higher than
9, so in the future you might encounter a Python 3.12.

Working with Python on Your Own Device
To understand and run Python code, you’ll need to install it on your device. Depend‐
ing on your device, there may be a downloadable installation file available, or you
may need to use a text-based interface (which you’ll need to use at some point if
you’re using Python on your device) called the command line. Either way, the goal
is to get you up and running with at least Python 3.9.7 Once you’ve got Python
up and running, you can move on to installing Jupyter notebook and/or a code
editor (instructions included here are for Atom). If you’re planning to work only
in the cloud, you can skip right to “Working with Python Online” on page 19 for
information on how to get started.

Getting Started with the Command Line
If you plan to use Python locally on your device, you’ll need to learn to use the com‐
mand line (also sometimes referred to as the terminal or command prompt), which is
a text-based way of providing instruction to your computer. While in principle you
can do anything in the command line that you can do with a mouse, it’s particularly
efficient for installing code and software (especially the Python libraries that we’ll be
using throughout the book) and backing up and running code. While it may take a
little getting used to, the command line is often faster and more straightforward for
many programming-related tasks than using a mouse. That said, I’ll provide instruc‐
tions for using both the command line and your mouse where both are possible, and
you should feel free to use whichever you find more convenient for a particular task.

To get started, let’s open up a command line (sometimes also called the terminal)
interface and use it to create a folder for our data wrangling work. If you’re on
a Chromebook, macOS, or Linux machine, search for “terminal” and select the
application called Terminal; on a Windows PC, search for “powershell” and choose
the program called Windows PowerShell.

To enable Linux on your Chromebook, just go to your Chrome
OS settings (click the gear icon in the Start menu, or search for
“settings” in the Launcher). Toward the bottom of the lefthand
menu, you’ll see a small penguin icon labeled “Linux (Beta).” Click
this and follow the directions to enable Linux on your machine.
You may need to restart before you can continue.

Working with Python on Your Own Device | 11

https://atom.io

Once you have a terminal open, it’s time to make a new folder! To help you get
started, here is a quick glossary of useful command-line terms:

ls

The “list” command shows files and folders in the current location. This is a
text-based version of what you would see in a finder window.

cd foldername
The “change directory” command moves you from the current location into
foldername, as long as foldername is shown when you use the ls command.
This is equivalent to “double-clicking” on a folder within a finder window using
your mouse.

cd ../

“Change directory” once again, but the ../ moves your current position to the
containing folder or location.

cd ~/

“Change directory,” but the ~/ returns you to your “home” folder.

mkdir foldername
“Make directory” with name foldername. This is equivalent to choosing New →
Folder in the context menu with your mouse and then naming the folder once its
icon appears.

When using the command line, you never actually have to type
out the full name of a file or folder; think of it more like search,
and just start by typing the first few characters of the (admittedly
case-sensitive) name. Once you’ve done that, hit the Tab key, and
the name will autocomplete as much as possible.
For example, if you have two files in a folder, one called xls_pars‐
ing.py and one called xlsx_parsing.py (as you will when you’re fin‐
ished with Chapter 4), and you wanted to run the latter, you can
type python xl and then hit Tab, which will cause the command
line to autocomplete to python xls. At this point, since the two
possible filenames diverge, you’ll need to supply either an x or an _,
after which hitting Tab one more time will complete the rest of the
filename, and you’re good to go!

Any time you open a new terminal window on your device, you’ll be in what’s known
as your “home” folder. On macOS, Windows, and Linux machines, this is often the
“User” folder, which is not the same as the “desktop” area you see when you first log
in. This can be a little disorienting a first, since the files and folders you’ll see when

12 | Chapter 1: Introduction to Data Wrangling and Data Quality

you first run ls in a terminal window will probably be unfamiliar. Don’t worry; just
point your terminal at your regular desktop by typing:

cd ~/Desktop

into the terminal and hitting Enter or Return (for efficiency’s sake, I’ll just refer to
this as the Enter key from here on out).

On Chromebooks, Python (and the other programs we’ll need) can only be run from
inside the Linux files folder, so you can’t actually navigate to the desktop and will have
to open a terminal window.

Next, type the following command into your terminal window and hit Enter:

mkdir data_wrangling

Did you see the folder appear? If so, congratulations on making your first folder
in the command line! If not, double-check the text at the left of the command line
prompt ($ on Chromebook, % on macOS, or > on Windows). If you don’t see the
word Desktop in there, run cd ~/Desktop and then try again.

Don’t Leave Space!
Although most operating systems will let you do it, I strongly recommend against
using either spaces or any punctuation marks apart from the underscore character (_)
in your folder and filenames. As you’ll see firsthand in Chapter 2, both the command
line and Python (along with most programming languages) rely on whitespace and
punctuation as shorthand for specific functionality, which means these characters
have to be “escaped”—usually by preceding them with some additional character, like
a backslash (\)—if they are part of a file or folder name you want to access. In fact,
you can’t even do this from the command line; if you were to type:

mkdir data wrangling

you’d just end up with two new folders: one called data and another called wrangling.
If you really wanted to force it and you used your mouse to create a folder called data
wrangling, moreover, to access it from the command line, you’d need to type:

cd data\ wrangling/

Not impossible, of course, but more trouble than it’s worth. To avoid this hassle,
it’s easier to just get in the habit of not using spaces or punctuation other than
underscores when naming files, folders, and, soon, Python variables!

Now that you’ve gotten a little bit of practice with the command line, let’s see how it
can help when installing and testing Python on your machine.

Working with Python on Your Own Device | 13

8 Miniconda is a smaller version of the popular “Anaconda” software, but since the latter installs the R
programming language and a number of other items we won’t need, we’ll use Miniconda to save space on our
device.

Installing Python, Jupyter Notebook, and a Code Editor
To keep things simple, we’re going to use a software distribution manager called
Miniconda, which will automatically install both Python and Jupyter Notebook. Even
if you don’t plan to use notebooks for your own coding, they’re popular enough that
being able to view and run other people’s notebooks is useful, and it doesn’t take up
that much additional space on your device. In addition to getting your Python and
Jupyter Notebook tools up and running, installing Miniconda will also create a new
command-line function called conda, which will give you a quick and easy way to
keep both your Python and Jupyter Notebook installations up to date.8 You can find
more information about how to do these updates in Appendix A.

If you’re planning to do most of your Python programming in a notebook, I also still
recommend installing a code editor. Even if you never use them to write a single line
of Python, code editors are indispensable for viewing, editing, and even creating your
own data files more effectively and efficiently than most devices’ built-in text-editing
software. Most importantly, code editors do something called syntax highlighting,
which is basically built-in grammar checking for code and data. While that may not
sound like much, the reality is that it will make your coding and debugging processes
much faster and more reliable, because you’ll know (literally) where to look when
there’s a problem. This combination of features makes a solid code editor one of the
most important tools for both Python programming and general data wrangling.

In this book I’ll be using and referencing the Atom (https://atom.io) code editor,
which is free, multiplatform, and open source. If you play around with the settings,
you’ll find many ways to customize your coding environment to suit your needs.
Where I reference the color of certain characters or bits of code in this book, they
reflect the default “One Dark” theme in Atom, but use whatever settings work best for
you.

You’ll need a strong, stable internet connection and about 30–60
minutes to complete the following setup and installation processes.
I also strongly recommend that you have your device plugged into
a power source.

Chromebook
To install your suite of data wrangling tools on a Chromebook, the first thing you’ll
need to know is whether your version of the Chrome OS operating system is 32-bit or
64-bit.

14 | Chapter 1: Introduction to Data Wrangling and Data Quality

https://atom.io

To find this information, open up your Chrome settings (click the gear icon in the
Start menu, or search “settings” in the Launcher) and then click on “About Chrome
OS” at the lower left. Toward the top of the window, you’ll see the version number
followed by either (32-bit) or (64-bit), as shown in Figure 1-1.

Figure 1-1. Chrome OS version detail

Make a note of this information before continuing with your setup.

Installing Python and Jupyter Notebook. To get started, download the Linux installer
that matches the bit format of your Chrome OS version. Then, open your Downloads
folder and drag the installer file (it will end in .sh) into your Linux files folder.

Next, open up a terminal window, run the ls command, and make sure that you
see the Miniconda .sh file. If you do, run the following command (remember, you
can just type the beginning of the filename and then hit the Tab key, and it will
autocomplete!):

bash _Miniconda_installation_filename_.sh

Follow the directions that appear in your terminal window (accept the license and the
conda init prompt), then close and reopen your terminal window. Next, you’ll need
to run the following:

conda init

Then close and reopen your terminal window again so that you can install Jupyter
Notebook with the following command:

conda install jupyter

Answer yes to the subsequent prompts, close your terminal one last time, and you’re
all set!

Installing Atom. To install Atom on your Chromebook, you’ll need to download
the .deb package from https://atom.io and save it in (or move it to) your Linux files
folder.

Working with Python on Your Own Device | 15

https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links
https://atom.io

9 If you have a 32-bit Chromebook, the filename might be slightly different.

To install the software using the terminal, open a terminal window and type:

sudo dpkg -i atom-amd64.deb

Hit Enter.9 Once the text has finished scrolling and the command prompt (which ends
with a $) is back, the installation is complete.

Alternatively, you can context-click on the .deb file in your Linux files folder and
choose the “Install with Linux” option from the top of the context menu, then click
“Install” and “OK.” You should see a progress bar on the bottom right of your screen
and get a notification when the installation is complete.

Whichever method you use, once the installation is finished, you should see the green
Atom icon appear in your “Linux apps” bubble in the Launcher.

macOS
You have two options when installing Miniconda on macOS: you can use the ter‐
minal to install it using a .sh file, or you can install it by downloading and double-
clicking the .pkg installer.

Installing Python and Jupyter Notebook. To get started, go to the Miniconda installer
links page. If you want to do your installation with the terminal, download the
Python 3.9 “bash” file that ends in .sh; if you prefer to use your mouse, download
the .pkg file (you may see a notification from the operating system during the down‐
load process warning, “This type of file can harm your computer”; choose “Keep”).

Whichever method you select, open your Downloads folder and drag the file onto
your desktop.

If you want to try installing Miniconda using the terminal, start by opening a termi‐
nal window and using the cd command to point it to your desktop:

cd ~/Desktop

Next, run the ls command, and make sure that you see the Miniconda .sh file in the
resulting list. If you do, run the following command (remember, you can just type the
beginning of the filename and then hit the Tab key, and it will autocomplete!):

bash _Miniconda_installation_filename_.sh

Follow the directions that appear in your terminal window:

16 | Chapter 1: Introduction to Data Wrangling and Data Quality

https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links
https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links

• Use the space bar to move through the license agreement a full page at a time,•
and when you see (END), hit Return.

• Type yes followed by Return to accept the license agreement.•
• Hit Return to confirm the installation location, and type yes followed by Return•

to accept the conda init prompt.

Finally, close your terminal window.

If you would prefer to do the installation using your mouse, just double-click the .pkg
file and follow the installation instructions.

Now that you have Miniconda installed, you need to open a new terminal window
and type:

conda init

Then hit Return. Next, close and reopen your terminal window, and use the following
command (followed by Return) to install Jupyter Notebook:

conda install jupyter

Answer yes to the subsequent prompts.

Installing Atom. To install Atom on a Mac, visit https://atom.io and click the large
yellow Download button to download the installer.

Click on the atom-mac.zip file in your Downloads folder and then drag the Atom
application (which will have a green icon next to it) into your Applications folder (this
may prompt you for your password).

Windows 10+
To install your suite of data wrangling tools on Windows 10+, the first thing you’ll
need to know is whether your version of the Windows 10 operating system is 32-bit
or 64-bit.

To find this information, open up your Start menu, then select the gear icon to go to
the Settings menu. In the resulting window, choose System → About in the lefthand
menu. In the section titled “Device specifications,” you’ll see “System type,” which will
specify whether you have a 32-bit or 64-bit system. For the official instructions, see
Microsoft’s related FAQ.

Make a note of this information before continuing with your setup.

Working with Python on Your Own Device | 17

https://atom.io
https://support.microsoft.com/en-us/windows/32-bit-and-64-bit-windows-frequently-asked-questions-c6ca9541-8dce-4d48-0415-94a3faa2e13d

10 The installer filename may have a different number if you are on a 32-bit system.

Installing Python and Jupyter Notebook. To get started, go to the Miniconda installer
links page and download the Python 3.9 installer appropriate for your system (either
32-bit or 64-bit). Once the .exe file has downloaded, click through the installer
menus, leaving the preselected options in place (you can skip the recommended
tutorials and the “Anaconda Nucleus” sign-up at the end).

Once the installation is complete, you should see two new items in your Start menu
in the “Recently added” list at the top: “Anaconda Prompt (miniconda3)” and “Ana‐
conda Powershell Prompt (miniconda3),” as shown in Figure 1-2. While both will
work for our purposes, I recommend you use Powershell as your “terminal” interface
throughout this book.

Figure 1-2. Anaconda options in the Start menu

Now that you have Miniconda installed, you need to open a new terminal (Power‐
shell) window and type:

conda init

Then hit Return. Next, close and reopen your terminal window as instructed, and use
the following command (followed by Return) to install Jupyter Notebook:

conda install jupyter

Answer yes (by typing y and then hitting the Enter key) to the subsequent prompts.

Installing Atom. To install Atom on a Windows 10+ machine, visit https://atom.io and
click the large yellow “Download” button to download the installer.

Click on the Atom-Setup-x64.exe file,10 and wait for the installation to finish; Atom
should launch automatically. You can answer Yes to the blue pop-up that asks about
registering as the default atom:// URI handler.

18 | Chapter 1: Introduction to Data Wrangling and Data Quality

https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links
https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links
https://atom.io

11 Unless otherwise noted, all terminal commands should be followed by hitting Enter or Return.
12 If you get a prompt asking about how you want to “open this file,” I recommend selecting Google Chrome.

Testing your setup
To make sure that both Python and Jupyter Notebook are working as expected, start
by opening a terminal window and pointing it to the data_wrangling folder you
created in “Getting Started with the Command Line” on page 11, then running the
following command:11

cd ~/Desktop/data_wrangling

Then, run:

python --version

If you see something like:

Python 3.9.4

this means that Python was installed successfully.

Next, test out Jupyter Notebook by running:

jupyter notebook

If a browser window opens12 that looks something like the image in Figure 1-3, you’re
all set and ready to go!

Figure 1-3. Jupyter Notebook running in an empty folder

Working with Python Online
If you want to skip the hassle of installing Python and code editor on your machine
(and you plan to only use Python when you have a strong, consistent internet
connection), working with Jupyter notebooks online through Google Colab is a great
option. All you’ll need to get started is an unrestricted Google account (you can
create a new one if you prefer—make sure you know your password!). If you have
those elements in place, you’re ready to get wrangling with “Hello World!” on page
20!

Working with Python Online | 19

Hello World!
Now that you’ve got your data wrangling tools in place, you’re ready to get started
writing and running your first Python program. For this, we’ll bow to programming
tradition and create a simple “Hello World” program; all it’s designed to do is print
out the words “Hello World!” To get started, you’ll need a new file where you can
write and save your code.

Using Atom to Create a Standalone Python File
Atom works just like any other text-editing program; you can launch it using your
mouse or even using your terminal.

To launch it with your mouse, locate the program icon on your device:

Chromebook
Inside the “Linux apps” applications bubble.

Mac
In Applications or in the Launchpad on Mac.

Windows
In the Start menu or via search on Windows. If Atom doesn’t appear in your start
menu or in search after installing it for the first time on Windows 10, you can
find troubleshooting videos on YouTube.

Alternatively, you can open Atom from the terminal by simply running:

atom

The first time you open Atom on a Chromebook, you’ll see the “Choose password for
new keyring” prompt. Since we’ll just be using Atom for code and data editing, you
can click Cancel to close this prompt. On macOS, you’ll see a warning that Atom was
downloaded from the internet—you can also click past this prompt.

You should now see a screen similar to the one shown in Figure 1-4.

By default, when Atom launches, it shows one or more “Welcome” tabs; you can just
close these by clicking the x close button that appears to the right of the text when
you hover over it with your mouse. This will move the untitled file toward the center
of your screen (if you like, you can also collapse the Project panel on the left by
hovering over its right edge until the < appears and then clicking on that).

20 | Chapter 1: Introduction to Data Wrangling and Data Quality

https://youtube.com/watch?v=N4liFqsK9nM

13 Don’t worry, it’s not visible on the internet!

Figure 1-4. Atom welcome screen

Before we start writing any code, let’s go ahead and save our file where we’ll know
where to find it—in our data_wrangling folder! In the File menu, select “Save As…”
and save the file in your data_wrangling folder with the name HelloWorld.py.

When saving standalone Python files, it’s essential to make sure
you add the .py extension. While your Python code will still work
properly without it, having the correct extension will let Atom
do the super-useful syntax highlighting I mentioned in “Installing
Python, Jupyter Notebook, and a Code Editor” on page 14. This
feature will make it much easier to write your code correctly the
first time!

Using Jupyter to Create a New Python Notebook
As you may have noticed when you tested Jupyter Notebook, in “Testing your setup”
on page 19, the interface you’re using is actually just a regular browser window.
Believe it or not, when you run the jupyter notebook command, your regular
computer is actually creating a tiny web server on your device!13 Once that main
Jupyter window is up and running, you can use your mouse to create new Python
files and run other commands right in your web browser!

To get started, open a terminal window and use the command:

cd ~/Desktop/data_wrangling/

Hello World! | 21

to move into the data_wrangling folder on your Desktop. Next, run:

jupyter notebook

You’ll see a lot of code run past on the terminal window, and your computer should
automatically open a browser window that will show you an empty directory. Under
New in the upper-righthand corner, choose “Python 3” to open a new notebook.
Double-click the word Untitled in the upper-lefthand corner next to the Jupyter logo
to name your file HelloWorld.

Because Jupyter Notebook is actually running a web server (yes, the
same kind that runs regular websites) on your local computer, it’s
essential that you leave that terminal window open and running for
as long as you are interacting with your notebooks. If you close that
particular terminal window, your notebooks will “crash.”
Fortunately, Jupyter notebooks autosave every two minutes, so
even if something does crash, you probably won’t lose much work.
That being said, you may want to minimize the terminal window
you use to launch Jupyter, just to avoid accidentally closing it while
you’re working.

Using Google Colab to Create a New Python Notebook
First, sign in to the Google account you want to use for your data wrangling work,
then visit the Colab website. You’ll see something similar to the overlay shown in
Figure 1-5.

Figure 1-5. Google Colab landing page (signed in)

22 | Chapter 1: Introduction to Data Wrangling and Data Quality

https://colab.research.google.com

14 Early versions of Jupyter Notebook were known as “iPythonNotebook,” which is where the .ipynb file
extension comes from.

In the bottom-right corner, choose New notebook, then double-click at the top left to
replace Untitled0.ipynb with HelloWorld.ipynb.14

Adding the Code
Now, we’ll write our first bit of code, which is designed to print out the words
“Hello World.” No matter which type of Python file you’re using, the code shown in
Example 1-1 is the same.

Example 1-1. hello_world.py

the code below should print "Hello World!"
print("Hello World!")

In a Standalone File
All you need to do is copy (or type) the code in Example 1-1 into your file and save it!

In a Notebook
When you create a new file, there is one empty “code cell” in it by default (in Jupyter
Notebook, you’ll see In [] to the left of it; in Google Colab, there’s a little “play”
button). Copy (or type) the code in Example 1-1 into that cell.

Running the Code
Now that we’ve added and saved our Python code in our file, we need to run it.

In a Standalone File
Open a terminal window and move it into your data_wrangling folder using:

cd ~/Desktop/data_wrangling

Run the ls command and make sure you see your HelloWorld.py file listed in
response. Finally, run:

python HelloWorld.py

You should see the words Hello World! print out on their own line, before the
command prompt returns (signaling that the program has finished running).

Adding the Code | 23

15 Especially “future you”!

In a Notebook
Hit the “play” button to the left of the cell. You should see the words Hello World!
print out beneath it.

If everything worked as expected—congratulations! You’ve now written your first bit
of Python code!

Documenting, Saving, and Versioning Your Work
Before we really dive into Python in Chapter 2, there are a few more bits of prep‐
aration to do. I know these may seem tedious, but making sure you’ve laid the
groundwork for properly documenting your work will save you dozens of hours of
effort and frustration. What’s more, carefully commenting, saving, and versioning
your code is a crucial part of “bulletproofing” your data wrangling work. And while
it’s not exactly enticing right now, pretty soon all of these steps will be second nature
(I promise!), and you’ll see how much speed and efficiency it adds to your data work.

Documenting
You may have noticed that the first line you wrote in your code cell or Python file in
“Hello World!” on page 20 didn’t show up in the output; the only thing that printed
was Hello World!. That first line in our file was a comment, which provides a plain-
language description of what the code on the following line(s) will do. Almost all
programming languages (and some data types!) provide a way to include comments,
precisely because they are an excellent way to provide anyone reading your code15

with the context and explanation necessary to understand what the specific program
or section of code is doing.

Though many individual programmers tend to overlook (read: skip) the commenting
process, it is probably the single most valuable programming habit you can develop.
Not only will it save you—and anyone you collaborate with—an enormous amount of
time and effort when you are looking through a Python program, but commenting is
also the single best way to really internalize what you’re learning about programming
more generally. So even though the code samples provided with this book will already
have comments, I strongly encourage you to rewrite them in your own words. This
will help ensure that when future you returns to these files, they’ll contain a clear
walk-through of how you understood each particular coding challenge the first time.

The other essential documentation process for data wrangling is keeping what I call
a “data diary.” Like a personal diary, your data diary can be written and organized
however you like; the key thing is to capture what you are doing as you are doing

24 | Chapter 1: Introduction to Data Wrangling and Data Quality

it. Whether you’re clicking around the web looking for data, emailing experts, or
designing a program, you need somewhere to keep track of everything, because you
will forget.

The first entry in your “diary” for any data wrangling project should be the question
you are trying to answer. Though it may be a challenge, try to write your question as
a single sentence, and put it at the top of your data wrangling project diary. Why is
it important that your question be a single sentence? Because the process of real data
wrangling will inevitably lead you down enough “rabbit holes”—to answer a question
about your data’s origin, for example, or to solve some programming problem—that
it’s very easy to lose track of what you were originally trying to accomplish (and why).
Once you have that question at the top of your data diary, though, you can always
come back to it for a reminder.

Your data diary question will also be invaluable for helping you make decisions about
how to spend your time when data wrangling. For example, your dataset may contain
terms that are unfamiliar to you—should you try to track down the meaning of every
single one? Yes, if doing so will help answer your question. If not, it may be time to
move on to another task.

Of course, once you succeed in answering your question (and you will! at least in
part), you’ll almost certainly find you have more questions you want to answer, or
that you want to answer the same question again, but a week, a month, or a year later.
Having your data diary on hand as a guide will help you do it much faster and more
easily the next time. That’s not to say that it doesn’t take effort: in my experience,
keeping a thorough data diary makes a project take about 40% longer to complete the
first time around, but it makes doing it again (with a new version of the dataset, for
example) at least twice as fast. Having a data diary is also a valuable proof of work:
if you’re ever looking for the process by which you got your data wrangling results,
your data diary will have all the information that you (or anyone else) might need.

When it comes to how you keep your data diary, however, it’s really up to you. Some
folks like to do a lot of fancy formatting; others just use a plain old text file. You
may even want to use a real gosh-for-sure paper notebook! Whatever works for you
is fine. While your data diary will be an invaluable reference when it comes time to
communicate with others about your data (and the wrangling process), you should
organize it however suits you best.

Saving
In addition to documenting your work carefully through comments and data diaries,
you’ll want to make sure you save it regularly. Fortunately, the “saving” process is
essentially built in to our workflow: notebooks autosave regularly, and to run the
code in our standalone file, we have to save our changes first. Whether you rely on
keyboard shortcuts (for me, hitting Ctrl+S is something of a nervous habit) or use

Documenting, Saving, and Versioning Your Work | 25

16 Meaning that I no longer get the output I expect, or that I get errors and no output at all!

mouse-driven menus, you’ll probably want to save your work every 10 minutes or so
at least.

If you are using standalone files, one thing to get familiar with is
how your code editor indicates that a file has unsaved changes. In
Atom, for example, a small colored dot appears in the document
tab just to the right of the filename when there are unsaved changes
to the file. If the code you’re running isn’t behaving as you expect,
double-check that you have it saved first and then try again.

Versioning
Programming—like most writing—is an iterative process. My preferred approach has
always been to write a little bit of code, test it out, and if it works, write a little more
and test again. One goal of this approach is to make it easier to backtrack in case I
add something that accidentally “breaks” the code.16

At the same time, it’s not always possible to guarantee that your code will be “work‐
ing” when you have to step away from it—whether because the kids just got home,
the study break is over, or it’s time for bed. You always want to have a “safe” copy of
your code that you can come back to. This is where version control comes in.

Getting started with GitHub
Version control is basically just a system for backing up your code, both on your
computer and in the cloud. In this book, we’ll be using GitHub for version control; it’s
a hugely popular website where you can back up your code for free. Although there
are many different ways to interact with GitHub, we’ll use the command line because
it just takes a few quick commands to get your code safely tucked away until you’re
ready to work on it again. To get started, you’ll need to create an account on GitHub,
install Git on your computer, and then connect the accounts to one another:

1. Visit the GitHub website at https://github.com and click “Sign Up.” Enter your1.
preferred username (you may need to try a few to find one that’s available), your
email address, and your chosen password (make sure to write this down or save
it to your password manager—you’ll need it soon!).

2. Once you’ve logged in, click the New button on the left. This will open the2.
“Create a new repository” page shown in Figure 1-6.

3. Give your repository a name. This can be anything you like, but I suggest you3.
make it something descriptive, like data_wrangling_exercises.

26 | Chapter 1: Introduction to Data Wrangling and Data Quality

https://github.com

4. Select the Private radio button, and select the checkbox next to the option that4.
says “Add a README file.”

5. Click the"Create repository” button.5.

Figure 1-6. Creating a new repository (or “repo”) on GitHub.com

You’ll now see a page that shows data_wrangling_exercises in large type, with a small
pencil icon just above and to the right. Click on the pencil and you’ll see an editing
interface where you can add text. This is your README file, which you can use to
describe your repository. Since we’ll be using this repository (or “repo” for short) to
store exercises from this book, you can just add a sentence to that effect, as shown in
Figure 1-7.

Scroll to the bottom of the page and you’ll see your profile icon with an editable area
to the right that says “Commit changes,” and below that some default text that says
“Update README.md.” Replace that default text with a brief description of what you

Documenting, Saving, and Versioning Your Work | 27

did; this is your “commit message.” For example, I wrote: “Added description of repo
contents,” as shown in Figure 1-8. Then click the"Commit changes” button.

Figure 1-7. Updating the README file on GitHub

Figure 1-8. Adding a commit message to the README file changes

When the screen refreshes, you’ll now see the text you added to the main file
underneath the original data_wrangling_exercises title. Just above that, you should be
able to see the text of your commit message, along with the approximate amount of
time that’s passed since you clicked “Commit changes.” If you click on the text that
says “2 commits” to the right of that, you’ll see the “commit history,” which will show
you all the changes (so far just two) that have been made to that repo, as shown in
Figure 1-9. If you want to see how a commit changed a particular file, just click on the
six-character code to the right, and you’ll see what’s known as a diff (for “difference”)
view of the file. On the left is the file as it existed before the commit, and on the right
is the version of the file in this commit.

28 | Chapter 1: Introduction to Data Wrangling and Data Quality

Figure 1-9. A brief commit history for our new repo

By this point, you may be wondering how this relates to backing up code, since all
we’ve done is click some buttons and edit some text. Now that we’ve got a “repo”
started on GitHub, we can create a copy of it on our local machine and use the
command line to make “commits” of working code and back them up to this website
with just a few commands.

For backing up local files: installing and configuring Git. Like Python itself, Git is software
that you install on your computer and run via the command line. Because version
control is such an integral part of most coding processes, Git comes built in on
macOS and Linux; instructions for Windows machines can be found on GitHub, and
for ChromeBooks, you can install Git using the Termux app. Once you’ve completed
the necessary steps, open up a terminal window and type:

git --version

Followed by ‘enter’. If anything prints, you’ve already got Git! You’ll still, however,
want to set your username and email (you can use any name and email you like) by
running the following commands:

git config --global user.email your_email@domain.com
git config --global user.name your_username

Now that you have Git installed and have added your name and email of choice to
your local Git account, you need to create an authentication key on your device so
that when you back up your code, GitHub knows that it really came from you (and
not just someone on the other side of the world who figured out your username and
password).

To do this, you’ll need to create what’s known as an SSH key—which is a long, unique
string of characters stored on your device that GitHub can use to identify it. Creating
these keys with the command line is easy: just open up a terminal window and type:

ssh-keygen -t rsa -b 4096 -C "your_email@domain.com"

Documenting, Saving, and Versioning Your Work | 29

https://github.com/git-guides/install-git
https://techrepublic.com/article/how-to-use-github-in-chrome-os

17 Depending on your device, you can save this password to your “keychain.” For more information, see the docs
on GitHub.

When you see the “Enter a file in which to save the key” prompt, just press the Enter
or Return key, so it saves the default location (this will make it easier to find in a
minute, when we want to add it to GitHub). When you see the following prompt:

Enter passphrase (empty for no passphrase):

definitely add a passphrase! And don’t make it the password to your GitHub (or any
other) account. However, since you’ll need to supply this passphrase every time you
want to back your code up to GitHub,17 it needs to be memorable—try something like
the first three words of the second verse of your favorite song or poem, for example.
As long as it’s at least 8–12 characters long, you’re set!

Once you’ve reentered your passphrase for confirmation, you can copy your key
to your GitHub account; this will let GitHub match the key on your account to
the one on your device. To do this, start by clicking on your profile icon in the
upper-righthand corner of GitHub and choosing Settings from the drop-down menu.
Then, on the lefthand navigation bar, click on the “SSH and GPG Keys” option.
Toward the upper right, click the “New SSH key” button, as shown in Figure 1-10.

Figure 1-10. SSH key landing page on GitHub.com

To access the SSH key you just generated, you’ll need to navigate to the main user
folder on your device (this is the folder that a new terminal window will open in) and
set it (temporarily) to show hidden files:

30 | Chapter 1: Introduction to Data Wrangling and Data Quality

https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/working-with-ssh-key-passphrases
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/working-with-ssh-key-passphrases

Chromebook
Your main user folder is just the one called Linux files. To show hidden files,
just click the three stacked dots at the top right of any Files window and choose
“Show hidden files.”

macOS
Use the Command-Shift-. keyboard shortcut to show/hide hidden files.

Windows
Open File Explorer on the taskbar, then choose View → Options → “Change
folder and search options.” On the View tab in “Advanced settings,” select “Show
hidden files, folders, and drives,” then click OK.

Look for the folder (it actually is a folder!) called .ssh and click into it, then using a
basic text editor (like Atom), open the file called id_rsa.pub. Using your keyboard to
select and then copy everything in the file, paste it into the empty text area labeled
Key, as shown in Figure 1-11.

Figure 1-11. Uploading your SSH key to your GitHub.com account

Finally, give this key a name so you know what device it’s associated with, and click
the"Add new SSH key” button—you will probably have to reenter your main GitHub
password. That’s it! Now you can go back to leaving hidden files hidden and finish
connecting your GitHub account to your device and/or Colab account.

Documenting, Saving, and Versioning Your Work | 31

I recommend using keyboard shortcuts to copy/paste your SSH key
because the exact string of characters (including spaces) actually
matters; if you use a mouse, something might get dragged around.
If you paste in your key and GitHub throws an error, however,
there are a couple of things to try:

• Make sure you’re uploading the contents of the .pub file (you•
never really want to do anything with the other one).

• Close the file (without saving) and try again.•

If you still have trouble, you can always just delete your whole .ssh
folder and generate new keys—since they haven’t been added to
anything yet, there’s no loss in just starting over!

Tying it all together. Our final step is to create a linked copy of our GitHub repo on
our local computer. This is easily done via the git clone command:

1. Open a terminal window, and navigate to your data_wrangling folder.1.
2. On GitHub, go to your_github_username/data_wrangling_exercises.2.
3. Still on GitHub, click theCode button toward the top of the page.3.
4. In the “Clone with SSH” pop-up, click the small clipboard icon next to the URL,4.

as shown in Figure 1-12.

Figure 1-12. Retrieving the repo’s SSH location

5. Back in your terminal window, type git clone and then paste the URL from5.
your clipboard (or type it directly if needed). It will look something like:

git clone git@github.com:susanemcg/data_wrangling_exercises.git

6. You may get a prompt asking if you would like to add the destination to the list of6.
known hosts. Type yes and hit Return. If prompted, provide your SSH password.

32 | Chapter 1: Introduction to Data Wrangling and Data Quality

7. When you see the “done” message, type ls. You should now see data_wran‐7.
gling_exercises in your data_wrangling folder.

8. Finally, type cd data_wrangling_exercises and hit Enter to move your termi‐8.
nal into the copied repo. Use the ls command to have the terminal show the
README.md file.

Whew! That probably seems like a lot, but keep in mind that you only ever need to
create an SSH key once, and you’ll only have to go through the cloning process once
per repo (and all the exercises in this book can be done in the same repo).

Now let’s see how this all works in action by adding our Python file to our repo.
In a finder window, navigate to your data_wrangling folder. Save and close your
HelloWorld.py or HelloWorld.ipynb file, and drag it into the data_wrangling_exercises
folder. Back in terminal, use the ls command to confirm that you see your Python
file.

Our final step is to use the add command to let Git know that we want our Python
file to be part of what gets backed up to GitHub. We’ll then use a commit to save the
current version, followed by the push command to actually upload it to GitHub.

To do this, we’re going to start by running git status in the terminal window. This
should generate a message that mentions “untracked files” and shows the name of
your Python file. This is what we expected (but running git status is a nice way
to confirm it). Now we’ll do the adding, committing, and pushing process described
previously. Note that the add commands produce output messages in the terminal:

1. In terminal, run git add your_python_filename.1.
2. Then run git commit -m "Adding my Hello World Python file."2.

your_python_filename. The -m command indicates that the quoted text should
be used as the commit message—the command-line equivalent of what we
entered on GitHub for our README update a few minutes ago.

3. Finally, run git push.3.

The final command is what uploads your files to GitHub (note that this clearly
will not work if you don’t have an available internet connection, but you can make
commits anytime you like and run the push command whenever you have internet
again). To confirm that everything worked correctly, reload your GitHub repo page,
and you’ll see that your Python file and commit message have been added!

Documenting, Saving, and Versioning Your Work | 33

For backing up online Python files: connecting Google Colab to GitHub. If you’re doing all of
your data wrangling online, you can connect Google Colab directly to your GitHub
account. Make sure you’re logged in to your data wrangling Google account and then
visit https://colab.research.google.com/github. In the pop-up window, it will ask you
to sign in to your GitHub account, and then to “Authorize Colaboratory.” Once you
do so, you can select a GitHub repo from the drop-down menu on the left, and any
Jupyter notebooks that are in that repo will appear below.

The Google Colab view of your GitHub repos will only show you
Jupyter notebooks (files that end in .ipynb). To see all files in a repo,
you’ll need to visit it on the GitHub website.

Tying it all together. If you’re working on Google Colab, all you have to do to add
a new file to your GitHub repo is to choose File → Save a copy in GitHub. After
automatically opening and closing a few pop-ups (this is Colab logging in to your
GitHub account in the background), you’ll once again be able to choose the GitHub
repo where you want to save your file from the drop-down menu at the top left. You
can then choose to keep (or change) the notebook name and add a commit message.
If you leave “Include a link to Colaboratory” checked in this window, then the file
in GitHub will include a little “Open in Colab” label, which you’ll be able to click
to automatically open the notebook in Colab from GitHub. Any notebooks that you
don’t explicitly back up in GitHub this way will be in your Google Drive, inside a
folder called Colab Notebooks. You can also find them by visiting the Colab website
and selecting the Google Drive tab at the top.

Folders, Directories, and Repos: Oh My!
You may have noticed over the course of this chapter that there doesn’t seem to be
much difference between “folders,” “directories,” and even “repos.” In fact, the first
two are just different names for the same thing, while the last specifically refers to
folders where at least some of the files are tracked by Git.

In other words, you can still interact with all of them, using your mouse and regular
finder windows, to add, remove, and open files. The only difference is that, in the
case of a repo, you’ll need to use Git commands like add and rm to keep everything in
order—but we’ll address each of these situations as they arise in future chapters.

34 | Chapter 1: Introduction to Data Wrangling and Data Quality

https://colab.research.google.com/github
https://colab.research.google.com

Conclusion
The goal of this chapter was to provide you with a general overview of what you can
expect to learn in this book: what I mean by data wrangling and data quality, and why
I think the Python programming language is the right tool for this work.

In addition, we covered all the setup you’ll need to get started (and keep going!)
with Python for data wrangling, by offering instructions for setting up your choice
of programming environment: working with “standalone” Python files or Jupyter
notebooks on your own device, or using Google Colab to use Jupyter notebooks
online. Finally, we covered how you can use version control (no matter which setup
you have) to back up, share, and document your work.

In the next chapter, we’ll move far beyond our “Hello World” program as we work
through the foundations of the Python programming language and even tackle our
first data wrangling project: a day in the life of New York’s Citi Bike system.

Conclusion | 35

CHAPTER 2

Introduction to Python

Can you read this? If so, I have good news for you: you won’t have any trouble
learning to program. Why? Because computer programming languages in general—
and Python in particular—are much less complex than natural human languages.
Programming languages are designed by humans to be read, for the most part,
by computers, so they have simpler grammar and far fewer “parts of speech” than
natural languages. So if you feel reasonably comfortable reading English—a language
notorious for its large vocabulary and irregular spellings and pronunciation—rest
assured that learning the fundamentals of Python is well within your reach.

By the end of this chapter, you’ll have all the Python skills you need to begin doing
basic data wrangling with the common data formats that we’ll cover in Chapter 4.
To get to that point, we’ll start by doing some basic coding exercises that cover the
following:

• Essential Python “parts of speech” and its basic grammar/syntax•
• How the computer reads and interprets your Python code•
• How to use code “recipes” that are built by others (and yourself!) to quickly•

expand what your own code can do

Throughout this chapter, you’ll find code snippets that illustrate each concept, which
are also collected in the accompanying Jupyter notebooks and standalone Python
files on GitHub; these can be pulled into Google Colab or downloaded and run on a
computer. While these files will let you see this chapter’s code in action, however, I
strongly suggest that you create a new Colab/Jupyter notebook or standalone Python
file and practice writing, running, and commenting this code for yourself (for a
refresher on how to do this, see “Hello World!” on page 20). While you might think
this is silly, there is actually nothing more useful for building your data wrangling
skills and confidence than setting up a Python file “from scratch” and then seeing

37

code you wrote yourself make the computer do what you want—even if you are
“just” retyping it from another file. Yes, you will encounter more hiccups this way,
but that’s sort of the point: doing good data wrangling is not really about learning to
do anything “right,” it’s about learning how to recover when things go wrong. Giving
yourself room to make little mistakes early on (and learning how to recognize and
fix them) is how you’ll truly make progress as both a data wrangler and programmer.
You’ll never get that experience if all you do is run already-working code.

Because these little mistakes are so important, I’ve included some “Fast Forward”
sections in this chapter, which will offer you ways to take the code examples I’ve
provided one step further—which often involves intentionally “breaking” the code.
By the end of this chapter, you’ll be ready to combine the basics we’ve covered into a
full-fledged data wrangling program that relies on real-world data. For each example,
I’ll also include some explicit reminders about the kinds of things you’ll want to
include in your data diary, when you’ll want to back up your code to GitHub, and
so on so that you can begin to get really comfortable with those processes and also
start to develop a feel for when you’ll want to take those steps during your own data
wrangling projects.

Now that you know where we’re headed—let’s get started!

The Programming “Parts of Speech”
Different human languages use different vocabularies and syntax structures, but there
are many fundamental concepts that they typically share. For example, let’s take a
look at the following two sentences:

My name is Susan. // English

Je m'appelle Susan. // French

Both of these sentences express essentially the same thing: they state what my name
is. And though each language uses different words and slightly different grammatical
structures, they both include parts of speech like subjects, objects, verbs, and modi‐
fiers. They also both follow similar grammar and syntax rules, in that they organize
words and ideas into structures like sentences, paragraphs, and so on.

Many programming languages also share key structural and organizational elements
that roughly parallel those found in natural languages. To get a better idea of how
this works, let’s start in the same way that we might when learning a new human
language: by exploring programming languages’ “parts of speech.”

38 | Chapter 2: Introduction to Python

1 There are also many language-specific data types (such as Python’s tuple data type) that are not as relevant to
our data wrangling efforts, so we won’t address these in detail.

Nouns ≈ Variables
In the English language, nouns are often described as any word that refers to a
“person, place, or thing.” Though this isn’t a super-precise definition, it is a handy
way of illustrating the different types of entities that nouns can be. In programming
languages, it is variables that are used to hold and refer to the different data types
that we use to write our programs. Instead of “people, places, and things,” however,
variables in the Python programming language can be one of five main data types:

• Number•
• String•
• List•
• Dictionary (dict)•
• Boolean•

As with human languages, there is a lot of overlap in types of variables that different
programming languages support: what in Python we call lists are known as arrays
in JavaScript or C, for example; JavaScript objects, on the other hand, are officially
known as maps (or dictionaries) in Python.1

Having read the data types list, you can probably already guess what at least some
of these data types will look like. The good news is that, unlike nouns in the real
world, every data type in Python can be reliably identified by its formatting and
punctuation—so there’s no need to worry that you’ll mix up your dicts and your lists,
as long as you take the time to look closely at the symbols that surround your data.

To get a sense of the unique punctuation structure of each data type, take a look at
Example 2-1. In particular, make sure you open or make a copy of this code in your
code editor or notebook, so you can see the syntax highlighting in action. Numbers
should be a different color than strings, for example, and the brackets, braces, and
comments (on the lines that begin with a #) should all be another color as well.

Example 2-1. parts_of_speech.py

 # a number is just digits
 25

 # a string is anything surrounded by matching quotation marks
 "Hello World"

 # a list is surrounded by square brackets, with commas between items

The Programming “Parts of Speech” | 39

 # note that in Python, the first item in a list is considered to be
 # in position `0`, the next in position `1`, and so on
 ["this","is",1,"list"]

 # a dict is a set of key:value pairs, separated by commas and surrounded
 # by curly braces
 {"title":"Practical Python for Data Wrangling and Data Quality",
 "format": "book",
 "author": "Susan E. McGregor"
 }

 # a boolean is a data type that has only two values, true and false.
 True

Of course, this list is far from exhaustive; just as human languages support “complex
nouns” (like “haircut” and “bedroom”), it is possible to build more complex data
types in programming languages as well. As you’ll soon see, however, there’s quite a
lot that we can get done even with just this handful of basic types.

In the real world we also often give names to the many unique instances of “people,
places, and things” in our lives, to reference and communicate about them more
easily. We do this in programming, too, and for exactly the same reason: naming our
variables lets us reference and modify specific pieces of data in a way the computer
can understand. To see how this works, let’s try translating a simple English sentence
into Python code:

The author is Susan E. McGregor

After reading this sentence, you will associate the name “Susan E. McGregor” with
the label “author.” If someone asks you who wrote this book, you will (hopefully)
remember this and say “Susan E. McGregor.” The equivalent “sentence” in Python
code is shown in Example 2-2.

Example 2-2. Naming a Python variable

author = "Susan E. McGregor"

This code tells the computer to set aside a box in memory, label it author, and then
put the string "Susan E. McGregor" into that box. Later on in our program, if we
asked the computer about the author variable, it would tell us that it contains the
string "Susan E. McGregor", as shown in Example 2-3.

Example 2-3. Printing the contents of a Python variable

create a variable named author, set its contents to "Susan E. McGregor"
author = "Susan E. McGregor"

40 | Chapter 2: Introduction to Python

confirm that the computer "remembers" what's in the `author` variable
print(author)

What’s in a name?

In Example 2-3, I chose to name my variable author, but there is nothing magical
about that choice. In principle, you can name variables almost anything you want—
the only “hard-and-fast” rules are that variable names cannot:

• Begin with a digit•
• Contain punctuation marks other than underscores (_)•
• Be “reserved” words or “keywords” (like Number or Boolean, for example)•

For example, I could just as easily have called the variable in Example 2-3 nyc_resi
dent or even fuzzy_pink_bunny. What matters most is that you, as the programmer,
follow the few restrictions listed previously, and that you use exactly the same variable
name when trying to access its contents later (capitalization counts!). For example,
create a new Python file containing the code in Example 2-4, and then run it to see
what results you get.

Example 2-4. noun_examples.py

create a variable named nyc_resident, set its contents to "Susan E. McGregor"
nyc_resident = "Susan E. McGregor"

confirm that the computer "remembers" what's in the `nyc_resident` variable
print(nyc_resident)

create a variable named fuzzyPinkBunny, set its contents to "Susan E. McGregor"
fuzzyPinkBunny = "Susan E. McGregor"

confirm that the computer "remembers" what's in the `fuzzyPinkBunny` variable
print(fuzzyPinkBunny)

but correct capitalization matters!
the following line will produce an error
print(fuzzypinkbunny)

Best practices for naming variables
While all of the examples used in Example 2-4 are legitimate variable names, not all
of them are especially good variable names. As we’ll see throughout this book, writing
good code—like any other kind of writing—is about more than just writing code that
“works”; it’s also about how useful and intelligible that code is to both computers and
people. Because of this, I consider naming variables well an essential part of good
programming. In practice, good variable names are:

The Programming “Parts of Speech” | 41

• Descriptive•
• Unique (within a given file or program)•
• Readable•

Because achieving the first two properties often requires using more than one word,
programmers typically use one of two stylistic conventions to help ensure that their
variable names also remain readable, both of which are shown in Example 2-4. One
approach is to add underscores (_) between words (e.g., nyc_residents) or use
“camel case,” in which the first letter of every word (except the first) is capitalized
(e.g., fuzzyPinkBunny). In general, you should use one style and stick to it, though
your code will work fine (and mostly meet the readability criteria) even if you mix
them together. In this book, we’ll mostly use underscores, which also happen to be
considered more “Pythonic.”

Verbs ≈ Functions
In the English language, verbs are often described as “actions” or “states of being.”
We’ve already seen a programming language equivalent of the latter: the equals sign
(=) and the print() function used in the preceding examples. In English, we use
forms of the verb “to be” to describe what something is; in Python (and many other
programming languages), the value of a variable is whatever appears on the righthand
side of the equals sign. This is why the equals sign is also sometimes described as the
assignment operator.

In programming, the equivalent of “action verbs” are functions. In Python and many
other programming languages, there are built-in functions, which represent tasks—
like printing output via the print() function—that the language “just knows” how
to do. While similar, methods are special functions that are designed to work with a
particular data type and need to be “called on” a variable of that data type in order to
work. The methods available for a given data type tend to reflect common tasks you
might want to perform with it. So just as most humans can walk, talk, eat, drink, and
grasp objects, most programming languages have string methods that can do tasks like
stick two strings together (known as concatenation), split two strings apart, and so on.
But since it doesn’t make sense to “split” the number 5, the Number data type doesn’t
have a split() method.

What is the difference between a built-in function and a method in practice? Not
much, except for the way we include these “verbs” in our Python “sentences” or
statements. With a built-in function, we can simply write the function name and pass
along any “ingredients” it needs, by placing them between the round parentheses. For
example, if you recall our Example 1-1, all we had to do was pass the string Hello
World! to the print() function, like this:

42 | Chapter 2: Introduction to Python

 print("Hello World!")

In the case of the split() method, however, we have to attach the method to a specific
string. That string can either be a literal (that is, a series of characters surrounded
by quotation marks), or it can be a variable whose value is a string. Try the code in
Example 2-5 in a standalone file or notebook, and see what kind of output you get!

Example 2-5. method_madness.py

splitting a string "literal" and then printing the result
split_world = "Hello World!".split()
print(split_world)

assigning a string to a variable
then printing the result of calling the `split()` method on it
world_msg = "Hello World!"
print(world_msg.split())

Note that if you try to run the split() method by itself or on a data type where it
doesn’t make sense, you’ll get an error. Try each of these out in succession (or in two
different cells if you’re using a notebook) and see what happens:

the following will produce an error because
the `split()` method must be called on a string in order to work!
split("Hello World!")

the following will produce an error because
there is no `split()` method for numbers!
print(5.split())

Just like data types, methods and functions are recognizable thanks to their typogra‐
phy and punctuation. A built-in function (like print()) will turn a specific color
in your code editor or notebook. In Atom’s default One Dark theme, for example,
variable names are light gray, operators like = are purple, and built-in functions like
print() are aqua. You can also recognize functions by their associated punctuation:
anywhere you see text immediately followed by round parentheses (e.g., print()),
you are looking at a function. The same is true of methods, except that these are
always preceded by an appropriate data type or variable name, and separated from it
by a period (.).

In a programming language like Python, you can actually get a fair bit done with just
operators, methods, and built-in functions—especially if you are mostly doing tasks
like basic math. When it comes to data wrangling, however, we need a little bit more
sophistication. In exactly the same way we can think about complex tasks like playing
a piano or kicking a ball as “just” a careful combination of many simpler actions—like
moving our fingers or feet, for example—very sophisticated programming functions
can be built by thoughtfully composing relatively simple operators, methods, and
built-in functions. These user-defined functions are where we can start to really

The Programming “Parts of Speech” | 43

amplify the power of our code by making what are essentially code “recipes” that can
be used again and again.

For example, let’s say we wanted to print out the same greeting to two different
people. We could simply use the print() function as we have been, as shown in
Example 2-6.

Example 2-6. basic_greeting.py

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

use the built-in print function to output "Hello" messages to each person
print("Hello "+author)
print("Hello "+editor)

There are a couple of things to notice about the code in Example 2-6. First, using the
print() function works just fine; this code totally gets the job done. And that’s great!
The first time we write code for something (including a given data wrangling task),
that’s pretty much our main goal: get it to work correctly.

Once we’ve accomplished that, though, we can start to think about some simple ways
to make our code “cleaner” and more useful. In the previous example, the two print
statements are identical, except for the variable being used. Any time we see this type
of repetition in our code, it’s a clue that we may want to make our own user-defined
function instead, as in Example 2-7.

Example 2-7. greet_me.py

create a function that prints out a greeting
to any name passed to the function

def greet_me(a_name):
 print("Hello "+a_name)

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

use my custom function, `greet_me` to output "Hello" messages to each person
greet_me(author)
greet_me(editor)

44 | Chapter 2: Introduction to Python

Pretty nifty, right? In some ways, we didn’t change much at all—but there’s actually
quite a lot going in Example 2-7. We’ll take a few moments now to highlight some of
the new concepts being used here, but don’t worry if it doesn’t all make sense right
away—we’ll continue to revisit these ideas throughout the book.

The main thing we’ve done in Example 2-7 is write our first custom function,
greet_me(). We did this by using a few different syntax structures and typographic
indicators to let the computer know that we want it to create and remember this
function for future use. Some of these conventions match what we’ve already seen
for creating our own custom variables (for example, using the descriptive name
greet_me()), as well as the conventions of built-in functions and methods, like
following the name of our function immediately with round parentheses (()).

In Figure 2-1, I’ve diagrammed the code for our greet_me() function in order to
highlight what’s happening on each line.

Figure 2-1. Components of a custom function

As you can see from Figure 2-1, creating a custom function means including multiple
signposts to the computer:

• The def keyword (short for define) tells the computer that what comes next is a•
function name.

• The round parentheses immediately following the function name reinforce that•
this is a function and are used to enclose the function’s parameters (if there are
any).

• The colon (:) indicates that the indented lines of code that follow are part of the•
function.

The Programming “Parts of Speech” | 45

• If we want to access the variable that was passed into our function as an•
argument, we use the “local” parameter name that appears between the round
parentheses in the function definition.

• We can use any type of functions (both built-in and custom) or methods inside•
our custom function. This is key strategy for building efficient, flexible code.

When it comes to using or “calling” our function, we can simply write the name
of the function (greet_me()), making sure that we put the same number of “ingre‐
dients” between the parentheses that appear in the function definition. Since we
have defined greet_me() to take exactly one argument “ingredient” (in this case, the
a_name parameter), we have to provide exactly one argument when we want to use
it—otherwise, we’ll get an error.

Fast Forward
We’ll discuss errors a little more in-depth in “Understanding Errors” on page 55, but
you should always feel free to play around with the code in these examples to see what
happens when something goes “wrong” with your code. For the code in Example 2-7,
here are a few ways to start experimenting:

• Without any parameter “ingredients,” e.g., greet_me()•
• With too many parameter “ingredients,” e.g., greet_me(author,editor)•
• With something that isn’t a variable, e.g., greet_me("Samantha")•
• With something that isn’t a string, e.g., greet_me(14)•

In each case, notice what happens when you try to run the code. If it produces an
error message, see if you can connect the contents of that message to the changes you
made. While programming error messages are not brilliantly descriptive, it’s usually
possible to glean at least some useful information from them about why the computer
is complaining. We’ll walk through debugging—the process of methodically fixing
“broken” code—in detail soon, but this is a great way to get started now!

Cooking with Custom Functions
As you may have noticed, I like to think of user-defined or “custom” functions as
programming “recipes.” Like food recipes, they provide the computer with reusable
instructions for transforming one or more raw data “ingredients” into some other
useful resource. Sometimes there is only one parameter or “ingredient,” as in our
greet_me() recipe; sometimes there are many parameters of many different data
types. There’s no strictly “right” or “wrong” way to write a custom function—much as
there’s no right or wrong way to write a cooking recipe; everyone will have their own

46 | Chapter 2: Introduction to Python

style. At the same time, when it comes to strategies for deciding what should go into a
given function, it can help to think about how we tend to use (or maybe even write!)
recipes for cooking food.

For example, it’s obviously possible to write a single cooking recipe called “Thanks‐
giving” that describes how to make an entire holiday meal from start to finish.
Depending on your holiday style, it might take anywhere from 2 to 72 hours to
“run,” and it would be very useful once a year—and almost never otherwise. If you
did want to make just part of that massive recipe—perhaps you want to serve your
Thanksgiving mashed potatoes at New Year’s—you’d first have to dig through the
Thanksgiving instructions to identify and piece together just the ingredients and
steps for making mashed potatoes. That would mean investing a lot of work before
you ever even got cooking!

So while we want our custom functions to do things that are somewhat more complex
than what the computer can do already, we generally don’t want them to be truly com‐
plicated. Like a “Thanksgiving” recipe, making giant functions (or even programs)
limits how effectively they can be reused. Creating simple, focused functions actually
makes our code more useful and flexible in the long run—a process we’ll explore in
more detail in Chapter 8.

Libraries: Borrowing Custom Functions from Other Coders
If custom functions are programming recipes, then libraries are programming cook‐
books: large collections of other people’s custom functions that we can use to trans‐
form our raw data ingredients without having to figure out and write our own recipe
“from scratch.” As I mentioned in Chapter 1, the large community of coders who have
written useful Python libraries is one of the reasons we’re using Python in the first
place—and as you’ll see in “Hitting the Road with Citi Bike Data” on page 62 at the
end of this chapter, using them is both useful and powerful.

Before we can really take advantage of libraries, however, we need to cover two more
essential grammatical structures of Python: loops and conditionals.

Taking Control: Loops and Conditionals
As we have discussed, writing Python code is similar to writing in English in many
ways. In addition to relying on some basic “parts of speech,” Python code is written
from left to right and read essentially from top to bottom. But the path that the
computer takes through a data wrangling program is much more like a “Choose
Your Own Adventure” book than a traditional essay or article: depending on the
commands that you, as the programmer, provide, some bits of code may be skipped
or repeated based on your data or other factors.

Taking Control: Loops and Conditionals | 47

https://en.wikipedia.org/wiki/Choose_Your_Own_Adventure
https://en.wikipedia.org/wiki/Choose_Your_Own_Adventure

In the Loop
When we’re data wrangling with Python, one of our most common goals will be to
do something to every record in a dataset. For example, let’s say we wanted to add
together a list of numbers to find their sum:

create a list that contains the number of pages in each chapter
of a fictional print version of this book

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

If you needed to total a group of numbers like this without programming, you would
have several options: you could use the calculator program on a computer, a physical
calculator, or even (gasp!) a pencil and paper. If you know how to use a spreadsheet
program, you could enter each data item there and use a SUM() function, too. For
short lists, any of these solutions would probably be fine, but they don’t scale well:
sure, adding up 10 numbers by hand (or by calculator) might not take too long, but
adding up 100 numbers would. The spreadsheet solution is somewhat better in terms
of time, but it still requires a number of external steps—like copying and pasting the
data into a spreadsheet and more or less manually selecting which rows or columns
should be summed. With a programmatic solution, we can avoid almost all of those
drawbacks—and whether we need to add 10 rows or 10 million, it will take no more
work on our part, and only slightly longer for the computer to actually calculate.

Because programming is still writing, of course, there are multiple ways we can
express the instructions we give to the computer. One way is to have the computer
look at each number in the list and keep a running total, as shown in Example 2-8.

Example 2-8. page_count_loop.py

fictional list of chapter page counts
page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

variable for tracking total page count; starting value is 0
total_pages = 0

for every item in the list, perform some action
for a_number in page_counts:

 # in this case, add the number to our "total_pages" variable
 total_pages = total_pages + a_number

print(total_pages)

Before we look at some other ways we could tell the computer to do this task, let’s
break down Example 2-8. Obviously, we start with the list of numbers. Next, we
create a variable to keep track of total_pages, to which we have to explicitly assign

48 | Chapter 2: Introduction to Python

a value of 0 to start out (most calculator programs do this more or less implicitly).
Finally, we begin going through our list:

for a_number in page_counts:

To me, the easiest way to understand this line of code is to say it out loud like an
English sentence: “For every a_number in the list, page_counts do the following.”
And in fact, that’s exactly what happens. For every item in the page_counts list,
the computer follows the instructions in the code indented under the for...in...:
statement. In this case, that means adding together the current value of total_pages
and the value of a_number and storing that back in total_pages again.

In some ways, this is straightforward: we’ve already told the computer, very explicitly,
the values of both page_counts (that’s our list of numbers) and total_pages. But
what about a_number? Where did that come from, and how does the computer know
where to find it?

Like the print() statement or the def...function_name(): construction, the
for...in...: configuration is built into the Python language, which is why we don’t
have to give it quite as many instructions as we usually will when coding. In this
case, what we have to provide the for...in...: statement to work are two things: a
list-like variable (in this case, page_counts) and a name that the computer can use to
refer to the current item in the list (in this case, a_number), as shown in Figure 2-2.

Figure 2-2. Structure of a for loop

As with all variable names, there is nothing “magic” about the variable name a_num
ber—I thought that was a good option because it’s descriptive and readable. What
matters is that when I want the computer to do something with each list item, the
variable name I use in my indented code has to match what I’ve written in that top
for...in...: statement.

Taking Control: Loops and Conditionals | 49

Fast Forward
Here’s another opportunity to experiment with errors. Take the preceding
page_counts code and do the following:

1. Change the variable name a_number to something else only in the for...in...:1.
statement.

2. Change the variable name a_number to something else in both the for...in...:2.
statement and in the code indented below it (use the same new variable name in
both places).

Again, notice what happens when you try to run the code. If you’re still getting an
error after the second step, make sure that your variable name is exactly the same in
both places (copying and pasting is great for this).

In programming lingo, this for...in...: construction is known as a for loop—and
every commonly used programming language has one. The reason why it’s known as
a “loop” is because for every item in the list provided, the computer runs every rele‐
vant line of code—in the case of Python, every indented line below the for...in...:
statement—and then moves to the next item and “loops” back to the first indented
line of code again. This is a little hard to see when our “loop” only has one line of
code, so let’s add a few more lines to better illustrate what’s going on, as shown in
Example 2-9.

Example 2-9. page_count_printout.py

fictional list of chapter page counts
page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

variable for tracking total page count; starting value is 0
total_pages = 0

for every item in the list, perform some action
for a_number in page_counts:
 print("Top of loop!")
 print("The current item is:")
 print(a_number)
 total_pages = total_pages + a_number
 print("The running total is:")
 print(total_pages)
 print("Bottom of loop!")

print(total_pages)

50 | Chapter 2: Introduction to Python

By now you might be thinking, “This seems like a lot of work just to sum a list of
numbers.” And there is, of course, a more efficient way to complete this specific task:
Python has a built-in sum() function that will take our list of numbers as an argument
(Example 2-10).

Example 2-10. Using the sum() function

fictional list of chapter page counts
page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

`print()` the result of using the `sum()` function on the list
print(sum(page_counts))

Try adding this to your existing program on your own!

Even though we could have used the sum() function from the start, I took this
opportunity to introduce for loops, for a couple of reasons. First, because it’s a good
reminder that even when it comes to simple programming tasks, there’s always more
than one approach. Second, because for loops are an essential part of data wrangling
(and, really, all programming), for...in...: loops are one of the key tools we’ll use
to filter, evaluate, and reformat data.

One Condition…
The for loop gives us a straightforward way to look at every item in a dataset, but
data wrangling requires making decisions about our data as well. Usually, that means
evaluating some aspect of the data and doing one thing if the data has a certain value
and otherwise something (or nothing!) else. For example, what if we wanted to know
how many chapters in this book have more than 30 pages and how many have fewer
than 30 pages? We’d need a way to:

1. Check whether a particular number in our page_counts list is more than 30.1.
2. Add 1 to an over_30 counter if it’s more than 30.2.
3. Otherwise, add 1 to our under_30 counter.3.

Fortunately, Python has a built-in grammatical structure for doing exactly this kind
of evaluation and decision-making: the if...else statement. Let’s see how it works
by modifying the for loop in Example 2-9 to also track the number of chapters that
are more and less than 30 pages.

Taking Control: Loops and Conditionals | 51

Example 2-11. page_count_conditional.py

fictional list of chapter page counts
page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

create variables to keep track of:
the total pages in the book
total_pages = 0

the number of chapters with more than 30 pages,
under_30 = 0

the number of chapters with fewer than 30 pages
over_30 = 0

for every item in the page_counts list:
for a_number in page_counts:

 # add the current number of pages to our total_pages count
 total_pages = total_pages + a_number

 # check if the current number of pages is more than 30
 if a_number > 30:

 # if so, add 1 to our over_30 counter
 over_30 = over_30 + 1

 # otherwise...
 else:
 # add 1 to our under_30 counter
 under_30 = under_30 + 1

print our various results
print(total_pages)
print("Number of chapters over 30 pages:")
print(over_30)
print("Number of chapters under 30 pages:")
print(under_30)

As with for loops, I think the easiest way to understand what’s happening in an
if...else conditional is to say it out loud as a sentence (and, just as importantly,
write that sentence in the comments of your code): “if the current number of pages
is more than 30, add one to the over_30 counter. Otherwise (else), add one to the
under_30 counter.”

52 | Chapter 2: Introduction to Python

2 In many other programming languages, curly braces are used to indicate which pieces of code belong inside a
loop or a conditional statement. As we mentioned in “Readability” on page 7, however, Python is whitespace
dependent.

While hopefully this makes some sense intuitively, I want to slow down again and
go through what’s happening in a bit more detail, since if...else statements are
another programming structure that we’ll come back to over and over.

First, let’s look at the indenting structure of the preceding example: everything that’s
part of the for loop is indented one tab from the left margin; that’s how the computer
knows that code is “inside” that loop. Similarly, the code that belongs to each part
of the if...else statement is indented one tab more. In Python, this process of
progressive indentation is actually required for the code to work properly—if the
indenting isn’t correct, Python will complain.2 This mechanism is often referred to as
nesting. A more visual way to think about what’s happening is shown in Figure 2-3.

Figure 2-3. Code “nesting”

There are a number of implications of nesting that we’ll address later in this book,
but the main takeaway for now is that in order to make a line of code “belong” to a
function, loop, or conditional, it must be indented one tab to the right of the structure
you want it to be part of. To see this in action, let’s bring together everything we’ve
done up to this point to create a Python program that uses a loop, a conditional, and
a custom-defined function, as shown in Example 2-12.

Taking Control: Loops and Conditionals | 53

Example 2-12. page_count_custom_function.py

fictional list of chapter page counts
page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

define a new `count_pages()` function that takes one ingredient/argument:
a list of numbers
def count_pages(page_count_list):

 # create variables to keep track of:
 # the total pages in the book
 total_pages = 0

 # the number of chapters with more than 30 pages,
 under_30 = 0

 # the number of chapters with fewer than 30 pages
 over_30 = 0

 # for every item in the page_count_list:
 for a_number in page_count_list:

 # add the current number of pages to our total_pages count
 total_pages = total_pages + a_number

 # check if the current number of pages is more than 30
 if a_number > 30:

 # if so, add 1 to our over_30 counter
 over_30 = over_30 + 1

 # otherwise...
 else:
 # add 1 to our under_30 counter
 under_30 = under_30 + 1

 # print our various results
 print(total_pages)
 print("Number of chapters over 30 pages:")
 print(over_30)
 print("Number of chapters under 30 pages:")
 print(under_30)

call/execute this "recipe", being sure to pass in our
actual list as an argument/ingredient
count_pages(page_counts)

54 | Chapter 2: Introduction to Python

We can “wrap” our existing code into a new function (here called count_
pages()) by indenting one tab and adding the function definition line.

We have to match the name of the list variable the for loop references to
the parameter name provided between the round parentheses in the function
definition in .

A function does not do anything until it is actually called or executed. At this
point, we need to provide it with the specific argument/ingredient we want it to
work on.

If you compare Example 2-12 to Example 2-11, you’ll see that I actually just copied
the code from Example 2-11 and did three things:

1. I added the function defining statement def count_pages(page_count_list):.1.
2. I indented all the existing code one additional tab so that the computer views it2.

as “belonging” to our new count_pages() function. In Atom, you can do this all
at once by highlighting all the lines of code you want to move and hitting the Tab
key. I also updated the variable referenced at the top of the for loop to match the
parameter name provided between the round parentheses on the def line of the
function.

3. I made sure to “call” the function at the end, giving it the page_counts variable as3.
an “ingredient” or argument. Notice that the count_pages(page_counts) state‐
ment isn’t indented at all.

Hopefully, you’re starting to get a little bit of a handle on how all this fits together.
Before we start using these tools to do some real-world data wrangling, though, we
need to spend some time talking about what happens when code goes wrong.

Understanding Errors
As we’ve mentioned in Chapter 1, computers are very good at doing repetitive tasks
quickly (and usually accurately). This lets us write programs that scale well: the same
code that can sum or sort a list that’s 10 items long (like our page_counts example)
can also be used pretty effectively on a list that’s 10,000 items long.

At the same time, however, computers are truly, importantly, and irretrievably stupid.
Computers can’t really infer or innovate—they can only choose paths through their
code based on the instructions and data that humans provide to them. As a result,
there are many ways in which writing code is like giving instructions to a toddler: you

Understanding Errors | 55

3 Unlike computers, of course, toddlers are capable of genuine originality and learning.
4 For more, see Scott Rosenberg’s Wordyard blog post about the topic.

have to be extremely literal and very explicit, and if something unexpected happens,
you should expect a tantrum.3

For example, when humans encounter a spelling or grammatical error in a written
sentence, we often don’t even notice it: based on the context of the surrounding
sentence or paragraph, much of the time we’ll infer the appropriate meaning without
even really trying. In fact, even if almost all of the letters in all of the words in
a sentence are rearranged, we can uusally siltl raed it wihtuot too mcuh erfoft.4

Computers, by contrast, will just complain loudly and stop reading altogether if your
code has even a comma out of place.

Because of this, errors in programming aren’t just inevitable, they’re expected. No
matter how much you program, any chunk of code you write that’s longer than a few
lines will have errors in it of one kind or another. Rather than worrying about how
to avoid errors, it is much more useful to learn how to interpret and correct errors.
Throughout this book, I will at times intentionally generate errors (or encourage you
to do so, as in “Fast Forward” on page 46 and “Fast Forward” on page 50) so that
you can get familiar with them and begin to develop your own process for working
through them. As a starting point, we’ll discuss the three main types of errors that
occur in programming: syntax errors, runtime errors, and logic errors.

Syntax Snafus
Grammatical or syntax errors in programming may simultaneously be the simplest
and most frustrating type of error you’ll encounter—in part because they happen very
frequently and because the computer complains loudly about them. The example I
gave earlier about a comma being out of place is an example of a syntax error: in one
way or another, your code has violated the grammatical rules of the programming
language.

The reason I describe these errors as “simple” is that they almost always are. In
my experience, most syntax errors—and, by extension, programming errors—are
basically typos: a comma or quotation mark gets forgotten, or a line of code gets
indented too much or not enough. Unfortunately, many newer programmers I’ve
worked with seem to find these errors especially frustrating precisely because they are
simple—and because they feel silly for making them.

In truth, experienced programmers experience syntax errors all the time. If you’re just
starting out, the main thing you can learn from syntax errors is how not to let them
derail you. In fact, one of the reasons why I’ve included the preceding “Fast Forward”
sections on how to “break” your code intentionally is to help illustrate how easily

56 | Chapter 2: Introduction to Python

http://wordyard.com/2003/09/15/if-u-cn-rd-ths-msg-u-r-jst-lke-vryne-lse

errors can happen—and be fixed. In some ways one of the greatest skills you’ll learn
when programming is how to be wrong a lot and not let it discourage you.

Get Your Game On
One thing that can help make programming errors less frustrating—especially early
on—is to approach the process sort of like a video game: beating a difficult level often
means attempting it (at least) dozens of times. Sometimes you’ll have to retry because
an enemy (or problem) is truly difficult, but sometimes you just make a mistake and
fall down a hole (or forget a comma). In both cases, the key thing is to try again—up
to a point. While you certainly don’t want to give up on a programming task as soon
as you get an error, you can definitely burn out in a programming session the same
way you might when you’re trying to beat a hard level on a game. When that happens,
try to take a break for at least 20 or 30 minutes before trying again. Over time, you’ll
start to develop a sense for when you need a break—another programming skill that
will be invaluable in the long run.

If you run a piece of code that has a syntax error, you’ll know because the last line of
the (usually multiline) error message will say SyntaxError. But more useful than this
when actually fixing the error will be the part of the error message that tells you which
file the error is in and which line the error is on. Over time, just going to that line
of code and looking for problems (typically missing punctuation: commas, brackets,
colons, and quotation marks) will be enough for you to spot what’s wrong. While
the error message will also include the (presumably) offending line of code with a
caret (^) below the spot where Python believes the missing character might belong,
this isn’t foolproof. For instance, Example 2-13 shows a Python dict that is missing a
comma on one line.

Example 2-13. Introducing an error

1 # although the actual error is on line 4 (missing comma)
2 # the error message points to line 5
3 book = {"title":"Practical Python for Data Wrangling and Data Quality",
4 "format": "book"
5 "author": "Susan E. McGregor"
6 }

And here is the error output:

 File "ObjectError.py", line 5
 "author": "Susan E. McGregor"
 ^
SyntaxError: invalid syntax

Understanding Errors | 57

As you can see, even though the code in Example 2-13 is missing a comma after the
value "book" on line 4, the computer reports the error as being on line 5 (because
that’s the point at which the computer has realized there is a problem). In general,
though, you can usually find a syntax error on the line (or the line before) wherever
the computer has reported it.

Runtime Runaround
A runtime error in programming is used to describe any type of problem that
crops up in the process of “running” or executing your code. Like syntax errors, a
large portion of runtime errors are also essentially typos, such as incorrectly copied
variable names. For example, anytime you see an error that includes the phrase
some_variable is not defined, you’ve almost certainly got mismatched variable
names somewhere in your code (remember: capitalization counts!). Since reading
the entire “traceback” error can get a little convoluted (they tend to reference the
inner workings of the Python programming language more than I, personally, find
strictly useful), I recommend copying the variable name directly from the error and
then doing a case-insensitive search for it in your code (this is the default behavior
in Atom). This approach will highlight similar (but not quite identical) spellings of a
variable name, speeding up your search for the mismatch.

For example, in Example 2-14 the parameter name provided in the function defini‐
tion for greet_me(a_name) doesn’t precisely match what’s used within the body of the
function definition on the next line.

Example 2-14. Slightly mismatched variable names will generate runtime errors

create a function that prints out a greeting to any name passed to the function

def greet_me(a_name):
 print("Hello "+A_name)

create a variable named author
author = "Susan E. McGregor"

pass my `author` variable as the "ingredient" to the `greet_me` function
greet_me(author)

Because the parameter name that appears inside the round parentheses of the func‐
tion definition always takes precedence, running the code in Example 2-14 generates
the following error:

 File "greet_me_parameter_mismatch.py", line 10, in <module>
 greet_me(author)
 File "greet_me_parameter_mismatch.py", line 4, in greet_me
 print("Hello "+A_name)
NameError: global name 'A_name' is not defined

58 | Chapter 2: Introduction to Python

Note that, as usual, the last few lines of the error message are giving us the most help‐
ful information. The last line lets us know that we’re trying to use the variable name
A_name without having defined it first, and the line above contains the actual code
where it appears. With these two pieces of information (plus our search strategy), it
probably won’t take too long before we see where we went wrong.

Another very common type of runtime error occurs when you try to do something
with a particular data type that it wasn’t designed for. In the “Fast Forward” on page
46, you may have tried running the code greet_me(14). In this case, the last line of
the error output will include the word TypeError, which means that some part of
our code received a different data type than it was expecting. In that example, the
problem is that the function expects a string (which can be “added” or concatenated to
another string using the + sign), but we provided it with a number, in this case, 14.

The challenge with fixing this kind of error is that identifying exactly where the
problem lies can be a bit tricky, because it involves a mismatch between where
a variable’s value was assigned and where that variable (and therefore its value)
was actually used. Especially as your programs grow more sophisticated, these two
processes may be nowhere near each other in your code. Looking at the error output
from Example 2-14, for example, you can see that it reports two locations. The first
is a line where the variable was passed into the function, and so where the available
value was assigned:

File "greet_me_parameter_mismatch.py", line 10, in <module>

The second is the line where the value passed to it was used:

File "greet_me_parameter_mismatch.py", line 4, in greet_me

As I have mentioned already, starting your debugging work with where a problematic
variable or value was used and then working backward through your code to see
where the value was assigned is helpful; just know that the line of code where the
value was assigned may or may not actually appear in the error output. This is part
of what makes these kinds of runtime errors more difficult to track down than your
average syntax error.

The fact that runtime errors are some of the harder ones to diagnose is a key reason
why I recommend both saving and testing your code frequently. The source of a new
runtime error is much easier to identify if you’ve only written a few new lines of code
since you last tested it, because the problem must be in that little bit of new code.
With this sort of write, run, repeat approach, you’ll have much less ground to
cover when it comes to looking for the source of any new errors, and you’ll probably
be able to fix them relatively quickly.

Understanding Errors | 59

5 This is actually a good thing, as we’ll see in Chapter 3.
6 For information on code coverage best practices, see “Code Coverage Best Practices” on the Google Testing

Blog.

Except…
One of the realities of data wrangling is that our code will often come up against
inappropriate or unpredictable input, because the data we’re working with may have
missing or invalid values. For example, a column of otherwise numerical values may
have some that are empty. As we’ll see in Chapter 6 in particular, those empty values
won’t automatically be converted to a number like zero.5 This means that those empty
values may generate errors if your code is only written to handle numerical values.

In Python, this kind of unfortunate-but-foreseeable error is known as an exception,
because it happens when your program encounters an “exceptional” or unexpected
situation—like an inappropriate data type. While especially common in data wran‐
gling work, it is possible to write our programs to “handle” exceptions—that is, to tell
our code to do something other than throw an error and stop running.

While handling exceptions can be useful, we won’t be spending a lot of time on it in
this book. The reason is that our goal here is not simply to create programs that can
work on a given set of data but to ensure the quality of that data as well. As a result,
most of the time we’ll actually want to know when and where our data is not what we
expect, rather than writing our code to just roll past those problems without stopping.
So it usually makes more sense for us to deal with runtime errors as they arise, rather
than trying to plan for (and handle) all possible errors in advance.6

Of course, it is possible to write Python exceptions that can help us meaningfully
assess data quality; it’s just that in most cases we won’t need to do this directly because
the Python libraries we’ll use (again, especially in Chapter 6) do much of this work for
us. We’ll also minimize the likelihood of needing exceptions by taking an incremental
approach to writing our data wrangling code: we’ll start by designing and testing our
code on a subset of our target dataset, and then we’ll run the program on the entire
dataset (or versions of the entire dataset) to see how it performs. This will help us
balance speed and scale by allowing us to quickly assess the quality of a given dataset
while still creating code that can handle the entire dataset if things work out.

Logic Loss
By far the trickiest type of programming problem is the logic error, which is broadly
used to describe what happens when your program works, just not how you intended.
These errors are especially insidious because—from the computer’s perspective—
everything is fine: your code is not trying to do anything it finds confusing or
“wrong.” But computers are stupid, remember, so they will happily let your program

60 | Chapter 2: Introduction to Python

https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html

do things that produce meaningless, nonsensical, or even misleading results. In
precisely the same way that one can do correct math on bad data (as we’ll discuss in
Chapter 3), it’s very possible to write functioning code that does something inappro‐
priate or incorrect. In fact, we already have!

If you look back at Example 2-12, you’ll notice that there’s actually a slight discon‐
nect between what our comments say we wanted to accomplish and what our code
actually does. The output of that example looks like this:

291
Number of chapters over 30 pages:
5
Number of chapters under 30 pages:
4

But our data looks like this:

 page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

See the problem? While it’s true that we have 5 chapters whose page count is more
than 30, we actually have only 3 chapters whose page count is under 30—there’s one
chapter with exactly 30 pages.

Right now, this may not seem like a particularly significant error—after all, how
important is it if one 30-page chapter gets lumped in with chapters that are fewer
than 30 pages? But imagine that instead of counting chapter pages, this code was
being used to determine voting eligibility? If that code was counting only people who
were “over 18,” hundreds of thousands of people would be disenfranchised.

Fixing this error is not difficult or complicated in terms of the code we need to adjust.
All we have to do is change this:

 # check if the current number of pages is more than 30
 if a_number > 30:

To this:

 # check if the current number of pages is greater than or equal to 30
 if a_number >= 30:

The challenge this type of error presents is that it relies entirely on our diligence
as programmers to make sure that as we design our programs, we don’t overlook
some possible data value or discrepancy that can result in incorrect measurements
or results. Because the computer cannot warn us about logic errors, the only reliable
way to avoid them is to plan our programs carefully in the first place, and to carefully
“sanity check” the results. In “Hitting the Road with Citi Bike Data” on page 62, we’ll
see what this process looks like when we write a program to deal with a real-world
dataset.

Understanding Errors | 61

Don’t Forget Git!
Encountering errors can be frustrating, but it will be less so if you are confident that
new errors aren’t costing you previous progress you’ve made in getting your code to
work. That’s why I recommend that whenever you do get a new bit of code working
properly, you should not just save but also commit your code to your Git repo.

This doesn’t have to be a difficult process, whether you are working in a notebook
or in a standalone file. If you’ve been working inside the data_wrangling folder that
we set up in “Tying it all together” on page 32, then your repo is already set up and
connected to GitHub. All you need to do is add any new files you’ve created to your
local repo, commit them (with messages!), and then push. While that may sound like
a lot, it’s really only a few commands in the terminal, and they’ll be almost second
nature once you’ve done this a few times.

I always like to start any commit process by first checking the status of my repo, so I
know which files need to be added, and which just need to be committed. So for me, a
typical Git “check in” process would look like:

git status
git add filename
git commit -m "Descriptive commit message!" filename
git push

That’s it! Of course, you don’t need to git push with every commit; whenever you
git push, all the commits you’ve made locally will get uploaded to GitHub all at once.
Either way, checking in your code this way on a regular basis means that if something
goes wrong or you need to take a break, it will always be easy to restart with working
code.

Phew! Now that we’ve covered all the fundamentals of Python programming (really!),
we’re ready to move on from our “toy” examples using data that is (sort of) about this
book. To get our feet wet with a data wrangling task using a real dataset, we’ll turn to
information from the New York City bike-sharing system, Citi Bike.

Hitting the Road with Citi Bike Data
Every month, millions of people use bike-sharing systems to navigate cities and
towns around the world. New York City’s Citi Bike program launched in 2013 with
6,000 bikes, and in 2020, the system saw its 100 millionth ride.

Citi Bike provides freely accessible data about its system operations that is both
real-time and historical. To see what it takes to do data wrangling with a real-world
dataset, we’re going to use Citi Bike data to answer a simple question: how many rides
each day are taken by different types of Citi Bike riders?

62 | Chapter 2: Introduction to Python

https://citibikenyc.com/about

7 All of the code for this exercise can be found in the hitting_the_road_with_citibike.py and hit‐
ting_the_road_with_citibike.ipynb files. However, I strongly encourage you to create new files of your own
and enter the provided code yourself.

We need our Python skills to answer this question because Citi Bike riders take
hundreds of thousands of rides per day—meaning that just one day of this data has
too many rows for either Microsoft Excel or Google Sheets to handle. But even on a
Chromebook, Python will have no problem working with this amount of data.

To think about how to approach this, let’s revisit the steps of data wrangling outlined
in “What Is “Data Wrangling”?” on page 2:

1. Locating or collecting data1.
2. Assessing the data’s quality2.
3. “Cleaning,” standardizing, and/or transforming the data3.
4. Analyzing the data4.
5. Visualizing the data5.
6. Communicating the data6.

For this exercise, we’re going to focus on steps 1–4, though as you’ll see, I’ve done
some preparation that will cut down on how long we spend with certain steps. For
example, I’ve already located the Citi Bike system data and downloaded the Septem‐
ber 2020 trip history data, confirmed that the only values that appear in the User
Type column are Customer and Subscriber, and cut down the whole September
dataset to just the rides that began on September 1, 2020. While we’ll delve into how
to do all of these processes in subsequent chapters, for now I want to focus on how to
apply the lessons from this chapter to data that we didn’t make up for ourselves.7

Starting with Pseudocode
One of the best ways to get started with a data wrangling project of any size is to plan
out your approach in advance and include that program outline in you Python file
through a process known as pseudocoding. Pseudocoding basically means writing, in
regular English (though you could certainly pseudocode in another natural language
if you prefer!), what your program will do, step by step. In addition to giving you
space to think through what your program needs to accomplish without worrying
about how to code it, pseudocoding will give you a valuable reference for what to
work on next when you need to take a break from your project and come back to
it later. Although you’ll no doubt meet many professional programmers who don’t
do this part of the process regularly, I can guarantee that it will help you finish your
wrangling projects more quickly—and that it’s the kind of habit that is welcome in
any professional programming or data science setting.

Hitting the Road with Citi Bike Data | 63

https://citibikenyc.com/system-data
https://s3.amazonaws.com/tripdata/index.html
https://s3.amazonaws.com/tripdata/index.html

I prefer to put my program outline and pseudocode right at the top of my Python file,
in a large block of comments. To start out, I’m going to do three things:

1. State my question.1.
2. Describe how I will “answer” my question.2.
3. Outline in plain language the steps my program will take.3.

This means that the first thing I’m going to do is write a lot of comments in my file, as
you can see in Example 2-15.

