Practical Docker
with Python

Build, Release, and Distribute Your
Python App with Docker

Second Edition

Sathyajith Bhat

Apress’

Practical Docker with
Python

Build, Release, and Distribute
Your Python App with Docker

Second Edition

Sathyajith Bhat

Apress’

Practical Docker with Python: Build, Release, and Distribute Your Python
App with Docker

Sathyajith Bhat
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-7814-7 ISBN-13 (electronic): 978-1-4842-7815-4
https://doi.org/10.1007/978-1-4842-7815-4

Copyright © 2022 by Sathyajith Bhat

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Divya Modi

Copyeditor: Kezia Endsley

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505,

e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484278147. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7815-4

To my parents, Jyothika and Jayakar Bhat U., who have
unconditionally supported me through my entire life.

Table of Contents

About the AUhOFcccmminmmmmsessmsssss s xi
About the Technical REVIEWETcccccssssemmmssansssssnsmsssnsssssnsssssasssssnnss xiii
Acknowledgments..........ccciumsmmmmsnmmmsnsmmssmmsnsmmssn s ———————— XV
INtroductioncccccnsemmmnsnmmsssnnmssssnmsssnsmsssnnssssnsssssnsssssnnnnssnnnnssnnnnnnns Xvii
Chapter 1: Introduction to Containerizationcccccccccvnssnnesennnnnscsssnns 1
What IS DOCKEI?......ceeercerreerises s srs s s se s e snssessnns 1
Understanding Problems that Docker SOIVES.........cccuoeverenmrnnerennenesenereneenns 2
Containerization Through the YEarsccccevenrnnsnsesesssesssesssesesssesessessssenens 3
1979 1 CHFOOL ... e 4

2000 : FreeBSD JailSccovererenerrenerisesesesesse s sens 4

2005 : OPENVZ ...ttt s e e e 4

2000 2 COMOUPS...c.veeeererserseseeseressessesessessessessesesssssessasesssssesssssesssssssssssssasssssssens 5

2008 : LXC.....ceueurrrrsssssssssssssssssssesssesesese s s s sttt 5
Containers and Virtual Machinesc.ccovennnnsnsennessnese e sessessssesens 5
Container RUNLIMESccvvevnenirese e 7

OCH AN CRI......oovieerrreirrese e 8
Docker and KUDEIMELES..........cocerirmninir s 9

E 1] 4= 7 9
Chapter 2: Docker 1071cccusmmmsanmssanmssnsssansssasssssnsssnsssansssassssnsssansssas 11
INSTAllNG DOCKETc.veieirerere e 1
Installing Docker on WiNAOWScccvvrernnnnnieniesnsissessesss s ssssesesse s 12
Installing Docker on Windows Using WSL2 Backend.............cccverernieniennenn 15

TABLE OF CONTENTS

Installing on MACOS.........coo v e 18
INSTAlliNG ON LINUX ..ooiiiirciecerercer e e s s sa e sne e saens 19
Understanding Jargon Around DOCKETccccvvrvrnenieniensensensensesseeseesesenns 22
Hands-0n DOCKETcccviirniririe s 30
1] 4= 7 46
Chapter 3: Building the Python App........ccceinnnemmnnnsssssnnmsssssssssssssnnns 47
ADOUL the PrOJECL ... s 47
Setting Up Telegram MESSENGETcccvvrmrrermrenseseseseressesessssessssesessesessssessssesenns 48
BotFather: Telegram’s Bot Creation Interfaceccccovvvrvrennvnienieniesnsensenens 50
Creating the Bot with BotFather ... 51
Newshot: The PYthon APp ..o s s 54
Getting Started with Newshotcccvvrrvririn e 55
Running NEWSDOL ... 56
Sending Messages 10 NeWShOtcccvvvrinininn s 57
1] 4= O 60
Chapter 4: Understanding the Dockerfile..........cccerrnssnnnnnnsssnnnnsssssnnnns 61
DOCKEIfile PHIMEN ... e 61
BUIld CONEEXLcoveeceerere e s 62
DOCKEIIGNOTE......cceeeiericirer et s nne 63
BUIIAKIL.......coeveereeeesecccee s se et 64
Building Using DocKer BUildcccvrenrenerenernsesesesese s 66

L= T3PS 69
Dockerfile INSTUCLIONSccoveierereree e 71
FROM. ...ttt s st e e s e s s 71
WORKDIRceeurrirrisrnrssssssssssss s e ettt 72
ADD aNd COPYceourrrrrrirrsisissss s e se et ss e s 76
RUN. ...ttt bbbt 79

TABLE OF CONTENTS

CMD and ENTRYPOINTccovrrrrerereresesesssssssssssssssssssssssssssssesesessssssssssssasas 81
ENV oo 86
VOLUME ..ot se e ss e es 89
EXPOSE.......coiitirertrerisere sttt se s 89
LABELcveeeeesssessssssssssssssesssesesesesesssssssssssssssssssssssssssssssssssssesesesssssasssasas 92
Guidelines and Recommendations for Writing Dockerfiles...........cevverrererreriernens 93
Using Multi-Stage Buildscccccvvrininnininnsnsesesess e sessesnens 94
EXBICISES...civeuerreererseresrene e sesse e s e se s s e e s e s e ne e e 95
SUMMANY ...t e e e e e e e 103
Chapter 5: Understanding Docker VOIUMES.........ccusesrmmsssansssansssnssnns 105
Data Persistence..........cccouverneresenssisnnss s 105
Example of Data Loss Within a Docker Containercccveevevevverierienensensenenns 106
IMPFS MOUNLS ... s 108
BiNd MOUNLSooviicrcre e 109
DOCKEN VOIUMES.......crviiircirice e s 114
Using Volumes When Starting a Container..........cccocooevvnvnnennnnscnnsesenesensnnes 118
The VOLUME Instruction in DOCKEITIleS.........ccoreerererernsererenereseree s 121
(] (o1 ST 121
SUMMANY....ceiviceriresrsese e a s e nr e 132
Chapter 6: Understanding Docker Networkscccusssesssnsssassssnsssns 133
Why Do We Need Container NetWorking?ccueevvevvrenveriernnessensessessesessensenees 133
Default Docker Network DIiVErS.........cccvrimnmnmsesenssssssse s 134
Working with Docker NETWOrKSccoccvvrininiininrersin e seses s e 137
Bridge NEtWOrKS........ccucvrerriirir e 142
HOSE NEtWOIKS ... 155

o CC] (01T TS 156
SUMMAIY..c..citiiiire e s e e s s e e e R r e e e nne s 164

vii

TABLE OF CONTENTS

Chapter 7: Understanding Docker COMPOSEcccurrrsssnnnsesssssnsnssssnnns 165
Overview 0f DOCKEr COMPOSE......cccvueerirverereerreserissesessesessesessssesessesessesesessesenns 165
Installing Docker COMPOSEccccererenininenierin s 167
Docker COMPOSE BASICScovverrererieninninesesis s s se s ssssessessesns 168
Docker Compose VErsion OVEIVIEWccevrevvrensesersesessessessessssessessessssessessenes 168

Compose File Versioning and the Compose SPec.......c.ccucevvvrvenerenensenienens 169
L= 6570 1 OSSR S 170
L= 65T SRS 170
L= 65T SRS 171
Compose SPECIfiCatioNccovrererirernsesrnesr e 171
Docker Compose File REfEIBNCE........vvvrrrererirsersere s sessese e s sessesesse s 175
SBIVICES KBY ..veiviierirerteriesirere st s s s sae e st s s saese s st s nne e 175
31T o (RS 175
Docker CompoSe CLI REFEIENCE.......cvvvverrerierrerenserserersesessessessessssessessessssessessees 182
The build Subcomman ... ———— 182
The down SUDCOMMANG........ccourriemrerrrirsee e 182
The exec SubCOMMAN ... 182
The 10gs SUDCOMMAN.......c.ccovvrierierere e naens 183
The stop SUDCOMMANcocvveiiririrrr 183
(] (01T T 183
SUMMANY....citiiiire e s b e e e s p e e s ae s r e e nne s 198

Chapter 8: Preparing for Production Deployments..........osveemennnnnnas 199

Continuous Integration (Cl)........c.ccorerernsesnrenenssesnsesse s 200
GItHUD ACLIONSecvcecerrcerrs s 201

viii

TABLE OF CONTENTS

Container Orchestration ..o s 206
The Need for Orchestrators ... 206

How Do Orchestrators WOrk?ccccceernnnnmnesesessssssssesessssssssesesssssnsas 207
EXBICISES...cviereeeerreeriee s e 220
SUMMAIY..c..citiirire e s s e e e b e e s ae s r e e e aenne s 233
INA@X..ueeeiiienssssnnssssnnsssssnsssssnsssssnsssssnnssssnnssssnnsnssnnnnssnnnnssnnsnssnnnnssnnnnnnns 235

ix

About the Author

Sathyajith Bhat is a seasoned DevOps/SRE
and Cloud Engineering professional currently
working as a Site Reliability Engineer at Adobe.
Prior to this, he introduced DevOps practices
at Styletag.com.

Sathyajith is one of the organizers of the
AWS User Group Bengaluru and has been

recognized as an AWS Community Hero for his
contributions to the AWS Community. He is
also a volunteer Community Moderator at Super User and Web Apps Stack
Exchange and occasionally livestreams gaming and coding on Twitch at
twitch.tv/sathyabhat.

Sathyajith can be reached from these links:

Twitter: https://twitter.com/sathyabhat
LinkedIn: https://linkedin.com/in/sathyabhat
Email: contact@sathyasays.com

https://Styletag.com
https://twitter.com/sathyabhat
https://linkedin.com/in/sathyabhat
https://contact@sathyasays.com

About the Technical Reviewer

Sourav Bhattacharjee currently works

as a Senior Engineer with Oracle Cloud
Infrastructure. He earned his master’s degree
from the Indian Institute of Technology,
Kharagpur, India. Previously he worked with
IBM Watson Health Lab. He has developed
many scalable systems, published research
papers, and has a few patents under his name.
He is passionate about building large-scale
systems and machine learning solutions.

xiii

Acknowledgments

Thank you to my wife, Jyothsna, for being patient and for supporting me in
my career and while writing this book.

I'would like to thank Celestin Suresh John, James Markham, and Divya
Modi from Apress for helping me immensely through all the stages of this
book.

I would like to thank my technical reviewer, Sourav Bhattacharjee, for
his constructive suggestions and pertinent feedback.

Last but not least, I would like to acknowledge the immense support
provided by Saurabh Minni, Ninad Pundalik, Prashanth H N, Ashwin
Murali, Varun Sabari, Mrityunjay lyer, and Abhijith Gopal over the past few
years.

Introduction

Docker has exploded in popularity and has become the de facto target
as a containerization image format and a containerization runtime. With
modern applications getting more and more complicated, the increased
focus on microservices has led to the adoption of Docker. It allows for
applications, along with their dependencies, to be packaged into files as
a container that can run on any system. This results in faster turnaround
times in application deployment and less complexity. It all but negates the
chances of the “it-works-on-my-server-but-not-on-yours” problem.
Practical Docker with Python covers the fundamentals of
containerization, gets you acquainted with Docker, breaks down
terminology like Dockerfiles and Docker volumes, and takes you on a
guided tour of building a telegram bot using Python and containerizing the
application. This second edition builds on the foundation of the first, with
code updates and new examples that bring it up to date with the changes
in Docker; it also introduces a new chapter.

The Book’s Structure

This book is divided into eight chapters—the first chapter starts with a
brief introduction to Docker and containerization. You will then take a
101 class in Docker—including installing, configuring, and understanding
some jargon around Docker. In Chapter 3, you look at the book’s project
and learn how to configure the chatbot.

xvii

INTRODUCTION

Chapters 4 to 6 dive into the meat of Docker, focusing on Dockerfile,
Docker networks, and Docker volumes, along with practical exercises
on how to incorporate each of these into your project. In Chapter 7, you
learn about Docker Compose and see how you can run multi-container
applications. Finally, you learn what container orchestrators are, get an
overview of Kubernetes, and see how to set up Continuous Integration (CI)
using GitHub Actions, with a Docker image built and pushed to the Docker
Registry on each commit.

xviii

CHAPTER 1

Introduction to
Containerization

This chapter looks at what Docker is, as well as what containerization
is and how it is different from virtualization. Other subtopics covered
include history of containerization, container runtimes, and container

orchestration.

What Is Docker?

In order to answer this question, we need to clarify the word “Docker,’
because Docker has become synonymous with containers.

Docker Inc. is the company behind Docker. It was founded as dotCloud
Inc. in 2010 by Solomon Hykes. dotCloud engineers built abstraction and
tooling for Linux containers and used the Linux kernel features cgroups and
namespaces with the intention of reducing complexity around using Linux
containers. dotCloud made their tooling open source and changed the focus
from their Platform As A Service (PaaS) business to containerization. Docker
Inc. sold dotCloud to cloudControl, which eventually filed for bankruptcy.

Docker is the technology that provides for operating system level
virtualization, known as containers. It is important to note that this is
not the same as hardware virtualization. We will explore this later in the
chapter. Docker uses the resource isolation features of the Linux kernel,
such as cgroups, kernel namespaces, and OverlayFS, all within the same

© Sathyajith Bhat 2022 1
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_1

https://doi.org/10.1007/978-1-4842-7815-4_1#DOI

CHAPTER 1 INTRODUCTION TO CONTAINERIZATION

physical or virtual machine. OverlayFS is a union-capable filesystem that
combines several files and directories into one in order to run multiple
applications that are isolated and contained from one other, all within the
same physical or virtual machine.

Understanding Problems that Docker Solves

For the longest period, setting up a developer’s workstation was a highly
troublesome task for sysadmins. Even with complete automation of the
installation of developer tools, when you have a mix of different operating
systems, different versions of operating systems, and different versions

of libraries and programming languages, setting up a workspace that is
consistent and provides a uniform experience is nearly impossible. Docker
solves much of this problem by reducing the moving parts. Instead of
targeting operating systems and programming versions, the target is now
the Docker engine and the runtime. The Docker engine provides a uniform
abstraction from the underlying system, making it very easy for developers
to test their code.

Things get even more complicated on the production landscape.
Assume that you have a Python web application that is running on Python
2.7 on an Amazon Web Services EC2 instance. In an effort to modernize
the codebase, the application had some major upgrades, including a
change to Python version 3.5. Assume that this version of Python is not
available in the packages offered by the Linux distribution currently
running the existing codebases. To deploy this new application, you have
the choice of either of the following:

e Replace the existing instance
e Setup the Python Interpreter by

— Changing the Linux distribution version to one that includes
the newer Python packages.

CHAPTER 1 INTRODUCTION TO CONTAINERIZATION

— Adding a third-party channel that offers a packaged version
of the newer Python version.

— Doing an in-place upgrade, keeping the existing version
of the Linux distribution.

— Compiling Python 3.5 from sources, which brings in
additional dependencies.

— Or using something like virtualenv, which has its
own set of tradeoffs.

Whichever way you look at it, a new version deployment for the
application code brings about lots of uncertainty. As an operations
engineer, limiting the changes to the configuration is critical. Factoring
in an operating system change, a Python version change, and a change in
application code results in a lot of uncertainty.

Docker solves this issue by dramatically reducing the surface area of
the uncertainty. Your application is being modernized? No problem. Build
a new container with the new application code and dependencies and ship
it. The existing infrastructure remains the same. If the application doesn’t
behave as expected, then rolling back is as simple as redeploying the older
container—it is not uncommon to have all the generated Docker images
stored in a Docker Registry. Having an easy way to roll back without
messing with the current infrastructure dramatically reduces the time
required to respond to failures.

Containerization Through the Years

While containerization has exploded in popularity over the past couple of
years, the concept of containerization actually goes back to the 1970s.

CHAPTER 1 INTRODUCTION TO CONTAINERIZATION

1979: chroot

The chroot system call was introduced in Version 7 of UNIX in 1979. The
premise of chroot was that it changed the apparent root directory for
the current running process and its children. A process initiated within

a chroot cannot access files outside the assigned directory tree. This

environment was known as the chroot jail.

2000: FreeBSD Jails

Expanding on the chroot concept, FreeBSD added support for a

feature that allowed for partitioning of the FreeBSD system into

several independent, isolated systems, called jails. Each jail is a virtual
environment on the host system with its own set of files, processes,

and user accounts. While chroot only restricted processes to a view of
the filesystem, FreeBSD jails restricted activities of the jailed process

to the whole system, including the IP addresses that were bound to it.
This made FreeBSD jails the ideal way to test out new configurations of
Internet-connected software, making it easy to experiment with different
configurations while not allowing changes from the jail to affect the main
system outside.

2005: OpenVZ

OpenVZ was quite popular in providing operating system virtualization
for low-end Virtual Private Server (VPS) providers. OpenVZ allowed for a
physical server to run multiple isolated operating system instances, known
as containers. OpenVZ used a patched Linux kernel, sharing it with all

the containers. Each container acted as a separate entity and had its own
virtualized set of files, users, groups, process trees, and virtual network

devices.

CHAPTER 1 INTRODUCTION TO CONTAINERIZATION

2006: cgroups

Originally known as process containers, cgroups (short for control groups)
were started by Google engineers. cgroups is a Linux kernel feature that
limits and isolates resource usage (such as CPU, memory, disk I/0O, and
network) to a collection of processes. cgroups have been redesigned
multiple times, each redesign accounting for its growing number of use
cases and required features.

2008: LXC

LXC provides operating-system level virtualization by combining Linux
kernel’s cgroups and support for isolated namespaces to provide an
isolated environment for applications. Docker initially used LXC to provide
the isolation features, but then switched to its own library.

Containers and Virtual Machines

Many people assume that since containers isolate the applications, they
are the same as virtual machines. At first glance it looks like it, but the
fundamental difference is that containers share the same kernel as the
host.

Docker only isolates a single process (or a group of processes,
depending on how the image is built) and all the containers run on the
same host system. Since the isolation is applied at the kernel level, running
containers does not impose a heavy overhead on the host as compared
to virtual machines. When a container is spun up, the selected process
or group of processes still runs on the same host, without the need to
virtualize or emulate anything. Figure 1-1 shows the three apps running on
three different containers on a single physical host.

CHAPTER 1 INTRODUCTION TO CONTAINERIZATION

Figure 1-1. Representation of three apps running on three different
containers

In contrast, when a virtual machine is spun up, the hypervisor
virtualizes an entire system—from the CPU to RAM to storage. To support
this virtualized system, an entire operating system needs to be installed.
For all practical purposes, the virtualized system is an entire computer
running in a computer. Now if you can imagine how much overhead it
takes to run a single operating system, imagine how it'd be if you ran a
nested operating system! Figure 1-2 shows a representation of the three
apps running on three different virtual machines on a single physical host.