Example 2-15. hitting_the_road_with_citibike.py

question: How many Citi Bike rides each day are taken by
"subscribers" versus "customers"?

answer: Choose a single day of rides to examine.
the dataset used for this exercise was generated from the original
Citi Bike system data found here: https://s3.amazonaws.com/tripdata/index.html
filename: 202009-citibike-tripdata.csv.zip

program Outline:
1. read in the data file: 202009CitibikeTripdataExample.csv
2. create variables to count: subscribers, customers, and other
3. for each row in the file:
a. If the "User Type" is "Subscriber," add 1 to "subscriber_count"
b. If the "User Type" is "Customer," add 1 to "customer_count"
c. Otherwise, add 1 to the "other" variable
4. print out my results

Now that the program outline is all squared away, it’s time to get started with the first
part of our program: reading in our data.

Anytime you start a new file like this, remember that even if it’s
saved inside a local Git repo folder, you’ll need to run git add to
have Git back up any changes you make (you can’t commit a file
until you add it, remember). These steps are outlined in “Don’t
Forget Git!” on page 62, in case you’d like a refresher. While how
often you commit is up to you, for this exercise I recommend
that you commit your code (with a descriptive commit message,
of course!) after each code block in this section. As you get more
comfortable with the coding and Git commit process, of course,
you’ll find a frequency and rhythm for backing up your code that
works best for you.

Loading different data formats, as we’ll see in-depth in Chapter 4, can actually be one
of the trickier aspects of data wrangling. Fortunately, there are many Python libraries

64 | Chapter 2: Introduction to Python

available to help, and we’re going to make use of one right now! I mentioned libraries
briefly in “Libraries: Borrowing Custom Functions from Other Coders” on page 47;
they are essentially cookbooks of code. For this project, we’re going to use the code
“recipes” from the csv library, which is mostly designed to deal with—you guessed
it!—.csv files. The file extension .csv stands for comma-separated value, and if you
haven’t seen it before, don’t worry. We’ll go into (significant) detail about file types
in Chapter 4. Right now, having the csv library on hand means that we don’t actually
need to know too much about this file type in order to work with it, because the
library’s code recipes are going to do a lot of the work for us!

If you’re following along in your own file, you’ll want to add the code in Exam‐
ple 2-16 to the program outline.

Example 2-16. hitting_the_road_with_citibike.py (continued)

import the `csv` library
import csv

open the `202009CitibikeTripdataExample.csv` file in read ("r") mode
this file should be in the same folder as our Python script or notebook
source_file = open("202009CitibikeTripdataExample.csv","r")

pass our `source_file` as an ingredient to the `csv` library's
DictReader "recipe".
store the result in a variable called `citibike_reader`
citibike_reader = csv.DictReader(source_file)

the DictReader method has added some useful information to our data,
like a `fieldnames` property that lets us access all the values
in the first or "header" row
print(citibike_reader.fieldnames)

The csv library includes a range of handy code recipes for dealing with our data
files.

open() is a built-in function that takes a file name and a “mode” as parameters.
In this example, the target file (202009CitibikeTripdataExample.csv) should be in
the same folder as our Python script or notebook. Values for the “mode” can be
"r" for “read” or "w" for “write.”

By printing out the citibike_reader.fieldnames values, we can see that the
exact label for the “User Type” column is usertype.

At this point, we could actually run this script, and we should see output that looks
something like this:

Hitting the Road with Citi Bike Data | 65

8 Once again—and from here on out—add this code to your file below the last line of the previous block.

['tripduration', 'starttime', 'stoptime', 'start station id', 'start station
 name', 'start station latitude', 'start station longitude', 'end station id',
 'end station name', 'end station latitude', 'end station longitude', 'bikeid',
 'usertype', 'birth year', 'gender']

We’ve also now succeeded in completing the first step of our outline: we’ve read in
our data. But we’ve also used the csv library to transform that data and even generate
some metadata about it. Importantly, we now know that the precise name of the
column containing our “User Type” information is actually usertype. This will help
us when it comes time to write our if...else statements. To confirm that things are
working as you expect, be sure to save and run your code. If it works as expected (that
is, it prints out a list of column headers), now is a good time to do a git commit
cycle:

git status
git commit -m "Commit message here" filename_with_extension
git push

Remember that if you are working on Google Colab, you can commit your code
directly to GitHub by choosing File → “Save a copy in GitHub” and entering your
commit message in the overlay window that appears.

Now that we’ve completed step one successfully, let’s go on to step two, as shown in
Example 2-17.8

Example 2-17. hitting_the_road_with_citibike.py (continued again)

create a variable to hold the count of each type of Citi Bike user
assign or "initialize" each with a value of zero (0)
subscriber_count = 0
customer_count = 0
other_user_count = 0

Pretty simple, right? On to step three! Since we need to check each row of data in the
file, we’ll need to write a for...in loop, which will need to have an if...else inside
of it to test for specific values in the usertype column. To help keep track of what
each line of code is doing, I’m going to write a lot of comments explaining the code in
English, as shown in Example 2-18.

Example 2-18. hitting_the_road_with_citibike.py (still rolling)

step 3: loop through every row of our data
for a_row in citibike_reader:

 # step 3a: if the value in the `usertype` column

66 | Chapter 2: Introduction to Python

 # of the current row is "Subscriber"
 if a_row["usertype"] == "Subscriber":

 # add 1 to `subscriber_count`
 subscriber_count = subscriber_count +1

 # step 3b: otherwise (else), if the value in the `usertype` column
 # of the current row is "Customer"
 elif a_row["usertype"] == "Customer":

 # add 1 to `subscriber_count`
 customer_count = customer_count + 1

 # step 3c: the `usertype` value is _neither_"Subscriber" nor "Customer",
 # so we'll add 1 to our catch-all `other_user_count` variable
 else:
 other_user_count = other_user_count + 1

We want to make sure our for loop is working with the data that’s already been
transformed by our DictReader recipe, so we want to make sure we’re referencing
our citibike_reader variable here.

In order for my if statements to be “inside” my loop, they have to be indented
one more tab to the right.

Because we need to use “else” here—but also need another “if ” statement—we’re
using the compound keyword elif, which is short for “else if.”

This final else will “catch” any rows of data where the value of usertype was
not one of the values we checked for explicitly (in this case, “Subscriber” or
“Customer”). This serves as a (very) basic data quality check: if this data column
contains any unexpected values, other_user_count will be greater than zero (0),
and we need to look at our original data more closely.

OK, there is a lot going on in Example 2-18—or at least it looks like there is!
Really, all we did was check whether the value in each row’s usertype column was
"Subscriber" or "Customer" and added one to (or incremented) the corresponding
count variable if it was. If the usertype value was neither of those, we added one to
the other_user_count variable.

While it may seem strange that we’ve added so many more lines of comments than
code, this is actually pretty normal—even good! After all, while the computer never
“forgets” how to read Python code, you will absolutely forget what this code is doing
and why if you don’t explain it in the comments. And that’s not a bad thing! After
all, memorizing all of your code would make programming pretty inefficient. By
writing detailed comments, you ensure that you can easily understand your code in

Hitting the Road with Citi Bike Data | 67

the future, without having to do the work of translating Python to English all over
again!

Before we move on, make sure to run your code. Since “no news is good news” for
our most common types of errors, if you don’t get any errors, go ahead and do a git
commit cycle. Otherwise, now is a good time to pause and troubleshoot any issues
you’ve encountered. Once those are resolved, you’ll see there’s only one very simple
step left: printing! Let’s just go the most straightforward route and use built-in print
statements, as shown in Example 2-19.

Example 2-19. hitting_the_road_with_citibike.py (we’ve arrived!)

step 4: print out our results, being sure to include "labels" in the process:
print("Number of subscribers:")
print(subscriber_count)
print("Number of customers:")
print(customer_count)
print("Number of 'other' users:")
print(other_user_count)

Note that these print() statements are left justified, because we only want to
print values once the for loop has finished going through the entire dataset.

When you’ve added the code in Example 2-19 to your file, save and run it. Your
output should look something like this:

['tripduration', 'starttime', 'stoptime', 'start station id', 'start station
 name', 'start station latitude', 'start station longitude', 'end station id',
 'end station name', 'end station latitude', 'end station longitude', 'bikeid',
 'usertype', 'birth year', 'gender']
Number of subscribers:
58961
Number of customers:
17713
Number of 'other' users:
0

If that’s what you see—congratulations! You’ve successfully written your first real-
world data wrangling program. Make sure to do a git commit cycle to back up your
great work!

Seeking Scale
In writing this script, we’ve accomplished a number of things:

1. We’ve successfully and precisely counted the number of “Subscribers” and “Cus‐1.
tomers” who used Citi Bikes on a single day in September 2020.

68 | Chapter 2: Introduction to Python

2. We’ve confirmed that there are no other values in the usertype column (because2.
the value in our other_user_count variable was 0).

If you’ve done data wrangling before using spreadsheet or database programs, for
example, but this was your first time working in Python, chances are this process
took longer than your previous method, all things considered. But as I’ve mentioned
a few times already, a key advantage that coding offers over many other methods is
the ability to scale almost seamlessly. That scale works in two ways. First, it does the
same work on a larger dataset almost as fast as a smaller one. For example, on my
Chromebook, the hitting_the_road_with_citibike.py script completes in about half a
second. If I run the same script on the data from the entire month of September, it
takes about 12 seconds. Most software programs that could even handle the entire
month’s data would probably need that long just to open the file, much less do any
work to it. So, using Python helps us scale because we can handle larger datasets
much more quickly and effectively. You can test this out for yourself by changing the
line:

source_file = open("202009CitibikeTripdataExample.csv","r")

to:

source_file = open("202009-citibike-tripdata.csv","r")

If you’re working in a standalone Python file, you can even measure how long it takes
to run your script on the new file by adding the time keyword before your python
command:

time python _your_filename_.py

This illustrates the second type of scale we achieve with Python, which has to do with
the marginal effort required to have the computer do the same task on a different
dataset (with the same structure) once we have written our program, and this is
where Python (and programming in general) really shines. In order to run my script
on data from the whole month of September 2020, all I had to do was load a different
data file. By changing the target filename that I opened with my source_file =
statement, I was able to process all of the September data instead of just the data from
one day. In other words, the additional (or “marginal”) effort to process hundreds of
thousands of additional rows of data was exactly as long as it took me to copy and
paste the filename. Building on that example, I could process an entire year of data
in a few minutes (or less, as we’ll see in Chapter 8). That is something that is nearly
impossible to achieve with any noncoding data wrangling method.

The complete script we’ve built in this section is an example of how, even using just
the basic structures we’ve covered in this chapter, you can do some really useful and
efficient data wrangling with Python. Though there are many new data formats and
challenges to explore in the remaining chapters, I hope this has given you a sense of

Hitting the Road with Citi Bike Data | 69

how much you can achieve with even these “basic” Python tools and just a little effort
and attention to detail. Imagine what else you can accomplish if you keep going!

Conclusion
Believe it or not, in this chapter we’ve covered all the essential Python tools you’ll
need to do data wrangling—as well as almost any other kind of Python program‐
ming! To recap what we’ve covered, we learned about:

Data types
These are the “nouns” of programming: numbers, strings, lists, dicts, and
Booleans.

Functions
These are the “verbs” of programming: operators, built-in functions, and user-
defined functions.

Using for...in... loops
These let us run a particular chunk of code on every item in a list.

Using if...else conditionals
These let us to make “decisions” about what code should be run, based (usually)
on the attributes of our data.

Errors
We explored the different types of errors that we’re likely to encounter when
programming and how to best address and prevent them.

We also practiced combining and composing these concepts to create a basic pro‐
gram to work with some sample data from the New York Citi Bike system. While
we’ll expand on this example and explore others in future chapters, our next task is to
understand more about how to evaluate data itself as part of our data wrangling work.

70 | Chapter 2: Introduction to Python

1 For example, see “The Secret Bias Hidden in Mortgage-Approval Algorithms” by Emmanuel Martinez and
Lauren Kirschner (The Markup) .

2 “The World’s Most Valuable Resource Is No Longer Oil, but Data,” in The Economist.

CHAPTER 3

Understanding Data Quality

Data is everywhere. It’s automatically generated by our mobile devices, our shopping
activities, and our physical movements. It’s captured by our electric meters, public
transportation systems, and communications infrastructure. And it’s used to estimate
our health outcomes, our earning potential, and our credit worthiness.1 Economists
have even declared that data is the “new oil,”2 given its potential to transform so many
aspects of human life.

While data may be plentiful, however, the truth is that good data is scarce. The
claim of “the data revolution” is that, with enough data, we can better understand
the present and improve—or even predict—the future. For any of that to even be
possible, however, the data underlying those insights has to be high quality. Without
good-quality data, all of our efforts to wrangle, analyze, visualize, and communicate
it will, at best, leave us with no more insight about the world than when we started.
While that would be an unfortunate waste of effort, the consequences of failing to
recognize that we have poor-quality data is even worse, because it can lead us to
develop a seemingly rational but dangerously distorted view of reality. What’s more,
because data-driven systems are used to make decisions at scale, the harms caused by
even a small amount of bad data can be significant. Sure, data about hundreds or even
thousands of people may be used to “train” a machine learning model. But if that
data is not representative of the population to which the model will be applied, the
repercussions of that system can affect hundreds or thousands of times the number
of people in the original dataset. Because the stakes are so high, ensuring data quality
is an essential part of data wrangling. But what does it mean for data to be “high

71

https://themarkup.org/denied/2021/08/25/the-secret-bias-hidden-in-mortgage-approval-algorithms
https://economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

3 For example, see “Raiders of the Lost Web” by Adrienne LaFrance in The Atlantic.

quality”? My view is that data is high quality only if it is both fit for purpose and has
high internal integrity.

What does each of those terms actually mean? That is exactly what we’ll explore, in
depth, in this chapter. We’ll begin by discussing the concept of data fit, which relates
to the appropriateness of data for use in a particular context, or to answer a particular
question. We’ll then break down the many aspects of data integrity: the characteristics
of a dataset that influence both its fitness for purpose and the types of analyses we can
responsibly use it for. Finally, we’ll discuss some tools and strategies for finding and
working with data that can help you maximize its overall quality, lending confidence
and credibility to the work that you produce with it.

In case you start to find any of this tedious, let me repeat my exhortations from
“What Is “Data Wrangling”?” on page 2: trying to “skip over” the work of assessing
data quality can only undermine your data wrangling efforts. At best, you’ll go to
share your work and encounter questions about your process that you don’t have
answers for. At worst, you’ll end up promoting “insights” that are both wrong and
do active harm. Along the way, you’ll also be cheating yourself out of good technical
skills, because solving data quality problems is where you’ll expand your program‐
ming knowledge the most. If you truly want to be good at the work of data wrangling,
assessing data quality has to be part of your practice.

Don’t Forget to Document
While thoroughly commenting your code is a sound time investment if you want to
improve your coding skills and get more value out of that code in the future, with
enough time and effort it’s almost always possible to retranslate computer code later
on if you need to.

The same is not true for your work on data quality: the documentation in your data
diary is actually irreplaceable. The conclusion that you reach about a dataset being
representative or valid will, in most cases, be informed by everything from your
own reading and research to conversations with experts to additional datasets you’ve
located. But without good documentation of who said what or how you came across
the information, any attempt to repeat or confirm your previous work will almost
certainly fail.

Why? Because information sources—especially on the internet3—move, change, and
disappear. Even in the course of just a few months, many of the links I originally
included in this book moved or stopped working. The expert you spoke to six months
ago may no longer be available, or the search you conducted may return different
results. While the way you approach it is up to you, I cannot state emphatically

72 | Chapter 3: Understanding Data Quality

https://theatlantic.com/technology/archive/2015/10/raiders-of-the-lost-web/409210

enough how important it is to document your data wrangling work, especially as it
pertains to data quality (which is pretty much all of it). Without a detailed description
of your process, you may find you’re on uncertain footing when it’s time to share the
results of your work—forcing you to start from the beginning all over again.

Assessing Data Fit
Perhaps one of the most common misconceptions about data wrangling is that it is a
predominantly quantitative process, that is, that data wrangling is mostly about work‐
ing with numbers, formulas, and code. In fact, irrespective of the type of data you’re
dealing with—it could be anything from temperature readings to social media posts
—the core work of data wrangling involves making judgment calls: from whether
your data accurately represents the phenomenon you’re investigating, to what to do
about missing data points and whether you have enough data to generate any real
insight at all. That first concept—the extent to which a given dataset accurately repre‐
sents the phenomenon you’re investigating—is broadly what I mean by its fit, and
assessing your dataset’s fitness for purpose is much more about applying informed
judgment than it is about applying mathematical formulas. The reason for this is
quite simple: the world is a messy place, and what may seem like even the simplest
data about it is always filtered through some kind of human lens. Take something as
straightforward as measuring the temperature in your workspace over the course of a
week. In theory, all you need to do is get a thermometer, put it in the space, and note
down the reading every day. Done, right?

Or are you? Let’s start with your equipment. Did you use a digital thermometer or
a mercury thermometer? Where in the space did you place it? Is it near a door, a
window, or a heating or cooling source? Did you take the reading at the same time
every day? Is the thermometer ever in direct sunlight? What is the typical humidity
level?

You may think I’m introducing a contrived level of complexity here, but if you’ve ever
lived in a shared space (like an apartment building), you’ve probably been through
the experience of feeling like it’s much warmer or colder than what some thermometer
said. Likewise, if you’ve ever looked after a child who’s ill, you’re likely all too familiar
with the different body temperature readings that you’ll get with different types of
thermometers—or even with the same one, just minutes apart.

In other words, there are a huge number of factors contributing to that two- or three-
digit temperature you record—and the number itself doesn’t provide information
about any of them. That’s why when you begin the process of trying to answer a
question with data, it’s not enough to know just what is in the dataset; you need to
know about the processes and mechanisms used to collect it. Then, given everything

Assessing Data Fit | 73

you know about how the data was gathered, you need to determine if it can really be
used to answer your specific question in a meaningful way.

Of course, this problem is neither new nor unique; it’s the same challenge that all
scientific fields face in their efforts to discover new information about the world.
Cancer research could hardly advance if every single researcher had to conduct every
single study themselves; without the ability to build on the work of others, scientific
and technological progress would grind to a halt (if not go off the rails entirely).
Because of this, over time the scientific community has developed three key metrics
for determining the appropriateness or fit of a dataset for answering a given question:
validity, reliability, and representativeness.

Validity
At its most basic, validity describes the extent to which something measures what it
is supposed to. In our room temperature example, this would mean ensuring that the
type of thermometer you’ve chosen will actually measure the air temperature rather
than something else. For example, while traditional liquid-in-glass thermometers will
probably capture air temperature well, infrared thermometers will tend to capture
the temperature of whatever surface they’re pointed at. So even with something as
seemingly basic as room temperature, you need to understand the tools and methods
used to collect your data readings in order to ensure their validity with respect to your
question.

Unsurprisingly, things only get more involved when we’re not collecting data about
common physical phenomena. Construct validity describes the extent to which your
data measurements effectively capture the (usually abstract) construct, or idea, you’re
trying to understand. For example, let’s say you want to know which are the
“best” schools in your area. What data can help you answer that question? First
we have to recognize that the term best is imprecise. Best in what way? Are you
interested in which school has the highest graduation rate? Standardized test scores?
School-assigned grades? Teacher evaluations? Student satisfaction? Extracurricular
participation?

In order to use data to begin to answer this question, you first need to articulate
two things. First, “best” for whom? Are you trying to answer this question for your
own child? A friend’s? Having answered that, you’ll be better able to complete the
second task, which is operationalizing your specific idea of “best.” If your friend’s child
loves sports, for example, extracurricular activities might be more important than
academics.

In data analysis, this process of selecting measures is known as operationalizing a
construct, and it inevitably requires choosing among—and balancing—proxies for
the idea or concept you are trying to understand. These proxies—like graduation
rates, test scores, extracurricular activities, and so on—are things about which you

74 | Chapter 3: Understanding Data Quality

can collect data that you are choosing to use to represent an abstract concept (“best”
school) that cannot be measured directly. Good-quality data, to say the least, must
have good construct validity with respect to your question, otherwise your data
wrangling results will be meaningless.

How? And for Whom?
Once you begin thinking about the construct validity of your own data wrangling
questions, you’ll likely find yourself much more curious about it anywhere you
encounter data being used to make decisions or “predictions” about the world. More
than likely, you’ll find many situations where imprecise claims (like “best”) are being
made, with little or no explanation being offered about how the concept of “best”
was defined. Similarly, the designers of data-driven systems may initially answer the
question of “for whom?” with an enthusiastic “for everyone!” The real answer lies in
their choice of proxies, which they may well have selected heuristically based only on
their own tastes or preferences. In those instances, the real answer to the question “for
whom?” is “for people like me.”

Of course, sometimes you may be told that there’s simply no way to know how
“best” is being defined, because the system being used to make the decisions or
predictions is a so-called “black box”—which is how unsupervised machine learning
systems are often described. As I mentioned in “What Is “Data Quality”?” on page
3, however, this is somewhat misleading. Though it’s true that we can’t currently
say with confidence precisely how such a machine learning system has weighted or
prioritized certain things when making predictions, we do know that it will always
replicate and amplify the patterns that exist within the data on which it was “trained.”
In those instances, then, it’s the composition of the training data that will tell you both
“how?” and “for whom?”—if the people who made the system are confident enough
to share it.

The other type of validity that is important for data fit is content validity. This type
of validity has to do with how complete your data is for a given proxy measurement.
In the “best” school example, let’s say you have determined that grades are relevant
for determining what school is best, but you only have grades for history and physical
education courses available. Though for many people grade data might, in principle,
have construct validity for identifying the best school, having grade data for only two
types of courses wouldn’t be sufficient to satisfy the requirement for content validity—
and for high-quality data, you need to have both.

“Let’s See What the Data Says”
Data-driven decision making can be a powerful tool for understanding what’s hap‐
pening in the world. But sometimes it is attractive because it appears to transcend

Assessing Data Fit | 75

(or at least avoid) the need to wade through difficult discussions about norms, values,
and ethics.

In reality, though, relying on “the data” this way just means that you are deferring to
the values, assumptions, and biases of the data’s creators—whoever designed the data
collection and carried it out. This is why data itself can never be objective—only the
data wrangling processes we use to handle it.

Reliability
Within a dataset, the reliability of a given measure describes its accuracy and stability.
Together, these help us assess whether the same measure taken twice in the same
circumstances will give us the same—or at least very similar—results. To revisit our
temperature example: taking a child’s temperature with an oral thermometer is not
likely to be very reliable, because the process requires that the child keep their mouth
closed for a relatively long time (which, in my experience, they’re not great at).
By contrast, taking a child’s temperature under their arm might be more reliable—
because you can hug them to keep the thermometer in place—but it may not provide
as accurate a reading of the child’s true internal body temperature as some other
methods. This is why most medical advice lists different temperature thresholds for a
fever in children, depending on which method you use to take their temperature.

With abstract concepts and real-world data, determining the reliability of a data
measure is especially tricky, because it is never really possible to collect the data more
than once—whether because the cost is prohibitive, the circumstances can’t be repli‐
cated, or both. In those cases, we typically estimate reliability by comparing one
similar group to another, using either previously or newly collected data. So even
though a dramatic fluctuation in a school’s standardized test scores from one year
to the next indicates that those scores may not be a reliable measure of school
quality, this inconsistency itself is only part of the story. After all, those test scores
might reflect the quality of teaching, but they might also reflect a change in the test
being administered, how it was scored, or some other disruption to the learning or
test-taking environment. In order to determine whether the standardized test data is
reliable enough to be part of your “best” school assessment, you would need to look
at comparison data from other years or other schools, in addition to learning more
about the broader circumstances that may have led to the fluctuation. In the end, you
may conclude that most of the test score information is reliable enough to be included
but that a few particular data points should be removed, or you may conclude that the
data is too unreliable to be part of a high-quality data process.

76 | Chapter 3: Understanding Data Quality

4 For a highly readable overview, see “Statistics Without Tears” by Amitav Banerjee and Suprakash Chaudhury.

Representativeness
The key value proposition for data-driven systems is that they allow us to generate
insights—or even predictions—about people and phenomena that are too massive
or too complex for humans to reason about effectively. By wrangling and analyzing
data, the logic goes, we can make decisions faster and more fairly. Given the powerful
computational tools that even individuals—to say nothing of companies—have access
to these days, there’s no doubt that data-driven systems can generate “decisions”
more quickly than humans can. Whether those insights are an accurate portrait of a
particular population or situation, however, depends directly on the representativeness
of the data being used.

Whether a dataset is sufficiently representative depends on a few things, the most
significant of which goes back to the “for whom?” question we discussed in “Validity”
on page 74. If you’re trying to design a new course schedule for a specific grade
school, you may be able to collect data about its entire population. If all the other
criteria for data fitness have been met, then you already know that your data is
representative, because you have collected data directly from or about the entire
population to which it will apply.

But what if you’re trying to complete the same task for an entire city’s worth of
schools? It’s deeply unlikely that you’ll succeed in collecting data about every single
student in every single school, which means that you’ll be relying on input from only
a subset of the students when you try to design the new schedule.

Anytime you’re working with a subset or sample in this way, it’s crucial to make
sure that it is representative of the broader population to which you plan to apply
your findings. While proper sampling methodology is beyond the scope of this
book,4 the basic idea is that in order for your insights to accurately generalize to a
particular community of people, the data sample you use must proportionally reflect
that community’s makeup. That means that you need to invest the time and resources
to understand a number of things about that community as a whole before you can
even know if your sample is representative.

At this point you may be thinking: wait, if we could already get information about the
whole population, we wouldn’t need a sample in the first place! And that’s true—sort
of. In many cases, it’s possible to get some information about an entire community—
just not precisely the information we need. In our school-scheduling scenario, for
example, we would ideally get information about how—and how long—students
travel to and from school each day, as well as some sense of their caretakers’ sched‐
ules. But the information we might have about the entire school population (if we
are working cooperatively with the school system) will probably include only things

Assessing Data Fit | 77

https://ncbi.nlm.nih.gov/pmc/articles/PMC3105563

like home address, school address, and perhaps the type of transportation support.
Using this information, likely in conjunction with some additional administrative
information, we could begin to create estimates for the proportion of certain types of
student commuters that exist in the entire population, and then seek to replicate those
proportions in selecting a representative sample from our survey results. Only at that
point would we be ready to move on to the next step of the data wrangling process.

As you can see, ensuring representativeness demands that we carefully consider
which characteristics of a population are relevant to our data wrangling question
and that we seek out enough additional information to ensure that our dataset
proportionally represents those characteristics. Perhaps unsurprisingly, this is the
data fitness test that many data-driven goods and services fail on, again and again.
While companies and researchers may tout the quantity of data they use to develop in
their systems, the reality is that most datasets that are readily available to companies
and researchers tend to not be representative of, say, the US or global population.
For example, data about search engine trends, social media activity, public transit
usage, or smartphone ownership, for example, are all extremely unlikely to be repre‐
sentative of the broader population, since they are inevitably influenced by things like
internet access and income level. This means that communities are overrepresented in
these datasets while others are (sometimes severely) underrepresented. The result is
systems that don’t generalize—like facial recognition systems that cannot “see” Black
faces.

If you are faced with nonrepresentative data, what do you do? At the very least,
you will need to revise (and clearly communicate) your “for whom?” assessment to
reflect whatever population it does represent; this is the only community for whom
your data wrangling insights will be valid. Also keep in mind that representativeness
can only ensure that the outcome of your data wrangling efforts accurately reflects
reality; it is not a value judgment on whether that reality should be perpetuated. If the
outcome of your data wrangling effort will be used to make changes to a system or
organization, the end of your data wrangling process is really just the starting point
for thinking about what should be done with your insights, especially with respect to
complex issues like fairness.

This is true even if you have data about an entire population. For example, if you
want to know which organizations have received a certain type of grant, then the
“population” or community you’re interested in is just those grant recipients. At the
same time, checking your data for representativeness against the population at large
still has value: if one or more communities are over- or underrepresented in your
population of grant recipients, it may hint at hidden factors influencing who receives
that money.

78 | Chapter 3: Understanding Data Quality

https://schools.nyc.gov/school-life/transportation/bus-eligibility
http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
https://youtube.com/watch?v=jIXIuYdnyyk

The Problem of Context Collapse
A huge source of “bad” data and data analyses can be traced to a kind of context
collapse, in which data generated for one purpose is used—typically without much
critical reflection—for another. For example, online advertising networks often use
our web browsing or buying history to determine what ads to display to us or
products to recommend. But in doing so, these systems frequently conflate what we
have bought with what we will buy, and the results are often pointedly tone deaf, as
illustrated in the following tweet:

When data generated in one context (browsing) is used to make decisions about
another (advertising), the results can become nonsensical to the point of absurdity.
And while situations like this are among the familiar oddities of online life, as we saw
in “Unpacking COMPAS” on page 6, similar instances of context collapse can—and
do—cause serious harm.

Assessing Data Integrity
Data fit is essentially about whether you have the right data for answering your data
wrangling question. Data integrity, on the other hand, is largely about whether the
data you have can support the analyses you’ll need to perform in order to answer
that question. As you’ll see throughout this section, there are a lot of different aspects
of the data to consider when performing an integrity assessment. But does a given
dataset need to have all of them in order to be high integrity, and therefore high
quality? Not necessarily. While some are essential, the importance of others depends
on your specific question and the methods you’ll need to answer it. And with rare
exceptions, many are characteristics of the data that you will enhance and develop as
part of your data wrangling process.

In other words, while ensuring data fit is nonoptional, the types and degree of
integrity that your particular data wrangling project requires will vary. Of course, the

Assessing Data Integrity | 79

https://zephoria.org/thoughts/archives/2013/12/08/coining-context-collapse.html
https://zephoria.org/thoughts/archives/2013/12/08/coining-context-collapse.html
https://twitter.com/GirlFromBlupo/status/982156453396996096

5 This list is adapted from Stephen Few’s excellent book Now You See It: Simple Visualization Techniques for
Quantitative Analysis (Analytics Press), with adjustments based on my own data wrangling experience.

more of these requirements your data meets, the more useful it will be—both to you
and others.

In general, a high-integrity dataset will, to one degree or another, be:5

Necessary, but not sufficient
• Of known provenance•
• Well-annotated•

Important
• Timely•
• Complete•
• High volume•
• Multivariate•
• Atomic•

Achievable
• Consistent•
• Clear•
• Dimensionally structured•

As I have already mentioned, however, not all of these data integrity characteristics
are equally important. Some of them are nonnegotiable, while others are almost
always the result of certain steps in the data wrangling process, not precursors to it.
And while the goal is for your data to have as many of these characteristics as possible
before you begin your analysis, there is always a balance to be struck between more
fully elaborating your data and completing your work in time for your insights to be
useful.

In this sense, assessing data integrity can be a useful way to prioritize your data
wrangling efforts. For example, if a dataset is missing either of the “necessary, but not
sufficient” characteristics, you may as well move on from it entirely. If it’s missing
one or two of the characteristics in “Important” on page 82, it may still be possible
to salvage the data you’re working with by combining it with others or limiting the
scope of your analyses—and claims. Meanwhile, developing the characteristics in
“Achievable” on page 85 is often the goal of your data wrangling process’s “cleaning”
step, rather than something you can expect most real-world data to have when you
first encounter it.

80 | Chapter 3: Understanding Data Quality

In the end, the degree to which your dataset embodies many of the characteristics
that follow will depend on the time you have to invest in your data wrangling project,
but without a good solid majority of them, your insights will be limited. As will be
illustrated (in detail!) in Chapter 6, this variability is precisely why data wrangling
and data quality are so thoroughly intertwined.

Necessary, but Not Sufficient
Most of the time, the data we’re wrangling was compiled by someone else—or a whole
collection of people and processes that we don’t have direct access to. At the same
time, we need to be able to stand behind both our data wrangling process and any
insights we derive from it. This means that there are a couple of data characteristics
that are really essential to a successful data wrangling process.

Of known provenance
As discussed in “What Is “Data Quality”?” on page 3, data is the output of human
decisions about what to measure and how. This means that using a dataset collected
by others requires putting a significant amount of trust in them, especially because
independently verifying every single data point is rarely possible; if it were, you would
probably just collect your own data instead. This is why knowing the provenance of a
dataset is so important: if you don’t know who compiled the data, the methods that
they used, and/or the purpose for which they collected it, you will have a very hard
time judging whether it is fit for your data wrangling purpose, or how to correctly
interpret it.

Of course, this doesn’t mean you need to know the birthdays and favorite colors of
everyone who helped build a given dataset. But you should try to find out enough
about their professional backgrounds, motivations for collecting the data (is it legally
mandated, for example?), and the methods they employed so that you have some
sense of which measures you’ll want to corroborate versus those that might be okay
to take at face value. Ideally, both information about the data authors and sufficient
documentation about these processes will be readily enough available that you can
answer all of these questions about the data’s provenance fairly quickly. If they prove
hard to locate, however, you may wish to move on; since you need this information
to assess data fit, your time may be better spent looking for a different dataset or even
collecting the data yourself.

Well-annotated
A well-annotated dataset has enough surrounding information, or metadata, to make
interpretation possible. This will include everything from high-level explanations of
the data collection methodology to the “data dictionaries” that describe each data
measure right down to its units. While this may seem straightforward, there are

Assessing Data Integrity | 81

not always well-accepted standards for how such annotation information should be
provided: sometimes it appears directly in data files or data entries themselves, and
sometimes the information might be contained in separate files or documents in a
location totally separate from where you retrieved the data.

However they are structured or provided, robust data annotation documents are an
essential component of high-integrity data because without them, it’s impossible to
apply any analyses or draw any inferences from it. For example, imagine trying to
interpret a budget without knowing if the figures provided refer to dollars, thousands
of dollars, or millions of dollars—it’s clearly impossible. Or for a very American
expression of the importance of annotation documents like data dictionaries, know
that they sometimes require a lawsuit to get.

USDA Data Sleuthing
The USDA’s Agricultural Marketing Service provides daily reports about the food
moving through 16 terminal markets around the world. Each day, USDA experts walk
through the markets, noting the size, price, condition, origin, and other aspects of the
goods for sale, such as apples. While the data has many high-integrity features—it is
clean, richly segmented, and high volume—the meaning of some of the data values
is unclear. What do “FINEAPPEAR” and “FRAPPEAR” mean? Fortunately, knowing
that this data is compiled by the USDA about the terminal markets makes answering
that question much simpler. Halfway down the page of web search results for “USDA
Terminal Market” is a link for a Los Angeles terminal market report that includes a
phone number. One quick phone call, and the mystery is solved!

Important
While it’s hard to get anywhere with data wrangling unless you have sufficient prove‐
nance and metadata information about a dataset, you’re still not going to get very
far unless you have enough data, from the right time period(s), and at the right level
of detail. That said, the following data characteristics are ones that we may often
assess—and sometimes improve—with our own data wrangling work. So while it will
certainly be easier to work with datasets that have these characteristics already, even
those that fall short on a few of these may still be worth exploring.

Timely
How up to date is the data that you’re using? Unless you’re studying a historical
period, ensuring that your data is recent enough to meaningfully describe the current
state of the world is important—though how old is “too old” will depend on both the
phenomenon you’re exploring and the frequency with which data about it is collected
and released.

82 | Chapter 3: Understanding Data Quality

https://trac.syr.edu/foia/ice/20210805
https://www.ams.usda.gov/market-news/custom-reports
https://oreil.ly/DzjBP
https://www.ams.usda.gov/mnreports/hc_fv020.txt

For example, if you’re interested in neighborhood demographics but your most recent
data is several years old, there’s a strong likelihood that things may have changed
considerably since. For unemployment data, data older than a month will no longer
be timely, while for stock market data, it takes just a few seconds for information to
be considered too old to inform trades. Unless it’s about a field you’re already familiar
with, assessing whether your data is timely will likely require some research with
experts as well as the data publisher.

Complete
Does the dataset contain all of the data values it should? In the USDA apple data
in “USDA Data Sleuthing” on page 82, for example, only a few of the rows contain
appearance descriptions, while most are left blank. Can we still generate useful data
insights when parts of the data are so incomplete? Addressing this question means
first answering two others. First, why is the data missing? Second, do you need that
data measure in order to perform a specific analysis needed for your data wrangling
process?

For example, your data may be incomplete because individual values are missing,
or because the data has been reported irregularly—perhaps there is a half-year gap
in data that is usually recorded every month. The dataset may also have been trunca‐
ted, which is a common problem when large datasets are opened in a spreadsheet
program. Whatever the reason, discovering why some part of the data is missing is
essential in order to know how to proceed. In “USDA Data Sleuthing” on page 82,
we could potentially ignore the “appearance” category if our primary interest is in
the way that different varietals of apples are priced, or we could contact the terminal
market again to clarify if blank values in the appearance column actually correspond
to some default value that they don’t bother to indicate explicitly. Even truncated data
may not be a problem if what we have available covers a sufficient time period for our
purposes, but it is still useful to learn the true number of records and date range of
the data for context. And while there are statistical tricks that can sometimes make
gaps in data collection less problematic, learning that the recording gap is due to
some disruptive event may change the type of analysis you do, or even the question
you’re pursuing altogether.

In other words, while having complete data is always preferable, once you know why
that data is missing, you may be able to proceed with your data wrangling process,
regardless. But you should always find out—and be sure to document what you learn!

High volume
How many data points are “enough”? At minimum, a dataset will need to have
sufficient records to support the type of analysis needed to answer your particular
question. If what you need is a count—for example, the number of 311 calls that

Assessing Data Integrity | 83

involved noise complaints in a particular year—then having “enough” data means
having records of all of the 311 calls for that particular year.

If your question is about general or generalizable patterns or trends, however, what
counts as “enough” is a little less clear. For example, if you wanted to determine
which Citi Bike station is the “busiest,” how long a time period should you consider?
A week? A month? A year? Should only weekdays be considered, or all days? The
correct answer will partly depend on more thoroughly specifying your question.
Are you interested in the experiences of commuters or visitors? Are you trying to
generate insights to drive transit planning, retail placement, or service quality? Also,
are you really interested in what station is “busiest,” or is it really more about a
particular rate of turnover? As is so often the case, the correct answer is largely
about specifying the question correctly—and that requires being, in most cases, very
specific.

One of the trickiest parts of assessing data “completeness,” however, is that accounting
for factors that may influence the trend or pattern you’re investigating is difficult
without knowing the subject area pretty well already. For example, while we might
easily expect that Citi Bike usage might vary across seasons, what about a reduction
in public transit service? An increase in fares? These changes might have implications
for our analysis, but how can we know that when we’re still starting out?

The answer—as it is so often—is (human) experts. Maybe fare increases temporarily
increase bike share ridership, but only for a few months. Maybe bicycle commuters
are prepared for bad weather and stick with their patterns even when it’s snowing.
With infinite time and infinite data, we might be able to answer these questions for
ourselves; talking to humans is just so much faster and so much more informative.
And believe it or not, there is an expert in almost everything. For example, a quick
search on Google Scholar for “seasonal ridership bike sharing” returns everything
from blog posts to peer-reviewed research on the topic.

What does this mean for data completeness? Existing research or—even better—a
real-time conversation with a subject matter expert (see “Subject Matter Experts” on
page 376 for more on this) will help you decide which factors you’re going to include
in your analysis, and as a result, how much data you need for your chosen analysis in
order for it to be complete.

Multivariate
Wrangling real-world data inevitably means encountering real-world complexity,
where a huge range of factors may influence the phenomenon we’re trying to investi‐
gate. Our “busiest” Citi Bike station is one example: beyond seasonality and transit
service, the surrounding terrain or the density of stations could play a role. If our Citi
Bike data contained only information about how many trips started and ended at a
particular station, then it would be very difficult to create an analysis that could say

84 | Chapter 3: Understanding Data Quality

https://oreil.ly/eGJzD
https://www.sciencedirect.com/science/article/abs/pii/S136192091731057X

more than “this station had the most bikes removed and returned” in a given time
period.

When data is multivariate, though, it means that it has multiple attributes or features
associated with each record. For the historical Citi Bike data, for example, we know
we have all of the following, thanks to our little bit of wrangling in “Hitting the Road
with Citi Bike Data” on page 62:

['tripduration', 'starttime', 'stoptime', 'start station id', 'start station
 name', 'start station latitude', 'start station longitude', 'end station id',
 'end station name', 'end station latitude', 'end station longitude', 'bikeid',
 'usertype', 'birth year', 'gender']

That’s 15 different features about each recorded ride, any number of which might be
able to leverage toward a more meaningful or nuanced way to understand which Citi
Bike station is the “busiest.”

Atomic
Atomic data is highly granular; it is both measured precisely and not aggregated
into summary statistics or measures. In general, summary measures like rates and
averages aren’t great candidates for further analysis, because so much of the underly‐
ing data’s detail has already been lost. For example, the arithmetic average or mean of
both of the following sets of numbers is 30: 20, 25, 30, 45 and 15, 20, 40, 45. While
summary statistics are often helpful when making comparisons across different data‐
sets, they offer too little insight into the data’s underlying structure to support further
analysis.

Achievable
No matter how a dataset appears at first, the reality is that truly clean, well-organized,
and error-free data is a near impossibility—in part just because, as time goes by,
some things (like dollar values) simply become inconsistent. As a result, there are
data quality characteristics that, as data wranglers, we should just always expect we’ll
need to review and improve. Fortunately, this is where the flexibility and reusability
of Python really shines—meaning these tasks will get easier and faster over time as we
build up our programming skills.

Assessing Data Integrity | 85

https://citibikenyc.com/system-data

Consistent
High-integrity data needs to be consistent in a number of different ways. Often the
most obvious type of consistency in a dataset has to do with the frequency of data
that has been collected over time. Are the time intervals between individual records
consistent? Are there gaps? Irregular intervals between data records are important to
investigate (if not resolve) in part because they can be a first indicator of disruptions
or disparities within the data collection process itself. Another source of pervasively
inconsistent data tends to turn up anytime a data field has text involved: fields that
contain names or descriptors will almost inevitably contain multiple spellings of what
is supposed to be the same term. Even fields that might seem straightforward to
standardize may contain varying degrees of detail. For example, a “zip code” field
might contain both five-digit zip code entries and more precise “Zip+4” values.

Other types of consistency may be less obvious but no less important. Units of
measure, for example, need to be consistent across the dataset. While this might seem
obvious, it’s actually easier than you might first imagine for this not to be the case.
Let’s say you’re looking at the cost of an apple over a period of a decade. Sure, your
data may record all of the prices in dollars, but inflation will be constantly changing
what a dollar is worth. And while most of us are aware that Celsius and Fahrenheit
“degrees” are of different sizes, it doesn’t stop there: an imperial pint is about 568
ml, whereas an American pint is about 473 ml. In fact, even accounts of Napoleon
Bonaparte’s famously short stature is likely the result of an inconsistency between
the size of the 19th-century French inch (about 2.71cm) and today’s version (about
2.54 cm).

The solution to such inconsistencies is to normalize your data before doing any com‐
parisons or analyses. In most cases, this is a matter of simple arithmetic: you simply
have to choose which interpretation of the unit to which you will convert all others
(another important moment for documentation!). This is true even of currency,
which analysts often begin by converting to “real” (read: inflation-controlled) dollars,
using some chosen year as a benchmark. For example, if we wanted to compare the
real dollar value of the US federal minimum wage in 2009 (when it was last increased)
to 2021, we could use an inflation calculator like the one maintained by the Bureau
of Labor Statistics (BLS) to see that the real dollar value of $7.25 per hour in 2009 is
equivalent to only $5.72 per hour in 2021.

86 | Chapter 3: Understanding Data Quality

https://britannica.com/story/was-napoleon-short
https://bls.gov/data/inflation_calculator.htm
https://bls.gov/data/inflation_calculator.htm

6 It indicates the total population estimate, by the way.

Who Tops the “Hit” List?
Data providers don’t always make it clear what units they’re using—or whether or
not their numbers have been normalized. For example, Box Office Mojo provides a
running tally of the world’s highest-grossing films, but it’s not clear whether the dollar
amounts provided have been normalized to current dollars. If they haven’t, it’s pretty
clear that there would be some definite reshuffling at the top of that list!

Clear
Like our Python code, our data and its labels will ideally be easy to read and interpret.
Realistically, field (and even dataset) descriptors can sometimes be little more than
cryptic codes that require constant cross-referencing with a data dictionary or other
resources. This is part of why this type of data integrity is almost always the product of
rather than the precursor to some degree of data wrangling.

For example, is there some logic to the fact that the table code for the US Census
Bureau’s American Community Survey Demographic and Housing Estimates is DP05?
Perhaps. But it’s hardly obvious to an occasional user of Census data, any more
than the column label DP05_0001E is likely to be.6 While a download of this Census
table does include multiple files that can help you piece together the meaning of
the filenames and column headers, developing a clear, high-integrity dataset may
well require a fair amount of relabeling, reformatting, and reindexing—especially
where government-produced data is involved. As always, however, documenting your
information sources and renaming processes as you go is crucial.

Dimensionally structured
Dimensionally structured data contains fields that have been grouped into or addi‐
tionally labeled with useful categories, such as geographic region, year, or language.
Such features often provide quick entry points for both data augmentation (which
we’ll address in “Data Augmentation” on page 89) and data analysis, because they
reduce the correlation and aggregation effort we have to do ourselves. These features
can also serve as an indicator of what the data creator thought was important to
record.

For example, the dimensions of our Citi Bike data include whether a bike was
checked out to the account of a “Subscriber” or a “Customer,” as well as the account
holder’s birth year and gender—suggesting that the data’s designers believed these
features might yield useful insights about Citi Bike trips and usage. As we’ll see in

Assessing Data Integrity | 87

https://boxofficemojo.com/chart/ww_top_lifetime_gross/?area=XWW
https://oreil.ly/kD48L

Chapter 7, however, they did not choose to include any sort of “weekday/holiday”
indicator—meaning that is a dimension of the data we’ll have to derive ourselves if we
need it.

Data Decoding
Although easily readable filenames and column headers are useful, coded data
descriptors aren’t necessarily all bad. As we’ll explore later on, building robust, high-
quality datasets sometimes requires combining two or more data sources. In these
instances, the use of standardized—if occasionally cryptic—codes can be useful. For
example, the New York State Department of Education website provides individual
school profiles, along with multiple identifiers for each one. While these ID numbers
aren’t very informative in and of themselves, plugging one into a search engine can
help turn up other documents and datasets, making it easier to collate multiple data
sources with high confidence.

Improving Data Quality
As previously noted, many aspects of data quality are the product of a data wrangling
process—whether that involves reconciling and normalizing units, clarifying the
meaning of obscure data labels, or seeking out background information about the
representativeness of your dataset. Part of what this illustrates is that, in the real
world, ensuring data quality is at least partly the result of multiple, iterative data
wrangling processes. While the terms for these phases of the data wrangling process
vary, I usually describe them as data cleaning and data augmentation.

Data Cleaning
In reality, data “cleaning” is not so much its own step in the data wrangling process
as it is a constant activity that accompanies every other step, both because most data
is not clean when we encounter it and because how a dataset (or part of it) needs
to be “cleaned” is often revealed progressively as we work. At a high level, clean
data might be summarized as being free from errors or typos—such as mismatched
units, multiple spellings of the same word or term, and fields that are not well separa‐
ted—and missing or impossible values. While many of these are at least somewhat
straightforward to recognize (though not always to correct), deeper data problems
may still persist. Measurement changes, calculation errors, and other oversights—
especially in system-generated data—often don’t reveal themselves until some level of
analysis has been done and the data has been “reality-checked” with folks who have
significant expertise and/or firsthand experience with the subject.

The iterative nature of data cleaning is an example of why data wrangling is a cycle
rather than a linear series of steps: as your work reveals more about the data and your

88 | Chapter 3: Understanding Data Quality

https://data.nysed.gov

7 See danah boyd and Kate Crawford’s “Critical Questions for Big Data” for a discussion on big data.

understanding of its relationship to the world deepens, you may find that you need to
revisit earlier work that you’ve done and repeat or adjust certain aspects of the data.
Of course, this is just another reason why documenting your data wrangling work
is so crucial: you can use your documentation to quickly identify where and how
you made any changes or updates, and to reconcile them with what you now know.
Without robust documentation to guide you, you may quickly find yourself needing
to start from scratch.

Data Augmentation
Augmenting a dataset is the process of expanding or elaborating it, usually by con‐
necting it with other datasets—this is really the nature of “big data” in the 21st
century.7 By using features shared among datasets, it’s possible to bring together data
from multiple sources in order to get a more complete portrait of what is happening
in the world by filling in gaps, providing corroborating measures, or adding contex‐
tual data that helps us better assess data fit. In our “best” school example, this might
mean using school codes to bring together the several types of data collected by
different entities, such as the state-level standardized test scores and local building
information mentioned in “Data Decoding” on page 88. Through a combination
of effective research and data wrangling, data augmentation can help us build data
quality and answer questions far too nuanced to address through any single dataset.

Like data cleaning, opportunities for data augmentation may arise at almost any point
in the data wrangling process. At the same time, each new dataset we introduce will
spawn a data wrangling process of its own. This means that unlike data cleaning, data
augmentation has no definitive “end state”—there will always be another dataset we
can add. This is yet another reason why specifically and succinctly stating our data
wrangling question up front is so essential to the process: without a clearly articulated
statement about what you’re trying to investigate, it’s all too easy to run out of time or
other resources for your data wrangling effort. The good news is that if you’ve been
keeping up your data diary, you’ll never lose track of a promising dataset for use in a
future project.

Improving Data Quality | 89

https://tandfonline.com/doi/full/10.1080/1369118X.2012.678878

Conclusion
Since our hands-on work with actual data has been limited up to this point, many of
the concepts discussed in this chapter may seem a little bit abstract right now. Don’t
worry! Things are about to get very hands on. In the coming chapters, we’ll start
wrangling data that comes in various formats and from different sources, offering an
inside look at how various characteristics of data quality play into the decisions we
make as we access, evaluate, clean, analyze, and present our data. And you can be
confident that by the end of this volume, you’ll be able to create meaningful, accurate,
and compelling data analyses and visualizations to share your insights with the world!

In the next chapter, we’ll start this process by working through how to wrangle
data from a wide variety of formats into a structure that will let us do the cleaning,
augmentation, and analyses we need. Let’s dive in!

90 | Chapter 3: Understanding Data Quality

1 Contrast these with some others you might know, like mp4 or png, which are usually associated with music
and images, respectively.

CHAPTER 4

Working with File-Based and Feed-Based
Data in Python

In Chapter 3, we focused on the many characteristics that contribute to data quality—
from the completeness, consistency, and clarity of data integrity to the reliability,
validity, and representativeness of data fit. We discussed the need to both “clean”
and standardize data, as well as the need to augment it by combining it with other
datasets. But how do we actually accomplish these things in practice?

Obviously, it’s impossible to begin assessing the quality of a dataset without first
reviewing its contents—but this is sometimes easier said than done. For decades, data
wrangling was a highly specialized pursuit, leading companies and organizations to
create a whole range of distinct (and sometimes proprietary) digital data formats
designed to meet their particular needs. Often, these formats came with their own
file extensions—some of which you may have seen: xls, csv, dbf, and spss are all
file formats typically associated with “data” files.1 While their specific structures and
details vary, all of these formats are what I would describe as file-based—that is, they
contain (more or less) historical data in static files that can be downloaded from a
database, emailed by a colleague, or accessed via file-sharing sites. Most significantly,
a file-based dataset will, for the most part, contain the same information whether you
open it today or a week, a month, or a year from now.

Today, these file-based formats stand in contrast to the data formats and interfaces
that have emerged alongside real-time web services over the past 20 years. Web-based
data today is available for everything from news to weather monitoring to social
media sites, and these feed-style data sources have their own unique formats and

91

structures. Extensions like xml, json, and rss indicate this type of real-time data,
which often needs to be accessed via specialized application programming interfaces,
or APIs. Unlike file-based formats, accessing the same web-based data location or
“endpoint” via an API will always show you the most recent data available—and that
data may change in days, hours, or even seconds.

These aren’t perfect distinctions, of course. There are many organizations (especially
government departments) that provide file-based data for download—but then over‐
write those files with new ones that have the same name whenever the source data is
updated. At the same time, feed-style data formats can be downloaded and saved for
future reference—but their source location online will not generally provide access
to older versions. Despite these sometimes unconventional uses for each class of
data format, however, in most cases you can use the high-level differences between
file-based and feed-based data formats to help you choose the most appropriate
sources for a given data wrangling project.

How do you know if you want file-based or feed-based data? In many cases, you won’t
have a choice. Social media companies, for example, provide ready access to their
data feeds through their APIs but don’t generally provide retrospective data. Other
types of data—especially data that is itself synthesized from other sources or heavily
reviewed before release—are much more likely to be made available in file-based
formats. If you do have a choice between file-based and feed-based formats, then
which you choose will really depend on the nature of your data wrangling question:
if it hinges on having the most recent data available, then a feed-style format will
probably be preferable. But if you’re concerned about trends, file-based data, which is
more likely to contain information collected over time, will probably be your best bet.
That said, even when both formats are available, there’s no guarantee they contain the
same fields, which once again might make your decision for you.

One Data Source, Two Ways
We’ve actually already worked with a data source that is available in both a file-based
and a feed-based format: our Citi Bike data from Chapter 2. In “Hitting the Road
with Citi Bike Data” on page 62, we used a subset of the file-based data to examine
how many “Subscriber” versus “Customer” rides were taken by Citi Bike riders
on September 1, 2020. For data wrangling questions about trends in ridership and
station activity, these retrospective files are invaluable.

At the same time, if we wanted information about how many bikes were available at
a particular Citi Bike station right now, that file-based data just can’t help us. But we
can access this information using Citi Bike’s real-time json feed. The wall of text you’ll

92 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://gbfs.citibikenyc.com/gbfs/en/station_status.json

2 Though you’ll know how to wrangle it shortly!

see when you open that link in most web browsers isn’t especially user-friendly,2 but
it does contain information that the file-based data doesn’t—like a count of currently
available bikes and parking spots, as well as how many bikes there are not usable, etc.
In order to determine the physical location of a particular station_id, however, you’d
need to augment this data with information from either a different Citi Bike data feed
or with the file-based data we’ve already used.

In other words, there are plenty of data sources where it makes sense to have both
file-based and feed-based data formats—which is better for you will really depend (as
always!) on your particular data wrangling question.

Over the course of this chapter, we’ll work through hands-on examples of wrangling
data from several of the most common file-based and feed-based data formats, with
the goal of making them easier to review, clean, augment, and analyze. We’ll also
take a look at some of the tougher-to-wrangle data formats that you might need to
work with strictly out of necessity. Throughout these processes, we’ll rely heavily on
the excellent variety of libraries that the Python community has developed for these
purposes, including specialty libraries and programs for processing everything from
spreadsheets to images. By the time we finish, you’ll have the skills and sample scripts
you need to tackle a huge variety of data wrangling projects, paving the way forward
for your next data wrangling project!

Structured Versus Unstructured Data
Before we dive into writing code and wrangling data, I want to briefly discuss one
other key attribute of data sources that can impact the direction (and speed) of your
data wrangling projects—working with structured versus unstructured data.

The goal of most data wrangling projects is to generate insight and, often, to use
data to make better decisions. But decisions are time sensitive, so our work with data
also requires balancing trade-offs: instead of waiting for the “perfect” dataset, we may
combine two or three not-so-perfect ones in order to build a valid approximation of
the phenomenon we’re investigating, or we may look for datasets that share common
identifiers (for example, zip codes), even if that means we need to later derive the
particular dimensional structure (like neighborhood) that truly interests us. As long
as we can gain these efficiencies without sacrificing too much in terms of data quality,
improving the timeliness of our data work can also increase its impact.

One of the simplest ways to make our data wrangling more efficient is to seek out
data formats that are easy for Python and other computational tools to access and
understand. Although advances in computer vision, natural language processing, and

Structured Versus Unstructured Data | 93

3 Actually, you won’t need that much luck—we’ll look at how to do this in “Wrangling PDFs with Python” on
page 135.

machine learning have made it easier for computers to analyze data regardless of
its underlying structure or format, the fact is that structured, machine-readable data
remains—unsurprisingly, perhaps—the most straightforward type of data to work
with. In truth, while anything from interviews to images to the text of books can be
used as a data source, when many of us think of “data,” we often think of structured,
numerical data more than anything else.

What Do We Mean by “Machine-Readable”?
Believe it or not, the United States actually has a legal definition of “machine-
readable” data, thanks to the Foundations for Evidence-Based Policymaking Act,
which went into effect in early 2019. According to the law, machine-readable data is:

data in a format that can be easily processed by a computer without human interven‐
tion while ensuring no semantic meaning is lost.

Helpful, right? While it may seem a bit formal now, as you continue to work with
data (especially if you are requesting it from government agencies), you’ll begin to
appreciate why this definition is important. Particularly when it comes to dealing
with “unstructured” data (like text documents), for example, there is a big difference
between data that was generated by a word-processing program and data that was
scanned in from a piece of paper. While both are “machine-readable” in the sense
that you can view them on a computer, good luck trying to access the underlying
text from the scanned document programmatically!3 Since there will be times that the
folks providing your data might be a little reluctant to do so, a clear (legal!) definition
of what “machine-readable” means is actually very valuable.

Structured data is any type of data that has been organized and classified in some
way, into some version of records and fields. In file-based formats, these are usually
rows and columns; in feed-based formats they are often (essentially) lists of objects or
dictionaries.

Unstructured data, by contrast, may consist of a mash-up of different data types,
combining text, numbers, and even photographs or illustrations. The contents of a
magazine or a novel, or the waveforms of a song, for example, would typically be
considered unstructured data.

If right now you’re thinking, “Hang on, novels have structure! What about chapters?”
then congratulations: you’re already thinking like a data wrangler. We can create
data about almost anything by collecting information about the world and applying
structure to it.4 And in truth, this is how all data is created: the datasets that we access

94 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://govinfo.gov/content/pkg/PLAW-115publ435/html/PLAW-115publ435.htm

4 In computer science, the terms data and information are applied in exactly the opposite way: data is the raw
facts collected about the world, and information is the meaningful end product of organizing and structuring
it. In recent years, however, as talk about “big data” has dominated many fields, the interpretation I use here
has become more common, so I’ll stick with it throughout this book for clarity.

via files and feeds are all the product of someone’s decisions about how to collect and
organize information. In other words, there is always more than one way to organize
information, but the structure chosen influences how it can be analyzed. This is why
it’s a little ridiculous to suggest that data can somehow be “objective”; after all, it’s the
product of (inherently subjective) human choices.

For example, try conducting this mini-experiment: think about how you organize
some collection of yours (it could be a collection of music, books, games, or varieties
of tea—you name it). Now ask a friend how they organize their own collection of
that item. Do you do it the same way? Which is “better”? Now ask someone else,
and maybe even a third person. While you may find similarities among the systems
that you and your friends use for organizing your music collections, for example, I
would be very surprised if you find that any two of you do it precisely the same way.
In fact, you’ll probably find that everyone does it a little bit differently but also feels
passionately that their way is “best.” And it is! For them.

If this is reminding you of our discussion in “How? And for Whom?” on page 75,
that’s no coincidence, because the result of your data wrangling question and efforts
will eventually be—you guessed it!—another dataset, which will reflect your interests
and priorities. It, too, will be structured and organized, which makes working with
it in certain ways easier than others. But the takeaway here is not that any given
way is right or wrong, just that every choice involves trade-offs. Identifying and
acknowledging those trade-offs is a key part of using data honestly and responsibly.

So a key trade-off when using structured data is that it requires depending on
someone else’s judgments and priorities in organizing the underlying information.
Obviously, this can be a good—or even great!—thing if that data has been struc‐
tured according to an open, transparent process that involves well-qualified experts.
Thoughtfully applied data structures like this can give us early insight into a subject
we may otherwise know little to nothing about. On the other hand, there is also the
possibility that we will inherit someone else’s biased or poorly designed choices.

Unstructured data, of course, gives us complete freedom to organize information
into data structures that suit our needs best. Unsurprisingly, this requires us to take
responsibility for engaging a robust data quality process, which may be both complex
and time-consuming.

How do we know if a particular dataset is structured or unstructured up front? In
this case, file extensions can definitely help us out. Feed-based data formats always
have at least some structure to them, even if they contain chunks of “free text,”

Structured Versus Unstructured Data | 95

like social media posts. So if you see the file extensions .json, .xml, .rss, or .atom,
the data has at least some type of record-and-field structure, as we’ll explore in
“Feed-Based Data—Web-Driven Live Updates” on page 118. File-based data that
ends in .csv, .tsv, .txt, .xls(x), or .ods tends to follow a table-type, rows-and-columns
structure, as we’ll see in the next section. Truly unstructured data, meanwhile, is most
likely to come to us as .doc(x) or .pdf.

Smart Searching for Specific Data Types
Since search engines are the first place most of us turn when we’re looking for
information, wouldn’t it be great to be able to use the power of search engines to more
efficiently find the data sources (and formats) we need?

While using keywords, sentences, or phrases is a typical way to begin an online
search, tweaking those habits just a little can make all the difference when it comes to
turning up useful data formats. By mixing in one or more search operators, you can
tell your search engine to return results from only specific websites or domain types
(like .gov), or even results with specific file extensions. For example:

Search terms or keywords filetype: .csv
You can replace .csv with any file extension you like, including .tsv, .txt, .pdf,
or even .jpg, .mp3, etc. This will return files with the specified extension that also
match your search terms or keywords.

Search terms or keywords site: oreilly.com
This search will return only results matching your search terms or keywords
from within the site oreilly.com. This is particularly handy if you are looking for
data created or published by a particular organization. Note that you can also use
this to search within an entire top-level domain like .gov or .co.uk.

Search terms or keywords inurl: https
A handy way to locate only secure websites.

Search terms or keywords - other search terms or keywords
While this won’t help you find specific files, using the hyphen (-) can be a great
way to focus your search for information when you specifically want to exclude
results that would be commonly associated with your main search term. To see
this in action, compare the results of the search steve jobs with steve jobs
-apple on your favorite search engine.

Of course, a search engine is just one way to find data; for more ideas about locating
the data you need, check out Appendix C.

Now that we’ve got a good handle on the different types of data sources that we’re
likely to encounter—and even some sense of how to locate them—let’s get wrangling!

96 | Chapter 4: Working with File-Based and Feed-Based Data in Python

Working with Structured Data
Since the early days of digital computing, the table has been one of the most common
ways to structure data. Even today, many of the most common and easy-to-wrangle
data formats are little more than tables or collections of tables. In fact, we already
worked with one very common table-type data format in Chapter 2: the .csv or
comma-separated value format.

File-Based, Table-Type Data—Take It to Delimit
In general, all of the table-type data formats you’ll typically encounter are examples of
what are known as delimited files: each data record is on its own line or row, and the
boundaries between fields or columns of data values are indicated—or delimited—by
a specific text character. Often, an indication of which text character is being used
as the delimiter in a file is incorporated into the dataset’s file extension. For example,
the .csv file extension stands for comma-separated value, because these files use a
comma character (,) as a delimiter; the .tsv file extension stands for tab-separated
value, because the data columns are separated by a tab. A list of file extensions
commonly associated with delimited data follows:

.csv
Comma-separated value files are among the most common form of table-type
structured data files you’ll encounter. Almost any software system that handles
tabular data (such as government or corporate data systems, spreadsheet pro‐
grams, and even specialized commercial data programs) can output data as a .csv,
and, as we saw in Chapter 2, there are handy libraries for easily working with this
data type in Python.

.tsv
Tab-separated value files have been around for a long time, but the descriptive .tsv
extension has only become common relatively recently. While data providers
don’t often explain why they choose one delimiter over another, tab-delimited
files may be more common for datasets whose values need to include commas,
such as postal addresses.

.txt
Structured data files with this extension are often .tsv files in disguise; older data
systems often labeled tab-separated data with the .txt extension. As you’ll see in
the worked examples that follow, it’s a good idea to open and review any data
file you want to wrangle with a basic text program (or a code editor like Atom)
before you write any code, since looking at the contents of the file is the only
surefire way to know what delimiters you’re working with.

Working with Structured Data | 97

.xls(x)
This is the file extension of spreadsheets produced with Microsoft Excel. Because
these files can contain multiple “sheets” in addition to formulas, formatting,
and other features that simple delimited files cannot replicate, they need more
memory to store the same amount of data. They also have other limitations (like
only being able to handle a certain number of rows) that can have implications
for your dataset’s integrity.

.ods
Open-document spreadsheet files are the default extension for spreadsheets pro‐
duced by a number of open source software suites like LibreOffice and OpenOf‐
fice and have limitations and features similar to those of .xls(x) files.

Before we dive into how to work with each of these file types in Python, it’s worth
spending just a little time thinking about when we might want to work with table-
type data and where to find it when we do.

When to work with table-type data
Most of the time, we don’t get much of a choice about the format of our source data.
In fact, much of the reason we need to do data wrangling in the first place is because
the data we have doesn’t quite meet our needs. That said, it’s still valuable to know
what data format you would prefer to be able to work with so that you can use that to
inform your initial search for data.

In “Structured Versus Unstructured Data” on page 93, we talked about the benefits
and limitations of structured data, and we now know that table-type data is one of
the oldest and most common forms of machine-readable data. This history means, in
part, that over the years many forms of source data have been crammed into tables,
even though they may not necessarily be well suited to table-like representations. Still,
this format can be especially useful for answering questions about trends and patterns
over time. In our Citi Bike exercise from Chapter 2, for example, we examined how
many “Customers” versus “Subscribers” had taken Citi Bike rides over the course of
a single month. If we wanted to, we could perform the same calculation for every
available month of Citi Bike rides in order to understand any patterns in this ratio
over time.

Of course, table-type data is generally not a great format for real-time data, or data
where not every observation contains the same possible values. These kinds of data
are often better suited to the feed-based data formats that we discuss in “Feed-Based
Data—Web-Driven Live Updates” on page 118.

Where to find table-type data
Since the vast majority of machine-readable data is still in table-type data formats,
it is among the easiest data formats to locate. Spreadsheets are common in every

98 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://libreoffice.org
https://openoffice.org/download/index.html
https://openoffice.org/download/index.html

discipline, and a large number of government and commercial information systems
rely on software that organizes data in this way. Almost any time you request data
from an expert or organization, a table-type format is what you are likely to get. This
is also true of almost every open-data portal and data-sharing site you’ll find online.
As we covered in “Smart Searching for Specific Data Types” on page 96, you can even
find table-type data (and other specific file formats) via search engines, if you know
how to look.

Wrangling Table-Type Data with Python
To help illustrate how simple it is to work with table-type data in Python, we’ll walk
through examples of how to read in data from all of the file types mentioned in this
section—plus a few others, just for good measure. While in later chapters we’ll look
at how to do more with cleaning, transformation, and data quality assessments, our
focus for the time being will simply be on accessing the data within each type of data
file and interacting with it using Python.

Reading data from CSVs
In case you didn’t follow along in Chapter 2, here’s a refresher on how to read data
from a .csv file, using a sample from the Citi Bike dataset (Example 4-1). As always,
I’ve included a description of what the program is doing—as well as links to any
source files—in the comments at the top of my script. Since we’ve worked with this
data format before, for now we’ll just worry about printing out the first few rows of
data to see what they look like.

Example 4-1. csv_parsing.py

a simple example of reading data from a .csv file with Python
using the "csv" library.
the source data was sampled from the Citi Bike system data:
https://drive.google.com/file/d/17b461NhSjf_akFWvjgNXQfqgh9iFxCu_/
which can be found here:
https://s3.amazonaws.com/tripdata/index.html

import the `csv` library
import csv

open the `202009CitibikeTripdataExample.csv` file in read ("r") mode
this file should be in the same folder as our Python script or notebook
source_file = open("202009CitibikeTripdataExample.csv","r")

pass our `source_file` as an ingredient to the `csv` library's
DictReader "recipe".
store the result in a variable called `citibike_reader`
citibike_reader = csv.DictReader(source_file)

Working with Structured Data | 99

the DictReader method has added some useful information to our data,
like a `fieldnames` property that lets us access all the values
in the first or "header" row
print(citibike_reader.fieldnames)

let's just print out the first 5 rows
for i in range(0,5):
 print (next(citibike_reader))

This is our workhorse library when it comes to dealing with table-type data.

open() is a built-in function that takes a filename and a “mode” as parameters. In
this example, the target file (202009CitibikeTripdataExample.csv) should be in
the same folder as our Python script or notebook. Values for the “mode” can be r
for “read” or w for “write.”

By printing out the citibike_reader.fieldnames values, we can see that the
exact label for the “User Type” column is usertype.

The range() function gives us a way to execute some piece of code a specific
number of times, starting with the value of the first argument and ending just
before the value of the second argument. For example, the code indented below
this line will be executed five times, going through the i values of 0, 1, 2, 3, and 4.
For more on the range() function, see “Adding Iterators: The range Function” on
page 101.

The output from running this should look something like:

['tripduration', 'starttime', 'StartDate', 'stoptime', 'start station id',
'start station name', 'start station latitude', 'start station longitude', 'end
station id', 'end station name', 'end station latitude', 'end station
longitude', 'bikeid', 'usertype', 'birth year', 'gender']
{'tripduration': '4225', 'starttime': '2020-09-01 00:00:01.0430', 'StartDate':
'2020-09-01', 'stoptime': '2020-09-01 01:10:26.6350', 'start station id':
'3508', 'start station name': 'St Nicholas Ave & Manhattan Ave', 'start station
latitude': '40.809725', 'start station longitude': '-73.953149', 'end station
id': '116', 'end station name': 'W 17 St & 8 Ave', 'end station latitude': '40.
74177603', 'end station longitude': '-74.00149746', 'bikeid': '44317',
'usertype': 'Customer', 'birth year': '1979', 'gender': '1'}
 ...
{'tripduration': '1193', 'starttime': '2020-09-01 00:00:12.2020', 'StartDate':
'2020-09-01', 'stoptime': '2020-09-01 00:20:05.5470', 'start station id':
'3081', 'start station name': 'Graham Ave & Grand St', 'start station
latitude': '40.711863', 'start station longitude': '-73.944024', 'end station
id': '3048', 'end station name': 'Putnam Ave & Nostrand Ave', 'end station
latitude': '40.68402', 'end station longitude': '-73.94977', 'bikeid': '26396',
'usertype': 'Customer', 'birth year': '1969', 'gender': '0'}

100 | Chapter 4: Working with File-Based and Feed-Based Data in Python

Adding Iterators: The range Function
Unlike many other programming languages, Python’s for loop is designed to run
through all values in a list or a dataset by default. While this can be handy for
processing entire datasets quickly, it’s not so helpful when we just want to quickly
review a handful of rows.

This is where a special type of variable called an iterator comes in. Like any variable,
you can name an iterator anything you like, though i (for iterator!) is traditional. As
you can see from the preceding example, one place where Python iterators typically
appear is within the range function—another example of a control flow function that,
like for loops and if statements, has special, built-in properties.

For example, the range function includes an iterator variable that lets us write a
slightly different kind of for loop—one that goes through a certain number of rows,
rather than all of them. So rather than taking the form of:

for item in complete_list_of_items:

it lets us write a for loop that starts at a particular point in our list and continues for a
certain number of items:

for item_position in range (starting_position, >number_of_places_to_move):

In Example 4-1, we chose to print the first several rows of the file:

for i in range(0,5):
 print (next(citibike_reader))

One thing to note is that when the range iterates over the values specified in the
parentheses, it includes the first number but excludes the second one. This means that
in order to print five rows of data, we need to provide an initial value of 0, because
lists in Python are what’s known as zero-indexed—they start “counting” positions at 0
rather than 1.

Reading data from TSV and TXT files
Despite its name, the Python csv library is basically a one-stop shop for wrangling
table-type data in Python, thanks to the DictReader function’s delimiter option.
Unless you tell it differently, DictReader assumes that the comma character (,) is the
separator it should look for. Overriding that assumption is easy, however: you can
simply specify a different character when you call the function. In Example 4-2, we
specify the tab character (\t), but we could easily substitute any delimiter we prefer
(or that appears in a particular source file).

Working with Structured Data | 101

https://docs.python.org/3/tutorial/controlflow.html#the-range-function

Example 4-2. tsv_parsing.py

a simple example of reading data from a .tsv file with Python, using
the `csv` library. The source data was downloaded as a .tsv file
from Jed Shugerman's Google Sheet on prosecutor politicians:
https://docs.google.com/spreadsheets/d/1E6Z-jZWbrKmit_4lG36oyQ658Ta6Mh25HCOBaz7YVrA

import the `csv` library
import csv

open the `ShugermanProsecutorPoliticians-SupremeCourtJustices.tsv` file
in read ("r") mode.
this file should be in the same folder as our Python script or notebook
tsv_source_file = open("ShugermanProsecutorPoliticians-SupremeCourtJustices.tsv","r")

pass our `tsv_source_file` as an ingredient to the csv library's
DictReader "recipe."
store the result in a variable called `politicians_reader`
politicians_reader = csv.DictReader(tsv_source_file, delimiter='\t')

the DictReader method has added some useful information to our data,
like a `fieldnames` property that lets us access all the values
in the first or "header" row
print(politicians_reader.fieldnames)

we'll use the `next()` function to print just the first row of data
print (next(politicians_reader))

This dataset was listed in Jeremy Singer-Vine’s (@jsvine) “Data Is Plural” newslet‐
ter (https://data-is-plural.com).

This should result in output that looks something like:

['', 'Justice', 'Term Start/End', 'Party', 'State', 'Pres Appt', 'Other Offices
Held', 'Relevant Prosecutorial Background']
{'': '40', 'Justice': 'William Strong', 'Term Start/End': '1870-1880', 'Party':
'D/R', 'State': 'PA', 'Pres Appt': 'Grant', 'Other Offices Held': 'US House,
Supr Court of PA, elect comm for elec of 1876', 'Relevant Prosecutorial
Background': 'lawyer'}

What’s in a File Extension?
While having computers take care of certain things for us “automagically” can often
be convenient, one thing that learning to wrangle data and program in Python will
hopefully make clear is that we have much more influence over how our computers
behave than it might first appear.

A perfect example of this is file extensions. Throughout the course of this chapter,
I’ve highlighted how file extensions can give us clues about the format of a dataset
and even help us search for them more efficiently. Of course, computers also use file

102 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://data-is-plural.com

extensions to make inferences about the contents of a particular file, typically relying
on them to select the appropriate program for opening it. This is why if you’ve ever
changed a file extension—whether intentionally or by accident—you’ve probably seen
a warning message to the effect of “Are you sure you want to change this? The file
might not work properly if you do.” While no doubt well-intentioned, those types of
warning messages make it seem like you can actually break or corrupt your files by
accidentally changing the file extension.

In fact, nothing could be further from the truth. Changing the extension of a file (for
example, from .tsv to .txt or vice versa) does absolutely nothing to change its contents.
All it does is change what your computer assumes should be done with it.

Fortunately, Python tools like the ones we’re using don’t make those sorts of assump‐
tions. When we’re working with table-type data, as long as the delimiter we specify
matches what’s actually used in the file, the extension on the data file doesn’t matter
either way. In fact, the .txt file we’ll use in Example 4-3 was created simply by saving a
copy of the .tsv file from Example 4-2 and changing the extension!

Though the .tsv file extension has become relatively common nowadays, many files
generated by older databases that are actually tab-separated may reach you with a .txt
file extension. Fortunately, as described in the preceding sidebar, this changes nothing
about how we handle the file as long as we specify the correct delimiter—as you can
see in Example 4-3.

Example 4-3. txt_parsing.py

a simple example of reading data from a .tsv file with Python, using
the `csv` library. The source data was downloaded as a .tsv file
from Jed Shugerman's Google Sheet on prosecutor politicians:
https://docs.google.com/spreadsheets/d/1E6Z-jZWbrKmit_4lG36oyQ658Ta6Mh25HCOBaz7YVrA
the original .tsv file was renamed with a file extension of .txt

import the `csv` library
import csv

open the `ShugermanProsecutorPoliticians-SupremeCourtJustices.txt` file
in read ("r") mode.
this file should be in the same folder as our Python script or notebook
txt_source_file = open("ShugermanProsecutorPoliticians-SupremeCourtJustices.txt","r")

pass our txt_source_file as an ingredient to the csv library's DictReader
"recipe" and store the result in a variable called `politicians_reader`
add the "delimiter" parameter and specify the tab character, "\t"
politicians_reader = csv.DictReader(txt_source_file, delimiter='\t')

the DictReader function has added useful information to our data,
like a label that shows us all the values in the first or "header" row
print(politicians_reader.fieldnames)

Working with Structured Data | 103

we'll use the `next()` function to print just the first row of data
print (next(politicians_reader))

As discussed in “Don’t Leave Space!” on page 13, whitespace characters have
to be escaped when we’re using them in code. Here, we’re using the escaped
character for a tab, which is \t. Another common whitespace character code is
\n for newline (or \r for return, depending on your device).

If everything has gone well, the output from this script should look exactly the same
as that from Example 4-2.

One question you may be asking yourself at this point is “How do I know what
delimiter my file has?” While there are programmatic ways to help detect this, the
simple answer is: Look! Anytime you begin working with (or thinking about working
with) a new dataset, start by opening it up in the most basic text program your
device has to offer (any code editor will also be a reliable choice). Especially if the
file is large, using the simplest program possible will let your device devote maximum
memory and processing power to actually reading the data—reducing the likelihood
that the program will hang or your device will crash (closing other programs and
excess browser tabs will help, too)!

Though I’ll talk about some ways to inspect small parts of really large files later on in
the book, now is the time to start practicing the skills that are essential to assessing
data quality—all of which require reviewing your data and making judgments about
it. So while there are ways to “automate away” tasks like identifying the correct
delimiter for your data, eyeballing it in a text editor will often be not just faster and
more intuitive, but it will help you get more familiar with other important aspects of
the data at the same time.

It’s All Just Text
One reason why opening .csv, .tsv, and many other data formats in a text editor is
so helpful is that most of the data formats we will (or want to) deal with are, at the
most basic level, just text. In exactly the same way that written English is organized
into sentences and paragraphs through the (somewhat) standardized use of periods,
spaces, capital letters, and newlines, what distinguishes one data format from another
at a practical level is also just the punctuation used to organize it. As we’ve seen, basic
table-type data is separated into fields or columns through the use of delimiters, and
into records or rows by using newlines. Feed-type data, which we’ll look at in the next
section, is a bit more flexible (and involved) but ultimately follows relatively simple
punctuation and structure rules of its own.

Of course, there are plenty of nontext data formats out there, which are usually the
output of specialized, proprietary programs that are designed to make data wrangling

104 | Chapter 4: Working with File-Based and Feed-Based Data in Python

(and analysis and visualization) possible without writing much, if any, code. While
these programs can make very specific data tasks faster or more approachable, the
trade-off is that they are often expensive, challenging to learn, and sometimes inflexi‐
ble. As we’ll see in “XLSX, ODS, and All the Rest” on page 107 and beyond, getting
data out of these proprietary formats can also be difficult, unreliable, or even impossi‐
ble. So while Python can still help us wrangle some of the most common proprietary
data formats, in some cases using alternate software (or enlisting someone else’s help)
is our best option.

Real-World Data Wrangling: Understanding
Unemployment
The underlying dataset that we’ll use to explore some of our trickier table-type data
formats is unemployment data about the United States. Why? In one way or another,
unemployment affects most of us, and in recent decades the US has experienced
some particularly high unemployment rates. Unemployment numbers for the US are
released monthly by the Bureau of Labor Statistics (BLS), and while they are often
reported by general-interest news sources, they are usually treated as a sort of abstract
indicator of how “the economy” is doing. What the numbers really represent is rarely
discussed in-depth.

When I first joined the Wall Street Journal in 2007, building an interactive dashboard
for exploring monthly economic indicator data—including unemployment—was my
first major project. One of the more interesting things I learned in the process is that
there isn’t “an” unemployment rate calculated each month, there are several (six, to
be exact). The one that usually gets reported by news sources is the so-called “U3”
unemployment rate, which the BLS describes as:

Total unemployed, as a percent of the civilian labor force (official unemployment rate).

On its surface, this seems like a straightforward definition of unemployment: of all
the people who reasonably could be working, what percentage are not?

Yet the real story is a bit more complex. What does it mean to be “employed” or
be counted as part of the “labor force”? A look at different unemployment numbers
makes more clear what the “U3” number does not take into account. The “U6”
unemployment rate is defined as:

Total unemployed, plus all persons marginally attached to the labor force, plus total
employed part time for economic reasons, as a percent of the civilian labor force plus
all persons marginally attached to the labor force.

Real-World Data Wrangling: Understanding Unemployment | 105

5 From the US Bureau of Labor Statistics.
6 “Multiple Jobholders” by Stéphane Auray, David L. Fuller, and Guillaume Vandenbroucke, posted December

21, 2018, https://research.stlouisfed.org/publications/economic-synopses/2018/12/21/multiple-jobholders.
7 See “New Recommendations on Improving Data on Contingent and Alternative Work Arrangements,” https://

blogs.bls.gov/blog/tag/contingent-workers; “The Value of Flexible Work: Evidence from Uber Drivers” by M.
Keith Chen et al., Nber Working Paper Series No. 23296, https://nber.org/system/files/working_papers/w23296/
w23296.pdf.

8 You can also find instructions for this on the FRED website.

When we read the accompanying note, this longer definition starts to take shape:5

NOTE: Persons marginally attached to the labor force are those who currently are
neither working nor looking for work but indicate that they want and are available
for a job and have looked for work sometime in the past 12 months. Discouraged
workers, a subset of the marginally attached, have given a job-market related reason
for not currently looking for work. Persons employed part time for economic reasons
are those who want and are available for full-time work but have had to settle for
a part-time schedule. Updated population controls are introduced annually with the
release of January data.

In other words, if you want a job (and have looked for one in the past year) but
haven’t looked for one very recently—or if you have a part-time job but want a
full-time job—then you don’t officially count as “unemployed” in the U3 definition.
This means that the economic reality of Americans working multiple jobs (who are
more likely to be women and have more children)6, and potentially of “gig” workers
(recently estimated as up to 30% of the American workforce),7 are not necessarily
reflected in the U3 number. Unsurprisingly, the U6 rate is typically several percentage
points higher each month than the U3 rate.

To see how these rates compare over time, we can download them from the website
of the St. Louis Federal Reserve, which provides thousands of economic datasets for
download in a range of formats, including table-type .xls(x) files and, as we’ll see later
in Example 4-12, feed-type formats as well.

You can download the data for these exercises from the Federal Reserve Economic
Database (FRED) website. It shows the current U6 unemployment rate since the
measure was first created in the early 1990s.

To add the U3 rate to this graph, at the top right choose Edit graph → ADD LINE. In
the search field, type UNRATE and then select “Unemployment Rate” when it populates
below the search bar. Finally, click Add series. Close this side window using the X at
the top right, and then select Download, being sure to select the first option, Excel.8

This will be an .xls file, which we’ll handle last because although still widely available,
this is a relatively outdated file format (it was replaced by .xlsx as the default format
for Microsoft Excel spreadsheets in 2007).

106 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://bls.gov/news.release/empsit.t15.htm
https://research.stlouisfed.org/publications/economic-synopses/2018/12/21/multiple-jobholders
https://blogs.bls.gov/blog/tag/contingent-workers
https://blogs.bls.gov/blog/tag/contingent-workers
https://nber.org/system/files/working_papers/w23296/w23296.pdf
https://nber.org/system/files/working_papers/w23296/w23296.pdf
https://fredhelp.stlouisfed.org/fred/graphs/customize-a-fred-graph/data-transformation-add-series-to-existing-line
https://fred.stlouisfed.org/series/U6RATE
https://fred.stlouisfed.org/series/U6RATE
https://en.wikipedia.org/wiki/Microsoft_Excel#File_formats

9 You can also download copies of these files directly from my Google Drive.
10 As of this writing, LibreOffice can handle the same number of rows as Microsoft Excel (220), but far fewer

columns. While Google Sheets can handle more columns than Excel, it can only handle about 40,000 rows.