CHAPTER 1 INTRODUCTION TO CONTAINERIZATION

Figure 1-2. Representation of three apps running on three different
virtual machines

Figures 1-1 and 1-2 give an indication of three different applications
running on a single host. In the case of a VM, not only do you need the
application’s dependent libraries, you also need an operating system to
run the application. In comparison, with containers, sharing the host OS’s
kernel with the application means that the overhead of an additional OS
is removed. Not only does this greatly improve the performance, it also
lets you improve the resource utilization and minimize wasted compute
power.

Container Runtimes

A container image, when started and run, becomes a container. But for
this to happen, there must be a piece of software to bootstrap the required
resources to run a container. This software is called the container runtime.
Docker implements a container runtime using the containerd project,
which is now part of Cloud Native Computing Foundation’s graduated
project list.

https://containerd.io/
https://www.cncf.io/

CHAPTER 1 INTRODUCTION TO CONTAINERIZATION

containerd is not the only container runtime, however. There are
other container runtime projects, such as cri-o, rkt (which is not in active
development anymore), runC, and more.

0CI and CRI

With more container runtimes being developed, there was a need for a
standard that would define what a container image is, the specifications of
the runtime. That’s where the Open Container Initiative (OCI) comes in.

OCl is an open governance structure for creating an industry-standard
specification for container images and runtimes, free from vendor-specific
features to promote an open ecosystem. The OCI currently has two
specifications: the Runtime Specification and the Image Specification.

The Runtime Specification defines how a container runtime should
unpack a container image into a filesystem and the steps to run the
container. This ensures that the container will run accurately as expected,
no matter which container runtime is in use.

The Image Specification defines an OCI Image format that contains
the required definitions on how to create an OCI image. An OCI Image
comprises the image manifest, a filesystem definition, and an image
configuration. The image manifest contains the metadata about the
contents and the dependencies of the image. An image configuration
includes data such as application arguments and environment variables.

Container Runtime Interface (CRI) is a Kubernetes-specific term that
defines how Kubernetes can interact with multiple container runtimes
and bootstrap the containers. Before CRI, Kubernetes supported only
the Docker runtime. With the requests coming in from the community to
support more container runtimes, the Kubernetes team implemented a
plugin interface for container runtimes. This plugin interface allows for
Kubernetes to support interchangeable container runtimes, allowing for
easy contributions from the community.

https://cri-o.io/
https://github.com/rkt/rkt
https://github.com/opencontainers/runc

CHAPTER 1 INTRODUCTION TO CONTAINERIZATION

Docker and Kubernetes

With Kubernetes usage increasing in the industry, a question that comes
up quite a lot is the difference between Docker and Kubernetes.

Kubernetes is an orchestrator for running containers and maintaining
their lifecycle. Docker is multi-purpose software that can not only build
container images but also run containers. While Docker can run and
maintain lifecycles of containers not only on single nodes but also on
multiple nodes using Docker Compose and Docker Swarm, Kubernetes
has emerged as the de facto standard for container orchestration.

Docker and Kubernetes are complementary—Docker builds the
container images while Kubernetes orchestrates the running of those
containers. Kubernetes can also schedule running replicas of the
containers over many nodes.

Chapter 8 takes a deeper look at container orchestration.

Summary

In this chapter, you learned a bit about Docker the company, Docker
containers, and containers compared to virtual machines, as well as
about the real-world problems that containers are trying to solve. You
also took a brief look at what a container runtime is and how Docker and
Kubernetes complement each other. In the upcoming chapter, you take
an introductory tour of Docker and run a couple of hands-on sessions on
building and running containers.

CHAPTER 2

Docker 101

Now that you understand a little bit better about how Docker works

and why its popularity has exploded, in this chapter, you'll learn some
different terminology associated with Docker. You will also learn

how to Install Docker and understand Docker terms such as images,
containers, Dockerfiles, and Docker Compose. You also work with some
simple Docker commands on creating, running, and stopping Docker
containers.

Installing Docker

Docker supports the Linux, macOS, and Windows platforms. It’s
straightforward to install Docker on most platforms and I'll get to that
in a bit. Docker Inc. provides Community and Enterprise editions of the
Docker platform.

The Enterprise edition has the same features as the Community
edition, but it provides additional support and certified containers,
plugins, and infrastructure. For the purposes of this book and for most
general development and production uses, the Community edition is
suitable, thus I will be using that in this book.

© Sathyajith Bhat 2022 11
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_2

https://doi.org/10.1007/978-1-4842-7815-4_2#DOI

CHAPTER2 DOCKER 101

Installing Docker on Windows

Docker on Windows has some prerequisites that need to be met before you
can install it. These include:

o Hyper-V support

e Hardware virtualization support: This is typically
enabled from your system BIOS

o Only 64-bit editions of Windows 10 (Pro/Education/
Enterprise editions having the Anniversary Update
v1607) are supported at the moment

If you look at these prerequisites, you'll notice that this looks like
what a virtualization setup would require, yet you learned in the previous
chapter that Docker is not virtualization. So why does Docker for Windows
require features required for virtualization?

The short answer is that Docker relies on numerous features, such as
namespaces and cgroups, and these are not available on Windows. To get
around this limitation, Docker for Windows creates a lightweight Hyper-V
container running a Linux kernel. If your computer has Windows 10 Home
edition, you should install Docker Desktop with the WSL 2 backend. This is
explained in the next section.

Let’s focus on installing Docker CE for Windows. This section assumes
that all the prerequisites have been met and Hyper-V is enabled. Head
over to https://store.docker.com/editions/community/docker-ce-
desktop-windows to download Docker CE.

Note Make sure you select the Stable channel and click the Get
Docker CE button.

You may be prompted to enable Hyper-V and Containers support as
part of the install (see Figure 2-1).

12

https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows

CHAPTER 2 DOCKER 101

'/ Hyper-V and Containers features are not enabled.
Do you want to enable them for Docker to be able to work properly?
Your computer will restart automatically.

Ok Cancel

Figure 2-1. Enable Hyper-V and containers feature

Click OK and finish the installation. You may be required to restart
your system, as enabling Hyper-V is a Windows system feature. Installing
this feature requires a restart to enable it.

Once the install is complete, open a command prompt window (or
PowerShell, if that is your preference) and type the following command to
check that Docker is installed and is working correctly.

docker run --rm hello-world

If the install went fine, you should see the response shown in Listing 2-1.

Listing 2-1. Response from the docker run command on Windows

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b8dfde127a29: Pull complete

Digest: sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cdbledael
4650eec68b2b345c

Status: Downloaded newer image for hello-world:latest

13

CHAPTER2 DOCKER 101

Hello from Docker!
This message shows that your installation appears to be working
correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from the
Docker Hub.

(amd64)

3. The Docker daemon created a new container from that image
which runs the executable that produces the output you are
currently reading.

4. The Docker daemon streamed that output to the Docker
client, which sent it to your terminal.

To try something more ambitious, you can run an Ubuntu
container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

We will take a deeper look later into what these commands mean,
so do not worry about understanding them. If you see the message
“installation appears to be working correctly,” you should be good for now.

14

CHAPTER 2 DOCKER 101

Installing Docker on Windows Using WSL2
Backend

About WSL

Announced with the 2016 Anniversary Update of Windows, Windows
Subsystem for Linux (WSL) is a way for developers to run GNU/Linux
applications from within Windows with no third-party Virtual Machine
setup or having to dual boot into Linux. WSL supports most of the
command-line applications and support for GUI applications is still in
early preview mode.

With the first release of WSL, Microsoft bundled a custom
compatibility layer for running Linux binary executables in Windows,
without the need to rewrite or recompile the source code of the
application. Microsoft did this using a translation layer, which intercepts
Linux system calls from Linux applications and translates them into
Windows systems calls.

For WSL2, Microsoft completely rearchitected how WSL works by
shipping a lightweight Virtual Machine (VM) with a Linux kernel. This
lightweight VM acts as the execution layer for Linux applications. Since
the Linux applications are now natively run on the Linux kernel on the
lightweight VM instead of using the translation layer, WSL2 supports all
the features of the Linux kernel and improves the performance of Linux
applications, as compared to the first edition of WSL.

While Virtual Machines bring up the problems of heavy resource
usage, Windows manages the WSL2 Virtual Machine behind the scenes,
complete with dynamic memory allocation, which increases/decreases
the memory consumption as your application requests/releases it. WSL2
is still in early stages, and you might see some occasional problems/
slowdowns or heavy memory consumption. A quick reboot of Windows
can mitigate these problems. You can also shut down and restart the VM,
which will make Windows release the memory reserved by Windows.

15

CHAPTER2 DOCKER 101

Requirements for Installing and Enabling WSL2

Before you can install WSL2, ensure that your computer has Windows 10
64-bit version 1903 or higher. WSL2 will not work on versions lesser than
1903. You can check the version by typing winver on a Terminal prompt, as
shown in Figure 2-2.

am Windows10

Microsoft Windows
[Version 21H1 (OS Build 19043.1052) |
© Microsoft Corporation. All rights reserved.

The Windows 10 Pro operating system and its user interface are protected
by trademark and other pending or existing intellectual property rights in
the United States and other countries/regions.

This product is licensed under the Microsoft Software License
Terms to:

Figure 2-2. Check your Windows version, as highlighted in the red
box

The installation steps for WSL2 are detailed on Microsoft’s website
athttps://docs.microsoft.com/en-us/windows/wsl/install-
win10. Follow the steps listed under Manual Installation Steps to install

16

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10

CHAPTER 2 DOCKER 101

WSL2. I highly recommend that you install Windows Terminal as well,
as mentioned in the previous link, as it makes it easier to run Docker
commands in WSL2.

Once you have WSL installed, run the following command to ensure
WSL2 is set as the default version.

wsl --set-default-version 2

Install Docker Desktop with WSL2 Backend by downloading and
running the installer at https://desktop.docker.com/win/stable/
amd64/Docker%20Desktop%20Installer.exe. Once the install is
complete, open a command prompt window (or PowerShell, if that is
your preference) and type the following command to check that Docker is
installed and is working correctly.

docker run -rm hello-world

If the install went fine, you should see the response in Listing 2-2.

Listing 2-2. Response from the docker run Command Using WSL

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b8dfde127a29: Pull complete

Digest: sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cdb1edael
4650eec68b2b345c

Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working
correctly.

[...]

17

https://desktop.docker.com/win/stable/amd64/Docker Desktop Installer.exe
https://desktop.docker.com/win/stable/amd64/Docker Desktop Installer.exe

CHAPTER2 DOCKER 101

The "Hello from Docker!" message indicates that Docker is installed
and is working correctly. Note that the actual output is like the one in
Listing 2-1 and has been trimmed in this instance.

Installing on mac0S

Installing Docker for Mac is much like installing any other application.
Goto https://store.docker.com/editions/community/docker-ce-
desktop-mac, click the Get Docker for CE Mac (stable) link, and double-
click the file to run the installer that is downloaded. Drag the Docker whale
to the Applications folder to install it, as shown in the Figure 2-3.

[NN i Docker

D@hG & DRop

—

Docker.app Applications

Figure 2-3. Installing Docker for Mac

Once Docker is installed, open the Terminal app and run this
command to confirm the install was successful.

docker run --rm hello-world

18

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac

CHAPTER 2 DOCKER 101

If the install went fine, you should see the response shown in
Listing 2-3.

Listing 2-3. Response from the docker run Command on macOS

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b8dfde127a29: Pull complete

Digest: sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd6ledael
4650eec68b2b345c

Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working
correctly.

[...]

The “Hello from Docker!” message indicates that Docker is installed
and is working correctly. Note that the actual output is like the one in
Listing 2-1 and has been trimmed in this instance.

Installing on Linux

To install Docker on Linux, visit https://www.docker.com/community-
edition. Select the distro you're using and follow the commands to install
Docker.

19

https://www.docker.com/community-edition
https://www.docker.com/community-edition

CHAPTER2 DOCKER 101

The following section outlines the steps needed to install Docker on
Ubuntu.

1. Update the apt index:
sudo apt-get update

2. Install the necessary packages required to use a
repository over HTTPS:

sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
software-properties-common

3. [Install Docker’s official GPG key:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg
| sudo apt-key add -

4. Add Docker’s stable repository:

sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/
ubuntu \
$(1sb_release -cs) \
stable"

5. Update the apt package index:
sudo apt-get update
6. Install Docker:

sudo apt-get install docker-ce

20

CHAPTER 2 DOCKER 101

Additional Steps

Docker communicates via a UNIX socket that is owned by the root user.
You can avoid having to type sudo by following these steps:

Warning The Docker group rights are still equivalent to the root user.

1. Create the Docker group:
sudo groupadd docker

2. Add your user to the docker group:
sudo usermod -aG docker $USER

3. Logout and log back in. Run the following command
to confirm that Docker is installed correctly:

docker run --rm hello-world

If the install went fine, you should see the response shown in Listing 2-4.

Listing 2-4. Response from the docker run Command on Linux

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b8dfde127a29: Pull complete

Digest: sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd61edael
4650eec68b2b345c

Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working
correctly.

[...]

21

CHAPTER2 DOCKER 101

The “Hello from Docker!” message indicates that Docker is installed
and is working correctly. Note that the actual output is like the one in
Listing 2-1 and has been trimmed in this instance.

Understanding Jargon Around Docker

Now that you have Docker installed and running, it’s a good time to learn
the different terms that are associated with Docker.

Layers

A layer is a modification applied to a Docker image as represented by an
instruction in a Dockerfile. Typically, a layer is created when a base image
is changed. For example, consider a Dockerfile that looks like this:

FROM ubuntu

Run mkdir /tmp/logs

RUN apt-get install vim
RUN apt-get install htop

In this case, Docker will consider the ubuntu image as the base image
and add three layers:

e One layer for creating /tmp/logs
e One other layer that installs vim
o A third layer that installs htop

When Docker builds the image, each layer is stacked one upon the
other and merged into a single layer using the union filesystem. Layers are
uniquely identified using SHA-256 hashes. This makes it easy to reuse and
cache them. When Docker scans a base image, it scans for the IDs of all
the layers that constitute the image and begins to download the layers. If a
layer exists in the local cache, it skips downloading the cached image.

22

CHAPTER 2 DOCKER 101

Docker Image

Docker image is a read-only template that forms the foundation of your
application. It is very much like a shell script that prepares a system with
the desired state. In simpler terms, it’s equivalent to a cooking recipe that
has step-by-step instructions on creating the final dish.

A Docker image starts off with a base image—typically the one selected
is of an operating system you are most familiar with, such as Ubuntu. On
top of this image, you can add build your application stack, adding the
packages as and when required. There are many prebuilt images for some
of the most common application stacks, including Ruby on Rails, Django,
PHP-FPM with nginx, and so on. On the advanced scale, to keep the image
size as low as possible, you can also start off with slim packages such as
Alpine or even scratch, which is Docker’s reserved, minimal starting image
for building other images.

Docker images are created using a series of commands known as
instructions in a file known as the Dockerfile. The presence of a Dockerfile
in the root of a project repository is a good indicator that the program
is container-friendly. You can build own images from the associated
Dockerfile and the built image is then published to a Registry. You will take
a deeper look at Dockerfile in later chapters. For now, consider the Docker
image as the final executable package that includes everything needed
to run an application—the source code, the required libraries, and the
dependencies.

Docker Tags

A tagis a name that uniquely identifies a specific version of a Docker
Image. Tags are plain text labels, often used to identify specific details, such
as the version, the base OS of the image, or the architecture of the Docker
image.

23

CHAPTER2 DOCKER 101

Tagging a Docker image gives you the flexibility to refer uniquely to
a specific version, making it easier to roll back to previous versions of a
Docker image if the current image is not working as expected.

Docker Container

A Docker image, when run in a host computer, spawns a process with its
own namespace and is known as a Docker container. The main difference
between a Docker image and a container is the presence of a thin read-
write layer known as the container layer. Any changes made to the
filesystem of a container—such as writing new files or modifying existing
files—are made to this writable container layer.

An important aspect to grasp is that when a container is running, the
changes are applied to the container layer and, when the container is
stopped/killed, the container layer is not saved. Hence, all changes are
lost. This aspect of containers is not understood very well and for this
reason, stateful applications and those requiring persistent data were
initially not recommended to be adoptable as containerized applications.
However, with Docker volumes, there are ways to get around this
limitation. Chapter 5 covers Docker volumes in more detail.

Bind Mounts and Volumes

Recall that when a container is running, any changes to the container are
present in the container layer of the filesystem. In the case of a container
getting killed, the changes are lost, and the data is no longer accessible.
Even when a container is running, getting data out of the container is not
very straightforward. In addition, writing into the container’s writable
layer requires a storage driver to manage the filesystem. The storage driver
provides an abstraction on the filesystem available to persist the changes
and this abstraction often reduces performance.

24

CHAPTER 2 DOCKER 101

For these reasons, Docker provides different ways to mount data into a
container from the Docker host: volumes, bind mounts, or tmpfs volumes.
While tmpfs volumes are stored in the host system’s memory only, bind
mounts and volumes are stored in the host filesystem.

Chapter 5 explores Docker volumes in detail.

Docker Repository

You learned earlier that you can leverage existing images of common
application stacks—have you ever wondered where these are stored and
how you can use them in building your application? A Docker Repository is
a place where you can upload and store Docker images. These repositories
allow for easy distribution of Docker images within your company or with
the public.

Docker Registry

Docker Repositories need a central place to store the data—this central
place is a Docker Registry. A Docker Registry is a collection of various
Docker repositories. Docker Registries are hosted by third-party
companies, or you can self-host them if you need to meet more strict
compliance requirements. Docker Hub is a commonly used Docker
Registry. Some other popular Docker Registries include:

e Google Container Registry
e Amazon Elastic Container Registry
o JFrog Artifactory

Most of these registries also allow for the visibility level of the images
that you have pushed to be set as public/private. Private registries will
prevent your Docker images from being accessible to the public, allowing
you to set up access control so that only authorized users can use your
Docker images.

25

CHAPTER2 DOCKER 101

Dockerfile

A Dockerfile is a set of instructions that tells Docker how to build an image.
A typical Dockerfile includes the following:

e A FROMinstruction that instructs Docker what the base
image is
e An ENVinstruction to pass an environment variable

e ARUNinstruction to run some shell commands (for
example, to install dependent programs that are not
available in the base image)

e A CMD or an ENTRYPOINT instruction that tells Docker
what executable is to be run when a container is started

As you can see, the Dockerfile instruction set has a clear and simple
syntax, which makes it easy to understand. You will take a deeper look at
Dockerfiles later in the book.

Docker Engine

Docker engine is a core part of Docker. Docker Engine is a client-server
application that provides the platform, the runtime, and the tooling for
building and managing Docker images, Docker containers, and many
more. Docker Engine provides the following:

e Docker Daemon
e Docker CLI

e Docker API

26

CHAPTER 2 DOCKER 101

Docker Daemon

The Docker daemon is a service that runs in the background of the host
computer and handles the heavy lifting of most of the Docker commands.
The daemon listens for API requests for creating and managing Docker
objects such as containers, networks, and volumes. Docker daemon

can also talk to other daemons for managing and monitoring Docker
containers. Some examples of inter-daemon communication include
communication Datadog for container metrics monitoring and Aqua for
container security monitoring.