To get the additional file formats we need, just open the file you downloaded with a
spreadsheet program like Google Sheets and choose “Save As,” then select .xlsx, then
repeat the process choosing .ods. You should now have the following three files, all
containing the same information: fredgraph.xlsx, fredgraph.ods, and fredgraph.xls.9

If you opened the original fredgraph.xls file, you probably noticed
that it contains more than just the unemployment data; it also
contains some header information about where the data came from
and the definitions of U3 and U6 unemployment, for example.
While doing analysis on the unemployment rates these files contain
would require separating this metadata from the table-type data
further down, remember that our goal for the moment is simply
to convert all of our various files to a .csv format. We’ll tackle the
data cleaning process that would involve removing this metadata in
Chapter 7.

XLSX, ODS, and All the Rest
For the most part, it’s preferable to avoid processing data saved as .xlsx, .ods, and most
other nontext table-type data formats directly, if possible. If you’re just at the stage of
exploring datasets, I suggest you review these files simply by opening them with your
preferred spreadsheet program and saving them as a .csv or .tsv file format before
accessing them in Python. Not only will this make them easier to work with, it will
give you a chance to actually look at the contents of your data file and get a sense of
what it contains.

Resaving and reviewing .xls(x) and similar data formats as a .csv or equivalent text-
based file format will both reduce the file size and give you a better sense of what
the “real” data looks like. Because of the formatting options in spreadsheet programs,
sometimes what you see onscreen is substantially different from the raw values that
are stored in the actual file. For example, values that appear as percentages in a
spreadsheet program (e.g., 10%) might actually be decimals (.1). This can lead to
problems if you try to base aspects of your Python processing or analysis on what you
saw in the spreadsheet as opposed to a text-based data format like .csv.

Still, there will definitely be situations where you need to access .xls(x) and similar
file types with Python directly.10 For example, if there’s an .xls dataset you need to
wrangle on a regular basis (say, every month), resaving the file manually each time
would become unnecessarily time-consuming.

Real-World Data Wrangling: Understanding Unemployment | 107

https://drive.google.com/drive/u/0/folders/1cU5Tdg_fvrCcwvAAyhMOhpbEcI2fF7sb

11 As of this writing, all of these libraries are already available and ready to use in Google Colab.

Fortunately, that active Python community we talked about in “Community” on page
7 has created libraries that can handle an impressive range of data formats with ease.
To get a thorough feel for how these libraries work with more complex source data
(and data formats), the following code examples read in the specified file format and
then create a new .csv file that contains the same data.

To make use of these libraries, however, you’ll first need to install them on your
device by running the following commands one by one in a terminal window:11

pip install openpyxl
pip install pyexcel-ods
pip install xlrd==2.0.1

In the following code examples, we’ll be using the openpyxl library to access (or
parse) .xlsx files, the pyexcel-ods library for dealing with .ods files, and the xlrd library
for reading from .xls files (for more on finding and selecting Python libraries, see
“Where to Look for Libraries” on page 366).

To better illustrate the idiosyncrasies of these different file formats, we’re going to do
something similar to what we did in Example 4-3: we’ll take sample data that is being
provided as an .xls file and create .xlsx and .ods files containing the exact same data by
resaving that source file in the other formats using a spreadsheet program. Along the
way, I think you’ll start to get a sense of how these nontext formats make the process
of data wrangling more (and, I would argue, unnecessarily) complicated.

We’ll start by working through an .xlsx file in \ref (Example 4-4), using a version
of the unemployment data downloaded from FRED. This example illustrates one of
the first major differences between dealing with text-based table-type data files and
nontext formats: because the nontext formats support multiple “sheets,” we needed to
include a for loop at the top of our script, within which we put the code for creating
our individual output files (one for each sheet).

Example 4-4. xlsx_parsing.py

an example of reading data from an .xlsx file with Python, using the "openpyxl"
library. First, you'll need to pip install the openpyxl library:
https://pypi.org/project/openpyxl/
the source data can be composed and downloaded from:
https://fred.stlouisfed.org/series/U6RATE

specify the "chapter" you want to import from the "openpyxl" library
in this case, "load_workbook"
from openpyxl import load_workbook

import the `csv` library, to create our output file

108 | Chapter 4: Working with File-Based and Feed-Based Data in Python

import csv

pass our filename as an ingredient to the `openpyxl` library's
`load_workbook()` "recipe"
store the result in a variable called `source_workbook`
source_workbook = load_workbook(filename = 'fredgraph.xlsx')

an .xlsx workbook can have multiple sheets
print their names here for reference
print(source_workbook.sheetnames)

loop through the worksheets in `source_workbook`
for sheet_num, sheet_name in enumerate(source_workbook.sheetnames):

 # create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to `source_workbook`
 current_sheet = source_workbook[sheet_name]

 # print `sheet_name`, just to see what it is
 print(sheet_name)

 # create an output file called "xlsx_"+sheet_name
 output_file = open("xlsx_"+sheet_name+".csv","w")

 # use this csv library's "writer" recipe to easily write rows of data
 # to `output_file`, instead of reading data *from* it
 output_writer = csv.writer(output_file)

 # loop through every row in our sheet
 for row in current_sheet.iter_rows():

 # we'll create an empty list where we'll put the actual
 # values of the cells in each row
 row_cells = []

 # for every cell (or column) in each row....
 for cell in row:

 # let's print what's in here, just to see how the code sees it
 print(cell, cell.value)

 # add the values to the end of our list with the `append()` method
 row_cells.append(cell.value)

 # write our newly (re)constructed data row to the output file
 output_writer.writerow(row_cells)

 # officially close the `.csv` file we just wrote all that data to
 output_file.close()

Real-World Data Wrangling: Understanding Unemployment | 109

Like the csv library’s DictReader() function, openpyxl’s load_workbook() func‐
tion adds properties to our source data, in this case, one that shows us the names
of all the data sheets in our workbook.

Even though our example workbook only includes one worksheet, we might have
more in the future. We’ll use the enumerate() function so we can access both an
iterator and the sheet name. This will help us create one .csv file per worksheet.

Each sheet in our source_workbook will need its own, uniquely named
output .csv file. To generate these, we’ll “open” a new file with the name
"xlsx_"+sheet_name+".csv" and make it writable by passing w as the “mode”
argument (up until now, we’ve used the r mode to read data from .csvs).

The function iter_rows() is specific to the openpyxl library. Here, it converts the
rows of source_workbook into a list that can be iterated, or looped, over.

The openpyxl library treats each data cell as a Python tuple data type. If we try
to just print the rows of current_sheet directly, we’ll get sort of unhelpful cell
locations, rather than the data values they contain. To address this, we’ll make
another loop inside this one to go through every cell in every row one at a time
and add the actual data values to row_cells.

Notice that this code is left-aligned with the for cell in row code in the
example. This means that it is outside that loop and so will only be run after all
the cells in a given row have been appended to our list.

This script also begins to demonstrate the way that, just as two chefs may have
different ways of preparing the same dish, library creators may make different choices
about how to (re)structure each source file type—with corresponding implications
for our code. The creators of the openpyxl library, for example, chose to store each
data cell’s location label (e.g., A6) and the value it contains in a Python tuple. That
design decision is why we need a second for loop to go through each row of data—
because we actually have to access the data cell by cell in order to build the Python list
that will become a single row in our output .csv file. Likewise, if you use a spreadsheet
program to open the xlsx_FRED Graph.csv created by the script in Example 4-4, you’ll
see that the original .xls file shows the values in the observation_date column in a
YYYY-MM-DD format, but our output file shows those values in a YYYY-MM-DD
HH:MM:SS format. This is because the creator(s) of openpyxl decided that it would
automatically convert any “date-like” data strings into the Python datetime datatype.
Obviously, none of these choices are right or wrong; we simply need to account for
them in writing our code so that we don’t distort or misinterpret the source data.

110 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://docs.python.org/3/library/stdtypes.html#tuple

Now that we’ve wrangled the .xlsx version of our data file, let’s see what happens when
we parse it as an .ods, as shown in Example 4-5.

Example 4-5. ods_parsing.py

an example of reading data from an .ods file with Python, using the
"pyexcel_ods" library. First, you'll need to pip install the library:
https://pypi.org/project/pyexcel-ods/

specify the "chapter" of the "pyexcel_ods" library you want to import,
in this case, `get_data`
from pyexcel_ods import get_data

import the `csv` library, to create our output file
import csv

pass our filename as an ingredient to the `pyexcel_ods` library's
`get_data()` "recipe"
store the result in a variable called `source_workbook`
source_workbook = get_data("fredgraph.ods")

an `.ods` workbook can have multiple sheets
for sheet_name, sheet_data in source_workbook.items():

 # print `sheet_name`, just to see what it is
 print(sheet_name)

 # create "ods_"+sheet_name+".csv" as an output file for the current sheet
 output_file = open("ods_"+sheet_name+".csv","w")

 # use this csv library's "writer" recipe to easily write rows of data
 # to `output_file`, instead of reading data *from* it
 output_writer = csv.writer(output_file)

 # now, we need to loop through every row in our sheet
 for row in sheet_data:

 # use the `writerow` recipe to write each `row`
 # directly to our output file
 output_writer.writerow(row)

 # officially close the `.csv` file we just wrote all that data to
 output_file.close()

Real-World Data Wrangling: Understanding Unemployment | 111

The pyexcel_ods library converts our source data into Python’s OrderedDict data
type. The associated items() method then lets us access each sheet’s name and
data as a key/value pair that we can loop through. In this case, sheet_name is the
“key” and the entire worksheet’s data is the “value.”

Here, sheet_data is already a list, so we can just loop through that list with a
basic for loop.

This library converts each row in a worksheet to a list, which is why we can pass
these directly to the writerow() method.

In the case of the pyexcel_ods library, the contents of our output .csv file much more
closely resembles what we see visually when we open the original fredgraph.xls via a
spreadsheet program like Google Sheets—the observation_date field, for example, is
in a simple YYYY-MM-DD format. Moreover, the library creator(s) decided to treat
the values in each row as a list, allowing us to write each record directly to our output
file without creating any additional loops or lists.

Finally, let’s see what happens when we use the xlrd library to parse the original .xls
file directly in Example 4-6.

Example 4-6. xls_parsing.py

a simple example of reading data from a .xls file with Python
using the "xrld" library. First, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

import the "xlrd" library
import xlrd

import the `csv` library, to create our output file
import csv

pass our filename as an ingredient to the `xlrd` library's
`open_workbook()` "recipe"
store the result in a variable called `source_workbook`
source_workbook = xlrd.open_workbook("fredgraph.xls")

an `.xls` workbook can have multiple sheets
for sheet_name in source_workbook.sheet_names():

 # create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to the `sheet_by_name` recipe
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # print `sheet_name`, just to see what it is
 print(sheet_name)

112 | Chapter 4: Working with File-Based and Feed-Based Data in Python

12 For more about get_rows(), see the xlrd documentation.
13 See the xlrd documentation for more on this issue.
14 From Stephen John Machin and Chris Withers, “Dates in Excel Spreadsheets”.

 # create "xls_"+sheet_name+".csv" as an output file for the current sheet
 output_file = open("xls_"+sheet_name+".csv","w")

 # use the `csv` library's "writer" recipe to easily write rows of data
 # to `output_file`, instead of reading data *from* it
 output_writer = csv.writer(output_file)

 # now, we need to loop through every row in our sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # each row is already a list, but we need to use the `row_value()`
 # method to access them
 # then we can use the `writerow` recipe to write them
 # directly to our output file
 output_writer.writerow(current_sheet.row_values(row_num))

 # officially close the `.csv` file we just wrote all that data to
 output_file.close()

Notice that this structure is similar to the one we use when working with the csv
library.

The function get_rows() is specific to the xlrd library; it converts the rows of our
current worksheet into a list that can be looped over.12

There will be some funkiness within the “dates” written to our output file.13 We’ll
look at how to fix up the dates in “Decrypting Excel Dates” on page 239.

One thing we’ll see in this output file is some serious weirdness in the values recorded
in the observation_date field, reflecting the fact that, as the xlrd library’s creators
put it:14

Dates in Excel spreadsheets: In reality, there are no such things. What you have are
floating point numbers and pious hope.

As a result, getting a useful, human-readable date out of an .xls file requires some
significant cleanup, which we’ll address in “Decrypting Excel Dates” on page 239.

As these exercises have hopefully demonstrated, with some clever libraries and a few
tweaks to our basic code configuration, it’s possible to wrangle data from a wide range
of table-type data formats with Python quickly and easily. At the same time, I hope
that these examples have also illustrated why working with text-based and/or open

Real-World Data Wrangling: Understanding Unemployment | 113

https://xlrd.readthedocs.io/en/latest/api.html#xlrd-sheet
https://xlrd.readthedocs.io/en/latest/dates.html
https://xlrd.readthedocs.io/en/latest/dates.html

15 If you open the output files from the three preceding code examples in a text editor, you’ll notice that the
open source .ods format is the simplest and cleanest.

16 As in, for example, Pennsylvania or Colorado.

source formats is almost always preferable,15 because they often require less “cleaning”
and transformation to get them into a clear, usable state.

Finally, Fixed-Width
Though I didn’t mention it at the top of this section, one of the very oldest versions of
table-type data is what’s known as “fixed-width.” As the name implies, each data col‐
umn in a fixed-width table contains a specific, predefined number of characters—and
always that number of characters. This means that the meaningful data in fixed-width
files are often padded with extra characters, such as spaces or zeroes.

Though very uncommon in contemporary data systems, you are still likely to
encounter fixed-width formats if you’re working with government data sources
whose infrastructure may be decades old.16 For example, the US National Oceanic
and Atmospheric Administration (NOAA), whose origins date back to the early
19th century, offers a wide range of detailed, up-to-date weather information online
for free through its Global Historical Climatology Network, much of which is pub‐
lished in a fixed-width format. For example, information about the stations’ unique
identifier, locations, and what network(s) they are a part of is stored in the ghcnd-
stations.txt file. To interpret any actual weather data readings (many of which are also
released as fixed-width files), you’ll need to cross-reference the station data with the
weather data.

Even more than other table-type data files, working with fixed-width data can be
especially tricky if you don’t have access to the metadata that describes how the file
and its fields are organized. With delimited files, it’s often possible to eyeball the file
in a text editor and identify the delimiter used with a reasonable level of confidence.
At worst, you can simply try parsing the file using different delimiters and see which
yields the best results. With fixed-width files—especially large ones—if there’s no
data for a particular field in the sample of the data you inspect, it’s easy to end up
inadvertently lumping together multiple data fields.

114 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://spotlightpa.org/news/2021/05/pa-unemployment-claims-overhaul-ibm-gsi-benefits-labor-industry
https://denverpost.com/2021/01/10/colorado-unemployment-benefits-new-claims-system
https://noaa.gov/our-history
https://noaa.gov/our-history
https://ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily

Tab-Separated Versus Fixed-Width
As mentioned in “File-Based, Table-Type Data—Take It to Delimit” on page 97, it’s
still not uncommon to come across tab-separated files that have a file extension of .txt
—which is the same one used for fixed-width files. Since both file formats also rely on
whitespace (spaces or tabs) to separate fields, how can you be sure which one you’re
working with?

This is yet another situation where opening up your data file and looking at it in a text
or code editor will save you some headaches, because there are clear visual differences
between these two file formats. Start by looking at the right side of the document:
tab-separated files will be “ragged-right” (the data records will have different line
lengths), while fixed-width files will be “justified” (all the records will end at the same
point).

For example, here’s how a few lines of our .tsv data from Example 4-2 look in Atom:

42 Ward Hunt 1873-1882 R NY Grant
43 Morrison Waite 1874-1888 R OH Grant
44 John Marshall Harlan 1877-1911 R KT Hayes

And here’s how a few lines of the ghcnd-stations.txt file look:

AEM00041217 24.4330 54.6510 26.8 ABU DHABI INTL 41217
AEM00041218 24.2620 55.6090 264.9 AL AIN INTL 41218
AF000040930 35.3170 69.0170 3366.0 NORTH-SALANG GSN 40930

As you can see, not only is the fixed-width file right justified but so are all the
numbers. This is another clue that what you’re looking at is actually a fixed-width file,
rather than a tab-delimited one.

Fortunately, metadata about the ghcnd-stations.txt file that we’re using as our data
source is included in the readme.txt file in the same folder on the NOAA site.

Looking through that readme.txt file, we find the heading IV. FORMAT OF "ghcnd-
stations.txt", which contains the following table:

Variable Columns Type

ID 1-11 Character
LATITUDE 13-20 Real
LONGITUDE 22-30 Real
ELEVATION 32-37 Real
STATE 39-40 Character
NAME 42-71 Character
GSN FLAG 73-75 Character
HCN/CRN FLAG 77-79 Character

Real-World Data Wrangling: Understanding Unemployment | 115

https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

WMO ID 81-85 Character

This is followed by a detailed description of what each field contains or means,
including information like units. Thanks to this robust data dictionary, we now
know not just how the ghcnd-stations.txt file is organized but also how to interpret
the information it contains. As we’ll see in Chapter 6, finding (or building) a data
dictionary is an essential part of assessing or improving the quality of our data. At the
moment, however, we can just focus on transforming this fixed-width file into a .csv,
as detailed in Example 4-7.

Example 4-7. fixed_width_parsing.py

an example of reading data from a fixed-width file with Python.
the source file for this example comes from NOAA and can be accessed here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt
the metadata for the file can be found here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

import the `csv` library, to create our output file
import csv

filename = "ghcnd-stations"

reading from a basic text file doesn't require any special libraries
so we'll just open the file in read format ("r") as usual
source_file = open(filename+".txt", "r")

the built-in "readlines()" method does just what you'd think:
it reads in a text file and converts it to a list of lines
stations_list = source_file.readlines()

create an output file for our transformed data
output_file = open(filename+".csv","w")

use the `csv` library's "writer" recipe to easily write rows of data
to `output_file`, instead of reading data *from* it
output_writer = csv.writer(output_file)

create the header list
headers = ["ID","LATITUDE","LONGITUDE","ELEVATION","STATE","NAME","GSN_FLAG",
 "HCNCRN_FLAG","WMO_ID"]

write our headers to the output file
output_writer.writerow(headers)

loop through each line of our file (multiple "sheets" are not possible)
for line in stations_list:

 # create an empty list, to which we'll append each set of characters that

116 | Chapter 4: Working with File-Based and Feed-Based Data in Python

 # makes up a given "column" of data
 new_row = []

 # ID: positions 1-11
 new_row.append(line[0:11])

 # LATITUDE: positions 13-20
 new_row.append(line[12:20])

 # LONGITUDE: positions 22-30
 new_row.append(line[21:30])

 # ELEVATION: positions 32-37
 new_row.append(line[31:37])

 # STATE: positions 39-40
 new_row.append(line[38:40])

 # NAME: positions 42-71
 new_row.append(line[41:71])

 # GSN_FLAG: positions 73-75
 new_row.append(line[72:75])

 # HCNCRN_FLAG: positions 77-79
 new_row.append(line[76:79])

 # WMO_ID: positions 81-85
 new_row.append(line[80:85])

 # now all that's left is to use the
 # `writerow` function to write new_row to our output file
 output_writer.writerow(new_row)

officially close the `.csv` file we just wrote all that data to
output_file.close()

Since we don’t have anything within the file that we can draw on for column
headers, we have to “hard code” them based on the information in the readme.txt
file. Note that I’ve eliminated special characters and used underscores in place of
spaces to minimize hassles when cleaning and analyzing this data later on.

Python actually views lines of text as just lists of characters, so we can just tell
it to give us the characters between two numbered index positions. Like the
range() function, the character at the first position is included, but the second
number is not. Also recall that Python starts counting lists of items at zero (often
called zero-indexing). This means that for each entry, the first number will be one
less than whatever the metadata says, but the righthand number will be the same.

Real-World Data Wrangling: Understanding Unemployment | 117

https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

If you run the script in Example 4-7 and open your output .csv file in a spreadsheet
program, you’ll notice that the values in some of the columns are not formatted
consistently. For example, in the ELEVATION column, the numbers with decimals are
left justified, but those without decimals are right justified. What’s going on?

Once again, opening the file in a text editor is enlightening. Although the file we’ve
created is technically comma separated, the values we put into each of our newly
“delimited” columns still contain the extra spaces that existed in the original file. As a
result, our new file still looks pretty “fixed-width.”

In other words—just as we saw in the case of Excel “dates”—converting our file
to a .csv does not “automagically” generate sensible data types in our output file.
Determining what data type each field should have—and cleaning them up so that
they behave appropriately—is part of the data cleaning process that we’ll address in
Chapter 7.

Feed-Based Data—Web-Driven Live Updates
The structure of table-type data formats is well suited to a world where most “data”
has already been filtered, revised, and processed into a relatively well-organized
collection of numbers, dates, and short strings. With the rise of the internet, however,
came the need to transmit large quantities of the type of “free” text found in, for
example, news stories and social media feeds. Because this type of data content
typically includes characters like commas, periods, and quotation marks that affect
its semantic meaning, fitting it into a traditional delimited format will be problematic
at best. What’s more, the horizontal bias of delimited formats (which involves lots
of left-right scrolling) runs counter to the vertical-scrolling conventions of the web.
Feed-based data formats have been designed to address both of these limitations.

At a high level, there are two main types of feed-based data formats: XML and JSON.
Both are text-based formats that allow the data provider to define their own unique
data structure, making them extremely flexible and, consequently, useful for the wide
variety of content found on internet-connected websites and platforms. Whether
they’re located online or you save a copy locally, you’ll recognize these formats, in
part, by their coordinating .xml and .json file extensions:

.xml
Extensible Markup Language encompasses a broad range of file formats, includ‐
ing .rss, .atom, and even .html. As the most generic type of markup language,
XML is extremely flexible and was perhaps the original data format for web-
based data feeds.

.json
JavaScript Object Notation files are somewhat more recent than XML files but
serve a similar purpose. In general, JSON files are less descriptive (and therefore

118 | Chapter 4: Working with File-Based and Feed-Based Data in Python

shorter and more concise) than XML files. This means that they can encode an
almost identical amount of data as an XML file while taking up less space, which
is especially important for speed on the mobile web. Equally important is the
fact that JSON files are essentially large object data types within the JavaScript
programming language—which is the language that underpins many, if not most,
websites and mobile apps. This means that parsing JSON-formatted data is very
easy for any site or program that uses JavaScript, especially when compared with
XML. Fortunately, JavaScript object data types are very similar to Python dict
data types, which also makes working with JSON in Python very straightforward.

Before we dive into how to work with each of these file types in Python, let’s review
when we might want feed-type data and where to find it when we do.

When to work with feed-type data
In a sense, feed-type data is to the 21st century what table-type data was to the 20th:
the sheer volume of feed-type data generated, stored, and exchanged on the web
every day is probably millions of times greater than that of all of the table-type data
in the world put together—in large part because feed-type data is what powers social
media sites, news apps, and everything in between.

From a data wrangling perspective, you’ll generally want feed-type data when the
phenomenon you’re exploring is time sensitive and updated on a frequent and/or
unpredictable basis. Typically, this type of data is generated in response to a human or
natural process, such as (once again) posting to social media, publishing a news story,
or recording an earthquake.

Both file-based, table-type data and web-based, feed-type data can contain historical
information, but as we discussed at the start of this chapter, the former usually
reflects the data as it stood at a fixed point in time. The latter, by contrast, is typically
organized in a “reverse-chronological” (most recent first) order, with the first entry
being whatever data record was most recently created at the time you accessed the
data, rather than a predetermined publication date.

Where to find feed-type data
Feed-type data is found almost exclusively on the web, often at special URLs known
as application programming interface (API) endpoints. We’ll get into the details of
working with APIs in Chapter 5, but for now all you need to know is that API
endpoints are really just data-only web pages: you can view many of them using a
regular web browser, but all you’ll see is the data itself. Some API endpoints will even
return different data depending on the information you send to them, and this is part
of what makes working with feed-type data so flexible: by changing just a few words
or values in your code, you can access a totally different dataset!

Real-World Data Wrangling: Understanding Unemployment | 119

17 See Vassili van der Mersch’s post, “Twitter’s 10 Year Struggle with Developer Relations” from Nordic APIs.

Finding APIs that offer feed-type data doesn’t require too much in the way of special
search strategies because usually the sites and services that have APIs want you to
find them. Why? Simply put, when someone writes code that makes use of an API,
it (usually) returns some benefit to the company that provides it—even if that benefit
is just more public exposure. In the early days of Twitter, for example, many web
developers wrote programs using the Twitter API—both making the platform more
useful and saving the company the expense and effort of figuring out what users
wanted and then building it. By making so much of their platform data available for
free (at first), the API gave rise to several companies that Twitter would eventually
purchase—though many more would also be put out of business when either the API
or its terms of service changed.17 This highlights one of the particular issues that can
arise when working with any type of data, but especially the feed-type data made
available by for-profit companies: both the data and your right to access it can change
at any time, without warning. So while feed-type data sources are indeed valuable,
they are also ephemeral in more ways than one.

Wrangling Feed-Type Data with Python
As with table-type data, wrangling feed-type data in Python is made possible by a
combination of helpful libraries and the fact that formats like JSON already resemble
existing data types in the Python programming language. Moreover, we’ll see in the
following sections that XML and JSON are often functionally interchangeable for our
purposes (though many APIs will only offer data in one format or the other).

XML: One markup to rule them all
Markup languages are among the oldest forms of standardized document formats
in computing, designed with the goal of creating text-based documents that can be
easily read by both humans and machines. XML became an increasingly important
part of internet infrastructure in the 1990s as the variety of devices accessing and dis‐
playing web-based information made the separation of content (e.g., text and images)
from formatting (e.g., page layout) more of a necessity. Unlike an HTML document—
in which content and formatting are fully commingled—an XML document says
pretty much nothing about how its information should be displayed. Instead, its tags
and attributes act as metadata about what kind of information it contains, along with
the data itself.

To get a feel for what XML looks like, take a look at Example 4-8.

120 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://nordicapis.com/twitter-10-year-struggle-with-developer-relations

Example 4-8. A sample XML document

 <?xml version="1.0" encoding="UTF-8"?>
 <mainDoc>
 <!--This is a comment-->
 <elements>
 <element1>This is some text in the document.</element1>
 <element2>This is some other data in the document.</element2>
 <element3 someAttribute="aValue" />
 </elements>
 <someElement anAttribute="anotherValue">More content</someElement>
</mainDoc>

There are a couple of things going here. The very first line is called the document type
(or doc-type) declaration; it’s letting us know that the rest of the document should be
interpreted as XML (as opposed to any of the other web or markup languages, some
of which we’ll review later in this chapter).

Starting with the line:

<mainDoc>

we are into the substance of the document itself. Part of what makes XML so flexible
is that it only contains two real grammatical structures, both of which are included in
Example 4-8:

tags
Tags can be either paired (like element1, element2, someElement, or even main
Doc) or self-closed (like element3). The name of a tag is always enclosed by carets
(<>). In the case of a closing tag, the opening caret is immediately followed by a
forward slash (/). A matched pair of tags, or a self-closed tag, are also described
as XML elements.

attributes
Attributes can exist only inside of tags (like anAttribute). Attributes are a type
of key/value pair in which the attribute name (or key) is immediately followed
by an equals sign (=), followed by the value surrounded by double quotation
marks ("").

An XML element is whatever is contained between an opening tag and its matching
closing tag (e.g., <elements> and </elements>). As such, a given XML element may
contain many tags, each of which may also contain other tags. Any tags may also have
any number of attributes (including none). A self-closed tag is also considered an
element.

The only other meaningful rule for structuring XML documents is that when tags
appear inside other tags, the most recently opened tag must be closed first. In other
words, while this is a legitimate XML structure:

Real-World Data Wrangling: Understanding Unemployment | 121

18 Unlike Python code, XML documents do not have to be properly indented in order to work, though it
certainly makes them more readable!

 <outerElement>
 <!-- Notice that that the `innerElement1` is closed
 before the `innerElement2` tag is opened -->
 <innerElement1>Some content</innerElement1>
 <innerElement2>More content</innerElement2>
 </outerElement>

this is not:

 <outerElement>
 <!-- NOPE! The `innerElement2` tag was opened
 before the `innerElement1` tag was closed -->
 <innerElement1>Some content<innerElement2>More content</innerElement1>
 </innerElement2>
 </outerElement>

This principle of last opened, first closed is also described as nesting, similar to the
“nested” for...in loops from Figure 2-3.18 Nesting is especially important in XML
documents because it governs one of the primary mechanisms that we use to read
or parse XML (and other markup language) documents with code. In an XML docu‐
ment, the first element after the doc-type declaration is known as the root element. If
the XML document has been formatted, the root element will always be left justified,
and any element that is nested directly within that element will be indented one level
to the right and is referred to as a child element. In Example 4-8, then, <mainDoc>
would be considered the root element, and <elements> would be its child. Likewise,
<mainDoc> is the parent element of <elements> (Example 4-9).

Example 4-9. An annotated XML document

 <?xml version="1.0" encoding="UTF-8"?>
 <mainDoc>
 <!--`mainDoc` is the *root* element, and `elements` is its *child*-->
 <elements>
 <!-- `elements` is the *parent* of `element1`, `element2`, and
 `element3`, which are *siblings* of one another -->
 <element1>This is text data in the document.</element1>
 <element2>This is some other data in the document.</element2>
 <element3 someAttribute="aValue" />
 </elements>
 <!-- `someElement` is also a *child* of `mainDoc`,
 and a *sibling* of `elements` -->
 <someElement anAttribute="anotherValue">More content</someElement>
</mainDoc>

122 | Chapter 4: Working with File-Based and Feed-Based Data in Python

Given this trend for genealogical jargon, you might be wondering: if <elements>
is the parent of <element3>, and <mainDoc> is the parent of <elements>, does that
make <mainDoc> the grandparent of <element3>? The answer is: yes, but no. While
<mainDoc> is the “parent” of the “parent” of <element3>, the term “grandparent” is
never used in describing an XML structure—that could get complicated fast! Instead,
we simply describe the relationship as exactly that: <mainDoc> is the parent of the
parent of <element3>.

Fortunately, there is no such complexity associated with XML attributes: they are
simply key/value pairs, and they can only exist within XML tags, like so:

 <element3 someAttribute="aValue" />

Note that there is no space on either side of the equals sign, just as there is no space
between the carets and slashes of an element tag.

Like writing in English (or in Python), the question of when to use tags versus
attributes for a particular piece of information is largely a matter of preference and
style. Both Examples 4-10 and 4-11, for example, contain the same information about
this book, but each is structured slightly differently.

Example 4-10. Sample XML book data—more attributes

<aBook>
 <bookURL url="https://www.oreilly.com/library/view/practical-python-data/
 9781492091493"/>
 <bookAbstract>
 There are awesome discoveries to be made and valuable stories to be
 told in datasets--and this book will help you uncover them.
 </bookAbstract>
 <pubDate date="2022-02-01" />
</aBook>

Example 4-11. Sample XML book data—more elements

<aBook>
 <bookURL>
 https://www.oreilly.com/library/view/practical-python-data/9781492091493
 </bookURL>
 <bookAbstract>
 There are awesome discoveries to be made and valuable stories to be
 told in datasets--and this book will help you uncover them.
 </bookAbstract>
 <pubDate>2022-02-01</pubDate>
</aBook>

This degree of flexibility means XML is highly adaptable to a wide variety of data
sources and formatting preferences. At the same time, it can easily create a situation

Real-World Data Wrangling: Understanding Unemployment | 123

19 Fun fact: the second x in the .xlsx format actually refers to XML!

where every new data source requires writing custom code. Obviously, this would
be a pretty inefficient system, especially if many people and organizations were
publishing pretty similar types of data.

It’s not surprising, then, that there are a large number of XML specifications that
define additional rules for formatting XML documents that are intended to hold
particular types of data. I’m highlighting a few notable examples here, as these are
formats you may come across in the course of your data wrangling work. Despite
their various format names and file extensions, however, we can parse them all using
the same method that we’ll look at shortly in Example 4-12:

RSS
Really Simple Syndication is an XML specification first introduced in the late
1990s for news information. The .atom XML format is also widely used for these
purposes.

KML
Keyhole Markup Language is an internationally accepted standard for encoding
both two-dimensional and three-dimensional geographic data and is compatible
with tools like Google Earth.

SVG
Scalable Vector Graphics is a commonly used format for graphics on the web,
thanks to its ability to scale drawings without loss of quality. Many common
graphics programs can output .svg files, which can then be included in web pages
and other documents that will look good on a wide variety of screen sizes and
devices.

EPUB
Electronic publication format (.epub) is the widely accepted open standard for
digital book publishing.

As you can see from the preceding list, some common XML formats clearly indicate
their relationship to XML; many others do not.19

Now that we have a high-level sense of how XML files work, let’s see what it takes to
parse one with Python. Although Python has some built-in tools for parsing XML,
we’ll be using a library called lxml, which is particularly good at quickly parsing large
XML files. Even though our example files that follow are quite small, know that we
could use basically the same code even if our data files got considerably larger.

124 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://nickjanetakis.com/blog/how-i-used-the-lxml-library-to-parse-xml-20x-faster-in-python#xmltodict-vs-python-s-standard-library-vs-lxml
https://nickjanetakis.com/blog/how-i-used-the-lxml-library-to-parse-xml-20x-faster-in-python#xmltodict-vs-python-s-standard-library-vs-lxml

20 Again, we’ll walk through using APIs like this one step by step in Chapter 5, but using this document lets us
see how different data formats influence our interactions with the data.

To begin with, we’ll be using an XML version of the same “U6” unemployment data
that I’ve already downloaded from the FRED website using its API.20 After download‐
ing a copy of this file from Google Drive, you can use the script in Example 4-12 to
convert the source XML to a .csv. Start with the pip install:

pip install lxml

Example 4-12. xml_parsing.py

an example of reading data from an .xml file with Python, using the "lxml"
library.
first, you'll need to pip install the lxml library:
https://pypi.org/project/lxml/
a helpful tutorial can be found here: https://lxml.de/tutorial.html
the data used here is an instance of
https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE& \
api_key=YOUR_API_KEY_HERE

specify the "chapter" of the `lxml` library you want to import,
in this case, `etree`, which stands for "ElementTree"
from lxml import etree

import the `csv` library, to create our output file
import csv

choose a filename
filename = "U6_FRED_data"

open our data file in read format, using "rb" as the "mode"
xml_source_file = open(filename+".xml","rb")

pass our xml_source_file as an ingredient to the `lxml` library's
`etree.parse()` method and store the result in a variable called `xml_doc`
xml_doc = etree.parse(xml_source_file)

start by getting the current xml document's "root" element
document_root = xml_doc.getroot()

let's print it out to see what it looks like
print(etree.tostring(document_root))

confirm that `document_root` is a well-formed XML element
if etree.iselement(document_root):

 # create our output file, naming it "xml_"+filename+".csv
 output_file = open("xml_"+filename+".csv","w")

Real-World Data Wrangling: Understanding Unemployment | 125

https://drive.google.com/file/d/1gPGaDTT9Nn6BtlTtVp7gQLSuocMyIaLU

 # use the `csv` library's "writer" recipe to easily write rows of data
 # to `output_file`, instead of reading data *from* it
 output_writer = csv.writer(output_file)

 # grab the first element of our xml document (using `document_root[0]`)
 # and write its attribute keys as column headers to our output file
 output_writer.writerow(document_root[0].attrib.keys())

 # now, we need to loop through every element in our XML file
 for child in document_root:

 # now we'll use the `.values()` method to get each element's values
 # as a list and then use that directly with the `writerow` recipe
 output_writer.writerow(child.attrib.values())

 # officially close the `.csv` file we just wrote all that data to
 output_file.close()

In this instance, there’s nothing within the data file (like a sheet name) that we
can pull as a filename, so we’ll just make our own and use it to both load our
source data and label our output file.

I lied! The values we’ve been using for the “mode” of the open() function assume
we want to interpret the source file as text. But because the lxml library expects
byte data rather than text, we’ll use rb (“read bytes”) as the “mode.”

There is a lot of malformed XML out there! In order to make sure that what
looks like good XML actually is, we’ll retrieve the current XML document’s “root”
element and make sure that it works.

Because our XML is currently stored as byte data, we need to use the
etree.tostring() method in order to view it as one.

Thanks to the lxml, each XML element (or “node”) in our document has a
property called attrib, whose data type is a Python dictionary (dict). Using
the .keys() method returns all of our XML element’s attribute keys as a list.
Since all of the elements in our source file are identical, we can use the keys of the
first one to create a “header” row for our output file.

The lxml library converts XML elements to lists, so we can use a simple for...in
loop to go through the elements in our document.

As it happens, the XML version of our unemployment data is structured very simply:
it’s just a list of elements, and all the values we want to access are stored as attributes.

126 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://docs.python.org/3/library/stdtypes.html#typesmapping
https://lxml.de/tutorial.html#elements-are-lists

As a result, we were able to pull the attribute values out of each element as a list and
write them directly to our .csv file with only one line of code.

Of course, there are many times when we’ll want to pull data from more complex
XML formats, especially those like RSS or Atom. To see what it takes to handle
something slightly more complex, in Example 4-13 we’ll parse the BBC’s RSS feed of
science and environment stories, which you can download a copy of from my Google
Drive.

Example 4-13. rss_parsing.py

an example of reading data from an .xml file with Python, using the "lxml"
library.
first, you'll need to pip install the lxml library:
https://pypi.org/project/lxml/
the data used here is an instance of
http://feeds.bbci.co.uk/news/science_and_environment/rss.xml

specify the "chapter" of the `lxml` library you want to import,
in this case, `etree`, which stands for "ElementTree"
from lxml import etree

import the `csv` library, to create our output file
import csv

choose a filename, for simplicity
filename = "BBC News - Science & Environment XML Feed"

open our data file in read format, using "rb" as the "mode"
xml_source_file = open(filename+".xml","rb")

pass our xml_source_file as an ingredient to the `lxml` library's
`etree.parse()` method and store the result in a variable called `xml_doc`
xml_doc = etree.parse(xml_source_file)

start by getting the current xml document's "root" element
document_root = xml_doc.getroot()

if the document_root is a well-formed XML element
if etree.iselement(document_root):

 # create our output file, naming it "rss_"+filename+".csv"
 output_file = open("rss_"+filename+".csv","w")

 # use the `csv` library's "writer" recipe to easily write rows of data
 # to `output_file`, instead of reading data *from* it
 output_writer = csv.writer(output_file)

 # document_root[0] is the "channel" element
 main_channel = document_root[0]

Real-World Data Wrangling: Understanding Unemployment | 127

https://drive.google.com/file/d/1zOaksshLfmXxLTipoOjTTnuO6PsVQgg2
https://drive.google.com/file/d/1zOaksshLfmXxLTipoOjTTnuO6PsVQgg2

 # the `find()` method returns *only* the first instance of the element name
 article_example = main_channel.find('item')

 # create an empty list in which to store our future column headers
 tag_list = []

 for child in article_example.iterdescendants():

 # add each tag to our would-be header list
 tag_list.append(child.tag)

 # if the current tag has any attributes
 if child.attrib:

 # loop through the attribute keys in the tag
 for attribute_name in child.attrib.keys():

 # append the attribute name to our `tag_list` column headers
 tag_list.append(attribute_name)

 # write the contents of `tag_list` to our output file as column headers
 output_writer.writerow(tag_list)

 # now we want to grab *every* <item> element in our file
 # so we use the `findall()` method instead of `find()`
 for item in main_channel.findall('item'):

 # empty list for holding our new row's content
 new_row = []

 # now we'll use our list of tags to get the contents of each element
 for tag in tag_list:

 # if there is anything in the element with a given tag name
 if item.findtext(tag):

 # append it to our new row
 new_row.append(item.findtext(tag))

 # otherwise, make sure it's the "isPermaLink" attribute
 elif tag == "isPermaLink":

 # grab its value from the <guid> element
 # and append it to our row
 new_row.append(item.find('guid').get("isPermaLink"))

 # write the new row to our output file!
 output_writer.writerow(new_row)

 # officially close the `.csv` file we just wrote all that data to
 output_file.close()

128 | Chapter 4: Working with File-Based and Feed-Based Data in Python

As always, we’ll want to balance what we handle programmatically and what we
review visually. In looking at our data, it’s clear that each article’s information
is stored in a separate item element. Since copying over the individual tag and
attribute names would be time-consuming and error prone, however, we’ll go
through one item element and make a list of all the tags (and attributes) within it,
which we’ll then use as the column headers for our output .csv file.

The iterdescendants() method is particular to the lxml library. It returns only
the descendants of an XML element, while the more common iter() method
would return both the element itself and its children or “descendants.”

Using child.tag will retrieve the text of the tagname of the child element. For
example, for the <pubDate>` element it will return pubDate.

Only one tag in our <item> element has an attribute, but we still want to include
it in our output.

The keys() method will give us a list of all the keys in the list of attributes that
belong to the tag. Be sure to get its name as a string (instead of a one-item list).

That whole article_example for loop was just to build tag_list—but it was
worth it!

As you can see from Example 4-13, with the help of the lxml library, parsing even
slightly more complex XML in Python is still reasonably straightforward.

While XML is still a popular data format for news feeds and a handful of other file
types, there are a number of features that make it less than ideal for handling the
high-volume data feeds of the modern web.

First, there is the simple issue of size. While XML files can be wonderfully descrip‐
tive—reducing the need for separate data dictionaries—the fact that most elements
contain both an opening tag and a corresponding closing tag (e.g., <item> and </
item>) also makes XML somewhat verbose: there is a lot of text in an XML document
that isn’t content. This isn’t a big deal when your document has a few dozen or even a
few thousand elements, but when you’re trying to handle millions or billions of posts
on the social web, all that redundant text can really slow things down.

Second, while XML isn’t exactly difficult to transform into other data formats, the
process also isn’t exactly seamless. The lxml library (among others) makes parsing
XML with Python pretty simple, but doing the same task with web-focused languages
like JavaScript is convoluted and onerous. Given JavaScript’s prevalence on the web,
it’s not surprising that a feed-type data format that works seamlessly with JavaScript
would be developed at some point. As we’ll see in the next section, many of XML’s

Real-World Data Wrangling: Understanding Unemployment | 129

https://lxml.de/api.html#iteration
https://lxml.de/api.html#iteration

limitations as a data format are addressed by the object-like nature of the .json
format, which is at this point the most popular format for feed-type data on the
internet.

JSON: Web data, the next generation
In principle, JSON is similar to XML in that it uses nesting to cluster related pieces
of information into records and fields. JSON is also fairly human readable, though
the fact that it doesn’t support comments means that JSON feeds may require more
robust data dictionaries than XML documents.

To get started, let’s take a look at the small JSON document in Example 4-14.

Example 4-14. Sample JSON document

{
"author": "Susan E. McGregor",
"book": {
 "bookURL": "https://www.oreilly.com/library/view/practical-python-data/
 9781492091493/",
 "bookAbstract": "There are awesome discoveries to be made and valuable
 stories to be told in datasets--and this book will help you uncover
 them.",
 "pubDate": "2022-02-01"
},
"papers": [{
 "paperURL": "https://www.usenix.org/conference/usenixsecurity15/
 technical-sessions/presentation/mcgregor",
 "paperTitle": "Investigating the computer security practices and needs
 of journalists",
 "pubDate": "2015-08-12"
},
 {
 "paperURL": "https://www.aclweb.org/anthology/W18-5104.pdf",
 "paperTitle": "Predictive embeddings for hate speech detection on
 twitter",
 "pubDate": "2018-10-31"
}
]
}

Like XML, the grammatical “rules” of JSON are quite simple: there are only three
distinct data structures in JSON documents, all of which appear in Example 4-14:

Key/value pairs
Technically, everything within a JSON document is a key/value pair, with the key
enclosed in quotes to the left of a colon (:) and the value being whatever appears
to the right of the colon. Note that while keys must always be strings, values can
be strings (as in author), objects (as in book), or lists (as in papers).

130 | Chapter 4: Working with File-Based and Feed-Based Data in Python

Objects
These are opened and closed using pairs of curly braces ({}). In Example 4-14,
there are four objects total: the document itself (indicated by the left-justified
curly braces), the book object, and the two unnamed objects in the papers list.

Lists
These are enclosed by square brackets ([]) and can only contain comma-
separated objects.

While XML and JSON can be used to encode the same data, there are some notable
differences in what each allows. For example, JSON files do not contain a doc-type
specification, nor can they include comments. Also, while XML lists are somewhat
implicit (any repeated element functions something like a list), in JSON, lists must be
specified by square brackets ([]).

Finally, although JSON was designed with JavaScript in mind, you may have noticed
that its structures are very similar to Python dict and list types. This is part of what
makes parsing JSON very straightforward with Python as well as JavaScript (and a
range of other languages).

To see just how straightforward this is, in Example 4-15 we’ll parse the same data
as we did in Example 4-12 but in the .json format also provided by the FRED API.
You can download the file from this Google Drive link: https://drive.google.com/file/d/
1Mpb2f5qYgHnKcU1sTxTmhOPHfzIdeBsq/view?usp=sharing.

Example 4-15. json_parsing.py

a simple example of reading data from a .json file with Python,
using the built-in "json" library. The data used here is an instance of
https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE& \
file_type=json&api_key=YOUR_API_KEY_HERE

import the `json` library, since that's our source file format
import json

import the `csv` library, to create our output file
import csv

choose a filename
filename = "U6_FRED_data"

open the file in read format ("r") as usual
json_source_file = open(filename+".json","r")

pass the `json_source_file` as an ingredient to the json library's `load()`
method and store the result in a variable called `json_data`
json_data = json.load(json_source_file)

Real-World Data Wrangling: Understanding Unemployment | 131

https://drive.google.com/file/d/1Mpb2f5qYgHnKcU1sTxTmhOPHfzIdeBsq/view?usp=sharing
https://drive.google.com/file/d/1Mpb2f5qYgHnKcU1sTxTmhOPHfzIdeBsq/view?usp=sharing

create our output file, naming it "json_"+filename
output_file = open("json_"+filename+".csv","w")

use the `csv` library's "writer" recipe to easily write rows of data
to `output_file`, instead of reading data *from* it
output_writer = csv.writer(output_file)

grab the first element (at position "0"), and use its keys as the column headers
output_writer.writerow(list(json_data["observations"][0].keys()))

for obj in json_data["observations"]:

 # we'll create an empty list where we'll put the actual values of each object
 obj_values = []

 # for every `key` (which will become a column), in each object
 for key, value in obj.items():

 # let's print what's in here, just to see how the code sees it
 print(key,value)

 # add the values to our list
 obj_values.append(value)

 # now we've got the whole row, write the data to our output file
 output_writer.writerow(obj_values)

officially close the `.csv` file we just wrote all that data to
output_file.close()

Because the json library interprets every object as a dictionary view object, we
need to tell Python to convert it to a regular list using the list() function.

In most cases, the simplest way to find the name (or “key”) of the main JSON
object in our document is just to look at it. Because JSON data is often rendered
on a single line, however, we can get a better sense of its structure by pasting
it into JSONLint. This lets us see that our target data is a list whose key is
observations.

Because of the way that the json library works, if we try to just write the
rows directly, we’ll get the values labeled with dict, rather than the data values
themselves. So we need to make another loop that goes through every value in
every json object one at a time and appends that value to our obj_values list.

Although JSON is not quite as human readable as XML, it has other advantages
that we’ve touched on, like smaller file size and broader code compatibility. Likewise,
while JSON is not as descriptive as XML, JSON data sources (often APIs) are usually
reasonably well documented; this reduces the need to simply infer what a given

132 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://docs.python.org/3/library/stdtypes.html#dict-views
https://jsonlint.com

21 If a stylesheet has been applied, as in the case of the BBC feed we used in Example 4-13, you can context+click
the page and select “View Source” to see the “raw” XML.

key/value pair is describing. Like all work with data, however, the first step in wran‐
gling JSON-formatted data is to understand its context as much as possible.

Wherefore Art Thou, Whitespace?
Unlike .tsv and .txt files—and the Python programming language itself—neither XML
nor JSON is “whitespace dependent.” As long as the carets, curly braces, and other
punctuation marks are all in the right place, these data feed-type formats can have
everything crushed up on a single line and still work just fine. For the sake of
readability, the examples I’ve presented in this chapter have all been nicely formatted,
but that’s not how you’ll usually encounter these data types, especially on the web.
Though many web browsers will show XML in its properly indented format (for
example, see Los Angeles Times’ daily “sitemap”), most JSON data will be rendered as
run-on lines of text (as with the Citi Bike real-time data feed).

Since effectively parsing either data format first requires understanding its overall
structure, looking at a properly formatted version of any feed-type data file you’re
working with is a crucial first step. With well-structured XML, opening the file (or
URL) in a web browser in usually enough.21

For smaller .json files, you can copy and paste (using keyboard shortcuts to “Select
All” and “Copy” is easiest) the data straight from the source into an online formatting
tool like JSONLint or JSON formatter. If the JSON file is especially large, or you don’t
have internet access, however, it’s also possible to use Python in the terminal to create
a new, formatted .json file from an unformatted source JSON file, using the following
command:

cat ugly.json | python -mjson.tool > pretty.json

where ugly.json is your unformatted file. This will create the output file
pretty.json, which you can then open in Atom or another text editor in order
to see the structure of the document.

Working with Unstructured Data
As we discussed in “Structured Versus Unstructured Data” on page 93, the process of
creating data depends on introducing some structure to information; otherwise we
can’t methodically analyze or derive meaning from it. Even though the latter often
includes large segments of human-written “free” text, both table-type and feed-type
data are relatively structured and, most importantly, machine readable.

Working with Unstructured Data | 133

https://latimes.com/sitemap-202101.xml
https://feeds.citibikenyc.com/stations/stations.json
https://jsonlint.com
https://jsonformatter.org/json-pretty-print

22 See Adobe’s About PDF page for more information.
23 George Nagy, “Disruptive Developments in Document Recognition,” Pattern Recognition Letters 79 (2016):

106–112, https://doi.org/10.1016/j.patrec.2015.11.024. Available at https://ecse.rpi.edu/~nagy/PDF_chrono/
2016_PRL_Disruptive_asPublished.pdf.

When we deal with unstructured data, by contrast, our work always involves approxi‐
mations: we cannot be certain that our programmatic wrangling efforts will return an
accurate interpretation of the underlying information. This is because most unstruc‐
tured data is a representation of content that is designed to be perceived and inter‐
preted by humans. And, as we discussed in Chapter 2, while they can process large
quantities of data much faster and with fewer errors than humans can, computers
can still be tricked by unstructured data that would never fool a human, such as
mistaking a slightly modified stop sign for a speed limit sign. Naturally, this means
that when dealing with data that isn’t machine readable, we always need to do extra
proofing and verification—but Python can still help us wrangle such data into a more
usable format.

Image-Based Text: Accessing Data in PDFs
The Portable Document Format (PDF) was created in the early 1990s as a mechanism
for preserving the visual integrity of electronic documents—whether they were cre‐
ated in a text-editing program or captured from printed materials.22 Preserving docu‐
ments’ visual appearance also meant that, unlike machine-readable formats (such as
word-processing documents), it was difficult to alter or extract their contents—an
important feature for creating everything from digital versions of contracts to formal
letters.

In other words, wrangling the data in PDFs was, at first, somewhat difficult by design.
Because accessing the data in printed documents is a shared problem, however,
work in optical character recognition (OCR) actually began as early as the late 19th
century.23 Even digital OCR tools have been widely available in software packages and
online for decades, so while they are far from perfect, the data contained in this type
of file is also not entirely out of reach.

When to work with text in PDFs
In general, working with PDFs is a last resort (much, as we’ll see in Chapter 5, as web
scraping should be). In general, if you can avoid relying on PDF information, you
should. As noted previously, the process of extracting information from PDFs will
generally yield an approximation of the document’s contents, so proofing for accuracy
is a nonnegotiable part of any .pdf-based data wrangling workflow. That said, there
is an enormous quantity of information that is only available as images or PDFs of

134 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://acrobat.adobe.com/us/en/acrobat/about-adobe-pdf.html
https://doi.org/10.1016/j.patrec.2015.11.024
https://ecse.rpi.edu/~nagy/PDF_chrono/2016_PRL_Disruptive_asPublished.pdf
https://ecse.rpi.edu/~nagy/PDF_chrono/2016_PRL_Disruptive_asPublished.pdf
https://spectrum.ieee.org/cars-that-think/transportation/sensors/slight-street-sign-modifications-can-fool-machine-learning-algorithms

scanned documents, and Python is an efficient way to extract a reasonably accurate
first version of such document text.

Where to find PDFs
If you’re confident that the data you want can only be found in PDF format, then you
can (and should) use the tips in “Smart Searching for Specific Data Types” on page
96 to locate this file type using an online search. More than likely, you will request
information from a person or organization, and they will provide it as PDFs, leaving
you to deal with the problem of how to extract the information you need. As a result,
most of the time you will not need to go looking for PDFs—more often than not they
will, unfortunately, find you.

Wrangling PDFs with Python
Because PDFs can be generated both from machine-readable text (such as word-
processing documents) and from scanned images, it is sometimes possible to extract
the document’s “live” text programmatically with relatively few errors. While it seems
straightforward, however, this method can still be unreliable because .pdf files can be
generated with a wide range of encodings that can be difficult to detect accurately. So
while this can be a high-accuracy method of extracting text from a .pdf, the likelihood
of it working for any given file is low.

Because of this, I’m going to focus here on using OCR to recognize and extract the
text in .pdf files. This will require two steps:

1. Convert the document pages into individual images.1.
2. Run OCR on the page images, extract the text, and write it to individual text files.2.

Unsurprisingly, we’ll need to install quite a few more Python libraries in order to
make this all possible. First, we’ll install a couple of libraries for converting our .pdf
pages to images. The first is a general-purpose library called poppler that is needed to
make our Python-specific library pdf2image work. We’ll be using pdf2image to (you
guessed it!) convert our .pdf file to a series of images:

sudo apt install poppler-utils

Working with Unstructured Data | 135

Then:

pip install pdf2image

Next, we need to install the tools for performing the OCR process. The first one is a
general library called tesseract-ocr, which uses machine learning to recognize the text
in images; the second is a Python library that relies on tesseract-ocr called pytesseract:

sudo apt-get install tesseract-ocr

Then:

pip install pytesseract

Finally, we need a helper library for Python that can do the computer vision needed
to bridge the gap between our page images and our OCR library:

pip install opencv-python

Phew! If that seems like a lot of extra libraries, keep in mind that what we’re techni‐
cally using here are is machine learning, one of those buzzy data science technologies
that drives so much of the “artificial intelligence” out there. Fortunately for us, Tesser‐
act in particular is relatively robust and inclusive: though it was originally developed
by Hewlett-Packard as a proprietary system in the early 1980s, it was open sourced in
2005 and currently supports more than 100 languages—so feel free to try the solution
in Example 4-16 out on non-English text as well!

Example 4-16. pdf_parsing.py

a basic example of reading data from a .pdf file with Python,
using `pdf2image` to convert it to images, and then using the
openCV and `tesseract` libraries to extract the text

the source data was downloaded from:
https://files.stlouisfed.org/files/htdocs/publications/page1-econ/2020/12/01/ \
unemployment-insurance-a-tried-and-true-safety-net_SE.pdf

the built-in `operating system` or `os` Python library will let us create
a new folder in which to store our converted images and output text
import os

we'll import the `convert_from_path` "chapter" of the `pdf2image` library
from pdf2image import convert_from_path

the built-in `glob`library offers a handy way to loop through all the files
in a folder that have a certain file extension, for example
import glob

`cv2` is the actual library name for `openCV`
import cv2

and of course, we need our Python library for interfacing

136 | Chapter 4: Working with File-Based and Feed-Based Data in Python

https://github.com/tesseract-ocr/tesseract

with the tesseract OCR process
import pytesseract

we'll use the pdf name to name both our generated images and text files
pdf_name = "SafetyNet"

our source pdf is in the same folder as our Python script
pdf_source_file = pdf_name+".pdf"

as long as a folder with the same name as the pdf does not already exist
if os.path.isdir(pdf_name) == False:

 # create a new folder with that name
 target_folder = os.mkdir(pdf_name)

store all the pages of the PDF in a variable
pages = convert_from_path(pdf_source_file, 300)

loop through all the converted pages, enumerating them so that the page
number can be used to label the resulting images
for page_num, page in enumerate(pages):

 # create unique filenames for each page image, combining the
 # folder name and the page number
 filename = os.path.join(pdf_name,"p"+str(page_num)+".png")

 # save the image of the page in system
 page.save(filename, 'PNG')

next, go through all the files in the folder that end in `.png`
for img_file in glob.glob(os.path.join(pdf_name, '*.png')):

 # replace the slash in the image's filename with a dot
 temp_name = img_file.replace("/",".")

 # pull the unique page name (e.g. `p2`) from the `temp_name`
 text_filename = temp_name.split(".")[1]

 # now! create a new, writable file, also in our target folder, that
 # has the same name as the image, but is a `.txt` file
 output_file = open(os.path.join(pdf_name,text_filename+".txt"), "w")

 # use the `cv2` library to interpret our image
 img = cv2.imread(img_file)

 # create a new variable to hold the results of using pytesseract's
 # `image_to_string()` function, which will do just that
 converted_text = pytesseract.image_to_string(img)

 # write our extracted text to our output file

Working with Unstructured Data | 137

 output_file.write(converted_text)

 # close the output file
 output_file.close()

Here we pass the path to our source file (in this case, that is just the filename,
because it is in the same folder as our script) and the desired dots per inch
(DPI) resolution of the output images to the convert_from_path() function.
While setting a lower DPI will be much faster, the poorer-quality images may
yield significantly less accurate OCR results. 300 DPI is a standard “print” quality
resolution.

Here we use the os library’s .join function to save the new files into our target
folder. We also have to use the str() function to convert the page number into a
string for use in the filename.

Note that *.png can be translated to “any file ending in .png.” The glob() func‐
tion creates a list of all the filenames in the folder where our images are stored
(which in this case has the value pdf_name).

String manipulation is fiddly! To generate unique (but matching!) filenames for
our OCR’d text files, we need to pull a unique page name out of img_file whose
value starts with SafetyNet/ and ends in .png. So we’ll replace the forward slash
with a period to get something like SafetyNet.p1.png, and then if we split()
that on the period, we’ll get a list like: ["SafetyNet", "p1", "png"]. Finally, we
can access the “page name” at position 1. We need to do all this because we can’t
be sure that glob() will, for example, pull p1.png from the image folder first, or
that it will pull the images in order at all.

For the most part, running this script serves our purposes: with a few dozen lines of
code, it converts a multipage PDF file first into images and then writes (most of) the
contents to a series of new text files.

This all-in-one approach also has its limitations, however. Converting a PDF to
images—or images to text—is the kind of task that we might need to do quite often
but not always at the same time. In other words, it would probably be much more
useful in the long run to have two separate scripts for solving this problem, and
then to run them one after the other. In fact, with a little bit of tweaking, we could
probably break up the preceding script in such a way that we could convert any PDF
to images or any images to text without having to write any new code at all. Sounds
pretty nifty, right?

This process of rethinking and reorganizing working code is known as code refac‐
toring. In writing English, we would describe this as revising or editing, and the

138 | Chapter 4: Working with File-Based and Feed-Based Data in Python

objective in both cases is the same: to make your work simpler, clearer, and more
effective. And just like documentation, refactoring is actually another important way
to scale your data wrangling work, because it makes reusing your code much more
straightforward. We’ll look at various strategies for code refactoring and script reuse
in Chapter 8.

Accessing PDF Tables with Tabula
If you looked at the text files produced in the preceding section, you’ll likely have
noticed that there are a lot of “extras” in those files: page numbers and headers, line
breaks, and other “cruft.” There are also some key elements missing, like images and
tables.

While our data work won’t extend to analyzing images (that is a much more speci‐
alized area), it’s not unusual to find tables inside PDFs that hold data we might
want to work with. In fact, this problem is common enough in my home field of
journalism that a group of investigative journalists designed and built a tool called
Tabula specifically to deal with this problem.

Tabula isn’t a Python library—it’s actually a standalone piece of software. To try it out,
download the installer for your system; if you’re on a Chromebook or Linux machine,
you’ll need to download the .zip file and follow the directions in README.txt.
Whatever system you’re using, you’ll probably need to install the Java programming
library first, which you can do by running the following command in a terminal
window:

sudo apt install default-jre

Like some of the other open source tools we’ll discuss in later chapters (like OpenRe‐
fine, which I used to prepare some of the sample data in Chapter 2 and cover briefly
in Chapter 11), Tabula does its work behind the scenes (though some of it is visible
in the terminal window), and you interact with it in a web browser. This is a way to
get access to a more traditional graphical interface while still leaving most of your
computer’s resources free to do the heavy-duty data work.

Working with Unstructured Data | 139

https://en.wikipedia.org/wiki/Cruft
https://tabula.technology
https://tabula.technology/#download-install

Conclusion
Hopefully, the coding examples in this chapter have started to give you an idea of the
wide variety of data wrangling problems you can solve with relatively little Python
code, thanks to a combination of carefully selected libraries and those few essential
Python scripting concepts that were introduced in Chapter 2.

You may also have noticed that, with the exception of our PDF text, the output of
all the exercises in this chapter was essentially a .csv file. This is not by accident.
Not only are .csv files efficient and versatile, but it turns out that to do almost any
basic statistical analyses or visualizations, we need table-type data to work with. That’s
not to say that it isn’t possible to analyze nontable data; that, in fact, is what much
of contemporary computer science research (like machine learning) is all about.
However, because those systems are often both complex and opaque, they’re not
really suitable for the type of data wrangling work we’re focused on here. As such,
we’ll spend our energy on the types of analyses that can help us understand, explain,
and communicate new insights about the world.

Finally, while our work in this chapter focused on file-based data and pre-saved
versions of feed-based data, in Chapter 5 we’ll explore how we can use Python with
APIs and web scraping to wrangle data out of online systems and, where necessary,
right off of web pages themselves!

140 | Chapter 4: Working with File-Based and Feed-Based Data in Python

CHAPTER 5

Accessing Web-Based Data

The internet is an incredible source of data; it is, arguably, the reason that data has
become such a dominant part of our social, economic, political, and even creative
lives. In Chapter 4, we focused our data wrangling efforts on the process of accessing
and reformatting file-based data that had already been saved to our devices or to the
cloud. At the same time, much of it came from the internet originally—whether it was
downloaded from a website, like the unemployment data, or retrieved from a URL,
like the Citi Bike data. Now that we have a handle on how to use Python to parse
and transform a variety of file-based data formats, however, it’s time to look at what’s
involved in collecting those files in the first place—especially when the data they
contain is of the real-time, feed-based variety. To do this, we’re going to spend the
bulk of this chapter learning how to get ahold of data made available through APIs—
those application programming interfaces I mentioned early in Chapter 4. APIs are
the primary (and sometimes only) way that we can access the data generated by real-
time or on-demand services like social media platforms, streaming music, and search
services—as well as many other private and public (e.g., government-generated) data
sources.

While the many benefits of APIs (see “Why APIs?” on page 143 for a refresher)
make them a popular resource for data-collecting companies to offer, there are
significant costs and risks to doing so. For advertising-driven businesses like social
media platforms, an outside product or project that is too comprehensive in its data
collection is a profit risk. The ready availability of so much data about individuals
has also significantly increased privacy risks. As a result, accessing data via many
APIs requires registering with the data collector in advance, and even completing a
code-based login or authentication process anytime you request data. At the same
time, the data accessibility that APIs offer is a powerful tool for improving the

141

https://dataprivacylab.org/projects/kanonymity/kanonymity.pdf

1 Like the US Treasurey, for example.
2 For two examples, see articles in The Markup and NPR.
3 This is also the first step to building your own “apps”!

transparency of government systems1 and accountability for private companies,2 so
the up-front work of creating an account and protecting any Python scripts you make
that access API-based data is well worth the effort.

Over the course of this chapter, we’ll cover how to access a range of web-based, feed-
type datasets via APIs, addressing everything from basic, no-login-required resources
all the way to the multistep, highly protected APIs of social media platforms like
Twitter. As we’ll see in “Accessing Online XML and JSON” on page 143, the simpler
end of this spectrum just involves using the Python requests library to download a
web page already formatted as JSON or XML—all we need is the URL. In “Special‐
ized APIs: Adding Basic Authentication” on page 148, we’ll move on to the process
of accessing data made available through the Federal Reserve Economic Database
(FRED) API. This is the same data we looked at in Examples 4-12 and 4-15, but
rather than working with example files that I’ve provided, you’ll be programmatically
downloading whatever data is most recent whenever you run the script.

This will require both creating a login on the FRED website as well as creating—and
protecting—your own basic API “key” in order to retrieve data. Finally, in “Special‐
ized APIs: Working With OAuth” on page 159 we’ll cover the more complex API
authentication process required for social media platforms like Twitter. Despite the
degree of up-front work involved, learning how to programmatically interact with
APIs like this has big payoffs—for the most part, you’ll be able to rerun these scripts
at any time to retrieve the most up-to-date data these services offer.3 Of course, since
not every data source we need offers an API, we’ll wrap up the chapter with “Web
Scraping: The Data Source of Last Resort” on page 173 by explaining how we can
use code to responsibly “scrape” data from websites with the Beautiful Soup Python
library. Though in many cases these data-access tasks could be accomplished with
a browser and mouse, you’ll quickly see how using Python helps lets us scale our
data-retrieval efforts by making the process faster and more repeatable.

142 | Chapter 5: Accessing Web-Based Data

https://fiscaldata.treasury.gov/api-documentation
https://themarkup.org/google-the-giant/2021/04/09/how-we-discovered-googles-social-justice-blocklist-for-youtube-ad-placements
https://npr.org/2021/08/04/1024791053/facebook-boots-nyu-disinformation-researchers-off-its-platform-and-critics-cry-f
https://fred.stlouisfed.org/docs/api/fred
https://fred.stlouisfed.org/docs/api/fred

Why APIs?
In “Where to find feed-type data” on page 119 we touched on some of the reasons
that companies and organizations provide data through APIs: when people use freely
available data from a company’s API to make some other product or service, they are
effectively providing the company with free advertising and brand awareness. These
API-based projects also act as a kind of free research and development (R&D) for
the source company: apps that do well indicate a potentially profitable new business
direction.

Even for government and nonprofit organizations, however, offering APIs for their
data has appeal. Those organizations, too, benefit from the public exposure and
unique insights that others’ use of their data can provide. From a data wrangling
perspective, these APIs help support transparency work, making it easier for civic
technologists (volunteer or otherwise) to create more usable and accessible interfaces
for public interest information. By separating the data from the interface that people
use to access it, APIs provide a way to build public data tools that are also more
resilient and future compatible.

Accessing Online XML and JSON
In “Wrangling Feed-Type Data with Python” on page 120, we explored the process of
accessing and transforming two common forms of web-based data: XML and JSON.
What we didn’t address, however, was how to actually get those data files from the
internet onto your computer. With the help of the versatile Python requests library,
however, it only take a few lines of code to access and download that data without
ever having to open a web browser.

For the sake of comparison, let’s start by “manually” downloading two of the files
we’ve used in previous examples: the BBC’s RSS feed of articles from Example 4-13
and the Citi Bike JSON data mentioned in “One Data Source, Two Ways” on page 92.

For both of these data sources, the process is basically the same:

1. Visit the target URL; in this case, one of the following:1.
• http://feeds.bbci.co.uk/news/science_and_environment/rss.xml•
• https://gbfs.citibikenyc.com/gbfs/en/station_status.json•

2. Context-click (also known as “right-click” or sometime “Ctrl+click,” depending2.
on your system). From the menu that appears, simply choose “Save As” and
save the file to the same folder where your Jupyter notebook or Python script is
located.

Accessing Online XML and JSON | 143

http://feeds.bbci.co.uk/news/science_and_environment/rss.xml
https://gbfs.citibikenyc.com/gbfs/en/station_status.json

That’s it! Now you can run the scripts from Example 4-13 on that updated XML file
or paste the Citi Bike JSON data into https://jsonlint.com to see what it looks like
when it’s properly formatted. Note that even though the BBC page looks almost like
a “normal” website in your browser, true to its .xml file extension, it downloads as
well-formatted XML.

Now that we’ve seen how to do this part of the process by hand, let’s see what it takes
to do the same thing in Python. To keep this short, the code in Example 5-1 will
download and save both files, one after the other.

Example 5-1. data_download.py

a basic example of downloading data from the web with Python,
using the requests library
#
the source data we are downloading will come from the following URLs:
http://feeds.bbci.co.uk/news/science_and_environment/rss.xml
https://gbfs.citibikenyc.com/gbfs/en/station_status.json

the `requests` library lets us write Python code that acts like
a web browser
import requests

our chosen XML filename
XMLfilename = "BBC_RSS.xml"

open a new, writable file for our XML output
xml_output_file = open(XMLfilename,"w")

use the requests library's "get" recipe to access the contents of our
target URL and store it in our `xml_data` variable
xml_data=requests.get('http://feeds.bbci.co.uk/news/science_and_environment/rss.xml')

the requests library's `get()` function puts contents of the web page
in a property `text`
we'll `write` that directly to our `xml_output_file`
xml_output_file.write(xml_data.text)

close our xml_output_file
xml_output_file.close()

our chosen JSON filename
JSONfilename = "citibikenyc_station_status.json"

open a new, writable file for our JSON output
json_output_file = open(JSONfilename,"w")

use the `requests` library's `get()` recipe to access the contents of our
target URL and store it in our `json_data` variable

144 | Chapter 5: Accessing Web-Based Data

https://jsonlint.com

json_data = requests.get('https://gbfs.citibikenyc.com/gbfs/en/station_status.json')

`get()` the contents of the web page and write its `text`
directly to `json_output_file`
json_output_file.write(json_data.text)

close our json_output_file
json_output_file.close()

Pretty simple, right? Apart from different filenames, the .xml and .json files produced
by Example 5-1 are exactly the same as the ones we saved manually from the web.
And once we have this script set up, of course, all we have to do to get the latest data
is run it again and the new data will overwrite the earlier files.

Download by Hand, or Write a Program?
In almost every phase of our data wrangling work, there will be moments when we
have to decide between doing part of a task “by hand” and writing some kind of
program. In Example 4-15, for example, we didn’t try to have our program “detect”
too much about our JSON file structure; we simply looked at the data and then wrote
our code to match. Now that we can download data using Python, we have another
choice: save down the data “by hand” or do so programmatically.

For the most part, I will always recommend that you download a sample copy of
your data “by hand” when you’re first starting to work with it, simply because doing
so is (usually) less work than writing a script to do it. Especially if your data source
is XML or JSON, you’ll probably have found it through a web search of some kind,
so you’ll already have the data open in a web browser right in front of you. At that
point, you may as well just context-click and save a copy of the data to your device
then and there, rather than opening up a Jupyter notebook or code editor in order to
write some code. Since you’ll also need to look through the data carefully to assess its
quality, doing a first download this way almost always makes sense. Once you know
it’s worth looking at more closely, of course, you’ll probably want to automate that
download process by writing a Python script to do it.

Introducing APIs
Up until this point, most of our data wrangling work has focused on data sources
whose contents are almost entirely controlled by the data provider. In fact, while the
contents of spreadsheet files, and documents—and even the web pages containing
XML and JSON that we accessed just now in Example 5-1—may change based on
when we access them, we don’t really have any influence on what data they contain.

At the same time, most of us are used to using the internet to get information that’s
much more tailored to our needs. Often our first step when looking for information

Introducing APIs | 145

is to enter keywords or phrases into a search engine, and we expect to receive a list
of highly customized “results” based (at least in part) on our chosen combination of
terms. Sure, we can’t control what web pages are actually out there for our search to
retrieve, but this process is so common—and so useful—for most of us that we rarely
stop to think about what is happening behind the scenes.

Despite their visually oriented interfaces, search engines are actually just a special
instance of APIs. They are essentially just web pages that let you interface with a
database containing information about websites on the internet, such as their URLs,
titles, text, images, videos, and more. When you enter your search terms and hit
Enter or Return, the search engine queries its database for web content that “matches”
your search in some respect and then updates the web page you’re looking at to
display those results in a list. Though the specialized APIs made available by social
media platforms and other online services require us to authenticate and structure
our searches in a very particular way, there are enough features shared between
search engines and more specialized APIs that we can learn something useful about
APIs by deconstructing a basic Google search.

Basic APIs: A Search Engine Example
Though an internet search engine is probably the most straightforward form of API
around, that’s not always obvious from the way we see them behave onscreen. For
example, if you were to visit Google and search for “weather sebastopol,” you would
probably see a page that looks something like Figure 5-1.

Figure 5-1. Sample search results

While the format of the search results is probably pretty familiar, right now let’s take
a closer look at what’s happening in the URL bar. What you see will definitely be
different from the Figure 5-1 screenshot, but it should contain at least some of the
same information. Specifically, look through the text that now appears in your URL
bar to find the following:

146 | Chapter 5: Accessing Web-Based Data

q=weather+sebastopol

Found it? Great. Now without refreshing the page, change the text in the search box
to “weather san francisco” and hit Enter. Once again look through the text in the URL
to find:

q=weather+san+francisco

Finally, copy and paste the following into your URL bar and hit Enter:

https://www.google.com/search?q=weather+san+francisco

Notice anything? Hopefully, you’re seeing the same (or almost the same) search
results when you type “weather san francisco” into Google’s search bar and hit
Enter as when you directly visit the Google search URL with the key/value pair
of q=weather+san+francisco appended (e.g., https://www.google.com/search?
q=weather+san+francisco). That’s because q=weather+san+francisco is the part of
the query string that delivers your actual search terms to Google’s database; everything
else is just additional information Google tacks on for customization or tracking
purposes.

While Google can (and will!) add whatever it wants to our search URL, we can also
add other useful key/value pairs. For example, in “Smart Searching for Specific Data
Types” on page 96, we looked at searching for specific file types, such as .xml, by
adding filetype: .xml to our search box query; we can do the same thing directly
in the URL bar by adding the corresponding key/value pair of as_filetype=xml to
our query string:

https://www.google.com/search?q=weather+san+francisco&as_filetype=xml

Not only will this return results in the correct format, but notice that it updates the
contents of the search box as well!

The behavior of the Google search engine in this situation is almost identical to what
we’ll see with more specialized APIs in the remainder of this chapter. Most APIs
follow the general structure we’re seeing in this search example, where an endpoint (in
this case https://www.google.com/search) is combined with one or more query
parameters or key/value pairs (such as as_filetype=xml or q=weather+san+fran
cisco), which comprise the query string that is appended after the question mark
(?). A general overview of API endpoint and query string structure is shown in
Figure 5-2.

Basic APIs: A Search Engine Example | 147

4 While this is probably most likely to happen if you make too many data requests in too short a time frame,
most API providers can terminate your access to their API pretty much whenever they want, and for whatever
reason they want.

Figure 5-2. Basic query string structure

While this structure is pretty universal, here are a couple of other useful tips about
query string-based APIs:

• Key/value pairs (such as as_filetype=xml, num=5, or even q=weather+san+fran•
cisco) can appear in any order, as long as they are added after the question mark
(?) that indicates the start of the query string.

• The particular keys and values that are meaningful for a given API are deter‐•
mined by the API provider and can only be identified by reading the API
documentation, or through experimentation (though this can present problems
of its own). Anything appended to the query string that is not a recognized key or
valid parameter value will probably be ignored.

While these characteristics are common to almost all APIs, the vast majority of them
will not allow you to access any data at all without first identifying (or authenticating)
yourself by creating a login and providing unique, specialized “keys” to the API along
with your queries. This part of the API process is what we’ll turn to next.

Specialized APIs: Adding Basic Authentication
The first step in using most APIs is creating some kind of account with the API pro‐
vider. Although many APIs allow you to use them for free, the process of compiling,
storing, searching for, and returning data to you over the internet still presents risks
and costs money, so providers want to track who is using their APIs and be able
to cut off your access if they want to.4 This first part of the authentication process
usually consists of creating an account and requesting an API “key” for yourself
and/or each project, program, or “app” that you plan to have interact with the API. In
a “basic” API authentication process, like the one we’ll go through now, once you’ve

148 | Chapter 5: Accessing Web-Based Data

created your API key on the service provider’s website, all you need to do to retrieve
data successfully is append your key to your data request just like any other query
parameter, and you’re all set.

As an example, let’s get set up to programmatically access the unemployment data we
worked with in Example 4-15. We’ll start by making an account on the FRED website
and requesting an API key. Once we have that, we can just append it to our query
string and start downloading data!

Getting a FRED API Key
To create an account with the Federal Reserve Economic Database (FRED), visit
https://fred.stlouisfed.org and click on My Account in the upper-righthand corner, as
shown in Figure 5-3.

Figure 5-3. FRED login link

Follow the directions in the pop-up, either creating an account with a new username
and password or using your Google account to log in. Once your registration/login
process is complete, clicking on the My Account link will open a drop-down menu
that includes an option titled API Keys, as shown in Figure 5-4.

Figure 5-4. FRED account actions

Clicking that link will take you to a page where you can request one or more API
keys using the Request API Key button. On the next page, you’ll be asked to provide
a brief description of the application with which the API key will be used; this can

Specialized APIs: Adding Basic Authentication | 149

https://fred.stlouisfed.org

just be a sentence or two. You’ll also need to read and agree to the Terms of Service
by checking the provided box. Complete the process by clicking the Request API Key
button.

If your request is successful (and it should be), you’ll be taken to an interim page
that will display the key that’s been generated. If you leave that page, you can always
just log in and visit https://research.stlouisfed.org/useraccount/apikeys to see all of your
available API keys.

Using Your API key to Request Data
Now that you have an API key, let’s explore how to request the data we used in
Example 4-15. Start by trying to load the following URL in a browser:

https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE&file_type=json

Even if you’re already logged in to FRED on that browser, you’ll see something like
this:

{"error_code":400,"error_message":"Bad Request. Variable api_key is not set.
Read https:\/\/research.stlouisfed.org\/docs\/api\/api_key.html for more
information."}

This is a pretty descriptive error message: it not only tells you that something went
wrong, but it gives you some idea of how to fix it. Since you just created an API key,
all you have to do is add it to your request as an additional parameter:

https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE&file_type=json&
api_key=YOUR_API_KEY_HERE

replacing YOUR_API_KEY_HERE with, of course, your API key. Loading that page in a
browser should return something that looks something like this:

{"realtime_start":"2021-02-03","realtime_end":"2021-02-03","observation_start":
"1600-01-01","observation_end":"9999-12-31","units":"lin","output_type":1,
"file_type":"json","order_by":"observation_date","sort_order":"asc","count":324,
"offset":0,"limit":100000,"observations":[{"realtime_start":"2021-02-03",
"realtime_end":"2021-02-03","date":"1994-01-01","value":"11.7"},
...
{"realtime_start":"2021-02-03","realtime_end":"2021-02-03","date":"2020-12-01",
"value":"11.7"}]}

Pretty nifty, right? Now that you know how to use your API key to make data
requests, it’s time to review how to both customize those requests and protect your
API key when you use it in Python scripts.

150 | Chapter 5: Accessing Web-Based Data

https://research.stlouisfed.org/useraccount/apikeys

Reading API Documentation
As you can see from the preceding example, once we have an API key, we can load
the latest data from the FRED database whenever we want. All we need to do is
construct our query string and add our API key.

But how do we know what key/value pairs the FRED API will accept and what type
of information they’ll return? The only really reliable way to do this is to read the
API documentation, which should offer guidance and (hopefully) examples of how
the API can be used.

Unfortunately, there’s no widely adopted standard for API documentation, which
means that using a new API is almost always something of a trial-and-error process,
especially if the documentation quality is poor or the provided examples don’t include
the information you’re looking for. In fact, even finding the documentation for a
particular API isn’t always straightforward, and often a web search is the simplest
route.

For example, getting to the FRED API documentation from the FRED homepage
requires clicking on the Tools tab about halfway down the page, then selecting the
Developer API link at the bottom right, which takes you to https://fred.stlouisfed.org/
docs/api/fred. By contrast, a web search for “fred api documentation” will take you to
the same page, shown in Figure 5-5, directly.

Figure 5-5. FRED API documentation page

Reading API Documentation | 151

https://fred.stlouisfed.org
https://fred.stlouisfed.org/docs/api/fred
https://fred.stlouisfed.org/docs/api/fred

Unfortunately, the list of links on this page is actually a list of endpoints—different
base URLs that you can use to request more specific information (recall that the
endpoint is everything before the question mark (?), which separates it from the
query string). In the preceding example, you used the endpoint https://api.stlouis
fed.org/fred/series/observations and then paired it with the key/value pairs
of series_id=U6RATE, file_type=json, and, of course, your API key in order to
generate a response.

Scrolling down the page in Figure 5-5 and clicking on the documentation link
labeled “fred/series/observations” will take you https://fred.stlouisfed.org/docs/api/
fred/series_observations.html, which outlines all of the valid query keys (or parame‐
ters) for that particular endpoint, as well as the valid values those keys can have and
some sample query URLs, as shown in Figure 5-6.

Figure 5-6. FRED API observations endpoint documentation

For example, you could limit the number of observations returned by using
the limit parameter, or reverse the sort order of the returned results by
adding sort_order=desc. You can also specify particular data formats (such as
file_type=xml for XML output) or units (such as units=pc1 to see the output as
percent change from a year ago).

152 | Chapter 5: Accessing Web-Based Data

https://fred.stlouisfed.org/docs/api/fred/series_observations.html
https://fred.stlouisfed.org/docs/api/fred/series_observations.html

History, Revisited
At about the same time I discovered that the U3 unemployment number excluded
many people who probably thought of themselves (and almost certainly felt) unem‐
ployed, I also learned something else about economic indicator reporting: the num‐
bers often change after the fact. A few months into my work on the economic
indicator data, a colleague casually mentioned that the United States’ gross domestic
product (GDP) growth rate for the previous quarter had been officially revised.
“What?!” I thought. Given that GDP is often referenced in national economic policy,
the idea that the measure could simply be changed months later seemed shocking.
A recession, for example, is officially defined as multiple consecutive quarters of
“negative growth”—that is, when GDP is less than the previous quarter at least twice
in a row. But if those numbers can be revised after the fact, what are the consequences
for real people—especially the ones who start feeling the effects of the recession long
before even the first version of this data comes out?

While I don’t have a solution for the fact that these revisions happen, the good news is
that FRED is at least keeping track of them—and you can see what’s happening using
the API. That is what’s behind the vintage_dates parameter for the observations
endpoint. For example, we can see what the monthly 2020 U6 unemployment figures
were believed to be as of May 31, 2020, by making the following API call:

https://api.stlouisfed.org/fred/series/observations?series_id=U6RATE&
file_type=json&sort_order=desc&limit=3&vintage_dates=2020-05-31
&api_key=YOUR_API_KEY_HERE

In late May, then, U6 unemployment for March 2020 was reported at 8.7% but was
later revised to 8.8%. The same measure for April was reported at 22.8% but was later
revised to 22.9%. While these adjustments may seem small, keep in mind that often
the unemployment rate doesn’t change by more than a few tenths of a percent up or
down over the course of an entire year.

Most importantly, these changes illustrate one of the more subtle concerns around
data integrity: is the information we have now the same as what was available during
the period we’re investigating? If not, it’s essential to adjust our claims—if not our
data—accordingly.