Docker GLI

Docker CLI is the primary way that you interact with Docker. Docker CLI
exposes a set of commands that you can provide. The Docker CLI forwards
the request to Docker daemon, which performs the necessary work.

While the Docker CLI includes a huge variety of commands and sub-
commands, the most common commands that you will work with in this
book are as mentioned:

docker build
docker pull
docker run

docker exec

Tip Docker maintains an extensive reference of all the Docker
commands on its Documentation page at https://docs.docker.
com/engine/reference/commandline/cli/.

27

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/

CHAPTER2 DOCKER 101

At any point in time, prepending help to a command will print the
required documentation about the command. For example, if you're not
quite sure on where to start with Docker CLI, you can type the following:

docker help
Usage: docker COMMAND

A self-sufficient runtime for containers

Options:
--config string Location of client config files
(default
".docker")
-D, --debug Enable debug mode
-H, --host list Daemon socket(s) to connect to

-1, --log-level string Set the logging level
(lldebugll | Ilin_FOII | Ilwarnll | n
(default "info")

error"|"fatal")

[..]
If you want to know more about Docker pull, type the following:
docker help pull
Usage: docker pull [OPTIONS] NAME[:TAG|@DIGEST]
Pull an image or a repository from a registry

Options:
-a, --all-tags Download all tagged images in

the repository

--disable-content-trust Skip image verification
(default true)

--platform string Set platform if server is
multi-platform
capable

28

CHAPTER 2 DOCKER 101

Docker API

Docker also provides an API for interacting with the Docker engine. This
is particularly useful if there’s a need to create or manage containers from
within applications. Almost every operation supported by the Docker CLI
can be done via the API.

The simplest way to get started with the Docker API is to use curl to
send an API request. Windows Docker hosts can hit the TCP endpoint:

curl http://localhost:2375/images/json
[{"Containers":-1,"Created":1511223798,"Id": "sha256:f2a91732
366c0332ccd7afd2a5c4ff2b9af811549370f7a19acd460187686bc7", "
Labels":null,"ParentId":"","RepoDigests":["hello-world@sha2
56:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158df3ee017
6d32b751"], "RepoTags": ["hello-world:latest"], "SharedSize":-
1,"Size":1848,"VirtualSize":1848}]

On Linux and Mac, the same can be achieved by using curl to send
requests to the UNIX socket:

curl --unix-socket /var/run/docker.sock -X POST http://images/
json

[{"Containers":-1,"Created":1511223798,"Id": "sha256:f2a91732
366c0332ccd7afd2a5c4ff2b9af811549370f7a19acd460187686bc7","

Labels":null,"ParentId":"","RepoDigests":["hello-world@sha2

56:66ef312bbac49c39a89aagbcc3cb4f3c9e7de3788c944158df3ee017

6d32b751"], "RepoTags" : ["hello-world:latest"], "SharedSize": -

1,"Size":1848,"VirtualSize":1848}]

Docker Compose

Docker Compose is a tool for defining and running multi-container
applications. Much like how Docker allows you to build an image for your
application and run it in your container, Compose uses the same images

29

CHAPTER2 DOCKER 101

in combination with a definition file (known as the compose file) to build,
launch, and run multi-container applications, including dependent and
linked containers.

The most common use case for Docker Compose is to run applications
and their dependent services (such as databases and caching providers)
in a same simple, streamlined manner as running a single container
application. Chapter 7 takes a deeper look at Docker Compose.

Docker Machine

Docker Machine is a tool for installing Docker engines on multiple virtual
hosts and for managing the hosts. Docker Machine allows for creating
Docker hosts on local as well as remote systems, including on cloud
platforms such as Amazon Web Services, DigitalOcean, or Microsoft Azure.

Hands-on Docker

You can now try some of the things you've read in this chapter. Before you
start exploring the various commands that are available, ensure that your
Docker install is correct and that it is working as expected.

Tip To makes things easy to read and understand, we used a tool
called jq to process Docker’s JSON output. You can download and
install jq from https://stedolan.github.io/jq/.

Open a Terminal window and type the following command:

docker info

30

https://stedolan.github.io/jq/

CHAPTER 2

You should see a result like this one:

docker info
Containers: 0

Running: 0
Paused: 0
Stopped: 0
Images: 1

Server Version: 17.12.0-ce

Storage Driver: overlay2

Backing Filesystem: extfs

Supports d type: true

Native Overlay Diff: true

Logging Driver: json-file
Cgroup Driver: cgroupfs

Plugins:

Volume: local

Network: bridge host ipvlan macvlan null overlay
Log: awslogs fluentd gcplogs gelf journald json-file

logentries splunk syslog

Swarm: inactive
Runtimes: runc
Default Runtime: runc
Init Binary: docker-init

DOCKER 101

containerd version: 896231f28b87a6004d4b785663257362d1658a729

runc version: b2567b37d7b75eb4ct325b77297b140eab86cedf
init version: 949e6fa
Security Options:
seccomp
Profile: default
Kernel Version: 4.9.60-linuxkit-aufs
Operating System: Docker for Windows

31

CHAPTER2 DOCKER 101

0SType: linux
Architecture: x86 64
CPUs: 2
Total Memory: 1.934GiB
Name: linuxkit-00155d006303
ID: Y6MQ:YGY2:VSAR:WUPD:Z4DA:PJ6P:ZRWQ:C724:6RKP:YCCA:3NPJ: TRWO
Docker Root Dir: /var/lib/docker
Debug Mode (client): false
Debug Mode (server): true
File Descriptors: 19
Goroutines: 35
System Time: 2018-02-11T15:56:36.22811397
EventsListeners: 1
Registry: https://index.docker.io/v1/
Labels:
Experimental: true
Insecure Registries:
127.0.0.0/8
Live Restore Enabled: false

If you do not see message something similar, refer to previous sections
to install and validate your Docker install.

Working with Docker Images

Now you can try looking at your available Docker images. To do this, type
the following command:

docker image ls

32

CHAPTER 2 DOCKER 101
Here’s a listing of the images available locally.

REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest f2a91732366c 2 months ago 1.85kB

If you had pulled more images or run more containers, you'd have
seen a bigger list. Let’s look at the hello-world image. To do this, type the
following:

docker image inspect hello-world

[

"Id": "sha256:f2a91732366c0332ccd7afd2a5c4ff2b9af811549
370f7a19acd460f87686bc7",

"RepoTags": [
"hello-world:latest"

]J

"RepoDigests": [
"hello-world@sha256:66ef312bbac49c39a89aa9bcc3chbaf3
c9e7de3788c944158df3ee0176d32b751"

]’

"Parent": "",
"Comment": "",
"Created": "2017-11-21T00:23:18.797567713Z",
"Container": "fbob4536aac3a96065elbedb2b637a6019feec666
€7699592206956c9d3adf5f",
"ContainerConfig": {
"Hostname": "fbob4536aac3",

"Domainname": "",
"USer": ll",
"AttachStdin": false,

"AttachStdout": false,

33

CHAPTER2 DOCKER 101

"AttachStderr": false,

"Tty": false,

"OpenStdin": false,

"StdinOnce": false,

"Env": [
"PATH=/usr/local/sbin:/usr/local/bin:/usx/
sbin:/usr/bin:/sbin:/bin"

1,
"Cmd": |

"/bin/sh",

‘e,

"#(nop) ",

"CMD [\"/hello\"]"
1,

"ArgsEscaped": true,

"Image": "sha256:2243ee460b69c4c036bcOe42a48eaa59e8
2fc7737f7c9bd27141669ef1183701",

"Volumes": null,

"WorkingDir": "",

"Entrypoint": null,

"OnBuild": null,

"Labels": {}
b
"DockerVersion": "17.06.2-ce",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "",

"AttachStdin": false,
"AttachStdout": false,

34

b

CHAPTER 2 DOCKER 101

"AttachStderr": false,

"Tty": false,

"OpenStdin": false,

"StdinOnce": false,

"Env": [
"PATH=/usr/local/sbin:/usr/local/bin:/usx/
sbin:/usr/bin:/sbin:/bin"

1,

"Cmd": [
"/hello"

1,

"ArgsEscaped": true,

"Image": "sha256:2243ee460b69c4c036bcOes2a48eaas59e8
2fc7737f7c9bd2714f669ef1f83701",

"Volumes": null,

"WorkingDir": "",

"Entrypoint": null,

"OnBuild": null,

"Labels": null

"Architecture": "amd64",

"OS":

"linux",

"Size": 1848,
"VirtualSize": 1848,
"GraphDriver": {

"Data": {
"MergedDir": "/var/lib/docker/overlay2/5855bd20
ab2f521c39e1157f981235b46d7c12c9d8
f69e252f0ee8b04ac73d33/merged"”,

35

CHAPTER2 DOCKER 101

"UpperDir": "/var/lib/docker/overlay2/5855bd20a
b2f521c39e115798f235b46d7c12c9d8f6
9e252f0ee8b04ac73d33/diff",

"WorkDir": "/var/lib/docker/overlay2/5855bd20ab

2521¢39e1157981235b46d7c12c9d8f69e
252f0ee8b04ac73d33/work"

}J

"Name": "overlay2"
}J
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:f999ae22f308fea973e5a25b57699b5dat6bot1
150ac2a5c2ea9d7fecee50fdf"
]
}’
"Metadata": {

"LastTagTime": "0001-01-01T00:00:00Z"
}

docker inspect provides a lot of information about the image. Of
importance are the image properties Env, Cmd, and Layers, which tell
you about the environment variables, the executable that runs when the
container starts, and the layers associated with it.

The environment variables are as follows:

docker image inspect hello-world | jq .[].Config.Env

[
"PATH=/usxr/local/sbin:/usr/local/bin:/usxr/sbin:/usx/bin:/
sbin:/bin"

36

CHAPTER 2 DOCKER 101
The startup command on the container is as follows:

docker image inspect hello-world | jq .[].Config.Cmd

[
"/hello"

]

Layers associated with the image are as follows:

docker image inspect hello-world | jq .[].RootFS.Layers

[
"sha256:1999ae221308fea973e5a25b57699b5daf6bof1150ac2a5c2ea9d
7fecee50fdf"

]
Working with a Real-World Docker Image

Let’s try looking at a more complex image. Nginx is a very popular reverse
proxy server for HTTP/S (among others), as well as a load balancer and a
webserver.

To pull down the nginx image, type the following:
docker pull nginx

Using default tag: latest

latest: Pulling from library/nginx
e7bb522d92ff: Pull complete

6edc05228666: Pull complete

cd866a17e81f: Pull complete

Digest: sha256:285b4

Status: Downloaded newer image for nginx:latest

Notice the first line:

Using default tag: latest

37

CHAPTER2 DOCKER 101

Since you did not provide a tag, Docker uses the default tag called
latest. Docker Store lists the different tags associated with the image—so
if you're looking for a specific tag/version, it'd be best to check on Docker
Store. Figure 2-4 shows a typical tag listing of an image.

nginx
NGiMx Dacker Official Images

Official buld of Ngiru:

4 1B+

docker pull Ppmcsabie ged [}

linux/386 6261 MB
linanuamaes B1.69 MB
linusx/armavs s7.aMa

decher sl Fginecstabie s}

5267 MB
5124 MB
4306 M8

Figure 2-4. Docker Store listing of nginx and the available tags

Let’s try to pull an image with a specific tag, called stable. The
command remains the same as before. You must append the tag with a
colon to explicitly mention the tag:

docker pull nginx:stable

stable: Pulling from library/nginx
b4d181a07180: Already exists
€929762bc938: Pull complete
ca8370516c99: Pull complete

38

CHAPTER 2 DOCKER 101

6af693de7b22: Pull complete

c8fe6ce83489: Pull complete

7aalfe8b4a84: Pull complete

Digest: sha256:a7c7c13

Status: Downloaded newer image for nginx:stable
docker.io/library/nginx:stable

The different hex numbers that you see are the associated layers of
the image. By default, Docker pulls the image from Docker Hub. You can
manually specify a different registry. This is useful if the Docker images
are not available on Docker Hub and are stored elsewhere, such as an
on-premises hosted artifactory. To specify a different registry, you have to
prepend the registry path to the image name. So, if the registry is hosted on
docker-private-docker-registry.example.com, the pull command will

now be:
docker pull private-docker-registry.example.com/nginx

If the registry needs authentication, you can log in to it by typing
docker loginwith the credentials, as shown here:

docker login -u <username> -p <password> private-docker-
registry.example.com

An unfortunate side-effect of this is that the entered password gets
recorded and saved in plaintext in the shell history. Docker helpfully warns
you about this message.

To prevent this, you can pipe in the password from a file into the
standard input for Docker to read this using the following command,
assuming that the password is stored in a file called docker_password

docker login -u <username> --password-stdin private-docker-
registry.example.com < docker password

39

CHAPTER2 DOCKER 101

Windows users using PowerShell can use the Get-Content cmdlet to
achieve the same as shown here:

Get-Content docker password | docker login -u <username>
--password-stdin private-docker-registry.example.com

Now that you have the image, try starting a container. To start a
container and run the associated image, type docker run.

docker run -p 80:80 nginx
Try making a curl request to see if the nginx webserver is running:

curl http://localhost:80
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully
installed and

working. Further configuration is required.</p>

40

CHAPTER 2 DOCKER 101

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

This confirms that the nginx container is indeed up and running. In
this, you see an extra flag, -p. This flag tells Docker to publish the exposed
port from the Docker container to the host.

The first parameter after the flag is the port on the Docker host which
must be published, and the second parameter refers to the port within the
container. You can confirm that the image publishes the port using docker
inspect:

docker image inspect nginx | jq .[].Config.ExposedPorts

{
"80/tcp": {}

}

You can change the port on which the service is published on the
Docker host by changing the first parameter after the -p flag, as follows:

docker run -p 8080:80 nginx
Now try doing a curl request to 8080 port:

curl http://localhost:8080

41

CHAPTER2 DOCKER 101

You should see the same response. To list all the running containers,
type docker ps:

docker ps

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
facse92fdfac nginx "nginx -g 'daemon of." 5 seconds ago
Up 3 seconds 0.0.0.0:80->80/tcp elastic_hugle
3ed1222964de nginx "nginx -g 'daemon of." 16 minutes ago
Up 16 minutes 0.0.0.0:8080->80/tcp clever thompson

The point to note is the names column. Docker auto-assigns a random
name when a container is started. Since you should use more meaningful
names, you can provide a name to the container by providing -n
required-name as the parameter.

Tip Docker names are of the format adjective_surname and are
randomly generated, with the exception that if the adjective selected
is boring and the surname is Wozniak, Docker retries the name
generation.

Another point to note is that when you created a second container with
port publishing to port 8080, the other container continues to run. To stop
the container, you have to type this command:

docker stop <container-id»

42

CHAPTER 2 DOCKER 101

where container-id is available from this list. If the stop was successful,
Docker will echo the container ID back. If the container refuses to stop,
you can issue a kill command to force stop and kill the container:

docker kill <container-id»
Let’s try stopping a container. Type the following:

docker stop facs5e92fdfac
facs5e92fdfac

Now, let’s try killing the other container:

docker kill 3ed1222964de
3ed1222964de

Let’s confirm that the containers are no longer running, For this, type:

docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES

So, what about the stopped containers—where are they? By default,
docker ps only shows the active, running containers. To list all the
containers, type:

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

facs5e92fdfac nginx "nginx -g 'daemon of.."

6 minutes ago Exited (0) 4 minutes ago elastic_hugle
3ed1222964de nginx "nginx -g 'daemon of.."

22 minutes ago Exited (137) 3 minutes ago clever thompson
febda50b0a80 nginx "nginx -g 'daemon of.."

28 minutes ago Exited (137) 24 minutes ago

objective franklin

43

CHAPTER2 DOCKER 101

dc0c33a79fb7

33 minutes ago
vigorous mccarthy
179f16d37403

34 minutes ago

nginx "nginx -g 'daemon of.."
Exited (137) 28 minutes ago

nginx "nginx -g 'daemon of.."

Exited (137) 34 minutes ago nginx-test

Even though the containers have been stopped and/or killed, these

containers continue to exist in the local filesystem. You can remove the

containers by typing:

docker rm <container-id>
docker rm fac5e92fdfac

fac5e92fdfac

Let’s confirm that the container was indeed removed:

docker ps -a
CONTAINER ID
STATUS
3ed1222964de

28 minutes ago
febda50b0a80

34 minutes ago
objective franklin
dcoc33a79fb7

39 minutes ago
vigorous mccarthy
179116d37403

40 minutes ago

44

IMAGE COMMAND CREATED
PORTS NAMES
nginx "nginx -g 'daemon of.."

Exited (137) 9 minutes ago
nginx "nginx -g 'daemon of.."
Exited (137) 30 minutes ago

clever_thompson

nginx "nginx -g 'daemon of.."

Exited (137) 34 minutes ago

nginx "nginx -g 'daemon of.."

Exited (137) 40 minutes ago nginx-test

CHAPTER 2 DOCKER 101

You can see from this table that that container with the fac5e92fdfac
ID is no longer shown and hence has been removed.

Similarly, you can list all the images present in the system by typing the
following:

docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE
nginx 1.12-alpine-perl b6a456fid7ae

4 weeks ago 57.7MB

nginx latest 3f8a4339aadd 6 weeks ago 108MB
hello-world latest f2a91732366c¢ 2 months ago 1.85kB
kitematic/hello-world-nginx latest 03b4557ad7b9

2 years ago 7.91MB

Let’s try to remove the nginx image:

docker rmi 3f8a4339aadd

Error response from daemon: conflict: unable to delete
3f8a4339aadd (must be forced) - image is being used by stopped
container dcoc33a79fb7

In this case, Docker refuses to remove the image because there is a
reference to this image from another container. Until you remove all the
containers that use a particular image, you cannot remove the image
altogether.

45

CHAPTER2 DOCKER 101

Summary

In this chapter you learned about how to install Docker on various
operating systems. You also learned how to validate that Docker is installed
and working correctly and some commonly used terms associated with
Docker. Finally, you ran few practical exercises on Docker, including how
to pull an image, run a container, list the running containers and, finally,
how to stop and remove a container.

The next chapter takes a brief look at telegram, including how to
create and register a bot with telegram, and how to run your Python-based
Telegram Messaging bot, which will fetch posts from Reddit.

46

CHAPTER 3

Building the
Python App

For many people getting into programming, one of their first issues is
figuring out what they can build. Programming is seldom learned by just
reading. Many people think they can read couple of guides and look at
the syntax and then easily learn how to program. But programming takes
hands-on practice.

For this reason, this book includes a sample Python project. The
project is not very complicated at the start, but it’s easy to continue
working further on the project, extending and customizing it as you gain
experience.

About the Project

Note This book assumes you have basic knowledge of Python and
have Python 3.6 or above installed.

To help you get acquainted with Docker, the book teaches you how

to take an existing Python app, run it from the Python command line,
introduce different Docker components, and then transition the app into a
containerized image.

© Sathyajith Bhat 2022 47
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_3

https://doi.org/10.1007/978-1-4842-7815-4_3#DOI

CHAPTER 3 BUILDING THE PYTHON APP

The Python app is a simple application with a bot interface using
Telegram Messenger to fetch the last 10 stories from Reddit. Using
Telegram, you can subscribe to a list of subreddits. The web application
will check the subscribed subreddits for new posts and, if it finds new
topics, it will publish the topics to the bot interface. That interface will
deliver the message to Telegram Messenger, when requested by the user.

Initially, you will not be saving the preferences (i.e., the subreddit
subscriptions) and will focus on getting the bot up and running. Once
things are working fine, you will learn how to save the preferences to a text
file and, eventually, to a database.

Setting Up Telegram Messenger

Before you can proceed, you need a Telegram Messenger account. To
sign up, go to https://telegram.org, download the application for

the platform of your choice, and install it. Once it’s running, you will be
asked to provide a cell phone number. Telegram uses this to validate your
account. Enter your cell phone number, as shown in Figure 3-1.

48

https://telegram.org/

CHAPTER 3 BUILDING THE PYTHON APP

Telegram

Sign in

Please choose your country and enter your full
phone number.

Country

United States

Code Phone number

+1]

Welcome to the official Telegram web-dlient.

Learn more

Figure 3-1. Telegram signup page

Once you enter your number, you should get a one-time password to
log in. Enter the one-time password and sign in, as shown in Figure 3-2.

49

CHAPTER 3 BUILDING THE PYTHON APP

4 Telegram Next 3

Edit phone number

We've sent the code to the Telegram app on
your other device,

Please enter the code below.

You will be able to request SMS in 1:51

Enter your code

Welcome to the official Telegram web-client.

Learn more

Figure 3-2. Telegram’s one-time password

BotFather: Telegram’s Bot Creation
Interface

Telegram uses a bot called “BotFather” as its interface for creating new
bots and updating them. To get started with BotFather, in the search panel
type BotFather. From the chat window, type /start.

This will trigger BotFather to provide an introductory set of messages,
as shown in Figure 3-3.

50

CHAPTER 3 BUILDING THE PYTHON APP

/start 4330

They call me the Botfather, | can help you create and set up
| Telegram bots. Please read this manual before we begin:
t/! httpsi//core.telegram.org/bots

You can control me by sending these commands:

/newbot - create a new bot

/token - generate authorization token

/revoke - revoke bot access token

/setname - change a bot's name

/setdescription - change bot description
/setabouttext - change bot about info

/setuserpic - change bot profile photo
/setcommands - change bot commands list
/setjoingroups - can your bot be added to groups?
/setprivacy - what messages does your bot see in groups?
/deletebot - delete a bot

/cancel - cancel the current operation

w
w0
@O

Figure 3-3. BotFather’s options

Creating the Bot with BotFather

You will be using BotFather to generate a new bot. Start by typing /newbot
in Telegram Messenger. This will trigger a series of questions that you
need to answer (most of them are straightforward). Due to Telegram’s
restrictions, the username for a bot must always end with bot. This means
that you might not get your desired username (see Figure 3-4).

51

CHAPTER 3 BUILDING THE PYTHON APP

- —
\\ ‘ /newbot 1551

Alright, a new bot. How are we going to call it? Please choose a
name for your bot.

18:51
B -~

SubRedditFetcherBot 18:51 w7

Good. Now let's choose a username for your bot. It must end in
“bot”. Like this, for example: TetrisBot or tetris_bot. 18:51
SubRedditFetcher Bot ;551

Done! Congratulations on your new bot. You will find it at
t.me/SubRedditFetcher_Bot. You can now add a description, about
section and profile picture for your bot, see /help for a list of
commands. By the way, when you've finished creating your cool
bot, ping our Bot Support if you want a better username for it. just
make sure the bot is fully operational before you do this.

Use this token to access the HTTP API:

For a description of the Bot API, see this page:
https://core.telegram.org/bots/api

Figure 3-4. Telegram bot ready for action

Along with the link to the documentation, you will notice that

Telegram has issued a token. HTTP is a stateless protocol—the webserver

does not know and does not keep track of who is requesting the resource.

The client needs to identify itself so that the webserver can identify the

client, authorize it, and serve the request. Telegram uses the API token

(henceforth, referred to as <token>, including in the code samples) as a

way of identifying and authorizing bots.

Caution The token is extremely sensitive. If it’s leaked online,
anyone can post messages as your bot. Do not check it in with your
version control or publish it anywhere!

52

CHAPTER 3 BUILDING THE PYTHON APP

When working with APIs you are not familiar with, it’s always good
to use a good tool to test and explore the endpoints instead of typing the
code right away. Some examples of REST API test tools include Insomnia,
Postman, and curl.

Telegram’s Bot API documentation is available at https://core.
telegram.org/bots/api. To make a request, you have to include the
<token>. The general URL is as follows:

https://api.telegram.org/bot<token>/METHOD NAME

Let’s try a sample API request that confirms the token is working as
expected. Telegram Bot API provides a /getMe endpoint for testing the
auth token. You can try it, first without the token, as shown in Listing 3-1.

Listing 3-1. Making a curl Request to Telegram API Without a Token

curl https://api.telegram.org/bot/getMe

{
"ok": false,
"error _code": 404,
"description”: "Not Found"
}

Without the bot token, Telegram doesn’t honor the request. Now try
the token, as shown in Listing 3-2.

Listing 3-2. Making a curl Request to Telegram API with a Valid Token

curl https://api.telegram.org/bot<tokens/getMe
{

"ok": true,
"result": {
"id": 495637361,
"is bot": true,

53

https://insomnia.rest/
https://www.getpostman.com/
https://curl.haxx.se/
https://core.telegram.org/bots/api
https://core.telegram.org/bots/api
https://api.telegram.org/bot<token>/METHOD_NAME

CHAPTER 3 BUILDING THE PYTHON APP

“first name": "SubRedditFetcherBot",
"username": "SubRedditFetcher Bot"

}
}

You can see that, with the proper token, Telegram identifies and
authorizes the bot. This confirms that the bot token is proper, and you can
go ahead with the app.

Newsbot: The Python App

Newsbot is a Python script that interacts with the bot with the help of the
Telegram Bot API. Newsbot does the following things:

e Continuously polls the Telegram API for new updates
being posted to the bot.

o Ifthe keyword for fetching new updates was detected, it
fetches the news from the selected subreddits.

Behind the scenes, Newsbot handles these scenarios:

o Ifthere’s a new message starting with /start or /help,
it shows simple help text about what to do.

o Ifthere’s a message starting with /sources followed by
a list of subreddits, it accepts them as the subreddits
from the applicable Reddit posts.

Newsbot depends on a couple of Python libraries;

e Praw or Python Reddit API Wrapper, for fetching posts
from subreddits.

e Requests, one of the most popular Python libraries
for providing a simpler, cleaner API for making HTTP
requests.

54

https://core.telegram.org/bots/api

CHAPTER 3 BUILDING THE PYTHON APP

Getting Started with Newsbot

To get started with Newsbot, download the source code of the bot. The
source code is available on the GitHub repository of the book, at https://
github.com/Apress/practical-docker-with-python.

If you're familiar with Git, you can clone the repo using the following

command:

git clone https://github.com/Apress/practical-docker-with-
python.git

As an alternative, you can click the green Code button and choose
Download ZIP from the GitHub repository page to get the source code.
Once you have cloned the repo or extracted the ZIP, change to the
directory containing the source code by typing the following command:

cd practical-docker-with-python/source-code/chapter-3/python-app
Now install the dependencies. To do this, type the following:

pip3 install -r requirements.txt

pip (Pip Installs Packages) is a package manager that installs Python
libraries. pip is included with Python 2.7.9 and later, and Python 3.4
and later. pip3indicates that you are installing libraries for Python 3.
If pip is not installed, install it before proceeding.

The -1 flag tells pip to install the required packages from
requirements.txt.

pip will check, download, and install the dependencies. If all goes well,
you should see the output in Listing 3-3.

55

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 3 BUILDING THE PYTHON APP

Listing 3-3. The Output from a Successful pip Install

Collecting praw==3.6.0 (from -r requirements.txt (line 1))
Downloading praw-3.6.0-py2.py3-none-any.whl (74kB)

Collecting requests==2.18.4 (from -r requirements.txt (line 2))

[...]

Installing collected packages: requests, update-checker,

decorator, six, praw

Successfully installed decorator-4.0.11 praw-3.6.0

requests-2.18.4 six-1.10.0 update-checker-0.16

If some packages were already installed, pip will not reinstall them
and will inform you that the dependency is installed with a "Requirement
already satisfied" message

Running Newsbot

Let’s start the bot. The bot requires an authentication token from Telegram
that you created previously (referred to as <token>). This needs to be set
to an environment variable named as NBT_ACCESS_TOKEN. Without this
token, the bot will not run. To set this token, open a terminal and enter the
following command, depending on your platform.

Windows users:

setx NBT_ACCESS_TOKEN <token>
Linux and macOS users:
export NBT_ACCESS_TOKEN=<token>
Now, start the Python script by typing the following command:

python newsbot.py

56

CHAPTER 3 BUILDING THE PYTHON APP

If all’s well, you should be seeing periodic OK messages, as shown in
Listing 3-4. This means that Newsbot is running and is actively listening for
updates.

Listing 3-4. Output from Newsbot When It Is Running and Listening
to Messages from Telegram

python newsbot.py

INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}

Sending Messages to Newsbot

In this section, you try to send a message to Newsbot to see if it
accepts requests. From the BotFather window, click the link to the bot
(alternatively, you can also search using the bot username). Click the Start
button. This will trigger a /start command, which will be intercepted by
the bot.

Notice that the log window shows the incoming request and the
outgoing message being sent, as indicated in Listing 3-5.

Listing 3-5. The Newsbot Responding to Commands

INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result':
[{'update _id': 720594461, 'message': {'message id': 5, 'from':
{'id": 7342383, 'is bot': False, 'first name': 'Sathya', 'last

57

CHAPTER 3 BUILDING THE PYTHON APP

name': 'Bhat', 'username': 'sathyabhat', 'language code': 'en-
US'}, 'chat': {'id': 7342383, 'first name': 'Sathya', 'last_
name': 'Bhat', 'username': 'sathyabhat', 'type': 'private'},
"date': 1516558659, 'text': '/start', 'entities': [{'offset': O,
"length': 6, "type': 'bot command'}]}}]}
INFO: handle_incoming messages - Chat text received: /start
INFO: post message - posting

Hi! This is a News Bot which fetches news
from subreddits. Use "/source" to select a subreddit source.

Example "/source programming, games" fetches news from r/
programming, r/games.

Use "/fetch" for the bot to go ahead and fetch the news.
At the moment, bot will fetch total of 10 posts from all
subreddits
to 7342383
INFO: get updates - received response: {'ok': True, 'result': []}

Figure 3-5 shows the Telegram Messenger window.

/start 5347

Hi! This is a News Bot which fetches news from subreddits. Use "
/source” to select a subreddit source.

Example "/source programming, games" fetches news from r/
programming, r/games.

Use "/fetch” for the bot to go ahead and fetch the news. At the
moment, bot will fetch total of 10 posts from all subreddits ..

Figure 3-5. The response from Newsbot to the start message

58

CHAPTER 3 BUILDING THE PYTHON APP

Try setting a source subreddit. From the Telegram Messenger window,
type the following:

/source python

You should get a positive acknowledgement from the bot, saying the
source was selected (see Figure 3-6).

/source python 2352 W

Sources setas python! 5o

Figure 3-6. Sources assigned

Now you can tell the bot to fetch some news. To do this, type:
/fetch

The bot should send an acknowledgement message about fetching the
posts. Then it will publish the posts from Reddit (see Figure 3-7).

59

CHAPTER 3 BUILDING THE PYTHON APP

—

fetch 7.15p0m w7

Hang on, fetching your news.. ...

Stocksent: A Python library for sentiment analysis of various tickers
from the latest news from trusted sources. It also has options for
plotting results. -
httpsi/fwww.reddit.com/r/Python/comments/oekhvs/stocksent_a_
python_library_for_sentiment_analysis/

Tuesday Daily Thread: Advanced questions -
https:/fwww.reddit.com/r/Python/comments/oejhbc/tuesday_daily
_thread_advanced_questions/

My First Chrome Extension (Python PyQuickie) Django backend -
httpsy//www.reddit.com/r/Python/comments/oeu3jc/my_first_chro
me_extension_python_pyquickie_django/

Tired of converting/e-mailing downloaded books to your Kindle? -
https://www.reddit.com/r/Python/comments/oeqd9d/tired_of_con
vertingemailing_downloaded_books_to/

Bayesian analysis of sales data, using PyMC3 - httpu/blog.
4dcu.be/programming/games/2021/07/04/Bayesian-sales-
analysis.html

reddit
Stocksent: A Python library for sentiment analysis of various...
Posted in r/Python by u/Aryagm + 124 points and 9 comments

Figure 3-7. Newsbot posting the top news from the Python
subreddit

The bot works; it’s fetching the top posts as expected. In the next series
of chapters, you learn how to move Newsbot to Docker.

Summary

In this chapter, you learned about the details of the book’s Python Project,
which is a chatbot. You also learned how to install and configure Telegram
Messenger, how to use Telegram’s BotFather to create the bot, how to
install the dependencies for the bot and, finally, how to run the bot and
ensure that it works correctly. In the next chapter, you dive deep into
Docker, learn more about Dockerfiles, and containerize the Newsbot app
by writing a Dockerfile for it.

60

CHAPTER 4

Understanding
the Dockerfile

Now that you have a better understanding of Docker and its associated
terminology, this chapter shows you how to convert your project into a
containerized application using Docker. In this chapter, you learn what

a Dockerfile is, including its syntax, and learn how to write a Dockerfile.
With a better understanding of Dockerfiles, you can work toward the first
step in writing a Dockerfile for the Newsbot app.

Dockerfile Primer

For a traditionally deployed application, building and packaging an
application was often quite tedious. With the aim to automate the build
and packaging of the application, people turned to different utilities, such
as GNU Make, maven, Gradle, and so on, to build the application package.
Similarly, in the Docker world, a Dockerfile is an automated way to build
your Docker images.

The Dockerfile contains special instructions that tell the Docker
Engine about the steps required to build an image. To invoke a build using
Docker, you issue the Docker build command. Listing 4-1 shows a typical
Dockerfile.

© Sathyajith Bhat 2022 61
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_4

https://doi.org/10.1007/978-1-4842-7815-4_4#DOI

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Listing 4-1. A Typical Dockerfile

FROM ubuntu:latest

LABEL author="sathyabhat"

LABEL description="An example Dockerfile"
RUN apt-get install python

COPY hello-world.py

CMD python hello-world.py

Looking at this Dockerfile, it’s easy to see what we're telling the Docker
Engine to build. However, don’t let the simplicity fool you—Dockerfiles let
you build complex conditions when generating your Docker images. When
aDocker build command is issued, it builds the Docker images from the
Dockerfile and a build context.

Build Context

A build context is a file or set of files available at a specific path or URL. To
understand this better, say you have some supporting files that you need
during a Docker image build—for instance, an application-specific config
file that was generated earlier and needs to be part of the container.

The build context can be local or remote—you can even set the build
context to the URL of a Git repository, which can come in handy if the
source files are not located in the same host as the Docker daemon or if
you want to test feature branches. You simply set the context to the branch.
The build command would look like this:

docker build https://github.com/sathyabhat/sample-repo.
git#mybranch

Similarly, to build images based on your Git tags, the build command
would look like this:

docker build https://github.com/sathyabhat/sample-repo.git#mytag

62

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Working on a feature via a pull request? Want to try that pull request?
Not a problem, you can even set the context to a pull request:

docker build https://github.com/sathyabhat/sample-repo.
git#pull/1337/head

The build command sets the context to the path or URL provided,
uploading the files available to the Docker daemon and allowing it to build
the image. You are not limited to a build context of an URL or path. If you
pass an URL to a remote tarball (i.e., a .tar file), the tarball at the URL is
downloaded onto the Docker daemon and the build command is issued
with that as the build context.

Caution If you provide the Dockerfile on the root (/) directory and
set that as the context, doing so will transfer your hard disk contents
to the Docker daemon.

Dockerignore

You should now understand that the build context transfers the contents of
the current directory to the Docker daemon during the build. Consider the
case where the context directory has a lot of files/directories that are not
relevant to the build process. Uploading these files/directories can cause
a significant increase in network traffic. A Dockerignore file, much like
gitignore, allows you to define files that are exempt from being transferred
during the build process.

The ignore list is provided by a file known as .dockerignore and
when the Docker CLI finds this file, it modifies the context to exclude
the files/patterns provided in the file. Anything starting with a hash (#)

63

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

is considered a comment and ignored. The following snippet shows a
sample .dockerignore file that excludes the temp, .git, and .DS_Store
directories:

/temp
.DS_Store
.git

BuildKit

With the 18.09 release of the Docker Engine, Docker overhauled their
container build system using BuildKit. BuildKit is now the default build
system for Docker. For most users, BuildKit works exactly as the legacy
build system. BuildKit has a new command output for Docker image
builds and, as a result, provides more detailed feedback about the build
process.

If you see output that’s different from other learning resources, that
means they may have not been updated with the output from BuildKit.
BuildKit also tries to parallelize the build steps as much as possible, so you
can expect faster build speeds, especially for containers that have a lot of
Dockerfile instructions. For advanced users, BuildKit also introduces the
ability to pass secrets into the build stage without the secret being in the
final layer. The build output, when using BuildKit, is shown in Listing 4-2.
(Note that the sha output has been truncated due to space constraints.)

Listing 4-2. Build Output When BuildKit Is Enabled

docker build .

[+] Building 11.6s (6/6) FINISHED

=> [internal] load build definition from Dockerfile 0.1s
=> => transferring dockerfile: 84B 0.0s

=> [internal] load .dockerignore 0.1s

=> => transferring context: 2B 0.0s

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

=> [internal] load metadata for docker.io/library/
ubuntu:latest 8.7s

=> [auth] library/ubuntu:pull token for registry-1.docker.io 0.0s

=> [1/1] FROM docker.io/library/ubuntu:latest@sha256:aba80b7 2.7s

=> => resolve docker.io/library/ubuntu:latest@sha256:aba80b7 0.0s

=> => sha256:aba80b7 1.20kB / 1.20kB 0.0s

=> => sha256:376209 529B / 529B 0.0s

=> => sha256:987317 1.46kB / 1.46kB 0.0s

=> => sha256:c549ccf8 28.55MB / 28.55MB 1.1s

=> => extracting sha256:c549ccf 1.2s

=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:f2afdc

As of writing this chapter, it is still possible to switch back to the legacy
build process by setting the DOCKER_BUILDKIT flag, as shown in Listing 4-3.