Protecting Your API Key When Using Python
As you may have already guessed, downloading data from FRED (or other, similar
APIs) is as simple as replacing one of the URLs in Example 5-1 with your complete
query, because the web page it generates is just another JSON file on the internet.

At the same time, that query contains some especially sensitive information: your API
key. Remember that as far as FRED (or any other API owner) is concerned, you are

Protecting Your API Key When Using Python | 153

https://fred.stlouisfed.org/docs/api/fred/series_observations.html
https://fred.stlouisfed.org/docs/api/fred/series_observations.html

5 For example, when you git push your code.
6 “Hackers Used SolarWinds’ Dominance against It in Sprawling Spy Campaign” by Raphael Satter,

Christopher Bing, and Joseph Menn, https://reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-
sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8; “Former SolarWinds CEO
Blames Intern for solarwinds123 Password Leak” by Brian Fung and Geneva Sands, https://www.cnn.com/
2021/02/26/politics/solarwinds123-password-intern.

responsible for any activity on their platform that uses your API key. This means that
while you always want to be documenting, saving, and versioning your code with
something like Git, you never want your API keys or other credentials to end up in a
file that others can access.

Properly protecting your API key takes some effort, and if you’re
new to working with data, Python, or APIs (or all three), you may
be tempted to skip the next couple of sections and just leave your
API credentials inside files that could get uploaded to the internet.5
Don’t! While right now you may be thinking, “Who’s ever going to
bother looking at my work?” or “I’m just playing around anyway—
what difference does it make?” there are two things you should
know.
First, as with documentation, if you don’t deal with protecting
your credentials correctly now, it will be much more difficult and
time-consuming to do so later, in part because by then you’ll have
forgotten what exactly is involved, and in part because it may
already be too late. Second, while few of us feel that what we’re
doing is “important” or visible enough that anyone else would
bother looking at it, the reality is that bad actors don’t mind who
their scapegoat is—and if you make it easy, they might choose
you. The fallout, moreover, might not be limited to getting you
kicked off of a data platform. In 2021, the former SolarWinds
CEO claimed that the massive breach of thousands of high-security
systems through compromises to the company’s software was made
possible, in part, because of a weak password that was uploaded to
a file on an intern’s personal GitHub account.6 In other words, even
if you’re “just practicing,” you’re better off practicing good security
in the first place.

Protecting your API credentials is a two-part process:

1. You need to separate your API key or other sensitive information from the rest1.
of your code. We’ll do this by storing these credentials in a separate file that our
main code only loads when the script is actually run.

2. You need a reliable way to ensure that as you are backing up your code using2.
Git, for example, those credential files are never backed up to any online location.

154 | Chapter 5: Accessing Web-Based Data

https://reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8
https://reuters.com/article/global-cyber-solarwinds/hackers-at-center-of-sprawling-spy-campaign-turned-solarwinds-dominance-against-it-idUSKBN28P2N8
https://www.cnn.com/2021/02/26/politics/solarwinds123-password-intern
https://www.cnn.com/2021/02/26/politics/solarwinds123-password-intern

We’ll accomplish this by putting the word credentials in the name of any file
that includes them and then using a gitignore file to make sure they don’t get
uploaded to GitHub.

The simplest way to achieve both of these things consistently is to define a naming
convention for any file that contains API keys or other sensitive login-related infor‐
mation. In this case, we’ll make sure that any such file has the word credentials
somewhere in the filename. We’ll then make sure to create or update a special type
of Git file known as a .gitignore, which stores rules for telling Git which files in our
repo folder should never be committed to our repository and/or uploaded to GitHub.
By including a rule for our “credentials” file to .gitignore, we guarantee that no files
containing sensitive login information get uploaded to GitHub by accident.

Creating Your “Credentials” File
Up until now, we’ve been putting all our code for a particular task—such as down‐
loading or transforming a data file—into a single Python file or notebook. For
the purposes of both security and reuse, however, when we’re working with APIs,
it makes much more sense to separate our functional code from our credentials.
Luckily, this process is very straightforward.

First, create and save a new, empty Python file called FRED_credentials.py. For simpli‐
city’s sake, go ahead and put this file in the same folder where you plan to put the
Python code you’ll use to download data from FRED.

Then, simply create a new variable and set its value to your own API key, as shown in
Example 5-2.

Example 5-2. Example FRED credentials file

my_api_key = "your_api_key_surrounded_by_double_quotes"

Now just save your file!

Using Your Credentials in a Separate Script
Now that your API key exists as a variable in another file, you can import it into any
file where you want to use it, using the same method we’ve used previously to import
libraries created by others. Example 5-3 is a sample script for downloading the U6
unemployment data from FRED using the API key stored in my FRED_credentials.py
file.

Protecting Your API Key When Using Python | 155

7 That’s why the program that makes Python run on your device is often called a Python interpreter—because it
translates the code we humans write into bytecode that your device can actually understand.

Example 5-3. FRED_API_example.py

import the requests library
import requests

import our API key
from FRED_credentials import my_api_key

specify the FRED endpoint we want to use
FRED_endpoint = "https://api.stlouisfed.org/fred/series/observations?"

also specify the query parameters and their values
FRED_parameters = "series_id=U6RATE&file_type=json"

construct the complete URL for our API request, adding our API key to the end
complete_data_URL = FRED_endpoint + FRED_parameters +"&api_key="+my_api_key

open a new, writable file with our chosen filename
FRED_output_file = open("FRED_API_data.json","w")

use the `requests` library's `get()` recipe to access the contents of our
target URL and store it in our `FRED_data` variable
FRED_data = requests.get(complete_data_URL)

`get()` the contents of the web page and write its `text`
directly to `FRED_output_file`
FRED_output_file.write(FRED_data.text)

close our FRED_output_file
FRED_output_file.close()

We can make our API available to this script by using the from keyword with the
name of our credentials file (notice that we don’t include the .py extension here)
and then telling it to import the variable that contains our API key.

What’s the pycache?
When you run the script in Example 5-3, you’ll probably notice that it does
more than just successfully download the FRED data—it also creates a new folder
called __pycache__, which in turn contains a single file called FRED_credentials.cpy‐
thon38.pyc or something similar. Where did this file come from, and what is it?

When importing code from another Python file, your device first converts its con‐
tents to something called bytecode, which is what the device actually uses to run your
Python script.7 These Python bytecode files have the extension .pyc. Although we

156 | Chapter 5: Accessing Web-Based Data

8 Even if we run, say, git add -A or git commit -a.

haven’t dealt with them directly before, there are lots of .pyc files already on your
device associated with the libraries we have been importing—they’re just stored in a
tucked-away part of the computer system, so we haven’t actually seen them before.
In both instances, however, your system is saving resources by translating those
imported files to bytecode only once and storing that translation in a .pyc file, rather
than translating every time your code runs. When you import those libraries (and
now, your credentials), your system relies on the pre-translated version to make the
rest of your code run a little bit faster.

Fortunately, you don’t have to do anything with—or about—either the __pycache__
folder or the .pyc file inside it; you can even delete them if you like (though they will
reappear the next time you run a Python script that imports your credentials). Since
our credentials file is very small, it’s not going to slow things up very much if it’s
regenerated each time. On the other hand, if it doesn’t bother you to see it in your
folder, you can just leave it alone.

Now that we’ve succeeded in separating our API credentials from the main part of
our code, we need to make sure that our credentials file doesn’t accidentally get
backed up when we git commit our work and/or git push it to the internet. To
do this simply and systematically, we’ll make use of a special type of file known
as .gitignore.

Getting Started with .gitignore
As the name suggests, a .gitignore file lets you specify certain types of files that—sur‐
prise, surprise!—you want Git to “ignore,” rather than track or back up. By creating
(or modifying) the pattern-matching rules in the .gitignore file for a repository, we
can predefine which types of files our repo will track or upload. While we could
theoretically accomplish the same thing manually—by never using git add on files
we don’t want to track—using a .gitignore file enforces this behavior8 and prevents
Git from “warning” us that we have untracked files every time we run git status.
Without a .gitignore file, we would have to confirm which files we want to ignore
every time we commit—which would quickly get tedious and easily lead to mistakes.
All it would take is one hasty git add -A command to accidentally begin tracking
our sensitive credentials file(s)—and getting things out of your Git history is much
trickier than getting them in. Much better to avoid the whole problem with a little
preparation.

In other words, .gitignore files are our friend, letting us create general rules that
prevent us from accidentally tracking files we don’t want to, and by making sure that
Git only reports the status of files that we genuinely care about.

Protecting Your API Key When Using Python | 157

9 A repository can have different .gitignore files in different folders; for complete details, you can take a look at
the documentation.

10 We used this approach with the glob library in Example 4-16 and will examine it in more detail in “Regular
Expressions: Supercharged String Matching” on page 229.

For the time being, we’ll create a new .gitignore file in the same folder/repository
where our FRED_credentials.py file is, just to get a feel for how they work.9 To do this,
we’ll start by opening up a new file in Atom (or you can add a new file directly in
your GitHub repo) and saving it in the same folder as your FRED_credentials.py with
the name .gitignore (be sure to start the filename with a dot (.)—that’s important!).

Next, add the following lines to your file:

ignoring all credentials files
**credentials*

As in Python, comments in .gitignore files are started with a hash (#) symbol, so
the first line of this file is just descriptive. The contents of the second line (**creden
tials*) is a sort of regular expression—a special kind of pattern-matching system
that lets us describe strings (including filenames) in the sort of generic way we
might explain them to another person.10 In this case, the expression **credentials*
translates to “a file anywhere in this repository that contains the word credentials.” By
adding this line to our .gitignore file, we ensure that any file in this repository whose
filename includes the word credentials will never be tracked or uploaded to GitHub.

To see your .gitignore in action, save the file, and then in the command line, run:

git status

While you should see the new file you created for the code in Example 5-3, you
should not see your FRED_credentials.py file listed as “untracked.” If you want to be
really sure that the files you intend to be ignored are, in fact, being ignored, you can
also run:

git status --ignored

which will show you only the files in your repository that are currently being ignored.
Among them you’ll probably also see the __pycache__ folder, which we also don’t
need to back up.

Where Did My .gitignore File Go?
Once you’ve saved and closed your .gitignore file, you might be surprised to see
that, well, you don’t see it anymore! Whether you’re looking for it in a folder on
your device or via the command line, sometimes finding your .gitignore file can be a
challenge in itself.

158 | Chapter 5: Accessing Web-Based Data

https://git-scm.com/docs/gitignore

The reason why these files can be hard to find is that, by default, most device
operating systems hide any files that begin with a dot (.). While your .gitignore files
will always be easy to find (and edit!) on the GitHub website, if you want to change
them on your device, there are a few tricks that can make finding and working with
them easier.

Since your .gitignore file is one of the few “dot files” on your device that you’ll
probably ever want to see and edit, I find the easiest thing to do is look for it with the
command line, by navigating to the relevant folder/repository and using the “list all”
command:

ls -a

If you don’t see an existing .gitignore file, you can, of course, create one. If it is there,
though, how do you edit it? While you’ve probably been opening the Atom code
editor from an icon on your device, you can actually use it to open files right from the
command line by using the atom keyword (similar to the way we use python). So to
open your .gitignore file using Atom, you can just type:

atom .gitignore

While it may take a few seconds to open (even if you have other Atom files open
already), using the command line to start a program is an easy way to find and
modify files—hidden or otherwise!

Specialized APIs: Working With OAuth
So far, we have everything we need to work with APIs that have what’s often
described as a “basic” authentication process: we create an account with the API
provider and are given a key that we append to our data request, just as we did in
Example 5-3.

While this process is very straightforward, it has some drawbacks. These days, APIs
can do much more than just return data: they are also the way that apps post updates
to a social media account or add items to your online calendar. To make that possible,
they obviously need some type of access to your account—but of course you don’t
want to be sharing your login credentials with apps and programs willy-nilly. If you
did just give apps that information, the only way to later stop an app from accessing
your account would be to change your username and password, and then you’d have
to give your updated credentials to all the apps you still want to use in order for them
to continue working…it gets messy and complicated, fast.

The OAuth authentication workflow was designed to address these problems by
providing a way to provide API access without passing around a bunch of usernames
and passwords. In general, this is achieved by scripting a so-called authorization loop,
which includes three basic steps:

Specialized APIs: Working With OAuth | 159

1. Obtaining and encoding your API key and “secret” (each of which is just a string1.
that you get from the API provider—just as we did with the FRED API key).

2. Sending an encoded combination of those two strings as (yet another) “key” to a2.
special “authorization” endpoint/URL.

3. Receiving an access token (yet another string) from the authorization endpoint.3.
The access token is what you actually then send along to the API’s data endpoint
along with your query information.

While this probably sounds convoluted, rest assured that, in practice, even this
complex-sounding process is mostly about passing strings back and forth to and from
certain URLs in a certain order. Yes, in the process we’ll need to do some “encoding”
on them, but as you may have guessed, that part will be handled for us by a handy
Python library.

Despite needing to complete an authorization loop and retrieve an access token, the
process of interacting with even these more specialized APIs via Python is essentially
the same as what we saw in “Specialized APIs: Adding Basic Authentication” on page
148. We’ll create an account, request API credentials, and then create a file that both
contains those credentials and does a little bit of preparatory work to them so we can
use them in our main script. Then our main script will pull in those credentials and
use them to request data from our target platform and write it to an output file.

For this example, we’ll be working with the Twitter API, but you’ll be able to use
roughly the same process for other platforms (like Facebook) that use an OAuth
approach. One thing we won’t do here is spend much time discussing how to struc‐
ture specific queries, since the ins and outs of any given API could easily fill a book
in and of itself! That said, once you have this authentication process down, you’ll
have what you need to start experimenting with a whole range of APIs and can start
practicing with them in order to access the data you want. Let’s get started!

Applying for a Twitter Developer Account
As it will be with (almost) every new API we want to use, our first step will be to
request an API key from Twitter. Even if you already have a Twitter account, you’ll
need to apply for “developer access,” which will take about 15 minutes (not counting
the time for Twitter to review and/or approve), all told. Start by visiting the Twitter
Developer API “Apply for Access” page, and click the “Apply for a developer account”
button. Once you’ve logged in, you’ll be prompted for more information about how
you plan to use the API. For this exercise, you can select “Hobbyist” and “Exploring
the API,” as shown in Figure 5-7.

160 | Chapter 5: Accessing Web-Based Data

https://developer.twitter.com/en/apply-for-access
https://developer.twitter.com/en/apply-for-access

Figure 5-7. Twitter developer API use case selection

In the next step, you’ll be asked to provide a 200+ character explanation of what you
plan to use the API for; here you can enter something like this:

Using the Twitter API to learn more about doing data wrangling with Python. Inter‐
ested in experimenting with OAuth loops and pulling different kinds of information
from public Twitter feeds and conversations.

Since our goal here is just to practice downloading data from Twitter using a Python
script and an OAuth loop, you can toggle the answer to the four subsequent questions
to “No,” as shown in Figure 5-8, though if you begin using the API in some other way,
you will need to update these answers.

Figure 5-8. Twitter developer API intended uses

Specialized APIs: Working With OAuth | 161

On the next two screens, you’ll review your previous selections and click a checkbox
to acknowledge the Developer Agreement. You then click “Submit application,” which
will trigger a verification email. If the email doesn’t arrive in your inbox within a few
minutes, be sure to check your Spam and Trash. Once you locate it, click on the link
in the email for your access to be confirmed!

Creating Your Twitter “App” and Credentials
Once your developer access has been approved by Twitter, you can create a new “app”
by logging in to your Twitter account and visiting https://developer.twitter.com/en/
portal/projects-and-apps. In the center of the page, click the Create Project button.

Here you’ll be taken through a mini version of the process to apply for developer
access: you’ll need to provide a name for your project, indicate how you intend to use
the Twitter API, describe that purpose in words, and provide a name for the first app
associated with that project, as shown in Figures 5-9 through 5-12.

Figure 5-9. Twitter project creation: project name

162 | Chapter 5: Accessing Web-Based Data

https://developer.twitter.com/en/portal/projects-and-apps
https://developer.twitter.com/en/portal/projects-and-apps

Figure 5-10. Twitter project creation: project purpose

Figure 5-11. Twitter project creation: project description

Specialized APIs: Working With OAuth | 163

11 These keys have since been replaced and will not work!

Figure 5-12. Twitter project creation: app name

Once you’ve added your app name, you’ll see a screen that shows your API key, API
secret key, and Bearer token, as shown in Figure 5-13.11

What’s an “App” After All?
For most of us, the word app brings to mind phone games and services, not using
Python to pull data from an API. For most API providers, however, an “app” is
anything that programmatically interacts with their services—whether that’s a Python
script downloading tweets or a full-blown mobile app that users can install on their
devices. That said, once you’ve got your developer account and are downloading
tweets, you can honestly say that you’re an “app developer.” Congratulations!

164 | Chapter 5: Accessing Web-Based Data

Figure 5-13. Twitter API keys and tokens screen

For security reasons, you’ll only be able to view your API key and API secret key
on this screen, so we’re going to put them into a file for our Twitter credentials right
away (note that in other places in the developer dashboard these are referred to as
the “API Key” and “API Key Secret”—even big tech companies can have trouble with
consistency!). Don’t worry, though! If you accidentally click away from this screen too
soon, miscopy a value, or anything else, you can always go back to your dashboard
and click on the key icon next to your app, as shown in Figure 5-14.

Specialized APIs: Working With OAuth | 165

https://developer.twitter.com/en/portal/dashboard

Figure 5-14. Twitter dashboard with apps

Then, just click “Regenerate” under “Consumer Keys” to get a new API Key and API
Key Secret, as shown in Figure 5-15.

Now that we know how to access the API Key and API Key Secret for our app, we
need to put these into a new “credentials” file, similar to the one we created for our
FRED API key. To do this, create a new file called Twitter_credentials.py and save it
in the folder where you want to put your Python script for accessing Twitter data, as
shown in Example 5-4.

Example 5-4. Twitter_credentials.py

my_Twitter_key = "your_api_key_surrounded_by_double_quotes"
my_Twitter_secret = "your_api_key_secret_surrounded_by_double_quotes"

166 | Chapter 5: Accessing Web-Based Data

Figure 5-15. Twitter regenerate keys

Be sure to include the word credentials in the name of the file
where you store your Twitter API Key and API Key Secret! Recall
that in “Getting Started with .gitignore” on page 157, we created
a rule that ignores any file whose name includes the word creden
tials to make sure our API keys never get uploaded to GitHub
by accident. So make sure to double-check the spelling in your
filename! Just to be extra sure, you can always run:

git status --ignored

in the command line to confirm that all of your credentials files are
indeed being ignored.

Encoding Your API Key and Secret
So far, we haven’t needed to do things too differently than we did for the FRED API;
we’ve just had to create two variables in our credentials file (my_Twitter_key and
my_Twitter_secret) instead of one.

Now, however, we need to do a little bit of work on these values to get them in the
right format for the next step of the authentication process. While I won’t go too far

Specialized APIs: Working With OAuth | 167

into the details of what’s happening “under the hood” in these next few steps, just
know that these coding and decoding steps are necessary for protecting the raw string
values of your API Key and API Key Secret so that they can be safely sent over the
internet.

So, to our Twitter_credentials.py file we’re now going to add several lines of code so
that the completed file looks like Example 5-5.

Example 5-5. Twitter_credentials.py

my_Twitter_key = "your_api_key_surrounded_by_double_quotes"
my_Twitter_secret = "your_api_key_secret_surrounded_by_double_quotes"

import the base64 encoding library
import base64

first, combine the API Key and API Key Secret into a single string
adding a colon between them
combined_key_string = my_Twitter_key+':'+my_Twitter_secret

use the `encode()` method on that combined string,
specifying the ASCII format (see: https://en.wikipedia.org/wiki/ASCII)
encoded_combined_key = combined_key_string.encode('ascii')

encode the ASCII-formatted string to base64
b64_encoded_combined_key = base64.b64encode(encoded_combined_key)

decode the encoded string back to ASCII,
so that it's ready to send over the internet
auth_ready_key = b64_encoded_combined_key.decode('ascii')

This library will let us transform our raw API Key and API Key Secret into the
correct format for sending to the Twitter authorization endpoint.

Now that we’ve got our API Key and API Key Secret properly encoded, we can import
just the auth_ready_key into the script we’ll use to actually specify and pull our data.
After doing one request to the authorization endpoint to get our access token, we’ll
finally(!) be ready retrieve some tweets!

Requesting an Access Token and Data from the Twitter API
As we did in Example 5-3, we’ll now create a Python file (or notebook) where we’ll do
the next two steps of our Twitter data loading process:

1. Requesting (and receiving) an access token or bearer token from Twitter1.
2. Including that bearer token in a data request to Twitter and receiving the results2.

168 | Chapter 5: Accessing Web-Based Data

12 For example, the contents of a post request are not saved in the browser history the way that get requests are.

Requesting an access token: get versus post
Requesting an access or bearer token from Twitter is really just a matter of sending a
well-formatted request to the authorization endpoint, which is https://api.twitter.com/
oauth2/token. Instead of appending our auth_ready_key to the endpoint URL, how‐
ever, we’ll use something called a post request (recall that in Examples 5-1 and 5-3, the
requests recipe we used was called get).

A post request is important here in part because it offers some additional security
over get requests12 but mostly because post requests are effectively the standard
when we’re asking an API to do something beyond simply returning data. So while
in Example 5-3 the data we got back was unique to our query, the API would return
that same data to anyone who submitted that same request. By contrast, when we use
post to submit our auth_ready_key, the Twitter API will process our unique key and
return a unique bearer token—so we use a post request.

When building our post request in Python, we’ll need to create two dict objects:
one that contains the request’s headers, which will contain both our auth_ready_key
and some other information, and another that contains the request’s data, which in
this case will specify that we’re asking for credentials. Then we’ll just pass these as
parameters to the requests library’s post recipe, rather than sticking them on the end
of the URL string, as shown in Example 5-6.

Example 5-6. Twitter_data_download.py

import the encoded key from our credentials file
from Twitter_credentials import auth_ready_key

include the requests library in order to get data from the web
import requests

specify the Twitter endpoint that we'll use to retrieve
our access token or "bearer" token
auth_url = 'https://api.twitter.com/oauth2/token'

add our `auth_ready_key` to a template `dict` object provided
in the Twitter API documentation
auth_headers = {
 'Authorization': 'Basic '+auth_ready_key,
 'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8'
}

another `dict` describes what we're asking for
auth_data = {

Specialized APIs: Working With OAuth | 169

https://api.twitter.com/oauth2/token
https://api.twitter.com/oauth2/token

 'grant_type': 'client_credentials'
}

make our complete request to the authorization endpoint, and store
the results in the `auth_resp` variable
auth_resp = requests.post(auth_url, headers=auth_headers, data=auth_data)

pull the access token out of the json-formatted data
that the authorization endpoint sent back to us
access_token = auth_resp.json()['access_token']

This dict contains the information the authorization endpoint wants in order to
return an access token to us. This includes our encoded key and its data format.

The format of both the auth_headers and the auth_data objects was defined by
the API provider.

Actually pretty straightforward, right? If everything went well (which we’ll confirm
momentarily), we’ll just need to add a few lines of code to this script in order to use
our access token to request some actual data about what’s happening on Twitter.

What About the Bearer Token in the Developer Dashboard?
When you were copying your API Key and API Key Secret out of the developer
dashboard screen shown in Figure 5-13, you may have noticed that there was also
a “Bearer Token” listed. Why aren’t we just using that instead of writing code to get
one?

The short answer is that while the Twitter API provides access tokens in the dash‐
board, many similar APIs (such as Facebook’s) do not. Since the goal here is to
illustrate a more general process for interacting with APIs that use OAuth, we’re
walking through the access/bearer token request loop so you can more easily modify
and reuse this code with other APIs.

Now that we have an access token (or bearer token) handy, we can go ahead and
make a request for some tweets. For demonstration purposes, we’re going to keep our
request simple: we’ll do a basic search request for recent tweets that contain the word
Python, and ask to have a maximum of four tweets returned. In Example 5-7, we’re
building on the script we started in Example 5-6, and we’ll structure and make this
request, including our newly acquired bearer token in the header. Once the response
arrives, we’ll write the data to a file. Since there is a lot in the JSON data we get back
besides the text of the tweets, however, we’re also going to print out just the text of
each tweet, just to give us confidence that we got correct (if sometimes unexpected)
results ;-)

170 | Chapter 5: Accessing Web-Based Data

Example 5-7. Twitter_data_download.py, continued

now that we have an access/bearer token, we're ready to request some data!

we'll create a new dict that includes this token
search_headers = {
 'Authorization': 'Bearer ' + access_token
}

this is the Twitter search API endpoint for version 1.1 of the API
search_url = 'https://api.twitter.com/1.1/search/tweets.json'

create a new dict that includes our search query parameters
search_params = {
 'q': 'Python',
 'result_type': 'recent',
 'count': 4
}

send our data request and store the results in `search_resp`
search_resp = requests.get(search_url, headers=search_headers, params=search_params)

parse the response into a JSON object
Twitter_data = search_resp.json()

open an output file where we can save the results
Twitter_output_file = open("Twitter_search_results.json", "w")

write the returned Twitter data to our output file
Twitter_output_file.write(str(Twitter_data))

close the output file
Twitter_output_file.close()

loop through our results and print the text of the Twitter status
for a_Tweet in Twitter_data['statuses']:
 print(a_Tweet['text'] + '\n')

In this case, our query (q) is Python, we’re looking for recent results, and we
want a maximum of 4 tweets back. Remember that the keys and values we can
include in this object are defined by the data provider.

Because the response from Twitter is a JSON object, we have to use the built-in
Python str() function to convert it to a string before we can write it to our file.

Because there is a lot of information in each result, we’re going to print out the
text of each tweet returned, just to get a sense of what’s there. The statuses is the
list of tweets in the JSON object, and the actual text of the tweets can be accessed
with the key text.

Specialized APIs: Working With OAuth | 171

13 Remember that each time you run the script, you will also overwrite your output file, so it will only ever
contain the most recent results.

14 Aleecia M. McDonald and Lorrie Faith Cranor, “The Cost of Reading Privacy Policies,” I/S: A Journal
of Law and Policy for the Information Society 4 (2008): 543, https://kb.osu.edu/bitstream/handle/1811/72839/
ISJLP_V4N3_543.pdf, and Jonathan A. Obar and Anne Oeldorf-Hirsch, “The Biggest Lie on the Internet:
Ignoring the Privacy Policies and Terms of Service Policies of Social Networking Services,” Information, Com‐
munication & Society 23 no. 1 (2020): 128–147, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2757465.

Depending on how actively Twitter users have been posting about Python recently,
you may see different results even if you run this script again in only a few minutes.13

Of course you can change this search to contain any query term you want; just
modify the value of the search_params variable as you like. To see all the possible
parameters and their valid values, you can look through the API documentation for
this particular Twitter API endpoint.

And that’s it! While there are a number of different APIs that Twitter makes available
(others allow you to actually post to your own timeline or even someone else’s), for
the purposes of accessing and wrangling data, what we’ve covered here should be
enough to get you started with this and other similar APIs.

API Ethics
Now that you know how to make API requests from services like Twitter (and others
that use an OAuth process), you may be imagining all the cool things you can do
with the data you can collect. Before you start writing dozens of scripts to track the
conversations happening around your favorite topics online, however, it’s time to do
both some practical and ethical reflection.

First, know that almost every API uses rate-limiting to restrict how many data
requests you can make within a given time interval. On the particular API endpoint
we used in Example 5-7, for example, you can make a maximum of 450 requests
in a 15-minute time period, and each request can return a maximum of 100 tweets.
If you exceed this, your data requests will probably fail to return data until Twitter
determines that the next 15-minute window has begun.

Second, while you probably didn’t read the Developer Agreement in detail (don’t
worry, you’re not alone;14 you can always find a reference copy online), it includes
provisions that have important practical and ethical implications. For example, Twit‐
ter’s Developer Agreement specifically prohibits the practice of “Off-Twitter match‐
ing”—that is, combining Twitter data with other information about a user, unless that
user has provided you the information directly or expressly provided their consent. It
also contains rules about how you can store and display Twitter content that you may
get from the API, and a whole host of other rules and restrictions.

172 | Chapter 5: Accessing Web-Based Data

https://kb.osu.edu/bitstream/handle/1811/72839/ISJLP_V4N3_543.pdf
https://kb.osu.edu/bitstream/handle/1811/72839/ISJLP_V4N3_543.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2757465
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/developer-terms/agreement-and-policy

15 Victoria D. Baranetsky, “Data Journalism and the Law,” Tow Center for Digital Journalism (2018) https://
doi.org/10.7916/d8-15sw-fy51.

Whether or not those terms of service are legally binding,15 or truly ethical in and of
themselves, remember that it is ultimately your responsibility to make sure that you
are gathering, analyzing, storing, and sharing any data you use in an ethical way. That
means taking into account the privacy and security of the people you may be using
data about, as well as thinking about the implications of aggregating and sharing it.

Of course, if ethical issues were easy to identify and agree upon, we would live in
a very different world. Because they aren’t, many organizations have well-defined
review processes and oversight committees designed to help explore and (if possible)
resolve ethical issues before, for example, research and data collection impacting
humans ever begins. For my own part, I still find that a good place to start when
trying to think through ethical issues is the “Society of Professional Journalists’ Code
of Ethics”. While that document doesn’t cover every possible ethics situation in detail,
it articulates some core principles that I think all data users would do well to consider
when they are collecting, analyzing, and sharing information.

In the end, however, the most important thing is that whatever choices you make,
you’re ready to stand behind them. One of the great possibilities of data access and
wrangling is the ability to uncover new information and generate new insights. Just as
the skills for doing that are now entirely in your control, so is the responsibility for
how you use them.

Web Scraping: The Data Source of Last Resort
While APIs are designed by companies and organizations with the specific intent
of providing access to often rich, diverse datasets via the internet, there is still a
whole lot of information online that only exists on form-based or highly formatted
web pages as opposed to an API or even as a CSV or PDF. For situations like
these, the only real solution is web scraping, which is the process of using code to
programmatically retrieve the contents of a web page and systematically extract some
amount of (usually) structured data from it.

The reason why I refer to web scraping as “the data source of last resort” is that
it’s both a technically and ethically complex process. Creating web scraping Python
scripts almost always requires manually wading through a jumble of HTML code to
locate the data you’re looking for, typically followed by a significant amount of trial
and error to successfully separate the information you want from everything you
don’t. It’s time-consuming, fiddly, and often frustrating. And if the web page changes
even a little, you may have to start from scratch in order to make your script work
with the updated page.

Web Scraping: The Data Source of Last Resort | 173

https://doi.org/10.7916/d8-15sw-fy51
https://doi.org/10.7916/d8-15sw-fy51
https://spj.org/ethicscode.asp
https://spj.org/ethicscode.asp

16 The accompanying blog post is also excellent: https://storybench.org/to-scrape-or-not-to-scrape-the-technical-
and-ethical-challenges-of-collecting-data-off-the-web.

Web scraping is also ethically complicated because, for a variety of reasons, many
website owners don’t want you to scrape their pages. Poorly coded scraping programs
can overwhelm the website, making it inaccessible to other users. Making lots of
scripted data requests in quick succession can also drive up the website owner’s costs,
because they have to pay their own service provider to return all that data in a brief
period. As a result, many websites explicitly prohibit web scraping in their Terms of
Service.

At the same time, if important information—especially about powerful organizations
or government agencies—is only available via a web page, then scraping may be your
only option even if it goes against the Terms of Service. While it is far beyond the
scope of this book to provide even pseudolegal advice on the subject, keep in mind
that even if your scripts are written responsibly and there is a good, public-interest
reason for your scraping activity, you may face sanction from the website owner
(such as a “cease and desist” letter) or even legal action.

Because of this, I strongly recommend that before you start down the road of writing
any web scraping script you work through the excellent decision tree by Sophie Chou
shown in Figure 5-16.16

174 | Chapter 5: Accessing Web-Based Data

https://storybench.org/to-scrape-or-not-to-scrape-the-technical-and-ethical-challenges-of-collecting-data-off-the-web
https://storybench.org/to-scrape-or-not-to-scrape-the-technical-and-ethical-challenges-of-collecting-data-off-the-web

Figure 5-16. Web scraping decision tree (Sophie Chou for Storybench.org, 2016)

Web Scraping: The Data Source of Last Resort | 175

Once you’ve determined that scraping is your only/best option, it’s time to get to
work.

Carefully Scraping the MTA
For this example, we’re going to use web scraping to download and extract data from
a web page provided by New York City’s Metropolitan Transit Authority (MTA),
which provides links to all of the turnstile data for the city’s subway stations, going
back to 2010. To ensure that we’re doing this as responsibly as possible, we’re going to
make sure that any Python script we write:

1. Identifies who we are and how to get in touch with us (in the example, we’ll1.
include an email address).

2. Pauses between web page requests to make sure that we don’t overwhelm the2.
server.

In addition, we’ll structure and separate the parts of our script to make sure that we
never download a particular web page more than absolutely necessary. To accomplish
this, we’ll start by downloading and saving a copy of the web page that contains the
links to the individual turnstile data files. Then we’ll write a separate script that goes
through the saved version of the initial page and extracts the data we need. That way,
any trial and error we go through in extracting data from the web page happens on
our saved version, meaning it adds no additional load to the MTA’s server. Finally,
we’ll write a third script that parses our file of extracted links and downloads the last
four weeks of data.

Before we begin writing any code, let’s take a look at the page we’re planning to
scrape. As you can see, the page is little more than a header and a long list of links,
each of which will take you to a comma-separated .txt file. To load the last several
weeks of these data files, our first step is to download a copy of this index-style page
(Example 5-8).

Example 5-8. MTA_turnstiles_index.py

include the requests library in order to get data from the web
import requests

specify the URL of the web page we're downloading
this one contains a linked list of all the NYC MTA turnstile data files
going back to 2010
mta_turnstiles_index_url = "http://web.mta.info/developers/turnstile.html"

create some header information for our web page request
headers = {
 'User-Agent': 'Mozilla/5.0 (X11; CrOS x86_64 13597.66.0) ' + \
 'AppleWebKit/537.36 (KHTML, like Gecko) ' + \

176 | Chapter 5: Accessing Web-Based Data

http://web.mta.info/developers/turnstile.html
http://web.mta.info/developers/turnstile.html

 'Chrome/88.0.4324.109 Safari/537.36',
 'From': 'YOUR NAME HERE - youremailaddress@emailprovider.som'
}

send a `get()` request for the URL, along with our informational headers
mta_web_page = requests.get(mta_turnstiles_index_url, headers=headers)

open up a writable local file where we can save the contents of the web page
mta_turnstiles_output_file = open("MTA_turnstiles_index.html","w")

write the `text` web page to our output file
mta_turnstiles_output_file.write(mta_web_page.text)

close our output file!
mta_turnstiles_output_file.close()

Since we’re not using an API here, we want to proactively provide the website
owner with information about who we are and how to contact us. In this case,
we’re describing the browser it should treat our traffic as being from, along with
our name and contact information. This is data that the website owner will be
able to see in their server logs.

Now you’ll have a file called MTA_turnstiles_index.html in the same folder where
your Python script was located. To see what it contains, you can just double-click
on it, and it should open in your default web browser. Of course, because we only
downloaded the raw code on the page and none of the extra files, images, and other
materials that it would normally have access to on the web, it’s going to look a little
wonky, probably something like what’s shown in Figure 5-17.

Fortunately, that doesn’t matter at all, since what we’re after here is the list of links
that’s stored with the page’s HTML. Before we worry about how to pull that data
programmatically, however, we first need to find it within the page’s HTML code. To
do this, we’re going to use our web browser’s inspection tools.

Web Scraping: The Data Source of Last Resort | 177

Figure 5-17. Viewing our local copy of the MTA web page in a browser

Using Browser Inspection Tools
With the local copy of the MTA turnstile data page open in a browser in front of
you, scroll down until you can see the “Data Files” header, as shown in Figure 5-17.
To better target just the information we want on this web page with our Python
script, we need to try to identify something unique about HTML code that surrounds
it—this will make it easier for us to have our script zero in quickly on just the content
we want. The easiest way to do this is by “inspecting” the code alongside the regular
browser interface.

To get started, put your mouse cursor over the “Data Files” text and context-click
(also known as “right-click” or sometimes “Ctrl+click,” depending on your system).
At the bottom of the menu that pops up, shown in Figure 5-18, choose “Inspect.”

178 | Chapter 5: Accessing Web-Based Data

Figure 5-18. The context menu on our local copy of the MTA web page

While the precise location and shape of your particular browser’s inspection tools
window will vary (this screenshot is from the Chrome browser), its contents will
hopefully look at least somewhat similar to the image in Figure 5-19.

Figure 5-19. Inspection tools example

Wherever your own window appears (sometimes it is anchored to the side or bottom
of your browser window, and, as in Figure 5-19, there are often multiple panes of
information), the main thing we want to locate in the inspection tools window are

Web Scraping: The Data Source of Last Resort | 179

the words “Data Files.” If you lost them (or never saw them in the first place!) once
the window appeared, just move your mouse over those words on the web page and
context-click to open the inspection tools window again.

Making the Most of Inspection Tools
Browser inspection tools can be useful in a lot of ways, but they are especially
important in web scraping, when we want to find unique ways to identify specific
chunks of information on a web page. Once you have them open, hovering over a
piece of code will visibly highlight the part of the web page it corresponds to. By
moving around the code in the inspection tools window with your mouse, you can
highlight corresponding parts of the web page’s visual interface, allowing you to write
your script to more precisely grab the parts of the page you need.

In this case, if you use your mouse to hover over the code in the inspection tools
window that says:

<div class="span-84 last">

you should see the “Data Files” section of the web page highlighted in your browser
window. Based on the area highlighted, it appears that this bit of code includes the
entire list of links we’re interested in, which we can confirm by scrolling down in the
inspection tools window. There we’ll see that all of the data links we want (which end
in .txt) are indeed inside this div (notice how they are indented beneath it? That’s
another instance of nesting at work!). Now, if we can confirm that class span-84 last
only exists in one place on the web page, we have a good starting point for writing
our Python script to extract the list of links.

The Python Web Scraping Solution: Beautiful Soup
Before we begin writing our next Python script, let’s confirm that the span-84 last
class really is unique on the page we downloaded. The simplest way to do this is to
first open the page in Atom (context-click on the filename instead of double-clicking,
and choose Atom from the “Open with” menu option), which will show us the page’s
code. Then do a regular “find” command (Ctrl+F or command+F) and search for
span-84 last. As it turns out, even the span-84 part only appears once in our file, so
we can confine our Python script to looking for link information nested within that
HTML tag.

Now we’re ready to start writing the Python script that will extract the links from
the web page. For this we’ll install and use the Beautiful Soup library, which is widely
used for parsing the often messy markup we find on web pages. While Beautiful Soup
has some functionality overlap with the lxml library that we used in Example 4-12,
the main difference between them is that Beautiful Soup can handle parsing even

180 | Chapter 5: Accessing Web-Based Data

less-than-perfectly-structured HTML and XML—which is what we invariably have
to deal with on the web. In addition, Beautiful Soup lets us “grab” bits of markup
by almost any feature we want—class name, tag type, or even attribute value—so it’s
pretty much the go-to library for pulling data out of the “soup” of markup we often
find online. You can read the full documentation for the library, but the easiest way to
install it will be the same process we’ve used for other libraries, by using pip on the
command line:

pip install beautifulsoup4

Now, we’re ready to use Python to open the local copy of our web page and use
the Beautiful Soup library to quickly grab all the links we need and write them to a
simple .csv file, as shown in Example 5-9.

Example 5-9. MTA_turnstiles_parsing.py

import the Beautiful Soup recipe from the bs4 library
from bs4 import BeautifulSoup

open the saved copy of our MTA turnstiles web page
(original here: http://web.mta.info/developers/turnstile.html)
mta_web_page = open("MTA_turnstiles_index.html", "r")

define the base URL for the data files
base_url = "http://web.mta.info/developers/"

the `BeautifulSoup` recipe takes the contents of our web page and another
"ingredient", which tells it what kind of code it is working with
in this case, it's HTML
soup = BeautifulSoup(mta_web_page, "html.parser")

using the "find" recipe, we can pass a tag type and class name as
"ingredients" to zero in on the content we want.
data_files_section = soup.find("div", class_="span-84 last")

within that div, we can now just look for all the "anchor" (`a`) tags
all_data_links = data_files_section.find_all("a")

need to open a file to write our extracted links to
mta_data_list = open("MTA_data_index.csv","w")

the `find_all()` recipe returns a list of everything it matches
for a_link in all_data_links:

 # combine our base URL with the contents of each "href" (link) property,
 # and store it in `complete_link`
 complete_link = base_url+a_link["href"]

 # write this completed link to our output file, manually adding a
 # newline `\n` character to the end, so each link will be on its own row

Web Scraping: The Data Source of Last Resort | 181

https://crummy.com/software/BeautifulSoup/bs4/doc

 mta_data_list.write(complete_link+"\n")

once we've written all the links to our file, close it!
mta_data_list.close()

If we click one of the data links on the live copy of the web page, we see that
the first part of the URL where the actual data file lives is http://web.mta.info/
developers/, but each link only contains the latter half of the URL (in the format
data/nyct/turnstile/turnstile_YYMMDD.txt). So that our download script has
working links, we need to specify the “base” URL.

Thanks to our work with the inspection tools, we can go straight to a div with
the class span-84 last to start looking for the links we want. Note that because
the word class has a special meaning in Python, Beautiful Soup appends an
underscore to the end when we’re using it here (e.g., class_).

OK! What we should have now is a new file that contains a list of all the data links
we’re interested in. Next we need to read that list in using a new script and download
the files at those URLs. However, because we want to be careful not to overload the
MTA website by downloading the files too quickly, we’re going to use the built-in
Python time library to space out our requests by a second or two each. Also, we’ll
be sure to only download the four files that we really want, rather than downloading
everything just for the sake of it. To see how this second script is organized, take a
look at Example 5-10.

Example 5-10. MTA_turnstiles_data_download.py

include the requests library in order to get data from the web
import requests

import the `os` Python library so we can create a new folder
in which to store our downloaded data files
import os

import the `time` library
import time

open the file where we stored our list of links
mta_data_links = open("MTA_data_index.csv","r")

create a folder name so that we can keep the data organized
folder_name = "turnstile_data"

add our header information
headers = {
 'User-Agent': 'Mozilla/5.0 (X11; CrOS x86_64 13597.66.0) ' + \
 'AppleWebKit/537.36 (KHTML, like Gecko) ' + \

182 | Chapter 5: Accessing Web-Based Data

 'Chrome/88.0.4324.109 Safari/537.36',
 'From': 'YOUR NAME HERE - youremailaddress@emailprovider.som'
}

the built-in `readlines()` function converts our data file to a
list, where each line is an item
mta_links_list = mta_data_links.readlines()

confirm there isn't already a folder with our chosen name
if os.path.isdir(folder_name) == False:

 # create a new folder with that name
 target_folder = os.mkdir(folder_name)

only download the precise number of files we need
for i in range(0,4):

 # use the built-in `strip()` method to remove the newline (`\n`)
 # character at the end of each row/link
 data_url = (mta_links_list[i]).strip()

 # create a unique output filename based on the url
 data_filename = data_url.split("/")[-1]

 # make our request for the data
 turnstile_data_file = requests.get(data_url, headers=headers)

 # open a new, writable file inside our target folder
 # using the appropriate filename
 local_data_file = open(os.path.join(folder_name,data_filename), "w")

 # save the contents of the downloaded file to that new file
 local_data_file.write(turnstile_data_file.text)

 # close the local file
 local_data_file.close()

 # `sleep()` for two seconds before moving on to the next item in the loop
 time.sleep(2)

This library will let us “pause” our downloading script between data requests so
that we don’t overload the MTA server with too many requests in too short a time
period (and possibly get in trouble).

Here, we’re splitting the link URL on slashes, then taking the last item from the
resulting list using negative indexing, which counts backward from the end of
the string. This means that the item at position -1 is the last item, which here is
the .txt filename. This is the filename we’ll use for the local copy of the data that
we save.

Web Scraping: The Data Source of Last Resort | 183

https://w3schools.com/python/gloss_python_string_negative_indexing.asp

If everything has gone well, you should now have a new folder called turnstile_data,
with the four most recent turnstile data files saved inside it. Pretty neat, right?

Conclusion
Now that we have explored the many ways to actually get the data we’re after and
convert it into formats we can use, the next question is: what do we do with it all?
Since the goal of all this data wrangling is to be able to answer questions and generate
some insight about the world, we now need to move on from the process of acquiring
data and start the process of assessing, improving, and analyzing it. To this end, in
the next chapter we’ll work through a data quality evaluation of a public dataset, with
an eye toward understanding both its possibilities and limitations and how our data
wrangling work can help us make the most of it.

184 | Chapter 5: Accessing Web-Based Data

CHAPTER 6

Assessing Data Quality

Over the past two chapters, we’ve focused our efforts on identifying and accessing
different formats of data in different locations—from spreadsheets to websites. But
getting our hands on (potentially) interesting data is really only the beginning. The
next step is conducting a thorough quality assessment to understand if what we have
is useful, salvageable, or just straight up garbage.

As you may have gleaned from reading Chapter 3, crafting quality data is a complex
and time-consuming business. The process is roughly equal parts research, experi‐
mentation, and dogged perseverance. Most importantly, committing to data quality
means that you have to be willing to invest significant amounts of time and energy—
and still be willing to throw it all out and start over if, despite your best efforts, the data
you have just can’t be brought up to par.

When it comes down to it, in fact, that last criterion is probably what makes doing
really high-quality, meaningful work with data truly difficult. The technical skills, as
I hope you are already discovering, take some effort to master but are still highly
achievable with sufficient practice. Research skills are a bit harder to document and
convey, but working through the examples in this book will help you develop many of
them, especially those related to the information discovery and collation needed for
assessing and improving data quality.

When it comes to reconciling yourself to the fact that, after dozens of hours of work,
you may need to “give up” on a dataset because its flaws are too deep or widespread,
the only advice I can offer is that you try to remember that learning meaningful things
about the world is a “long game.” That’s why I always suggest that folks interested in
learning about how to do data wrangling and analysis start by identifying a question
about the world that is truly interesting and/or important to them. To do this work
well, you have to care more about getting it right than about getting it “done.” But it
also helps if you truly value what you learn in the process of data wrangling—whether

185

1 Even if they don’t always realize it.

because you learn a new Python or data wrangling strategy or because you make
contact with a new expert or discover a new information resource. In truth, the effort
of doing good data work is never wasted if you really care about the topic you’re
exploring. It’s just that it can lead you in a different direction than you expected.

Often, you will find that while a dataset cannot answer your original question, it can
still shed light on some key aspect of it. Other times, you may find that there’s no
data on the subject you’re exploring, and you may be able to leverage that fact to get
help—discovering what data doesn’t exist may prompt you—and others—to change
focus entirely. And since there will never be a “perfect” dataset, there are times when
you may choose to very carefully share data that you know has flaws, because even
the partial insight it offers has important public interest benefits. What matters in
every case is that you are willing to personally take responsibility for the choices you
make—because no matter what the “original” data was or where it came from, the
cleaned, augmented, transformed, and/or analyzed dataset is still yours.

If this feels a little overwhelming—well, that’s not entirely an accident. We are living
in a moment when it is too easy to wield powerful digital tools without considering
their real-world consequences, and where the people building “advanced” technolo‐
gies are writing the algorithmic rules largely in their own favor.1 In the end, data
can be a mechanism for informing and manipulating, for explaining and exploiting.
Ensuring which side of those lines your work falls on is ultimately up to you.

But what does achieving data quality really mean in practice? To get a sense of this,
we’ll spend the remainder of this chapter evaluating real-world data in terms of the
aspects of data integrity and data fit introduced in Chapter 3. The dataset we’ll use for
this is a single instance of loan data from the US Paycheck Protection Program (PPP),
which contains information about millions of loans to small businesses during the
COVID-19 pandemic. As we’ll encounter firsthand throughout the remainder of this
chapter, the PPP data exemplifies many of the challenges common in “found” data,
whether it is compiled by government agencies or private companies: unclear terms
and unexplained changes from one version of the data to the next leave room for
data fit issues that will require additional research to address. More straightforward
(though not necessarily faster to resolve) are the data integrity issues—like confirming
whether a given bank is spelled the same way throughout the dataset or that our data
file(s) contain the values and time ranges they ought to. While we will find our way
through most of these challenges, in the end our insights will be high confidence, not
incontrovertible. As with all data work, they will be the cumulative result of informed
decisions, logical reasoning, and a whole lot of data wrangling. To get that wrangling
done, the Python library we’ll rely on most is pandas, which offers a popular and
powerful set of tools for working with table-type data. Let’s get started!

186 | Chapter 6: Assessing Data Quality

2 See https://en.wikipedia.org/wiki/Paycheck_Protection_Program for details on the PPP.
3 “Who Got Half a Trillion in COVID Loans? The Trump Administration Won’t

Say,” https://marketplace.org/shows/make-me-smart-with-kai-and-molly/who-got-half-a-billion-in-covid-loans-
the-trump-administration-wont-say.

4 You can find a good markdown cheatsheet at https://github.com/adam-p/markdown-here/wiki/Markdown-
Here-Cheatsheet.

The Pandemic and the PPP
In the spring of 2020, the US government announced a loan program designed
to help stabilize the American economy in the face of job losses related to the
COVID-19 pandemic. With designated funding of nearly $1 trillion,2 the objective of
the PPP was ostensibly to help small businesses pay rent and keep paying employees
despite sometimes mandatory closures and other restrictions. Although a drop in
unemployment appeared to follow the first roll-out of funds, some parts of the federal
government seemed determined to resist calls for transparency about where the
money had gone.3

So did the PPP loans help save American small businesses? Now that some time
has passed, one might imagine that would be a straightforward enough question to
answer—but we’re here to find out for ourselves. To do that we’ll look at the data, of
course, starting with a systematic assessment of its overall quality, in which we review
our PPP loan data for each of the characteristics of data integrity and data fit, in turn.
Just as importantly, we’re going to carefully document each part of this process so that
we have a record of what we did, the choices we made, and the reasoning behind
them. This data diary will be a crucial resource for us in the future, especially should
we need to explain or reproduce any of our work. While you can use whatever form
and format you prefer, I like to keep my formatting simple and have my data diary
live near my code, so I’m going to document my work in a markdown file that I
can easily back up to and read on GitHub.4 Since this file is really a running tally of
everything I’m doing, I’m going to call it ppp_process_log.md.

Assessing Data Integrity
Should you begin your data wrangling process by assessing data integrity or data fit?
Unsurprisingly: a little of both. As discussed in “What Is “Data Wrangling”?” on page
2, you should never really start a data wrangling process unless you have some sort of
question you’re looking to answer and some sense that a particular dataset can help
you answer it—in other words, until you have some idea where your data wrangling
process is going and that your data is “fit” for it. At the same time, fully assessing
a dataset’s fit is often difficult until its integrity has been explored. For example, if
there are gaps in the data, can they be filled in somehow? Can missing metadata be
located? If so, then we may be able to resolve these integrity issues and return to

The Pandemic and the PPP | 187

https://en.wikipedia.org/wiki/Paycheck_Protection_Program
https://marketplace.org/shows/make-me-smart-with-kai-and-molly/who-got-half-a-billion-in-covid-loans-the-trump-administration-wont-say
https://marketplace.org/shows/make-me-smart-with-kai-and-molly/who-got-half-a-billion-in-covid-loans-the-trump-administration-wont-say
https://github.com/adam-p/markdown-here/wiki/Markdown-Here-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Here-Cheatsheet

5 The original link for this content was https://home.treasury.gov/policy-issues/cares-act/assistance-for-small-
businesses/sba-paycheck-protection-program-loan-level-data, however it is now found at https://home.treas
ury.gov/policy-issues/coronavirus/assistance-for-small-businesses/paycheck-protection-program.

6 And this second link is https://sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-
program/ppp-data.

the assessment of fit with more complete information. If we then find that we can
improve the data’s fit by augmenting it (which we’ll explore in detail in Chapter 7),
of course, this will initiate another round of data integrity assessments. And then the
cycle begins again.

If you suspect that this will lead to an infinite loop of data wrangling, you’re not
entirely wrong; all good questions will generate others, so there’s always more to learn.
That said, the time, energy, and other resources we can dedicate to data wrangling
are not infinite, which is why we have to make informed decisions and document
them. Thoroughly assessing our data’s quality will help us make those decisions well.
By methodically examining your data for integrity and fit, you ensure that you not
only end up with high-quality data but also that you make and document decisions
that you can use to describe (and even defend, if necessary) any insights you generate.
This doesn’t mean that everyone will agree with your conclusions. It does, however,
help ensure you can have a meaningful discussion about them—and that’s what really
advances knowledge.

So without further ado, let’s dive into our data integrity evaluation!

Much of the data used in this chapter has since been removed from
the internet and/or replaced with other files—this is not unusual.
I have intentionally left the content of this chapter largely intact
despite these changes, because they reflect the very real and typical
challenges of trying to do data wrangling work in anything close to
real time.
It also illustrates how quickly—and almost untraceably—data can
evolve and change in the digital world. Something to keep in mind.
In the meantime, you can find all of the datasets referenced in this
chapter on this Google Drive folder.

Is It of Known Pedigree?
At the time of this writing, the first search result for the phrase “most recent PPP
loan data” is a page on the US Department of the Treasury website that links to
data from August 2020.5 The second result links to more recent data, from the Small
Business Administration (SBA)—the government department charged with actually
administering the funds.6

188 | Chapter 6: Assessing Data Quality

https://home.treasury.gov/policy-issues/cares-act/assistance-for-small-businesses/sba-paycheck-protection-program-loan-level-data
https://home.treasury.gov/policy-issues/cares-act/assistance-for-small-businesses/sba-paycheck-protection-program-loan-level-data
https://home.treasury.gov/policy-issues/coronavirus/assistance-for-small-businesses/paycheck-protection-program
https://home.treasury.gov/policy-issues/coronavirus/assistance-for-small-businesses/paycheck-protection-program
https://sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-program/ppp-data
https://sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-program/ppp-data
https://drive.google.com/file/d/1EtUB0nK9aQeWWWGUOiayO9Oe-avsKvXH/view?usp=sharing

7 You can download this file at https://drive.google.com/file/d/1EtUB0nK9aQeWWWGUOiayO9Oe-avsKvXH/
view?usp=sharing.

8 Data for August 2020 can be found at https://drive.google.com/file/d/11wTOapbAzcfeCQVVB-
YJFIpsQVaZxJAm/view?usp=sharing; data for February 2021 can be found at https://drive.google.com/file/d/
1EtUB0nK9aQeWWWGUOiayO9Oe-avsKvXH/view?usp=sharing.

While both of these are legitimate sites for government agencies whose work is rele‐
vant to the PPP, it makes more sense for us to work principally with data published by
the SBA. Still, it was not the first thing I found when I first went to look for this data.

I really want to highlight this because the Treasury Department is obviously both a
reasonable and reputable source for the data we were seeking, but it was still not the
best one available. That’s why it matters to evaluate not just where your data came
from but how you came to find it.

Is It Timely?
If we want to use data to learn something about the state of the world as it is now, the
first thing we need to establish is when our data dates from—and confirm that it’s the
most recent available.

If this seems like it should be straightforward, think again—many websites don’t
automatically date every post, so even determining when something went online is
often a challenge. Alternatively, a website that does date its content may change it any
time a change (even an insubstantial one) is made; some sites may regularly update
the “published” date in an attempt to game search engine algorithms that favor more
recent content.

In other words, determining what is actually the most recent, relevant data for your
particular data wrangling problem may well require some digging. The only way to
know for sure will be to try a few different search terms, click through several sets of
results, and maybe reach out to an expert for advice. In the process, you’ll most likely
find enough references to reassure you what the most recently available data is.

Is It Complete?
So far, we know that there have been multiple data releases for the PPP. While we
can be pretty confident that we’ve successfully located the most recent data, the next
question is: is this all the data?

Since we’re primarily interested in businesses that received larger loans, we only have
to worry about examining one file: public_150k_plus.csv.7 But how can we know if
this includes all phases of the program to date, or just the loans made since the first
data release in August 2020? Since we have access to both sets of data,8 we have a few
strategies we can use:

Assessing Data Integrity | 189

https://drive.google.com/file/d/1EtUB0nK9aQeWWWGUOiayO9Oe-avsKvXH/view?usp=sharing
https://drive.google.com/file/d/1EtUB0nK9aQeWWWGUOiayO9Oe-avsKvXH/view?usp=sharing
https://drive.google.com/file/d/11wTOapbAzcfeCQVVB-YJFIpsQVaZxJAm/view?usp=sharing
https://drive.google.com/file/d/11wTOapbAzcfeCQVVB-YJFIpsQVaZxJAm/view?usp=sharing
https://drive.google.com/file/d/1EtUB0nK9aQeWWWGUOiayO9Oe-avsKvXH/view?usp=sharing
https://drive.google.com/file/d/1EtUB0nK9aQeWWWGUOiayO9Oe-avsKvXH/view?usp=sharing

9 Following the 2008 financial crisis, for example, it became clear that many banks had not kept proper records
as they repackaged and sold—or “securitized”—home mortgages, leading some courts to reject their attempts
to foreclose on homeowners.

1. Find the earliest date(s) in our “recent” data file and confirm that they are before1.
August 8, 2020.

2. Compare the file sizes and/or row counts of the two datasets to confirm that the2.
more recent file is larger than the older file.

3. Compare the data they contain to confirm that all the records in the earlier file3.
already exist in the later file.

At this point you might be thinking, “Hang on, isn’t confirming the earliest date
enough? Why would we do the other two? Both of those seem much more difficult.”
Well, sure—in theory, just confirming that we have data from the earlier phases
should be enough. But in truth, that’s a pretty cursory check. Obviously, we cannot
confirm that the data the federal government has released is complete by trying to go
out and collect more comprehensive data ourselves. On the other hand (and as we’ll
see shortly), the data collection processes of governments and large organizations
(including—and perhaps especially—banks) are far from perfect.9 Since we’ll be tak‐
ing ownership of this data if we use it to draw conclusions, I think it’s worth being
thorough.

Happily, conducting our first “completeness” check is quite simple: just by opening
the data in a text editor, we can see that the first entry contains a “DateApproved”
value of 05/01/2020, suggesting that the recent dataset does in fact include data from
the first round of PPP loans, which were disbursed in the spring of 2020, as shown in
Figure 6-1.

Figure 6-1. Quick text editor view of recent PPP loan data

190 | Chapter 6: Assessing Data Quality

https://nytimes.com/2009/10/25/business/economy/25gret.html
https://nytimes.com/2009/10/25/business/economy/25gret.html

10 The following links are included for posterity, as they represent the original locations from which the datasets
provided with this chapter are drawn.

That was easy! If we want to go a little bit further, we can always write a quick script
to find the oldest and most recent LoanStatus dates in the recent data. To avoid
confusion, I’ve renamed the more recent file public_150k_plus_recent.csv. Currently,10

following the data linked from https://home.treasury.gov/policy-issues/cares-act/
assistance-for-small-businesses/sba-paycheck-protection-program-loan-level-data leads
to a different folder on the SBA Box account, which shows an upload date of August
14, 2020. We have to download the entire folder, 150k plus 0808.zip, but we can pull
out the CSV and rename it public_150k_plus_080820.csv.

To help us with this process, we will, as usual, be looking for a library to smooth the
way—this time in the form of Pandas, a well-known Python library for manipulating
table-type data. While we won’t examine the pandas library in detail here (there is
already an excellent O’Reilly book, Python for Data Analysis, written by the creator of
Pandas, Wes McKinney!), we will definitely make use of its many helpful features in
carrying out our data quality checks going forward.

To start with, we’ll need to install the library by running the following from the
command line:

pip install pandas

Now, let’s use it to pull in the recent PPP loan data and see what the earliest and latest
dates are in that file, as shown in Example 6-1.

Example 6-1. ppp_date_range.py

quick script for finding the earliest and latest loan dates in the PPP loan
data

importing the `pandas` library
import pandas as pd

read the recent data into a pandas DataFrame using its `read_csv()` method
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

convert the values in the `DateApproved` column to *actual* dates
ppp_data['DateApproved'] = pd.to_datetime(ppp_data['DateApproved'],
 format='%m/%d/%Y')

print out the `min()` and `max()` values in the `DateApproved` column
print(ppp_data['DateApproved'].min())
print(ppp_data['DateApproved'].max())

Assessing Data Integrity | 191

https://home.treasury.gov/policy-issues/cares-act/assistance-for-small-businesses/sba-paycheck-protection-program-loan-level-data
https://home.treasury.gov/policy-issues/cares-act/assistance-for-small-businesses/sba-paycheck-protection-program-loan-level-data
https://sba.app.box.com/s/ox4mwmvli4ndbp14401xr411m8sefx3i
https://sba.app.box.com/s/ox4mwmvli4ndbp14401xr411m8sefx3i

Using the as keyword here lets us create a nickname for the library so that we can
refer to it in fewer characters later in our code.

In order to find the oldest and most recent dates, we need to first convert the
(string) values in our dataset to actual Date data types. Here, we’ll use the Pandas
to_datetime() function and provide it with (1) the column we want converted,
and (2) the format of the dates as they currently appear in our dataset.

As we can see from the following output, the earliest loan in this dataset was made on
April 3, 2020, and the most recent was made on January 31, 2021:

2020-04-03 00:00:00
2021-01-31 00:00:00

Note that while we don’t absolutely have to pass the format ingredient to the Pandas
to_datetime() function, it’s always a good idea to do so; if we don’t provide this
information, then Pandas has to try to “guess” what date format it’s looking at, which
can make the actual processing take a long time. Here it only saves us about a second
of processing time—but with larger datasets (or more than one), that can quickly
add up!

Now let’s compare the file size of the recent data with the one that was released
in August 2020. Just looking at the public_150k_plus_recent.csv and the pub‐
lic_150k_plus_080820.csv files in a finder window, we can see that the file size of
the more recent data is much larger than the earlier one: the August data is ~124 MB,
while the recent data is several hundred megabytes. So far so good.

Drawing on the techniques we used in Example 4-7 and Example 5-10, let’s write
a quick script to determine how many rows of data are in each file, as shown in
Example 6-2.

Example 6-2. ppp_numrows.py

quick script to print out the number of rows in each of our PPP loan data files
this is a pretty basic task, so no need to import extra libraries!

open the August PPP data in "read" mode
august_data = open("public_150k_plus_080820.csv","r")

use `readlines()` to convert the lines in the data file into a list
print("August file has "+str(len(august_data.readlines()))+" rows.")

ditto for the recent PPP data
recent_data = open("public_150k_plus_recent.csv","r")

once again, print the number of lines
print("Recent file has "+str(len(recent_data.readlines()))+" rows.")

192 | Chapter 6: Assessing Data Quality

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

Once the readlines() method has put the lines of our data file into a list, we
can use the built-in len() method to determine how many there are. To print the
result, we have to cast that number as a string with the built-in str() function
first, or Python will yell at us.

Running this script confirms that while the file from August 2020 contains 662,516
rows, the more recent version (from February 1, 2021) contains 766,500 rows.

Finally, let’s look at comparing the contents of the two files to confirm that everything
in the earlier file appears in the newer file. This will undoubtedly be a multistep
process, but let’s start by opening up the August data file in a text editor, as shown in
Figure 6-2.

Figure 6-2. Quick text editor view of August 2020 PPP loan data

Right away it’s clear there are some…differences, which will make this particular
check even more complicated than we might have anticipated. First, it’s clear that
there are many more columns of data in the more recent file, which means that we’ll
need to devise a strategy for matching up the records from the earlier dataset to the
most recent one.

First, we need to get a handle on which data columns seem to overlap between the
two files. We’ll do that by creating and comparing two small sample CSV files, each
containing the first several rows of data from each dataset.

Next, we’ll write a quick script that converts each of our source files into a DataFrame
—a special Pandas data type for table-type data—and then writes the first few rows to
a separate CSV, as shown in Example 6-3.

Example 6-3. ppp_data_samples.py

quick script for creating new CSVs that each contain the first few rows of
our larger data files

importing the `pandas` library

Assessing Data Integrity | 193

import pandas as pd

read the august data into a pandas DataFrame using its `read_csv()` method
august_ppp_data = pd.read_csv('public_150k_plus_080820.csv')

the `head()` method returns the DataFrame's column headers
along with the first 5 rows of data
august_sample = august_ppp_data.head()

write those first few rows to a CSV called `august_sample.csv`
using the pandas `to_csv()` method
august_sample.to_csv('august_sample.csv', index=False)

read the recent data into a pandas DataFrame using its `read_csv()` method
recent_ppp_data = pd.read_csv('public_150k_plus_recent.csv')

the `head()` method returns the DataFrame's column headers
along with the first 5 rows of data
recent_sample = recent_ppp_data.head()

write those first few rows to a CSV called `recent_sample.csv`
recent_sample.to_csv('recent_sample.csv', index=False)

The pandas to_csv() method encapsulates several steps we’ve previously done
in plain-old Python: opening a new writable file and saving data to it. Because
Pandas adds an index column (which essentially includes row numbers) to every
DataFrame it creates, however, we need to include the second “ingredient” of
index=False because we don’t want those row numbers to appear in our output
CSV.

Now that we have our two smaller file samples, let’s open them up and just look
through them to visually compare both the column headers and their contents. You
can see screenshots of the August data in Figure 6-3, while the more recent data is
shown in Figure 6-4.

Figure 6-3. First few lines of August PPP loan data file

194 | Chapter 6: Assessing Data Quality

Figure 6-4. First few lines of recent PPP loan data file

Luckily, it looks like the first few rows of both files contain at least some of the same
entries. This will make it easier for us to compare their contents and (hopefully)
identify which columns we can use to match up the rows.

Let’s start by choosing a single entry to work with, ideally one with as many comple‐
ted fields as possible. For example, something called SUMTER COATINGS, INC. appears
on line 6 of the August data sample (as labeled in the spreadsheet interface) under
the column heading BusinessName. On line 2 of the recent data sample, the same
value appears under the column heading BorrowerName. In the August sample file,
the term Synovus Bank appears in a column called Lender, while that term appears
in the recent sample file in a column called ServicingLenderName. So far so good—or
is it?

Although many details between these rows seem to match across the two data files,
some seemingly important ones don’t. For example, in the August data sample, the
value in the DateApproved column is 05/03/2020; in the recent data sample, it
is 05/01/2020. If we look at another seemingly shared entry, we see that for the
business/borrower called PLEASANT PLACES, INC. (row 5 in the August data and row
3 in the recent data), the column titled CD in both files (spreadsheet column AF in
the recent file, column P in the August file) has different values, showing SC-01 in the
August data and SC-06 in the recent data. What’s going on?

At this point, we have to make some judgment calls about which column values need
to match in order for us to treat a particular loan row as the same between the two.
Requiring that the business name and the lender name match seems like a good
starting point. Since we know that multiple rounds of loans have been made by now,
we probably want to require that the values in the DateApproved column match as
well (even though it seems unlikely that Synovus Bank made two loans to Sumter
Coatings, Inc. two days apart). What about the mismatched congressional district?
If we look at a map of South Carolina’s congressional districts, it’s clear that their

Assessing Data Integrity | 195

11 For South Carolina congressional districts, see Wikipedia’s page at https://en.wikipedia.org/wiki/South_Caro
lina%27s_congressional_districts#Historical_and_present_district_boundaries.

boundaries haven’t been changed since 2013,11 though it does seem like the 1st and
the 6th district share a boundary. Given that, we might conclude that the discrepancy
here is just a mistake.

As you can see, we’re already finding some significant data quality issues—and we’ve
only looked at five rows of data! Since we obviously can’t resolve all of these differ‐
ences at once, we need to start by putting together the rows that (we hope) really
match, while making sure to keep track of any that don’t. To do this, we’ll need to
join or merge the two datasets. Because we already know there will be discrepancies,
however, we need a way to keep track of those as well. In other words, we want the
file created by our join process to include every row from both datasets, whether they
match or not. To do this, we need what’s called an outer join. We’ll make use of this in
Example 6-4.

Note that because an outer join preserves all data rows, it’s possible that our resulting
dataset could have as many rows as the individual datasets combined—in this case
about 1.4 million rows. Don’t worry, though! Python can handle it. But can your
device?

If you have a Macintosh or Windows machine, chances are that working with the
~500 MB of data that we need to in these examples will be no problem. If, like me,
you’re working on a Chromebook or something similar, now’s the moment to move
to the cloud.

Example 6-4. ppp_data_join.py

quick script for creating new CSVs that each contain the first few rows of
our larger data files

importing the `pandas` library
import pandas as pd

read the august data into a pandas DataFrame using its `read_csv()` method
august_ppp_data = pd.read_csv('public_150k_plus_080820.csv')

read the recent data into a pandas DataFrame using its `read_csv()` method
recent_ppp_data = pd.read_csv('public_150k_plus_recent.csv')

now that we have both files in memory, let's merge them!
merged_data = pd.merge(august_ppp_data,recent_ppp_data,how='outer',
 left_on=['BusinessName','Lender','DateApproved'],right_on=['BorrowerName',
 'ServicingLenderName','DateApproved'],indicator=True)

`print()` the values in the "indicator" column,

196 | Chapter 6: Assessing Data Quality

https://en.wikipedia.org/wiki/South_Carolina%27s_congressional_districts#Historical_and_present_district_boundaries
https://en.wikipedia.org/wiki/South_Carolina%27s_congressional_districts#Historical_and_present_district_boundaries
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#brief-primer-on-merge-methods-relational-algebra

which has a default label of `_merge`
print(merged_data.value_counts('_merge'))

We’re passing the indicator=True parameter here because it will create a new
column that lets us know which rows appeared in one or both files.

Using indicator=True produces a column called merge, whose value for each
row shows which dataset that particular row matched on. As we’ll see from the
output, that value will be both, left_only, or right_only.

If everything went well, you get an output like this:

_merge
both 595866
right_only 171334
left_only 67333
dtype: int64

So what does this mean? It looks like our effort to match the August data with
the recent data on business name, servicing lender name, and the date of the loan
successfully matched 595,866 loans. The right_only loans are the recent loans that
weren’t matched (recent_ppp_data was the second argument to our pd.merge()
function, so it is considered to be in the “right”); we found 171,334 of these. This
seems perfectly plausible, since we can imagine that many new loans may have been
issued since August.

The troubling number here is left_only: 67,333 loans that appear in the August data
that were not matched to any loan row contained our recent dataset. That suggests
that either our recent data is incomplete or we have some serious quality issues
lurking.

From our very cursory examination of the sample data earlier, we already know that
the DateApproved columns may have some problems, so let’s see what happens if
we eliminate the need to match on date. To do this, we’ll just add the snippet in
Example 6-5 to Example 6-4 but without specifying that the dates need to match. Let’s
see what happens.

Example 6-5. ppp_data_join.py (continued)

merge the data again, removing the match on `DateApproved`
merged_data_no_date = pd.merge(august_ppp_data,recent_ppp_data,how='outer',
 left_on=['BusinessName','Lender'],right_on=['BorrowerName',
 'ServicingLenderName'],indicator=True)

`print()` the values in the "indicator" column,
which has a default label of `_merge`
print(merged_data_no_date.value_counts('_merge'))

Assessing Data Integrity | 197

12 The SBA began accepting applications for so-called “second-round” PPP loans on January 31, 2021.

Now we get an output something like this:

_merge
both 671942
right_only 96656
left_only 22634
dtype: int64

In other words, if we only require that the business name and lender match, then we
“find” another ~45,000 loans from the August data in the recent data. Of course, what
we don’t know is how many of those new “matches” are the result of data entry errors
(along the lines of our 05/03/2020 versus 05/01/2020 problem) and how many of
them represent multiple loans.12 All we know is that we’re down to 22,634 loans from
the August data that we can’t locate in the recent data.

So what if we simply check whether a given business shows up in both datasets?
This seems like the most basic form of comparison: in theory, the bank or lender
servicing the PPP loan could change over the course of many months, or there
could be additional mismatches because of (possibly) minor data-entry differences.
Remember: our goal right now is simply to evaluate how far we can trust that the
recent data includes all of the August data.

So let’s add on a final, very relaxed merge to see what happens. Adding the snippet in
Example 6-6, we’ll match only on business name and see what we get.

Example 6-6. ppp_data_join.py (continued)

merge the data again, matching only on `BusinessName`/`BorrowerName`
merged_data_biz_only = pd.merge(august_ppp_data,recent_ppp_data,how='outer',
 left_on=['BusinessName'],right_on=['BorrowerName'],indicator=True)

`print()` the values in the "indicator" column,
which has a default label of `_merge`
print(merged_data_biz_only.value_counts('_merge'))

And now our output is the following:

_merge
both 706349
right_only 77064
left_only 7207
dtype: int64

Things are looking a little bit better: out of a total of 790,620 (706,349 + 77,064 +
7,207) possible loans, we’ve “found” all but 7,207—a little less than 0.1%. That’s pretty
good; we might be tempted to call that quantity of missing data a “rounding error”

198 | Chapter 6: Assessing Data Quality

https://uschamber.com/co/run/business-financing/second-draw-ppp-loans

13 Attempting to attribute axioms is always problematic, but while I prefer the phrasing of incompetence or
neglect, I like the attribution of this expression as “Hanlon’s Razor” found in “The Jargon File”, mostly because
that document explains the origin of a lot of computer/programming slang.

14 Of course, why it was never sent is an interesting question unto itself.

and move on. But before we get complacent about having accounted for 99.9% of
all the PPP loans, let’s stop for a moment and consider what that “small” amount of
missing data really represents. Even if we assume that every one of those “missing”
loans was for the minimum possible amount (recall that we’re only looking at loans of
$150,000 or more), that still means that our recent dataset has at least $1,081,050,000
—over $1 billion!—in possible loans that are unaccounted for. Given how hard I
work to figure (and pay) my taxes every year, I certainly hope the federal government
isn’t simply going to “lose” $1 billion in taxpayer money and not worry about it. But
what can we do to account for it? This is where we get to the part of data work that
can be both daunting and energizing: it’s time to talk to people!

While reaching out to subject matter experts is always a great place to start your data
quality investigations, in this instance we have something even better: information
about the lenders and loan recipients themselves. Between the business names and
locations contained in the file, we can probably track down contact information for at
least a handful of our “lost” 7,207 loans from the August dataset and try to find out
what happened.

Before you pick up the phone and start calling people (and yes, most of the time
you should be calling), however, figure out what you’re going to ask. While it may
be tempting to imagine that something nefarious is going on (are the lenders hiding
money? Are the businesses misrepresenting themselves?), there is an old (and very
malleable) quote that goes something like “Never attribute to malice that which
can be explained by incompetence/stupidity/neglect.”13 In other words, it’s likely that
these loans don’t appear in the more recent data because of some data-entry error, or
even because the loans simply never came through.

And in fact, after calling a few autobody repair and barber shops around the country,
that was the story I heard most often. Multiple people I spoke with described a
similar pattern: they applied for a loan, had been told it was approved, and then—the
money simply never came through. While it would be impractical to try to confirm
that this was the case for every single “missing” loan, hearing basically the same
story from multiple businesses that are thousands of miles apart makes me reasonably
confident that these loans don’t appear in the final dataset because the money was
never actually sent.14

Assessing Data Integrity | 199

https://jargon-file.org/archive/jargon-4.4.7.dos.txt

Talk to Me!
If the idea of “cold calling” an individual or business and asking for information
makes you nervous, you’re not alone. What helps the most is practice—but giving
yourself a brief script to follow can go a long way for those first few calls. Below is a
simple outline of how to approach calling a business (which mostly applies to individ‐
uals as well) to ask for information. Set your assumptions aside, and remember that
you’re asking busy people for their time. If you are polite and considerate, you’ll get
much further!

1. Identify yourself. Give your name and where you’re calling from, and (briefly)1.
what you want to speak to them about.

2. Ask if they have a moment—don’t launch into the reason for your call without2.
finding out if they’re busy first.

3. If you’re not sure who to ask for, ask if the owner or a manager is available. If3.
they’re not, ask when is a good time to call back.

4. Ask politely who you’re speaking to, and confirm their name. Thank them for4.
their time and hang up.

Always make sure you take notes! If/when you call back, ask for the owner/manager
by name (if you have it). Mention who you spoke to the first time you called and that
they mentioned this might be a good time. Offer again to call back later, or try to
make an appointment if possible.

Be clear and honest about why you’re getting in touch, and articulate what you’ll do
with the information you’re asking for as you’re asking for it. Never identify anyone in
published work without clearly obtaining their permission first.

At this point, it seems fairly clear that our recent PPP loan data is, in fact, “complete”
for our purposes. While this may have felt like a lot of work to test our dataset for just
one of almost a dozen data integrity measures, keep in mind that in the process, we’ve
learned valuable information that will make many of our later “tests” much faster—or
even trivial—to complete. So with that, let’s turn to our next criterion.

200 | Chapter 6: Assessing Data Quality

15 You may have noticed that in this chapter, I haven’t addressed our data integrity criteria in precisely the order
I listed them in Chapter 3. Because the PPP was modeled on the existing 7(a) loan program, I made the
(questionable) assumption that this data would be well-annotated. Of course, these were also the only datasets
available about the PPP, so my options were limited (as they so often are when working with real-world data).

16 I sometimes find it easier to think of transposing data as “turning it on its side.”

Is It Well-Annotated?
Having satisfied ourselves that our data is appropriately timely and complete, we need
to turn to understanding in detail what information the data columns in our recent
PPP loan data actually contain.15 As with our completeness assessment, one place we
can start is with the data itself. By looking at the column names and some of the val‐
ues they contain, we can start to get a sense of what we need more information about.
If the column name seems descriptive and the data values we find in that column
align with our interpretation of the column name, that’s a pretty good starting point.

While we have a couple of options for reviewing our column names and their
corresponding values, let’s go ahead and take advantage of the sample files we created
earlier. Because our screen width will generally prevent us from easily printing lots of
columns of data (whereas we can easily scroll down to see more rows), we’re going to
start by transposing our sample data (that is, converting the columns to row and rows
to columns) to make seeing the column titles easier.16 We’re also going to apply some
additional data type filtering to make it easier for us to see what data is missing. Our
first pass at this can be seen in Example 6-7.

Example 6-7. ppp_columns_review.py

quick script for reviewing all the column names in the PPP data
to see what we can infer about them from the data itself

importing the `pandas` library
import pandas as pd

read the recent data into a pandas DataFrame using its `read_csv()` method
ppp_data_sample = pd.read_csv('recent_sample.csv')

convert all missing data entries to '<NA>' using the `convertdtypes()` method
converted_data_sample = ppp_data_sample.convert_dtypes()

transpose the whole sample
transposed_ppp_data_sample = converted_data_sample.transpose()

print out the results!
print(transposed_ppp_data_sample)

Assessing Data Integrity | 201

https://journalofaccountancy.com/news/2020/apr/paycheck-protection-program-ppp-loans-sba-details-coronavirus.html

For the sake of speed, the Pandas read_csv() method converts all missing entries
to NaN (Not a Number), as described at https://pandas.pydata.org/pandas-docs/
stable/user_guide/missing_data.html. To get these values converted to the more
general (and intuitive) <NA> label, we apply the convertdtypes() method to
the entire DataFrame, as described at https://pandas.pydata.org/pandas-docs/sta
ble/user_guide/missing_data.html#missing-data-na-conversion.

As you can see in Figure 6-5, this lets us see all of the original column names as rows,
along with a couple of the original rows as columns of data. By looking through these,
we can start to get a sense of what we know—and what we don’t.

Thanks to their relatively descriptive names, we can start to guess at what we are
likely to find in many of these columns. For example, columns like DateApproved,
ProcessingMethod, BorrowerName, BorrowerAddress, BorrowerCity, BorrowerCity,
BorrowerState, and BorrowerZip are fairly straightforward. In some cases, the name
is descriptive but doesn’t give us all the information we need. For example, while
SBAGuarantyPercentage gives us information about both the column’s content and
its units (presumably the amount of the loan guaranteed by the SBA, as a percent‐
age), the Term column doesn’t tell us if the value should be interpreted as 24 days,
weeks, months, or years. Likewise, while the values in BusinessAgeDescription are
themselves descriptive (e.g., Existing or more than 2 years old), a LoanStatus
value of Exemption 4 doesn’t really help us understand what happened to the loan.
Finally, there are column names like LMIIndicator that might be easy for an expert to
interpret but difficult for those of us not well-versed in loan jargon to identify.

What we really need at this point is a “data dictionary”—the term sometimes used to
refer to the document that describes the contents of (especially) table-type data. Data
dictionaries are important because while table-type data is very handy for conducting
analyses, it doesn’t inherently offer a way to include the type of metadata—that is,
data about the data—that we need to answer questions like “What units should be
used?” or “What do coded categories mean?” which are exactly the kinds of questions
that come up frequently with complex datasets.

The most likely place to find a data dictionary should be the same location where we
originally obtained the data (remember that in Chapter 4, we found the description
of the ghcnd-stations.txt file linked from the readme.txt file in the same folder where
the data was located). In this instance, that means going back to the SBA website and
seeing what we can find.

202 | Chapter 6: Assessing Data Quality

https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data-na-conversion
https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data-na-conversion
https://sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-program/ppp-data

Figure 6-5. Recent sample data transposed

Assessing Data Integrity | 203

17 This page has changed considerably since this chapter was originally written. Notably, the main data location
now includes a “data dictionary”—but this was released only several months after the data was first posted.

At first, things look fairly promising. Under the “All Data” section on that page, we see
a link promising a summary of “key data aspects,” as shown in Figure 6-6.17

Figure 6-6. Landing page for PPP loan data on the SBA’s website

Following the link brings us to a page that (as of this writing) lists two PDF docu‐
ments from the summer of 2020. Unfortunately, neither of them seems to contain
what we need—they are mostly filled with disclaimer-type text about how PPP loans
are processed, though they do confirm our discovery that “canceled” loans will not
appear in the database, as shown in Figure 6-7.

Figure 6-7. Excerpt of information to keep in mind when reviewing PPP data

204 | Chapter 6: Assessing Data Quality

https://sba.gov/document/report-paycheck-protection-program-ppp-loan-data-key-aspects

18 It seems slightly noteworthy that this attribution was changed to SM shortly after I reached out to him.

Now what? We have a few options. We can turn to a more general research strategy
in order to learn more about the PPP and hopefully fill in some of the blanks for
ourselves. For example, reading enough articles on websites targeting potential PPP
applicants will make clear that the appropriate units for the Term column is almost
certainly weeks. Likewise, if we do enough web searches for the term LMIIndicator,
LMI Indicator, and LMI Indicator loans, we’ll eventually come across a Wikipedia
page that suggests this term may be shorthand for “Loan Mortgage Insurance Indica‐
tor”—but we hardly know for sure.