Listing 4-3. Switching Back to the Legacy Build Process

DOCKER_BUILDKIT=0 docker build .

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM ubuntu:latest

latest: Pulling from library/ubuntu

c549cct8d472: Already exists

Digest: sha256:aba80b77e27148d99c034a987e7da3a287ed455390352663

418c0f2ed40417fe

Status: Downloaded newer image for ubuntu:latest
---> 9873176a8ff5

Step 2/2 : CMD echo Hello World!
---> Running in d5ca2635eecd

Removing intermediate container d5ca2635eecd
---> 77711564634f

Successfully built 77711564634f

65

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Unless you encounter any problems, I do not recommend switching
back to the legacy build process. Stick to using Docker BuildKit. If you're
not seeing the new build output, ensure that you have updated to the latest
version of Docker.

Building Using Docker Build

You'll return to the sample Dockerfile a bit later. Let’s start with a
simple Dockerfile first. Copy the following snippet to a file and save it as
Dockerfile:

FROM ubuntu:latest
CMD echo Hello World!

Now build this image using the docker build command. You'll see
the response as shown in Listing 4-4. (Note that the sha output has been
truncated.)

Listing 4-4. Response from Docker Engine as it Builds the
Dockerfile

docker build .

[+] Building 11.6s (6/6) FINISHED

=> [internal] load build definition from Dockerfileo.1s

=> => transferring dockerfile: 84B 0.0s

=> [internal] load .dockerignore 0.1s

=> => transferring context: 2B0.0s

=> [internal] load metadata for docker.io/library/
ubuntu:latest 8.7s

=> [auth] library/ubuntu:pull token for registry-1.docker.io 0.0s

=> [1/1] FROM docker.io/library/ubuntu:latest@sha256:aba80b7 2.7s

=> => resolve docker.io/library/ubuntu:latest@sha256:aba80b7 0.0s

66

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

=> => sha256:aba80b7 1.20kB / 1.20kB 0.0s

=> => sha256:376209 529B / 529B 0.0s

=> => sha256:987317 1.46kB / 1.46kB 0.0s

=> => sha256:c549ccf8 28.55MB / 28.55MB 1.1s
=> => extracting sha256:c549ccf 1.2s

=> exporting to image0.0s

=> => exporting layers 0.0s

=> => writing image sha256:f2afdc

You can see that the Docker build works in steps, each step
corresponding to one instruction of the Dockerfile. Now try the build
process again.

docker build .

[+] Building 0.1s (5/5) FINISHED

=> [internal] load build definition from Dockerfile 0.0s

=> => transferring dockerfile: 37B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/ubuntu:latest 0.0s
=> CACHED [1/1] FROM docker.io/library/ubuntu:latest 0.0s
=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:f2afdcc 0.0s

Note how much faster the build process is the second time around.
Docker has already cached the layers and doesn’t have to pull them again.
To run this image, use the docker run command followed by the image ID
f2afdcc:

docker run f2afdcc
Hello World!

67

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

So, the Docker runtime was able to start a container and run the
command defined by the CMD instruction; hence, you get the output. Now,
starting a container from an image by typing the image ID gets tedious fast.
You can make this easier by tagging the image with an easy-to-remember
name. You can do this by using the docker tag command, as shown here:

docker tag <image id> <tag name>
docker tag f2afdcc sathyabhat/hello-world

You'll look at deeper look at tags in the next section. Docker also
validates that the Dockerfile has valid instructions and they are in the
proper syntax. Consider the earlier Dockerfile, shown in Listing 4-5.

Listing 4-5. Dockerfile for Python with an Invalid Instruction

FROM ubuntu:latest

LABEL author="sathyabhat"

LABEL description="An example Dockerfile"
RUN apt-get install python

COPY hello-world.py

CMD python hello-world.py

If you try to build this Dockerfile, Docker will complain about an error,
as shown here:

docker build -f Dockerfile.invalid .

[+] Building 0.1s (2/2) FINISHED

=> [internal] load build definition from Dockerfile.invalid 0.0s
=> => transferring dockerfile: 336B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

failed to solve with frontend dockerfile.vo: failed to create
LLB definition: dockerfile parse error line 6:

COPY requires at least two arguments, but only one was
provided. Destination could not be determined.

68

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

You'll get back to fixing this problem a little later in the chapter.
For now, it’s time to look at some of the commonly used Dockerfile
instructions and at tagging images.

Tags

A tagis a name that uniquely identifies a specific version of a Docker
image. Tags are plain-text labels often used to identify specific details, such
as the version, the base OS of the image, or the architecture of the Docker
image. Tagging a Docker image gives you the flexibility to refer uniquely to
a specific version, which makes it easier to roll back to previous versions of
a Docker image if the current image is not working as expected.

If a tag is not specified, Docker will apply a string called "latest" as
the default tag. The "latest" tag is often the source of many problems,
especially for new Docker users. Many believe that having "latest" as the
tag would mean that the Docker image is the latest version of the image
and would always be updated to the latest version. This is not true—
latest was chosen as a convention but doesn’t have any special meaning
to it.

I do not recommend using latest as a tag, especially with production
workloads. During development stages, omitting the tag will result in the
"latest" tag being applied to every build. If there were a breaking change,
since the tag is common, the previous images would get overwritten. This
makes rolling back to the previous version of the image difficult unless
you noted the SHA-hash of the image. Using specific tags makes it easier
to determine, at a glance, what tag or version of Docker image is running
on the container. Using specific tags also reduces the chance of breaking
changes being propagated, especially if you tag your image as latest and
have a breaking change or a bug. The next time your container crashes or
restarts, it might pull the image with the breaking change or bug.

69

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Docker images can be tagged and retagged using the docker tag
command:

docker tag <image id> <tag name>
docker tag f2afdcc sathyabhat/hello-world

The tag names will typically have the Docker Registry prefixed to the
tag name. If a registry name is not specified, Docker will assume the image
is part of Docker Hub and will try to pull it from there. The tags can be
assigned as part of the build process by passing the -t flag, as shown in
Listing 4-6.

Listing 4-6. Adding a Tag When Building the Image
docker build -t sathyabhat/helloworld .

[+] Building 0.2s (5/5) FINISHED

=> [internal] load build definition from Dockerfile0.0s

=> => transferring dockerfile: 37B 0.0s

=> [internal] load .dockerignore 0.1s

=> => transferring context: 2B0.0s

=> [internal] load metadata for docker.io/library/
ubuntu:latest0.0s

=> CACHED [1/1] FROM docker.io/library/ubuntu:latest 0.0s

=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:f2afdcc 0.0s

=> => naming to docker.io/sathyabhat/helloworld

Note that even though you did not mention docker. io as part of the
tag, it was prefixed to the tag name, as mentioned. The last line tells you
that the image was tagged successfully. You can verify this by searching for
docker images

70

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

docker images sathyabhat/helloworld
REPOSITORY TAG IMAGE ID CREATED SIZE
sathyabhat/helloworld latest f2afdccf8eeb 3 weeks ago 72.7MB

Dockerfile Instructions

When looking at a Dockerfile, you're mostly likely to run into the following

instructions.
e FROM
e« ADD
o (COPY
e RUN
e CMD

e ENTRYPOINT

o ENV
e VOLUME
e LABEL
o EXPOSE
Let’s see what they do.
FROM

As you learned earlier, every image needs to start from a base image. The
FROM instruction tells the Docker Engine the base image to be used for
subsequent instructions. Every valid Dockerfile must start with a FROM
instruction. The syntax is as follows:

FROM <image> [AS <name>]

71

CHAPTER 4 UNDERSTANDING THE DOCKERFILE
OR

FROM <image>[:<tag>] [AS <name>]
OR

FROM <image>[@<digest>] [AS <name>]

Where <image> is the name of a valid Docker image from any public/
private repository. As mentioned, if the tag is skipped, Docker will fetch the
image tagged as latest.

WORKDIR

The WORKDIR instruction sets the current working directory for the RUN, CMD,
ENTRYPOINT, COPY, and ADD instructions. WORKDIR is useful when you have
multiple directories in the source code and you want some specific actions
to be done within these specific directories. WORKDIR is also frequently used
to set a separate location for the application to run in the container. The
syntax is as follows:

WORKDIR /path/to/directory

WORKDIR can be set multiple times in a Dockerfile and, if a relative
directory succeeds a previous WORKDIR instruction, it will be relative to the
previously set working directory. Let’s look at an example demonstrating this.

Consider this Dockerfile:

FROM ubuntu:latest
WORKDIR /app
CMD pwd

The Dockerfile fetches the latest tagged image from Ubuntu as the
base image, sets the current working directory to /app, and runs the pwd
command when the image is run. The pwd command prints the current
working directory.

72

CHAPTER 4 UNDERSTANDING THE DOCKERFILE
Let’s try to build and run this and examine the output:

docker build -t sathybhat/workdir .
[+] Building 0.7s (6/6) FINISHED
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 36B 0.0s
=> [internal] load .dockerignoreo.0s
=> => transferring context: 2B 0.0s
=> [internal] load metadata for docker.io/library/
ubuntu:latest 0.6s
=> [1/2] FROM docker.io/library/ubuntu:latest@sha256:b3e2e4 0.0s
=> CACHED [2/2] WORKDIR /app 0.0s
=> exporting to image 0.0s
=> => exporting layers 0.0s
=> => writing image sha256:f8853df 0.0s
=> => naming to docker.io/sathybhat/workdir

Now you run the newly built image:

docker run sathybhat/workdir
/app

The result of pwd makes it clear that the current working directory is set
as /app by way of the WORKDIR instruction. Modify the Dockerfile to add a
couple of WORKDIR instructions, as shown here:

FROM ubuntu:latest
WORKDIR /usr
WORKDIR src
WORKDIR app

CMD pwd

73

CHAPTER 4 UNDERSTANDING THE DOCKERFILE
Let’s build and run the new image:
docker build -t sathybhat/workdir .

[+] Building 0.7s (8/8) FINISHED

=> [internal] load build definition from Dockerfile 0.0s

=> => transferring dockerfile: 121B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/
ubuntu:latest 0.6s

=> [1/4] FROM docker.io/library/ubuntu:latest@sha256:b3e2e47 0.0s

=> CACHED [2/4] WORKDIR /usr 0.0s

=> CACHED [3/4] WORKDIR src 0.0s

=> CACHED [4/4] WORKDIR app 0.0s

=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:207b405 0.0s

=> => naming to docker.io/sathyabhat/workdir

Note that the image ID has changed, so that’s a new image being built
with the same tag:

docker run sathybhat/workdir
/usr/sxrc/app

As expected, the WORKDIR instructions of the relative directory have
appended to the initial absolute directory set. By default, the WORKDIR is
set as /, so any WORKDIR instructions featuring a relative directory will be
appended to /. Here’s an example demonstrating this. Let’s modify the
Dockerfile as follows:

74

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

FROM ubuntu:latest
WORKDIR var
WORKDIR log/nginx
CMD pwd

Build the image:
docker build -t sathyabhat/workdir .

[+] Building 1.8s (8/8) FINISHED

=> [internal] load build definition from Dockerfile 0.0s

=> => transferring dockerfile: 115B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/
ubuntu:latest 1.6s

=> [auth] library/ubuntu:pull token for registry-1.docker.io 0.0s

=> CACHED [1/3] FROM docker.io/library/ubuntu:latest@
sha256:b3e2e47 0.0s

=> [2/3] WORKDIR var 0.0s

=> [3/3] WORKDIR log/nginx 0.0s

=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:e7ded5d 0.0s

=> => naming to docker.io/sathyabhat/workdir

Now run it:

docker run sathyabhat/workdir
/var/log/nginx

Notice that you did not set any absolute working directory in the
Dockerfile—the relative directories were appended to the default.

75

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

ADD and COPY

At first glance, the ADD and COPY instructions seem to be the same—they

allow you to transfer files from the host to the container’s filesystem. COPY

supports basic copying of files to the container, whereas ADD has support

for features like tarball auto extraction (i.e., Docker will automatically

extract compressed files added from local directory) and remote URL

support (i.e., Docker will download the resources from a remote URL).
The syntax for both are quite similar:

ADD <source> <destinationy
COPY <source> <destination>

The ADD instruction is useful when you're adding files from remote
URLs or you have compressed files from the local filesystem that need to
be automatically extracted into the container filesystem.

As an example, the following COPY instruction copies a single file called
hugo to the /app directory in the container:

COPY hugo /app/

The following ADD instruction fetches a compressed file called
hugo_0.88.0_Linux-64bit.tar.gz from the URL but doesn’t
automatically decompress the file:

ADD https://github.com/gohugoio/hugo/releases/download/v0.88.0/
hugo 0.88.0 Linux-64bit.tar.gz /app/

While the following ADD instruction will copy and automatically extract
the contents of the compressed file to the /app directory in the container.

ADD hugo 0.88.0_Linux-64bit.tar.gz /app/

For Dockerfiles used to build Linux containers, both instructions let
you change the owner/group of the files being added to the container. This
is done using the --chown flag, as follows:

76

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

ADD --chown=<user>:<group> <source> <destination>
COPY --chown=<user>:<group> <source> <destination>

For example, if you want to add requirements.txt from the current
working directory to the /usr/share/app directory, the instruction would
be as follows:

ADD requirements.txt /usr/share/app
COPY requirements.txt /usr/share/app

Both ADD and COPY support wildcards while specifying patterns. For
example, having the following instructions in your Dockerfile will copy all
the files with the .py extension to the /apps/ directory of the image.

ADD *.py /apps/

COPY *.py /apps/

Note Docker recommends using COPY over ADD, especially when
it’s a local file that’s being copied.

There are some points to consider when choosing COPY versus ADD. In
the case of the COPY instruction:

o Ifthe <destination> does not exist in the image, it will
be created.

o All new files/directories are created with UID and GID
as 0—that is, as the root user. To change this, you can
use the --chown flag.

o Ifthe files/directories contain special characters, they
need to be escaped.

77

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

78

The <destination> can be absolute or relative paths. In
case of relative paths, the relativeness will be inferred
from the path set by the WORKDIR instruction.

If the <destination> doesn’t end with a trailing slash,
it will be considered a file and the contents of the
<source> will be written into <destination>.

If the <source> is specified as a wildcard pattern, the
<destination> must be a directory and must end with
a trailing slash; otherwise, the build process will fail.

The <source> must be within the build context. It
cannot be a file/directory outside of the build context
because the first step of a Docker build process involves
sending the context directory to the Docker daemon.

In case of the ADD instruction:

If the <source> is a URL and the <destination> is
not a directory and doesn’t end with a trailing slash,
the file is downloaded from the URL and copied into
<destination>.

If the <source> is a URL and the <destination> is a
directory and ends with a trailing slash, the filename is
inferred from the URL and the file is downloaded and
copied to <destination>/<filename>.

If the <source> is a local tarball of a known
compression format, the tarball is unpacked as
a directory. Remote tarballs, however, are not
uncompressed.

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

RUN

The RUN instruction will execute any command during the build step of
the container. This creates a new layer that is available for the next steps in
the Dockerfile. It is important to note that the command following the RUN
instruction runs only when the image is being built. The RUN instruction
has no relevance when a container has started and is running.

RUN has two forms, the shell form and the exec form. In the shell form,
the command is written space-delimited, as shown here:

RUN <command>

This form makes it possible to use shell variables, subcommands,
command pipes, and command chains in the RUN instruction itself.

Consider a scenario where you want to embed the kernel release
version into the home directory of the Docker image. You can get the kernel
release and version using the uname -rv command. This output can be
then printed using echo and then redirected to a file called kernel-info in
the home directory of the image. You can do this with the RUN instruction
in shell form, as shown here:

RUN echo “uname -rv™ > $HOME/kernel-info

In exec form, the command is written comma-delimited and
surrounded by quotes, as shown here:

RUN ["executible", "parameter 1", " parameter 2"] (the exec
form)

Unless you need to use shell features like chaining and redirection, it is
recommended to use the exec form for the RUN instruction.

79

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Layer Caching

When the image is built, Docker will cache the layers that it has pulled.
This is evident from the build logs. Consider the following Dockerfile:

FROM ubuntu:latest
RUN apt-get update

The build log when you run docker build is shown here:

docker build -f Dockerfile .
[+] Building 8.1s (7/7) FINISHED
=> [internal] load build definition from Dockerfile 0.1s
=> => transferring dockerfile: 96B 0.0s
=> [internal] load .dockerignore 0.0s
=> => transferring context: 2B 0.0s
=> [internal] load metadata for docker.io/library/
ubuntu:latest 1.8s
=> [auth] library/ubuntu:pull token for registry-1.docker.io 0.0s
=> CACHED [1/2] FROM docker.io/library/ubuntu:latest@
sha256:b3e2e47 0.0s
=> [2/2] RUN apt-get update 6.0s
=> exporting to image 0.2s
=> => exporting layers 0.1s
=> => writing image sha256:a9824f6

The logs indicate that, instead of redownloading the layer for the base
Ubuntu image, Docker uses the cached layer saved to disk. This applies to
all the layers that are created—and Docker creates a new layer whenever
it encounters RUN, COPY, or ADD instructions. Having the right order of
instructions can greatly improve whether Docker will reuse the layers. This
can not only improve the image build speed, but also reduce container
start times by virtue of having lesser number of layers to download.

80

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Due to the way layer caching works, it is always best to chain the
package update and package install as a single RUN instruction. Consider a
Dockerfile where the run instructions are as shown here:

RUN apt-get update

RUN apt-get install pkgl
RUN apt-get install pkg2
RUN apt-get install pkg3

When Docker builds this image, it caches the four layers created by
the four RUN commands. To reduce the number of layers, and to prevent
packages not being able to be installed due to the package cache being out
of date, it is best to chain the update and installs, as shown here:

RUN apt-get update && apt-get install -y \

pkgl \

pkg2 \

pkg3 \

pkg4

This creates a single layer with the packages to be installed, and any
change in any of the packages will invalidate the cache and cause a new
layer to be created with the updated packages. If you want to explicitly

instruct Docker to avoid using the cache, then passing - -no-cache flag to
the docker build command will skip using the cache.

CMD and ENTRYPOINT

The CMD and ENTRYPOINT instructions define which command is executed
when running a container. The syntax for both is shown here:

81

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

CMD ["executable","param1i","param2"] (exec form)

CMD ["parami”,"param2"] (as default parameters to ENTRYPOINT)
CMD command paraml param2 (shell form)

ENTRYPOINT ["executable", "parami", "param2"] (exec form)
ENTRYPOINT command paraml param2 (shell form)

The ENTRYPOINT instruction is best when you want your container to
function like an executable, and the CMD instruction provides the defaults
for an executing container. Consider the Dockerfile shown here:

FROM ubuntu:latest
RUN apt-get update && \
apt-get install -y curl && \
rm -rf /var/lib/apt/lists/*
CMD ["curl"]

In this Docker image, Ubuntu is the base image, curl is installed on it,
and curl is the parameter for the CMD instruction. This means that when
the container is created and run, it will run curl without any parameters.
Let’s build the image for the Dockerfile shown here:

docker build -t sathyabhat/curl .