In other words, it’s once again time to look for some human help. But who can we
reach out to? Scholars who have looked at the PPP data already are one place to start,
but they might be hard to find if the data release is relatively recent. So, just as we did
when trying to confirm what happened to all those missing loans from the August
dataset, we’re going to go straight to the source: the SBA. And fortunately, if we go
back to the site where we downloaded our actual data files, as shown in Figure 6-8, it
turns out there is a name attached to those uploads: Stephen Morris.18

Figure 6-8. PPP data download portal

After placing a call and sending an email, I learned that, at the time of my inquiry,
the SBA hadn’t yet created a data dictionary for the PPP loan data, though Morris
did refer me to both the original PDF and a data dictionary for the SBA’s 7a loan
program, on which the PPP loan structure was based. While the latter file (located
at https://data.sba.gov/dataset/7-a-504-foia) still differed significantly from the PPP
loan data columns, it did provide insight into some key elements. For example, that

Assessing Data Integrity | 205

https://data.sba.gov/dataset/7-a-504-foia

file included a description of a column also called LoanStatus, whose possible values
seem to parallel at least some of what we’ve found in the PPP loan data so far:

LoanStatus Current status of loan:
 • NOT FUNDED = Undisbursed
 • PIF = Paid In Full
 • CHGOFF = Charged Off
 • CANCLD = Canceled
 • EXEMPT = The status of loans that have been disbursed but
 have not been canceled, paid in full, or charged off are
 exempt from disclosure under FOIA Exemption 4

So is this data “well-annotated”? Somewhat. It’s not as well annotated as, say, the
NOAA data we worked with in “Finally, Fixed-Width” on page 114, but with some
effort we’ll probably be able to build up our own data dictionary for the PPP loan data
that we can be pretty confident in.

Is It High Volume?
Since we have already finished our “completeness” review, we have largely already
answered the question of whether the data we’re using is generally high volume. There
are few instances in which having more than 750,000 rows of data won’t be sufficient
for conducting at least some useful form of analysis.

At the same time, we also can’t say yet exactly what types of analyses we’ll be able
to conduct, because the number of data rows we have doesn’t matter if most of
them are empty. So how can we check this? For columns where we only expect to
find a few possible values, like LoanStatus, we can use the Pandas value_counts()
method to summarize the contents. For columns that have very diverse values (such
as BorrowerName or BorrowerAddress), we’ll need to instead check specifically for
missing values and then compare that to the total row count to get a sense of how
much data might be missing. To start off with, we’ll summarize the columns we
expect will only contain a handful of distinct values, as shown in Example 6-8. We’ll
also count the NA entries in a more varied column—in this case, BorrowerAddress.

Example 6-8. ppp_columns_summary.py

quick script for reviewing all the column names in the PPP data
to see what we can infer about them from the data itself

importing the `pandas` library
import pandas as pd

read the recent data sample into a pandas DataFrame
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

print the summary of values that appear in the `LoanStatus` column
print(ppp_data.value_counts('LoanStatus'))

206 | Chapter 6: Assessing Data Quality

19 For more information on FOIA requests and exemptions, see “FOIA/L Requests” on page 377 and the full text
of the exemption on the Department of Justice’s website.

print the total number of entries in the `LoanStatus` column
print(sum(ppp_data.value_counts('LoanStatus')))

print the summary of values that appear in the `Gender` column
print(ppp_data.value_counts('Gender'))

print the total number of entries in the `Gender` column
print(sum(ppp_data.value_counts('Gender')))

print how many rows do not list a value for `BorrowerAddress`
print(ppp_data['BorrowerAddress'].isna().sum())

The output from Example 6-8, shown in Example 6-9, starts to paint a picture of what
kind of data is actually contained in our dataset’s ~750,000 rows. For example, the sta‐
tus of most loans is “Exemption 4,” which we know from our annotation investigation
means it is “exempt from disclosure under FOIA Exemption 4.”19 Similarly, we can
see that more than two-thirds of loan applicants did not indicate their gender when
applying, and 17 loans don’t even list the borrower’s address!

Example 6-9. Recent data column summaries

LoanStatus
Exemption 4 549011
Paid in Full 110120
Active Un-Disbursed 107368
dtype: int64
766499

Gender
Unanswered 563074
Male Owned 168969
Female Owned 34456
dtype: int64
766499

17

So is this data “high volume”? Yes—while we’re missing quite a lot of data overall,
there seems to be useful information in a relatively high proportion of the rows and
columns that we have. Keep in mind that in some cases, it’s possible to generate useful
insights about something with as little as a few dozen rows of data—as long as they
contain truly meaningful information. That’s why it’s not sufficient to simply look at
the size of a data file or even the number of rows it contains to confirm that it’s truly

Assessing Data Integrity | 207

https://justice.gov/oip/exemption-4-after-supreme-courts-ruling-food-marketing-institute-v-argus-leader-media

20 Specifically, “Paycheck Protection Program: How to Calculate Maximum Loan Amounts for
First Draw PPP Loans and What Documentation to Provide by Business Type,” which
can be found at https://sba.gov/sites/default/files/2021-01/PPP%20--%20How%20to%20Calculate%20Maxi
mum%20Loan%20Amounts%20for%20First%20Draw%20PPP%20Loans%20%281.17.2021%29-508.pdf.

“high volume”—we actually have to really examine the data in some detail in order to
be sure.

Is It Consistent?
Another thing we know from our earlier completeness check is that the format of the
PPP loan data absolutely was not consistent between August and later releases: the
data published beginning in December 2020 was much more detailed than what had
been released previously, and even most of the column names differed between the
two files.

Since we’re now relying only on the more recent data files, there is a different kind of
consistency we need to think about: how consistent are the values within the dataset
itself? We might hope, for example, that the same units will have been used in the
dollar amount columns like InitialApprovalAmount and CurrentApprovalAmount.
Still, it’s better to check for errors just in case. In Example 6-10, we’ll do another quick
min/max confirmation to ensure that the figures for these fall within the range we
expect.

Example 6-10. ppp_min_max_loan.py

quick script for finding the minimum and maximum loans currently approved
in our PPP loan dataset

importing the `pandas` library
import pandas as pd

read the recent data into a pandas DataFrame
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

use the pandas `min()` and `max()` methods to retrieve the
largest and smallest values, respectively
print(ppp_data['CurrentApprovalAmount'].min())
print(ppp_data['CurrentApprovalAmount'].max())

Based on the title of our data file—150k_plus—we would expect that the minimum
loan amount we’ll find approved is $150,000. A quick web search for “maximum loan
under ppp” leads to a document on the SBA website that indicates that for most types
of businesses,20 the maximum loan amount is $10 million. Indeed, running our script
seems to confirm that this minimum and maximum are reflected in our data:

208 | Chapter 6: Assessing Data Quality

https://sba.gov/sites/default/files/2021-01/PPP%20--%20How%20to%20Calculate%20Maximum%20Loan%20Amounts%20for%20First%20Draw%20PPP%20Loans%20%281.17.2021%29-508.pdf
https://sba.gov/sites/default/files/2021-01/PPP%20--%20How%20to%20Calculate%20Maximum%20Loan%20Amounts%20for%20First%20Draw%20PPP%20Loans%20%281.17.2021%29-508.pdf
https://washingtonpost.com/business/2020/06/11/trump-administration-wont-say-who-got-511-billion-taxpayer-backed-coronavirus-loans
https://washingtonpost.com/business/2020/06/11/trump-administration-wont-say-who-got-511-billion-taxpayer-backed-coronavirus-loans

21 See https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth for more information on clustering.

150000.0
10000000.0

At this point, we also want to check for one of the most common (and insidious)
forms of inconsistency: spelling differences. Anytime you’re dealing with data that has
been entered by humans, there are going to be spelling issues: extra spaces, typos, and
differences in punctuation, at minimum. This is a problem because if we want to be
able to answer a seemingly simple question like “How many loans originated with
lender X?” we need the spelling of that bank’s name to be consistent throughout the
data. And it’s almost guaranteed that it won’t be—at least at first.

Fortunately, because this is such a common data problem, there are a number of
well-developed approaches for dealing with it. Here we’re going to use an approach
called fingerprinting to begin checking the consistency of bank name spellings in our
dataset. While there are many ways that we could cluster these company names (pho‐
netically, for example) when looking for differently spelled duplicates, we’re choosing
fingerprinting because it follows a simple, strict-but-effective algorithm (really, just
a set of sets) that minimizes the risk that we’ll end up matching up two names that
really shouldn’t be the same.

Specifically, the fingerprinting algorithm we’ll be using does the following things:21

1. Removes leading and trailing whitespace1.
2. Changes all characters to their lowercase representation2.
3. Removes all punctuation and control characters3.
4. Normalizes extended Western characters to their ASCII representation (for4.

example “gödel” → “godel”)
5. Splits the string into whitespace-separated tokens5.
6. Sorts the tokens and removes duplicates6.
7. Joins the tokens back together7.

As usual, while we could write the code for this ourselves, we’re lucky that someone in
the Python community has already done this and has created the library fingerprints,
which we can install using pip:

pip install fingerprints

For the moment, our main concern is confirming whether we have any spelling
discrepancies to speak of; actually transforming our data to address these differences
is something we’ll look at in Chapter 7. So for now, we’re just going to count all
the unique bank names in our dataset and then see how many unique fingerprints

Assessing Data Integrity | 209

https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth

there are in that list. If all the bank names in the file are truly distinct, then in
theory the two lists should be the same length. If, on the other hand, some of the
bank names in our dataset are “unique” only because of minor punctuation and
whitespace differences, for example, then our list of fingerprints will be shorter than
our list of “unique” bank names. This would suggest that we’ll need to do some data
transformations in order to reconcile multiple spellings of the same bank name to
ensure that, for example, we’re really able to pull up all of the loans associated with a
single bank if we want to (Example 6-11).

Example 6-11. ppp_lender_names.py

quick script for determining whether there are typos &c. in any of the PPP
loan data's bank names

importing the `pandas` library
import pandas as pd

importing the `fingerprints` library, which will help us generate normalized
labels for each of the bank names in our dataset
import fingerprints

read the recent data into a pandas DataFrame
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

use the pandas DataFrame `unique()` method to create a list of unique
bank names in our data's `OriginatingLender` column
unique_names = ppp_data['OriginatingLender'].unique()

confirm how many unique names there are
print(len(unique_names))

create an empty list to hold the fingerprint of each of the unique names
fingerprint_list = []

iterate through each name in the list of unique names
for name in unique_names:

 # for each name, generate its fingerprint
 # and append it to the end of the list
 fingerprint_list.append(fingerprints.generate(name))

use the `set()` function to remove duplicates and sort `fingerprint_list`
fingerprint_set = set(fingerprint_list)

check the length of `fingerprint_set`
print(len(fingerprint_set))

210 | Chapter 6: Assessing Data Quality

22 When you run this script, you may see a warning about installing pyICU. Installing this library is a little bit
complicated, however, and won’t change our results for this exercise. If you plan to use this fingerprinting
process extensively, though, you may want to invest the additional time to setup pyICU. You can find more
information about this process here: https://pypi.org/project/PyICU.

Running this script yields the output:22

4337
4242

The length difference between the two lists certainly suggests that there are some
spelling discrepancies in our dataset: the number of “unique” names in the raw
data is 4,337, but the number of distinct fingerprints for those names is only 4,242.
While the difference here is “only” ~100 items, these discrepancies may well affect
thousands of rows of data, since on average each bank has issued hundreds of loans
(750,000/4337 = ~173). As a result, we cannot say how many rows of our original
dataset contain a given “misspelled” name (nor can we be sure that this is exhaustive).
In “Correcting for Spelling Inconsistencies” on page 244, we’ll go through the process
of transforming our data using these fingerprints to better identify specific lenders
and borrowers.

Is It Multivariate?
In much the same way that a dataset is more likely to be high volume if it contains
many rows, it is more likely to be multivariate if it has many columns. Just like our
quality check for volume, however, determining whether the columns we have make
our data truly multivariate means doing a quality check on the data they contain as
well.

For example, while our PPP loan data contains 50 data columns, about a dozen of
these are essentially expanded addresses, since the location of the borrower, originat‐
ing lender, and servicing lender are each broken out into a separate column for street
address, city, state, and zip code. While many of the remaining columns may contain
unique data, we need to get a sense of what they contain to understand how many
data characteristics or features we actually have to work with.

For example, how many of the loans in our dataset have reported requesting money
for something other than payroll costs? While the data structure (and the loan
program) allows borrowers to use the loans for other things (such as healthcare costs
and rent), to what extent does that show up in the data?

Just as we did when assessing how high volume our data really was, we’ll look at the
contents of a few more columns to determine whether the detail that they appear
to offer is really borne out in the amount of data they contain. In this instance

Assessing Data Integrity | 211

https://pypi.org/project/PyICU
https://sba.gov/funding-programs/loans/covid-19-relief-options/paycheck-protection-program/first-draw-ppp-loan
https://sba.gov/funding-programs/loans/covid-19-relief-options/paycheck-protection-program/first-draw-ppp-loan

(Example 6-12), we’ll look at how many rows for each of the PROCEED columns do not
contain a value.

Example 6-12. ppp_loan_uses.py

quick script for determining what borrowers did (or really, did not) state
they would use PPP loan funds for

importing the `pandas` library
import pandas as pd

read the recent data sample into a pandas DataFrame
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

print how many rows do not list a value for `UTILITIES_PROCEED`
print(ppp_data['UTILITIES_PROCEED'].isna().sum())

print how many rows do not list a value for `PAYROLL_PROCEED`
print(ppp_data['PAYROLL_PROCEED'].isna().sum())

print how many rows do not list a value for `MORTGAGE_INTEREST_PROCEED`
print(ppp_data['MORTGAGE_INTEREST_PROCEED'].isna().sum())

print how many rows do not list a value for `RENT_PROCEED`
print(ppp_data['RENT_PROCEED'].isna().sum())

print how many rows do not list a value for `REFINANCE_EIDL_PROCEED`
print(ppp_data['REFINANCE_EIDL_PROCEED'].isna().sum())

print how many rows do not list a value for `HEALTH_CARE_PROCEED`
print(ppp_data['HEALTH_CARE_PROCEED'].isna().sum())

print how many rows do not list a value for `DEBT_INTEREST_PROCEED`
print(ppp_data['DEBT_INTEREST_PROCEED'].isna().sum())

create a new DataFrame that contains all rows reporting *only* payroll costs
that is, where all _other_ costs are listed as "NA"
payroll_only = ppp_data[(ppp_data['UTILITIES_PROCEED'].isna()) & (ppp_data
 ['MORTGAGE_INTEREST_PROCEED'].isna()) & (ppp_data
 ['MORTGAGE_INTEREST_PROCEED'].isna()) & (ppp_data['RENT_PROCEED'].isna()) &
 (ppp_data['REFINANCE_EIDL_PROCEED'].isna()) & (ppp_data
 ['HEALTH_CARE_PROCEED'].isna()) & (ppp_data['DEBT_INTEREST_PROCEED'].isna())
]

print the length of our "payroll costs only" DataFrame
print(len(payroll_only.index))

As we can see from the output shown in Example 6-13, the vast majority of busi‐
nesses (all but 1,828) said that they intended to use money for payroll expenses
when they applied, with less than one-third reporting that they would (probably also)

212 | Chapter 6: Assessing Data Quality

use the money to pay utilities. Another portion provided information about using
the money for rent. Our last test, meanwhile, shows that well over two-thirds of all
businesses listed only payroll expenses as the intended use of their PPP funds.

Example 6-13. Reported uses of PPP loan funds

570995
1828
719946
666788
743125
708892
734456
538905

What does this mean about how “multivariate” our data is? Even if we decide
to discount the additional columns dedicated to address details, or the seemingly
underutilized PROCEED columns, there’s still quite a lot of information in this dataset
to explore. It seems likely that we’ll be able to use it to at least begin to draw
conclusions about who has received PPP loans and how they used the money. As
always, however, we cannot take for granted that the columns or rows of our dataset
have data content until we’ve checked and confirmed for ourselves.

Is It Atomic?
This is another instance where our previous work on the data lets us say “Yes!”
fairly quickly on this measure of data integrity. While the August version of our data
contained only loan amount ranges, we know that this dataset contains one loan per
row, including their exact dollar amounts. Since we have specific numbers rather than
summary or aggregate values, we can feel pretty confident that our data is sufficiently
granular or “atomic” to support a wide range of possible data analyses later on.

Is It Clear?
Although this dataset did not turn out to be especially well annotated, we’ve been able
to make our way through many of our data integrity checks nonetheless because, for
the most part, its column labels and their meanings are fairly clear. For example, if we
weren’t sure what CD stood for, a peek at some of the values (such as SC-05) makes
inferring that this stands for “congressional district” fairly straightforward. As we
gain more experience working with public and government datasets (or working in a
particular subject area), more of the codes and jargon will make sense more quickly.

For the columns whose labels weren’t so clear, exchanging a few emails with Stephen
Morris at the SBA was enlightening. For example, he confirmed that the appropriate
units for the Term column was months (not weeks, as first seemed likely) and that the

Assessing Data Integrity | 213

PROCEED columns describe what the loan funds would be used for, according to “what
the lender submitted to SBA (as stated by the borrower to them on the borrower
application).”

My correspondence with Morris also illustrated why going to a primary source
expert, if at all possible, is an essential step in conducting data integrity checks. If
you recall, one of the column headers whose meaning was not clear at the start was
LMIIndicator. Since my sample data rows did not contain values for this column, I
started doing some web searches and ended up with results that included “lenders’
mortgage insurance” (as shown in Figure 6-9); at the time, this seemed like a reason‐
able interpretation of the column heading.

Figure 6-9. Search results for LMI indicator loans

The only problem? It’s wrong. As Morris clarified via email, “The LMI Indicator tells
whether a borrower is geographically located in a Low-Moderate Income zone.”

The lesson here is that if you don’t have an official data dictionary, you always want
to be a bit cautious about how much you try to infer from column headers; even

214 | Chapter 6: Assessing Data Quality

those that seem clear may not mean what you think. If there’s any doubt, be sure to
reach out to some experts (ideally the folks who compiled the data) to confirm your
inferences.

Is It Dimensionally Structured?
If the idea of dimensionally structured data seemed a bit abstract when we discussed
it in Chapter 3, hopefully it makes a bit more sense now that we have a real dataset
in front of us. Dimensionally structured data includes information about useful
categories or classes that we can use to group our data, alongside the more atomic
features that help us conduct more granular analyses.

In the case of our PPP loan data, I would say that some of those usefully “dimen‐
sional” data columns include ones like RuralUrbanIndicator, HubzoneIndicator,
the newly clarified LMIIndicator, NAICSCode, and to some extent even SBAOffice
Code. Columns like RaceEthnicity, Gender, and Veteran could also be dimensionally
useful, but as we know that many of them are “Unanswered,” this limits what we can
infer from them. The others, meanwhile, can help us answer useful questions about
the location and types of businesses that have so far benefited from the PPP.

Even more than that, columns like NAICSCode offer the possibility of usefully aug‐
menting our dataset by allowing us to understand what industries benefiting busi‐
nesses belong to, which we can potentially compare to things like Bureau of Labor
Statistics and other datasets about employment sectors in the United States. We’ll dive
into this process more deeply in “Augmenting Your Data” on page 253.

So far, we’ve been able to answer some of our data integrity questions with a resound‐
ing “Yes!”, while others have been more qualified, suggesting the need for additional
transformations and evaluations before we move on to the data analysis phase. Before
we do that, however, we need to turn to the crucial question(s) of data fit: whether
our data demonstrates the validity, reliability, and representativeness we need in order
to draw meaningful conclusions about (in this case) how the PPP is affecting small
businesses in the United States.

Assessing Data Fit
Now that we’ve evaluated our dataset’s integrity with respect to nearly a dozen differ‐
ent measures, it’s time to assess the extent to which it is fit for our purposes; that is,
whether this data can really give us answers to the question(s) that we’re asking. To
do that, we’ll turn to our three main criteria for data fitness: validity, reliability, and
representativeness. Now is the time that we need to examine our dataset with our
original question in mind: did the PPP help save American small businesses?

Assessing Data Fit | 215

Validity
Remember that our working definition of validity is “the extent that something
measures what it’s supposed to.” Even if our PPP loan data was perfect, we’d need to
somehow determine whether it can answer that question in some way. At this point,
we know that our dataset provides one essential piece of that answer, because we
are pretty confident now that it accurately details which businesses currently have
approved PPP loans. Through our investigations into its integrity (especially around
completeness and in our search for annotating information, or metadata), we are also
pretty confident that already canceled loans are not showing up in the dataset—we
confirmed this both through the SBA’s published information about the PPP program
and by reaching out directly to businesses.

We can also use elements of the dataset (specifically LoanStatus and LoanStatus
Date) to get a sense of which businesses—among the more than 750,000 that have
been approved for a loan—have actually received the money. We can check this by
first summarizing the LoanStatus column using the value_counts() method as we
have before, as shown in Example 6-14.

Example 6-14. ppp_loan_status.py

quick script for determining how many loans have been disbursed

importing the `pandas` library
import pandas as pd

read the recent data sample into a pandas DataFrame
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

print a summary of values in the `LoanStatus` column
print(ppp_data['LoanStatus'].value_counts())
print(sum(ppp_data['LoanStatus'].value_counts()))

Note that because the value_counts() method will not include NA values, I am
also summing the entries to make sure every row has been accounted for.

The output from this script, shown in Example 6-15, confirms that of the 766,499
loans currently in our dataset, the funds for over 100,000 of them have not actually
been sent to businesses yet, while more than another 100,000 businesses appear to
have repaid their loans already.

216 | Chapter 6: Assessing Data Quality

Example 6-15. LoanStatus summary

Exemption 4 549011
Paid in Full 110120
Active Un-Disbursed 107368
Name: LoanStatus, dtype: int64
766499

If we’re hoping to evaluate the fate of small businesses that received PPP loans, then,
we need to start by making sure that we look only at those that have actually received
the funds—meaning that we should restrict our inquiry to those whose LoanStatus
value is either “Exemption 4” or “Paid in Full.”

In theory, when businesses applied for PPP loans, they asked for enough money to
keep their businesses afloat, so we might be tempted to assume that if a business has
gotten the PPP money, it should be doing all right. But just as potentially too-loose
criteria may have allowed many businesses to fraudulently get PPP loans, the fact that
a business received PPP money is no guarantee that it’s still doing OK. This reality is
exemplified by this Wall Street Journal article, which tells the story of one company
that filed for bankruptcy despite receiving a PPP loan. Since we already know that
this business filed for bankruptcy, finding its record within our dataset can help give
us a sense of what these records potentially look like, as shown in Example 6-16.

Example 6-16. ppp_find_waterford.py

quick script for finding a business within our dataset by (partial) name

importing the `pandas` library
import pandas as pd

read the recent data sample into a pandas DataFrame
ppp_data = pd.read_csv('public_150k_plus_recent.csv')

create a DataFrame without any missing `BorrowerName` values
ppp_data_named_borrowers = ppp_data[ppp_data['BorrowerName'].notna()]

because precise matching can be tricky,
we'll use the pandas `str.contains()` method
bankruptcy_example = ppp_data_named_borrowers[\
 ppp_data_named_borrowers['BorrowerName']
 .str.contains('WATERFORD RECEPTIONS')]

transposing the result so it's easier to read
print(bankruptcy_example.transpose())

Pandas cannot search for a string within any column that has NA values, so we
need to create a DataFrame that doesn’t have any of those in our target column,

Assessing Data Fit | 217

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3906395
https://wsj.com/articles/hundreds-of-companies-that-got-stimulus-aid-have-failed-11605609180
https://wsj.com/articles/hundreds-of-companies-that-got-stimulus-aid-have-failed-11605609180

just for review purposes (obviously we might want to investigate loans with no
named borrower).

While str.contains() will match successfully on only part of a string, it is
case-sensitive. This means that the fact that borrower names are in ALL CAPS
matters!

The following output from this script is telling: the loan shows up with a status of
“Exemption 4,” and perhaps even more interestingly, with a LoanStatusDate of NA.
But otherwise, there’s no indicator that this business is, well, no longer in business.

LoanNumber 7560217107
DateApproved 04/14/2020
SBAOfficeCode 353
ProcessingMethod PPP
BorrowerName WATERFORD RECEPTIONS, LLC
BorrowerAddress 6715 COMMERCE STREET
BorrowerCity SPRINGFIELD
BorrowerState VA
BorrowerZip 22150
LoanStatusDate NaN
LoanStatus Exemption 4
Term 24
SBAGuarantyPercentage 100
InitialApprovalAmount 413345.0
CurrentApprovalAmount 413345.0
UndisbursedAmount 0.0
FranchiseName NaN
ServicingLenderLocationID 122873
ServicingLenderName EagleBank
ServicingLenderAddress 7815 Woodmont Ave
ServicingLenderCity BETHESDA
ServicingLenderState MD
ServicingLenderZip 20814
RuralUrbanIndicator U
HubzoneIndicator N
LMIIndicator NaN
BusinessAgeDescription New Business or 2 years or less
ProjectCity SPRINGFIELD
ProjectCountyName FAIRFAX
ProjectState VA
ProjectZip 22150-0001
CD VA-08
JobsReported 45.0
NAICSCode 722320.0
RaceEthnicity Unanswered
UTILITIES_PROCEED NaN
PAYROLL_PROCEED 413345.0
MORTGAGE_INTEREST_PROCEED NaN
RENT_PROCEED NaN
REFINANCE_EIDL_PROCEED NaN

218 | Chapter 6: Assessing Data Quality

23 Which can be downloaded from https://sba.gov/document/report-paycheck-protection-program-ppp-loan-data-
key-aspects.

HEALTH_CARE_PROCEED NaN
DEBT_INTEREST_PROCEED NaN
BusinessType Limited Liability Company(LLC)
OriginatingLenderLocationID 122873
OriginatingLender EagleBank
OriginatingLenderCity BETHESDA
OriginatingLenderState MD
Gender Male Owned
Veteran Non-Veteran
NonProfit NaN

In fact, if we quickly check how many loans appear with a LoanStatusDate of NA by
adding the following line to the end of our script, we see that it is a perfect match for
those with a LoanStatus of Exemption 4:

print(sum(ppp_data['LoanStatusDate'].isna()))

So does this PPP loan data measure what it is supposed to measure? I would say yes,
but that’s not the whole story. As we saw from our summary of the LoanStatus
information, not all of the businesses that appear in this dataset have actually gotten a
loan; they have been approved and still could receive the money (we know their loans
have not been canceled)—but 107,368 of them have not yet taken the money, and we
can’t know for sure if they ever will.

We also can’t say from this dataset alone what has happened to the businesses that
have received the money. Some may still be in operation; others have gone bankrupt.
Still others could have liquidated without filing for bankruptcy. In other words, while
the PPP data has strong validity when it comes to answering certain parts of our
question, answering the whole question will require much more than just this one
dataset.

Reliability
When it comes to reliability, the primary criteria we are interested in are accuracy
and stability. In other words, how well does the PPP data reflect who has gotten PPP
loans, and how likely is it that the picture of who has gotten those loans will change
over time?

Thanks to our previous investigations, we know by now that the stability of this
dataset is far from perfect. Several thousand businesses that were approved for loans
and appeared in the August dataset do not appear in the current one (we’ll address the
implications this has for representativeness in the next section), which comports with
documentation from the SBA23 that canceled loans are not included.24 It’s also not
clear whether, as updates are made, previous versions of the data will still be available,

Assessing Data Fit | 219

https://sba.gov/document/report-paycheck-protection-program-ppp-loan-data-key-aspects
https://sba.gov/document/report-paycheck-protection-program-ppp-loan-data-key-aspects

24 Again, understanding why and how these loans were canceled might be instructive, but we won’t find that
information here—only some bread crumbs about where to start looking.

making it difficult to determine what has changed unless we begin downloading and
archiving each release ourselves.

Even the figures within the dataset itself may not be especially stable over time. For
example, we know that 538,905 businesses reported that they would only be using
their PPP loan for payroll costs. But as SBA representative Stephen Morris explained
via email, “This data is speculative to some extent because it’s not required that
the borrower use the funds for the purpose they selected on their application.” In
other words, unless some part of the loan forgiveness or repayment process requires
that PPP loan recipients detail how the money was spent (and that information is
subsequently updated in this dataset), we can’t know for sure whether the figures we
see in the various PROCEED columns are either accurate or stable.

Representativeness
Is the PPP loan data representative of everyone who actually received a PPP loan?
Most likely. After a public outcry led many large and/or publicly traded companies
to return early PPP loans, the SBA indicated that they would be closely scrutinizing
loans over $2 million, and almost $30 billion in loans had been returned or canceled
by early July. After our relatively exhaustive comparisons between the August and
February datasets, we can feel pretty confident that the dataset we have is at least
representative of who has received PPP loans to date.

At the same time, this doesn’t really tell us as much as we might think. We already
know that the vast majority of PPP loan recipients that appear in this data did not
disclose their gender, race, ethnicity, or veteran status, meaning that we have no real
way of knowing how well (if at all) the demographics of PPP loan recipients reflect
the population of small business owners in the United States. In fact, as we’ll see in
Chapter 9 it’s very unlikely that we can draw conclusions about the demographics
of PPP loan recipients at all, because the number of applicants who included this
information is so small.

220 | Chapter 6: Assessing Data Quality

https://nbcnews.com/business/business-news/which-companies-are-returning-their-ppp-loan-here-s-list-n1194566
https://nbcnews.com/business/business-news/which-companies-are-returning-their-ppp-loan-here-s-list-n1194566
https://cnbc.com/2020/07/06/companies-returned-30-billion-in-small-business-loans-from-ppp.html
https://cnbc.com/2020/07/06/companies-returned-30-billion-in-small-business-loans-from-ppp.html

25 The term denominator problem appears to have a very specific meaning when it comes to US property law, but
needless to say, that is not precisely how I am using it here.

But the question of representativeness actually goes deeper than that, back to (and
beyond) those 7,207 loans that disappeared between the August data release and the
more recent one(s). Those missing loans reflect businesses that applied for loans and
were approved, but in the words of one employee: “The money just never arrived.”
That means that while we know how many businesses got a PPP loan, we have no way
of knowing how many applied. Because those canceled loans have been removed from
the data, we are now left with an instance of what I like to call the “denominator”
problem.

The denominator problem
The denominator problem is recognized—albeit under different names—across
almost every field of data-driven inquiry. Sometimes called the benchmarking or
baseline problem,25 the denominator problem encapsulates the difficulty of trying to
draw meaning from data when you lack sufficient comparative information to put it
into context. In most cases, this is because the comparison data you really need was
never collected.

In our exploration of the PPP data, we’ve already encountered one version of this
problem: we know which businesses have received loans, but we don’t know who
applied and was rejected or why (in at least some cases, it seems, the recipients don’t
know, either). This is a problem for assessing the PPP loan process, because we don’t
know if legitimate applicants have been rejected even as some businesses are granted
multiple rounds of loans. If we want to know whether the distribution of loans was
fair—or even effective—knowing who hasn’t been included is as important as finding
out who has.

Some of the denominator problems we’ve encountered so far may be answerable
using complementary data of some kind—that’s what The Wall Street Journal did in
comparing PPP loan data to bankruptcy filings. In others, the solution will be for us
to build our own archive if—as seems to be the case here—the earlier datasets are not
being offered by the data provider along with the updated versions.

Assessing Data Fit | 221

Conclusion
So, did the Paycheck Protection Program help save small businesses? Maybe. On the
one hand, it’s hard to imagine that so much money could be spent without some
positive benefit. On the other hand, both the real world—and the data we have about
it—is a complicated, interdependent mess. If a PPP loan recipient pivoted its business
model and found new revenue streams, would we put it in the “saved by the PPP”
category or not? Similarly, if a business that didn’t receive a loan fails, is that because it
didn’t receive a loan, or would it have failed anyway? The more of these “what ifs” we
propose, the more likely it is that a couple of things will happen:

1. We’ll develop a violent headache, decide it isn’t possible to really know anything,1.
and look for a reassuring way to procrastinate.

2. After enough time playing games/reading the internet/complaining to confused2.
friends and relations about how we spent all this time wrangling a dataset that
we’re not sure is worth anything and we can hardly remember why we started
this whole thing in the first place, we’ll come across something that gives us
an idea for a slightly different, possibly much narrower question to explore, and
excitedly return to our dataset, eager to see if we can somehow answer this new
question any better than the last one.

Is this process arduous and circuitous? Yes. It is also reminiscent of our discussion
about construct validity in “How? And for Whom?” on page 75. In the end, it is
also actually how new knowledge is formed. The uncertain, frustrating, and slippery
work of considering new options, thinking them through, testing them out, and then
(potentially) starting the whole process over again with a bit more information and
understanding the next time is how genuinely original insights are made. It’s the thing
that every algorithmic system in the world is desperately trying to approximate, or
imitate. But if you’re willing to put the effort in, you can actually succeed.

At this point, I feel like I’ve learned quite a bit about this dataset—enough that I know
I probably cannot answer my original question with it but can still imagine some
interesting insights it could yield. For example, I feel confident that the most recent
data accurately reflects the state of currently approved loans, because I confirmed that
loans missing from more recent files were (for some reason or other) probably never
actually made. At the same time, while the SBA announced that as of early January
2021, over $100 billion in PPP loans had been forgiven, there didn’t seem to be a
distinct value in the LoanStatus column to indicate forgiven loans, even more than
six weeks later. While the SBA’s Stephen Morris stopped responding to my emails in

222 | Chapter 6: Assessing Data Quality

https://sba.gov/article/2021/jan/12/11-million-paycheck-protection-program-loans-forgiven-so-far-totaling-over-100-billion

26 And can be found at https://data.sba.gov/dataset/ppp-foia/resource/aab8e9f9-36d1-42e1-b3ba-e59c79f1d7f0.

early March, as of early May 2021, a data dictionary does seem to be available,26 even
if neither it—nor the updated data—contains this information, either.

Of course, there’s still plenty more to learn here: about who has received loans and
where they’re located, how much they were approved for, and who is making those
loans. And while the data is far from perfect, I can keep copies of past datasets on
hand to reassure myself that if anything in the future changes significantly, I will at
least have the resources on hand to spot it. Given that, it’s time to move on from the
assessment phase of our work and apply ourselves to the task of actually cleaning and
transforming our data, which we’ll tackle in Chapter 7.

Conclusion | 223

https://data.sba.gov/dataset/ppp-foia/resource/aab8e9f9-36d1-42e1-b3ba-e59c79f1d7f0

CHAPTER 7

Cleaning, Transforming,
and Augmenting Data

Most of the time, the data that we initially find, collect, or acquire doesn’t quite
suit our needs in one way or another. The format is awkward, the data structure
is wrong, or its units need to be adjusted. The data itself might contain errors,
inconsistencies, or gaps. It may contain references we don’t understand or hint at
additional possibilities that aren’t realized. Whatever the limitation may be, in our
quest to use data as a source of insight, it is inevitable that we will have to clean,
transform, and/or augment it in some way in order to get the most out of it.

Up until now, we have put off most of this work because we had more urgent
problems to solve. In Chapter 4, our focus was on getting data out of a tricky file
format and into something more accessible; in Chapter 6, our priority was thoroughly
assessing the quality of our data, so we could make an informed decision about
whether it was worth the investment of augmentation and analysis at all.

Now, however, it’s time to roll up our sleeves and begin what to me is sort of the
second phase of data wrangling and quality work: preparing the data we have for the
analysis we want to perform. Our data is in the table-type format we need, and we’ve
determined that it’s of high enough quality to yield some useful insights—even if they
are not precisely the ones we first imagined.

Since it’s obviously impossible to identify and address every possible problem or
technique related to cleaning, transforming, and/or augmenting data, my approach
here will be to work through the actual examples we’ve already encountered where
one or more of these tasks is required. For example, we’ll look at different ways we
might need to transform date-type information using datasets we encountered in
Chapters 2 and 4. We’ll also look at different ways we can clean up the “cruft” in
data files that contain both structured data and metadata. We’ll even explore regular

225

1 While the data format for Citi Bike data files changed in early 2021, files from before that date still follow the
format in these examples.

expressions, which offer us a powerful way to select only certain parts of a data field or
match particular terms and patterns irrespective of capitalization and/or punctuation.
In the process, we’ll manage to cover a decent range of the tools and strategies
you’re likely to need when cleaning and transforming most datasets. At the very least,
the approaches outlined in this chapter will give you a useful starting place if you
encounter a challenge that’s truly gnarly or unique.

Selecting a Subset of Citi Bike Data
Way back in “Hitting the Road with Citi Bike Data” on page 62, we used Citi Bike
system data to test out some of our freshly unboxed Python concepts, like for...in
loops and if/else conditionals. For the sake of convenience, we started with a
sample dataset that I had excerpted from the September 2020 system data file.

There are any number of situations where we’ll want to segment large datasets
for analysis—either because we don’t have the time or computational resources to
process everything at once or because we’re only interested in a subset of the dataset
to begin with. If all we wanted to do was select a specific number of rows, we could
write a for...in loop using the range() function described in “Adding Iterators: The
range Function” on page 101. But we might also want to excerpt the data based on
its values as well. I did this in selecting all of the rides from September 1, 2020, but
we might also want to do something a bit more nuanced, like evaluating weekday Citi
Bike rides separately from those taken on weekends and holidays.

Let’s start with the first task, of excerpting just the September 1, 2020, rides from the
larger dataset.1 Conceptually, this is simple enough: we just want to keep every row in
our dataset containing a ride that started on the first day of September. If we briefly
revisit the dataset, however, it becomes clear that even this task is not so simple.

Figure 7-1. First few lines of Citi Bike trip data

226 | Chapter 7: Cleaning, Transforming, and Augmenting Data

https://s3.amazonaws.com/tripdata/index.html

2 And even if they weren’t, we could always convert them to strings.

As you can see in Figure 7-1, the starttime column is not simply a date but some
kind of date/time format that includes not just the month, day, and year but also the
hours, minutes, and seconds (to four decimal points!). The first entry in this data file,
for example, the value of the starttime, looks like this:

2020-09-01 00:00:01.0430

Obviously, if we want to analyze just the first day of rides—or just rides during the
morning “rush hour” commute or just weekday rides—we need a way to effectively
filter our data based on just part of the information that’s stored in this column. But
what options do we have for accomplishing this? In the next few sections, we’ll look at
each of these tasks—finding just rides on a particular date, in a particular time frame,
and on a particular “type” of day—in turn. In the process, we’ll learn some of the
tools Python offers for solving problems like these, as well as when and why we might
choose one over another.

A Simple Split
Solving the first problem—excerpting just the rides that started on September 1,
2020—is actually relatively easy to do if we combine some of the tools that we’ve used
already in some previous examples. It starts with recognizing that when we read in a
basic CSV file with Python, most of our data will be treated as strings.2 This means
that, even though we humans clearly know that 2020-09-01 00:00:01.0430 is meant
to be interpreted as a date and time, Python just sees it as a collection of numbers and
characters.

Looking at the starttime field this way, the question of how to find all the rides that
started on September 1, 2020, becomes a bit more straightforward, because the part
of our data that contains the “date” information is always separated from the “time”
information by a single space. This means that if we can find a way to look only at
what comes before that space, we can easily set up an if/else conditional to compare
that to our target date string—in this case, 2020-09-01—and use that comparison to
keep only the rows we want.

While it may not seem glamorous, the built-in string split() is going to be our hero
here. It’s already played a supporting role in previous exercises when we needed to
break up filenames or URLs; we actually used it way back in “Verbs ≈ Functions” on
page 42 to illustrate the difference between functions and methods! As a refresher,
this method lets us specify a single character that should be used to split a string
into parts. The output of this method is a list, which contains the “leftover” pieces of
the string in the order in which they appeared, with the character you split() on

Selecting a Subset of Citi Bike Data | 227

removed. So splitting the string 2020-09-01 00:00:01.0430 on a space will yield the
list ['2020-09-01', '00:00:01.0430'].

To see how simple and effective this is, let’s modify our script from “Hitting the
Road with Citi Bike Data” on page 62. In Example 7-1, I’ve edited down some of the
comments because these tasks are much more familiar now, but it’s still a good idea to
outline your script’s objective at the top.

Example 7-1. citibike_september1_rides.py

objectives: filter all September 2020 Citi Bike rides, and output a new
file containing only the rides from 2020-09-01

program outline:
1. read in the data file: 202009-citibike-tripdata.csv
2. create a new output file, and write the header row to it.
3. for each row in the file, split the `starttime` value on space:
a. if the first item in the resulting list is '2020-09-01', write
the row to our output file
4. close the output file

import the "csv" library
import csv

open our data file in "read" mode
source_file = open("202009-citibike-tripdata.csv","r")

open our output file in "write" mode
output_file = open("2020-09-01-citibike-tripdata.csv","w")

pass our source_file to the DictReader "recipe"
and store the result in a variable called `citibike_reader`
citibike_reader = csv.DictReader(source_file)

create a corresponding DictWriter and specify that the
header should be the same as the `citibike_reader` fieldnames
output_writer = csv.DictWriter(output_file, fieldnames=citibike_reader.fieldnames)

write the header row to the output file
output_writer.writeheader()

use a `for...in` loop to go through our `citibike_reader` list of rows
for a_row in citibike_reader:

 # get the value in the 'starttime' column
 start_timestamp = a_row["starttime"]

 # split the value in 'starttime' on the space character
 timelist = start_timestamp.split(" ")

 # the "date" part of the string will be the first item, position 0

228 | Chapter 7: Cleaning, Transforming, and Augmenting Data

 the_date = timelist[0]

 # if `the_date` matches our desired date
 if the_date == "2020-09-01":

 # write that row of data to our output file
 output_writer.writerow(a_row)

close the output file
output_file.close()

Pretty simple, right? Of course, you could easily modify this script to capture a
different date, or even multiple dates if you wanted to. For example, you could modify
the if statement to be something like:

 if the_date == "2020-09-01" or the_date == "2020-09-02":

Of course, while this or statement works perfectly well if you’re looking for two
or three specific dates, it starts to get very messy if you need to look for more
than that (you may recall that we ended up with a similarly awkward conditional
in Example 6-12). In order to filter our data with the precision we need without
generating extraordinarily complex, awkward, and error-prone code, we’ll be better
served by a whole different toolkit: regular expressions.

Regular Expressions: Supercharged String Matching
A regular expression (often shortened to regex), allows you to quickly and efficiently
search for string patterns within a larger string or piece of text. In most cases, if you’re
trying to solve a matching or filtering problem and find that the solution involves
lots of and or or statements, it’s an early sign that what you really need is a regular
expression.

Regular expressions are found in most programming languages and are concise, pow‐
erful, and, at times, extremely tricky to work with. While a single regular expression
can encapsulate even a very complex search pattern, designing regexes that work as
expected can be extremely time-consuming, often requiring quite a bit of trial and
error to get right. Since our goal is for our data wrangling work to be both efficient
and comprehensible, we’ll focus here on short regexes that offer unique functionality
not easily achieved through other means. While there are certain tasks where regular
expressions are indispensable, they are not the tool for solving every problem and
usually work best when paired with other techniques.

To get started, let’s use a regular expression to tackle the problem of filtering out rides
that take place within the typical “morning commute” hours, which we’ll estimate
here as being from 7 a.m. to 9 a.m. Any regex process begins with distinguishing
for ourselves what we want to match from what we don’t. Here, we’ll start with

Selecting a Subset of Citi Bike Data | 229

an example starttime entry that is outside of our identified time range (hence,
something we don’t want to match):

 2020-09-01 00:00:01.0430

Now let’s look at a starttime entry that falls within it:

 2020-09-01 00:08:17.5150

Now, let’s acknowledge first that we could address this problem with the string-
splitting method we saw previously. We could start by splitting on the : character,
which would, in the second instance, give us this:

['2020-09-01 00', '08', '17.5150']

Then we could take the middle item from the list and use a compound conditional—
that is, an if statement that joins two or more tests—to see if it matches the strings
'07', '08', or '09'.

This approach certainly works, but it feels a little awkward. It requires multiple
steps and a three-part conditional that will quickly get difficult to read. A regular
expression, meanwhile, will let us narrow in on those hour values in a single step
while still being fairly readable. Before we dive into writing the regex itself, though,
let’s do a quick overview of the vocabulary of Python regular expressions.

Because a regular expression has to use characters and strings to describe patterns
of characters and strings, the Python regular expression “language” uses a set of
metacharacters and special sequences to make describing the pattern you’re searching
for simpler. In Table 7-1 I’ve included some of the most useful ones, drawn from a
more complete list on W3Schools.

Table 7-1. Common regular expression building blocks

Expression Description
[] A set of characters

“\” Signals a special sequence (can also be used to escape special characters)

. Any character (except newline character)

* Zero or more occurrences

+ One or more occurrences

{} Exactly the specified number of occurrences

| Either or

() Capture and group

\d Returns a match where the string contains digits (numbers from 0–9)

\D Returns a match where the string DOES NOT contain digits

\s Returns a match where the string contains a whitespace character

\S Returns a match where the string DOES NOT contain a whitespace character

230 | Chapter 7: Cleaning, Transforming, and Augmenting Data

https://w3schools.com/python/python_regex.asp

Expression Description
\w Returns a match where the string contains any word characters (characters from a to Z, digits from 0–9, and the

underscore _ character)

\W Returns a match where the string DOES NOT contain any word characters

As always with writing, regular expressions give us more than one way to “capture”
the pattern we’re looking for. In most cases, our goal is to define a pattern that will
match what we need to find while avoiding accidentally matching on anything else.
For our “rush hour” problem, we can take advantage of the fact that the “hours”
digits in the starttime column are surrounded by colons (:), and nothing else is.
This means that we can use this “surrounded by colons” pattern as part of our regular
expression and feel confident that we won’t accidentally match some other part of the
string. To see if this works as we hope, let’s set up a few sample regular expressions to
test against some (real and constructed) sample data to see how they do, as shown in
Example 7-2.

Example 7-2. regex_tests.py

the goal of this script is to try out how a couple of regular expressions
fare with some sample test data.

import the regular expression library
import re

using the `re.compile()` method is a helpful way of keeping a reference to
our various regular expressions
bookend_regex = re.compile("\s0[7-9]:")

always try to be descriptive with the variable names
one_sided_regex = re.compile("0[7-9]:")

this example should *fail*
sample1 = "2020-09-01 00:00:01.0430"

this example should *match*
sample2 = "2020-09-01 09:04:23.7930"

this example should *fail*
sample3 = "2020-09-01 10:07:02.0510"

let's see what happens!
print("bookend_regex:")
print(bookend_regex.search(sample1))
print(bookend_regex.search(sample2))
print(bookend_regex.search(sample3))

print("one_sided_regex:")
print(one_sided_regex.search(sample1))

Selecting a Subset of Citi Bike Data | 231

print(one_sided_regex.search(sample2))
print(one_sided_regex.search(sample3))

In addition to sample files like this, you can also test out your Python regex
online using the W3Schools regex demo.

Even if you only use them once in a script, I strongly recommend defining your
regex at the top of your file using an aptly named variable. It is the simplest, most
efficient way to keep track of their functionality, especially if you’re using more
than one!

When you run the script in Example 7-2, your output should look something like
this:

bookend_regex:
None
<re.Match object; span=(10, 14), match=' 09:'>
None
one_sided_regex:
None
<re.Match object; span=(11, 14), match='09:'>
<re.Match object; span=(14, 17), match='07:'>

As you can see, the “bookended” regex, where we specified both of the colons,
correctly matches (and fails to match) in all three cases; the “one-sided” regex, on
the other hand, erroneously finds a match on the seconds value of sample3. This
is precisely why defining the string you’re looking for as precisely as possible is
important. If you look at the Match object printed out previously, you’ll see that it
contains information about what was matched (e.g., match='07:') and where (e.g.,
from index positions 14–17 in the string).

So far, this seems pretty straightforward. Things can still get a little tricky, however,
when the structure of the thing we want to match changes. For example, what if we
wanted to expand the hours we’re interested in to range from 7 a.m. to 10 a.m.? Our
bookend_regex won’t work as written, because it specifies that the first character after
the colon has to be a 0. We could try just adding the digits 1 and 0 as options to our
digit ranges, like so:

plus_ten = re.compile("\s[01][0789]:")

print("plus_ten")
print(plus_ten.search("2020-09-01 18:09:11.0980"))

232 | Chapter 7: Cleaning, Transforming, and Augmenting Data

https://w3schools.com/python/trypython.asp?filename=demo_regex

which produces the output:

plus_ten
<re.Match object; span=(10, 14), match=' 18:'>

The problem, as we can see from the output, is that our data uses a 24-hour clock and
will end up matching on a whole range of times that we don’t want. That’s because
regular expressions don’t “see” numbers in the way we think of them—all they see are
sequences of characters. That’s why 18 comes back as a match—our regex allows any
string that starts with a 0 or a 1 and is followed by a 0, 7, 8, or 9. While we obviously
wrote it with the numbers 07, 08, 09, and 10 in mind, our code opens the door to
many more.

The solution, in this case, is to use the “either/or” pipe character (|), which we can use
to combine to (otherwise) completely distinct regular expressions. In this case, that
will look something like what’s shown in Example 7-3.

Example 7-3. Capturing 7 to 10

seven_to_ten = re.compile("\s0[7-9]:|\s10:")

Try it out yourself with a few sample data points, just to confirm that it captures what
we’re looking for (and nothing else).

I’m not going to go too much further with regular expressions than this; as with the
web scraping we explored in “Web Scraping: The Data Source of Last Resort” on page
173, no two regular expression problems (or solutions) are alike. However, I hope
you can see the potential these offer for doing pattern matching that would be very
awkward with compound conditionals and basic string functions alone.

Making a Date
One of the reasons it’s appealing to treat date-like data as strings is that, as we saw
in our work with various source formats of unemployment data in Chapter 4, the
way they are interpreted can vary dramatically across data sources and even Python
libraries. Still, there are situations and tasks where converting date-like data to an
actual datetime type is very useful. For example, if we want to isolate the weekday
rides from our Citi Bike data, we could try to essentially “brute force” it by looking at
a calendar, identifying the dates of all the weekdays, and then creating a giant string
comparison list or writing a regular expression to match them. In the case of the
September 2020 data, such a regular expression object might look something what’s
in Example 7-4.

Example 7-4. Weekday regex for September 2020

september2020_weekday = re.compile("-0[123489]-|-1[0145678]-|-2[1234589]-|-30-")

Selecting a Subset of Citi Bike Data | 233

Ugh. This certainly works, but it’s nearly impossible to read and is still basically one
giant compound conditional—even if it’s captured in fewer characters because it’s a
regular expression. Moreover, it’s not a solution that scales very well. If we wanted to
extend our analysis to any other month, it would mean getting out the calendar all
over again.

Fortunately, a well-constructed Python datetime object has a number of built-in
methods that can help with exactly this kind of task. In fact there is a simple week
day() method that returns a number from 0 to 6 (with 0 being Monday and 6 being
Sunday) based on the day of the week on which a certain date falls. This means that if
we convert the contents of our starttime column to a date, as shown in Example 7-5,
we can use this method to quickly identify the day of the week corresponding to
any date. This will help us apply our code to additional data sources—say, a different
month or year of ridership data—without having to do a thing!

Example 7-5. weekday_rides.py

objectives: filter all September 2020 Citi Bike rides, and output a new
file containing only weekday rides

program outline:
1. read in the data file: 202009-citibike-tripdata.csv
2. create a new output file, and write the header row to it.
3. for each row in the file, make a date from the `starttime`:
a. if it's a weekday, write the row to our output file
4. close the output file

import the "csv" library
import csv

import the "datetime" library
from datetime import datetime

open our data file in "read" mode
source_file = open("202009-citibike-tripdata.csv","r")

open our output file in "write" mode
output_file = open("202009-citibike-weekday-tripdata.csv","w")

convert source data to a DictReader; store the result in `citibike_reader`
citibike_reader = csv.DictReader(source_file)

create a corresponding DictWriter and specify its fieldnames
output_writer = csv.DictWriter(output_file, fieldnames=citibike_reader.fieldnames)

actually write the header row to the output file
output_writer.writeheader()

use a `for...in` loop to go through our `citibike_reader` list of rows

234 | Chapter 7: Cleaning, Transforming, and Augmenting Data

https://docs.python.org/3/library/datetime.html#datetime.date.weekday
https://docs.python.org/3/library/datetime.html#datetime.date.weekday

3 Unless, of course, you’re working in a team—then you need to consider everyone’s needs. You’ll be glad when
it’s your turn to work with their code.

for a_row in citibike_reader:

 # convert the value in the 'starttime' column to a date object
 the_date = datetime.strptime(a_row['starttime'], '%Y-%m-%d %H:%M:%S.%f')

 # if `the_date` is a weekday
 if the_date.weekday() <= 4:
 # write that row of data to our output file
 output_writer.writerow(a_row)

close the output file
output_file.close()

As mentioned in Example 6-1, providing the format of our source data will help
our script run faster and more reliably.

The weekday() method puts Monday at position 0, so looking for anything up to
and including 4 will capture the values for Monday through Friday.

Depending on your device, you may notice that the script in Example 7-5 takes a
while to run. For example, on my (not very powerful) device, it takes more than
85 seconds to complete. Accomplishing the same task using the regular expression
in Example 7-4, meanwhile, takes only 45 seconds. I can also more easily tweak the
regular expression to skip days that are officially weekdays but are also holidays (like
Labor Day).

So which approach is better? As usual, it depends. What will actually work best
for your particular data wrangling/cleaning/transformation process will be specific
to your needs and your resources. If answering your question means looking for
weekday commute patterns in a decade’s worth of Citi Bike data, you’re probably
better off using the weekday() method, because you don’t have to change your code
to deal with different months or years. On the other hand, if you don’t have very
many months to work with and execution speed (and absolute precision) is your top
concern, you might prefer to go the regular expression route. You may also just find
that regexes make you want to tear your hair out or that using multiple steps to get
perfect results drives you crazy. As we’ll explore more in Chapter 8, all of these can be
legitimate reasons for a particular design choice—just make sure the choice is yours.3

De-crufting Data Files
In Chapter 4, we encountered a number of instances where we needed to “clean
up” a dataset that was otherwise awkward or unintelligible. When we went through

De-crufting Data Files | 235

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/3/library/datetime.html#datetime.date.weekday

the process of parsing an old-school-style .xls file in Example 4-6, for example, we
encountered a couple of distinct issues. First, the spreadsheet contained both table-
type data and descriptive header information that, despite being useful in principle,
will inevitably need to be relocated in order for us to analyze the rest of it. Second,
the .xls format’s lack of support for “real” dates means that our initial transformation
from .xls to .csv left us with a bunch of nonsense numbers where the dates should
have been. While I chose to put off solving those problems at first, the time has come
to confront them.

In thinking about the first problem, I want to stress that we definitely don’t want to
just “throw out” the information that’s currently stored at the top of the fredgraph.xls
file. As is hopefully clear from our work in Chapter 6, metadata is a precious
resource, and we never want to discard metadata from a primary source. Rather, my
preference in cases like this is to turn one file into two. We’ll strip out the metadata
and store it in a separate—but congruently named—text file while also parsing and
saving the table-type data into an analysis-friendly .csv format.

Convention over Configuration
Even in this book’s simplest examples, there are lots of decisions to be made—like
naming variables, programming files, data output files, and more. While it may not
be perfectly “Pythonic”, I find that the concept of “convention over configuration” has
a lot to offer when it comes to collecting, generating, and reorganizing files in the data
wrangling process. In particular, using a shared naming convention, our metadata file
and our table-type data file can save us headaches both when it comes to creating
our files now and finding them again later. While you don’t have to follow the precise
pattern I do here, choosing a consistent method for naming these files across your
projects is something that will save you time, effort, and anxiety in the long run.

Looking at our source .xls file in a spreadsheet program, it’s easy enough to see
visually where the metadata ends and the table-type data begins. The real question
is: how will we detect this transition in our script? As is so often the case with data
cleaning, the most effective solution is not always an elegant one. The metadata ends
where the table-type data begins, in the row containing its column headers. If we look
at the first value in each row as we work our way through the file, we can stop writing
to the metadata file and start writing to the .csv as soon as we encounter the first
column header. Since the value observation_date is the first column header for this
dataset, we’ll make that transition as soon we find that at the beginning of our current
row.

236 | Chapter 7: Cleaning, Transforming, and Augmenting Data

https://loc.gov/programs/teachers/getting-started-with-primary-sources
https://en.wikipedia.org/wiki/Convention_over_configuration

Before you begin, check your source file carefully to see where
the metadata appears within it. Especially in cases where the data
contains estimates or other qualifiers, you’re likely to find metadata
both before and after the table-type data in your source file.

To see what’s involved in creating these two purpose-built files from our single source
file, take a look at the script in Example 7-6 (if you need a refresher on some of the
code choices in this example, you may want to refer back to Example 4-6).

Example 7-6. xls_meta_parsing.py

converting data in an .xls file with Python to csv + metadata file
using the "xrld" library. First, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

import the "xlrd" library
import xlrd

import the `csv` library, to create our output file
import csv

pass our filename as an ingredient to the `xlrd` library's
`open_workbook()` "recipe"
store the result in a variable called `source_workbook`
source_workbook = xlrd.open_workbook("fredgraph.xls")

open and name a simple metadata text file
source_workbook_metadata = open("fredgraph_metadata.txt","w")

an `.xls` workbook can have multiple sheets
for sheet_name in source_workbook.sheet_names():

 # create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to the `sheet_by_name` recipe
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # create "xls_"+sheet_name+".csv" as an output file for the current sheet
 output_file = open("xls_"+sheet_name+".csv","w")

 # use the `csv` library's "writer" recipe to easily write rows of data
 # to `output_file`, instead of reading data *from* it
 output_writer = csv.writer(output_file)

 # create a Boolean variable to detect if we've hit our table-type data yet
 is_table_data = False

 # now, we need to loop through every row in our sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # pulling out the value in the first column of the current row

De-crufting Data Files | 237

 first_entry = current_sheet.row_values(row_num)[0]

 # if we've hit the header row of our data table
 if first_entry == 'observation_date':

 # it's time to switch our "flag" value to "True"
 is_table_data = True

 # if `is_table_data` is True
 if is_table_data:

 # write this row to the data output file
 output_writer.writerow(current_sheet.row_values(row_num))

 # otherwise, this row must be metadata
 else:

 # since we'd like our metadata file to be nicely formatted, we
 # need to loop through the individual cells of each metadata row
 for item in current_sheet.row(row_num):

 # write the value of the cell
 source_workbook_metadata.write(item.value)

 # separate it from the next cell with a tab
 source_workbook_metadata.write('\t')

 # at the end of each line of metadata, add a newline
 source_workbook_metadata.write('\n')

 # just for good measure, let's close our output files
 output_file.close()
 source_workbook_metadata.close()

While we’re only creating a single metadata file here, we could easily move this
part of the process inside the for loop and create a unique metadata file for every
worksheet, if necessary.

This type of Boolean (True/False) variable is often described as a flag variable.
The idea is that we set its value outside of a loop and then “flip” its value when
some particular thing has happened—this saves us from having to loop through
all our data twice. Here, we’ll use it to check when we should start writing to our
“data” file instead of our “metadata” file.

Before we move on to dealing with the (still inexplicable) dates in this file, I want
to highlight a new technique introduced in Example 7-6: the use of a so-called flag
variable. This term typically refers to any Boolean (True/False) variable that is used to
keep track of whether a certain event has taken place or condition has been met, espe‐
cially within a loop. In Example 7-6, for example, we are using the is_table_data

238 | Chapter 7: Cleaning, Transforming, and Augmenting Data

variable as a way to keep track of whether we have yet encountered the row of data
that marks the beginning of our table data. Since a given row of data in our for...in
loop is essentially “forgotten” as soon as the next one is read, we need to create this
variable before our loop. This keeps the is_table_data variable available beyond the
scope of our loop—a concept we’ll look at more closely in Chapter 8.

Decrypting Excel Dates
We can avoid the issue of those Excel dates no longer. While hopefully you will not
encounter this situation often, I’m including it here for completeness and because
it illustrates a few different ways that code tends to evolve—usually getting more
complicated and less readable—as we add even seemingly small bits of functionality
to it. For example, in Example 7-7, we’ll need to check whether a variable contains
a number or not, and believe it or not, we need a library for this—it is aptly called
numbers. While that part is fundamentally straightforward, you’ll quickly see in
Example 7-7 how the need to transform these date values requires adapting our
approach to writing the table-type data to our output file.

Example 7-7. xls_meta_and_date_parsing.py

converting data in an .xls file with Python to csv + metadata file, with
functional date values using the "xrld" library.
first, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

then, import the `xlrd` library
import xlrd

import the csv library
import csv

needed to test if a given value is *some* type of number
from numbers import Number

for parsing/formatting our newly interpreted Excel dates
from datetime import datetime

pass our filename as an ingredient to the `xlrd` library's
`open_workbook()` "recipe"
store the result in a variable called `source_workbook`
source_workbook = xlrd.open_workbook("fredgraph.xls")

open and name a simple metadata text file
source_workbook_metadata = open("fredgraph_metadata.txt","w")

an `.xls` workbook can have multiple sheets
for sheet_name in source_workbook.sheet_names():

Decrypting Excel Dates | 239

 # create a variable that points to the current worksheet by
 # passing the current value of `sheet_name` to the `sheet_by_name` recipe
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # create "xls_"+sheet_name+".csv" as an output file for the current sheet
 output_file = open("xls_"+sheet_name+"_dates.csv","w")

 # use the `csv` library's "writer" recipe to easily write rows of data
 # to `output_file`, instead of reading data *from* it
 output_writer = csv.writer(output_file)

 # create a Boolean variable to detect if we've hit our table-type data yet
 is_table_data = False

 # now, we need to loop through every row in our sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # pulling out the value in the first column of the current row
 first_entry = current_sheet.row_values(row_num)[0]

 # if we've hit the header row of our data table
 if first_entry == 'observation_date':

 # it's time to switch our "flag" value to "True"
 is_table_data = True

 # if `is_table_data` is True
 if is_table_data:

 # extract the table-type data values into separate variables
 the_date_num = current_sheet.row_values(row_num)[0]
 U6_value = current_sheet.row_values(row_num)[1]

 # create a new row object with each of the values
 new_row = [the_date_num, U6_value]

 # if the `the_date_num` is a number, then the current row is *not*
 # the header row. We need to transform the date.
 if isinstance(the_date_num, Number):

 # use the xlrd library's `xldate_as_datetime()` to generate
 # a Python datetime object
 the_date_num = xlrd.xldate.xldate_as_datetime(
 the_date_num, source_workbook.datemode)

 # overwrite the first value in the new row with
 # the reformatted date
 new_row[0] = the_date_num.strftime('%m/%d/%Y')

 # write this new row to the data output file
 output_writer.writerow(new_row)

240 | Chapter 7: Cleaning, Transforming, and Augmenting Data

4 Of course, Macs and PCs use a different “base” date because…reasons.

 # otherwise, this row must be metadata
 else:

 # since we'd like our metadata file to be nicely formatted, we
 # need to loop through the individual cells of each metadata row
 for item in current_sheet.row(row_num):

 # write the value of the cell
 source_workbook_metadata.write(item.value)

 # separate it from the next cell with a tab
 source_workbook_metadata.write('\t')

 # at the end of each line of metadata, add a newline
 source_workbook_metadata.write('\n')

 # just for good measure, let's close our output files
 output_file.close()
 source_workbook_metadata.close()

Converting these .xls “dates” using the xlrd library’s xldate_as_datetime()
method requires both the number value and the workbook’s datemode in order to
generate the Python datetime object correctly.4

Here, I’ve decided to write the date to my table-type data file as MM/DD/YYYY using
the appropriate strftime() format, but you could use another format if you
prefer.

While the xlrd library makes the process of converting our strange Excel dates to
something understandable relatively straightforward, I think the code in Example 7-7
demonstrates how the idiosyncrasies of wrangling a particular dataset can quickly
add complexity—especially in the form of additional, nested if statements—to what
started as a very simple program. This is just one of the reasons why we’ll spend
Chapter 8 exploring strategies and techniques for effectively and efficiently streamlin‐
ing our code: we want to make sure it does everything we need but also that it is
sufficiently readable and reusable to stand the test of time.

Generating True CSVs from Fixed-Width Data
Another instance where we also had only moderate success in transforming our data
was in Example 4-7, where we converted our fixed-width source data into a .csv.
While technically we succeeded in creating an output file that was comma separated,

Generating True CSVs from Fixed-Width Data | 241

https://xlrd.readthedocs.io/en/latest/api.html#xlrd.book.Book.datemode

the result was honestly pretty unsatisfactory: it retained many of the formatting
artifacts of the original file that could easily stymie our future efforts at data analysis.

Fortunately, the specific problem we encountered—that of “leading” and/or “trailing”
whitespace—is very well-known, since the data technologies that typically generate it
have been around for a long time. As a result, fixing this problem is pretty simple: the
solution exists in the form of the built-in Python strip() function, as illustrated in
Example 7-8.

Example 7-8. fixed_width_strip_parsing.py

an example of reading data from a fixed-width file with Python.
the source file for this example comes from the NOAA and can be accessed here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt
the metadata for the file can be found here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

import the `csv` library, to create our output file
import csv

filename = "ghcnd-stations"

reading from a basic text file doesn't require any special libraries
so we'll just open the file in read format ("r") as usual
source_file = open(filename+".txt", "r")

the built-in "readlines()" method does just what you'd think:
it reads in a text file and converts it to a list of lines
stations_list = source_file.readlines()

create an output file for our transformed data
output_file = open(filename+".csv","w")

use the `csv` library's "writer" recipe to easily write rows of data
to `output_file`, instead of reading data *from* it
output_writer = csv.writer(output_file)

create the header list
headers = ["ID","LATITUDE","LONGITUDE","ELEVATION","STATE","NAME","GSN_FLAG",
 "HCNCRN_FLAG","WMO_ID"]

write our headers to the output file
output_writer.writerow(headers)

loop through each line of our file (multiple "sheets" are not possible)
for line in stations_list:

 # create an empty list, to which we'll append each set of characters that
 # makes up a given "column" of data
 new_row = []

242 | Chapter 7: Cleaning, Transforming, and Augmenting Data

 # ID: positions 1-11
 new_row.append((line[0:11]).strip())

 # LATITUDE: positions 13-20
 new_row.append((line[12:20]).strip())

 # LONGITUDE: positions 22-30
 new_row.append((line[21:30]).strip())

 # ELEVATION: positions 32-37
 new_row.append((line[31:37]).strip())

 # STATE: positions 39-40
 new_row.append((line[38:40]).strip())

 # NAME: positions 42-71
 new_row.append((line[41:71]).strip())

 # GSN_FLAG: positions 73-75
 new_row.append((line[72:75]).strip())

 # HCNCRN_FLAG: positions 77-79
 new_row.append((line[76:79]).strip())

 # WMO_ID: positions 81-85
 new_row.append((line[80:85]).strip())

 # now all that's left is to use the
 # `writerow` function to write new_row to our output file
 output_writer.writerow(new_row)

just for good measure, let's close the `.csv` file we just created
output_file.close()

If you compare this code with the code in Example 4-7, you’ll see that it’s
identical apart from our having applied the strip() method to each string before
appending it to our data row.

Once again, we see that modifying our original code to solve a formatting or
“cleaning” issue isn’t necessarily that hard, but the resulting script isn’t exactly ele‐
gant, either. Stripping the whitespace from our output with the strip() method is
definitely straightforward, but we’ve had to add a whole lot of parentheses in the
process—leaving us with code that is far less readable than we’d like.

This illustrates yet another way in which creating good, quality Python code mirrors
more typical writing processes. If we view our first efforts in Chapter 4 as something
like the “outline” of our final program—where we solve the high-level problem of
getting the data format we have into at least the table-type structure that we’re after—

Generating True CSVs from Fixed-Width Data | 243

it gives us space to come back later and revise that work, filling in the details that
allow it to be more nuanced in its handling of the specific dataset we’re working with.

Similarly, in Chapter 8 we’ll take that revision process one step further, refining these
programs—which already do everything we need them to do—so that they are more
concise and easier to understand, just as we might do with any piece of writing. This
iterative approach to programming not only means that we eventually end up with
better, more useful code; it also helps us break down big, complicated programming
problems into a series of less intimidating ones that we can solve one step at a
time. Equally important, no matter what stage of the process we’re in, we have a
functioning program we can fall back on if needed. This incremental approach is
especially useful when we take on more complex data-cleaning tasks like the one we’ll
look at next: resolving the unintentional spelling differences.

Correcting for Spelling Inconsistencies
In Chapter 6, we used a “fingerprinting” process to help address the possibility that
information about banks in our Paycheck Protection Program (PPP) data might have
spelling inconsistencies—a common issue in any dataset that relies on human data
entry. Of course, the code we wrote in Example 6-11 only estimated the number of
genuinely unique entries in the OriginatingLender column by counting how many
of them resulted in a distinct fingerprint. We found that our dataset contained 4,337
unique bank names but only 4,242 unique fingerprints—an indicator that as many as
95 bank names might actually be the same but contain typos because they generated
the same fingerprint.

Because those 95 potential typos could affect thousands of rows of data, we need a
way to transform our dataset so that we can confidently aggregate it by lender. At the
same time, we also don’t want to overcorrect by grouping together entries that don’t
actually belong together.

This is an instance where transforming our data is invaluable: we don’t want to
risk losing any of our original data (retaining it is essential for validation and spot-
checking), but we also need to transform it in order to support our future analysis
efforts. Because our dataset is large, grouping and filtering it to meet our needs is
likely to be time-consuming, so we want to preserve the results of that work by
actually adding new columns to the dataset. This lets us both preserve our original
data and the benefits of our transformation work in a single file.

Fortunately, we’ve got some go-to libraries that will make this process pretty straight‐
forward. Since we already know how to aggregate names using the fingerprinting
process from Example 6-11, the trickier piece may be determining when banks
that share the same fingerprint should actually be treated as distinct organizations.
Looking back at the output from Example 6-7 (reproduced in Example 7-9 for

244 | Chapter 7: Cleaning, Transforming, and Augmenting Data

convenience), we see that there are not a lot of fields that contain “originating” lender
information, so our most likely option for deciding if two originating banks whose
names share all the same words (and will therefore have the same fingerprint, e.g.,
“First Bank Texas” and “Texas First Bank”) will be to compare the value included in
OriginatingLenderLocationID.

Example 7-9. Recent sample data transposed

LoanNumber 9547507704
DateApproved 05/01/2020
SBAOfficeCode 464
ProcessingMethod PPP
BorrowerName SUMTER COATINGS, INC.
BorrowerAddress 2410 Highway 15 South
BorrowerCity Sumter
BorrowerState <NA>
BorrowerZip 29150-9662
LoanStatusDate 12/18/2020
LoanStatus Paid in Full
Term 24
SBAGuarantyPercentage 100
InitialApprovalAmount 769358.78
CurrentApprovalAmount 769358.78
UndisbursedAmount 0
FranchiseName <NA>
ServicingLenderLocationID 19248
ServicingLenderName Synovus Bank
ServicingLenderAddress 1148 Broadway
ServicingLenderCity COLUMBUS
ServicingLenderState GA
ServicingLenderZip 31901-2429
RuralUrbanIndicator U
HubzoneIndicator N
LMIIndicator <NA>
BusinessAgeDescription Existing or more than 2 years old
ProjectCity Sumter
ProjectCountyName SUMTER
ProjectState SC
ProjectZip 29150-9662
CD SC-05
JobsReported 62
NAICSCode 325510
RaceEthnicity Unanswered
UTILITIES_PROCEED <NA>
PAYROLL_PROCEED 769358.78
MORTGAGE_INTEREST_PROCEED <NA>
RENT_PROCEED <NA>
REFINANCE_EIDL_PROCEED <NA>
HEALTH_CARE_PROCEED <NA>
DEBT_INTEREST_PROCEED <NA>

Correcting for Spelling Inconsistencies | 245

BusinessType Corporation
OriginatingLenderLocationID 19248
OriginatingLender Synovus Bank
OriginatingLenderCity COLUMBUS
OriginatingLenderState GA
Gender Unanswered
Veteran Unanswered
NonProfit <NA>

Before we proceed, of course, we want to make sure that we understand what the data
in OriginatingLenderLocationID actually means. Lucky for us, a web search for the
words “originating lender location id” brings up yet another document from the SBA
website as the first result. Searching through this PDF for the term “location” brings
us to the page shown in Figure 7-2, which reassures us that the “Location ID” value
entered should not change from branch to branch of the same bank but indicates the
main branch of a given bank.

Figure 7-2. Information about lender location ID

With this additional information, we can go about creating a version of our PPP loan
data that includes a new column, OriginatingLenderFingerprint, that contains a
combination of the OriginatingLender fingerprint and the OriginatingLenderLoca
tionID, as shown in Example 7-10. Later on, we can then use this value to quickly

246 | Chapter 7: Cleaning, Transforming, and Augmenting Data

https://sba.gov/sites/default/files/articles/ETran_Origination_01_2014.pdf
https://sba.gov/sites/default/files/articles/ETran_Origination_01_2014.pdf

aggregate our data by originating lender while being (reasonably) confident that we
are neither failing to match entries due to typos nor treating what should be two
separate banks as one.

Example 7-10. ppp_add_fingerprints.py

quick script for adding a "fingerprint" column to our loan data, which will
help us confirm/correct for any typos or inconsistencies in, e.g., bank names

import the csv library
import csv

importing the `fingerprints` library
import fingerprints

read the recent data sample into a variable
ppp_data = open('public_150k_plus_recent.csv','r')

the DictReader function makes our source data more usable
ppp_data_reader = csv.DictReader(ppp_data)

create an output file to write our modified dataset to
augmented_ppp_data = open('public_150k_plus_fingerprints.csv','w')

create a "writer" so that we can output whole rows at once
augmented_data_writer = csv.writer(augmented_ppp_data)

because we're adding a column, we need to create a new header row as well
header_row = []

for every column header
for item in ppp_data_reader.fieldnames:

 # append the existing column header
 header_row.append(item)

 # if we're at 'OriginatingLender'
 if item == 'OriginatingLender':

 # it's time to add a new column
 header_row.append('OriginatingLenderFingerprint')

now we can write our expanded header row to the output file
augmented_data_writer.writerow(header_row)

iterate through every row in our data
for row in ppp_data_reader:

 # create an empty list to hold our new data row
 new_row = []

Correcting for Spelling Inconsistencies | 247

 # for each column of data in the *original* dataset
 for column_name in ppp_data_reader.fieldnames:

 # first, append this row's value for that column
 new_row.append(row[column_name])

 # when we get to the 'OriginatingLender' column, it's time
 # to add our new "fingerprint" value
 if column_name == 'OriginatingLender':

 # our fingerprint will consist of the generated fingerprint PLUS
 # the OriginatingLenderLocationID
 the_fingerprint = fingerprints.generate(row[column_name]) + \
 " " + row['OriginatingLenderLocationID']

 # append the compound fingerprint value to our row
 new_row.append(the_fingerprint)

 # once the whole row is complete, write it to our output file
 augmented_data_writer.writerow(new_row)

close both files
augmented_ppp_data.close()
ppp_data.close()

While it may seem excessive, this first loop actually exists only to create our
new header row. As always, we want to avoid introducing typos whenever and
wherever possible, so in this instance, the whole extra loop is worth it (way better
than typing out this list by hand).

Since we’re adding a column of data, we need to build the new data row as a list,
item by item—just as we did with the header row.

The structure of the resulting file is the same as the original, except that
a new OriginatingLenderFingerprint column has now been added between
OriginatingLender and OriginatingLenderCity, as you can see in Example 7-11.

Example 7-11. PPP data with fingerprints

LoanNumber 9547507704
DateApproved 05/01/2020
SBAOfficeCode 464
ProcessingMethod PPP
BorrowerName SUMTER COATINGS, INC.
BorrowerAddress 2410 Highway 15 South
BorrowerCity Sumter
BorrowerState NaN
BorrowerZip 29150-9662
LoanStatusDate 12/18/2020

248 | Chapter 7: Cleaning, Transforming, and Augmenting Data

LoanStatus Paid in Full
Term 24
SBAGuarantyPercentage 100
InitialApprovalAmount 769358.78
CurrentApprovalAmount 769358.78
UndisbursedAmount 0.0
FranchiseName NaN
ServicingLenderLocationID 19248
ServicingLenderName Synovus Bank
ServicingLenderAddress 1148 Broadway
ServicingLenderCity COLUMBUS
ServicingLenderState GA
ServicingLenderZip 31901-2429
RuralUrbanIndicator U
HubzoneIndicator N
LMIIndicator NaN
BusinessAgeDescription Existing or more than 2 years old
ProjectCity Sumter
ProjectCountyName SUMTER
ProjectState SC
ProjectZip 29150-9662
CD SC-05
JobsReported 62.0
NAICSCode 325510.0
RaceEthnicity Unanswered
UTILITIES_PROCEED NaN
PAYROLL_PROCEED 769358.78
MORTGAGE_INTEREST_PROCEED NaN
RENT_PROCEED NaN
REFINANCE_EIDL_PROCEED NaN
HEALTH_CARE_PROCEED NaN
DEBT_INTEREST_PROCEED NaN
BusinessType Corporation
OriginatingLenderLocationID 19248
OriginatingLender Synovus Bank
OriginatingLenderFingerprint bank synovus 19248
OriginatingLenderCity COLUMBUS
OriginatingLenderState GA
Gender Unanswered
Veteran Unanswered
NonProfit NaN

While this transformation will help us easily aggregate our data by a particular “origi‐
nating” lender, we could quickly duplicate it with the “servicing” lender as well. We
could even write a script that compares the value of these two resulting fingerprints
to create a “flag” column indicating whether the servicing and originating banks for a
particular loan are the same.

Correcting for Spelling Inconsistencies | 249

5 Believe me, most professional programmers are looking things up online every five minutes.

The Circuitous Path to “Simple” Solutions
While I hope that you found the Example 7-10 exercise simple to follow, I want you
know that the preceding script was not the first solution I tried—it wasn’t even the
second or third. In fact, I probably spent about a dozen hours, all told, thinking,
hacking, wrangling, and failing before I finally realized that my eventual approach
to the problem was the fastest, simplest, and most effective way to strike a balance
between making sure that loans from the same bank were grouped together without
accidentally conflating two different institutions.

I’m going to describe how I actually worked my way through this process because—as
is hopefully also starting to become clear—data wrangling (and programming in gen‐
eral) is not so much about coding as it is about reasoning and problem-solving. This
means that thinking through the problem in front of you, trying different solutions,
and, perhaps most importantly, being willing to change course even if it feels like
“throwing out” a bunch of work are all much more important to data wrangling than
being able to write more than two lines of Python code from memory.5 So in an
effort to illustrate what just one of these problem-solving efforts entails, I’m going
to (comparatively) briefly give you an overview here of the different approaches I
tried before settling on the solution in “Correcting for Spelling Inconsistencies” on
page 244.

At first, I started out by minimally adapting the script from Example 6-11, creating a
new column that contained just those fingerprints and writing a new CSV that added
this new column. But I realized that there was a strong likelihood that some banks
with similar names would share the same “fingerprint,” so I wrote a script that did the
following:

1. Created a list of the unique fingerprints.1.
2. For every unique fingerprint, created a new list (actually a pandas DataFrame) of2.

all the unique OriginatingLenderLocationID values.
3. If there was more than one distinct OriginatingLenderLocationID value, I then3.

updated the “fingerprint” column to incorporate the OriginatingLenderLocatio
nID, much as we ended up doing for all the entries in Example 7-10.

Even creating that script, however, was much more involved than this numbered
synopsis would make it seem. The first step was easy, of course—we’d pretty much
done that already. But when it came time to working with the new file in pandas,
my scrappy little Chromebook didn’t have enough memory, so I moved my work to
Google Colab. This gave me more memory to work with (sort of), but now every

250 | Chapter 7: Cleaning, Transforming, and Augmenting Data

6 At first I was concerned that the OriginatingLenderLocationID might refer to an individual bank branch,
for example.

time I stepped away for more than a few minutes, I had to authenticate and reload
the data from my Google Drive file all over again—that took an additional couple
of minutes every time. Also, while I was pretty confident that I had figured out how
to update the values in my DataFrame correctly, attempting to check my work by
searching for a new fingerprint that I was sure should exist wasn’t working reliably:
sometimes I got matches, and sometimes I got an empty DataFrame! Add to this that
it took about 3 or more minutes to run step 3 each time, and you can imagine how
many hours (and how much frustration!) it took to be sure my code actually worked
as intended.

Of course, once I had managed to code up (and check) that multistep solution, I
realized that the result wasn’t all that different from what I’d started with. In fact,
it was a little less satisfying because now the format of my new OriginatingLender
Fingerprint column was inconsistent: some had the OriginatingLenderLocationID
appended, some didn’t. But since the actual value of the fingerprint didn’t matter—
only that it could be used accurately to both aggregate and disambiguate banks—why
was I going to all the trouble of only adding location IDs to the ones that had several
entries? Couldn’t they all just have the location IDs appended?

Well, of course it was only at that point that I bothered to look up the documentation
shown in Figure 7-2, which confirmed that adding location IDs wouldn’t break up
fingerprints that should be the same.6 And that’s how I came full circle: rather than
assigning potentially overlapping fingerprints and then trying to “weed out” the
problems with an awkward and time-consuming search process, the best solution
was just to make the OriginatingLenderLocationID part of the new “fingerprint”
column right from the start.

Having spent hours working out how to “fix” the original fingerprints—and in the
process, contending with the limits of my device, the vagaries of Google Colab, and
the tedium of making a small change to a script and then having to wait several
minutes for it to run—I won’t pretend that it didn’t feel like a bit of a letdown to
realize that the best solution really just involved a small tweak on my original script
(though not the one I had started with).

But if there’s one thing that I’ve learned after years of data wrangling, it’s that learning
when to let go and start over (or go back to the beginning) is one of the most
important skills you can develop. Sometimes you have to let go of a dataset, even if
you’ve sunk hours into researching, evaluating, and cleaning it. Likewise, sometimes
you have to let go of a programming approach, even if you’ve spent hours reading
documentation and experimenting with new methods just to get the result you’re
after. Because in the end, the goal is not to use a particular dataset, or to use a

The Circuitous Path to “Simple” Solutions | 251

particular library or coding method. It’s to use data to understand something about the
world. And if you can keep your focus on that, letting go when you need to will be
much easier.

You will also probably find it easier to accept this process—whether it involves letting
go of a dataset or a scripting solution you’ve already spent hours on—when you
start to experience firsthand that you have learned something valuable even from
something you eventually “abandon.” Before my detour into “fixing” my original,
text-only fingerprints, for example, I didn’t really know how to update values within a
pandas DataFrame; now I do (I really do). I also now know a bit more about Google
Colab’s strengths and inconsistencies and was reminded about some key “gotchas” to
working with diverse datasets (more on that in the next section).

The same goes for datasets that might not turn out to be usable for answering a
particular question: just because they aren’t right for your current project doesn’t
mean they might not be for another one. But whether or not you ever look at them
again, working with those datasets will teach you so many things: about the subject of
the data, about the pitfalls and possibilities of certain data types, about experts on the
topic, and more. In other words, letting go of a dataset or a coding approach is never
a “waste”: the experience you gain will only make your next effort better, if you let it.

Gotchas That Will Get Ya!
One of the reasons why it is so important to document your work is that very often
the person you’re writing that documentation for is really just “future you,” who
may be returning to a particular dataset or script—or even Python altogether—after
days, weeks, or months away. In that time, things that were once obvious will seem
confusing and obscure unless you document them thoroughly, and even common
“lessons” can get overlooked when you’re in a hurry or focused on something else. I
had that experience myself as I worked through the exercises in the last few chapters,
especially as I made an effort to check my own work. For me, that experience was
just another reminder that when something’s wrong with your script, it’s usually
something simple ;-)

Here are some common gotchas to keep in mind:

Confirm the case
Anytime you are checking to see if two strings are the same, remember that capi‐
talization matters! When I was working on Example 6-16, I at first overlooked
that all of the business names (but not the bank names!) were in all caps. I had a
frustrating few minutes thinking that my dataset did not contain the WATERFORD
RECEPTIONS example, until I finally looked at the data again and realized my
error.

252 | Chapter 7: Cleaning, Transforming, and Augmenting Data

7 As a case in point, I didn’t even end up using this approach in the final code for Example 7-10, but I did find a
use for it in Example 7-12!

8 Which leads us to https://naics.com/what-is-a-naics-code-why-do-i-need-one.

Insist on the data type
As I worked my way through the process described in “The Circuitous Path
to “Simple” Solutions” on page 250, I once again had trouble finding matches
for values that I felt certain should be in the dataset. I had forgotten, however,
that the pandas library (unlike the csv library) actually tries to apply data types
to the columns of data it reads into a DataFrame. In this case, that meant that
OriginatingLenderLocationID became a number (instead of a string), so my
efforts to find particular values for that column were failing because I was trying
to match, for example, the number 71453 to the string "71453"—which definitely
doesn’t work!

In that instance, I found the simplest solution was simply to add a parameter
to the read_csv() function call, specifying that all the data should be read
as strings (e.g., fingerprinted_data1 = pd.read_csv('public_150k_plus_fin
gerprints.csv', dtype='string')).7 This also prevented some of the larger
dollar amounts in the data from being converted to scientific notation (e.g.,
1.21068e+06 rather than 1210681).

After basic typos, the sort of data-type “gotchas” described here are probably the next
most common data wrangling “errors” you’re likely to encounter. So if you find you’ve
made an oversight like these at some point, try not to be too frustrated. It’s really just
a sign that your programming logic is good and some of your formatting needs to be
fixed.

Augmenting Your Data
Adding the OriginatingLenderFingerprint column in Example 7-10 was a valuable
way to increase the utility and usability of the PPP loan data, but another good way
to add value to a dataset is to look for other datasets that you can use to augment it.
This is usually easiest when the dataset is dimensionally structured, in that it already
references a widely used standard of some kind. In the case of our PPP loan data, we
have an example of this in the column called NAICSCode, which a quick web search8

confirms is the:

…North American Industry Classification System. The NAICS System was developed
for use by Federal Statistical Agencies for the collection, analysis and publication of
statistical data related to the US Economy.

Given this, we can probably find a way to augment our data by adding more infor‐
mation about the NAICS code for each entry, which might, for example, help us

Augmenting Your Data | 253

https://naics.com/what-is-a-naics-code-why-do-i-need-one

understand more about what industries and types of businesses are participating in
the PPP loan program. While we could probably pull a comprehensive list of NAICS
codes from the main website, a web search for naics sba brings up some interesting
options. Specifically, the SBA offers a PDF that provides information about Small
Business Administration size guidelines for businesses by NAICS code, in either
millions of dollars or number of employees. In addition to providing us with more
human-readable descriptions of the NAICS codes themselves, augmenting our PPP
loan data with this additional information can help us answer more general questions
about what actually qualifies as a “small business.”

Our process for this won’t be too much different from data merges we’ve done
previously, both in the process we’ll follow and the issues it introduces. To start off
with, we’ll look for a non-PDF version of the SBA size guidelines. Clicking on the
“SBA’s Size Standards Webpage” link on the first page of the PDF brings us to a more
general page on the SBA website, where in the “Numerical Requirements” section we
find a link labeled “table of small business size standards”. Scrolling down that page
turns up a downloadable XLSX version of the earlier PDF document. From there, we
can export the second sheet (which contains the actual codes and descriptions) as a
CSV file. Now, we can import and match this with our PPP loan data.

As you’ll see in Example 7-12, anytime we integrate a new data source, it means we
have to evaluate, clean, and transform it just as we have our “primary” dataset. In this
case, that means that we want to proactively update any <NA> values in the NAICSCode
column of our PPP loan data to a flag value (I have chosen the string “None”), in
order to prevent their being matched with essentially random <NA> values in our SBA
NAICS code file. Similarly, once we’ve done our merge, we still want to see what
codes from our PPP loan file didn’t get matched successfully. For now, we’ll leave
open the decision about how to handle these until we’ve done a bit more digging
around in our analysis phase to see whether we want to “fill them in” (e.g., with the
regular NAICS values/interpretations), flag them as being atypical for the SBA, or
some combination thereof.

254 | Chapter 7: Cleaning, Transforming, and Augmenting Data

https://sba.gov/sites/default/files/2019-08/SBA%20Table%20of%20Size%20Standards_Effective%20Aug%2019%2C%202019.pdf
https://sba.gov/sites/default/files/2019-08/SBA%20Table%20of%20Size%20Standards_Effective%20Aug%2019%2C%202019.pdf
https://sba.gov/federal-contracting/contracting-guide/size-standards
https://sba.gov/document/support-object-object-table-size-standards
https://sba.gov/sites/default/files/2019-08/SBA%20Table%20of%20Size%20Standards_Effective%20Aug%2019%2C%202019.xlsx

Example 7-12. ppp_adding_naics.py

script to merge our PPP loan data with information from the SBA's NAICS
size requirements, found here:
https://www.sba.gov/document/support--table-size-standards

import pandas to facilitate the merging and sorting
import pandas as pd

read our PPP loan data into a new DataFrame
ppp_data = pd.read_csv('public_150k_plus_fingerprints.csv', dtype='string')

read the NAICS data into a separate DataFrame
sba_naics_data = pd.read_csv('SBA-NAICS-data.csv', dtype='string')

if there's no value in the 'NAICSCode' column, replace it with "None"
ppp_data['NAICSCode'] = ppp_data['NAICSCode'].fillna("None")

merge the two datasets using a "left" merge
merged_data = pd.merge(ppp_data, sba_naics_data, how='left',
 left_on=['NAICSCode'], right_on=['NAICS Codes'],
 indicator=True)

open a file to save our merged data to
merged_data_file = open('ppp-fingerprints-and-naics.csv', 'w')

write the merged data to an output file as a CSV
merged_data_file.write(merged_data.to_csv())

print out the values in the '_merge' column to see how many
entries in our loan data don't get matched to an NAICS code
print(merged_data.value_counts('_merge'))

create a new DataFrame that is *just* the unmatched rows
unmatched_values = merged_data[merged_data['_merge']=='left_only']

open a file to write the unmatched values to
unmatched_values_file = open('ppp-unmatched-naics-codes.csv', 'w')

write a new CSV file that contains all the unmatched NAICS codes in our
PPP loan data, along with how many times it appears
unmatched_values_file.write(unmatched_values.value_counts('NAICSCode').to_csv())

Use the dtype='string' parameter to force pandas to treat our entire dataset as
strings; this will make later matching and comparison tasks more predictable.

If we don’t do this replacement, our data will match to unpredictable NA values
from the SBA-NAICS-data.csv file.

Augmenting Your Data | 255

Augmenting a dataset as we have in Example 7-12 can help us expand the types of
questions we can use it to answer, as well as helping support faster, more comprehen‐
sive data analysis and interpretation. At the same time, anytime we introduce new
data, we need to complete the same life cycle of evaluation, cleaning, transformation,
and (maybe even) augmentation that we applied to our “primary” dataset. This means
that we’ll always need to strike a balance between making our primary data more
elaborate (and possibly useful) with the time and effort involved in finding and
wrangling the “secondary” data that we use to augment it.

Conclusion
While the variety of data cleaning, transformation, and augmentation possibilities is
as varied as both datasets and analysis possibilities, the primary goal of this chapter
was to illustrate common issues in data cleaning, transformation, and augmentation
and introduce some key methods for resolving them.

Before we move on to actually trying to generate insights with our data, however,
we’re going to take a small “detour” in Chapter 8, which will focus on some program‐
ming best practices that can help us make sure our code is as clear, efficient, and
effective as possible. Because while using Python to do data wrangling already lets us
do things that would be impossible with other tools, optimizing our code for both use
and reuse is another way to make sure we get the most out of each program and piece
of code we write, too. In most cases, this means structuring our files so that they are
more versatile, composable, and readable, as we’ll see right now!

256 | Chapter 7: Cleaning, Transforming, and Augmenting Data

CHAPTER 8

Structuring and Refactoring Your Code

Before we move on to the analyzing and visualizing aspects of data wrangling, we’re
going to take a brief “detour” to discuss some strategies for making the most of
everything we’ve done so far. In the last few chapters, we’ve explored how to access
and parse data from a variety of data formats and sources, how to evaluate its quality
in practical terms, and how to clean and augment it for eventual analysis. In the
process, our relatively simple programs have evolved and changed, becoming—inevi‐
tably—more convoluted and complex. Our for loops now have one or (more) nested
if statements, and some of those now have apparently “magic” numbers embedded
in them (like our the_date.weekday() <= 4 in Example 7-5). Is this just the price of
more functional code?

Remember that commenting our code can do a lot to help keep the logic of our
scripts understandable, both to potential collaborators and our future selves. But it
turns out that detailed documentation (much as I love it) isn’t the only way that we
improve the clarity of our Python code. Just like other types of written documents,
Python supports a range of useful mechanisms for structuring and organizing our
code. By making judicious use of these, we can make it simpler to both use and reuse
our programming work down the line.

So in this chapter, we’re going to go over the tools and concepts that will allow us
to refine our code in such a way that it is both readable and reusable. This process,
known as refactoring, exemplifies yet another way that using Python for our data
wrangling work makes it possible to get more output for our effort: while we can rely
on the functionality that someone else’s library offers when we need to, we can also
create new coding “shortcuts” that are customized to exactly our own preferences and
needs.

257

1 In this case, the programmer is actually considered the “user.”
2 Truly, good documentation will save your $h!t sometimes.

Revisiting Custom Functions
When we were covering the Python fundamentals way back in Chapter 2, one of
the things we touched on was the concept of “custom” or user-defined functions.1 In
Example 2-7, we saw how a custom function could be used to encapsulate the simple
task of printing out a greeting when a particular name was provided—but of course
we can create custom functions that are as simple or as complex as we like. Before
we dive into the mechanics of writing our own custom functions, however, let’s take a
step back and think about which design considerations can best help us decide when
writing a custom function is likely to be most helpful. Of course, like all writing, there
are few hard-and-fast rules, but what follows are a few heuristics that can help you
decide when and how refactoring is likely to be worth it.

Will You Use It More Than Once?
Like variables, one way to identify parts of your code that could benefit from being
repackaged into custom functions is to look for any particular task that gets done
more than once. From validating input to formatting output (as we did, say, in
Example 7-7) and everything in between, if your current script includes lots of fiddly
conditionals or repetitive steps, that’s an indicator that you may want to think about
designing some custom functions. Keep in mind, too, that the repetition you’re con‐
sidering doesn’t need to exist within a single script for refactoring to be worthwhile. If
you find that there are particular tasks that you’re doing frequently across the scripts
that you’re writing (for example, testing to see if a given day is a weekday, as we did
in Example 7-5), you can always put the custom function into an external script and
include it anywhere you might need it, just as we did with our credentials files in
Chapter 5.

Is It Ugly and Confusing?
Documenting your work as you go is a gift to both current collaborators and your
future self.2 At the same time, thoroughly commenting your code—especially if you
include not just the how but the why of your approach, which I still recommend—can
eventually make it a bit unwieldy to read. Creating really comprehensible code, then,
is a balancing act between providing enough detail to be comprehensive while also
being sufficiently concise so your documentation actually gets read.

Packaging relevant bits of code into custom functions is actually a key way you
can help thread this needle: like variables, custom functions can (and should!) have
descriptive names. Just by reading the function name, whoever is looking at your code

258 | Chapter 8: Structuring and Refactoring Your Code

3 Doing these things is definitely possible but is well beyond the scope of most data wrangling activities, and
therefore this book.

will get some essential information about what is happening, without your needing
to add multiple lines of descriptive comments immediately around it. If the function
name is descriptive enough and/or a particular reader doesn’t need more detail right
away, they can just move on. Meanwhile, they’ll still be able to find your lovely,
descriptive documentation for that function if they need it—neatly tucked away in
another part of the program (or another file altogether). This means that the inline
comments for your main script can stay relatively succinct without sacrificing the
completeness of your documentation.

Do You Just Really Hate the Default Functionality?
OK, so this is maybe not the best reason to write a custom function, but it is a real
one. Over time, you may find that there are tasks you need to complete over and over
again as part of your data wrangling endeavors, and that there’s something about the
existing functions and libraries that just bugs you. Maybe it’s a function name that
you find confusing so you always have to remind yourself precisely what it’s called.
Or maybe there’s a parameter you consistently forget to add that just makes every‐
thing more difficult (I’m looking at you, pd.read_csv(), with your dtype='string'
parameter!). If you’re working alone or in a small team, it’s perfectly fine to write
custom functions that help make your life easier just because they do. You don’t need
a grand rationale. If it will make your life easier, go ahead! That’s the power of being
the programmer.

Of course, there are some limits to this. Unless you want to take a much more formal
and involved approach to writing Python code, you can’t very effectively do things
like define a new function that has the same name as an existing function or make
operators like + or - behave differently.3 However, if you just really wish that an
existing function you have to use all the time worked a little bit differently, go with
it—just make sure you document the heck out of your version!

Understanding Scope
Now that we’ve gone over some of the reasons you might refactor your code with
custom functions, it’s time to discuss the mechanics a little bit. Probably the most
important concept to understand when you start writing custom functions is scope.
Although we haven’t used this term before, scope is something that we’ve actually
been working with since we declared our first variables way back in “What’s in a
name?” on page 41. In that example, we saw that we could:

Understanding Scope | 259

1. Create and assign a value to a variable (author = "Susan E. McGregor").1.
2. Use that variable to refer to its contents later and pass its value to a function2.

(print(author)).

At the same time, we know that if we created a program that simply consisted of the
line:

print(author)

we’d get an error, because in the universe of our one-line script, there is no memory-
box labeled author. So Python chucks an error at us and declines to go any further.

When we talk about scope in programming, what we’re actually talking about is the
current “universe” from the perspective of a particular piece of code. An individual
script has a scope that evolves as each line of code is read by the computer, from top
to bottom, which is what leads to the (very much expected) behaviors of the scripts in
Examples 8-1 and 8-2.

Example 8-1. No author variable in scope

no variable called "author" exists in the same "universe"
as this line of code; throw an error
print(author)

Example 8-2. An author variable in scope

create variable "author"
author = "Susan E. McGregor"

variable "author" exists in the "universe" of this line of code; carry on!
print(author)

Just as every time we create a new variable, a new “box” is created in the computer’s
memory, each time we define a new custom function, a new little universe, or scope,
is created for it as well. This means that when we use custom functions, we are
compartmentalizing our code not just visually but logically and functionally. This
means that we can treat our own custom functions much the way we do the built-in
Python methods and library functions that we’ve been using throughout this book:
as “recipes” to which we provide “ingredients” and which return to us some value
or freshly made Python object in return. The only difference is that with custom
functions, we are the chefs!

To get a handle on what this all means in practice, let’s revisit Example 2-7 from
Chapter 2 but with a couple of tweaks, as shown in Example 8-3.

260 | Chapter 8: Structuring and Refactoring Your Code

Example 8-3. greet_me_revisited.py

create a function that prints out a greeting
to any name passed to the function
def greet_me(a_name):
 print("Variable `a_name` in `greet_me`: "+a_name)
 print("Hello "+a_name)

create a variable named `author`
author = "Susan E. McGregor"

create another variable named `editor`
editor = "Jeff Bleiel"

a_name = "Python"
print("Variable `a_name` in main script: "+a_name)

use my custom function, `greet_me` to output "Hello" messages to each person
greet_me(author)
greet_me(editor)

print("Variable `a_name` in main script again: "+a_name)

This yields the following output:

Variable `a_name` in main script: Python
Variable `a_name` in `greet_me`: Susan E. McGregor
Hello Susan E. McGregor
Variable `a_name` in `greet_me`: Jeff Bleiel
Hello Jeff Bleiel
Variable `a_name` in main script again: Python

Because any custom function automatically gets its own scope, that function can only
“see” the variables and values that are explicitly passed into it. In turn, the values
and variables inside that function are effectively “hidden” from the primary script.
One consequence of this is that when we write custom functions, we don’t need to
worry about what variable names have already been used in the primary script, or
vice versa. As a result, we need to define fewer unique variable names in general,
which is helpful as we begin to write longer and more complex scripts. It also means
that once we have a custom function working as we expect, we can use—and even
modify—the details of how it functions without having to make adjustments to the
variables and functions in the surrounding script.

Understanding Scope | 261

4 Technically, parameters describe the variable names assigned in the function definition, while arguments are
the actual values that are passed to the function when it is called. In practice, though, these terms are often
used interchangeably.

5 So-called “statically typed” programming languages will actually complain before your code runs if you’ve
passed the wrong data type to a function or method.

Defining the Parameters for Function “Ingredients”
We already have a fair amount of experience with providing “ingredients” (officially
known as arguments) to the methods and functions that come built into Python, or
that we’ve had access to through the many libraries we’ve used so far. As we begin to
write custom functions, however, we need to explore in more detail what the process
is for defining the parameters that those functions will accept.4

First, know that—unlike some programming languages—Python doesn’t require (or
even really allow) you to insist that a function’s parameters have specific data types.5

If someone wants to pass entirely the wrong types of data into your function, they
can absolutely do that. As the function author, then, it’s up to you to decide whether
and how you want to confirm (or validate) the appropriateness of the arguments or
“ingredients” that have been passed into your custom functions. In principle, there
are three ways to approach this:

• Check the data types of all the arguments that have been passed into your•
function and complain to the programmer if you find something you don’t like.

• Wrap your code in Python’s try...except blocks so that you can capture certain•
types of errors without halting the entire program. You can also use this to
customize the message to the programmer about what went wrong.

• Not worry about it and let the user of the function (in other words, the program‐•
mer) work through any problems using the default Python error messages.

While it may seem a bit laissez-faire, my primary recommendation at this point
is actually to go with option three: don’t worry about it. Not because errors won’t
happen (they will—you can revisit “Fast Forward” on page 46 if you need a refresher
on what some of them look like) but because our primary interest here is wrangling
data, not writing enterprise-level Python. As with the scripts we wrote in Chapter 4,
we want to strike a balance between what we try to handle programmatically and
what we rely on the programmer (whoever they may be) to investigate and handle
for themselves. Since the programs we’re writing won’t bring down a website or
corrupt the only copy of our data if they work incorrectly, not trying to anticipate and
handle every possible error that might arise seems more than reasonable. Of course,
if you document your functions clearly—a process we’ll look at in more detail in

262 | Chapter 8: Structuring and Refactoring Your Code

https://w3schools.com/python/python_try_except.asp

6 There’s that dtype='string' again!

“Documenting Your Custom Scripts and Functions with pydoc” on page 277—then
other programmers will have everything they need to avoid errors in the first place.

What Are Your Options?
Even if we’re not trying to write custom functions for use by thousands of people, we
can still make them flexible and fully featured. One of the simplest ways to do this is
to write our functions to solve the most common version of our problem but allow
optional arguments—like those we’ve seen in pandas6 and other libraries—that make
them somewhat adaptable. For example, we could modify our greet_me() function
to have a default greeting of “Hello” that can also be overridden by an optional value
passed in by the programmer. This lets us craft functions that can be used effectively
in multiple contexts. As an example, let’s look at the modified version of greet_me
shown in Example 8-4.

Example 8-4. greet_me_options.py

create a function that prints out a greeting to any name
def greet_me(a_name, greeting="Hello"):
 print(greeting+" "+a_name)

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

use `greet_me()` to output greeting messages to each person

say "Hello" by default
greet_me(author)
let the programmer specify "Hi" as the greeting
greet_me(editor, greeting="Hi")

As you can see, adding optional arguments is really as simple as specifying a default
value in the function definition; if the programmer passes a different value, it will
simply overwrite that default when the function is called.

Getting Into Arguments?
Providing a default value in the function declaration is not the only way to add
optional arguments to your custom functions. Python also supports two generic types
of optional arguments, *args and **kwargs:

Defining the Parameters for Function “Ingredients” | 263

*args

The *args parameter is useful when you want to be able to pass a list of several
values into a function and giving all of them names and/or default values would
be tedious. Values passed in as *args are stored as a list, so they can be accessed
within the function by writing a for...in loop to go through them one by one
(e.g., for arg in args).

**kwargs

The **kwargs parameter is similar to *args, except that it allows an arbitrary
number of keyword arguments to be passed to the function without assigning
any of them a default value, as we did for greeting in Example 8-4. Values
passed this way can be accessed via the kwargs.get() method (e.g., my_var =
kwargs.get("greeting")).

If using *args and **kwargs seems like a handy way to (literally) leave your options
open when writing custom functions, I’m here to tell you that it’s always better to
write custom functions (and scripts!) that solve the problems you have—not the
ones you think you might have somewhere down the line. While the idea of extreme
flexibility may seem attractive at first, it will usually lead to spending lots of time
thinking about “someday” problems, rather than actually solving the ones right in
front of us. And who has time for that? We’ve got data to wrangle!

Return Values
So far, our variations on the greet_me() function have been of pretty limited ambi‐
tion; we’ve really just used them to print (slightly) customized messages to the
console. By comparison, the functions we’ve used from external libraries have proven
incredibly powerful; they can take a humble .csv and transform it into a pandas
DataFrame or convert a whole .xls file into a collection of detailed lists and attributes
that capture almost every aspect of this multitiered file type. While that level of
Python programming is beyond the scope of this book, we can still create clean,
super-useful custom functions harnessing the power of return values.

If parameters/arguments are the “ingredients” in our function “recipes,” then return
values are the final dish—the outputs that get consumed by the rest of our program.
Really, return values are just pieces of data; they can be literals (like the string
“Hello”), or they can be variables of any data type. They are useful because they let us
hand off to a function whatever it needs and get back the thing that we need, without
worrying (at least from the perspective—or scope—of the main program) how the
proverbial sausage gets made. If we restructure the basic greet_me() function in
Example 8-3 to use a return value, it might look something like Example 8-5.

264 | Chapter 8: Structuring and Refactoring Your Code

Example 8-5. make_greeting.py

create a function that **returns** a greeting to any name passed in
def make_greeting(a_name):
 return("Hello "+a_name)

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

use my custom function, `greet_me()` to build and store
the "Hello" messages to each person
author_greeting = make_greeting(author)
editor_greeting = make_greeting(editor)

now `print()` the greetings built and returned by each function call
print(author_greeting)
print(editor_greeting)

At first you might be thinking, “How did that help?” While it’s true that our main
program actually got longer, it also arguably became a little bit more flexible and
easier to understand. Because my make_greeting() function returns the greeting
(rather than just printing it directly), I can do more things with it. Sure, I can just
print it as we did in Example 8-5, but I can now also store its return value in a
variable and do something else with it later. For example, I could add the line:

print(editor_greeting+", how are you?")

While that new message might not seem so exciting, it lets me both compartmentalize
some work into the function (in this case, adding “Hello” to any name) while also
giving me more flexibility about what to do with the output (for example, add more
text to one but not the other).

Climbing the “Stack”
Of course, creating a whole new variable just to store a simple greeting, as we did
in Example 8-5, does seem like a little bit more trouble than it’s worth. And in fact,
there’s no rule that says we have to stash the output from a function in a variable
before passing it to another function—we can actually “nest” our function calls
so that the first function’s output just becomes the next function’s input. This is a
strategy that we’ve actually used before, usually when we were manipulating strings
and passing them to the print() function, as we did when we added the strip()
function call to our .csv building process in Example 7-8. But we can do this with
any set of functions, assuming the first one returns what the next one needs. To

Climbing the “Stack” | 265

7 This term is also why the forum is called Stack Exchange.

see how this works in practice, take a look at the rewrite of Example 8-5 shown in
Example 8-6, where I’ve added a new function to append the “, how are you?” text to
a greeting message.

Example 8-6. make_greeting_no_vars.py

function that returns a greeting to any name passed in
def make_greeting(a_name):
 return("Hello "+a_name)

function that adds a question to any greeting
def add_question(a_greeting):
 return(a_greeting+", how are you?")

create a variable named author
author = "Susan E. McGregor"

create another variable named editor
editor = "Jeff Bleiel"

print the greeting message
print(make_greeting(author))

pass the greeting message to the question function and print the result!
print(add_question(make_greeting(editor)))

While the code statement print(make_greeting(author)) is still fairly easy to inter‐
pret, things start to get more complicated with print(add_question(make_greet
ing(editor))), which I hope helps illustrate that there’s a limit to the utility of
function call nesting. The more function calls you nest, the more difficult it is to read
the code, even though the “order of operations” logic stays the same: the “innermost”
function is always executed first, and its return value “bubbles up” to become the
input for the next function. That return value then bubbles up to the next function,
and so on and so forth. In traditional programming terminology this, is known as
the function stack, where the innermost function is the “bottom” of the stack and
the outermost is the “top.”7 An illustration of the function stack for the last line of
Example 8-6 is shown in Figure 8-1.

While this sort of function-call nesting is at the heart of an entire programming
philosophy, for the sake of readability it is best used sparingly in most instances.

266 | Chapter 8: Structuring and Refactoring Your Code

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming

Figure 8-1. A nested function call stack

Refactoring for Fun and Profit
Now that we’ve explored some of the key principles and mechanisms for refactoring
our code, let’s see how it can be used to improve the clarity of some of our scripts
from previous chapters. As we move through the follwoing examples, remember that
choices about what to refactor and how (as with any kind of editing process) are
partly a matter of preference and style. To that end, I’ll describe the reasoning behind
my choices below each example; you may find these to be useful models when it
comes to developing your own refactoring practice.

A Function for Identifying Weekdays
In Example 7-5, we created a small script designed to read in our Citi Bike rides data
and output a new file containing only the rides that took place on a weekday. While
there was nothing fundamentally wrong with the approach we used in that example, I
think it is a good candidate for refactoring for a couple of reasons.

First, the existing script relies on a couple of ugly and not-very-descriptive function
calls. The first one is required to convert the available date string into an actual
datetime format that Python can evaluate meaningfully:

the_date = datetime.strptime(a_row['starttime'], '%Y-%m-%d %H:%M:%S.%f')

Similarly, though the built-in weekday() method is reasonably straightforward
(although it might be better named dayofweek()), we have to compare it to the
“magic number” 4 in order to determine if the_date is, in fact, a weekday:

if the_date.weekday() <= 4:

Overall, I think these parts of the code would be more readable without these
relatively obscure formats and comparisons.

Second, checking whether a particular date-like string is a Monday-through-Friday
weekday seems like the kind of thing that might come up reasonably frequently in

Refactoring for Fun and Profit | 267

https://s3.amazonaws.com/tripdata/index.html

data wrangling work. If I encapsulate this task into a custom function, I can easily
reuse it in other scripts.

To see how I’ve gone about refactoring the Example 7-5 script, take a look at
Example 8-7.

Example 8-7. weekday_rides_refactored.py

objective: filter all September, 2020 Citi Bike rides, and output a new
file containing only weekday rides

program outline:
1. read in the data file: 202009-citibike-tripdata.csv
2. create a new output file, and write the header row to it.
3. for each row in the file, make a date from the `starttime`:
a. if it's a weekday, write the row to our output file
4. close the output file

import the "csv" library
import csv

import the "datetime" library
from datetime import datetime

def main():
 # open our data file in "read" mode
 source_file = open("202009-citibike-tripdata.csv","r")

 # open our output file in "write" mode
 output_file = open("202009-citibike-weekday-tripdata.csv","w")

 # pass our source_file to the DictReader "recipe"
 # and store the result in a variable called `citibike_reader`
 citibike_reader = csv.DictReader(source_file)

 # create a corresponding DictWriter; specify its fieldnames should
 # be drawn from `citibike_reader`
 output_writer = csv.DictWriter(output_file,
 fieldnames=citibike_reader.fieldnames)

 # actually write the header row to the output file
 output_writer.writeheader()

 # loop through our `citibike_reader` rows
 for a_row in citibike_reader:

 # if the current 'starttime' value is a weekday
 if is_weekday(a_row['starttime']):
 # write that row of data to our output file
 output_writer.writerow(a_row)

268 | Chapter 8: Structuring and Refactoring Your Code

 # close the output file
 output_file.close()

def is_weekday(date_string, date_format='%Y-%m-%d %H:%M:%S.%f'):

 # convert the value in the 'date_string' to datetime format
 the_date = datetime.strptime(date_string, date_format)

 # if `the_date` is a weekday (i.e., its integer value is 0-5)
 if the_date.weekday() <= 4:
 return(True)
 else:
 return(False)

if __name__ == "__main__":
 main()

Wrapping our top-level script into a function called main() is a Python conven‐
tion that also serves an important functional purpose. Because the computer
reads Python top to bottom, if we don’t wrap this code in a function, then the
computer won’t have gotten to the definition of is_weekday() when it reaches if
is_weekday(a_row['starttime']) and will throw an error.

We can use the is_weekday() function to handle the finicky details of converting
our date string to both a “real” date and its weekday value. The descriptive
function name conveys what is happening at a high level without forcing the
reader to wade through the particulars.

The computer still reads from top to bottom as usual, but while it encounters
both the main() and is_weekday() function definitions first, we aren’t asking it
to execute anything until the very bottom of the script.

As you can see, while the bulk of the code (and even many of the comments) in
Example 8-7 are the same as those in Example 7-5, things have been reorganized in
a way that makes the main() part of the program much more concise and readable.
Sure, if the programmer wants to know the details of how weekdays are identified, the
specifics are available right there in the is_weekday() function definition. Otherwise,
though, they can just read through the primary part of the script and very easily
confirm that it is doing what the outline alleges.

Refactoring for Fun and Profit | 269

8 You can find a helpful description/demonstration of the reasoning behind this convention at https://freecode
camp.org/news/if-name-main-python-example.

What’s the __main__ Frame?
If you’re wondering about the if statement at callout 3 in the last snippet, the first
thing to know is that it is also a Python convention and a programmatic shorthand
for telling the computer “if this script is being run directly.” The principal objective
of this protective if statement is to prevent unexpected behaviors if you import one
Python script into another.8 Another way to minimize the chances of code overlap
or “crashing” is to group useful functions thematically and add them to descriptively
named files (for example, date_functions.py), and then import these as needed.
While the if __name__ == "__main__": statement will help keep things running
smoothly (almost) no matter what, my experience has been that it is easier to keep
track of your commonly used functions if you collect them in one (or a few) well-
named places.

Metadata Without the Mess
In Example 7-7, we built on code from Examples 4-6 and 7-6 to create a single script
that both effectively interpreted Microsoft Excel dates and split our source data file
into a metadata text file and a structured .csv. While the resulting script did every‐
thing we needed, its code became leggy and hard to read, full of hard-to-interpret
conditionals and obscure date-formatting function calls.

Here we can clean things up a little bit by handling the formatting of the different
types of row content (for the .csv or the .txt file, respectively) in separate functions.
This requires rearranging (and clarifying) our script’s logic somewhat. It also illus‐
trates some of the challenges that can arise when it comes to getting all the requisite
information into our custom functions. The approach outlined in Example 8-8 illus‐
trates my currently preferred way of handling these issues.

Example 8-8. xls_meta_and_date_parsing_refactored.py

converting data in an .xls file with Python to csv + metadata file, with
functional date values using the "xrld" library.
first, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

then, import the `xlrd` library
import xlrd

import the csv library

270 | Chapter 8: Structuring and Refactoring Your Code

https://freecodecamp.org/news/if-name-main-python-example
https://freecodecamp.org/news/if-name-main-python-example

import csv

needed to test if a given value is *some* type of number
from numbers import Number

for parsing/formatting our newly interpreted Excel dates
from datetime import datetime

def main():

 # use `open_workbook()` to load our data in the `source_workbook` variable
 source_workbook = xlrd.open_workbook("fredgraph.xls")

 global the_datemode

 the_datemode = source_workbook.datemode

 # open and name a simple metadata text file
 source_workbook_metadata = open("fredgraph_metadata.txt","w")

 # an `.xls` workbook can have multiple sheets
 for sheet_name in source_workbook.sheet_names():

 # create a variable that points to the current worksheet
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # create "xls_"+sheet_name+".csv" as current sheet's output file
 output_file = open("xls_"+sheet_name+"_dates.csv","w")

 # use the `writer()` recipe to write `.csv`-formatted rows
 output_writer = csv.writer(output_file)

 # Boolean variable to detect if we've hit our table-type data yet
 is_table_data = False

 # now, we need to loop through every row in our sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # pulling out the value in the first column of the current row
 first_entry = current_sheet.row_values(row_num)[0]

 # if we've hit the header row of our data table
 if first_entry == 'observation_date':

 # it's time to switch our "flag" value to "True"
 is_table_data = True

 # if `is_table_data` is True
 if is_table_data:

 # pass the requisite data to out `create_table_row()` function
 new_row = create_table_row(current_sheet, row_num)

Refactoring for Fun and Profit | 271

 # write this new row to the data output file
 output_writer.writerow(new_row)

 # otherwise, this row must be metadata
 else:

 # pass the requisite data to our `create_meta_text()` function
 metadata_line = create_meta_text(current_sheet, row_num)

 # write this new row to the metadata output file
 source_workbook_metadata.write(metadata_line)

 # just for good measure, let's close our output files
 output_file.close()
 source_workbook_metadata.close()

def create_table_row(the_sheet, the_row_num):

 # extract the table-type data values into separate variables
 the_date_num = the_sheet.row_values(the_row_num)[0]
 U6_value = the_sheet.row_values(the_row_num)[1]

 # create a new row object with each of the values
 new_row = [the_date_num, U6_value]

 # if the `the_date_num` is a number, then the current row is *not*
 # the header row. We need to transform the date.
 if isinstance(the_date_num, Number):

 # use the xlrd library's `xldate_as_datetime()` to generate
 # a Python datetime object
 the_date_num = xlrd.xldate.xldate_as_datetime(the_date_num, the_datemode)

 # create a new list containing `the_date_num` (formatted to MM/DD/YYYY
 # using the `strftime()` recipe) and the value in the second column
 new_row = [the_date_num.strftime('%m/%d/%Y'),U6_value]

 # return the fully formatted row
 return(new_row)

def create_meta_text(the_sheet, the_row_num):

 meta_line = ""

 # since we'd like our metadata file to be nicely formatted, we
 # need to loop through the individual cells of each metadata row
 for item in the_sheet.row(the_row_num):

 # write the value of the cell, followed by a tab character
 meta_line = meta_line + item.value + '\t'

272 | Chapter 8: Structuring and Refactoring Your Code

 # at the end of each line of metadata, add a newline
 meta_line = meta_line+'\n'

 # return the fully formatted line
 return(meta_line)

if __name__ == "__main__":
 main()

Though they should be used sparingly, creating a global variable here called
the_datemode means its value can be accessed by any function (the global here
refers to its scope). Note that in Python, global variables cannot be assigned a
value in the same line they are declared, which is why this has been done across
two separate code statements.

For example, if we didn’t create a global variable, for the date mode, we would
have to pass it as another argument to create_table_row(), which feels a bit
incongruous.

If you compare Example 8-8 with Example 8-7, you’ll see they have several key fea‐
tures in common: instead of code that executes automatically, everything in this script
has been compartmentalized into functions, with the conventional main() function
call protected by an if __name__ == "__main__": conditional. This example also
overlaps with Example 7-7 almost perfectly: the includes are all the same, and while it
has been rearranged into three functions instead of a single, linear script, most of the
code is almost identical.

Part of what I want to illustrate here is that refactoring your code doesn’t have
to be an enormous undertaking, but the results are invaluable. As a program, the
structure of Example 8-8 is now basically all logic and no particulars—fiddly details
are handled by our new functions. If I suddenly needed to download and parse a
new data series from the FRED database, I would feel comfortable just throwing
it at this script to see what happens, because if there are problems, I know exactly
where to go to fix them. Instead of having to wade through the entire program, any
formatting issues that might arise with a new data source are almost certainly going
to be the result of code in either create_table_row() or create_meta_text()—and
even then, problems will probably only appear in one or the other. That means that
in order to adapt this script to work with new (similar) data sources, I’ll probably
only have to look at (maybe) a dozen lines of code. That’s certainly better than wading
through close to 100!

In other words, while refactoring your data wrangling scripts usually doesn’t mean
writing too much more code, it can really save you from reading more than you need
to when you want to use, reuse, or adapt it later—and that’s yet another way that
Python can help you scale your data wrangling work.

Refactoring for Fun and Profit | 273

Going Global?
In Python, global variables like the one used in Example 8-8 differ from typical
variables in two ways:

1. Using the global keyword indicates that this variable can be accessed—and modi‐1.
fied—from inside any function in our program (that is, its scope is “global”).

2. A global variable (like the_datemode) cannot be declared and assigned a value in2.
the same code statement the way we do with most variables (e.g., is_table_data
= False). Instead, we have to declare it with the global keyword on one line and
assign a value to it on a subsequent line.

Right now you might be thinking, “Hey, this global keyword is handy. Why don’t I
just make all my variables global?” Even though global variables can be quite useful at
times, they should always be used cautiously—even as a last resort.

True, adding global variables to our code may help minimize how much you have
to rewrite your code in order to refactor it. At the same time, the drawbacks of
using lots of global variables can quickly overtake the advantages of refactoring in
the first place—most especially the ability to reuse variable names across functions
and scripts. As you write code over time, you’ll almost certainly start to develop your
own conventions for naming variables, along with your collection of commonly used
functions. But if one of your scripts contains a global variable that shares a name with
a variable used by an included function, you’ll start to get strange and inexplicable
behavior from your code. This kind of overlap can lead to the bug hunt of your life,
because you’ll have to go through your code line by line in order to uncover the
mix-up. In other words, use global variables extremely sparingly—and not at all if you
can avoid it!

Given all the reasons not to use global variables, why did I ultimately decide to
use one here? First, there is only one possible value for source_workbook.datemode,
because there is only one datemode attribute per Excel spreadsheet. So even if a
particular workbook had 20 different sheets each containing 100 columns of data,
there would still only be one, single, unchanging value for datemode for all of them.
So conceptually, the value of datemode is actually “global”; it’s reasonable that the
variable we use to store this value would be as well. And since the value of datemode
will never need to be updated within the script, there is less risk of retrieving an
unexpected value from it.

As with all writing, however, these choices are partly a matter of taste—and even our
own taste can change over time. While at first I liked the symmetry of creating one
function to “build” each row of table data and another function to “build” each line

274 | Chapter 8: Structuring and Refactoring Your Code

of metadata text, there’s also something to be said for breaking that symmetry and
avoiding the use of the global datemode variable altogether, as shown in Example 8-9.

Example 8-9. xls_meta_and_date_parsing_refactored_again.py

converting data in an .xls file with Python to csv + metadata file, with
functional date values using the "xrld" library.
first, pip install the xlrd library:
https://pypi.org/project/xlrd/2.0.1/

then, import the `xlrd` library
import xlrd

import the csv library
import csv

needed to test if a given value is *some* type of number
from numbers import Number

for parsing/formatting our newly interpreted Excel dates
from datetime import datetime

def main():

 # use `open_workbook()` to load our data in the `source_workbook` variable
 source_workbook = xlrd.open_workbook("fredgraph.xls")

 # open and name a simple metadata text file
 source_workbook_metadata = open("fredgraph_metadata.txt","w")

 # an `.xls` workbook can have multiple sheets
 for sheet_name in source_workbook.sheet_names():

 # create a variable that points to the current worksheet
 current_sheet = source_workbook.sheet_by_name(sheet_name)

 # create "xls_"+sheet_name+".csv" as the current sheet's output file
 output_file = open("xls_"+sheet_name+"_dates.csv","w")

 # use the `writer()` recipe to write `.csv`-formatted rows
 output_writer = csv.writer(output_file)

 # Boolean variable to detect if we've hit our table-type data yet
 is_table_data = False

 # now, we need to loop through every row in our sheet
 for row_num, row in enumerate(current_sheet.get_rows()):

 # pulling out the value in the first column of the current row
 first_entry = current_sheet.row_values(row_num)[0]

Refactoring for Fun and Profit | 275

 # if we've hit the header row of our data table
 if first_entry == 'observation_date':

 # it's time to switch our "flag" value to "True"
 is_table_data = True

 # if `is_table_data` is True
 if is_table_data:

 # extract the table-type data values into separate variables
 the_date_num = current_sheet.row_values(row_num)[0]
 U6_value = current_sheet.row_values(row_num)[1]

 # if the value is a number, then the current row is *not*
 # the header row, so transform the date
 if isinstance(the_date_num, Number):
 the_date_num = format_excel_date(the_date_num,
 source_workbook.datemode)

 # write this new row to the data output file
 output_writer.writerow([the_date_num, U6_value])

 # otherwise, this row must be metadata
 else:

 # pass the requisite data to our `create_meta_text()` function
 metadata_line = create_meta_text(current_sheet, row_num)

 # write this new row to the metadata output file
 source_workbook_metadata.write(metadata_line)

 # just for good measure, let's close our output files
 output_file.close()
 source_workbook_metadata.close()

def format_excel_date(a_date_num, the_datemode):

 # use the xlrd library's `xldate_as_datetime()` to generate
 # a Python datetime object
 a_date_num = xlrd.xldate.xldate_as_datetime(a_date_num, the_datemode)

 # create a new list containing the_date_num (formatted to MM/DD/YYYY
 # using the `strftime()` recipe) and the value in the second column
 formatted_date = a_date_num.strftime('%m/%d/%Y')

 return(formatted_date)

def create_meta_text(the_sheet, the_row_num):

 meta_line = ""

276 | Chapter 8: Structuring and Refactoring Your Code

 # since we'd like our metadata file to be nicely formatted, we
 # need to loop through the individual cells of each metadata row
 for item in the_sheet.row(the_row_num):

 # write the value of the cell, followed by a tab character
 meta_line = meta_line + item.value + '\t'

 # at the end of each line of metadata, add a newline
 meta_line = meta_line+'\n'

 return(meta_line)

if __name__ == "__main__":
 main()

Although I no longer pass parallel information to a custom function in order
to generate the table-type and metadata output files, abandoning that symmetry
prevents my having to create a global variable.

Which of these is the better solution? As with all writing, it depends on your
preferences, your use cases, and your audience. Some groups or institutions will
be “opinionated” about the choice to use—or avoid—global variables; some will feel
that shorter solutions are preferable, while others will prize structural symmetry, or
reusability. While Example 8-9 sacrifices some structural symmetry, it generates a
function that may be more broadly reusable. The choice of which is more important
is, as always, up to you to determine.

Documenting Your Custom Scripts and
Functions with pydoc
Up until now, we’ve taken a thorough but free-form approach to documenting our
code. There’s nothing wrong with this in principle, especially if it helps ensure you
actually do the documentation in the first place. As your inventory of Python scripts
(and their potential audience) expands, however, it is useful to be able to review your
personal collection of custom functions without individually opening up and reading
through each and every Python file. If nothing else, having lots of files open makes it
that much more likely that a stray keystroke will introduce an error into a function
you rely on in lots of other scripts—which is a really quick way to ruin your day.

Fortunately, with just a little bit of formatting we can adapt our existing program
descriptions and comments to work with a command-line function called pydoc. This
will let us print out our script and function descriptions to the command line just by
providing the relevant filename.

To see this in action, let’s start by refactoring one more script. In this case, we’ll
revise Example 7-8 to make it a little bit more concise. In the process, I’ll also update

Documenting Your Custom Scripts and Functions with pydoc | 277

the comments at the top of the script (and add some to our new function) to make
them compatible with the pydoc command. You can see what this looks like in
Example 8-10.

Example 8-10. fixed_width_strip_parsing_refactored.py

""" NOAA data formatter
Reads data from an NOAA fixed-width data file with Python and outputs
a well-formatted CSV file.

The source file for this example comes from the NOAA and can be accessed here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt

The metadata for the file can be found here:
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

Available functions

* convert_to_columns: Converts a line of text to a list

Requirements

* csv module

"""
we'll start by importing the "csv" library
import csv

def main():
 # variable to match our output filename to the input filename
 filename = "ghcnd-stations"

 # we'll just open the file in read format ("r") as usual
 source_file = open(filename+".txt", "r")

 # the "readlines()" method converts a text file to a list of lines
 stations_list = source_file.readlines()

 # as usual, we'll create an output file to write to
 output_file = open(filename+".csv","w")

 # and we'll use the `csv` library to create a "writer" that gives us handy
 # "recipe" functions for creating our new file in csv format
 output_writer = csv.writer(output_file)

 # we have to "hard code" these headers using the contents of `readme.txt`
 headers = ["ID","LATITUDE","LONGITUDE","ELEVATION","STATE","NAME",
 "GSN_FLAG","HCNCRN_FLAG","WMO_ID"]

 # create a list of `tuple`s with each column's start and end index
 column_ranges = [(1,11),(13,20),(22,30),(32,37),(39,40),(42,71),(73,75),

278 | Chapter 8: Structuring and Refactoring Your Code

 (77,79),(81,85)]

 # write our headers to the output file
 output_writer.writerow(headers)

 # loop through each line of our file
 for line in stations_list:

 # send our data to be formatted
 new_row = convert_to_columns(line, column_ranges)

 # use the `writerow` function to write new_row to our output file
 output_writer.writerow(new_row)

 # for good measure, close our output file
 output_file.close()

def convert_to_columns(data_line, column_info, zero_index=False):
 """Converts a line of text to a list based on the index pairs provided

 Parameters

 data_line : str
 The line of text to be parsed
 column_info : list of tuples
 Each tuple provides the start and end index of a data column
 zero_index: boolean, optional
 If False (default), reduces starting index position by one

 Returns

 list
 a list of data values, stripped of surrounding whitespace
 """

 new_row = []

 # function assumes that provided indices are *NOT* zero-indexed,
 # so reduce starting index values by 1
 index_offset = 1

 # if column_info IS zero-indexed, don't offset starting index values
 if zero_index:
 index_offset = 0

 # go through list of column indices
 for index_pair in column_info:

 # pull start value, modifying by `index_offset`
 start_index = index_pair[0]-index_offset

Documenting Your Custom Scripts and Functions with pydoc | 279

9 The actual structure/formatting I’ve used here a mashup of different styles derived from the guide at https://
realpython.com/documenting-python-code/#documenting-your-python-code-base-using-docstrings. While using
a standard approach may matter if you are working with a large team, if you are working alone or in a small
group, find a style that works for you!

 # pull end value
 end_index = index_pair[1]

 # strip whitespace from around the data
 new_row.append((data_line[start_index:end_index]).strip())

 # return stripped data
 return new_row

if __name__ == "__main__":
 main()

By starting and ending the file and the convert_to_columns() function descrip‐
tions with a set of three double quotation marks ("""), they visually stand from
the rest of the comments in the file and will now be accessible to pydoc by
running the following in a terminal:9

pydoc fixed_width_strip_parsing_refactored

This will display all of the file and function descriptions within the command-
line interface (use the arrow keys to scroll up and down, or the space bar to move
an entire “page” down at once). To exit the documentation and return to the
command line, just hit the q key.

Instead of writing a unique line of code to pull each column of data out of a given
line of text, I’ve put all the start/end values for each column into a list of Python
tuples, which are essentially unchangeable lists.

By passing the column start/end information to the convert_to_columns()
function along with each line of data, we can use a for...in loop to convert
the text to columns. This makes our main script easier to read and results in
a function that could be reused with any line of text we need to split into
columns, as long as we pass in the start/end index pairs in the correct format.
I’ve even added a flag value called zero_index, which lets us use this function
with start/end pairs that consider zero to be the first position (the default value
assumes—as this dataset does—that the first position is “1”).

Note that in addition to viewing the documentation for the whole file, it is possible
to use pydoc to view the documentation for a single function (for example, the
convert_to_columns() function) by running:

280 | Chapter 8: Structuring and Refactoring Your Code

https://realpython.com/documenting-python-code/#documenting-your-python-code-base-using-docstrings
https://realpython.com/documenting-python-code/#documenting-your-python-code-base-using-docstrings
http://docs.python.org/3.3/library/stdtypes.html?highlight=tuple#tuples
http://docs.python.org/3.3/library/stdtypes.html?highlight=tuple#tuples

pydoc fixed_width_strip_parsing_refactored.convert_to_columns

and moving through/exiting its documentation in the same way as you did for the
entire file.

Navigating Documentation in the Command Line
Generically, you can view the documentation of any Python script (if its description
has been properly formatted) using the command:

pydoc __filename_without_.py_extension__

Likewise, you can access the documentation of any function in a script using:

pydoc __filename_without_.py_extension__.__function_name__

And since you can’t use your mouse to get around these files, the following keyboard
shortcuts will be especially helpful:

arrow up/arrow down
Move one line up/down

spacebar
Move one entire page down

q
Quit/exit documentation

The Case for Command-Line Arguments
Refactoring one long script into a series of functions isn’t the only way we can make
our data wrangling code more reusable. For multistep data wrangling processes (such
as those that involve downloading data, like Example 5-8, or converting PDF images
to text, like Example 4-16), breaking up our code into multiple scripts is yet another
way to save time and effort. For one thing, this approach lets us minimize how often
we do resource-intensive tasks, like downloading data or actually converting PDF
pages to images. Even more, these tasks tend to be pretty rote—it doesn’t make much
difference what data we’re downloading or which PDF we’re converting to images; our
script will pretty much always be doing the same thing. As a result, all we need are a
few additional tricks to transform our currently bespoke data wrangling scripts into
standalone code that we can reuse as is—over and over again.

As an example, let’s look back at Example 5-8. In this script, the main thing we’re
doing is downloading the contents of a web page; it’s just that in this instance we’ve
“hard-coded” the target file specifically. Likewise, the code that downloaded the XML
and JSON files in Example 5-1 was almost identical—the only real difference was the
source URLs and the filenames of the local copies. If there was a way that we could

The Case for Command-Line Arguments | 281

http://web.mta.info/developers/turnstile.html

refactor these scripts so that the whole thing acted more like a function, that could
potentially save us a lot of time and effort in the long run.

Fortunately, this is very achievable with standalone Python files, thanks to the built-in
argparse Python library, which lets us write our scripts to both require—and use—
arguments passed in from the command line. Thanks to argparse, we don’t need to
write a new script for every individual web page we want to download, because it
lets us specify both the target URL and the name of our output file right from the
command line, as shown in Example 8-11.

Example 8-11. webpage_saver.py

""" Web page Saver!

Downloads the contents of a web page and saves it locally

Usage

python webpage_saver.py target_url filename

Parameters

target_url : str
 The full URL of the web page to be downloaded
filename : str
 The desired filename of the local copy

Requirements

* argparse module
* requests module

"""
include the requests library in order to get data from the web
import requests

include argparse library to pull arguments from the command line
import argparse

create a new `ArgumentParser()`
parser = argparse.ArgumentParser()

arguments will be assigned based on the order in which they were provided
parser.add_argument("target_url", help="Full URL of web page to be downloaded")
parser.add_argument("filename", help="The desired filename of the local copy")
args = parser.parse_args()

pull the url of the web page we're downloading from the provided arguments

282 | Chapter 8: Structuring and Refactoring Your Code

target_url = args.target_url

pull the intended output filename from the provided arguments
output_filename = args.filename

create appropriate header information for our web page request
headers = {
 'User-Agent': 'Mozilla/5.0 (X11; CrOS x86_64 13597.66.0) ' + \
 'AppleWebKit/537.36 (KHTML, like Gecko) ' + \
 'Chrome/88.0.4324.109 Safari/537.36',
 'From': 'YOUR NAME HERE - youremailaddress@emailprovider.som'
}

because we're just loading a regular web page, we send a `get` request to the
URL, along with our informational headers
webpage = requests.get(target_url, headers=headers)

opening up a local file to save the contents of the web page to
output_file = open(output_filename,"w")

the web page's code is in the `text` property of the website's response
so write that to our file
output_file.write(webpage.text)

close our output file!
output_file.close()

Here we’re assigning the parameter name we can use to access the values passed
via the command-line from within our script. The help text is important! Be
descriptive but concise.

Help Me!
We’ve written this code to use positional arguments in the command line, rather than
optional arguments, because our code can’t do anything useful unless it has at least a
target_url and a filename to save it to.

But how would someone new to our script know that? Well, we obviously have our
pydoc-compatible documentation, but we also have the “help” text we added along
with each argument. If someone encounters our script and only wants to know what
the required arguments are, they can run:

python webpage_saver.py -h

which will print out a concise “how-to” guide for our script (with respect to required
arguments, at least) to the command line.

The Case for Command-Line Arguments | 283

Now we should have an easy way to download any web page to our device, without
having to write a script for every unique URL. For example, if we run:

python webpage_saver.py "http://web.mta.info/developers/turnstile.html" \
"MTA_turnstiles_index.html"

we will get exactly the same result as in Example 5-8, but we can also run:

python webpage_saver.py \
"https://www.citibikenyc.com/system-data/operating-reports" \
"citibike_operating_reports.html"

to get the Citi Bike operating reports without having to even open, much less modify,
our script. Handy, no?

Using command-line arguments with your task-specific scripts can
save you time, but not if you end up copying complex URLs
into your command-line interface character by character. To make
things simpler, here’s a quick overview of how to copy/paste to the
command line, depending on your operating system:

Linux (including Chromebook)
Highlight the URL/text you want to copy, then context-click
and select Copy. In your command-line window, just click and
it will automatically paste.

Windows/Macintosh
Highlight the URL/text you want to copy, then context-click
and select Copy. In your command-line window, context-click
again and select Paste.

Where Scripts and Notebooks Diverge
By now you may have noticed that in the preceding sections, I didn’t describe a way
to get arguments from the command line into a Jupyter notebook, nor have I talked
much about generating and interacting with script and function documentation
for Jupyter notebooks, either. This is not because these things are impossible but
because Jupyter notebooks are designed to let you interact with Python differently
than standalone scripts, and some of these concepts are less applicable to them.
As someone who started working with Python before Jupyter (formerly IPython)
notebooks existed, my bias is still toward standalone scripts for the majority of my
rubber-to-the-road Python data wrangling. While notebooks are (generally) great
for testing and tweaking chunks of code, I almost always end up migrating back to
standalone scripts once I’ve identified the approach that works for a particular data
wrangling task. This is mostly because as I move further along in a project, I often
get impatient even with the process of opening and modifying a script unless I have
to—much less launching a webserver or waiting for a web page to load (I might not

284 | Chapter 8: Structuring and Refactoring Your Code

even have an internet connection!). These are some of the reasons why I favor using
command-line arguments and standalone scripts for common, straightforward tasks.

As we’ll soon see, however, the interactivity of Jupyter notebooks makes them some‐
what superior to standalone Python scripts when it comes to experimenting with
—and especially sharing—the data analysis and visualization portion of our data
wrangling work. As a result, you’ll find more references to Jupyter notebooks in
particular as we turn to those topics in Chapters 9 and 10.

Conclusion
In this chapter, we’ve taken a bit of a break from data wrangling per se to revisit
some of our prior work where the code had gotten unwieldy. Through the process
of refactoring, we explored how we can reorganize code that works into code that
works well, because it is more readable and reusable. As our data wrangling projects
evolve, this will help us build up and make use of our own collection of custom
functions that meet our own particular data wrangling needs. Similarly, by applying
a bit more structure to our documentation, we made it accessible—and useful—right
from the command line so that we can find the script or function that we’re looking
for without opening a single script. And in a similar vein, we applied that refactoring
logic to our scripts so that we can customize their functionality without having to
open them, either!

In the next chapter, we’ll return to our focus on data with an overview of some of
essential data analysis techniques. After that, in Chapter 10 we’ll (briefly) cover the
core visualization approaches that will help you understand and present your data
effectively so that you can better share your data wrangling insights with the world!

Conclusion | 285

CHAPTER 9

Introduction to Data Analysis

So far, this book has focused mostly on the logistics of acquiring, assessing, trans‐
forming, and augmenting data. We’ve explored how to write code that can retrieve
data from the internet, extract it from unfriendly formats, evaluate its completeness,
and account for inconsistencies. We’ve even spent some time thinking about how to
make sure that the tools we use to do all this—our Python scripts—are optimized to
meet our needs, both now and in the future.

At this point, though, it’s time to revisit the why of all this work. Back in “What
Is “Data Wrangling”?” on page 2, I described the purpose of data wrangling as
transforming “raw” data into something that can be used to generate insight and
meaning. But unless we follow through with at least some degree of analysis, there’s
no way to know if our wrangling efforts were sufficient—or what insights they might
produce. In that sense, stopping our data wrangling work at the augmentation/trans‐
formation phase would be like setting up your mise en place and then walking out
of the kitchen. You don’t spend hours carefully prepping vegetables and measuring
ingredients unless you want to cook. And that’s what data analysis is: taking all that
beautifully cleaned and prepared data and turning it into new insight and knowledge.

If you fear we’re slipping into abstractions again, don’t worry—the fundamentals of
data analysis are simple and concrete enough. Like our data quality assessments,
however, they are about one part technical effort to four parts judgment. Yes, the
basics of data analysis involve reassuring, 2 + 2 = 4–style math, but the insights
depend on interpreting the outputs of those very straightforward formulas. And that’s
where you need logic and research—along with human judgment and expertise—to
bridge the gap.

Over the course of this chapter, then, we’ll be exploring the basics of data analysis—
specifically, the simple measures of central tendency and distribution that help us
give data meaningful context. We’ll also go over the rules of thumb for making

287

1 See Predictably Irrational by Dan Ariely (Harper) for more information.

appropriate inferences about data based on these measures and the role that both
numerical and visual analysis play in helping us understand the trends and anomalies
within our dataset. Toward the end of the chapter, we’ll address the limits of data
analysis and why it always takes more than traditional “data” to get from the “what”
to the why. Along the way, of course, we’ll see how Python can help us in all these
tasks and why it’s the right tool for everything from quick calculations to essential
visualizations.

Context Is Everything
If I offered to sell you an apple right now for $0.50, would you buy it? For the sake of
this example, let’s imagine that you like apples, and you’re feeling like a snack. Also,
this is a beautiful apple: shiny, fragrant, and heavy in the hand. Let’s also suppose
you’re confident that I’m not trying to harm you with this apple. It’s just a nice, fresh,
apple, for $0.50. Would you buy it?

For most people, the answer is: it depends. Depends on what? Lots of things. No
matter how much you trust me (and my almost-too-perfect apple), if someone
standing next to me was selling also-very-good-looking apples for $0.25 each, you
might buy one of those. Why? Well, obviously they’re cheaper, and even my incredibly
awesome apple probably isn’t twice as awesome as the next one. At the same time, if
your cousin was standing on the other side of me selling tasty apples for $0.60 each,
you might well buy one of those instead, just to show support for your cousin’s new
apple-selling start-up.

This might seem like a pretty complicated decision-making process for choosing a
piece of fruit, but in reality we make these kinds of choices all the time, and the
results are sometimes surprising. Economists like Dan Ariely and Tim Harford have
conducted research illustrating things like how influential a “free” gift is, even if it
creates an added cost, or how our satisfaction with our own pay can go down when
we learn what people around us are earning.1 Most of our priorities and decisions
depend on value judgment, and in order to make those effectively we need to know
what our options are. Would I buy a fairy-tale-perfect apple for $0.50? Maybe.
Probably not if I could get a really similar one at the next corner for half the price.
But I probably would if I was in a hurry and had to walk a mile to get one otherwise.
Though we all understand what we mean by it, a more precise way of saying “It
depends” would be to say, “It depends on the context.”

The importance of context is why a data point in isolation is meaningless; even if
it is factually “true,” a single data point can’t help us make decisions. Generating
and acquiring new knowledge, in general, is about connecting new information to

288 | Chapter 9: Introduction to Data Analysis

https://danariely.com/books/predictably-irrational/
https://danariely.com/all-about-dan
https://timharford.com/articles/undercovereconomist

information we already know. In other words, the knowledge isn’t “in the data” itself
but in its relationship to other things. Since we can’t exhaustively explore the context
of every situation where decisions are required (including your concerns about your
cousin’s new apple startup and the importance of supporting family efforts), we often
have to restrict ourselves to examining those parts of the context that we can (or have
chosen to) consistently measure and quantify. In other words, we turn to data.

How do we derive context from data? We do things like investigate its provenance,
asking questions about who collected it and when and why—these answers help
illuminate both what the data includes and what might be missing. And we look for
ways to systematically compare each data point to the rest, to help understand how it
conforms to—or breaks—any patterns that might exist across the dataset as a whole.
Of course, none of this is likely to offer us definitive “answers,” but it will provide
us with insights and ideas that we can share with others and use to inspire our next
question about what’s happening in the world around us.

Same but Different
While building context is essential for generating insight from data, how do we
know which contexts matter? Given that there are infinite relationship types we could
identify, even among the data points in a pretty small dataset, how do we decide
which ones to pay attention to? Take, for example, the data in Example 2-9, which
was just a simple (fictional) list of page counts:

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]

Even with just this handful of numbers, there are lots of types of “context” we can
imagine: we could describe it in terms of even versus odd values, for example, or
which ones can be evenly divided by 8. The problem is, most of these relationships
are not all that interesting. How can we tell which ones will be?

It turns out, the human brain is pretty well wired to notice—and care about—two
types of relationships in particular: sameness and differentness. Trends and anoma‐
lies in almost any type of stimulus—from seeing patterns in clouds or lottery results
to quickly identifying a difference in orientation among similar objects—tend to
catch our attention. This means trends and anomalies are interesting, almost by
definition. So a pretty good place to start when we want to build meaningful context
for our data is with the ways that individual records in a given dataset are similar
to—or different from—each other.

Same but Different | 289

https://archive.is/20130121151738/http://dbskeptic.com/2007/11/04/apophenia-definition-and-analysis
https://csc2.ncsu.edu/faculty/healey/PP

What’s Typical? Evaluating Central Tendency
What does it mean for something to be “average”? When we use that term in day-to-
day life, it’s often a stand-in for “unremarkable,” “expected,” or “typical.” Given its
specifically unextraordinary associations, then, in many cases “average” can also be a
synonym for “boring.”

When it comes to analyzing data, however, it turns out that what’s “average” is
actually what interests us, because it’s a basis for comparison—and comparisons are
one thing humans care about a lot. Remember the research on wages? As humans, we
want to know how things that affect us compare to what is “typical” for other people.
So even if we never hope to be “average,” in general we still want to know both what it
is and how our own experience compares.

What’s That Mean?
You may already be familiar with the process for calculating the “average” of a set of
numbers: add them all up and divide by how many you have. That particular measure
of central tendency is more precisely known as the arithmetic mean, and it’s calculated
just the way you remember. So for our page_counts variable, the math would be:

mean_pgs = (28+32+44+23+56+32+12+34+30)/9

And this would give us (roughly) a mean value of:

32.333333333333336

As a representation of the “typical” chapter length, this seems pretty reasonable: many
of our chapters have page counts that are pretty close to 30, and there are even two
chapters that have precisely 32 pages. So a mean per-chapter page count of just over
32 seems about right.

While the mean may have served us well in this instance, however, there are many
situations where using it as a measure of “typicality” can be deeply misleading. For
example, let’s imagine one more, really long chapter (like, 100 pages long) got added
to our book. Our method of calculating the mean would be the same:

mean_pgs = (28+32+44+23+56+32+12+34+30+100)/10

But now the mean value would be:

39.1

All of a sudden, our “average” chapter length has increased by almost 6 pages, even
though we only added a single new chapter, and fully half of our chapters are 28–34
pages long. Is a chapter that’s roughly 39 pages truly “typical” in this case? Not really.

What we’re seeing even in this small example is that while in some cases the mean is a
reasonable measure of “typicality,” it’s also heavily influenced by extreme values—and

290 | Chapter 9: Introduction to Data Analysis

2 You can technically also sort from highest to lowest, but starting with lower values is conventional and will
make things easier in the long run.

3 There are actually multiple methods of choosing the median value for an even number of data points, but as
long as you’re consistent, any of them is fine. Anecdotally, this is the approach that feels most intuitive and
that I’ve seen used most often.

just one of these is enough to make it useless as a shorthand for what is “typical” of a
dataset. But what are our alternatives?

Embrace the Median
Another way to think about “typical” values in a dataset is to figure out what is—quite
literally—in the “middle.” In data analysis, the “middle” value in a series of records
is known as the median, and we can find it with even less math than we used when
calculating the mean: all you need to do is sort and count. For example, in our
original set of chapter lengths, we would first sort the values from lowest to highest:2

page_counts = [28, 32, 44, 23, 56, 32, 12, 34, 30]
page_counts.sort()
print(page_counts)

Which gives us:

[12, 23, 28, 30, 32, 32, 34, 44, 56]

Now, all we have to do is choose the “middle” value—that is the one that is positioned
halfway between the beginning and end of the list. Since this is a nine-item list, that
will be the value in the fifth position (leaving four items on either side). Thus, the
median value of our page_count dataset is 32.

Now, let’s see what happens to the median when we add that extra-long chapter. Our
sorted data will look like this:

[12, 23, 28, 30, 32, 32, 34, 44, 56, 100]

And what about the median? Since the list now has an even number of items, we can
just take the two “middle” values, add them together, and divide by two.3 In this case,
that will be the values in positions 5 and 6, which are both 32. So our median value is
(32 + 32) / 2 = 32. Even when we add our extra-long chapter, the median value is still
the same!

Now at first you might be thinking, “Hold on, this feels wrong. A whole new chapter
was added—a really long chapter, but the median value didn’t change at all. Shouldn’t
it move, at least a little bit?”

The real difference between the mean and the median is that the mean is powerfully
affected by the specific values in dataset—as in how high or low they are—while the
median is influenced mostly by the frequency with which certain values appear. In a

What’s Typical? Evaluating Central Tendency | 291

4 While the precise estimates for the number of items that humans can hold in working memory differ,
researchers do agree that this capacity has limits. See https://ncbi.nlm.nih.gov/pmc/articles/PMC2864034 and
https://pnas.org/content/113/27/7459.

5 Although there is a long way to go, there is some exciting research being done on tactile graphics to reduce
the vision dependency of these approaches, especially for folks who are blind or visually impaired. See http://
shape.stanford.edu/research/constructiveVizAccess/assets20-88.pdf.

sense, the median is much closer to a “one value, one vote” sort of approach, whereas
the mean lets the most extreme values speak “loudest.” Since our current goal is to
understand what values are “typical” in our dataset, the median will usually be the
most representative choice.

Think Different: Identifying Outliers
In “Same but Different” on page 289, I noted that human beings, in general, are
interested in “sameness” and “differentness.” In looking at our two possible measures
of central tendency, we were exploring ways in which values in a dataset are similar.
But what about the ways in which they are different? If we look again at our original
page_count list, we’d probably feel confident that a 32-page chapter is reasonably
“typical,” and maybe even a 30-, 28-, or 34-page chapter, too. But what about a
12-page chapter? Or a 56-page chapter? They certainly don’t seem typical, but how do
we know which values are different enough to be truly “unusual?”

This is where we have to start mixing math with human judgment. Measures of cen‐
tral tendency can be pretty unequivocally calculated, but determining which values
in a dataset are truly unusual—that is, which are anomalies or outliers—cannot be
definitively assessed with arithmetic alone. As datasets get larger and more complex,
however, it gets harder for humans to interpret them effectively as sets of data points.4

So how can we possibly apply human judgment to large datasets? We need to engage
our largest and most comprehensive data-processing resource: the human visual
system.5

Visualization for Data Analysis
The role of visualization in data work is twofold. On the one hand, visualization can
be used to help us analyze and make sense of data; on the other, it can be used to
convey the insights that we’ve generated from that analysis. Using data for the latter
purpose—as a communication tool to share insights about our data with a broader
audience—is something that we’ll explore in-depth in Chapter 10. Here, we’re going
to focus on the ways in which visualization can offer us insight into the data we have.

In order to understand how visualization can help us identify extreme values in our
data, we first need to look—quite literally—at the data itself. In this case, I don’t mean

292 | Chapter 9: Introduction to Data Analysis

https://ncbi.nlm.nih.gov/pmc/articles/PMC2864034
https://pnas.org/content/113/27/7459
https://dl.acm.org/doi/abs/10.1145/3373625.3418027
http://shape.stanford.edu/research/constructiveVizAccess/assets20-88.pdf
http://shape.stanford.edu/research/constructiveVizAccess/assets20-88.pdf

that we’re going to open up our CSV file and start reading through data records.
Rather, we’re going to create a special kind of bar chart known as a histogram, in
which each bar represents the number of times a particular value appears in our data‐
set. For example, we can see a very simple histogram of our (expanded) page_count
data in Figure 9-1.

Figure 9-1. A basic histogram

For a dataset as small as our page_counts example, a histogram can’t tell us much;
in fact, a dataset with only 10 values arguably has too few data points for either
the concepts of central tendency (like the mean and the median) or outliers to have
much meaning. Even so, in Figure 9-1 you can see the beginnings of what looks like a
pattern: the two chapters of equal length form a double-height spike, with the unique
page-lengths of most of the remaining chapters becoming single-height bars clustered
reasonably close it. Way out on the right end, meanwhile, is our 100-page chapter,
with no other values anywhere near it. While we might have already been tempted to
conclude that the 100-page chapter was an anomaly—or outlier—based on the math,
this histogram certainly reinforces that interpretation.

Of course, in order to really appreciate the power of visualization for data analysis,
we’ll want to look at a dataset with values we couldn’t even hope to “eyeball” the

Visualization for Data Analysis | 293

way that we did with our list of page counts. Fortunately, the Paycheck Protection
Program (PPP) data that we worked through in Chapter 6 is definitely not lacking in
this regard, since it contains hundreds of thousands of loan records. To see what we
can learn about what is and isn’t “typical” in the loan amounts approved through the
PPP, we’ll write a quick script to generate a histogram of the currently approved loan
values in the PPP. Then, we’ll label that histogram with both the mean and median
values in order to see how well each might serve as a potential measure of central
tendency. After that, we’ll return to the question of identifying possible outliers in the
approved loan amounts, using both our visualization of the data and some math to
back it up.

For this to work, we’ll once again be leveraging some powerful Python libraries—
specifically, matplotlib and seaborn—both of which have functions for calculating
and visualizing data. While matplotlib remains the foundational library for creating
charts and graphs in Python, we’re also using seaborn for its helpful support of more
advanced calculations and formats. Because the two are highly compatible (seaborn
is actually built on top of matplotlib), this combination will offer us the flexibility we
need both to quickly create the basic visualizations we need here and also customize
them for presenting data effectively in Chapter 10.

For now, though, let’s focus on the analytical size of our visualization process. We’ll
start this by creating a basic histogram of our PPP loan data using the CurrentAppro
valAmount values. We’ll also add mean and median lines for more context, as shown
in Example 9-1.

Example 9-1. ppp_loan_central_measures.py

`pandas` for reading and assessing our data
import pandas as pd

`seaborn` for its built-in themes and chart types
import seaborn as sns

`matplotlib` for customizing visual details
import matplotlib.pyplot as plt

read in our data
ppp_data = pd.read_csv('public_150k_plus_221.csv')

set a basic color theme for our visualization
sns.set_theme(style="whitegrid")

use the built-in `mean()` and `median()` methods in `pandas
mean = ppp_data['CurrentApprovalAmount'].mean()
median = ppp_data['CurrentApprovalAmount'].median()

create a histogram of the values in the `CurrentApprovalAmount` column

294 | Chapter 9: Introduction to Data Analysis

approved_loan_plot = sns.histplot(data=ppp_data, x="CurrentApprovalAmount")

get the min and max y-values on our histogram
y_axis_range = approved_loan_plot.get_ylim()

add the vertical lines at the correct locations
approved_loan_plot.vlines(mean, 0, y_axis_range[1], color='crimson', ls=':')
approved_loan_plot.vlines(median, 0, y_axis_range[1], color='green', ls='-')

the matplotlib `show()` method actually renders the visualization
plt.show()

The CurrentApprovalAmount column in our PPP data tells us the dollar amount
of each loan that is currently approved (whether or not it has been disbursed).

The get_ylim() method returns the lowest and highest y-axis value as a list.
We’ll mostly be using this to set a legible length for our mean and median lines.

We can add vertical lines anywhere on our histogram (or other visualization) by
specifying the “x” position, “y” starting point, “y” ending point, color, and line
style. Note that the units for “x” and “y” values are relative to the dataset, not the
visual size of the chart.

While calling the matplotlib show() method is not explicitly required in Jupyter
notebooks, like print() statements, I prefer to include them for clarity and
consistency. By default, the chart will render in “interactive” mode (in Jupyter,
you’ll need to include the %matplotlib notebook “magic” command, as I have
in the provided files), which allows us to zoom, pan, and otherwise explore our
histogram in detail without writing more code.

Most likely, you’re looking at the chart that displayed as a result of running this
script (which hopefully looks something like Figure 9-2) and thinking, “Now what?”
Admittedly, this initial visualization seems a bit lackluster—if not downright confus‐
ing. Fear not! If anything, take this as your first case study in why visualization for
analysis and visualization for communication are not one and the same. Analytical
visualizations like this one, for example, require far more effort to read, understand,
and refine than any visualization we would want to use for general communications.
For generating insight about our data, however, this is actually just the right place
to start.

Before we forge ahead with our data analysis, though, let’s take a moment to appreci‐
ate the distinctly old-school—but incredibly useful—interface that Python has given
us for this chart. Rather than just a static image, our Python script has also given us
an entire toolbar (shown in Figure 9-2) that we can use to interact with it: to zoom,
pan, modify, and even save the output. While of course we can (and eventually will)

Visualization for Data Analysis | 295

customize the contents and aesthetics of this chart using code, the fact that we can
effectively explore our data without having to constantly modify and rerun our code
is a huge time-saver. To get a feel for what’s possible, take a few minutes to play with
the controls yourself. When you’re ready to move on with our data analysis, just click
the “home” icon to return the chart to its initial view and follow along in the sections
that follow.

Figure 9-2. PPP loan histogram

What’s Our Data’s Shape? Understanding Histograms
When we were working with our data in a table-type format, we tended to think of
its “shape” in terms of the number of rows and columns it had (this is actually exactly
what the pandas.shape property of a DataFrame returns). In this context, the “shape”
we’re interested in is the literal shape of the histogram, which will help us identify
potentially interesting or important patterns or anomalies. Some of the first things
we’ll look for in these instances are:

296 | Chapter 9: Introduction to Data Analysis

6 See “A Morphometric Analysis of Ddt-Resistant and Non-Resistant House Fly Strains” by Robert R. Sokal and
Preston E. Hunter, https://doi.org/10.1093/aesa/48.6.499; the relevant data is provided there.

Symmetry
Is our data vertically symmetrical? That is, could we draw a vertical line some‐
where over our visualized data such that the pattern of bars on one side looks
(roughly) like a reflection of those on the other?

Density
Where are most of our data values clustered (if anywhere)? Are there multiple
clusters or just one?

Unsurprisingly, these questions are about more than aesthetics. The shape of a
dataset’s histogram illustrates what is typically described as its distribution. Because
certain distributions have specific properties, we can use our data’s distribution to
help us identify what is typical, what is unusual, and what deserves further scrutiny.

The Significance of Symmetry
In the natural world, symmetry is a common occurrence. Plants and animals tend
to be symmetrical in many ways; for example, a dog’s face and an oak leaf both
exhibit what’s known as bilateral symmetry—what we might describe as one side
being a “mirror image” of the other. Across populations of living things, however,
there is also often symmetry in the distribution of certain physical characteristics,
like height or wing length. Our histogram lets us observe this symmetry firsthand,
by illustrating the frequency of specific heights or wing lengths within a population.
A classic example of this is shown in Figure 9-3, which shows the length of housefly
wings as measured by a team of biologists in the mid-20th century.6

The symmetrical bell curve shown in Figure 9-3 is also sometimes described as
the “normal,” “standard,” or “Gaussian” distribution. If you’ve ever had an academic
grade “curved,” this was the distribution that the grades in your cohort were being
transformed to fit: one with very few scores at the top or bottom and most of them
lumped in the middle.

The power of the Gaussian distribution is not just in its pretty shape, however; it’s in
what that shape means we can do. Datasets that demonstrate Gaussian distributions
can be both described and compared to one another in ways that nonsymmetrical
distributions cannot, because we can meaningfully calculate two measures in partic‐
ular: the standard deviation, which quantifies the numerical range of data values
within which most of them can be found, and each value’s z-score, which describes its
distance from the mean in terms of standard deviations. Because of the fundamental
symmetry of Gaussian distributions, we can use the standard deviation and the z-score
to compare two sets of functionally similar data even if they use different scales. For

Visualization for Data Analysis | 297

https://doi.org/10.1093/aesa/48.6.499

example, if student grades demonstrate a Gaussian distribution, we can calculate and
compare individual students’ z-scores (that is, their performance relative to their
cohort) even across different classes and instructors who may use different grading
rubrics. In other words, even if the mean of student grades for one instructor is in
the 90s and for another instructor in the 70s, if both sets of students’ grades are truly
Gaussian in their distribution, we can still determine which students are doing the
best or need the most help across cohorts—something the nominal grades (e.g., 74 or
92) could never tell us.

Figure 9-3. Length of housefly wings

These characteristics also inform how we can think about measuring central ten‐
dency and outliers. For example, in a “perfect” Gaussian distribution, the mean
and the median will have the same value. What’s more, a value’s z-score gives us
a quick way of identifying how typical or unusual that particular value is, because
the percentage of data values that we expect to have a given z-score is well-defined.
Confused yet? Don’t worry. Just like any other complex data relationship, this all
makes much more sense if we visualize it.

298 | Chapter 9: Introduction to Data Analysis

7 M. W. Toews, “CC BY 2.5,” https://creativecommons.org/licenses/by/2.5, via Wikimedia Commons.

Figure 9-4. The Gaussian distribution, showing what percentage of values exist within 1,
2, and 3 standard deviations (σ) from the mean

As you can see in Figure 9-4,7 if our data’s distribution is Gaussian, more than
two-thirds of the data values (34.1% + 34.1% = 68.2%) can be found within one
standard deviation (often designated as it is here, by the Greek letter σ) of the mean.
Another 27.2% can be found between one and two standard deviations from the
mean, and a final 4.2% can be found between two and three standard deviations from
the mean. This means that for a Gaussian distribution, 99.7% of all values can be
found within 3 standard deviations of the mean.

So what? Well, remember that one of our fundamental objectives in data analysis is to
understand what values are typical for our dataset and which ones are truly extreme.
While the mean and the median offer a quick shorthand for a dataset’s “typical”
value, measures like the standard deviation—and the z-scores we can calculate from
it—help us systematically evaluate which values might or might not be truly unusual.

Unsurprisingly, calculating these values using Python is quite straightforward. Using
either pandas or the statistics library, we can quickly find the value of the standard
deviation for our dataset (σ) and then use it to place lines over our histogram where
the relevant z-score values are. For this example, we’ll build on the data used to
generate Figure 9-3, as shown in Example 9-2.

Visualization for Data Analysis | 299

https://creativecommons.org/licenses/by/2.5
https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Standard_deviation_diagram.svg

Example 9-2. wing_length_with_sd.py

`pandas` to read in our data
import pandas as pd

`seaborn` for built-in themes and chart types
import seaborn as sns

`matplotlib` for customizing visual details
import matplotlib.pyplot as plt

`statistics` easily calculating statistical measures
import statistics

read in our data
wing_data = pd.read_csv('wing_length - s057.csv')

set a basic color theme for our visualization
sns.set_theme(style="white")

create the histogram, allowing `seaborn` to choose default "bin" values
wing_plot = sns.histplot(data=wing_data, x="wing_length (0.1mm)", kde="True")

calculate the standard deviation via the `statistics` `stdev()` method
sd = statistics.stdev(wing_data['wing_length (0.1mm)'])

get the min and max y-values on our histogram
y_axis_range = wing_plot.get_ylim()

plot the mean as a solid line
mean = wing_data['wing_length (0.1mm)'].mean()
wing_plot.vlines(mean, 0, y_axis_range[1], color='gray', ls='-')

plot the three standard deviation boundary lines on either side of the mean
for i in range(-3,4):

 # find the current boundary value
 z_value = mean + (i*sd)

 # don't draw a second line over the mean line
 if z_value != mean:

 # plot a dotted gray line at each boundary value
 wing_plot.vlines(z_value, 0, y_axis_range[1], color='gray', ls=':')

show the plot!
plt.show()

300 | Chapter 9: Introduction to Data Analysis

Each “bin” is a range of actual data values that will be lumped together into a
single histogram bar; the kde parameter is what adds a smoothed line to our
visualization. This line approximates the pattern we would expect if our dataset
had infinite data points.

We could also have used the pandas std() method: wing_data['wing_length
(0.1mm)'].std().

Recall that our loop will stop before the second value provided to range(), so
to get three positive lines, we set the second value to 4. By starting with a
negative number, we actually subtract from the mean at first—which we want to
do because we want to capture values both above and below the mean.

As you review the output of Example 9-2 you might be thinking, “Great, we’ve drawn
some lines on data about bugs. How will this help me interpret real data?” After
all, the prototypically Gaussian distribution of this housefly wing-length data doesn’t
look much like the output we got when we charted our PPP loan data, which was
distinctly asymmetrical, as most of your data is likely to be.

So what do we do when our data distribution lacks symmetry? We already know how
to find the “middle” of an asymmetric distribution like the one in Example 9-1: by
calculating the median, rather than the mean. But what about identifying extreme
values? Since asymmetric or skewed distributions aren’t, well, symmetric, there is no
single “standard” deviation, nor can we use it to calculate z-scores. We can, however,
still usefully subdivide an asymmetric dataset in a way that will let us generate insight
about possibly unusual or extreme values.

Like finding the median, this subdivision process is really quite simple. First, we find
the middle value of our sorted dataset—in other words, the median. Now we look at
each half of the data records as if it were a standalone dataset and find their median
values. The median of the lower half is traditionally labeled Q1, while the median of
the upper half is traditionally labeled Q3. At this point, we’ve split our dataset into
four parts, or quartiles, each of which contains an equal number of data values.

What does this do for us? Well, remember that a big part of what z-scores tell us is the
percentage of data points that have similar values. Looking at Figure 9-4, for example,
we can see that a data point with a z-score of 0.75 is (as we would expect) less than
one standard deviation from the mean—something we know will be true for roughly
68.2% of all the data values in the set as a whole. By dividing our data into quartiles,
we have started along a similar path. For example, any value in our dataset that is
numerically less than the value of Q1 is, by definition, smaller than at least 75% of all
the data values we have.

Visualization for Data Analysis | 301

Still, what we’re really looking for are ways to identify potentially unusual values.
Being smaller—or larger—than 75% of all data values is something, but it’s hardly
extreme. Identifying our quartile boundaries alone won’t quite be enough.

Fortunately, we can use our Q1 and Q3 values to calculate what’s known as the
lower bound and upper bound of our dataset. If our data’s distribution was secretly
Gaussian, these boundaries would line up almost perfectly with the values found at
three standard deviations below and above the mean. While of course we’re using
them precisely because our data isn’t Gaussian, I make the comparison to illustrate
that we can use them to help identify extreme values in an asymmetrically distributed
dataset.

Like finding the median, calculating the upper and lower bounds is actually quite
straightforward. We start by finding a value called the interquartile range (IQR)—a
fancy-sounding name for the numerical difference between the values of Q3 and Q1.
We then multiply that value by 1.5 and subtract it from Q1 to get the lower bound,
and add it to Q3 to get the upper bound. That’s it!

IQR (interquartile range) = Q3 – Q1

Lower bound = Q1 – (1.5 × IQR)

Upper bound = Q3 + (1.5 × IQR)

On a Gaussian distribution, our upper and lower bound values will be about three
standard deviations above or below the mean—but does this mean that every value
beyond our upper and lower bounds is automatically an outlier? No. But finding these
boundaries does let us narrow down where we might start looking for outliers. And
just as importantly, these measures help us understand what values are not outliers,
even if they might seem, numerically, to be pretty different from the “typical” or
“expected” value provided by the median or mean.