[+] Building 11.8s (6/6) FINISHED

=> [internal] load build definition from Dockerfile 0.0s

=> => transferring dockerfile: 50B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/
ubuntu:latest 0.7s

=> CACHED [1/2] FROM docker.io/library/ubuntu:latest@
sha256:b3e2e47 0.0s

=> [2/2] RUN apt-get update && apt-get install -y curl 10.7s

=> exporting to image 0.3s

82

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

=> => exporting layers 0.3s
=> => writing image sha256:8a9fc4b 0.0s
=> => naming to docker.io/sathyabhat/curl

You can see the result when you run the container:

docker run sathyabhat/curl
curl: try 'curl --help' or 'curl --manual' for more information

This is because curl expects a parameter to be passed. You can override
the CMD instruction by passing arguments to the docker run command. As
an example, try to curl wttr.in, which fetches the current weather.

docker run sathyabhat/curl wttr.in

docker: Error response from daemon: OCI runtime create failed:
container_linux.go:296: starting container process caused
"exec: \"wttr.in\": executable file not found in $PATH": unknown.

Uh oh, an error. As mentioned, the parameters after docker run are
used to override the CMD instruction. However, you have passed only wttr.
in as the argument, not the executable itself. For the override to work
properly, you need to pass in the executable, which is curl, as well:

docker run sathyabhat/curl -s wttr.in
Weather report: Gurgaon, India

Haze
- - - 24-25 °C
- - N 13 km/h
- - _ - 3knm

0.0 mm

Passing an executable every time to override a parameter can be quite
tedious. This is where the combination of ENTRYPOINT and CMD shines. You
can set ENTRYPOINT to the executable while the parameter can be passed
from the command line and will be overridden.

83

CHAPTER 4 UNDERSTANDING THE DOCKERFILE
Modify the Dockerfile as follows:

FROM ubuntu:latest

RUN apt-get update && \
apt-get install -y curl
ENTRYPOINT ["curl", "-s"

Build the image again:
docker build -t sathyabhat/curl .

[+] Building 0.7s (6/6) FINISHED

=> [internal] load build definition from Dockerfile.listing-
4-x-5 0.0s

=> => transferring dockerfile: 157B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/ubuntu:latest 0.6s

=> [1/2] FROM docker.io/library/ubuntu:latest@sha256:b3e2e47 0.0s

=> CACHED [2/2] RUN apt-get update 8&% apt-get install -y curl 0.0s

=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:7e31728 0.0s

=> => naming to docker.io/sathyabhat/curl

Now you can curl any URL by just passing the URL as a parameter,
instead of having to add the executable as well.

docker run sathyabhat/curl wttr.in
Weather report: Gurgaon, India

Haze
- - - 24-25 °C
- - N 13 km/h
- - - 3 km

0.0 mm

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Of course, curl is just an example here. You can replace curl with

any other program that accepts parameters (such as load-testing utilities,
benchmarking utilities, etc.) and the combination of CMD and ENTRYPOINT

makes it easy to distribute the image.

Note that the ENTRYPOINT must be provided in exec form—writing it in

shell form means that the parameters are not passed properly and will not

work as expected. Table 4-1 is from Docker’s Reference Guide. It explains
the matrix of allowed ENTRYPOINT/CMD combinations, assuming p1_cmd,

pl entry and p2_cmd, p2_entry are the CMD and ENTRYPOINT variations of

commands p1 and p2 that you want to run in the container.

Table 4-1. Commands for ENTRYPOINT/CMD Combinations

No ENTRYPOINT ENTRYPOINT

ENTRYPOINT ["exec_
entry", "p1_entry"]

exec_entry
p1_entry
No CMD Error, not allowed /bin/sh -c
exec_entry
pl_entry
CMD ["exec_ exec_cmd p1_ /bin/sh -c
cmd", "p1_ cmd exec_entry
cmd"] pl_entry
CMD ["p1_ pi_cmd p2_cmd /bin/sh -c
cmd", "p2_ exec_entry
cmd"] pl_entry

CMD exec_ /bin/sh -c /bin/sh -c
cmd p1_cmd exec_cmd p1_ exec_entry
cmd pl_entry

exec_entry p1_entry

exec_entry pi_entry
exec_cmd p1_cmd

exec_entry pi_entry
p1 cmd p2 cmd

exec_entry pil_entry /

bin/sh -c exec_cmd
p1_cmd

85

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

The following points are important to remember about the shell and
exec forms:

e Asmentioned earlier, you can specify RUN, CMD, and
ENTRYPOINT in shell form and exec form. Which should
be used will entirely depend on the requirements. But
as general guide:

o Inshell form, the command is run in a shell with
the command as a parameter. This form provides
for a shell where shell variables, subcommands,
commanding piping, and chaining are possible.

o Inexec form, the command does not invoke a
command shell. This means that normal shell
processing (such as $VARIABLE substitution, piping,
etc.) will not work.

e A program started in shell form will run as a
subcommand of /bin/sh -c. This means the
executable will not be running as PID and will not
receive UNIX signals. As a consequence, a Ctrl+C to
send a SIGTERM will not be forwarded to the container
and the application might not exit correctly.

ENV

The ENV instruction sets the environment variables to the image. The ENV
instruction has two forms:

ENV <key> <value>
ENV <key>=<value> ...

In the first form, the entire string after the <key> is considered the
value, including whitespace characters. Only one variable can be set per
line in this form.

86

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

In the second form, multiple variables can be set at one time, with the
equals (=) character assigning value to the key.

The environment variables set are persisted through the container
runtime. They can be viewed using docker inspect.

Consider this Dockerfile:

FROM ubuntu:latest
ENV LOGS_DIR="/var/log"
ENV APPS_DIR /apps/

Build the Docker image:

docker build -t sathyabhat/env .
[+] Building 1.7s (6/6) FINISHED
=> [internal] load build definition from Dockerfile.listing-
4-x-6 0.0s
=> => transferring dockerfile: 50B 0.0s
=> [internal] load .dockerignore 0.0s
=> => transferring context: 2B 0.0s
=> [internal] load metadata for docker.io/library/
ubuntu:latest 1.6s
=> [auth] library/ubuntu:pull token for registry-1.docker.io 0.0s
=> CACHED [1/1] FROM docker.io/library/ubuntu:latest@
sha256:b3e2e47 0.0s
=> exporting to image 0.0s
=> => exporting layers 0.0s
=> => writing image sha256:23eb815 0.0s
=> => naming to docker.io/sathyabhat/env

You can inspect the environment variables by using the following
command:

docker inspect sathyabhat/env | jq ".[0].Config.Env"

87

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

The output will be as follows:

[
"PATH=/usxr/local/sbin:/usr/local/bin:/usr/sbin:/usxr/bin:/

sbin:/bin",
"LOGS_DIR=/var/log",
"APPS DIR=/apps/"

]

The environment variables defined for a container can be changed
when running a container with the -e flag. In the previous example,
change the LOGS_DIR value to /logs for a container. This is achieved by
typing the following command:

docker run -it -e LOGS_DIR="/logs" sathyabhat/env

You can confirm the changed value by typing the following command
at the terminal:

printenv | grep LOGS
LOGS_DIR=/logs

Type exit to close the interactive terminal of the container. To assign
multiple environment variables, pass the additional environment variables
using the -e flag, just as the first environment variable. In the previous
example, if you were to override LOGS_DIR as well as APPS_DIR, it can be
done using the following command:

docker run -it -e LOGS DIR="/logs" -e APPS DIR="/opt"
sathyabhat/env

printenv | grep DIR
LOGS_DIR=/logs
APPS DIR=/opt

Type exit to close the interactive terminal of the container.

88

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

VOLUME

The VOLUME instruction tells Docker to create a mount point on the
container and mount it externally from the host. For instance, an

instruction like this:
VOLUME /var/logs/nginx

tells Docker to mark the /var/logs/nginx directory as a mount point,
with the data being mounted from the Docker host. This, when combined
with the volume flag on the Docker run command, will result in data being
persisted on the Docker host as a volume. This volume can then be backed
up, moved, or transferred using Docker CLI commands. You will learn
more about volumes in a later chapter in this book.

EXPOSE

The EXPOSE instruction tells Docker that the container listens for the
specified network ports at runtime. The syntax is as follows:

EXPOSE <port> [<port>/<protocol>...]

For example, if you want to expose port 80, the EXPOSE instruction is as
follows:

EXPOSE 80

If you want to expose port 53 on TCP and UDP, the Dockerfile
instruction is the following:

EXPOSE 53/tcp
EXPOSE 53/udp

You can also include the port number and whether the port listens on
TCP/UDP or both. If not specified, Docker assumes the protocol to be TCP.

89

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Note An EXPOSE instruction doesn’t publish the port. For the port

to

be published to the host, you need to use the -p flag with docker

run to publish and map the ports.

Here’s a sample Dockerfile that uses the nginx image with port 80

exposed in the container.

FROM nginx:alpine
EXPOSE 80

Build the container:

Building 0.4s (5/5) FINISHED

[internal] load build definition from Dockerfile 0.0s
=> transferring dockerfile: 50B 0.0s

[internal] load .dockerignore 0.0s

=> transferring context: 2B 0.0s

[internal] load metadata for docker.io/library/
nginx:alpine 0.2s

CACHED [1/1] FROM docker.io/library/nginx:alpine@
sha256:9152859 0.0s

exporting to image 0.0s

=> exporting layers 0.0s

=> writing image sha256:33fcd52 0.0s

=> naming to docker.io/sathyabhat/web

To run this container, you have to provide the host port to which itis to

be mapped. Map it to port 8080 on the host to port 80 of the container. To

do that, type the following command:

docker run -d -p 8080:80 sathyabhat:web

90

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

The -d flag makes the nginx container run in the background and the
-p flag does the port mapping. Confirm that the container is running:

curl http://localhost:8080
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: O auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully
installed and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

91

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

LABEL

The LABEL instruction adds metadata to an image as a key-value pair.
LABEL <key>=<value> <key>=<value> <key>=<value> ..

An image can have multiple labels and is typically used to add some
metadata to assist in searching and organizing images and other Docker
objects. Docker recommends the following guidelines.

o For keys:

e Authors of third-party tools should prefix each key
with reverse DNS notation of a domain owned by
them: for example, com.sathyasays.my-image.

o com.docker.*, io.docker.*, andorg.
dockerproject.* are reserved by Docker for
internal use.

o Label keys should begin and end with lowercase
letters and should contain only lowercase
alphanumeric characters and the period (.) and
hyphen (-) characters. Consecutive hyphens and
periods are not allowed.

e The period (.) separates the namespace fields.
o Forvalues:

e Label values can contain any data type that can
be represented as a string, including JSON, XML,
YAML, and CSV types.

92

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Guidelines and Recommendations
for Writing Dockerfiles

The following are some guidelines and best practices for writing

Dockerfiles as recommended by Docker.

Containers should be ephemeral. Docker
recommends that images generated by Dockerfiles
should be as ephemeral as possible. You should be able
to stop, destroy, and restart the container at any point
with minimal setup and configuration to the container.
The container should ideally not write data to the
container filesystem, and any persistent data should be
written to Docker volumes or to data storage managed
outside the container (for example, using a block
storage like Amazon S3).

Keep the build context minimal. You read about build
context earlier in this chapter. It's important to keep
the build context as minimal as possible to reduce the
build times and the image size. This can be done by
making effective use of the .dockerignore file.

Use multi-stage builds. Multi-stage builds help in
drastically reducing the size of the image without
having to write complicated scripts to transfer/keep the
required artifacts. Multi-stage builds are described in
the next section.

Skip unwanted packages. Having unwanted or nice-
to-have packages increases the size of the image,
introduces unwanted dependent packages, and
increases the surface area for attacks.

93

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

e Minimize the number of layers. While not as big of a
concern as they used to be, it’s still important to reduce
the number of layers in the image. As of Docker 1.10
and above, only RUN, COPY, and ADD instructions create
layers. With these in mind, having a minimal of these
instructions or combining many lines of the respective
instructions reduces the number of layers, ultimately
reducing the size of the image.

Using Multi-Stage Builds

As of version 17.05 and above, Docker added support for multi-stage
builds, allowing complex image builds to be performed without the Docker
image being unnecessarily bloated. Multi-stage builds are especially useful
when you're building images of applications that require some additional
build-time dependencies but are not needed during runtime. Most
common examples are applications written using programming languages
such as Go or Java, where prior to multi-stage builds, it was common to
have two different Dockerfiles. One was for the build and the other was for
the release and the orchestration of the artifacts from the build time image
to the runtime image.

With multi-stage builds, a single Dockerfile can be leveraged for build
and deploy images—the build images can contain the build tools required
for generating the binary or the artifact. In the second stage, the artifact
can be copied over to the runtime image, thereby considerably reducing
the size of the runtime image. For a typical multi-stage build, a build stage
has several layers—each layer for installing tools required to build the
application, generate the dependencies, and generate the application. In
the final layer, the application built from build stages is copied over to the
final layer and only that layer is considered for building the image. The
build layers are discarded, drastically reducing the size of the final image.

94

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

Although this book doesn’t focus on multi-stage builds in detail, you
will try an exercise on how to create a multi-stage build and see how much
smaller using a slim image with multi-stage build makes the final image.
More details about multi-stage builds are available on Docker’s website at
https://docs.docker.com/develop/develop-images/multistage-build/.

Exercises

BUILDING A SIMPLE HELLO WORLD DOCKER IMAGE

The start of the chapter introduced a simple Dockerfile that did not build due
to syntax errors. In this exercise, you see how to fix that Dockerfile and add
some of the instructions that you learned in this chapter.

Tip The source code and associated Dockerfile are available on
the GitHub repo of the book, at https://github.com/Apress/
practical-docker-with-python,in the source-code/
chapter-4/exercise-1 directory.

The original Dockerfile is as follows:

FROM ubuntu:latest

LABEL author="sathyabhat"

LABEL description="An example Dockerfile"
RUN apt-get install python

COPY hello-world.py

CMD python hello-world.py

Trying to build this will result in an error since hello-world.py is missing.
Let’s fix the build error. To do this, you need to add a hello-world. py that
reads an environment variable, NAME, and prints Hello, $NAME!. If the
environment variable is not defined, it will print "Hello, World!".

95

https://docs.docker.com/develop/develop-images/multistage-build/
https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

96

The contents of hello-world. py are as follows:

#!/usxr/bin/env python3
from os import getenv

if getenv('NAME') is None:
name = 'World'
else:
name = getenv('NAME")
print(f"Hello, {name}!")

The corrected Dockerfile is as follows:

FROM python:3-alpine

LABEL description="Dockerfile for Python script which prints
Hello, Name"

COPY hello-world.py /app/

ENV NAME=Readers

CMD python3 /app/hello-world.py

Build the Dockerfile:

docker build -t sathyabhat/chapo4-ex1 .

[+] Building 1.9s (8/8) FINISHED

=> [internal] load build definition from Dockerfile 0.0s

=> => transferring dockerfile: 37B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/python:3-
alpine 1.7s

=> [auth] library/python:pull token for registry-i.docker.
io 0.0s

=> [internal] load build context 0.0s

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

=> => transferring context: 36B 0.0s

=> [1/2] FROM docker.io/library/python:3-alpine@
sha256:3998e97 0.0s

=> CACHED [2/2] COPY hello-world.py /app/ 0.0s

=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:538be87 0.0s

=> => naming to docker.io/sathyabhat/chap0o4-ex1

Confirm the image name and size:

docker images sathyabhat/chap04-ex1
REPOSITORY TAG IMAGE ID CREATED SIZE
sathyabhat/chapo4-ex1 latest 538be873d192 3 hours ago 45.1MB

Run the Docker image:

docker run sathyabhat/chapo4-ex1
Hello, Readers!

Try overriding the environment variable at runtime. You can do this by
providing the -e parameter with docker run:

docker run -e NAME=all sathyabhat/chap04-ex1
Hello, all!

Congrats! You’ve successfully written your first Dockerfile and built your first
Docker image.

97

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

A LOOK AT SLIM DOCKER RELEASE IMAGE (USING MULTI-STAGE BUILDS)

In this exercise, you will build two Docker images. The first image uses a
standard build with python: 3 as the base image, whereas the second image
gives an overview of how multi-stage builds can be utilized.

Tip The source code and associated Dockerfile are available on
the GitHub repo of the book at https://github.com/Apress/
practical-docker-with-python,inthe source-code/
chapter-4/exercise-2/ directory.

Create a requirements.txt file with the following content:
praw==3.6.0
Create a Dockerfile with the following content:

FROM python:3
COPY requirements.txt .
RUN pip install -r requirements.txt

Now build the Docker image:

[+] Building 7.2s (8/8) FINISHED

=> [internal] load build definition from Dockerfile 0.3s

=> => transferring dockerfile: 114B 0.0s

=> [internal] load .dockerignore 0.3s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/
python:3 0.0s

=> [internal] load build context 0.6s

98

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

=> => transferring context: 54B 0.0s

=> [1/3] FROM docker.io/library/python:3 1.6s

=> [2/3] COPY requirements.txt . 0.2s

=> [3/3] RUN pip install -r requirements.txt 3.3s
=> exporting to image 1.6s

=> => exporting layers 1.5s

=> => writing image sha256:03191af 0.0s

=> => naming to docker.io/sathyabhat/base-build

The image was built successfully! Let’s determine the size of the image:

docker images sathyabhat/base-build

Repository Tag Image ID Created Size

sathyabhat/base-build latest 03191af Abouta minute ago 895MB

The Docker image sits at a fairly hefty 895MB, even though you did not add
any of your application code, just a dependency. Let’s rewrite it to a multi-
stage build.

Building the Docker Image Using a Multi-Stage Build

FROM python:3 as python-base
COPY requirements.txt .
RUN pip install -r requirements.txt

FROM python:3-alpine

COPY --from=python-base /root/.cache /root/.cache

COPY --from=python-base requirements.txt .

RUN pip install -r requirements.txt &% rm -rf /root/.cache

The Dockerfile is different in that there are multiple FROM statements,
signifying the different stages. In the first stage, you build the required
packages using the python:3 image, which has the necessary build tools.