As an example, let’s return to our PPP loan data. A $1 million loan seems like a lot,
even if—as we are—you’re only looking at loans that were over $150,000 to begin
with. But is a $1 million loan truly unusual? This is where our measures of central
tendency and spread—in this case, the median, quartiles, and lower and upper bound
values—can really help us out. Let’s take a look at what our histogram looks like with
these values added, as shown in Example 9-3, and see what we think.

Example 9-3. ppp_loan_central_and_dist.py

`pandas` for reading and assessing our data
import pandas as pd

`seaborn` for its built-in themes and chart types

302 | Chapter 9: Introduction to Data Analysis

import seaborn as sns

`matplotlib` for customizing visual details
import matplotlib.pyplot as plt

read in our data
ppp_data = pd.read_csv('public_150k_plus_221.csv')

set a basic color theme for our visualization
sns.set_theme(style="whitegrid")

use the built-in `mean()` and `median()` methods in `pandas
mean = ppp_data['CurrentApprovalAmount'].mean()
median = ppp_data['CurrentApprovalAmount'].median()

Q1 is the value at the position in our dataset
that has 25% of data readings to its left
Q1 = ppp_data['CurrentApprovalAmount'].quantile(0.25)

Q3 is the value at the position in our dataset
that has 75% of data readings to its left
Q3 = ppp_data['CurrentApprovalAmount'].quantile(0.75)

IQR is the difference between the Q3 and Q1 values
IQR = Q3-Q1

and now we calculate our lower and upper bounds
lower_bound = Q1 - (1.5*IQR)
upper_bound = Q3 + (1.5*IQR)

use `seaborn` to plot the histogram
approved_loan_plot = sns.histplot(data=ppp_data, x="CurrentApprovalAmount")

get the min and max y-values on our histogram
y_axis_range = approved_loan_plot.get_ylim()

add mean line in gray
approved_loan_plot.vlines(mean, 0, y_axis_range[1], color='gray', ls='-')

other lines in black (median solid, others dotted)
approved_loan_plot.vlines(median, 0, y_axis_range[1], color='black', ls='-')
approved_loan_plot.vlines(lower_bound, 0, y_axis_range[1], color='black', ls=':')
approved_loan_plot.vlines(Q1, 0, y_axis_range[1], color='black', ls=':')
approved_loan_plot.vlines(Q3, 0, y_axis_range[1], color='black', ls=':')
approved_loan_plot.vlines(upper_bound, 0, y_axis_range[1], color='black', ls=':')

show the plot!
plt.show()

As you can see from the zoom-in view of the resulting graph (shown in Figure 9-5),
there’s really no support for the claim that a loan of $1 million is out of the ordinary;
that amount falls well below the upper bound we’ve calculated for this dataset. So

Visualization for Data Analysis | 303

8 Specifically relative to the loan amounts just above or below these values.

even though a loan of that amount is larger than three-quarters of all loans approved
so far (because the $1 million mark, currently labeled as 1.0 1e6 on the graph’s x-axis,
is to the right of our Q3 line), it’s still not so much that any loan of $1 million is likely
to be worth investigating further. At least, that’s probably not where we’d want to start.

Figure 9-5. Detail of PPP Current Loan Amount histogram with median, quartiles, and
bounds in black and mean plotted in gray

So where should we look next for potentially interesting patterns in the data? Right
in front of us, at the graph we already have. Because while we could start looking for
more complex statistical measures to calculate and evaluate, even this basic visualiza‐
tion is showing some intriguing patterns in the data. The first one worth noting—if
only to reassure ourselves about our choice of statistical measures—is that the mean
of this dataset is at nearly the same position in the distribution as our Q3 value. If we
had any concern about selecting the median over the mean as a measure of central
tendency for this dataset, that fact should set it to rest. The other thing that we can
see—in the data view shown in Figure 9-5 and if we were to scroll farther to the
right—is that there are curious little spikes in our data, indicating that a particular
loan amount was approved with relatively high frequency.8 Given how clearly these
stand out from the data patterns immediately around them, we should probably look
at those values next.

304 | Chapter 9: Introduction to Data Analysis

9 It happens.

Counting “Clusters”
Imagine you’re walking down a crowded street and you notice a group of people
gathered on the corner across from you. What do you do? On a busy avenue where
most pedestrians are concerned with getting from one place to another, more than
one or two people stopped in the same place at the same time is enough to signal that
something is going on. Whether “something” turns out to be a busker playing music,
a vendor of especially popular snacks, or a box full of kittens,9 the fact remains that
our visual system is drawn to anomalies, and that’s precisely because deviating from a
trend indicates that something at least a little bit out of the ordinary is going on.

This is also why visualizing data is such a valuable tool for analyzing it—our eyes
and brain are wired to both quickly perceive patterns and to just as quickly notice
deviations from them. Sometimes the reason for a pattern is easy to guess, sometimes
less so. But in any predictable pattern—whether it’s the flow of people on a street,
a bell-shaped data distribution, or one that forms a smoothly sloping curve—some‐
thing that breaks that pattern is worth investigating.

In the case of Figure 9-5, we can see a range of such pattern violations. The first is
the sharp line at the lefthand side of the graph, which serves as a good reminder that
our dataset contains only approved loan amounts of $150,000 or more, rather than all
of the loans that have been approved within the program. In case we had lost sight
of that, the obvious and hard cutoff our data shows at the lefthand edge is a good
reminder.

Bu there is also another set of pattern violations: little spikes in our histogram around
particular points along the x-axis, at data values like $2 million. Where are these
coming from? While we can’t say for sure, scanning our histogram reveals that similar
spikes appear at roughly $500,000 intervals, especially as the loan amounts increase.
To some degree, these are probably the result of a tendency toward “round” numbers:
if you’re going to ask for $1,978,562.34, why not just “round it up” to $2 million? Of
course, that would still be $21,437.66 more than maybe you need—and to most of
us it is a lot of money. Given that PPP loans are intended to support specific costs,
it does seem a little strange that so many loans—nearly 2,000 of them, based on our
graph—would happen to work out to precisely $2 million.

So what’s going on? This is where we need to do some additional research to effec‐
tively interpret what we’re seeing in the data. Based on my experience, my first step
would be to look through the rules for PPP loans to see if I can work out why $2
million might be such a popular amount to request. For example, is $2 million a
minimum or maximum allowed amount based on specific attributes of the business
or what it’s requesting support for?

Visualization for Data Analysis | 305

A little bit of searching around the Small Business Administration’s (SBA) website
seems to offer at least part of the answer:

For most borrowers, the maximum loan amount of a Second Draw PPP loan is 2.5x
the average monthly 2019 or 2020 payroll costs up to $2 million. For borrowers in the
Accommodation and Food Services sector (use NAICS 72 to confirm), the maximum
loan amount for a Second Draw PPP loan is 3.5x the average monthly 2019 or 2020
payroll costs up to $2 million.

Since $2 million is a ceiling for essentially all types of businesses applying for so-
called second-draw (or second-round) PPP loans—including those that might have
initially qualified for more money—it makes sense that the cluster of loans approved
for precisely $2 million is so large.

This “answer,” of course, just leads to more questions. According to the documenta‐
tion, $2 million was the upper limit for second-round PPP loans; first-round loans
could be up to $10 million. If so many businesses were requesting the upper limit
for second-round loans, it indicates that many businesses 1) have already received a
first-round loan, and 2) their first-round loan may have been even larger than $2
million, since they would have had to round down to $2 million if they qualified for
more than that in the first round. In other words, we might expect those businesses
that requested precisely $2 million in second-round loans are among those that were
approved for the largest total amounts of PPP loan relief. And of course, if they
did get some of the largest pots of money, we (and probably a lot of other people!)
certainly want to know about it.

The $2 Million Question
In order to understand what (if any) shared characteristics there may be among
companies that requested $2 million for their second-round PPP loans, we first have
to effectively isolate their records within our dataset. How might we do this? Well,
we know that we’re interested in companies approved for more than one loan, which
means that their BorrowerName should appear more than once in our data. We also
know that no second-round loans were issued before January 13, 2021. By combining
these two insights, we can probably use our data wrangling skills to do a decent job of
identifying the companies that requested precisely $2 million for their second-round
loan.

In order to accomplish this, we’ll do a couple of key transformations on our dataset:

306 | Chapter 9: Introduction to Data Analysis

https://sba.gov/funding-programs/loans/covid-19-relief-options/paycheck-protection-program/second-draw-ppp-loan

1. We’ll create a new column for each loan, containing the label first_round, or1.
maybe_second, based on whether it was issued before January 13, 2021. While we
can’t be sure that all loans after that date were “second round,” we can be sure that
all loans before that date were “first round.”

2. Look for duplicate entries in our dataset. Each approved loan creates a separate2.
record, so if the same business was approved for two loans, that means its
information would appear twice in the records.

The logic here is that if we find a given business name twice in our data and those
records have different “round” labels, it probably indicates a business that has, in fact,
been approved for two separate loans.

As usual, we’re going to call in the help of some Python libraries to get this work
done. We’ll need to use pandas, as usual, but we’re also going to use another library
called numpy that has lots of useful array/list functions (pandas actually relies heavily
on numpy under the hood). I’m also going to pull in seaborn and matplotlib again so
that we have the option of generating visualizations to help us evaluate our evolving
dataset as we go along.

Although what we’re trying to do with this data is conceptually pretty straightfor‐
ward, the wrangling involved in performing this analysis takes a fair number of steps,
as you can see in Example 9-4.

Example 9-4. who_got_2_loans_by_date.py

`pandas` for data loading/transformations
import pandas as pd

`seaborn` for visualization
import seaborn as sns

`matplotlib` for detailed visualization support
import matplotlib.pyplot as plt

`numpy` for manipulating arrays/lists
import numpy as np

load our data
ppp_data = pd.read_csv('public_150k_plus_borrower_fingerprint_a.csv')

convert the `DateApproved` column to an actual datetime data type
ppp_data['DateApproved'] = pd.to_datetime(ppp_data['DateApproved'])

create a variable to hold the second-round start date
second_round_start = pd.to_datetime('2021-01-13')

treat today's date to use as the "upper" limit on possible second-round loans

The $2 Million Question | 307

10 If it’s too many, the output will say Killed. This is a sign you either need to close some apps or maybe move
into the cloud.

todays_date = pd.to_datetime('today')

use 1/1/2020 as a "lower" limit, since it's before the PPP launched
program_start = pd.to_datetime('2020-01-01')

pass our boundaries and category labels to the pandas `cut()` function
loan_round = pd.cut(ppp_data.DateApproved,
 bins=[program_start,second_round_start, todays_date],
 labels=['first_round', 'maybe_second'])

insert the new column at the position we specify
ppp_data.insert(2,'Loan Round',loan_round)

this "pivot table" will return a Series showing the number
of times a particular 'BorrowerNameFingerprint' appears in the dataset
loan_count = ppp_data.pivot_table(index=['BorrowerNameFingerprint'], aggfunc='size')

convert our Series to a DataFrame and give it a name
loan_count_df = loan_count.to_frame('Loan Count')

use the `describe()` method to print out summary statistics
print("Description of duplicate borrower table:")
print(loan_count_df.describe())

This file was generated by running our fingerprinting process on BorrowerName,
as described in “Finding a Fingerprint” on page 311.

We want to know which loans were approved before January 13, 2021. The fastest
way to do this will be to convert our DateApproved strings to “real” dates and
compare them to that.

The pandas cut() function lets us create a new column by applying boundaries
and labels to an existing one. In this case, we label each record according to
whether it was approved before or after January 13, 2021.

We do this for convenience so we can use the describe() method.

We expect the maximum value in this table to be 2, since no business is allowed
to get more than two loans under the PPP.

If you run the code from Example 9-4 and nothing happens for a minute, don’t
despair. On my Chromebook, this script takes about 40 to 90 seconds to execute
(depending on how many other Linux apps I’m running alongside).10 When it’s
finished, however, your output will look something like this:

308 | Chapter 9: Introduction to Data Analysis

Description of duplicate borrower table:
 Loan Count
count 694279.000000
mean 1.104022
std 0.306489
min 1.000000
25% 1.000000
50% 1.000000
75% 1.000000
max 12.000000

From this first effort something seems…off. The output from our .describe()
command gives us a quick way of getting almost all the summary statistics we’re
interested in (the Q1, median, and Q3 are labeled here according to the percentage
of values that would appear to their left on a histogram—so 25%, 50%, and 75%,
respectively). These values suggest that fewer than 25% of all businesses have received
more than one loan (otherwise the 75% value would be greater than 1), which makes
sense. But the max value is troubling, since the PPP rules don’t appear to allow a
single business to receive more than two loans, much less 12! Let’s take a closer look
by adding the code shown in Example 9-5 to what we wrote in Example 9-4 and see
what we find.

Example 9-5. who_got_2_loans_by_date.py (continued)

start by sorting our DataFrame of loan counts from greatest to least
sorted_loan_counts = loan_count_df.sort_values(by=['Loan Count'], ascending=False)

create a new DataFrame with *only* those that have more than two loans
more_than_two = sorted_loan_counts[sorted_loan_counts['Loan Count'] > 2]

print one instance of each business name that appears in `more_than_two`
print("Businesses that seem to have gotten more than 2 loans:")
print(more_than_two.shape)

print("Number of businesses that appear to have gotten precisely 2 loans:")
precisely_two = sorted_loan_counts[sorted_loan_counts['Loan Count'] == 2]
print(precisely_two.shape)

Now we get the additional output shown here:

Businesses that seem to have gotten more than 2 loans:
(58, 1)
Number of businesses that appear to have gotten precisely 2 loans:
(72060, 1)

This suggests that there are only a (relative) handful of businesses that may have been
approved for more than two loans, and we can probably attribute those cases to a
combination of our chosen fingerprinting approach (a combination of BorrowerName,
BorrowerCity, and BorrowerState) along with the possibility that there are multiple

The $2 Million Question | 309

11 See https://sba.gov/document/support-faq-ppp-borrowers-lenders and https://sba.gov/document/support-sba-
franchise-directory for more information.

instances of a single franchise in the same city that applied for PPP funds.11 In any
case, there are few enough of them that they are unlikely to change the outcome of
our analysis considerably, so we won’t focus on tracking down their details right now.
At least the second piece of output showing that 72,060 individual businesses got
exactly two loans seems reasonable so far, since this is definitely less than 25% of our
total dataset, and therefore aligns with the summary statistics we got from our Loan
Count DataFrame (because the value of Q3 was still 1, meaning that fewer than 25%
of all business names appeared in our dataset more than once).

Of course, this is still just an estimate; it would be much better if we had a more
official count of second-round loans to work with. As noted at the end of Chapter 6,
the Small Business Administration did actually release an official data dictionary for
the PPP loan data, and while it doesn’t contain all of the information we might hope,
it does indicate that the ProcessingMethod field distinguishes between first-round
(PPP) and second-round (PPS) loans. Let’s look at our data this way and compare it to
our name-matching-based estimate by adding the code in Example 9-6 further down
in our file.

Example 9-6. who_got_2_loans_by_date.py (continued again)

use `ProcessingMethod` value to identify second-round loans
pps_loans = ppp_data[ppp_data['ProcessingMethod'] == 'PPS']

print out the `shape` of this DataFrame to see how many businesses we have
print("Number of loans labeled as second round:")
print(pps_loans.shape)

Rerunning our script yields the additional output:

Number of loans labeled as second round:
(103949, 52)

Wow! Even with our possibly too-lax fingerprinting method, we still failed to find
more than 300,000 businesses with both of their loans. What do we do?

First of all, recognize that this isn’t even an unusual situation. We’re dealing with
around 750,000 data records, each one of which is a combination of data entry done
by multiple individuals, including the borrower, the lender, and possibly the SBA.
The fact that there are still so many discrepancies is not really surprising (I illustrate
some of them in the following sidebar), but all is not lost. Remember that our original
interest was in those businesses that got precisely $2 million for their second-round
loan, which is likely to be just a fraction of all the businesses that got two loans. We

310 | Chapter 9: Introduction to Data Analysis

https://sba.gov/document/support-faq-ppp-borrowers-lenders
https://sba.gov/document/support-sba-franchise-directory
https://sba.gov/document/support-sba-franchise-directory
https://data.sba.gov/dataset/ppp-foia/resource/aab8e9f9-36d1-42e1-b3ba-e59c79f1d7f0

12 Though you can find it in the file ppp_fingerprint_borrowers.py.

can still move ahead with that part of the analysis in order to (1) test how effective
our date-based estimate of second-round loans was, and (2) see what we can learn
about that specific subset of businesses that got exactly $2 million in the second
round.

Finding a Fingerprint
Since we have already covered how to use the fingerprints library in previous chapters,
I skipped over the exact process used to prepare the data we’re looking at here.12 As
always, however, the effectiveness of the matching process depends not just on the
fingerprinting algorithm itself but also the data it’s applied to. While the combination
of BorrowerName, BorrowerCity, and BorrowerState is clearly far from perfect, I
settled on it only after having first tried to match up loans based on BorrowerName
directly, and then on a combination of the fingerprinted BorrowerName and Borower
Zip. In both instances, I could find matches for less than half of the second-round
loans.

Wondering what the data discrepancies look like? Here’s one example:

The $2 Million Question | 311

As you can see, while the BorrowerName field is similar, it’s not the same, nor is the
value in BorrowerAddress or the capitalization of BorrowerCity. The zip codes are
the same, but many other columns—such as Gender, Veteran, and even LMIIndica
tor—don’t match up, either. That’s real-world data for you!

At this point, we’re going to use the information from the PaymentProcessingMethod
column to validate our earlier work using name-matching and date-based loan round
estimates. To do this, we’re going to merge our Loan Count DataFrame back onto our
original dataset. Then we’ll select only the $2M loans that we estimate, based on their
date, were second-round loans. Finally, we’ll compare that number of loans with the
number of $2M loans we know were second draw, based on their ProcessingMethod
value of PPS. Obviously, this will mean adding yet more code to our file, as shown in
Example 9-7.

Example 9-7. who_got_2_loans_by_date.py (continued more)

how many loans in our derived data frame were approved for precisely $2M
during the (possibly) second-round timeframe?

merge our `loan_count_df` back to keep track of businesses
we labeled as having precisely two loans
ppp_data_w_lc = pd.merge(ppp_data, loan_count_df,
 on=['BorrowerNameFingerprint'], how='left')

now get *all* the records of business names we associated with two loans
matched_two_loans = ppp_data_w_lc[(ppp_data_w_lc['Loan Count'] == 2)]

select those loans our `maybe_second` loans that have a value of $2M
maybe_round2_2M = matched_two_loans[(matched_two_loans[
 'CurrentApprovalAmount'] == 2000000.00) &
 (matched_two_loans[
 'Loan Round'] == 'maybe_second')]
print("Derived $2M second-round loans:")
print(maybe_round2_2M.shape)

select those loans that we *know* are second round and have a value of $2M
pps_got_2M = pps_loans[pps_loans['CurrentApprovalAmount'] == 2000000.00]
print("Actual $2M second-round loans:")
print(pps_got_2M.shape)

Adding this code to our main files give us another few lines of output:

Derived $2M second-round loans:
(1175, 53)
Actual $2M second-round loans:
(1459, 52)

312 | Chapter 9: Introduction to Data Analysis

13 Note that I’m intentionally doing this in a slightly roundabout way in order to demonstrate a few more
data-wrangling and visualization strategies, but feel free to rework this code to be more efficient as an
exercise!

If we compare these results to previous ones, it looks like we’re doing a bit bet‐
ter. Across all loans, we appear to have matched up 72,060 out of 103,949 actual
second-round loans, or about 70%. For those organizations approved for $2M in
second-round loans, we’ve found 1,115 out of 1,459, or about 80%.

So what can we say about businesses that got $2M in the second round? We can’t
say anything with 100% confidence unless and until we find matches for those 284
companies whose BorrowerNameFingerprint isn’t the same between their first- and
second-round loans. But we can still look at our 80% sample and see what we
discover. To do this, I’m going to take the following steps:13

1. Find all the unique BorrowerNameFingerprint values for businesses that defi‐1.
nitely got $2M second-round loans.

2. Create a DataFrame (biz_names_df) based on this list and fill it out with the flag2.
value 2Mil2ndRnd.

3. Merge that DataFrame back onto my dataset and use the flag value to pull all loan3.
records for those businesses (both first and second round).

4. Do some basic analyses of how much money those businesses were approved for4.
across both rounds, and visualize those amounts, comparing the official second-
round designation (that is, ProcessingMethod == 'PPS') with our derived,
date-based category.

And of course, now that I’ve written out in a list the steps my script should take (this
is exactly the kind of thing that you’d want to put in your data diary and/or program
outline), it’s just a matter of coding it up below our existing work; for clarity I’ve put it
into a second script file, the complete code of which is shown in Example 9-8.

Example 9-8. who_got_2M_with_viz.py

`pandas` for data loading/transformations
import pandas as pd

`seaborn` for visualization
import seaborn as sns

`matplotlib` for detailed visualization support
import matplotlib.pyplot as plt

`numpy` for manipulating arrays/lists
import numpy as np

The $2 Million Question | 313

load our data
ppp_data = pd.read_csv('public_150k_plus_borrower_fingerprint_a.csv')

convert the `DateApproved` column to an actual datetime data type
ppp_data['DateApproved'] = pd.to_datetime(ppp_data['DateApproved'])

create a variable to hold the second-round start date
second_round_start = pd.to_datetime('2021-01-13')

treat today's date to use as the "upper" limit on possible second-round loans
todays_date = pd.to_datetime('today')

use 1/1/2020 as a "lower" limit, since it's before the PPP launched
program_start = pd.to_datetime('2020-01-01')

pass our boundaries and category labels to the pandas `cut()` function
loan_round = pd.cut(ppp_data.DateApproved,
 bins=[program_start,second_round_start, todays_date],
 labels=['first_round', 'maybe_second'])

insert the new column at the position we specify
ppp_data.insert(2,'Loan Round',loan_round)

this "pivot table" will return a Series showing the number
of times a particular 'BorrowerNameFingerprint' appears in the dataset
loan_count = ppp_data.pivot_table(index=['BorrowerNameFingerprint'],
 aggfunc='size')

convert our Series to a DataFrame and give it a name
loan_count_df = loan_count.to_frame('Loan Count')

use the `describe()` method to print out summary statistics
print("Description of duplicate borrower table:")
print(loan_count_df.describe())

start by sorting our DataFrame of loan counts from greatest to least
sorted_loan_counts = loan_count_df.sort_values(by=['Loan Count'],
 ascending=False)

create a new DataFrame with *only* those that have more than two loans
more_than_two = sorted_loan_counts[sorted_loan_counts['Loan Count'] > 2]

print one instance of each business name that appears in `more_than_two`
print("Businesses that seem to have gotten more than 2 loans:")
print(more_than_two.shape)

print("Number of businesses that appear to have gotten precisely 2 loans:")
precisely_two = sorted_loan_counts[sorted_loan_counts['Loan Count'] == 2]
print(precisely_two.shape)

use `ProcessingMethod` value to identify second-round loans

314 | Chapter 9: Introduction to Data Analysis

pps_loans = ppp_data[ppp_data['ProcessingMethod'] == 'PPS']

print out the `shape` of this DataFrame to see how many businesses we have
print("Number of loans labeled as second round:")
print(pps_loans.shape)

how many loans in our derived data frame were approved for precisely $2M
during the (possibly) second-round timeframe?

merge our `loan_count_df` back to keep track of businesses
we labeled as having precisely two loans
ppp_data_w_lc = pd.merge(ppp_data, loan_count_df,
 on=['BorrowerNameFingerprint'], how='left')

now get *all* the records of business names we associated with two loans
matched_two_loans = ppp_data_w_lc[(ppp_data_w_lc['Loan Count'] == 2)]

select those loans our `maybe_second` loans that have a value of $2M
maybe_round2_2M = matched_two_loans[
 (matched_two_loans['CurrentApprovalAmount'] == 2000000.00) &
 (matched_two_loans['Loan Round'] == 'maybe_second')]
print("Derived $2M second-round loans:")
print(maybe_round2_2M.shape)

select those loans that we *know* are second round and have a value of $2M
pps_got_2M = pps_loans[pps_loans['CurrentApprovalAmount'] == 2000000.00]
print("Actual $2M second-round loans:")
print(pps_got_2M.shape)

isolate the fingerprints of businesses that got $2M second-round loans approved
biz_names = pd.unique(pps_got_2M['BorrowerNameFingerprint'])

convert that list to a DataFrame
biz_names_df = pd.DataFrame(biz_names, columns=['BorrowerNameFingerprint'])

create a new array of the same length as our biz_names_df and fill with
a flag value
fill_column = np.full((len(biz_names),1), '2Mil2ndRnd')
biz_names_df['GotSecond'] = fill_column

now merge this new, two-column DataFrame back onto our full_data list,
so that we (hopefully) find their first-round loans as well
second_round_max = pd.merge(ppp_data_w_lc, biz_names_df,
 on='BorrowerNameFingerprint')

now all the loans that share fingerprints with the ones that got the max
amount in the second round should have the flag value '2Mil2ndRnd' in the
'GotSecond' column
second_max_all_loans = second_round_max[
 second_round_max['GotSecond'] == '2Mil2ndRnd']

we expect this to be twice the number of businesses that received $2M

The $2 Million Question | 315

second-round loans
print('Total # of loans approved for most orgs that got $2M for second round:')
print(second_max_all_loans.shape)

how much money were these businesses approved to get from the PPP, total?
total_funds = second_max_all_loans['CurrentApprovalAmount'].sum()
print("Total funds approved for identified orgs that could have " + \
 "second-round max:")
print(total_funds)

plot our date-based `Loan Round`-labeled data next to records
separated by `ProcessingMethod`. Do we get the same results?

set the seaborn theme
sns.set_theme(style="whitegrid")

use `matplotlib` `subplots()` to plot charts next to each other
use `tuples` to access the different subplots later
fig, ((row1col1, row1col2)) = plt.subplots(nrows=1, ncols=2)

plot the histogram of our date-based analysis
date_based = sns.histplot(data=second_max_all_loans, x='CurrentApprovalAmount',
 hue='Loan Round', ax=row1col1)

plot the histogram of our data-based analysis
data_based = sns.histplot(data=second_max_all_loans, x='CurrentApprovalAmount',
 hue='ProcessingMethod', ax=row1col2)

show the plot!
plt.show()

Running this script will give us all the output from previous examples, along with yet
a few more lines of additional output:

Total # of loans approved for most orgs that got $2M for second round:
(2634, 54)
Total funds approved for identified orgs that could have second-round max:
6250357574.44

At first, it looks like something’s off, because we might have expected our total num‐
ber of loans to be 2 × 1,175 = 2,350. But remember that we matched up loans based
on whether they got approved for exactly $2M in round two, and we failed to match
284 loans on BorrowerNameFingerprint. This means we have all second-round loans
but are missing 284 first-round loans in these numbers. In other words, we’d expect
to have (2 × 1,175) + 284 = 2,634—and we do! Good! It’s always nice when something
matches up. This means that our “total” figure, while still not 100% accurate, is
a somewhat reasonable estimate of the minimum total loan amount this group of
businesses were approved for in PPP funds: around $6 billion dollars.

316 | Chapter 9: Introduction to Data Analysis

14 If we compare the results numerically, we’ll find they’re identical, at least for our subset of companies
approved for $2M in the second round.

Finally, let’s take a look at the visualization shown in Figure 9-6, which is a view of
the graphic generated by the script in which we can compare how our Loan Round
classification matches up against the designated PPS loans. This is a rough (but still
useful) way to validate our work—and the results look pretty good!14

Figure 9-6. Dollar amount of most approved loans for businesses that received two PPP
loans, by loan round

Interestingly, though, Figure 9-6 also illustrates something else: it seems that a fair
number of the businesses approved for $2M in second-round loans violate our earlier
hypothesis that companies approved for $2M in second-round loans were approved
for more than that amount in their first-round loans, when the limits were higher. As
usual, in answering one question, we’ve generated another! And of course the work
we’ve already done would give us a head start down the road to answering it. Before
we let loose on our next round of question-and-answer, though, we need to talk about
one more essential component of data analysis and interpretation: proportionality.

Proportional Response
Imagine you go out to eat with some friends. You’ve eaten recently, so you just order
a drink, but your three friends are ravenous and each order a full meal. How do you
decide who owes what when the check arrives? Most of us would agree that the most
sensible thing to do would be to calculate—or at least estimate—what proportion of

Proportional Response | 317

15 This term has more specific meanings in the business and statistics/data-science worlds, but proportionalizing
just sounds kind of awkward. Plus, it better matches the actual calculation process!

the total bill each person’s order accounted for, and then have each person pay that,
along with that same proportion of, say, the tax and tip.

The same sort of logic applies when we’re analyzing data. In “The $2 Million
Question” on page 306, we looked at the total funds that had been approved for a
certain subset of businesses through the PPP, and while $6B sounds like a lot, we
should arguably be more interested in how those businesses used that money, rather
than the absolute number of dollars they got. Since the PPP was designed to keep
people on the payroll, one thing we might want to know is how much money those
businesses received in relation to how many jobs they preserved, a process I think of as
rationalizing the data.15

Fortunately, the process of rationalizing our data is extremely simple: we calculate
the ratio between two data values by dividing one number by the other. For example,
if we want to know how many dollars per job the companies identified in “The $2
Million Question” on page 306 spent, we can (after some sanity checking) divide the
value in PAYROLL_PROCEED by the value in JobsReported for each record, as shown in
Example 9-9.

Example 9-9. dollars_per_job_2M_rnd2.py

`pandas` for data loading/transformations
import pandas as pd

`seaborn` for visualization
import seaborn as sns

`matplotlib` for customizing visuals
import matplotlib.pyplot as plt

`numpy` for manipulating arrays/lists
import numpy as np

load our data
ppp_data = pd.read_csv('public_150k_plus_borrower_fingerprint_a.csv')

first, sanity check our data
print(ppp_data[ppp_data['JobsReported'] <= 0])

drop the records with no value in `JobsReported`
ppp_data.drop(labels=[437083,765398], axis=0)

calculate the dollars per job
dollars_per_job = ppp_data['CurrentApprovalAmount']/ppp_data['JobsReported']

318 | Chapter 9: Introduction to Data Analysis

insert the new column into our original dataset
ppp_data.insert(3, 'Dollars per Job', dollars_per_job)

use `ProcessingMethod` value to identify second-round loans
pps_loans = ppp_data[ppp_data['ProcessingMethod'] == 'PPS']

select all second-round loans that have a value of $2M
pps_got_2M = pps_loans[pps_loans['CurrentApprovalAmount'] == 2000000.00]
print("Actual $2M second-round loans:")
print(pps_got_2M.shape)

pull fingerprints of businesses approved for $2M second-round loans
biz_names = pd.unique(pps_got_2M['BorrowerNameFingerprint'])

convert that list to a DataFrame
biz_names_df = pd.DataFrame(biz_names, columns=['BorrowerNameFingerprint'])

create an array of the same length as `biz_names_df`; fill with flag value
fill_column = np.full((len(biz_names),1), '2Mil2ndRnd')
biz_names_df['GotSecond'] = fill_column

now merge this new, two-column DataFrame back onto our full_data list
second_round_max = pd.merge(ppp_data, biz_names_df, on='BorrowerNameFingerprint')

all loans whose fingerprints match those of businesses that got $2M
in the second round should have `2Mil2ndRnd` in the `GotSecond` column
second_max_all_loans = second_round_max[
 second_round_max['GotSecond'] == '2Mil2ndRnd']

sbould be 2x the number of businesses approved for $2M second-round
print('Total # of loans approved for most orgs that got $2M for second round:')
print(second_max_all_loans.shape)

how much money were these businesses approved to get from the PPP, total?
total_funds = second_max_all_loans['CurrentApprovalAmount'].sum()
print("Total funds approved for identified orgs that could have " + \
 "second-round max:")
print(total_funds)

now, let's plot that new column on our selected dataset

set the seaborn theme
sns.set_theme(style="whitegrid")

the `matplotlib` `subplots()` to plot charts side by side
fig, ((row1col1)) = plt.subplots(nrows=1, ncols=1)

plot the histogram of our date-based analysis
date_based = sns.histplot(data=second_max_all_loans, x='Dollars per Job',
 hue='ProcessingMethod', ax=row1col1)

Proportional Response | 319

show the plots!
plt.show()

It turns out that a couple of businesses didn’t report any jobs, which will break
our calculation. Since there are only two records guilty of this, we’ll just drop
them, using their pandas-assigned row labels.

While the text output here confirms that we’re looking at the same set of loans that we
examined in “The $2 Million Question” on page 306, our rationalized data highlights
some noteworthy anomalies in some of the first-round loans, where a handful of
companies appear to have had loans approved that allocated more for payroll than
the $100,000-per-job limit allowed, as shown in Figure 9-7.

Figure 9-7. Detail of dollars per job of companies approved for $2M in second-round
loans

What do we make of this? You may notice that by now we’ve veered a rather long
way from the question we posed back in “The Pandemic and the PPP” on page 187,
where we started out trying to assess whether the PPP had helped “save” American
businesses. While that focus helped us work our way through our data quality evalua‐
tions, doing some contextual analysis has opened up a number of new questions and
directions—which I think you’ll find is a pretty common occurrence when it comes
to data wrangling. Hopefully, though, this will just encourage you to keep working
with new datasets to see what else you can find!

320 | Chapter 9: Introduction to Data Analysis

Conclusion
After all these analyses, we’ve learned a few new things—some of which are specific to
this dataset but many of which are far more generally applicable:

• A relatively small number of companies were approved for the maximum allowa‐•
ble second-round amount in the PPP loan program. While many of them had
filed for much more than that for their first-round loan, some did not.

• A handful of companies that were approved for a $2M second-round loan•
claimed more than $100,000 per reported job in their first-round loan.

• Human-entered data is always a mess. That’s why data cleaning is an ongoing,•
iterative process. Documenting your work is essential to being able to defend
your results.

So, our introductory data analysis left us with far more questions than answers. At
this point, there’s only one way we’re going to find out more: talking to people. Sure,
some of the patterns we uncovered look questionable, but we have far too many
unknowns to make any well-supported claims at this point. For example, many of
the $2M second-round loans had yet to be disbursed when this data was released, so
some companies might have actually gotten or used far less than that. Since the PPP
rules only require that a minimum percentage of a loan is spent on payroll in order
to be forgivable, companies that appear to have been approved for too much may
have simply used the difference on other allowable expenses, like mortgage interest
or health care costs. In other words, while we can learn a little bit from this type of
numerical data analysis, it will never be enough to tell us the whole story—either the
how or the why. That is something for which we need direct human input.

Once we’ve done that work, and are clear about what insights we want to share,
we are ready to begin thinking about the most effective way to convey what we’ve
learned to others. Just as our data analysis relies on both data and human judgment
and input, the most effective data communications almost always involve a balance
between words and visualizations. As we’ll see in the next chapter, by crafting both
our words and our visualizations with care, we can better ensure that our intended
message truly gets heard.

Conclusion | 321

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3906395

1 Of which a histogram is a special type.

CHAPTER 10

Presenting Your Data

After all the effort we’ve put into accessing, assessing, cleaning, transforming, aug‐
menting, and analyzing our data, we’ve finally reached the point where we’re ready
to start thinking about communicating what we’ve learned to others. Whether it’s for
a formal presentation to colleagues or a social media post for friends and followers,
sharing the insights we’ve generated through our data wrangling work is an opportu‐
nity for our work to have impact beyond ourselves.

Like every other part of our data wrangling process, effectively and accurately con‐
veying our insights involves applying only a few hard-and-fast rules but a whole
lot of judgment. This is certainly true of written communications, but perhaps even
more so when it comes to the aspect of data communication that often gets the most
attention: visualization.

As we touched on in “Visualization for Data Analysis” on page 292, creating visuali‐
zations to effectively share our data insights with others requires a different focus and
approach than we had when building the visualizations for generating those insights
in the first place. For example, unless you’re trying to reach a pretty specialized
audience (say, through an academic publication), it’s deeply unlikely that a histogram
will find its way into your visualization vocabulary when it’s time to share your
findings with the world. At the same time, it is extremely likely that you will end up
using some form of bar or column chart1 to share your insights with a nonspecialist
audience, since these widely used and highly legible graphic forms are relatively easy
for most audiences to interpret accurately.

In other words, the way we choose to visually represent our data findings should be
informed by not just the data we have (or used to reach our conclusions) but also

323

the audience we are trying to reach. Many software packages (including some of the
ones we have already used) will happily generate charts and graphs if you simply
point them to a structured dataset and pass in a few optional parameters. While this
will work in the bare-minimum sense of producing a visualization, the output will
be much more like a machine translation than a poem. Yes, at a high level it may
conform to the “rules” of the language, but the clarity of its meaning (to say nothing
of its effectiveness or eloquence) is questionable. As such, using visualization to make
our data insights truly accessible to others requires thinking carefully about what you
want to convey, which visual form suits it best, and how you can tailor it to your
specific needs.

Over the course of this chapter, we’ll cover each of these tasks in turn, starting with
some strategies designed to help you identify the key points in your data findings.
After that, we’ll do a review of the most common (and useful!) visual forms for
data. In each instance, we’ll cover the rules and best practices for using each of
them, in addition to presenting some basic code for rendering them in Python using
a combination of the seaborn and matplotlib libraries. Finally, we’ll take a basic
visualization of real-world data and work through how to customize and refine its
various elements in order to turn the (usually) serviceable default presentation into
something that is both accurate and appealing. Along the way, I hope you’ll encounter
at least a few new tools and approaches that will help you think more critically about
data visualization in general—whether it’s the result of your own data wrangling
efforts or not.

Foundations for Visual Eloquence
As I’ve mentioned a few times, the process of writing good code mirrors that of
writing well in most other circumstances. For example, in Chapter 8 we spent time
revising and restructuring code that—while it already worked—evolved into scripts
and functions that were ultimately clearer, cleaner, and more reusable. At a high level,
this process was not dissimilar to how you might revise an essay or an article: once
you have all your key ideas collected in one place, you can come back to the piece
later and see how it might be reworded and reorganized so that the writing is more
concise and the concepts flow more logically.

Though this same write-edit-polish cycle applies to data visualizations, however, the
unit we are working with is much less like an essay and much more like a single
paragraph—because in general, a single visualization should be used to convey just
one single idea. This is true whether your visualization is printed or digital, static or
interactive, whether it is part of a longer talk or will be a standalone social media post.
One visualization = one key idea.

324 | Chapter 10: Presenting Your Data

I’m emphasizing this now because if you came to this chapter hoping for examples
of how to build Gapminder-style interactives or elaborate stream graphs, I want to
disappoint you promptly: in this chapter, my focus will be on the most commonly
used visualization types, such as bar, column, and line charts. The reason is partly
because they remain the simplest and most interpretable way to represent data that
has only one independent variable—and that’s all you should be trying to present
most of the time, anyway. Yes, more complex visualizations can be used to plot
multiple independent variables—the original Gapminder visualization is a rare good
example of this—but without an endearing Swedish man to guide viewers through
them in real time, they are more like pretty toys than informative tools. That’s why
our focus here will be on refining accessible visual forms into what I like to call
eloquent graphics—visualizations that, like the best text, convey information clearly,
simply, and accessibly. While making eloquent graphics doesn’t preclude visual com‐
plexity or even interactivity, it does require that every aspect of the visualization
contributes to the clarity and meaning of the graphic.

Achieving this kind of visual eloquence means thinking about data visualization in
three main phases:

1. Refining your focus
What precisely are you trying to communicate? In some ways, this parallels the
process of choosing your original data wrangling question: no matter what your
wrangling and analysis have revealed, you need to communicate one idea per
visualization. How do you know if you’ve done this effectively? Most of the
time, this means you will able to express it in a single sentence. As with your
earlier data wrangling question, the data statement you craft will act as a kind of
“ground truth” for making choices about your visualization. Anything that helps
you convey your idea more clearly gets kept; everything else gets cut.

2. Finding your visual form
Is your data best displayed as a column or line chart? Is it a map? A pie chart?
A scatter plot or bubble chart? Identifying the best visual form for your data
will always involve some experimentation. At the same time, choosing a visual
form to express your data statement is not solely a matter of preference, or taste;
there are a handful of incontrovertible rules about how certain types of data and
data relationships must be visually encoded. Yes, aesthetics do play a role in the
effectiveness of a visualization—but they cannot override the need for accuracy.

3. Enhancing clarity and meaning
Even with the major visual form identified, there are a plethora of ways in which
the details of your visualization can improve or degrade its clarity, accessibility,
visual appeal, and eloquence. At minimum, you will need to make decisions
about color, pattern, scales, and legends, as well as labels, titles, and annotations.
If your data statement is especially complex, you will need to carefully layer

Foundations for Visual Eloquence | 325

https://www.google.com/publicdata/directory
https://flowingdata.com/2008/02/25/ebb-and-flow-of-box-office-receipts-over-past-20-years
https://youtube.com/watch?v=jbkSRLYSojo
https://youtube.com/watch?v=jbkSRLYSojo

2 Particularly if you give yourself credit for linking verbs.

on even more visual structure to capture these nuances, such as error bars or
uncertainty ranges, or perhaps projected and/or missing data.

In the following sections, we’ll not only discuss each of these phases conceptually, but
we’ll use real-world data to see how they are applied in practice using Python.

Making Your Data Statement
Many years ago, I was fortunate to have The New York Times’ Amanda Cox as a guest
speaker in one of my data visualization courses, where she shared an excellent tip for
assessing whether a given data statement was truly appropriate for visualization: “If
you don’t have a verb in your headline, you have a problem.”

Treated superficially, of course, this requirement is easy to meet.2 The spirit of her
statement, however, implies something much more rigorous: that your graphic’s
headline should clearly articulate some significant relationship or claim, and the
supporting evidence should be visible in the graphic itself. Why is this so important?
For one thing, putting your claims right in the headline will encourage readers to
actually look at your graphic in the first place; naming them clearly helps ensure that
viewers will—quite literally—know where to look for supporting evidence for those
claims. Of course, it’s our job as information designers to make sure that all of our
graphic’s visual cues do this too, but often it’s the headline that draws people in.

If you simply can’t manage to get an action verb in your graphic’s headline, it’s a
clue that a visualization is probably not the best way to convey your insights. True,
in the right circumstances humans can process visualizations incredibly quickly, but
that advantage is only realized if the visualization has something to “say.” In other
words, while you may be able to generate a visually accurate chart titled “One Year
of Daily Treasury Long-Term Rates,” the reality is that even the biggest policy wonk
will wonder why they should bother looking at it. Don’t insist on visualization if it’s
not the right tool! Remember that our goal is to convey our data wrangling insights
as effectively as possible—not to express them visually at all costs. By focusing first on
refining your data statement—and confirming it has the power you need—you will
avoid spending lots of time designing and building a visualization that doesn’t really
do what you want or what your audience needs. Sure, basic data visualizations can be
quickly generated with a dataset and a solid visualization library (like seaborn). But
making really eloquent visualizations requires careful thought as well as detailed cus‐
tomization of even the best library’s default charts. Before you commit all that time
and energy, then, it’s worth making sure that your complex visualization wouldn’t
have been better off as a single, highlighted statistic from your analysis.

326 | Chapter 10: Presenting Your Data

https://merriam-webster.com/dictionary/linking%20verb
https://en.wikipedia.org/wiki/Amanda_Cox
https://psychologicalscience.org/news/how-headlines-change-the-way-we-think.html
https://news.mit.edu/2014/in-the-blink-of-an-eye-0116

3 Though even those few are often are violated publicly and frequently, e.g., Junk Chart’s “Start at Zero
Improves This Chart but Only Slightly”.

Once you’ve got a powerful data statement “headline” in place, however, it’s time to
identify the graphic form that will help you most effectively present the data evidence
for your claim.

Charts, Graphs, and Maps: Oh My!
Even if we limit ourselves to the more straightforward graphic forms, there are still
enough options to make the process of finding the best one for our data a little bit
overwhelming. Should you choose a line chart or a bar graph? If a bar graph is best,
should it be horizontal or vertical? Are pie charts ever OK? Unfortunately, this is one
situation where our Python libraries largely cannot help us, since in general they will
just valiantly attempt to produce whatever type of chart you ask for with the data you
give them. We need a better way.

This is where having a well-focused data statement comes in. Does your statement
reference absolute values—like the CurrentApprovalAmount in our PPP loan data
—or does it focus on the relationship between values, as in “The pandemic cut
annual FDI flows by one-third”? While claims about absolute values are often best
expressed through bar charts, data statements about relationships can be well sup‐
ported through a wider range of visual forms. If your data statement includes a claim
about change over time, for example, a line graph or scatter plot is a good place to
start. Meanwhile some visual forms, like pie charts and maps, are difficult to adapt to
anything except data from a single point in time.

In truth, there are few hard-and-fast rules for visualizing data,3 but I have outlined
those that exist in the sections that follow—along with some general tips for design‐
ing your graphics. While these guidelines will help you choose a form for your
visualization that doesn’t work against your data, that’s only the next step. The choices
that can really elevate your graphics are the ones that we’ll cover in “Elements of
Eloquent Visuals” on page 345. That section is where we’ll move beyond the (still
quite excellent) defaults of seaborn and begin digging more into matplotlib in order
to control things like the labels, colors, and annotations that can really set your
visualization apart.

Pie Charts
Pie charts are a surprisingly polarizing topic in visualization. Though pie charts are
helpful for teaching children about fractions, there are plenty of folks who feel they
have little to no place in an effective visualization lexicon.

Charts, Graphs, and Maps: Oh My! | 327

https://junkcharts.typepad.com/junk_charts/2021/06/start-at-zero-improves-this-chart-but-only-slightly.html
https://junkcharts.typepad.com/junk_charts/2021/06/start-at-zero-improves-this-chart-but-only-slightly.html
https://economist.com/graphic-detail/2021/06/21/the-pandemic-cut-annual-fdi-flows-by-one-third
https://economist.com/graphic-detail/2021/06/21/the-pandemic-cut-annual-fdi-flows-by-one-third
https://pbs.org/parents/recipes/pegs-pizza-fractions
https://storytellingwithdata.com/blog/2011/07/death-to-pie-charts

4 Since both the pandas and seaborn libraries rely heavily on matplotlib, there are many instances where
significant customization requires using matplotlib features directly, as we’ll see in more detail in “Elements of
Eloquent Visuals” on page 345.

5 Obviously, we could simply reverse the order in which we originally specified the data, but I prefer to have the
data order and the eventual visual order match up.

Personally, I think there are specific—if limited—situations in which a pie chart is the
best visualization for supporting your data statement. For example, if you are trying
to make a point about what proportion or share of your data has a particular value
and the remaining values can be sensibly grouped into four or fewer categories, then
a pie chart may well be what you want. This is especially true if the resulting chart
highlights values that correspond to some “recognizable” fraction of the whole (e.g.,
1/4, 1/3, 1/2, 2/3, or 3/4), since the human eye is able to detect such differences in line
orientation without much effort.

For example, looking at the results of the New York City Democratic primary for
mayor in June 2021, we can imagine writing a data statement along the lines of
“Despite Wide Field, Top 3 Candidates Capture Nearly 3/4 of First-Choice Votes.”
Because only four candidates received more than 10% of the first-choice votes, it is
also reasonable to lump all the remaining candidates into a single “Other” category.
In this instance, then, a pie chart is a perfectly reasonable way to both accurately
present the results and support our claim—in part because it makes it easy to see how
significantly the front-runners outpaced the other candidates.

Given the contentious nature of pie charts, it’s not totally surprising that there is no
pie chart option provided in the generally quite versatile seaborn library. We can,
however, use matplotlib directly to get a very serviceable pie chart.4 Still, there are a
few idiosyncrasies in the matplotlib pie charting function that we have to overcome.
For example, best practice dictates that pie charts are laid out with the largest section
starting at “12 o’clock,” with the rest added in descending size order clockwise from
there. In matplotlib, however, the first section starts at “3 o’clock,” and additional
sections are added counterclockwise from there. As a result, we need to specify
startangle=90 and reverse the largest-to-smallest order of our segments.5 Likewise,
matplotlib also assigns each “slice” of the pie a different color hue (e.g., purple, red,
green, orange, and blue) by default, in a particular range of colors that may be
inaccessible to folks with certain kinds of colorblindness. Since our data statement is
conceptually grouping the top three candidates, I’ve made all of these the same shade
of green; and since all the candidates are from the same political party, I’ve kept all
the slices in the green family. To see how this type of chart is coded (including these
small customizations), take a look at Example 10-1 and the resulting visualization in
Figure 10-1.

328 | Chapter 10: Presenting Your Data

https://store.moma.org/for-the-home/kitchen-dining/cookware-kitchen-tools/visual-measuring-cups/8711-802262.html
https://csc2.ncsu.edu/faculty/healey/PP
https://washingtonpost.com/elections/election-results/new-york/nyc-primary
https://washingtonpost.com/elections/election-results/new-york/nyc-primary

Example 10-1. a_humble_pie.py

import matplotlib.pyplot as plt

matplotlib works counterclockwise, so we need to essentially reverse
the order of our pie-value "slices"
candidate_names = ['Adams', 'Wiley', 'Garcia', 'Yang', 'Others']
candidate_names.reverse()
vote_pct = [30.8, 21.3, 19.6, 12.2, 16.1]
vote_pct.reverse()

colors = ['#006d2c','#006d2c', '#006d2c', '#31a354','#74c476']
colors.reverse()

fig1, ax1 = plt.subplots()
by default, the starting axis is the x-axis; making this value 90 ensures
that it is a vertical line instead
ax1.pie(vote_pct, labels=candidate_names, autopct='%.1f%%', startangle=90,
 colors=colors)
ax1.axis('equal') # equal aspect ratio ensures that pie is drawn as a circle.

show the plot!
plt.show()

The argument that we pass to autopct should be a “formatted string literal,” also
known as an f-string. This example specifies that the fraction be expressed as a
floating point (decimal) number to one-point of precision. The double percent
sign (%%) is used here to print a single one in the output (by escaping the reserved
percent sign symbol with another one).

Charts, Graphs, and Maps: Oh My! | 329

https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals

Figure 10-1. New York City primary pie chart

To recap, if you’re considering a pie chart:

Rule
Your data categories must conceptually (and literally) sum to a single “whole.”

Guideline
The number of categories should be condensed to five or fewer.

Guideline
The proportion of data you want to highlight should be 1/4, 1/3, 1/2, 2/3, or 3/4
of the total.

If your data doesn’t fit one or more of those requirements, however, a bar chart may
be the next graphic form to explore.

Bar and Column Charts
Bar charts are often the most effective way to highlight the relationships (includ‐
ing differences) among discrete, nominal (as opposed to proportional) data values.
Unlike pie charts, bar charts can accurately represent datasets where the values do not
sum to a single “whole.” They can also effectively represent both positive and negative
values (simultaneously, if needed) and can display both point-in-time comparisons of

330 | Chapter 10: Presenting Your Data

different categories of data and data values over time. The bars can also be oriented
vertically (sometimes these graphics are described as column charts) or horizontally
to make labels and data relationships more legible.

In other words, bar charts are incredibly flexible and offer many options for present‐
ing the evidence for data claims effectively. There is, however, one hard-and-fast rule
for working with bar charts: data values MUST start at zero! There are really no
exceptions to this rule, though that doesn’t stop some people from trying. Why is this
rule so important? Because starting bars of a chart at a number other than zero means
that their visual difference in length will no longer be proportional to their actual
difference in value.

For example, imagine you were arguing for a raise at work, where you currently earn
the US federal minimum wage of $7.25 per hour. You ask your boss to raise your
hourly rate to $9.19 per hour, to account for the effect of inflation since the minimum
wage was last raised in 2009.

“Well,” says your boss, “let’s see what that kind of raise would look like,” and then
shows you a chart like the one shown in Figure 10-2.

Figure 10-2. An inaccurate wage comparison

See the problem? By starting the bars at 5 rather than zero, the chart in Figure 10-2
makes it look like $9.19 per hour would be almost double your current wage. But of

Charts, Graphs, and Maps: Oh My! | 331

https://datajournalism.com/read/longreads/the-unspoken-rules-of-visualisation
https://data.bls.gov/cgi-bin/cpicalc.pl?cost1=7.25&year1=200907&year2=202107

course some simple math (9.19 – 7.25 / 7.25 = ~.27) illustrates that it’s just over 25%
more than you’re currently making. As you can see, starting bar charts at zero isn’t a
matter of taste, aesthetics or semantics—it’s a visual lie.

Still, even professional graphics teams sometimes get this wrong. Take this example,
highlighted on Kaiser Fung’s excellent blog, Junk Charts, titled “Working Culture”
and reproduced in Figure 10-3.

Figure 10-3. An inaccurate retirement age comparison

In Figure 10-3, a “broken” bar chart claims to display when men in different countries
stop working, as compared to the official retirement age. As in Figure 10-2, failing
to start the bars at zero grossly misrepresents their real value difference: according to
the data labels, men in France retired roughly 10 years before men in Japan—a 15%
difference in working years. But the actual bar for Japan is more than twice as long
as the one for France. Of course, if the bars all started at zero, the difference in their
values would not seem so dramatic.

332 | Chapter 10: Presenting Your Data

https://flowingdata.com/2017/02/09/how-to-spot-visualization-lies
https://junkcharts.typepad.com/junk_charts/2005/11/finally_a_tange.html

What gives? Are the designers of this visualization really trying to trick us into
thinking that men in Japan work twice as long as men in France? Almost certainly
not. Graphics like the one in Figure 10-3 are the reason why expressing one idea per
visualization is so important: trying to layer in more than that is where you’re most
likely to run into trouble and end up with an inaccurate and misleading visualization.
In Figure 10-3, the designers are trying to show two different measures (difference
between the official retirement age and the age men stop working and what that age
is) whose scales are incompatible. Start the bars at zero, and readers won’t be able to
distinguish the ages where the dots are placed; change the scale so the dot placement
is legible, and the bars become inaccurate. Either way, you’re forcing the reader to
do a lot of work—especially since the graphic’s heading hasn’t told them what they
should be looking for ;-)

Let’s see what happens when we start with a clear, action-verb headline and use that to
redesign this graphic: “Men in Japan work years past retirement age, while others stop
well before.” Here, our headline/data statement is about highlighting the difference
between official retirement and actual retirement. Now we can design a horizontal
bar chart that both supports this claim and accurately represents the underlying data,
as shown in Example 10-2 and the resulting Figure 10-4.

Example 10-2. retirement_age.py

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np

(abbreviated) list of countries
countries = ['Japan', 'Iceland', 'Switzerland', 'France', 'Ireland', 'Germany',
 'Italy', 'Belgium']

difference in years between official and actual retirement age
retirement_gap = [9, 2, 2, -1, -2, -2, -7, -8]

zip the two lists together, and specify the column names as we make the DataFrame
retirement_data = pd.DataFrame(list(zip(countries, retirement_gap)),
 columns =['country', 'retirement_gap'])

in practice, we might prefer to write a function that generates this list,
based on our data values
bar_colors = ['#d01c8b', '#d01c8b', '#d01c8b', '#4dac26','#4dac26','#4dac26',
 '#4dac26','#4dac26']

pass our data and palette to the `seaborn` `barplot()` function
ax = sns.barplot(x="retirement_gap", y="country",
 data=retirement_data, palette=bar_colors)

Charts, Graphs, and Maps: Oh My! | 333

show the plot!
plt.show()

By assigning our numerical values to the x-axis, and categorical values to the
y-axis, seaborn will render this as a horizontal, rather than vertical, bar chart.

Figure 10-4. Retirement gap horizontal bar chart

Because my data statement/headline is now clearly about the difference in years
between official and actual retirement age, I’ve chosen to chart this difference
directly and also reorder the data: men in France only retire one year early, while
men in Belgium retire about eight years early. To further highlight the before/after
official retirement age distinction, I’ve also color-coded the bars according to their
positive/negative value.

The mix of positive and negative values in this dataset—along with the longer coun‐
try name labels—makes this graphic much more readable as a horizontal bar chart
rather than a vertical one. If we want to test it out as a vertical chart for the sake of
comparison, however, we need to swap which data columns we pass as the x and y
arguments to the barplot() function. For example, by changing this:

ax = sns.barplot(x="retirement_gap", y="country", data=retirement_data,
 palette=bar_colors)

to this:

334 | Chapter 10: Presenting Your Data

6 “The Hockey Stick: The Most Controversial Chart in Science, Explained” by Chris Mooney, https://theatlan
tic.com/technology/archive/2013/05/the-hockey-stick-the-most-controversial-chart-in-science-explained/275753;
that said, organizational charts have also (expletive warning) had their day.

ax = sns.barplot(x="country", y="retirement_gap", data=retirement_data,
 palette=bar_colors)

While this change is easy enough to make, there can be real differences in the
readability of a given dataset when it’s rendered vertically or horizontally. Specifically,
vertical bars tend to be better for data with shorter labels, less variation, and/or few
to no negative values, while horizontal bars are usually better for divergent data
(especially if there is a high proportion of negative values) and/or data that has longer
labels.

While the visualization shown in Figure 10-4 is still quite simple, if you run the code
you’ll see for yourself the difference in quality that, for example, taking care with your
color palette brings to a visualization. While I have chosen a binary magenta/green
color encoding here, I could also have specified one of seaborn’s 170 color palettes
(e.g., palette='BuGn'), which would (mostly) align the color intensity with the value
of each bar.

To recap, when working with bar charts:

Rule
Bars must begin at zero!

Guideline
Vertical bars are good for denser data with less variation.

Guideline
Horizontal bars are better for more variation and/or longer labels.

Line Charts
When your data statement is about rates of change rather than value differences, it’s
time to explore line charts. Like bar charts, line charts can effectively display multiple
categories of numerical data, but only as it changes over time. Because they don’t
visually encode the absolute data values, however, line chart scales do not need to
start at zero.

At first, this might seem like an invitation for manipulation—and indeed, line charts
have been at the center of some major political controversies.6 For both bar charts and
line charts, however, what’s actually driving the scale of the y-axis is the data: just as
we cannot decide to start bar charts at a value other than zero, it would be absurd
to scale the y-axis to many times the value of our largest data measure, as shown in
Figure 10-5.

Charts, Graphs, and Maps: Oh My! | 335

https://theatlantic.com/technology/archive/2013/05/the-hockey-stick-the-most-controversial-chart-in-science-explained/275753
https://theatlantic.com/technology/archive/2013/05/the-hockey-stick-the-most-controversial-chart-in-science-explained/275753
http://voices.washingtonpost.com/ezra-klein/2009/07/when_health-care_reform_stops.html
https://flickr.com/photos/robertpalmer/3743826461
https://medium.com/@morganjonesartist/color-guide-to-seaborn-palettes-da849406d44f

7 For more, see Wong’s The Wall Street Journal Guide to Information Graphics (Norton).

Figure 10-5. Another bad wage comparison graphic

While technically accurate, the hyperextended y-scale in Figure 10-5 has so com‐
pressed the data values that our eyes can no longer accurately or effectively distin‐
guish the difference between them. For bar charts, then, the highest y-axis value
should usually be at the next “whole” labeled increment (more about this in “Selecting
Scales” on page 347). For line charts, visualization experts like Dona Wong recom‐
mend that the value range of the data occupy about two-thirds of the y-axis space.7

Of course, this approach highlights the influence that the selection of data points in
a line chart has on the overall message. For example, consider this graphic from The
Economist, reproduced in Figure 10-6.

336 | Chapter 10: Presenting Your Data

https://economist.com/graphic-detail/2021/06/21/the-pandemic-cut-annual-fdi-flows-by-one-third
https://economist.com/graphic-detail/2021/06/21/the-pandemic-cut-annual-fdi-flows-by-one-third

Figure 10-6. Foreign direct investment flows (FDI), 2007–2020

In this case, the original headline, “The pandemic cut annual FDI flows by one-third,”
is actually pretty effective; it’s both active and specific. But while the data this headline
describes is included in the accompanying chart, it’s far from emphasized—the visual‐
ization includes more than a decade’s worth of data even though the change described
took place between 2019 and 2020. If we revise the graphic to focus only on what
happened between those two years, as shown in Figure 10-7, we can both support
the data statement more clearly and reveal an additional dimension of the data:
though foreign direct investment dropped substantially in “developed” countries, it
largely held steady in “developing” regions. As the article itself states, “Inflows to rich
countries fell faster than those to developing ones—by 58% against just 8%.”

This two-point line graph—also known as a slope graph—not only makes it easy for
readers to see the evidence behind the headline claim, it also allows them to infer
the disparate impact of the pandemic on FDI with respect to “developed” versus
“developing” countries—thereby providing evidence for the article’s later claim as
well. As you can see in Example 10-3, generating this type of basic line chart takes just
a few lines of code.

Charts, Graphs, and Maps: Oh My! | 337

Figure 10-7. The pandemic cut annual FDI flows by one-third

Example 10-3. covid_FDI_impact.py

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np

each individual array is a row of data
FDI = np.array([[0.8, 0.7], [0.3, 0.6]])

fdi_data = pd.DataFrame(data=FDI,
 columns=['Developed', 'Developing'])

ax = sns.lineplot(data=fdi_data)

show the plot!
plt.show()

At this point, you may be wondering, though, whether it’s somehow wrong to include
only two years of data. After all, we have (at least) a decade’s worth on hand.

338 | Chapter 10: Presenting Your Data

The real question, of course, is not whether we have more data but whether the data
claim we’re making somehow misrepresents a broader trend. Looking at the original
plot in Figure 10-6, it’s clear that the FDI has only dropped this quickly twice in the
past 15 years or so: from 2007 to 2008 and again between 2016 and 2017. Why? We
don’t know for sure—neither the original chart nor the full article text (I checked!)
make it clear. What we do know is the absolute change in value (around $500B)
and the proportional change in value are both large enough and unique enough that
focusing just on the one-year change is not misleading. If we want to reassure our
readers of this, we’d be better off providing the additional detail in a table, where
they can review the precise numbers in detail without being distracted from the main
point.

Line charts are essential visual forms when the rate of change (captured in the slope of
each line) is central to the data statement’s message. While this type of chart does not
need to start at zero, it can only be used to represent data over time. To review, when
working with line charts, the following apply:

Rule
Data points must represent values over time.

Guideline
Data lines should occupy roughly 2/3 of the vertical chart area.

Guideline
Four or fewer lines should be distinctly colored/labeled.

While it may seem counterintuitive at first, it’s actually OK to have a large number
of lines on a line chart—as long as they are styled so that they don’t compete with
the evidence for our data statement. As we’ll see in the next section, this kind of
“background” data can actually be a useful way to provide additional context for
readers, thereby supporting your headline claims even more effectively.

Scatter Charts
Although scatter plots are not frequently used in general data communications, they
can be irreplaceable as a point-in-time counterpart to line charts, especially when you
have a large number of data points that illustrate a clear trend—or deviation from that
trend.

Consider, for example, the graphic in Figure 10-8, which reproduces one from this
New York Times story, and illustrates how, even among thousands of temperature
readings taken over the course of more than four decades, three consecutive days in
June 2021 were well outside the expected range in cities from Portland, Oregon, to
Vancouver, Canada. While the headline could certainly be punchier, the visualization
itself has a clear message: the maximum temperatures reached in Portland, OR, on
three days in late June were higher than every other day of the last 40 years.

Charts, Graphs, and Maps: Oh My! | 339

https://nytimes.com/interactive/2021/06/29/upshot/portland-seattle-vancouver-weather.html

8 Megan Boldt et al., “Schools That Work: Despite Appearances, Schools Doing Better than Expected Have
Traits in Common,” July 9, 2010, https://twincities.com/2010/07/09/schools-that-work-despite-appearances-
schools-doing-better-than-expected-have-traits-in-common.

Figure 10-8. Daily maximum temperatures in Portland, 1979–2021

Most of the time, scatter plots are used to display data values captured either over
the course of time (as in Figure 10-8) or across many individual members of some
“group” (e.g., “schools,” “large cities”, “river-fed lakes,” or “Marvel movies”). At times,
scatter plots may include calculated trend lines that serve as a benchmark for com‐
paring individual data points with “expected” average values; at other times, the
benchmark might be a value determined by professional, legal, or social norms.

For example, drawing inspiration from a Pioneer Press story about schools where stu‐
dents perform better than the typical indicators would suggest,8 we can use seaborn
to plot historical data from the California school system to generate a scatter plot
and highlight an unusual data point. The code for this example can be found in
Example 10-4.

340 | Chapter 10: Presenting Your Data

https://twincities.com/2010/07/09/schools-that-work-despite-appearances-schools-doing-better-than-expected-have-traits-in-common
https://twincities.com/2010/07/09/schools-that-work-despite-appearances-schools-doing-better-than-expected-have-traits-in-common

Example 10-4. schools_that_work.py

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

import the school test data
school_data = pd.read_csv("apib12tx.csv")

plot test scores against the percentage of students receiving meal support
sns.scatterplot(data=school_data, x="MEALS", y="API12B", alpha=0.6, linewidth=0)

highlight a high-performing school
highlight_school = school_data[school_data['SNAME'] == \
 "Chin (John Yehall) Elementary"]
plt.scatter(highlight_school['MEALS'], highlight_school['API12B'],
 color='orange', alpha=1.0)

show the plot!
plt.show()

The alpha argument governs the opacity of the dots; 60% opacity (0.6 as a
decimal) proved the right balance here for legibility of individual as well as
overlapping dots. The argument linewidth=0 eliminates the outlines around
each dot, which interferes with the heatmap effect of adjusting the opacity.

To “highlight” a school, we are essentially just creating a one-dot scatter plot at
the x and y coordinates of our selected data point.

One of the key challenges when using scatter plots is the problem of occlusion, in
which data points may end up superimposed on one another, thus obscuring the
true density of the data. One approach to this is to add jitter—a small amount of
randomness to the placement of individual dots designed to minimize this visual
overlap. As of seaborn 0.11.2, however, jitter is listed as an optional argument but
is listed as “not supported.” Fortunately, we can preserve the precision of our data
without losing its interpretability by adjusting the opacity or alpha of the data points.
By making all the dots in our visualization somewhat transparent, overlapping data
points translate to a kind of opacity-driven heatmap that clarifies trends without
losing specificity, as shown in Figure 10-9.

Charts, Graphs, and Maps: Oh My! | 341

https://seaborn.pydata.org/generated/seaborn.scatterplot.html

Figure 10-9. At some schools, history isn’t destiny

So when do scatter plots make sense?

Guideline
Data must be high-volume enough for trends and outliers to be visible.

Guideline
Relevant benchmarks, whether arising from the data or outside rules, should be
visualized.

Guideline
Most of the data should be a “background” color, with no more than a handful of
points highlighted.

Guideline
Adjust opacity or apply jitter to minimize data occlusion.

Maps
For many of us, maps are one of the most familiar visualization types available;
depending on your circumstances, you may use maps to plan your route to work or
school, find a new shop or restaurant, or locate a new park or bike path. Maps are

342 | Chapter 10: Presenting Your Data

also a common visual form in mass communications, where they appear as weather
maps, election maps, or even “locator” maps that provide a frame of reference for
unfamiliar locations. If our data has a geographic component, then, it’s natural to
consider mapping it.

In reality, however, unless your data is about geography, you really shouldn’t be map‐
ping it. Why? Because maps represent land area. Not prevalence, or even popula‐
tion—which is usually what our data is about. For example, let’s think back to our
PPP loan data from Chapter 6. If you were to cluster the number of approved loans
by state using value_counts('ProjectState'), you would end up with the following
output (reformatted into columns to save space):

CA 99478 VA 18682 CT 10197 NH 4197 AK 2076
TX 60245 NC 18022 AL 9025 ID 3697 PR 2032
NY 54199 MN 16473 OK 8598 NM 3524 VT 1918
FL 46787 CO 15662 SC 8522 ME 3490 WY 1791
IL 33614 MD 15170 UT 7729 HI 3414 GU 305
PA 30768 WI 14729 KY 7623 DC 3175 VI 184
OH 26379 IN 13820 IA 7003 RI 3012 MP 55
NJ 24907 MO 13511 KS 6869 WV 2669 AS 18
MI 24208 TN 12994 NV 6466 MT 2648
MA 21734 AZ 12602 NE 4965 ND 2625
GA 20069 OR 10899 AR 4841 DE 2384
WA 18869 LA 10828 MS 4540 SD 2247

Without too much effort, you can probably guess that the order in which states
appear in this table is similar to their order in this one, which ranks the states by
population. In other words, if we were to “map” the data about PPP loan approvals,
it would basically end up being a population map. But let’s say we fixed this, and we
normalized the number of loans by population, and so generated a new column called
“Approved Loans Per Person” or something similar. Even now that we’ve converted
our data from population to prevalence, we’ve really just given ourselves the bar chart
problem in geographic form: the actual visual area occupied by a particular state is
just not proportional to the data we’re displaying. No matter how we choose our color
palette or data ranges, Delaware will occupy 1/50 the visual space of Wyoming, even
though it has 25% more approved loans. By mapping this, we’re just guaranteeing that
our visual representation is working against the actual data.

Obviously, there are a lot of map visualizations out there, and a fair number of them
probably make one or both of the mistakes I’ve highlighted thus far. Mapping offers
such a seemingly straightforward visual organizing principle that many people can’t
resist it, but using it for nongeographic data is really a disservice to both the data and
your readers.

There are, of course, excellent maps of genuinely geographic phenomena out there:
these New York Times census maps, for example, offer a thoughtful approach to pre‐
senting census data, while ProPublicas’s work on Houston’s flood zones illustrates how

Charts, Graphs, and Maps: Oh My! | 343

https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
https://nytimes.com/interactive/2015/07/08/us/census-race-map.html
https://projects.propublica.org/graphics/harvey-maps

important geography (both natural and human-made) is during extreme weather
events. And for a beautiful and original presentation of wind data, check out this
wind map on hint.fm.

Given how rarely maps will be the right visualization for supporting your data claims
(as well as how complex building them can be in Python), we’re not going to go
through a code example for mapping here. If you’re working with data that you feel
you truly must map, I recommend looking at the geopandas library, which is designed
to combine mapping-related shape information easily with pandas DataFrames to
produce visualizations.

Pull Out the Paper
Though your visualizations are probably destined to live digitally, I strongly recom‐
mend that when it’s time to begin your design process, you step away from your
keyboard and pick up a pen (or pencil, or crayon) instead. Don’t worry if you “can’t
draw”—your goal here is to identify (and possibly solve) visual challenges without
being prejudiced by what your digital tools can and can’t easily do. If this means that
your visualization “paper prototypes” end up looking more like scratch paper than
an illustration, that’s actually all the better: user-experience research shows that if a
sample design is too detailed or precise, viewers are more likely to fixate on details
like the specific font size or colors used, rather than on “bigger picture” questions
about layout and meaning. Sketching your visualization ideas out on paper (or a
whiteboard) as a first step also offers an effective way to try out a variety of visual
forms for your data while also being fast, cheap, and easy.

Personally, I find that making a sketch helps me see more quickly whether a given
visual form (say, a bar chart) really illustrates the relationship among data elements
that I need it to. It also makes it easy to consider—and change—things like the data
highlights, annotations, scales, and axis labels that often constitute the difference
between a serviceable graphic and an excellent one. I also find that starting with a pen
or pencil makes generating the final (digital) visualization two to three times faster
when it eventually is time to start coding.

One tip about this process: don’t worry about painstakingly accounting for every
single data point when you make these sketches. What you want is to get a general
feel for what type of visualization will work best for your data, and to make key
decisions about what will be highlighted and what will be left off. Even without
precise data values at hand, sketching out your ideas will allow you to review, share,
and get input on them in ways that you won’t be able to once you’ve committed your
ideas to code.

344 | Chapter 10: Presenting Your Data

http://hint.fm/wind
http://hint.fm/wind
https://geopandas.org/index.html
https://en.wikipedia.org/wiki/Paper_prototyping

Elements of Eloquent Visuals
Although I have been an information designer for most of my career, I do not
consider myself a true graphic designer. I cannot make you a good logo for your
business, any more than you—having now learned a decent amount about Python
programming—can troubleshoot a printer problem. Fortunately, through study, lots
of reading, a few courses, and the generosity of the many talented designers with
whom I’ve worked, I’ve learned a fair bit about effective visual design in general, and
information design in particular. My takeaways from a couple of decades in the work
are outlined here.

The “Finicky” Details Really Do Make a Difference
A million years ago, when I first started working as a frontend programmer for a
web startup, my number-one priority was to make things that worked—and let me
tell you, I was really glad when they did. Over time, I even refined and refactored my
code in some of the same ways we did in Chapter 8, and I was pretty happy with those
programming artifacts. From the perspective of a programmer, my work was pretty
clean.

But I worked on a design team, and the designers I worked with were always pushing
me to tweak little details that seemed to me more on the side of “nice to have,”
rather than essential. Did it really matter if the photos in a slideshow slowed down or
rebounded just a bit as they slid into place? At the time, coding up effects like that
meant writing and tweaking (very approximate) physics equations, which I did not
love. Plus, all those customizations were cluttering up my code.

But one of the things I like most about programming is problem-solving, so eventu‐
ally I hunkered down and made the changes they asked for. And once I saw it in
action, I realized how much more polished and satisfying the end result really was. I
began to appreciate that the quality of the design was in those “little” details and that
“finicky” things—like a color change on tap or click—actually made my interfaces
and graphics both clearer and more usable. In other words, don’t dismiss the design
“details”—they’re not just about making things “look pretty.” Design is how it works.

Trust Your Eyes (and the Experts)
Visual elements rendered digitally are necessarily expressed in quantitative terms:
the mathematical origins of hexadecimal color codes and x/y coordinate positioning
might make it seem like finding the “correct” colors for a chart or the right posi‐
tioning for an annotation label is a matter of doing the right math. It isn’t. Color
perception, for example, is both complex and highly individual—we can’t really be
sure that other people are seeing “the same” color that we are—and, of course, there
are many types of color “blindness” that may prevent some people from perceiving

Elements of Eloquent Visuals | 345

https://computerhope.com/htmcolor.htm

9 Believe me, I’ve tried.

the difference between certain pairs of complementary colors (e.g., red/green, blue/
orange, yellow/purple) at all. There is no equation that can account for that.

In fact, every “color” that we might work with is, in fact, characterized by three
different properties: hue (for example red versus blue), brightness (or luminosity),
and saturation. Colors that “go” together align or contrast across these features in
very particular ways. When it comes to visualizations, of course, we need colors
to do much more than just look good together; they have to meaningfully encode
information. But what does it mean for a color to be “20% more blue” than another?
Whatever it is, it’s not just a matter of flipping some numbers in your hexadecimal
color value.9

Luckily, we have the help of experts. For more than two decades, anyone looking for
color advice (mostly for maps, though it is also a great place to start for other types
of charts) has been able to turn to the work of Cynthia Brewer, a cartographer and
professor of geography at Penn State, whose ColorBrewer tool provides excellent, free
color distributions for visual design. Likewise, Dona Wong’s excellent book The Wall
Street Journal Guide to Information Graphics (Norton) includes some of my personal
favorites when it comes to color combinations for graphics.

If you feel really strongly about choosing your own color palette, then the next
best approach is to turn to the greatest color authority we’ve got: nature. Find a
photograph of the natural world (photos of flowers often work particularly well),
and use a color capture tool to select contrasting colors, if you need them, or several
shades of a single color. Use these to update the defaults on almost any visualization
package, and you’ll appreciate how much more appealing and professional-looking
your graphic has become.

When it comes to things like font size and label placement, there are also no equa‐
tions to follow—you mostly just have to look at your graphic and then nudge things
around if they don’t seem quite right. For example, I clearly remember coding up one
of my colleague’s designs at The Wall Street Journal, which contained a list of items
in the layout, and naturally I had written a for loop to place them precisely. The
problem was, something looked off when I ran the code and rendered it. Convinced
that I just had estimated the spacing poorly, I asked him how many pixels of white
space there should be between each element. “I don’t know,” he said, “I just looked
at it.”

346 | Chapter 10: Presenting Your Data

http://personal.psu.edu/cab38
https://colorbrewer2.org

While I recognize that this kind of advice can be frustrating when you’re just starting
out with visual design, I can also promise that if you give yourself some time to
experiment, you’ll eventually learn to trust your own eyes. With that, some practice,
and attention to the (well-defined) details laid out in the following sections, you’ll
soon be producing visualizations that are both accurate and eloquent.

Selecting Scales
Throughout “Charts, Graphs, and Maps: Oh My!” on page 327, we addressed the
issue of scale with respect to the accuracy of our visualizations; here our focus is on
clarity and readability. Packages like seaborn and matplotlib will automatically choose
scales and axis limits based on your data, but these defaults may need tweaking for a
variety of reasons. Once you’ve confirmed the appropriate numerical range for your
data, you’ll want to review how your graphic is actually rendering and make sure that
it is also following these general rules:

• Axis limits and marked values should be whole numbers and/or multiples of 5•
or 10.

• Value labels should not be in scientific notation.•
• Units should only appear on the last element of each axis.•
• Though not ideal, labels may need to be edited or (less preferably) angled in•

order to remain readable.

Choosing Colors
In addition to seeking expert advice on specific color selection, consider how many
colors your data elements should have. Color can be an invaluable way to highlight
a specific data point or distinguish between measured and projected values. When
selecting colors for your chart or graph, remember:

One color per data category
If you are displaying several months of data about the PPP loan program, for
example, all of the bars should be the same color. Likewise, different values of the
same variable should be shades of a single color.

Avoid continuous color distributions
While adjusting the color of each visual element according to its value may seem
more precise, like the visual compression of data we saw in Figure 10-5, continu‐
ous color palettes (or ramps) generate color differences so small that the human
eye cannot really perceive them. This is where your distribution calculations (you

Elements of Eloquent Visuals | 347

10 You can accomplish this quickly in pandas by using the quantile() function and passing in the values 0.2,
0.4, 0.6, and so on. For a more general refresher on how to calculate these values and what they represent, see
Example 9-3 in Chapter 9

did do those, right?) will come in handy: create a color scale (or ramp) of up to
five colors and then assign each one to a single quintile of your data.10

Use diverging color scales with care
Diverging color scales are really only suitable when there is a true “neutral” value
that the data varies around. In some cases, this may be zero. In others, it may be
an agreed-upon value in the field (for example, the US Federal Reserve views an
inflation rate of about 2% to be ideal).

Never color-code more than four distinct categories of data
But, including contextual data in a background gray is fine.

Test for color accessibility
Tools like ColorBrewer include an option to produce only colorblind-safe com‐
binations. If you are using your own colors, test your selections by converting
your graphic to grayscale. If you can still distinguish all the colors in your
visualization, your readers should be able to also.

Above All, Annotate!
The goal of our visualization process is to share our data insights and support our
claims. While our action-verb headline should encapsulate the main idea of our
graphic, it is often valuable to highlight or add context to specific data points within
the visualization itself. This is not the place for asterisks and footnotes. Information
needed to accurately or effectively understand the graphic needs to be part of the
graphic’s main visual field. Some of the key ways you can make the data within your
visualization easier to understand include the following:

Label categorical differences directly
Rather than creating a separate legend, place data labels directly on the visualiza‐
tion. This saves readers from having to look back and forth between your graphic
and a separate key to make sense of the information being presented.

Highlight relevant data points with color
If one key data point is central to your overall claim, highlight it in a contrasting
color.

Add contextual annotations
These small amounts of text (connected to the relevant data element using a thin
leader line, if necessary) could be a label, an explanation, or important contextual

348 | Chapter 10: Presenting Your Data

https://federalreserve.gov/faqs/5D58E72F066A4DBDA80BBA659C55F774.htm

11 Lazaro Gamio, “How Coronavirus Cases Have Risen Since States Reopened,” The New York Times, July 9,
2020, https://nytimes.com/interactive/2020/07/09/us/coronavirus-cases-reopening-trends.html.

12 Anne Gearan, Derek Hawkins, and Siobhán O’Grady, “Coronavirus Cases Rose by Nearly
50 Percent Last Month, Led by States That Reopened First,” The Washington Post, July 1,
2020, https://washingtonpost.com/politics/coronavirus-cases-rose-by-nearly-50-percent-last-month-led-by-states-
that-reopened-first/2020/07/01/3337f1ec-bb96-11ea-80b9-40ece9a701dc_story.html.

13 Mark Olalde and Nicole Hayden, “California COVID-19 Cases Spiked after July 4th. Family Gatherings Hel‐
ped the Spread, Experts Say.” USA Today, August 2, 2020, https://usatoday.com/story/news/nation/2020/08/02/
covid-19-spike-california-after-july-4-linked-family-gatherings/5569158002.

information. Whatever it is, make sure it appears as close to the data as possible
and always within the visual bounds of the graphic itself.

From Basic to Beautiful: Customizing a Visualization
with seaborn and matplotlib
One final word about design—visual or otherwise. While I made an effort in “Ele‐
ments of Eloquent Visuals” on page 345 to break down the elements of effective
visualization into component parts, a truly eloquent graphic is not a collection of
swappable parts. Shifting one part of it—moving a label, changing a color—means
that many, if not all, of its remaining elements will need to be adjusted to bring the
whole back into balance. This is precisely why I haven’t provided code examples for
each individual design aspect outlined previously: seen in isolation, it can be hard to
understand why any given element is so important. But viewed as part of a cohesive
whole, it will (hopefully) become clear how each contributes to the impact of the
graphic.

To actually realize these customized visuals in Python, we are still going to be relying
on the seaborn and matplotlib libraries. But while we let seaborn do most of the heavy
lifting in previous instances, in this example, it’s the fine-grained control offered
by matplotlib that will really shine. Yes, we’ll still let seaborn handle the high-level
tasks, like actually plotting the data values to scale. But matplotlib will give us the
leverage we need to specify everything from label placement and orientation to units,
labeling, annotation, and highlighting values—everything we need to truly tailor our
visualization to our claims.

For this example, we’re going to take a break from the PPP data and instead work
with some COVID-19 data collated by a team of researchers based on data from
Johns Hopkins University and made available at Our World in Data. Our goal with
this visualization will be to highlight the spike in confirmed COVID-19 cases in the
United States during July 2020, which at the time was attributed to the accelerated
reopening11 in many states earlier that spring12 as well as gatherings over the July
4th holiday.13 To understand the difference between relying on the defaults and

From Basic to Beautiful: Customizing a Visualization with seaborn and matplotlib | 349

https://nytimes.com/interactive/2020/07/09/us/coronavirus-cases-reopening-trends.html
https://washingtonpost.com/politics/coronavirus-cases-rose-by-nearly-50-percent-last-month-led-by-states-that-reopened-first/2020/07/01/3337f1ec-bb96-11ea-80b9-40ece9a701dc_story.html
https://washingtonpost.com/politics/coronavirus-cases-rose-by-nearly-50-percent-last-month-led-by-states-that-reopened-first/2020/07/01/3337f1ec-bb96-11ea-80b9-40ece9a701dc_story.html
https://usatoday.com/story/news/nation/2020/08/02/covid-19-spike-california-after-july-4-linked-family-gatherings/5569158002
https://usatoday.com/story/news/nation/2020/08/02/covid-19-spike-california-after-july-4-linked-family-gatherings/5569158002
https://ourworldindata.org/coronavirus-source-data

customizing the axis ranges, labels, and colors, compare Figure 10-10 to Figure 10-11.
The code to produce Figure 10-11 is shown in Example 10-5.