99

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

In the second stage, you copy the files installed in the first stage, reinstall
them (notice this time that pip fetches the cached files and doesn’t build them
again), and then delete the cached install files. The build logs are shown here:

Building 0.6s (13/13) FINISHED

[internal] load build definition from Dockerfile 0.2s

=> transferring dockerfile: 35B 0.0s

[internal] load .dockerignore .1s

=> transferring context: 2B 0.0s

[internal] load metadata for docker.io/library/python:3-
alpine .2s

[internal] load metadata for docker.io/library/python:3 0.0s
[internal] load build context .is

=> transferring context: 37B 0.0s

[stage-1 1/4] FROM docker.io/library/python:3-alpine@
sha256:3998e97 0.0s

[python-base 1/3] FROM docker.io/library/python:3 0.0s
CACHED [python-base 2/3] COPY requirements.txt . 0.0s
CACHED [python-base 3/3] RUN pip install -r requirements.
txt 0.0s

CACHED [stage-1 2/4] COPY --from=python-base /root/.cache /
root/.cache 0.0s

CACHED [stage-1 3/4] COPY --from=python-base requirements.
txt . 0.0s

CACHED [stage-1 4/4] RUN pip install -r requirements.txt &&
m -xf /root/.cache 0.0s

exporting to image 0.1s

=> exporting layers 0.0s

=> writing image sha256:35c85a8 0.0s

=> naming to docker.io/sathyabhat/multistage-build

Examining the size of the image using docker images shows you that using

a multi-stage build has reduced the image size by quite a lot. This translates to
reduced image sizes, faster application starts, and even reduced costs, as you

are saving on bandwidth that is required to pull the container image.

100

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

docker images sathyabhat/multistage-build

Repository Tag Image ID Created Size

sathyabhat/ latest 35c85a8497b5 Abouta minute ago 54.2MB
multistage-build

WRITING A DOCKERFILE FOR NEWSBOT

In this exercise, you will write the Dockerfile for Newsbot, the Telegram
chatbot project.

Tip The source code and associated Dockerfile are available on
the GitHub repo of the book at https://github.com/Apress/
practical-docker-with-python,inthe source-code/
chapter-4/exercise-3/ directory.

Let’s review what you need for this project:
e A Docker image based on Python 3
¢ The project dependencies listed in requirements.txt
e An environment variable named NBT_ACCESS_TOKEN

Now that you have what you need, you can compose the Dockerfile. The
general steps to composing a Dockerfile are as follows

1. Start with a proper base image.
2. Make a list of files required for the application.

3. Make a list of environment variables required for the
application.

101

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

4. Copy the application files to the image using the COPY instruction.
5. Specify the environment variable with the ENV instruction.
Combining these steps, you arrive at this Dockerfile.

FROM python:3-alpine

WORKDIR /apps/subredditfetcher/

copy . .

RUN ["pip", "install", "-r", "requirements.txt"]
CMD ["python", "newsbot.py"]

Now build the image:

[+] Building 0.9s (9/9) FINISHED

=> [internal] load build definition from Dockerfile 0.1s

=> => transferring dockerfile: 182B 0.0s

=> [internal] load .dockerignore 0.2s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/python:3-
alpine 0.4s

=> [1/4] FROM docker.io/library/python:3-alpine@sha256:3998e97 0.0s

=> [internal] load build context 0.1s

=> => transferring context: 392B 0.0s

=> CACHED [2/4] WORKDIR /apps/subredditfetcher/ 0.0s

=> CACHED [3/4] COPY . . 0.0s
=> CACHED [4/4] RUN ["pip", "install", "-r", "requirements.
txt"] 0.0s

=> exporting to image 0.1s

=> => exporting layers 0.0s

=> => writing image sha256:783b4cO0 0.0s

=> => naming to docker.io/sathyabhat/newsbot

Now run the container. Take care to replace <token> with the Telegram Bot
APl key that you created in Chapter 3.

docker run -e NBT_ACCESS_TOKEN=<token> sathyabhat/newsbot

102

CHAPTER 4 UNDERSTANDING THE DOCKERFILE

You should be seeing logs from the bot to ensure that it’s running:

INFO: <module> - Starting up

INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}

If you see these logs, congratulations! Not only did you write the Dockerfile for
Newsbot, but you also built it and ran it successfully.

Summary

In this chapter, you gained a better understanding of what a Dockerfile is
by reviewing its syntax. You are now one step closer to mastering writing a
Dockerfile for Newsbot.

103

CHAPTER 5

Understanding Docker
Volumes

In the previous chapters, you learned about Docker and its associated
terminologies and took a deeper look into how you can build Docker
images using the Dockerfile. In this chapter, you look at data persistency
strategies for Docker containers and learn why you need special strategies
for data persistence.

Data Persistence

Traditionally, most compute solutions come with associated ways to
persist and save data. In the case of virtual machines, a virtual disk is
emulated, and the data saved to this virtual disk is saved as a file on the
host computer. Cloud providers such as Amazon Web Services (AWS)
provide different services, such as Amazon Elastic Block Store (EBS) and
Amazon Elastic File Systems (EFS). These services provide an endpoint
that can be mounted on the host virtual machine; data saved to these
mount points is persisted and replicated.

When it comes to containers, the story is different. Containers
were meant and designed for stateless workloads and the design of the
container layers shows that. Chapter 2 explained that a Docker image is

© Sathyajith Bhat 2022 105
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_5

https://doi.org/10.1007/978-1-4842-7815-4_5#DOI

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

aread-only template made of various layers. When the image is run as a
container, a container with a small write-only layer of the data is created.
This means that

o Datais tightly locked to the host and makes running
applications that share data across multiple containers
and applications difficult.

o Data doesn’t persist when a container is terminated
and extracting the data out of the container isn’t
possible in an easy manner.

e Writing to a container’s write layer requires a storage
driver to manage the filesystem. Storage drivers do not
provide an acceptable level of performance in terms of
read/write speeds and large amounts of data written to
a container’s write layer can lead to the container and

the Docker daemon running out of memory.

Example of Data Loss Within a Docker
Container

To demonstrate the features of the write layer, let’s bring up a container
from an Ubuntu base image. You will create a file within the Docker
container, stop the container, and see the behavior of the container.

1. Start by creating a nginx container:
docker run -d --name nginx-test nginx
2. Open a terminal within the container:

docker exec -it nginx-test bash

106

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

3. Create a copy of nginx’s default.conf to a new
config file:

cd /etc/nginx/conf.d
cp default.conf nginx-test.conf

4. Youwon’t be modifying the contents of nginx-test.
conf since it’s immaterial. Now you need to stop the
container. From the Docker host terminal, type the
following:

docker stop nginx-test

5. Start the container again:
docker start nginx-test

6. Open a terminal within the container:
docker exec -it nginx-test bash

7. Let’s see if the changes are still around:

cd /etc/nginx/conf.d
1s
default.conf nginx-test.conf

8. Since the container was only stopped, the data
persists. Let’s stop it, remove the container, and then
bring up a new one and observe what happens:

docker stop nginx-test
docker rm nginx-test
9. Start a new container:

docker run -d --name nginx-test nginx

107

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

10. Now that a new container is up and running,

connect to the container’s terminal:
docker exec -it nginx-test bash
11. Examine the contents of the conf.d directory of nginx:

cd /etc/nginx/conf.d
1s
default.conf

Since the container was removed, the write-only layer associated
with the container was also removed and the files created are no longer
accessible. For a containerized stateful application, such as an application
that requires a database, this means that when an existing container is
removed or a new container is added, the data from the previous container
isno longer accessible. To mitigate this, Docker offers various strategies to
persist the data.

¢ tmpfs mounts
¢ Bind mounts

e Volumes

tmpfs Mounts

As the name suggests, a tmpfs creates a mount in a tmpfs, which is a
temporary file storage facility. The directories mounted in tmpfs appear as
a mounted filesystem but are stored in memory, not to persistent storage
such as a disk drive.

tmpfs mounts are limited to Docker containers on Linux. A tmpfs
mount is temporary and the data is stored in Docker’s hosts memory. Once
the container is stopped, the tmpfs mount is removed and the files written
to the tmpfs mount are lost.

108

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

To create a tmpfs mount, you can use the --tmpfs flag when running a
container, as shown here:

docker run -it --name docker-tmpfs-test --tmpfs /tmpfs-mount
ubuntu bash

Let’s examine the container:

docker inspect docker-tmpfs-test | jq ".[0].HostConfig.Tmpfs"

{
"/tmpfs-mount":

}

This output tells you that there is a tmpfs config mapped to the /

tmpfs-mount directory of the container.

tmpfs mounts are best for containers that generate data that doesn’t
need to be persisted and doesn’t have to be written to the container’s
writable layer.

Bind Mounts

In bind mounts, the file/directory on the host machine is mounted into
the container. In contrast, when using a Docker volume, a new directory
is created within Docker’s storage directory on the Docker host and the
contents of the directory are managed by Docker.

Let’s see how you can use bind mounts. You'll try to mount the Docker
host’s home directory to a directory called host-home within the container.
To do this, type the following command:

docker run -it --name bind-mount-container -v $HOME:/host-home
ubuntu bash

Inspecting the created container reveals the different characteristics
about the mount.

109

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

docker inspect bind-mount-container | jq ".[0].Mounts"

[
{
"Type": "bind",
"Source": "/home/sathya",
"Destination": "/host-home",
"Mode": "",
"RW": true,
"Propagation”: "rprivate"
}
]

This output says that the mount is of bind type, the source (i.e.,
the directory of the Docker host being mounted) is /home/sathya (i.e.,
the home directory), and the destination of the mount is /host-home.
The “Propagation” property refers to bind propagation—a property
indicating whether the mounts created for a bind mount are reflected
onto the replicas of that mount. Bind propagation is applicable only to
Linux hosts. For bind mounts, this property typically doesn’t need to
be modified. The RW flag indicates that the mounted directory can be
written to. Let’s examine the contents of the host-home to see that the

mounts are indeed proper.

1. Open the container’s interactive terminal using the

following command:
docker run -it -v $HOME:/host-home ubuntu bash
2. Inthe terminal of the container, type the following:

cd /host-home
1s

110

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

3. The output of the command should be a listing of
your Docker hosts’ home directory. Try creating a
file in the host-home directory. For this, type the

following command:

cd /host-home
echo "This is a file created from container having
kernel “uname -r " > host-home-file.txt

This command creates a file called host-home-file.txt, which
contains the text "This is a file created from container having
kernel 4.9.87-linuxkit-aufs" inthe /host-home directory of the
container. Note the content will vary based on the host OS and kernel
version.

Since this is a bind mount of the home directory of the Docker host, the
file should also be created in the home directory of the Docker host. You
can see if this is indeed the case.

1. Open a new terminal window in your Docker host
and type the following command:

cd ~
1s host-home-file.txt

2. You should be seeing this output, indicating the
presence of the file:

1s host-home-file.txt
host-home-file.txt

3. Now check the contexts of the file:

cat host-home-file.txt

111

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

This file should have the same contents as you saw in the previous
section. This confirms that the file created in the container is indeed
available outside the container. Since you are concerned with data
persistence after the container has been stopped, removed, and started
again, let’s see what happens.

Stop the container by entering the following command in the Docker
host terminal.

docker stop bind-mount-container
docker rm bind-mount-container

Confirm that the file on the Docker host is still present:

cat ~/host-home-file.txt
This is a file created from container having kernel
4.9.87-linuxkit-aufs

Bind mounts are of immense help and are most often used during
the development phase of an application. By having bind mounts, you
can prepare the application for production by using the same container
as production while mounting the source directory as a bind mount. This
allows developers to have rapid code-test-iterate cycles without requiring
the need to rebuild the Docker image.

Caution Remember with bind mounts, the data flow goes both
ways on the Docker host as well as on the container. Any destructive
actions (such as deleting a directory) will negatively impact the
Docker host as well.

As the caution, take utmost care when mounting the host OS directory
into the container as a bind mount. This is even more important if the
mounted directory is a broad one—such as the home directory (as shown
previously) or the root directory. A script gone rogue or a mistaken rm -rf

112

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

command can completely bring down the Docker host. To mitigate this,
you can create a bind mount with a read-only option so that the directory
is mounted read-only.

To do this, you can provide a read-only parameter with the docker run
command. The commands are as follows:

docker run -it --name read-only-bind-mount -v $HOME:/host-
home:ro ubuntu bash

Now inspect the container that was created:

docker inspect read-only-bind-mount | jq ".[0].Mounts"

[
{
"Type": "bind",
"Source": "/home/sathya",
"Destination": "/host-home",
"Mode": "ro",
"RW": false,

"Propagation": "rprivate"

You can see that the “RW” flag is now false and the Mode is set to read-
only (r0). Let’s try writing to the file as earlier.
Open the container terminal:

docker run -it --name read-only-bind-mount -v $HOME:/host-
home:ro ubuntu bash

Typo the following command to create a file in the container:

echo "This is a file created from container having kernel
“uname -1 " > host-home-file.txt
bash: host-home-file.txt: Read-only file system

113

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

The write fails and bash tells you that it was because the filesystem is
mounted read-only. Any destructive operations are also met with the same

error:

rm host-home-file.txt
rm: cannot remove 'host-home-file.txt': Read-only file system

Docker Volumes

Docker volulmes are the current recommended method of persisting data
stored in containers. Volumes are completely managed by Docker and

have many advantages over bind mounts:

e Volumes are easier to back up or transfer than bind
mounts.

¢ Volumes work on both Linux and Windows containers.

e Volumes can be shared among multiple containers
without problems.

Docker Volume Subcommands

Docker exposes the Volume API as a series of subcommands. The
commands are as follows:

e docker volume create
e docker volume inspect
o docker volume 1s

o docker volume prune

e docker volume 1m

114

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

Volume Create

The volume create subcommand is used to create named volumes. The
most common use case is to generate a named volume. The usage for the
command is as follows:

docker volume create --name=<name of the volume> --label=<any
extra metadata>

Tip Docker object labels are discussed in Chapter 4.

For example, this command Creates a named volume called nginx-
volume:

docker volume create --name=nginx-volume

Volume Inspect

The volume inspect command displays detailed information about a
volume. The usage for this command is as follows:

docker volume inspect <volume-name>

Taking the example of the nginx-volume name, you can find more
details by typing:

docker volume inspect nginx-volume
This will bring up the following result:
docker volume inspect nginx-volume

[

"CreatedAt": "2018-04-17T13:51:02Z",
"Driver": "local",

115

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

"Labels": {},

"Mountpoint": "/var/lib/docker/volumes/nginx-volume/
_data",

"Name": "nginx-volume",

"Options": {},
"Scope": "local"

This command is useful when you want to copy/move/take a backup
of a volume. The mount path property lists the location on the Docker
host, which is where the file containing the data of the volume is saved.

List Volumes

The volume 1ls command shows all the volumes present in the host. The
usage is as follows:

docker volume 1s

Prune Volumes

The volume prune command removes all unused local volumes. The usage
is as follows:

docker volume prune

Docker considers volumes that are not used by at least one container
unused. Since unused volumes can end up using a considerable amount of
disk space, it’s not a bad idea to run the prune command at regular intervals,
especially on local development machines. You can append - -force to the
end of command, which will not ask for confirmation of deletion when the
command is run.

116

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

Remove Volumes

The volume rm command removes volumes whose names are provided as
parameters. The usage is as follows:

docker volume rm <name>

In the case of the volume created previously, the command would be
as follows:

docker volume rm nginx-volume

Docker will not remove a volume that is in use and will return an
error. For instance, if you try to delete the nginx-volume volume, which is
attached to the container, you will get the following error message:

docker volume rm nginx-volume

Error response from daemon: unable to remove volume: remove
nginx-volume: volume is in use - [6074757a]

Note Even if the container is stopped, Docker will consider the
volume to be in use.

The long piece of identifier is the ID of the container associated with
the volume. If the volume is associated with multiple containers, all the
container IDs will be listed. More details about the associated container
can be found by using the docker inspect command, as follows:

docker inspect 6074757a

117

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

Using Volumes When Starting a Container

The command for creating a container with a volume attached is shown
here:

docker run --name container-with-volume -v data:/data ubuntu

In this example, a container called container-with-volume is created
with a volume called data being mapped to the /data directory inside the
container. When using volumes, instead of providing the full path of the
host directory, you provide a volume name where the data will be stored.
Behind the scenes, Docker will create and manage this volume by mapping
it to a directory on the host.

Let’s examine the container that was created using the following
command:

docker inspect container-with-volume | jq ".[0].Mounts"

[
{

"Type": "volume",
"Name": "data",
"Source": "/var/lib/docker/volumes/data/_data",
"Destination”: "/data",
"Driver": "local",
"Mode": "z",
"RW": true,
"Propagation":

Looking at the mounts section, you can conclude that Docker created
a new volume called data with the contents of the volume being managed
by Docker in the host directory of /var/1ib/docker/volumes/data/_data.
This volume is mounted to the /data directory of the container.

118

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

These volumes can also be generated ahead of time using the following
command:

docker volume create info

You can use docker volume inspect to examine the volume’s
properties:

docker volume inspect info

[
{
"CreatedAt": "2021-07-27T19:23:00Z",
"Driver": "local",
"Labels": {},
"Mountpoint": "/var/lib/docker/volumes/info/_data",
“Name": "images",
"Options": {},
"Scope": "local"
}
]

You can now refer to this volume when creating/running a container,

as shown here:

docker run -it --name info-container -v info:/container-info
ubuntu bash

Let’s try to create the same file as earlier. From the terminal within the
container, type the following:

echo "This is a file created from container having kernel

“uname -1 " > /container-info/docker kernel info.txt

119

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

Exit the container, and then stop and remove the container using the
following commands:

exit
docker stop info-container
docker rm info-container

In the absence of volumes, when the container was removed, its
writable layer would be removed as well. Let’s see what happens when
you launch a new container with the volume attached. Remember that
this is not a bind mount, so you are not explicitly forwarding any of the
directories from the Docker host. The following command will start a shell
on the container named new-info-container with a volume called info
mounted into the /container-info directory in the container.

docker run -it --name new-info-container -v info:/container-
info ubuntu bash

Examine the contents of the /data-volume directory of the container,
as follows:

cd /container-info/
1s
docker-kernel-info.txt

Examine the contents of docker-kernel-info.txt, as follows:

cat docker_kernel info.txt
This is a file created from container having kernel
4.9.87-linuxkit-aufs.

When you write a file into a directory that is mounted and mapped
to a volume, the data is persisted in the volume. When you launch a new
container, providing the volume name along with the run command
attaches the volume to the container, making any previously saved data
available to the newly launched container.

120

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

The VOLUME Instruction in Dockerfiles

The VOLUME instruction marks the path mentioned after the instruction as
an externally stored data volume that’s managed by Docker. The syntax is
as shown:

VOLUME ["/data-volume"]

The paths mentioned after the instruction can be a JSON array or an
array of paths separated by space.

Note The VOLUME instruction in a Dockerfile doesn’t support
named volumes. As a result, when the container runs, the volume
name will be an autogenerated name.

Exercises

BUILDING AND RUNNING AN NGINX CONTAINER WITH VOLUMES AND
BIND MOUNTS

In this exercise, you will build an nginx Docker image with a Docker volume
attached that contains a custom nginx configuration. In the second part of
the exercise, you will attach a bind mount and a volume containing a static
web page and a custom nginx configuration. The intent of the exercise is to
help you understand how to leverage volumes and bind mounts to make local
development easy.

Tip The source code and associated Dockerfile are available on
the GitHub repo of this book at https://github.com/Apress/
practical-docker-with-python, in the source-code/
chapter-5/exercise-1 directory.