Example 10-5. refined_covid_barchart.py

`pandas` for data loading; `seaborn` and `matplotlib` for visuals
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

`FuncFormatter` to format axis labels
from matplotlib.ticker import FuncFormatter

`datetime` to interpret and customize dates
from datetime import datetime

load the data
vaccine_data = pd.read_csv('owid-covid-data.csv')

convert the `date` column to a "real" date
vaccine_data['date']= pd.to_datetime(vaccine_data['date'])

group the data by country and month
country_and_month = vaccine_data.groupby('iso_code').resample('M',
 on='date').sum()

use `reset_index()` to "flatten" the DataFrame headers
country_and_month_update = country_and_month.reset_index()

select just the United States' data
just_USA = country_and_month_update[country_and_month_update['iso_code']=='USA']

make the foundational barplot with `seaborn`
ax = sns.barplot(x="date", y="new_cases", palette=['#bababa'], data=just_USA)

loop through the bars rectangles and set the color for the July 2020
bar to red
for i, bar in enumerate(ax.patches):
 if i == 6:
 bar.set_color('#ca0020')

set the maximum y-axis value to 7M
ax.set_ylim(0,7000000)

setting the axis labels
plt.xlabel('Month')
plt.ylabel('New cases (M)')

modify the color, placement and orientation of the "tick labels"
ax.tick_params(direction='out', length=5, width=1, color='#404040',

350 | Chapter 10: Presenting Your Data

 colors='#404040',pad=4, grid_color='#404040', grid_alpha=1,
 rotation=45)

functions for formatting the axis "tick labels"
`millions()` will convert the scientific notation to millions of cases
def millions(val, pos):
 modified_val = val*1e-6
 formatted_val = str(modified_val)
 if val == ax.get_ylim()[1]:
 formatted_val = formatted_val+'M'
 if val == 0:
 formatted_val = "0"
 return formatted_val

`custom_dates()` will abbreviate the dates to be more readable
def custom_dates(val, pos):
 dates_list = just_USA.date.tolist()
 date_label = ""
 if pos is not None:
 current_value = dates_list[pos]
 current_month = datetime.strftime(current_value, '%b')
 date_label = current_month
 if date_label == 'Jan':
 date_label = date_label + " '"+ datetime.strftime(current_value,
 '%y')
 return date_label

assign formatter functions
y_formatter = FuncFormatter(millions)
x_formatter = FuncFormatter(custom_dates)

apply the formatter functions to the appropriate axis
ax.yaxis.set_major_formatter(y_formatter)
ax.xaxis.set_major_formatter(x_formatter)

create and position the annotation text
ax.text(4, 3000000, "Confirmed cases\noften lag infection\nby several weeks.")

get the value of all bars as a list
bar_value = just_USA.new_cases.tolist()

create the leader line
ax.vlines(x = 6, color='#404040', linewidth=1, alpha=.7,
 ymin = bar_value[6]+100000, ymax = 3000000-100000)

set the title of the chart
plt.title("COVID-19 cases spike following relaxed restrictions\n" + \
 "in the spring of 2020", fontweight="bold")

show the chart!
plt.show()

From Basic to Beautiful: Customizing a Visualization with seaborn and matplotlib | 351

Customizing the orientation, color, and other attributes of the “tick labels” that
indicate the values on each axis of the chart can be done via the matplotlib
tick_params() method.

The arguments that are supplied to any custom function assigned to any FuncFor
matter function will be “value” and “tick” position.

In “interactive mode,” this function will throw errors if pos is None.

By default, the positioning of text elements layered on top of the chart is “data
coordinates,” e.g., a value of 1 will left-align the start of the text with the center
point of the first column. The provided “y” value anchors the bottom of the text
box.

Figure 10-10. Bar chart produced by visualization library defaults

352 | Chapter 10: Presenting Your Data

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.tick_params.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html

Figure 10-11. Customized visualization

As you can see from Example 10-5, the process of customizing our visualization in
Python is somewhat involved; tailoring the look and feel of the default output has
nearly tripled the lines of code required.

At the same time, the default output in this instance was basically illegible. By
softening the colors, highlighting salient data points, and (perhaps most importantly)
refining our data labels, we’ve managed to create a chart that could hold its own in
most publication contexts. And obviously a good chunk of the code we have in here
could be refined and repurposed to make this degree of customization a much less
bespoke effort for future graphics.

From Basic to Beautiful: Customizing a Visualization with seaborn and matplotlib | 353

Beyond the Basics
While I’ve aimed to cover the essentials of effective and accurate data visualization in
this chapter, the truth is that valuable visualization ideas can come from anywhere—
not just books or blogs that are dedicated to the topic. One of my favorite graphics
from my time at The Wall Street Journal is the unemployment visualization shown
in Figure 10-12, which was inspired by a similar form I encountered at a museum
exhibit about climate change; the geometric heatmap format allows readers to visually
compare decades of monthly unemployment rates at a glance. If you’re interested in
design, you can learn a lot about what does (and doesn’t) work by simply looking
critically at the media you see around you every day—whether it’s an online adver‐
tisement or a restaurant menu. If something doesn’t feel polished or appealing, look
carefully at its components. Are the colors incongruous? Is the typeface hard to read?
Or are there just too many things crowded together into too small a space?

Critiquing the work of others is easy, of course. If you really want to improve your
own visualizations, challenge yourself to try to build better solutions, and you’ll learn
an enormous amount along the way. And if you find yourself searching for the right
vocabulary to describe what isn’t working, you may want to look through some of
the resources in Appendix D, where you’ll find some of my favorite resources for
expanding and improving my own visualization work.

Figure 10-12. US unemployment over time (originally designed for The Wall Street
Journal)

354 | Chapter 10: Presenting Your Data

https://jennifervalentinodevries.com/2009/09/16/grid-graphic-u-s-unemployment-rate

Conclusion
Like programming, visualization is an applied art: the only way to get better at it is to
do it. If you don’t have a project at hand to work on, start with a “found” visualization
that you think is somehow subpar and redesign it yourself. You can use Python or
other computational tools or just a pencil and paper—the point is to try to solve
the problems you see in the original. Along the way, you’ll experience firsthand the
trade-offs inherent in every design decision, and you’ll start building the skills needed
to minimize those trade-offs in service of your visualization goals. Then when you’re
faced with your own data visualization challenges, you’ll have a portfolio of prior
work you can refer to when thinking about how best to present the data you have and
make the point that you need to.

At this point, we’ve done just about all the data wrangling with Python that we set
out to do—but there is a world of data and visualization tools beyond Python that can
be amazingly useful in supporting your data wrangling and data quality work right
alongside it. We’ll turn to those in Chapter 11.

Conclusion | 355

CHAPTER 11

Beyond Python

Python is an exceptionally powerful and versatile tool for working with data, and
if you’ve followed along with the exercises in this book, you are hopefully starting
to feel confident about using it to move your own data wrangling projects forward.
Thanks to the vibrant Python community and the constantly evolving suite of helpful
libraries that its members create and maintain, the work you’ve put into learning the
fundamentals in this book will still be valuable whether your next data wrangling
project comes along tomorrow or next year. Also, while Python as a programming
language is unique in many ways, the programming skills and vocabulary that you’ve
acquired here will give you a head start with other programming languages, especially
ones relatively object-oriented ones like JavaScript.

Still, one thing I’ve tried to clarify throughout this book is that there are times when
the “programmatic” solution to a problem is not really the most efficient one. Our
work with Excel and XML files in Chapter 4, for example, highlighted that sometimes
trying to do things programmatically just doesn’t make sense. For example, while
in Example 4-12 we could have written a Python script to traverse our entire XML
document in order to discover its structure, it was undoubtedly faster and easier
to simply look at our data, identify the elements that interested us, and write our
Python program to target them directly. Likewise, there are times when writing a
Python program at all can be more effort than a particular data wrangling project
really requires, especially if it is smaller or more exploratory. Though pandas is an
incredibly useful library, you can still end up writing a fair amount of code just to get
a basic sense of what a new dataset contains. In other words, while I fully believe that
the power and versatility of Python makes it an indispensable data wrangling tool, I

357

1 I certainly do!

also want to highlight a few other free and/or open source tools that I think you’ll
find useful1 as a complement to Python in your data wrangling projects.

Additional Tools for Data Review
Python offers great speed and flexibility when it comes to actually accessing and
wrangling data, but it’s not particularly well suited to letting you actually look at your
data. So throughout this book we’ve relied on basic text editors (and occasionally
web browsers) when we want to browse our dataset visually. While text editors are
a great first step for this, you’ll also want to get comfortable with at least one of
each of the following program types to help you get a quick initial overview of your
data—especially if the files you’re working with are not too large.

Spreadsheet Programs
It’s possible that before you began reading this book you were already familiar
with spreadsheet programs—whether online versions like Google Sheets, paid local
software options like Microsoft Excel, or contribution-supported, open source alter‐
natives like Libre Office Calc. Spreadsheet programs typically come bundled with
“office”-style software suites and offer basic calculation, analysis, and charting func‐
tionality. In general, there is not a huge variation in what these programs can do,
though some are more flexible than others. I prefer LibreOffice, for example, because
it is free, open source, and works across platforms (including less common ones,
like Linux). It even has a certified app for Chromebooks and Android devices called
Collabora. That said, if you already have or are familiar with a particular spreadsheet
program, there is no important reason to switch to any other, as long as you are not
going broke paying for it. Whatever you do, do not use pirated software; in a world
where ransomware is running rampant—i.e., this one—it’s simply not worth the risk
to your devices and data!

While many spreadsheet programs have advanced functions that approximate what
Python does (on a much smaller scale), I usually find myself turning to them for
very specific data wrangling and assessment tasks. In particular, I will often use a
spreadsheet program to quickly do the following:

Change file formats
For example, if my data is provided as an multisheet XLSX file, I might open it in
a spreadsheet program and save only the sheet I am interested in as a .csv.

358 | Chapter 11: Beyond Python

https://libreoffice.org
https://collaboraoffice.com/press-releases/collabora-office-ships-for-chromebooks

Rename columns
If there are not many columns, I may change those with awkward or nondescript
headers to be something more readable and/or intuitive for my purposes.

Get a “feel” for data values
Are the values provided in a “date” column actually dates? Or are they simply
years? Are there a lot of obviously missing data values? If my dataset is relatively
small, just visually scanning through the data in a spreadsheet program can
sometimes be enough to determine whether I have the data I need—or if I need
to move on.

Generate basic summary statistics
Of course I can do this in Python, and most of the time I do. But if I have only
a few hundred rows of data, typing =MEDIAN() and then selecting the cells of
interest is sometimes faster, especially if my original data file has metadata in it
that would otherwise need to be stripped out (as we saw in Chapter 4 and again
in Chapters 7 and 8).

Of course, every tool comes with its trade-offs, and previewing data in a spreadsheet
program can create some unexpected results. As you might guess from our extended
adventures in dealing with XLS-style “dates,” previewing a file that contains date-like
values can cause them to display very differently according to particular spreadsheet
program and its default handling and rendering of dates. As a result, you should
always inspect date-like values using a text editor if the original data format is text
based (e.g., .csv, .tsv, or .txt). Likewise, be sure to confirm the formatting (whether
default or applied) on any number-containing cells, as truncating or rounding of
values can obscure important variations in your data.

OpenRefine
One of the tools I turn to most for my initial exploration of larger, structured
datasets is OpenRefine. In my experience, OpenRefine has proved to be a unique
software tool that helps bridge the gap between traditional spreadsheet programs and
full-on programming languages like Python. Like spreadsheet programs, OpenRefine
operates through a graphical user interface (GUI), so most of your work with it will
involve pointing and clicking with a mouse. Unlike spreadsheet programs, however,
you don’t scroll through rows of data to get a sense of what they contain; instead, you
can use menu options to create facets that provide summary information similar to
that provided by the pandas value_counts() method—but without needing to write
any code. OpenRefine also supports batch editing, implements several algorithms for
string matching (including the fingerprinting method we used in Example 6-11), and
can import large files in segments (e.g., 100,000 rows at a time). In truth, OpenRefine
is often my first stop when wrangling a new dataset, because it easily opens a variety
of data formats and even offers a handy live preview of how the data will be parsed

Additional Tools for Data Review | 359

https://openrefine.org
https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

based on your selection of delimiters, for example. Once your dataset is loaded,
OpenRefine can also provide almost one-click answers to questions like “What is the
most common value in column x?” Finally, any time you make an actual change to a
data file in OpenRefine (as opposed to just clustering or faceting it), it automatically
records your actions in an exportable .json file that you can then apply to a different
OpenRefine file in order to have those actions automatically repeated (usually in
seconds). This is incredibly useful if you need to rename or rearrange data columns
for a dataset that is regularly updated by the data provider. It’s even more useful,
however, if you need someone else to be able to do it and they don’t have or cannot use
Python.

For the most part, I use OpenRefine to easily do the following:

Preview small pieces of large datasets
OpenRefine allows you to load (and skip) as many rows in your dataset as you
like. This is especially handy for large datasets when I want to get a reasonable
sense of what they contain, but I know truly nothing about them. I can start
by loading 50,000 or 100,000 rows and use facets and other functions to get an
overview of, say, what the data types are and how the overall dataset is organized.

Get quick top-line information about a dataset
What’s the most common type of film permit requested in New York City?
And what is the most popular borough? As shown in Figure 11-1, OpenRefine
can give you these counts in one or two clicks and allows you to create cross-
tabulations just as quickly.

Do basic transformations that spreadsheet programs don’t support
Some spreadsheet programs lack functionality, like the ability to split a string on
a particular character, or may have limited regular expression support. One of my
favorite features of OpenRefine is batch editing, which you can do quickly and
easily through the lefthand facet window.

Autogenerate macros
Many spreadsheet programs will let you record macros that automate certain
actions, but OpenRefine records these for you by default—making it a more
powerful tool with a lower learning curve for this type of task.

Of course, there are some aspects of working with OpenRefine that can take some
getting used to. First, while installation is getting more user friendly, it relies on
having another programming language, called Java, installed on your computer, so
getting it up and running can be a multistep process. Launching the program once
it’s installed is also a little unusual: You need to both click (or double-click) on the
program icon to launch and, in some cases, open a browser window pointed to your
“localhost” address (typically http://127.0.0.1:3333/ or http://localhost:3333).
Like Jupyter Notebook, OpenRefine actually runs through a tiny web server on your

360 | Chapter 11: Beyond Python

https://data.cityofnewyork.us/City-Government/Film-Permits/tg4x-b46p

computer, and the interface is just a web page that behaves sort of like a supercharged
spreadsheet program. Despite these quirks, OpenRefine is incredibly useful and often
a great place to start when you want to do some initial exploration of a (potentially
messy) dataset.

Figure 11-1. OpenRefine NYC film permit facets

Additional Tools for Sharing and Presenting Data
In Chapter 10, we focused on how to select and refine visualizations using Python
and key libraries like seaborn and matplotlib. While the degree of customization
that you can achieve using these tools is impressive, there are times when you may
need to make a small tweak to a visualization and you may not want—or be able—to
regenerate it from the original data source with Python.

If you need to quickly add or change something minor on a visualization, having
access to image editing software is valuable. And while you’re probably familiar
with the very powerful—and very expensive—commercial software applications for
editing images, you may not realize that there are similarly powerful tools that are
free and open source.

Image Editing for JPGs, PNGs, and GIFs
For editing pixel-based images, the GNU Image Manipulation Program (GIMP) is
an especially good option if you’re looking for something powerful but you can’t (or
don’t want to) pay a lot for it. GIMP is free and open source, and it works across
platforms. While the style of its user interface is decidedly outdated (the interface is
being overhauled at the time of this writing), the reality is that the program itself can
probably do whatever basic (and not-so-basic) high-quality image editing you may

Additional Tools for Sharing and Presenting Data | 361

https://gimp.org

need, especially if you’re just looking to add (or remove) some text or annotations
from an image, update the axis labels, etc.

It’s true that GIMP can have a somewhat steep learning curve. The keyboard short‐
cuts may not be what you expect, and the placement of some menus and the look of
their icons do not match what you’ll see in commercial software. That said, unless
you are an expert in another image editing program and you are willing to pay (and
continue to pay) for access to it, whatever time you invest in learning GIMP will
be well worth it. Especially if what you need is occasional access to image editing
software, GIMP is a powerful and flexible choice.

Software for Editing SVGs and Other Vector Formats
If you plan to use your visualizations for print or other high-resolution (or flexible-
resolution) contexts, you may well choose to save it in a vector format. Although the
file sizes are larger, vector graphics are much more flexible than their pixel-driven
counterparts; they can be scaled up and down without losing quality by becoming
pixelated or blurry. They can’t, however, be edited effectively with bitmap software
like GIMP.

Once again, if you have the budget for commercial software, you should go ahead and
use it—but here, too, you have a free and open source option. Like GIMP, Inkscape
is free, open source, and cross platform. And, like GIMP, it has almost all the same
features as expensive commercial vector editing software. Even better, if you take
the time to get comfortable with vector editing software, it won’t just let you tweak
your digital-to-print data graphics—vector editing software is also essential to T-shirt
printing, laser cutting, and lots of other digital-to-physical work. If you’re just starting
out, Inkscape is also definitely the right price: free!

About FOSS
FOSS is an acronym for Free and Open Source Software, and many FOSS programs—
like GIMP and Inkscape—have been around for decades. Despite the fact that most of
us are much more familiar with brand-name software made by companies like Apple,
Microsoft, Google, and others, the fact is that a large portion of the software that runs
both computers and the internet today is based on programs, packages, and libraries
that—like the Python packages and libraries we’ve used throughout this book—are
free for anyone to access and use. In many cases, it’s even legal to create and sell
products that have FOSS software at their core—and this is something that lots of
companies do.

While free and open source software helps ensure that the tools for innovation aren’t
locked away as the intellectual property of big companies, the reality is that building,
maintaining, and enhancing these tools isn’t actually free. It’s made possible by the

362 | Chapter 11: Beyond Python

https://inkscape.org

work of volunteers—some of whom are allowed to use work hours paid for by their
company to do it—but many of whom do it unpaid.

The fact that FOSS tools are free for everyone helps keep data wrangling work
accessible, and I (obviously) recommend working with them if you can. At the same
time, if you find yourself using them regularly and are able, I also recommend a small
donation to the projects you use in order to help keep them going.

Reflecting on Ethics
The main focus of this book has been on building data wrangling skills—in large part
to support our interest in assessing and improving data quality. Along the way, we’ve
touched on the broader implications of data quality, both abstractly and concretely.
Poor data quality can lead to analyses that produce a misleading, distorted, or dis‐
criminatory view of the world; couple this with the scale and ubiquity of data-driven
systems today, and the resulting harms can be substantial and far-reaching. While
you can use the methods in this book to test and improve the quality of your data,
there is unfortunately still plenty of room for “good-quality” data to be obtained
unethically. And just as with every other part of the data wrangling process, it’s up
to you to decide what kind of data you’re comfortable working with and for what
purposes.

One strategy for ensuring that your data wrangling work doesn’t unintentionally
violate your own ethical standards is to develop a checklist. By developing a list
of questions you ask yourself about your data sources and how the output of your
analysis will be used, you can determine early on if a given data wrangling project
is one you’re willing to pursue. The following checklist is adapted from one shared
by data experts DJ Patil, Hilary Mason, and Mike Loukides. Like the list of data
characteristics in Chapter 3, the purpose here is not to reject a data project unless the
answer to every question is “yes”; the goal is to think critically about all aspects of
data quality—including those that may be outside our control. True, we may only be
able to decline (rather than change) a project that doesn’t meet our ethical standards,
but if you voice your concerns, you may help make room for others to do the same.
At worse, the project is taken on by someone else and your conscience is (somewhat)
clear. At best, you may inspire others to consider the ethical implications of their
work before they take on their next project as well. Here are some questions that you
might want to include:

1. Does the design of the data collection reflect the values of the community it is1.
about?

2. Do the members of that community know that it was collected, and did they have2.
a meaningful way to decline?

Reflecting on Ethics | 363

https://penguinrandomhouse.com/books/241363/weapons-of-math-destruction-by-cathy-oneil
https://penguinrandomhouse.com/books/241363/weapons-of-math-destruction-by-cathy-oneil
https://oreilly.com/radar/of-oaths-and-checklists

3. Has the data been evaluated for representativeness?3.
4. Is there a way to test the data for bias?4.
5. Are our data features accurate proxies for the phenomena we want to describe?5.
6. Will our analysis be replaced if and when the data becomes out of date?6.

Ultimately, you may decide that your own concerns about data have a different focus.
Whatever you choose to include in your own checklist, however, you’ll find your data
principles much easier to stick to if you lay them out in advance.

Conclusion
Over the course of this book, we have covered everything from the basics of Python
programming and data quality assessment to wrangling data from half-a-dozen file
formats and APIs. We’ve applied our skills to some typically messy and problematic
real-world data and refined our code to make future projects easier. We’ve even
explored how to do basic data analysis and visually present our data in support of our
insights.

If you’ve made it this far, then I imagine by this point you’ve caught some sort of
“bug”: for programming, for data, for analysis and visualization—or maybe all of
the above. Whatever brought you to this book, I hope you’ve found at least some of
what you were looking for, including, perhaps, the confidence to take the next step.
Because whatever else may change about the world of data wrangling in the coming
years, one thing is sure to be true: we need as many people as possible doing this
work critically and thoughtfully. Why shouldn’t one of them be you?

364 | Chapter 11: Beyond Python

APPENDIX A

More Python Programming Resources

As this book has hopefully illustrated, Python is a robust and flexible programming
language, with a wide range of applications. While I’ve introduced many key concepts
and popular libraries in the preceding chapters, I’ve created this appendix to provide
you with some helpful resources and references for taking your Python work to the
next level.

Official Python Documentation
Yes, there are always search engines and StackOverflow, but there’s value in getting
comfortable reading official documentation—whether it’s for the Python language or
for popular libraries like pandas, matplotlib, or seaborn. Though I wouldn’t suggest
you sit down and read any programming documentation end to end, looking through
the parameters and options of a data type or function you want to use can give you
a better sense of what (in general) can be done with it, as well as an idea of how
its mechanisms are organized. This can be especially helpful when you want to do
something completely new, because it will give you an idea of where to look for paths
forward.

For example, I knew when I started writing this book that seaborn and pandas were
both built on top of matplotlib, and I had done some hacking around with making
and customizing graphics with both of them. It wasn’t until I was looking through
the latter’s documentation, however, that I came to understand the difference between
the figure and axes objects that I so often saw referenced in example code, and that
understanding helped me find solutions more quickly as I experimented with ways to
more fully customize my visualizations. Almost as important, official documentation
is generally kept up to date, while it’s not uncommon for the most popular forum
posts about a topic to be months or even years old—meaning that the advice they
include can sometimes be woefully out of date.

365

https://stackoverflow.com/questions/tagged/python

I also recommend regularly turning to the Python Standard Library because you
might be surprised by how much built-in functionality it offers. Many of the methods
you may recognize from working with libraries are built on top of (or to mimic)
functions that exist in “vanilla” Python. And while libraries are often unique and
useful, there are no guarantees that they will continue to be developed or maintained.
If you can get the functionality you need by working with “plain” Python, the less
likely it is that you’ll find your code going out of date because it relies on a library that
is no longer being updated.

Installing Python Resources
There are a lot of ways to install Python packages, depending on your programming
environment. Whether you’re using Homebrew on macOS, working on a Windows
machine, or using Colab, the most reliable way to install Python packages will pretty
much always be to use some version of pip. In fact, you can even use pip to install
a package on a Google Colab notebook (if you manage to find one that isn’t already
installed) using the following syntax:

!pip install librarynamehere

Whatever you choose, however, I suggest you make your choice and stick to it—
things can get pretty unpredictable if you start using multiple tools to install and
update your Python environment.

Where to Look for Libraries
For the most part, I recommend that you install Python packages that are available
on the Python Package Index, also known as PyPI. PyPI has a clean structure and
a robust tagging and search interface that make it easy to locate useful Python
packages, and the fact that PyPI package documentation (usually) has a standard
layout (as shown in Figure A-1) will really start to save you time if you’re looking
through lots of options.

Some projects (like Beautiful Soup lxml) may still keep much of their documentation
in a standalone location, but their PyPI page will typically still contain a helpful
summary of what the project does and even some getting-started tips. One of the
things I personally like to look at is the “Release History” section, which shows when
the project was first created, as well as how often and how recently the package was
updated. Longevity is, of course, not a perfect metric for evaluating how reliable a
given package is likely to be—since anyone can publish Python packages (and add
them to PyPI)—but the ones that have been around longer and/or are updated more
frequently (and recently) are usually a good place to start.

366 | Appendix A: More Python Programming Resources

https://docs.python.org/3/library/index.html
https://packaging.python.org/tutorials/installing-packages
https://packaging.python.org/tutorials/installing-packages
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://pypi.org

Figure A-1. Example PyPI package landing page

Keeping Your Tools Sharp
Programming tools are being updated all the time as the community identifies (and
mostly fixes) new problems or comes to agree that some aspect of a software tool
(or even Python itself!) ought to work differently. If you followed the instructions
for installing Python and Jupyter Notebook provided in Chapter 1, then you can use
the conda command to update both of these. You’ll just need to run conda update
python and conda update jupyter every once in a while. At the same time, because
this book is intended for beginners, one thing I didn’t address in Chapter 1 was
the question of Python environments. In this context, a given environment is defined
mostly by the major version of Python that will be used by default (for example,
3.9 versus 3.8) when you use the python command. While running conda update
python will update, say, version 3.8.6 to 3.8.11, it won’t ever automatically update your
version to a different major release (e.g., 3.9). Often, this won’t cause problems for
you unless your Python installation is several years (and therefore major versions)
out of date. If and when that happens, you’ll want to create a new environment
for the new version of Python, mostly because it can be hard for your computer to
keep things straight otherwise. Fortunately, when the time comes for you to upgrade
Python to the next major version, you can learn what you need to know about how to
do this from the conda documentation page.

Where to Learn More
Because Python is such a popular programming language, there are thousands of
resources online and in libraries for moving to the next level, whether you have a

More Python Programming Resources | 367

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

specific project to complete or just want to learn more about advanced topics like
machine learning and natural languages processing.

For a practical, succinct introduction to more intense data science topics, my first
recommendation would be the Python Data Science Handbook by Jake VanderPlas
(O’Reilly)—it’s a resource I’ve used myself when trying to get my head around some
of the more advanced machine-learning work that Python can do, and Jake’s clear
writing style and concise examples offer an accessible way to both get an overview
of machine learning with Python and learn about specific methods (like k-means
clustering). Even better, you can access the entire book for free online—though if
you’re able to, I highly recommend buying a copy of the book.

Perhaps even more valuable than finding the right books, tutorials, or classes, how‐
ever, is finding a community of people whom you can work and learn alongside as
you continue your data wrangling journey. Whether through a school, community
organization, or meetup, finding a small group of people that you can talk about
your projects with or turn to for advice (and, sometimes, commiseration!) is prob‐
ably the most invaluable resource for expanding your skills in both Python and
data wrangling. There are also many cost-free programs that can help support and
advance your work, especially for folks from communities that are underrepresented
in technical fields. Check out groups like the Ada Developers Academy or Free Code
Camp.

368 | Appendix A: More Python Programming Resources

https://www.oreilly.com/library/view/python-data-science/9781491912126/
https://jakevdp.github.io/PythonDataScienceHandbook
https://adadevelopersacademy.org
https://freecodecamp.org
https://freecodecamp.org

APPENDIX B

A Bit More About Git

For the most part, working with Git as the only programmer on a project is fairly
straightforward: you make changes to your code, commit them, push them to GitHub
(or another remote repository), and that’s that.

Until…it isn’t. Maybe you updated your README.md file on GitHub and forgot
to git pull before making changes to the same file on your device. Maybe you
forgot to add a message when you ran git commit. While dealing with these kinds
of hiccups is not really all that complicated, some of the error messages and default
behaviors of Git in the terminal can be tricky to deal with if you’ve never encountered
them before. While the guidance in this appendix is far from comprehensive, in my
experience a basic working knowledge of Git is more than enough, unless and until
you’re working with a relatively large team in a large organization. So while you
should definitely move beyond these simple fixes if you’re planning to use Git with
multiple collaborators on complex projects, for most of us, these examples cover the
situations you’ll find yourself in—and need help getting out of—most often.

You Run git push/pull and End Up in a Weird Text Editor
Like me, Git is relentless when it comes to documenting your work, to the point
that it will not let you commit changes without a commit message. That means that if
you run a commit command without including the -m "Commit message here", for
example:

git commit filename

you will most likely find your terminal window taken over, showing text similar to
what’s shown in Figure B-1.

369

Figure B-1. Terminal-based commit message editing

This can be pretty unsettling, especially the first time it happens. But since it will
happen, here’s how to get it sorted out quickly:

1. Start by typing the letter i. While not all editors actually require you to type i1.
to enter INSERT mode, most of them will swallow the first character you type,
so you may as well start with that one. You can see what this view looks like in
Figure B-2.

2. To get out of INSERT mode, hit the Esc or Escape key. Then type :x as shown2.
in Figure B-3, followed by Enter or Return. This will save your commit message
as required and also get you out of that text editor and back into the terminal
window you know and love.

Note that the editor you find yourself in may not look like what’s shown in Figures
B-2 and B-3; if not, don’t panic. Now’s the time to search online for how to edit, save,
and exit in whatever program you have been bounced into. Whatever the specifics,
the objective is the same.

370 | Appendix B: A Bit More About Git

Figure B-2. Terminal editor in INSERT mode

Figure B-3. Terminal editor with “save and exit” command

A Bit More About Git | 371

Your git push/pull Command Gets Rejected
It happens to all of us. You think you’ve been diligent about committing your code
at the end of each work session—even writing individual commit messages to keep
track of the changes you’ve made in individual files instead of just running git com
mit -a. Even so, sometimes you run your git push command and it gets rejected.
What do you do then?

If your git push command fails, you’ll probably see an error like this:

 ! [rejected] main -> main (non-fast-forward)
error: failed to push some refs to 'https://github.com/your_user_name/your_r
epo_name.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

In general, this happens when (at least) one of the files in your local repository has
been changed since the last commit, but so has the version in your remote repository,
so Git doesn’t know which one should take precedence. Not to worry!

Run git pull
If the changes in the file(s) can be merged automatically, Git will do that. This will
resolve your file conflicts, but it can result in your being popped into the command
line’s built-in text editor, which can be pretty confusing to deal with in its own right.
If you run git pull and suddenly you’re looking at something like the text shown
in Figure B-1, see “You Run git push/pull and End Up in a Weird Text Editor” on
page 369.

If the changes in the file(s) can’t be merged automatically, you’ll get a message that
looks something like this (you’ll also see this message if you just run git pull
without running git push first):

Auto-merging filename
CONFLICT (content): Merge conflict in filename
Automatic merge failed; fix conflicts and then commit the result.

This basically means that it’s up to you, the human, to determine which file should
take precedence and either manually bring them back into line (by directly editing
one or both files) or by simply forcing one to overwrite the other.

Fixing conflicts manually
Imagine you have a repo with a README.md file, to which you have committed
changes both on GitHub.com and on your device. You tried to git push and got an
error, so you tried to git pull, but the automatic merge failed. To fix the conflicts

372 | Appendix B: A Bit More About Git

manually, start by opening the local copy of the file in your preferred text editor.
What you might see for a markdown file is shown in Example B-1.

Example B-1. An example conflict in a markdown file

This header is the same in both files

This content is also the same.

<<<<<<< HEAD

This content is what's currently in the local file.
=======
This content is what's currently in the remote file.
>>>>>>> 1baa345a02d7cbf8a2fcde164e3b5ee1bce84b1b

To resolve the conflict, simply edit the content of the file as you prefer, being sure to
delete the lines that start with <<<<<<< and >>>>>>>, as well as the =======; if you
leave those lines, they will appear in your final file. Now save the file as usual.

Next, run:

git add filename

Then run:

git commit -m "How I fixed the conflict."

Note that you cannot specify the filename in the git commit command, or Git will
complain that you’ve asked it to do a partial commit during a merge.

Finally, run:

git push

And you should be all set!

“Fixing” conflicts by forcing an overwrite
While it’s always a good idea to actually look at any files where conflicts have popped
up, sometimes you’re pushing to a repo that you know is way out of date, and you just
want to overwrite what’s on your remote repository. In that case, you can push the
changes without manually reconciling the files by running:

git push --force

This will simply overwrite the remote file with your local version, but keep in mind
that all record of the overwritten version will be lost, including the commit history.
That means once you use --force, there’s no going back—the remote content is

A Bit More About Git | 373

gone. Obviously, this means that you should never use this option if other people are
contributing to the same repository—use it only if you’re the only one working on it
and you’re (very) confident that the material in the remote repo can be overwritten
safely.

Git Quick Reference
Table B-1 is a very brief overview of the most useful/common git commands. A
more comprehensive list can be found on the GitHub website.

Table B-1. Most-used git terminal commands

Command text Command result

git status Prints out the current state of the repo; doesn’t modify anything. Lists all filesa in the repo,
grouped by whether they are new, untracked, or modified.

git add filename Stage a specific file that is currently untracked. A file must be staged by a git add
command before it can be committed to the repository. After this, git status will
label staged files as new.

git add -A Stage all currently untracked files at once. After this, git status will label staged files
as new.

git commit -m "Com
mit message here."`
filename

Commit a specific, already-staged file, attaching the message that appears between
double quotation marks.

git commit -a -m "Com
mit message here."

Commit all currently staged files, attaching the same commit message to all of them.

git push Push all local commits to the remote repo. Adding the --force command will overwrite
any conflicting commits in the remote repo with the locally committed files.

git pull Pull all remote files to the local repo. Adding the --force command will overwrite any
conflicting commits in the local repo with the remote committed files.

a If you have an active .gitignore file for the repo, any ignored files will not be listed by git status.

374 | Appendix B: A Bit More About Git

https://training.github.com/downloads/github-git-cheat-sheet

APPENDIX C

Finding Data

In general, there are four main “sources” of data that you can turn to when you are
trying to answer a question about the world. I put “sources” in quotes because these
are really types of sources, not specific websites, databases, or even organizations.
Instead, these represent the mechanisms that journalists, researchers, and other pro‐
fessionals use to collect data about the world in order to answer their questions.

Data Repositories and APIs
“Open data” access has increasingly become a feature of many governmental and
scientific organizations, in an effort to improve transparency, accountability, and
—especially in the scientific community—reproducibility. This means that many
government agencies, nonprofit organizations, and scientific journals, for example,
maintain websites where you can access structured data relevant to their work. For
example, a simple web search for “nyc open data” or “baltimore open data” will
bring you to those cities’ “open data” portals; a similar search for “johannesburg open
data” will bring you first to the South African Cities Open Data Almanac (SCODA)
website, but a few links down you’ll find more datasets from an organization called
“DataFirst” as well as the South African Data Portal hosted at http://opendataforafr
ica.org. All of these sites will have some data—though as we discussed in Chapter 3,
the quality of that data—including its appropriateness for answering your particular
question—can vary widely.

APIs are another valuable source of data, as they can provide access to highly detailed
and customized datasets that won’t show up in search engine results. This is because
API data is part of what’s sometimes referred to as the “deep web”: data that is
accessible via the web but only through specially constructed searches sent to partic‐
ular URLs. For example, while a web search for “currently available citibikes, nyc”
will eventually bring you to an interactive map where you can click on a Citi Bike

375

http://opendataforafrica.org
http://opendataforafrica.org

station to see how many bikes are available, a query to Citi Bike API allows you to
access information about the available bikes at all Citi Bike stations in New York
City. Moreover, the API will return that data in a file reasonably well structured for
analysis, unlike the interactive map or, for that matter, most web pages.

Data repositories and APIs are often a great way to access large quantities of struc‐
tured data that is relatively clean and easy to use for data analysis. At the same
time, however, these data sources come with a significant limitation: the company or
agency that runs the portal or API has complete control over what data it contains.
This mean that the data may be out of date, incomplete, or insufficiently contextual‐
ized—or it may simply omit information that the data owner doesn’t want others to
know. In other words, just because the data may be clean and “ready to use” does not
mean that it is necessarily good-quality data. A critical evaluation of its quality is still
essential.

More often than not, however, all of the information you need to answer your chosen
question won’t be accessible through one of the preceding types of interfaces, so you’ll
need to look toward other sources.

Subject Matter Experts
As discussed in Chapter 3, all data originates with humans in one way or another. Yet
it can often seem easier, at the outset, to rely on automated interfaces like the web
portals and APIs discussed previously. True, those resources are almost constantly
available; there’s no need to worry about telephone wait times, business hours, or
vacation schedules when structuring an API call. At the same time, talking with
human subject matter experts is often the fastest way to identify, if not obtain, the
richest and most relevant data for answering your question. That’s because many
publicly available data sources, even if they are web accessible, are niche enough
so that while you may not yet know the best search terms to find them, specialists
will use them on a regular basis. As such, they’ll not only be able to point you to
portals and APIs that you would almost never be able to turn up in a web search,
but they can also help you distinguish among seemingly similar data sources and
provide important contextual information about their contents. Moreover, they may
be able to voluntarily provide you with datasets that you might otherwise wait weeks
or months for in response to a FOIA/L request.

In general, there are three places you’ll find subject matter experts who may be
able to help you locate or understand data. Colleges and universities are home to a
dizzying array of experts on a seemingly infinite range of subjects. Start with a call
or email to the public relations department, or just start reading the online profiles
of faculty and researchers. Similarly, nongovernmental organizations (NGOs), such
as nonprofits and think tanks, employ experts according to their focus who may
similarly be familiar with specialized datasets that would otherwise be difficult to

376 | Appendix C: Finding Data

1 Some states require that the requester be a resident of that state.

discover; they may also have data to share that they have personally collected and/or
analyzed. Finally, government employees can be an extraordinary source of data and
insight, since they are often the very individuals required to collect and process it on
behalf of the government in the first place. And while negative stereotypes abound, in
my experience, government workers are among the most kindest and most generous
data “helpers” you’ll find.

FOIA/L Requests
Freedom of Information Act (FOIA) and Freedom of Information Law (FOIL)
requests are a mechanism by which any individual can request records about govern‐
ment activities at the federal, state, or local level, respectively,1 which can be a source
for data that is not already available through existing portals or publications. These
requests are essentially a specialized letter that you can send to a designated office or
individual within an agency, specifying your request for information.

A key requirement for using FOIA/L requests effectively is to be as specific and
narrow as possible: while FOIA/L laws guarantee your right to request data, most only
mandate that you receive a response within a specified time frame (often between
5 and 20 business days); they do not require that the response include the data you
requested. In most cases, an initial response will (1) deny your request based on
allowable exemptions and exclusions; (2) acknowledge your request but classify it as
“complex,” thereby warranting an extended timeline for delivery; or (3) respond that
a search request was performed but yielded no results. Successfully obtaining the data
you seek will likely require at least one “appeal”—and lots and lots of patience.

A comprehensive introduction to FOIA/L requests is beyond the scope of this book,
but there are a number of guides available online that provide templates and tips
on how to construct your FOIA/L request, and even websites like MuckRock that
provide tools to help you write, submit, and keep track of requests that you have
submitted. In thinking about what to ask for, keep in mind the following:

FOIA/L requests only apply to government records
You’ll need to think creatively about how the phenomenon you’re interested in
might generate such records. Think about any activities related to your question
that may require permits, licensing, or taxation—all of these will generate gov‐
ernment records. Also keep in mind that the activities of government employ‐
ees—including their emails, calendars, and other records—are subject to FOIA/L
laws as well.

Finding Data | 377

https://dhs.gov/foia-exemptions

Don’t “bundle” requests
If you are looking for records containing multiple terms, send a separate FOIA/L
request for each term and file type (e.g., email, calendar etc.). This increases the
number of FOIA/L requests you have to track but also reduces the chances that
your request will be delayed because it has been classified as “complex.”

Use publicly accessible forms
If you don’t know what information an agency collects, use publicly accessible
forms—such as those required for tax, licensing, and permitting purposes—to get
an idea. You can then refer to those specific form numbers and fields in your
request.

Look at past requests
FOIA/L requests are themselves subject to these laws. If you are looking for
information that was part of a previously filled request, referring to it might
expedite your own.

Politely reach out to the relevant personnel
FOIA/L officers can help you on your way—or make things difficult. Try to
develop a cordial, if not friendly, relationship with them—either via email or
telephone. They can offer you crucial tips on how to refine your request for
greater success.

Custom Data Collection
Sometimes, your question just cannot be answered with any combination of existing
datasets, no matter how many experts or APIs you use. This circumstance highlights
the very human-constructed nature of data: it only exists because someone some‐
where has decided to collect it, clean it, and make it available. If your question is
especially timely or unique, it may turn out that that person is you.

At universities, you can find multiple courses dedicated entirely to various methods
of data collection, from surveys to sensors. The method(s) you choose when collect‐
ing data will depend on both the nature of your question and the resources (including
time) that you have to devote to the data-gathering process. If you are seeking
exploratory or anecdotal data, then your data collection process might be as simple as
posting a question or “poll” on social media and analyzing the responses you receive.
If, on the other hand, you want to be able to make claims that generalize—that is,
claims about a larger phenomenon than precisely the ones you have data for—then
your data must be representative, as we discussed in Chapter 3.

Whichever type of data you’re collecting—anecdotal or representative—there are two
main methods for doing so: interviews and instrumentation. Interview techniques
involve asking humans to provide a response, whether those responses are open-
ended, multiple choice, or some other format. Instrumentation techniques involve

378 | Appendix C: Finding Data

some degree of automated data collection, whether of web-browsing habits or carbon
monoxide levels. In either case, you’ll need to read up on best practices or consult
with experts in order to understand both the limitations of your measurement techni‐
ques and the appropriate methods for analyzing and interpreting your data. While
collecting your own data can be a challenge, it can also be incredibly rewarding.

Finding Data | 379

APPENDIX D

Resources for Visualization and
Information Design

The evolution of visualization tools in the past decade has transformed the process
of creating beautiful, informative graphics from something that required expensive
specialty software and specialized training to something that almost anyone can do.
As discussed in Chapter 10, however, making eloquent visualizations is about more
than the tools you have at your disposal; it’s about finding the design choices that
best enhance and clarify your message. While there are many books and courses out
there that focus on visualization for particular purposes (business or science commu‐
nication, for example), the following list is more of an all-purpose reader—these are
great books and resources for developing and understanding the history, purpose,
and potential of visualization and information design if you want to understand this
space more broadly.

Foundational Books on Information Visualization
Probably the most name-checked person in the world of information visualization
is Edward Tufte, who wrote many of the earliest and more influential books on
the subject. While all of them are beautiful objects, probably the most instructive
will be the first three: The Visual Display of Quantitative Information, Envisioning
Information, and Visual Explanations (all from Graphics Press). If you find yourself
wanting to read his entire opus, he has also published a few shorter reports and
pamphlets that excerpt his books and offer pointed critiques of, well, PowerPoint. All
of his publications can purchased on his personal website, https://edwardtufte.com,
but many are also available in public libraries.

Although technically books about typography, Thinking with Type by Ellen Lupton
(Princeton Architectural Press) is an excellent introduction to general graphic design

381

https://edwardtufte.com
http://elupton.com

principles that apply anywhere text is involved—which is most places, including data-
driven visualizations. Lupton’s book introduces readers to all the essential aspects
of designing with text, providing the vocabulary needed to reason about everything
from font choice and weight to size, color, and spacing. The book is both a great
primer and reference, wonderful to have on hand if you can buy a copy. If you
can’t, a lot of the book’s essentials are available for free on the corresponding website,
http://thinkingwithtype.com.

The Quick Reference You’ll Reach For
My number-one ready reference for information visualization remains The Wall
Street Journal Guide to Information Graphics (Norton), written by my former collea‐
gue, Dona Wong. This book has all the tips and tricks you’ll need to accurately
and beautifully visualize data in one place. Need a pleasing color palette? Check.
A reminder on how to calculate percent change? Check. Ideas on how to handle
negative or missing values? Check. A quick read and an invaluable go-to resource;
if there’s only one book on information visualization that you actually purchase, this
should be it.

Sources of Inspiration
There are hundreds of books and blogs about information visualization, and not all
of them are created equal—because not all designers are focused on the accurate
presentation of data. While many folks offer paid workshops in visualization (some
of which may be quite good), there are also many talented practitioners sharing their
work and ideas for free.

Kaiser Fung’s blog Junk Charts is a long-standing resource of visualization critique
and redesign. Here you can find more than 15 years’ worth of Fung’s well-informed
perspectives on information design, which includes highlighting the data fallacies
that sometimes crop up in the visualizations of even major news organizations and
businesses. A great resource for anyone looking to learn about the ways that even
well-meaning visualizations can go wrong.

Mona Chalabi’s work for The Guardian and elsewhere demonstrates how great data
visualizations can also be made by hand and reflect the individuality and the human‐
ity of the people that data is about.

Stefanie Posavec is an artist and designer who creates data-driven objects and visuali‐
zations across a range of media.

382 | Appendix D: Resources for Visualization and Information Design

http://thinkingwithtype.com
https://junkcharts.typepad.com
https://theguardian.com/profile/mona-chalabi
http://stefanieposavec.com

Index

Symbols
= (equal sign), as assignment operator, 42
| (pipe) either/or character, 233

A
access tokens (APIs), 160, 168-172
accessibility

of colors, 345, 348
of Python, 7

accounts
FRED, creating, 149
Twitter development, applying for, 160-162

Ada Developers Academy, 368
adding code to files, 23
Agricultural Marketing Service (USDA), 82
alpha (transparency) in visualizations, 341
annotations in visualizations, 348
anomalies, 292

as meaningful, 289
in Gaussian distribution, 299

API (application programming interface),
145-146
authentication, 148

API key protection, 153-159
API key requests, 149
creating account, 149
data requests with API key, 150
OAuth, 159-172

benefits of, 143
as data sources, 375-376
documentation, reading, 151-152
endpoints, 119, 152
ethical usage, 172-173
risks of, 141

search engines as, 146-148
API keys

data requests with, 150
in OAuth

creating, 164-167
encoding, 167-168

protection in Python, 153-159
creating credentials file, 155
.gitignore file, 157-159
importance of, 154
importing credentials file, 155-157

requesting, 149
apps (Twitter), creating, 162-164
argparse library, 282
*args parameter, 264
arguments, 55

command-line, 281-284
documentation of, 283
positional, 283

arguments (for functions), 262-264
arithmetic mean, 290
assessing

data fit, 73-79, 215-221
reliability, 76, 219
representativeness, 77-79, 220-221
validity, 74-76, 216-219

data integrity, 79-88, 187-215
atomic, 85, 213
clear, 87, 213-215
complete, 83, 189-200
consistent, 86-87, 208-211
dimensionally structured, 87, 215
high volume, 83, 206-208
of known provenance, 81, 188-189

383

multivariate, 84, 211-213
timely, 82, 189
well-annotated, 81, 201-206

assignment operator (=), 42
asymmetric distributions, 301-304
Atom, 14

installing
on Chromebook, 15-16
on macOS, 17
on Windows 10+, 18

opening, 20
standalone Python files, creating, 20-21

.atom XML format, 124
atomic data (data integrity), 85, 213
attributes (XML), 121
augmenting data, 89, 253-256
authentication for APIs, 148

API key protection, 153-159
API key requests, 149
creating account, 149
data requests with API key, 150
OAuth, 159-172

authentication keys (GitHub)
copying to GitHub, 30
creating, 29-32

authorization endpoints (APIs), 169
authorization loops (APIs), 159
autocomplete (command line), 12
average, 290-292

B
backing up

local files, 29-32
online, 34

bar charts, 330-335
baseline problem, 221
batch editing in OpenRefine, 360
bearer tokens (APIs) (see access tokens)
Beautiful Soup library, 180-184
benchmarking problem, 221
biased data, 6
bilateral symmetry, 297
brightness (of colors), 346
browser inspection tools, 178-180
built-in functions, 42-43
bytecode, 156

C
C/C++ programming languages, 8

calling people, tips for, 200
cd (change directory) command, 12
central tendency, 290-292

in Gaussian distribution, 299
mean, 290
median, 291-292

Chalabi, Mona, 382
change directory (cd) command, 12
changing file extensions, 102
charts (see visualizations)
child elements (XML), 122
Chromebooks

Atom installation, 15-16
enabling Linux, 11
hidden files, showing, 31
Linux files folder, 13
Python/Jupyter installation, 15
version numbers, 14-15

Citi Bike dataset, 62-70
file-based versus feed-based, 92-93
looping through data, 66-68
printing results, 68-68
pseudocode, 63-64
reading data, 64-66
scalability of Python, 69-70
subsets of, 226-235

datetime object, 233-235
matching with regular expressions,

229-233
splitting strings, 227-229

cleaning data, 88
converting fixed-width to .csv files, 241-244
problem-solving approaches, 250-252
separating metadata, 235-239
spelling inconsistencies, 244-249

clear, in data integrity, 87, 213-215
clusters, 297, 305-317
code editors

advantages of, 14
Atom (see Atom)
installing, 14-19

on Chromebook, 15-16
on macOS, 17
on Windows 10+, 18

code refactoring (see refactoring code)
cold calling, tips for, 200
Collabora, 358
colors

accessibility, 345, 348

384 | Index

choosing for visualizations, 345-348
properties of, 346

column charts, 330-335
comma-separated value (.csv) files, 97

converting fixed-width files to, 116-118,
241-244

reading data from, 99-101
command line, 11-13

cd (change directory) command, 12
copy/paste to, 284
ls (list) command, 12
mkdir (make directory) command, 12
navigating documentation, 281
pip, 366

command-line arguments, refactoring with,
281-284

commands (git)
add, 33, 64, 374
clone, 32
commit, 33, 62, 369-370, 374
pull, 372-374
push, 33, 372-374
status, 33, 374

commenting code, 24, 67, 259
commit messages, troubleshooting, 369-370
community of Python users, 7, 368
comparing files, 192-199
COMPAS (Correctional Offender Management

Profiling for Alternative Sanctions), 6
complete, in data integrity, 83, 189-200
compound conditionals, 230
computer decisions versus human decisions, 4
concatenation, 42
conditionals, 51-55
configuring Git, 29-32
conflicts in Git, resolving, 372-374
consistent, in data integrity, 86-87, 208-211
construct validity, 74-75
content validity, 75
context

anomalies, 292
in bar/column charts, 330-335
importance of, 288-289
meaningfulness in, 289
trends in, 290-292

context collapse, 79
copying

to command line, 284
SSH keys to GitHub, 30

credentials file
creating, 155, 166
ignoring in Git, 157-159
importing, 155-157

.csv files (comma-separated values), 97
converting fixed-width files to, 116-118,

241-244
reading data from, 99-101

csv library, 64-66
custom data collection, 378-379
custom functions (see user-defined functions)
customizing visualizations, 349-353

D
data analysis

context
anomalies, 292
importance of, 288-289
meaningfulness in, 289
trends, 290-292

visualization in, 292-317
clusters, 305-317
histograms, 293-297
proportionality, 317-320
symmetry, 297-304

data augmentation, 89, 253-256
data cleaning, 88

converting fixed-width to .csv files, 241-244
problem-solving approaches, 250-252
separating metadata, 235-239
spelling inconsistencies, 244-249

data decoding, 88
data diaries, 24-25
data dictionaries, 202-206
data fit

assessing, 73-79, 215-221
reliability, 76, 219
representativeness, 77-79, 220-221
validity, 74-76, 216-219

COMPAS example, 6
explained, 5

data formats, text versus nontext, 104
data integrity

assessing, 79-88, 187-215
atomic, 85, 213
clear, 87, 213-215
complete, 83, 189-200
consistent, 86-87, 208-211
dimensionally structured, 87, 215

Index | 385

high volume, 83, 206-208
of known provenance, 81, 188-189
multivariate, 84, 211-213
timely, 82, 189
well-annotated, 81, 201-206

explained, 4
data presentations (see visualizations)
data quality

data fit
COMPAS example, 6
explained, 5

data fit assessments, 73-79, 215-221
reliability, 76, 219
representativeness, 77-79, 220-221
validity, 74-76, 216-219

data integrity assessments, 79-88, 187-215
atomic, 85, 213
clear, 87, 213-215
complete, 83, 189-200
consistent, 86-87, 208-211
dimensionally structured, 87, 215
high volume, 83, 206-208
of known provenance, 81, 188-189
multivariate, 84, 211-213
timely, 82, 189
well-annotated, 81, 201-206

data integrity, explained, 4
difficulty of achieving, 185-186
documentation of, 72-73, 187
ethical standards checklist, 363-364
explained, 3-4
importance of, 71
improving, 88-89

augmenting, 89, 253-256
cleaning, 88, 235-239

data repositories, 375-376
data review

OpenRefine for, 359-361
spreadsheet programs for, 358-359

data sources
API (see API)
custom data collection, 378-379
data repositories, 375-376
feed-based, 141

(see also API)
Citi Bike dataset example, 92-93
downloading, 143-145
file-based versus, 91-92
finding, 119

reading data from (see reading data)
types of, 118-119
when to use, 119
whitespace in, 133

file-based, 141
(see also API)
Citi Bike dataset example, 92-93
delimited files, 97-98
feed-based versus, 91-92
finding, 98
fixed-width files, 114-118
reading data from (see reading data)
unemployment example dataset, 105-107
when to use, 98

FOIA/L requests, 377-378
machine-readable, 94
PDFs, 134-139
searching, 96
structured versus unstructured, 93-96
subject matter experts, 376-377
unstructured data, 133
web scraping

Beautiful Soup library, 180-184
browser inspection tools, 178-180
ethical usage, 173-176
MTA example, 176-177

data statements for visualizations
choosing visualization type, 327
creating, 326

data transformation, 244-249
data types, 39-40

common errors, 253
searching for specific, 96

data validation, 312-317
data versus information, 94
data wrangling

common errors, 252-253
ethical standards checklist, 363-364
looping through data, 66-68
printing results, 68-68
problem-solving approaches, 250-252
process of, 2-3, 63
pseudocode, 63-64
Python

alternatives to, 8
reasons for using, 6-8
scalability of, 69-70

reading data, 64-66
from .csv files, 99-101

386 | Index

from fixed-width files, 114-118
from .json files, 130-133
from .ods files, 107-114
from .pdf files, 135-139
from .tsv files, 101-104
from unemployment example dataset,

105-107
from .xls files, 107-114
from .xml files, 120-130

dates
datetime object, 233-235
separating from times, 227-229
in .xls files (Microsoft Excel), 239-241

datetime object, 233-235
debugging, 55-61

exceptions, 60
for loops, 50
logic errors, 60-61
runtime errors, 58-59
syntax errors, 56-58
user-defined functions, 46

decoding data, 88
default functionality, changing with user-

defined functions, 259
delimited files

reading data
from .csv files, 99-101
from fixed-width files, 114-118
from .ods files, 107-114
from .tsv files, 101-104
from .xls files, 107-114

as text, 104
types of, 97-98

denominator problem, 221
density (of data), 297, 305-317
desktop, 12
developer accounts

FRED, creating, 149
Twitter, applying for, 160-162

dimensionally structured, in data integrity, 87,
215

distributions, 297
asymmetric, 301-304
clusters, 305-317
Gaussian, 297-301
symmetry in, 297-304

document type declarations (XML), 121
documentation

for APIs, reading, 151-152

in data quality assessments, 72-73, 187
importance of, 24-25
navigating via command line, 281
official Python documentation, 365-366
with pydoc, 277-281
of required arguments, 283
user-defined functions as, 258-259

documents (Python), types of, 8-10
downloading

.json and .xml files, 143-145
manually versus programmatically, 145

E
electronic publication format (EPUB), 124
elements (XML), 121
eloquent graphics, 324-326

annotations in, 348
attention to detail, 345
colors in, 345-348
scales for, 347

enabling Linux on Chromebook, 11
encoding API keys, 167-168
endpoints (APIs), 119, 152
environments (Python), 367
Envisioning Information (Tufte), 381
EPUB (electronic publication format), 124
equal sign (=), as assignment operator, 42
errors, 55-61

common, 252-253
exceptions, 60
in for loops, 50
logic errors, 60-61
runtime errors, 58-59
syntax errors, 56-58
in user-defined functions, 46

ethics
API usage, 172-173
standards checklist, 363-364
of web scraping, 173-176

exceptions, 60
Extensible Markup Language (XML) (see .xml

files)

F
feed-based data sources, 141

(see also API)
Citi Bike dataset example, 92-93
downloading, 143-145
file-based versus, 91-92

Index | 387

finding, 119
reading data from (see reading data)
types of, 118-119
when to use, 119
whitespace in, 133

file conflicts in Git, resolving, 372-374
file extensions, changing, 102
file-based data sources, 141

(see also API)
Citi Bike dataset example, 92-93
delimited, 97-98
feed-based versus, 91-92
finding, 98
fixed-width files, 114-118
reading data from (see reading data)
unemployment example dataset, 105-107
when to use, 98

files
comparing, 192-199
naming, 13, 236
showing hidden, 30

finding
data (see data sources)
feed-based data sources, 119
file-based data sources, 98
hidden files, 158-159
packages, 366
PDFs, 135

fingerprinting, 209-211, 244-249, 311-312
fingerprints library, 209-211, 311-312
fit (see data fit)
fixed-width files, 114-118, 241-244
flag variables, 238
FOIA (Freedom of Information Act) requests,

377-378
FOIL (Freedom of Information Law), 377-378
folders, 13
for loops, 48-51

Citi Bike dataset example, 66-68
range() function in, 101

FOSS (Free and Open Source Software),
362-363

FRED (Federal Reserve Economic Database)
API documentation, reading, 151-152
API keys

data requests with, 150
requesting, 149

data revisions, 153
developer account, creating, 149

Free Code Camp, 368
functions, 42-47

arguments, 55, 262-264
built-in versus methods, 42-43
nesting, 265-266
range(), 101
for refactoring

metadata parsing example, 270-277
weekdays example, 267-269

return values, 264-265
user-defined, 43-47

command-line arguments, 281-284
components of, 45
documentation, 277-281
errors in, 46
libraries, 47
scope, 259-261
when to use, 258-259

Fung, Kaiser, 382

G
Gaussian distribution, 297-301
geographic data, maps for, 342-344
geopandas library, 344
get requests, 169
GIMP (GNU Image Manipulation Program),

361
Git

commands
add, 33, 64, 374
clone, 32
commit, 33, 62, 369-370, 374
pull, 372-374
push, 33, 372-374
status, 33, 374

committing code, 62
.gitignore file, 157-159
installing/configuring, 29-32
linking GitHub repository, 32-33
quick-reference commands, 374
troubleshooting

file conflicts, resolving, 372-374
git commit, 369-370

GitHub
copying SSH keys to, 30
repositories

creating, 26-29
linking to Google Colab, 34
linking to local computer, 32-33

388 | Index

.gitignore file, 157-159
global variables, 274
Google Colab

linking to GitHub, 34
notebooks, creating, 22

graphs (see visualizations)

H
heatmaps, 341
Hello, World! example

adding code, 23
file creation, 20-22
running code, 23

hidden files
finding, 158-159
showing, 30

high volume, in data integrity, 83, 206-208
histograms, 293-297

clusters, 305-317
PPP example, 294-296
shape of, 296-297
symmetry, 297-304

home folder, 12
hue (of colors), 346
human decisions versus computer decisions, 4

I
if…else conditionals, 51-55
ignoring files in Git, 157-159
image-based text (see PDFs)
image-editing software, 361
importing credentials file, 155-157
improving data quality, 88-89

augmenting, 89, 253-256
cleaning, 88, 235-239

incrementing variables, 67
information versus data, 94
Inkscape, 362
inline comments, 259
inspiration for visualizations, 382
installing

code editors, 14-19
on Chromebook, 15-16
on macOS, 17
on Windows 10+, 18

Git, 29-32
Jupyter, 14-19

on Chromebook, 15
on macOS, 16-17

testing setup, 19
on Windows 10+, 18

Python, 14-19
on Chromebook, 15
on MacOS, 16-17
testing setup, 19
on Windows 10+, 18

Python packages, 366
integrity (see data integrity)
IQR (interquartile range), 302
iterators, 101

J
Java, 8
JavaScript, 8
JavaScript Object Notation (see .json files)
jitter (in visualizations), 341
joins, outer, 196-199
.json files (JavaScript Object Notation), 118

components of, 130-131
downloading, 143-145
reading data from, 130-133
whitespace, 133
XML versus, 131, 132

Jupyter, 9
(see also notebooks)
installing, 14-19

on Chromebook, 15
on macOS, 16-17
testing setup, 19
on Windows 10+, 18

online option, 19
updating, 367

K
key/value pairs

in URLs, 146-148
in JSON, 130
XML attributes as, 121

KML (Keyhole Markup Language), 124
known provenance, in data integrity, 81,

188-189
**kwargs parameter, 264

L
land area in maps, 343
launching

Atom, 20

Index | 389

Jupyter, 21
libraries, 47
LibreOffice, 358
line charts, 335-339
linking Git repositories

to Google Colab, 34
to local computer, 32-33

Linux files folder (Chromebooks), 13
Linux, enabling on Chromebook, 11
list (ls) command, 12
lists

JSON, 131
zero-indexed, 101

live data sources (see feed-based data sources)
loading partial datasets in OpenRefine, 360
local files, backing up, 29-32
logic errors, 60-61
loops, 48-51

Citi Bike dataset example, 66-68
for loops, range() function in, 101

lower bound of dataset, 302
ls (list) command, 12
luminosity (in visualizations), 346
Lupton, Ellen, 381
lxml library, 124

M
machine learning, 136
machine-readable data sources, 94
macOS

Atom installation, 17
hidden files, showing, 31
Python/Jupyter installation, 16-17

macros, 360
__main__, 270
make directory (mkdir) command, 12
maps, 342-344
matplotlib library, 294, 307

customizing visualizations, 349-353
pie charts, 328-329

mean (arithmetic), 290
median, 291-292
metacharacters in regular expressions, 230
metadata, 120, 202

in data integrity assessments, 81
refactoring example, 270-277
separating, 235-239

methods, 42-43
Microsoft Excel (see .xls files)

Miniconda, 14
mkdir (make directory) command, 12
MTA (Metropolitan Transit Authority) example

browser inspection tools, 178-180
web scraping, 176-177

multivariate data (data integrity), 84, 211-213

N
naming

files, 13, 236
variables, 40-42

nesting
functions, 265-266
in Python code, 53-55
XML tags, 121

nontext data formats, 104
normal (Gaussian) distribution, 297-301
notebooks (Jupyter), 9

adding code, 23
creating

with Google Colab, 22
with Jupyter, 21-22

online option, 19
running code, 24
saving code, 25
standalone scripts versus, 284

numbers library, 239-241
numpy library, 307

O
OAuth authentication with Twitter, 159-172

app creation, 162-164
creating API key, 164-167
development account application, 160-162
encoding API keys, 167-168
requesting access token, 168-172

objects (JSON), 131
occlusion (in visualizations), 341
OCR (optical character recognition), 134
.ods files (open-document spreadsheets), 98

reading data from, 107-114
online option for Python, 19
online, backing up files to, 34
opacity (transparency) in visualizations, 341
open-document spreadsheet (.ods) files, 98

reading data from, 107-114
opencv-python library, 136
opening

Atom, 20

390 | Index

Jupyter, 21
openpyxl library, 108-110
OpenRefine, 359-361
operationalizing a construct, 74
optical character recognition (OCR), 134
optional arguments, 263
outer joins, 196-199
outliers, 292

in asymmetric distributions, 301-304
in Gaussian distribution, 299

overwriting Git files, 373-374

P
packages, finding/installing, 366
Pandas, 191-192, 307
paper sketches of visualizations, 344
parameters (for functions), 262-264
parent elements (XML), 122
parsing data (see reading data)
partial datasets, loading in OpenRefine, 360
passphrases, creating, 30
Paycheck Protection Program example (see

PPP example)
pdf2image library, 135
PDFs (Portable Document Format), 134

finding, 135
reading data from

with Python, 135-139
with Tabula, 139

when to use, 134
pie charts, 327-330
pip command, 366
pipe (|) either/or character, 233
pixel-based images, editing software for, 361
poppler library, 135
Portable Document Format (see PDFs)
Posavec, Stefanie, 382
positional arguments (for functions), 283
post requests, 169
PPP (Paycheck Protection Program) example,

187
augmenting data, 253-256
clusters, 305-317
data fit assessments

reliability, 219
representativeness, 220-221
validity, 216-219

data integrity assessments
atomic, 213

clear, 213-215
complete, 189-200
consistent, 208-211
dimensionally structured, 215
high volume, 206-208
of known provenance, 188-189
multivariate, 211-213
timely, 189
well-annotated, 201-206

histograms, 294-296
outliers in dataset, 302-304
proportionality, 317-320
spelling inconsistencies, 244-249

presenting data (see visualizations)
print() function, 42, 68-68
problem-solving approaches, 250-252
proportionality

in data visualization, 317-320
pie charts for, 327-330

proprietary data formats, 104
pseudocode, 63-64
.py extension, 21
.pyc extension, 156
pycache, 156-157
pydoc, 277-281
pyexcel-ods library, 108, 111-112
PyPI (Python Package Index), 366
pytesseract library, 136
Python

alternatives to, 8
API key protection, 153-159

creating credentials file, 155
encoding keys, 167-168
.gitignore file, 157-159
importance of, 154
importing credentials file, 155-157

Beautiful Soup library, 180-184
bytecode, 156
clusters of data, 307-317
command line, 11-13
comments, 67
comparing files, 192-199
conditionals, 51-55
datetime object, 233-235
document types, 8-10
downloading web-based data, 145
environments, 367
errors, 55-61

common, 252-253

Index | 391

exceptions, 60
logic errors, 60-61
runtime errors, 58-59
syntax errors, 56-58

fingerprints library, 209-211, 311-312
functions, 42-47

arguments, 55, 262-264
built-in versus methods, 42-43
command-line arguments, 281-284
documentation, 277-281
metadata parsing refactoring example,

270-277
nesting, 265-266
return values, 264-265
scope, 259-261
user-defined, 43-47, 258-259
weekdays refactoring example, 267-269

histograms, creating, 294-296
installing, 14-19

on Chromebook, 15
on macOS, 16-17
testing setup, 19
on Windows 10+, 18

iterators, 101
lists, zero-indexed, 101
loops, 48-51, 66-68

for loops, range function() in, 101
__main__, 270
nesting in, 53-55
notebooks

adding code, 23
Google Colab, creating with, 22
Jupyter, creating with, 21-22
running code, 24
saving code, 25
standalone scripts versus, 284

numbers library for Excel dates, 239-241
official documentation, 365-366
online options, 19
outer joins, 196-199
packages, finding/installing, 366
printing results, 68-68
pseudocode, 63-64
pycache, 156-157
reading data, 64-66

from .csv files, 99-101
from fixed-width files, 114-118
from .json files, 130-133
from .ods files, 107-114

from .pdf files, 135-139
from .tsv files, 101-104
from unemployment example dataset,

105-107
from .xls files, 107-114
from .xml files, 120-130

reasons for using, 6-8
refactoring code (see refactoring code)
regular expressions, 229-233
requesting access tokens, 168-172
resources for information, 367
scalability of, 69-70
splitting strings, 227-229
standalone files

adding code, 23
creating, 20-21
running code, 23
saving code, 25

standard deviation and z-score, 299-301
statements, 42
transposing data, 201-202
updating, 367
validating data, 312-317
variables, 39-42

data types, 39-40
errors, 59
global, 274
incrementing, 67
naming, 40-42

version numbers, 11
Python Data Science Handbook (VanderPlas),

368
Python Standard Library, 366

Q
quality (see data quality)
quartiles, 301-304
query strings

in APIs, 150-152
in URLs, 146-148

R
R programming language, 8
range() function, 101
rate-limiting (APIs), 172
rates of change in line charts, 335-339
rationalizing data, 317-320
readability of Python, 7
reading API documentation, 151-152

392 | Index

reading data, 64-66
from .csv files, 99-101
from fixed-width files, 114-118
from .json files, 130-133
from .ods files, 107-114
from .pdf files

with Python, 135-139
with Tabula, 139

from .tsv files, 101-104
from unemployment example dataset,

105-107
from .xls files, 107-114
from .xml files, 120-130

Really Simple Syndication (RSS), 124, 127-129
refactoring code, 138, 257

with command-line arguments, 281-284
metadata parsing example, 270-277
weekdays function example, 267-269

regular expressions, 158, 229-233
relationships (see context)
reliability, in data fit, 76, 219
repositories (data), 375-376
repositories (GitHub)

committing code, 62
creating, 26-29
linking

to Google Colab, 34
to local computer, 32-33

representativeness, in data fit, 77-79, 220-221
requesting

access tokens, 168-172
API keys, 149
data with API keys, 150

resolving file conflicts in Git, 372-374
resources for information

on Python, 367
on visualizations, 381-382

return values, 264-265
reviewing data (see data review)
root elements (XML), 122
RSS (Really Simple Syndication), 124, 127-129
running code in standalone files, 23
runtime errors, 58-59

S
saturation (of colors), 346
saving code in standalone files, 25
Scala, 8
scalability of Python, 69-70

Scalable Vector Graphics (SVG), 124
scales, choosing for visualizations, 347
scatter plots, 339-342
scope (for functions), 259-261
scraping (see web scraping)
seaborn library, 294, 307, 349-353
search engines, as APIs, 146-148
search operators, 96
searching for specific data types, 96
secret keys in OAuth

creating, 164-167
encoding, 167-168

sharing data (see visualizations)
showing hidden files, 30
sketching visualizations, 344
skewed distributions (see asymmetric distribu‐

tions)
slope graphs, 337
sources of data (see data sources)
specifications (XML), 124
spelling inconsistencies, fixing, 244-249
split() function, 43, 227-229
splitting strings, 227-229
spreadsheets

for data review, 358-359
.ods files (open-document spreadsheet), 98

reading data from, 107-114
.xls files (Microsoft Excel), 98

cleaning data, 235-239
dates in, 239-241
reading data from, 107-114

SQL (Simple Query Language), 8
SSH keys

copying to GitHub, 30
creating, 29-32

standalone Python files, 10
adding code, 23
creating, 20-21
running code, 23
saving code, 25

standalone scripts versus notebooks, 284
standard (Gaussian) distribution, 297-301
standard deviation, 297-301
statements, 42
string methods, 42
strings

regular expressions, 229-233
splitting, 227-229

strip() function, 241-244

Index | 393

structured data
feed-based (see feed-based data sources)
file-based (see file-based data sources)
unstructured versus, 93-96

subject matter experts, as data source, 376-377
subsets of data, 226-235

matching with regular expressions, 229-233
splitting strings, 227-229

sum() function, 51
SVG (Scalable Vector Graphics), 124
symmetry, 297-304
syntax errors, 56-58
syntax highlighting, 14, 39

T
tab-separated value (.tsv) files, 97

fixed-width files versus, 115
reading data from, 101-104

table-type data
accessing in PDFs, 139
feed-based (see feed-based data sources)
file-based (see file-based data sources)

Tabula, 139
tags (XML), 121
terminal (see command line)
tesseract-ocr library, 136
testing Python/Jupyter installation, 19
text (.txt) files, 97

reading data from, 101-104
tab-separated versus fixed-width, 115

text editors, opening delimited files in, 104
text, image-based (see PDFs)
Thinking With Type (Lupton), 381
timely, in data integrity, 82, 189
timestamps

datetime object, 233-235
separating from dates, 227-229

to_datetime() function, 192
transforming data, 244-249
transposing data, 201-202
trends

as meaningful, 289
types of, 290-292

troubleshooting Git
file conflicts, resolving, 372-374
git commit, 369-370

.tsv files (tab-separated values), 97
fixed-width files versus, 115
reading data from, 101-104

Tufte, Edward, 381
Twitter

access tokens, requesting, 168-172
API keys

creating, 164-167
encoding, 167-168

apps, creating, 162-164
development account, applying for, 160-162
ethical usage, 172-173

.txt files (text), 97
reading data from, 101-104
tab-separated versus fixed-width, 115

U
unemployment example, 105-107, 354-355
unstructured data sources, 133

PDFs, 134-139
structured versus, 93-96

updating software tools, 367
upper bound of dataset, 302
URLs, query strings in, 146-148
USDA Agricultural Marketing Service, 82
user-defined functions, 43-47

arguments, 262-264
command-line arguments, 281-284
components of, 45
documentation, 277-281
errors in, 46
libraries, 47
nesting, 265-266
return values, 264-265
scope, 259-261
when to use, 258-259

V
validating data, 312-317
validity, in data fit, 74-76, 216-219
variables, 39-42

data types, 39-40
errors, 59
global, 274
incrementing, 67
naming, 40-42

vector-based images, editing software for, 362
versatility of Python, 6
version numbers

for Chromebooks, 14-15
in Python, 11
in Windows 10+, 17

394 | Index

versioning code, 26-34
Git

file conflicts, resolving, 372-374
git commit, troubleshooting, 369-370
installing/configuring, 29-32

repositories
creating, 26-29
linking to Git, 32-33
linking to Google Colab, 34

The Visual Display of Quantitative Information
(Tufte), 381

Visual Explanations (Tufte), 381
visualizations

bar/column charts, 330-335
critiquing others' work, 354
customizing with seaborn and matplotlib,

349-353
in data analysis, 292-317

clusters, 305-317
histograms, 293-297
proportionality, 317-320
symmetry, 297-304

data statements for
choosing visualization type, 327
creating, 326

as eloquent graphics, 324-326
annotations in, 348
attention to detail, 345
colors in, 345-348
scales for, 347

image-editing software, 361
inspiration sources, 382
line charts, 335-339
maps, 342-344
paper sketches of, 344
pie charts, 327-330
resources for information, 381-382
scatter plots, 339-342
slope graphs, 337
tailoring to audience, 323-324

W
The Wall Street Journal Guide to Information

Graphics (Wong), 382
web scraping

Beautiful Soup library, 180-184
browser inspection tools, 178-180
ethical usage, 173-176
MTA example, 176-177

web-based data sources (see API; feed-based
data sources; file-based data sources)

weekday() function, 233-235, 267-269
well-annotated, in data integrity, 81, 201-206
whitespace, 13

nesting with, 53-55
stripping, 241-244
in XML/JSON files, 133

Windows 10+
Atom installation, 18
hidden files, showing, 31
Python/Jupyter installation, 18
version numbers, 17

Wong, Dona, 382

X
xlrd library, 108, 112-113, 241
.xls files (Microsoft Excel spreadsheets), 98

cleaning data, 235-239
dates in, 239-241
reading data from, 107-114

.xml files (Extensible Markup Language), 118
components of, 120-124
downloading, 143-145
reading data from, 120-130
specifications, 124
whitespace, 133

Z
z-score, 297-301
zero-indexed lists, 101

Index | 395

About the Author
Susan E. McGregor is a researcher at Columbia University’s Data Science Institute,
where she also cochairs its Center for Data, Media and Society. For over a decade,
she has been refining her approach to teaching programming and data analysis to
non-STEM learners at the professional, graduate, and undergraduate levels.

McGregor has been a full-time faculty member and researcher at Columbia Univer‐
sity since 2011, when she joined Columbia Journalism School and the Tow Center
for Digital Journalism. While there, she developed the school’s first data journalism
curriculum and served as a primary academic advisor for its dual-degree program
in Journalism and Computer Science. Her academic research centers on security and
privacy issues affecting journalists and media organizations, and is the subject of
her first book, Information Security Essentials: A Guide for Reporters, Editors, and
Newsroom Leaders (CUP).

Prior to her work at Columbia, McGregor spent several years as the Senior Pro‐
grammer on the News Graphics team at the Wall Street Journal. She was named
a 2010 Gerald Loeb Award winner for her work on WSJ’s original “What They
Know” series, and has spoken and published at a range of leading academic security
and privacy conferences. Her work has received support from the National Science
Foundation, the Knight Foundation, Google, and multiple schools and offices of
Columbia University. McGregor is also interested in how the arts can help stimulate
critical thinking and introduce new perspectives around technology issues. She holds
a master’s degree in Educational Communication and Technology from NYU and a
bachelor’s degree in Interactive Information Design from Harvard University.

Colophon
The animal on the cover of Practical Python Data Wrangling and Data Quality is a
horseshoe whip snake (Hemorrhois hippocrepis).

Native to southwestern Europe and northern Africa, this snake can be found living in
a variety of habitats including shrubby vegetation, rocky and sandy shores, pasture‐
land, plantations, rural gardens, and some urban areas. Adults can grow to a total
length of 5 feet (or 1.5 meters). The horseshoe whip snake has smooth scales and a
yellowish/red body with a series of large black or dark brown spots edged with black
running down its back. It gets its name from the light horseshoe-shaped mark on the
neck and back of head.

The horseshoe whip snake climbs well and hunts birds, small reptiles, and small
mammals from the tops of trees, roofs, or rocky cliffs. While it can be aggressive
when handled and has a strong bite, this snake is not venomous or particularly
dangerous to humans.

Thought to be highly adaptable, the current conversation status of the horseshoe
whip snake is “Least Concern.” Many of the animals on O’Reilly covers are endan‐
gered; all of them are important to the world.

The cover illustration is by Jose Marzan Jr., based on an antique line engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book?
	Who Shouldn’t Read This Book?
	What to Expect from This Volume
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Data Wrangling
and Data Quality
	What Is “Data Wrangling”?
	What Is “Data Quality”?
	Data Integrity
	Data “Fit”

	Why Python?
	Versatility
	Accessibility
	Readability
	Community
	Python Alternatives

	Writing and “Running” Python
	Working with Python on Your Own Device
	Getting Started with the Command Line
	Installing Python, Jupyter Notebook, and a Code Editor

	Working with Python Online
	Hello World!
	Using Atom to Create a Standalone Python File
	Using Jupyter to Create a New Python Notebook
	Using Google Colab to Create a New Python Notebook

	Adding the Code
	In a Standalone File
	In a Notebook

	Running the Code
	In a Standalone File
	In a Notebook

	Documenting, Saving, and Versioning Your Work
	Documenting
	Saving
	Versioning

	Conclusion

	Chapter 2. Introduction to Python
	The Programming “Parts of Speech”
	Nouns ≈ Variables
	Verbs ≈ Functions
	Cooking with Custom Functions
	Libraries: Borrowing Custom Functions from Other Coders

	Taking Control: Loops and Conditionals
	In the Loop
	One Condition…

	Understanding Errors
	Syntax Snafus
	Runtime Runaround
	Logic Loss

	Hitting the Road with Citi Bike Data
	Starting with Pseudocode
	Seeking Scale

	Conclusion

	Chapter 3. Understanding Data Quality
	Assessing Data Fit
	Validity
	Reliability
	Representativeness

	Assessing Data Integrity
	Necessary, but Not Sufficient
	Important
	Achievable

	Improving Data Quality
	Data Cleaning
	Data Augmentation

	Conclusion

	Chapter 4. Working with File-Based and Feed-Based Data in Python
	Structured Versus Unstructured Data
	Working with Structured Data
	File-Based, Table-Type Data—Take It to Delimit
	Wrangling Table-Type Data with Python

	Real-World Data Wrangling: Understanding Unemployment
	XLSX, ODS, and All the Rest
	Finally, Fixed-Width
	Feed-Based Data—Web-Driven Live Updates
	Wrangling Feed-Type Data with Python

	Working with Unstructured Data
	Image-Based Text: Accessing Data in PDFs
	Wrangling PDFs with Python
	Accessing PDF Tables with Tabula

	Conclusion

	Chapter 5. Accessing Web-Based Data
	Accessing Online XML and JSON
	Introducing APIs
	Basic APIs: A Search Engine Example
	Specialized APIs: Adding Basic Authentication
	Getting a FRED API Key
	Using Your API key to Request Data

	Reading API Documentation
	Protecting Your API Key When Using Python
	Creating Your “Credentials” File
	Using Your Credentials in a Separate Script
	Getting Started with .gitignore

	Specialized APIs: Working With OAuth
	Applying for a Twitter Developer Account
	Creating Your Twitter “App” and Credentials
	Encoding Your API Key and Secret
	Requesting an Access Token and Data from the Twitter API

	API Ethics
	Web Scraping: The Data Source of Last Resort
	Carefully Scraping the MTA
	Using Browser Inspection Tools
	The Python Web Scraping Solution: Beautiful Soup

	Conclusion

	Chapter 6. Assessing Data Quality
	The Pandemic and the PPP
	Assessing Data Integrity
	Is It of Known Pedigree?
	Is It Timely?
	Is It Complete?
	Is It Well-Annotated?
	Is It High Volume?
	Is It Consistent?
	Is It Multivariate?
	Is It Atomic?
	Is It Clear?
	Is It Dimensionally Structured?

	Assessing Data Fit
	Validity
	Reliability
	Representativeness

	Conclusion

	Chapter 7. Cleaning, Transforming,
and Augmenting Data
	Selecting a Subset of Citi Bike Data
	A Simple Split
	Regular Expressions: Supercharged String Matching
	Making a Date

	De-crufting Data Files
	Decrypting Excel Dates
	Generating True CSVs from Fixed-Width Data
	Correcting for Spelling Inconsistencies
	The Circuitous Path to “Simple” Solutions
	Gotchas That Will Get Ya!
	Augmenting Your Data
	Conclusion

	Chapter 8. Structuring and Refactoring Your Code
	Revisiting Custom Functions
	Will You Use It More Than Once?
	Is It Ugly and Confusing?
	Do You Just Really Hate the Default Functionality?

	Understanding Scope
	Defining the Parameters for Function “Ingredients”
	What Are Your Options?
	Getting Into Arguments?

	Return Values
	Climbing the “Stack”
	Refactoring for Fun and Profit
	A Function for Identifying Weekdays
	Metadata Without the Mess

	Documenting Your Custom Scripts and
Functions with pydoc
	The Case for Command-Line Arguments
	Where Scripts and Notebooks Diverge
	Conclusion

	Chapter 9. Introduction to Data Analysis
	Context Is Everything
	Same but Different
	What’s Typical? Evaluating Central Tendency
	What’s That Mean?
	Embrace the Median

	Think Different: Identifying Outliers
	Visualization for Data Analysis
	What’s Our Data’s Shape? Understanding Histograms
	The Significance of Symmetry
	Counting “Clusters”

	The $2 Million Question
	Proportional Response
	Conclusion

	Chapter 10. Presenting Your Data
	Foundations for Visual Eloquence
	Making Your Data Statement
	Charts, Graphs, and Maps: Oh My!
	Pie Charts
	Bar and Column Charts
	Line Charts
	Scatter Charts
	Maps

	Elements of Eloquent Visuals
	The “Finicky” Details Really Do Make a Difference
	Trust Your Eyes (and the Experts)
	Selecting Scales
	Choosing Colors
	Above All, Annotate!

	From Basic to Beautiful: Customizing a Visualization
with seaborn and matplotlib
	Beyond the Basics
	Conclusion

	Chapter 11. Beyond Python
	Additional Tools for Data Review
	Spreadsheet Programs
	OpenRefine

	Additional Tools for Sharing and Presenting Data
	Image Editing for JPGs, PNGs, and GIFs
	Software for Editing SVGs and Other Vector Formats

	Reflecting on Ethics
	Conclusion

	Appendix A. More Python Programming Resources
	Official Python Documentation
	Installing Python Resources
	Where to Look for Libraries

	Keeping Your Tools Sharp
	Where to Learn More

	Appendix B. A Bit More About Git
	You Run git push/pull and End Up in a Weird Text Editor
	Your git push/pull Command Gets Rejected
	Run git pull

	Git Quick Reference

	Appendix C. Finding Data
	Data Repositories and APIs
	Subject Matter Experts
	FOIA/L Requests
	Custom Data Collection

	Appendix D. Resources for Visualization and Information Design
	Foundational Books on Information Visualization
	The Quick Reference You’ll Reach For
	Sources of Inspiration

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