121

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

Start with the Dockerfile, as follows.

FROM nginx:alpine

COPY default.conf /etc/nginx/conf.d
VOLUME ["/var/1lib"]

EXPOSE 80

This Dockerfile takes a base nginx image, overwrites the default.

conf nginx configuration file with the custom default.conf nginx
configuration file, and declares /var/1ib as a volume. You can build this by
using the following command in the docker-volume-bind-mount directory
present in the repo:

docker build -t sathyabhat/nginx-volume .

[+] Building 0.9s (7/7) FINISHED

=> [internal] load build definition from Dockerfile 0.0s

=> => transferring dockerfile: 37B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/
nginx:alpine 0.8s

=> [internal] load build context 0.0s

=> => transferring context: 34B 0.0s

=> [1/2] FROM docker.io/library/nginx:alpine@
sha256:ad14f34 0.0s

=> CACHED [2/2] COPY default.conf /etc/nginx/conf.d 0.0s

=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:f6f3af7 0.0s

=> => naming to docker.io/sathyabhat/nginx-volume 0.0s

122

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

Before you run this image, look at the custom nginx default.conf
contents:

server {
listen 80;
server _name localhost;

location / {
root /srv/www/starter;
index index.html index.htm;

}
access _log /var/log/nginx/access.log;
access_log /var/log/nginx/error.log;

error_page 500 502 503 504 /50x.html;
location = /50x.html {
root /usr/share/nginx/html;

}

The nginx config is a simple config; it tells nginx to serve a default file
called index.html to /srv/www/starter/. Let’s run the Docker container.
Since nginx is listening to port 80, you need to tell Docker to publish the ports
using the -p flag:

docker run -d --name nginx-volume -p 8080:80 sathyabhat/nginx-
volume

Note that you are publishing from the Docker host’s port 8080 to port
80 of the container. Try to load the web page by navigating to http://
localhost:8080

123

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

® ® [404 Not Found X

& C @ localhost:8080 e

404 Not Found

nginx/1.13.10

Figure 5-1. A 404 error when the source directory is not mounted

When you load the website, you'll see a HTTP 404 - Page Not Found error (see
Figure 5-1). This is because in the nginx config file, you directed nginx to

serve index.html. However, you have not yet copied the index.html file

to the container and have not mounted the location of the index.html to the

container as a bind mount. As a result, nginx cannot find the index. html file.

You can correct this error by copying the website files to the container, as you

saw in the previous chapter. In this exercise, you will leverage the bind mount

feature you learned about earlier and mount the entire directory containing the
sources. All that is needed is to use pass the bind mount flag that you learned

about earlier. You don’t have to make changes to the Dockerfile.

Stop the existing container using the following command:

docker stop nginx-volume

124

CHAPTER5 UNDERSTANDING DOCKER VOLUMES

Now, start a new container with the bind mount, as shown in the following
command:

docker run -d --name nginx-volume-bind -v "$(pwd)"/:/srv/www -p
8080:80 sathyabhat/nginx-volume

Confirm that the container is running using the following command:
docker ps

You should see a list of running containers, as shown here:

CONTAINER

ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

54c857ca065b sathyabhat/nginx-volume "nginx -g 'daemon of..."
6 minutes ago Up 6 minutes 0.0.0.0:8080->80/tcp

nginx-volume-bind
Confirm that the volumes and mounts are correct using this command:

docker inspect nginx-volume-bind | jq ".[].Mounts"

[

{
"Type": "bind",
"Source": "/code/practical-docker-with-python/docker-volume-
bind-mount/",
"Destination": "/srv/www",
"Mode": "",
"RW": true,
"Propagation": "rprivate"
b
{

"Type": "volume",
"Name": "c069ba7",

125

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

"Source": "/var/lib/docker/volumes/c069ba7/_data",
"Destination”: "/var/lib",
"Driver": "local",
"Mode": "",
"RW": true,
"Propagation”:
}
]

Let’s navigate to the same URL again. If the mounts section looks fine, then
you should see the page in Figure 5-2.

|V. ® [Bare - Start Bootstrap Templ: x Sathya
t

= C @ localhost:2080

g

Start Bootstrap =

A Bootstrap 4 Starter Template
Complete with pre-defined file paths and responsive navigation!

Bootstrap 4.0.0
jQuery 3.3.0

Figure 5-2. nginx serving the web page successfully

Success!

126

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

ADDING VOLUMES TO NEWSBOT

In the previous chapter’s exercises, you wrote a Dockerfile for Newsbot.
However, as you might have noticed, killing the container resets the state of
Newsbot and you need to customize the bot all over again. To fix this, you will
add an SQLite database and the data file of this database will be saved to a
Docker volume. By completing this exercise, you will know you can persist the
data from a container by saving it to a volume and then reattach the volume to
a new container.

The Newsbot source code has been slightly modified from the codebase so
that the preferences, (i.e., which subreddit the news should be fetched from)
are saved to a SQLite database.

Tip The source code and associated Dockerfile are available on
the GitHub repo of this book at https://github.com/Apress/
practical-docker-with-python,inthe source-code/
chapter-5/exercise-2 directory.

The Dockerfile is modified as shown here:
FROM python:3-alpine

RUN apk add gcc musl-dev python3-dev libffi-dev openssl-dev
WORKDIR /apps/subredditfetcher/

CoPY . .

RUN pip install -r requirements.txt

CMD ["python", "newsbot.py"]

In this Dockerfile, you start with python:3-alpine as the base image.

You add the RUN step to install some library dependencies required for the
Python packages. You then copy the source code into the container and install
the required Python packages. Another notable change is the addition of the

127

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

VOLUME instruction. As you learned earlier, this is to tell Docker to mark the
directory specified to be managed as a volume, even if you did not specify the
required volume name in the docker run command.

Build the image using the following command:
docker build -t sathyabhat/newsbot-sqlite .
The build logs are shown here:

[+] Building 9.5s (11/11) FINISHED

=> [internal] load build definition from Dockerfile 0.1s

=> => transferring dockerfile: 38B 0.0s

=> [internal] load .dockerignore 0.1s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/python:3-
alpine 2.3s

=> [auth] library/python:pull token for registry-i.docker.io 0.0s

=> [internal] load build context 0.1s

=> => transferring context: 6.23kB 0.0s

=> [1/5] FROM docker.io/library/python:3-alpine@sha256:eb31d7f 0.0s

=> CACHED [2/5] RUN apk add gcc musl-dev python3-dev 1libffi-dev
openssl-dev 0.0s

=> CACHED [3/5] WORKDIR /apps/subredditfetcher/ 0.0s

=> [4/5] COPY . . 0.1s

=> [5/5] RUN pip install -r requirements.txt 6.3s

=> exporting to image 0.4s

=> => exporting layers 0.3s

=> => writing image sha256:6605a7a 0.0s

=> => naming to docker.io/sathyabhat/newsbot-sqlite 0.0s

Now run the bot using the docker run command. Note that you provide
the volume name via the -v flag. Don’t forget to pass the Newsbot API key
generated in Chapter 3 to the NBT_ACCESS_TOKEN environment variable.

docker run --rm --name newsbot-sqlite -e NBT_ACCESS_TOKEN -v
newsbot-data:/data sathyabhat/newsbot-sqlite

128

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

The run command creates a new container called newsbot-sqlite, witha
volume called newsbot-data attached to the container and mounted to the /
data directory inside the container. The --xm flag ensures that the container
is removed when it is stopped.

If the bot starts fine, you should start seeing these logs:

docker run --rm --name newsbot-sqlite -e NBT_ACCESS _
TOKEN=<token> -v newsbot-data:/data sathyabhat/newsbot-sqlite

INFO: <module> - Starting newsbot

INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}

Try setting a subreddit from which the bot should fetch the data, say Python.
To do this, from Telegram, find the bot and type /source python.

The logs from the application should confirm the receipt of the command:

INFO: - handle_incoming_messages - Chat text received: /source

python
INFO: - handle_incoming_messages - Sources set for nnn
to python
INFO: - handle_incoming_messages - nnn
INFO: - post message - posting Sources set as python! to nnn

The Telegram window should now look like Figure 5-3.

|
/source python 12:28 AM/ |

Sources set as python! 12:29 Am

. L

(_/2 Write a message) O !

Figure 5-3. Acknowledgement of the subreddit source

129

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

Now you can fetch some content. To do this, type /fetch in the bot window.
The application should respond with a loading message and another chat with
the contents (see Figure 5-4).

ffetch 12:32 AM

r/Python Official Job Board - https://www.reddit.com/r/
Python/comments/8bx6md/rpython official job board

Hang on, fetching your news.. 12:33 AM

What's everyone working on this week? - https://
www.reddit.com/r/Python/comments/8cwslw/

whats_everyone working_on_this week/

The best of Python: a collection of my favorite articles from

2017 and 2018 (so far) - https://medium.freecodecamp.ora/
python-collection-of-my-favorite-articles-8469b8455939

| decided to read a bit about web scraping last night and

came up with this this morning - https://streamable.com/
v586n

Microsoft Releases new PySpark based Distributed Web
Service Framework - https://qgithub.com/Azure/mmlspark/
blob/master/docs/mmlspark-serving.md

reddit

rfPython Official Job Board « r/Python

Please read the rules \- they've updated slightly!
Top Level comments must be **Job

Opportunities** Please include **Location** or
any other... 12:33 AM o

(,7) Write a message... ."\/ \U,:
Figure 5-4. The bot is fetching contents from subreddit

You can now test for data persistency by stopping the bot, removing the
container, and creating a new container. First stop Newsbot by pressing
Ctrl+C. Since you started the container using the - -xm flag, Docker will
automatically remove the container. Create a new container by typing the
same command you used previously to launch the container:

docker run --rm --name newsbot-sqlite -e NBT_ACCESS TOKEN -v
newsbot-data:/data sathyabhat/newsbot-sqlite

130

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

Now, in the Telegram chat window, type /fetch again. Since the subreddit
source has been saved to the database, you should see the content from the
previously configured subreddit (see Figure 5-5).

10 Level COMIMents must oe =~Joo z g
Opportunities.** Please include **Location** or
any other... 12:33 AM

ffetch 12:39 AM

r/Python Official Job Board - https://www.reddit.com/r/
Python/comments/8bxBmd/rpython official job board/

Hang on, fetching your news.. 12:35 4u

What's everyone working on this week? - https://
www.reddit.com/r/Python/comments/8cwsiw/

whats_everyone working on_this week/

The best of Python: a collection of my favorite articles from

2017 and 2018 (so far) - https://medium.freecodecamp.org/
python-collection-of-my-favorite-articles-8469b8455939

| decided to read a bit about web scraping last night and

came up with this this morning - https://streamable.com/
v586n

Microsoft Releases new PySpark based Distributed Web
Service Framework - https://github.com/Azure/mmispark
blob/master/docs/mmispark-serving.md

reddit

r/Python Official Job Board « r/Python
Please read the rules \- they've updated slightly!

Top Level comments must be **Job
Opportunities.** Please include **Location** or
any other... 12:39 AM o

Figure 5-5. Newsbot fetching contents from subreddit after removing
and starting a new container

Look at the content again—the Docker volume setup is working correctly.
Congrats! You have successfully set up data persistence for this project.

131

CHAPTER 5 UNDERSTANDING DOCKER VOLUMES

Summary

In this chapter, you learned why data persistence is a problem in
containers and the different strategies Docker offers for managing data
persistence. You also took a deep dive into configuring volumes and
learned how they differ from bind mounts. Finally, you ran some hands-
on exercises on how to work with bind mounts and volumes and added
volumes support for Newsbot. In the next chapter, you will learn more
about Docker networking and learn how containers can connect to each

other.

132

CHAPTER 6

Understanding Docker
Networks

In the previous chapters, you learned about Docker and its associated
terminologies, took a deeper look into how to build Docker images
using the Dockerfile, and learned about how to persist data generated by
containers.

In this chapter, you will look at networking in Docker and learn how
containers can talk to each other and discover each other with the help of
Docker’s networking features.

Why Do We Need Container Networking?

Traditionally, most compute solutions are thought of as single-purpose
solutions—it is not often that you come across a single host (or a Virtual
Machine) hosting multiple workloads—especially production workloads.
With containers, the scenario changes. With lightweight containers and
the presence of advanced orchestration platforms such as Kubernetes
and DC/OS, it is very common to have multiple containers of different
workloads running on the same host with different instances of the
application distributed across multiple hosts. In such cases, container
networking helps in allowing (or limiting) cross-container talk. And to
facilitate this process, Docker comes with different modes of networks.

© Sathyajith Bhat 2022 133
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_6

https://doi.org/10.1007/978-1-4842-7815-4_6#DOI

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Tip Docker’s networking subsystem is implemented by pluggable
drivers; Docker comes with four drivers out of the box, with more drivers
being available from Docker Store, available at https://store.
docker.com/search?category=network&q=&type=plugin.

It is important to note that all of Docker’s networking modes are
achieved via Software Defined Networking (SDN). Specifically, on Linux
systems, Docker modifies iptables rules to provide the required level of
access/isolation.

Default Docker Network Drivers

With a standard install of Docker, the following network drivers are

available:

o Bridge

¢ Host

e Overlay

e Macvlan

¢ None
Bridge Networks

A bridge network is a user-defined network that allows for all containers
connected on the same network to communicate with each other. The
benefit is that the containers on the same bridge network can connect,
discover, and talk to each other while those not on the same bridge

cannot communicate directly. Bridge networks are useful when you have
containers running on the same host that need to talk to each other—if the
containers that need to communicate are on different Docker hosts, then
an overlay network is needed.

134

https://store.docker.com/search?category=network&q=&type=plugin
https://store.docker.com/search?category=network&q=&type=plugin

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

When Docker is installed and started, a default bridge network is
created and newly started containers connect to it. However, it is always

better if you create a bridge network yourself. The reasons are multiple:

Better isolation across containers. As you
learned, containers on the same bridge network
are discoverable and can talk to each other. They
automatically expose all ports to each other, and
no ports are exposed to the outside world. Having
a separate user-defined bridged network for each
application provides better isolation between
containers of different applications.

Easy name resolution across containers. For
services joining the same bridged network,
containers can connect to each other by name. For
containers on the default bridged network, the only
way for containers to connect to each other is via IP
addresses or by using the --1ink flag, which has been
deprecated.

Easy attachment/detachment of containers on
user-defined networks. For containers on the default
network, the only way to detach them is to stop the
running container and re-create it on the new network.

Host Networks

As the name suggests, with a host network, a container is attached to the

Docker host. This means that any traffic coming to the host is routed to the

container. Since all of container’s ports are directly attached to the host, in

this mode, the concept of publishing ports doesn’t make sense. Host mode

is perfect when you have only one container running on the Docker host.

135

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Overlay Networks

Overlay networks create a network spanning multiple docker hosts. This
type of network is called an overlay because it lays on top of the existing
host network, allowing containers connected to the overlay network to
communicate across multiple hosts. Overlay networks are an advanced
topic and are primarily used when a cluster of Docker hosts is set up in
Swarm mode. Overlay networks also let you encrypt the application data
traffic across the them.

Macvlan Networks

Macvlan networks leverage the Linux Kernel'’s ability to assign multiple
logical addresses based on MAC to a single physical interface. This
means that you can assign a MAC address to a container’s virtual network
interface, making it appear as if the container has a physical network
interface connected to the network. This brings unique opportunities,
especially for legacy applications that expect a physical interface to be
present and connected to the physical network.

Macvlan networks require an additional dependency on the Network
Interface Card (NIC) to support what is known as “promiscuous” mode—a
special mode that allows the NIC to receive all traffic and direct it to a
controller, instead of receiving only traffic that the NIC expects to receive.

None Networking

When a container is launched, Docker connects the container to the
default bridge network. The bridge network allows the container to make
outgoing network requests. Although container networking is definitely
a feature and highlight, there are many cases where an application must
be completely isolated and must not allow for incoming or outgoing
requests—especially with high security and compliance requirement
applications. In such cases, a none networking comes in handy.

136

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

As the name suggests, none networking is when the container isn’t
connected to any network interface and does not receive or send any
network traffic. In this networking mode, only the loopback interface is
created, allowing the container to talk to itself, but not to the outside world
or with other containers.

A container can be launched with none networking using the
command shown here:

docker run -d --name nginx --network=none -p 80:80 nginx

Trying to curl the endpoint results in an instant Connection Refused,
indicating that the container is not accepting connections.

curl localhost
curl: (7) Failed to connect to localhost port 80 after 1 ms:
Connection refused

If you open an interactive terminal with the container and try an
outgoing network request using curl, as shown here:

docker exec -it nginx sh
curl google.com
curl: (6) Could not resolve host: google.com

You'll see that there is no networking configured. The container cannot
receive or send network traffic.

Working with Docker Networks

Now that you conceptually understand the different network modes, you
can try some of them. This chapter only looks at the bridge network, as it’s
the most commonly used driver. Much like the other subsystems, Docker
comes with a subcommand for handling Docker networks. To get started,
try the following command:

docker network

137

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

You should see an explanation of the available options:
docker network
Usage: docker network COMMAND

Manage networks

Options:

Commands:
connect Connect a container to a network
create Create a network

disconnect Disconnect a container from a network

inspect Display detailed information on one or more networks
1s List networks

prune Remove all unused networks

m Remove one or more networks

Now look at which networks are available. To do this, type the following:
docker network 1s
At the minimum, you should see these networks listed:

docker network 1ls

NETWORK ID NAME DRIVER SCOPE
8€a951d9f963 bridge bridge local
790ed54b21ee host host local
38ce4d23e021 none null local

Each of these corresponds to the three different types of networks
mentioned previously—the bridge, the host, and the none type of
networks. You can examine the details of the networking by typing the
following:

docker network inspect <network id or name>

138

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

For instance, if you want to check the default bridge network, type the
following command:

docker network inspect bridge

[

"Name": "bridge",
"Id": "c540708",
"Created": "2018-04-17T13:10:43.002552762Z",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": [
{
"Subnet": "172.17.0.0/16",
"Gateway": "172.17.0.1"

1

"Internal”: false,

"Attachable": false,

"Ingress": false,

"ConfigFrom": {
"Network": ""

}J

"ConfigOnly": false,

"Containers": {},

"Options": {
"com.docker.network.bridge.default bridge": "true",

139

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

"com.docker.network.bridge.enable_icc": "true",
"com.docker.network.bridge.enable ip masquerade":
"true",
"com.docker.network.bridge.host_binding ipv4":
"0.0.0.0",

"com.docker.network.bridge.name": "dockero",
"com.docker.network.driver.mtu": "1500"

b
"Labels": {}

Among other things, you can see that:

e The com.docker.network.bridge.default bridge key
under Options indicates that the bridge is the default.

e "EnableIPv6": false indicates that IPv6 is disabled
for this bridge.

o The "Subnet" key under IPAM - Configindicates
that the Docker network subnet has a CIDR of
172.17.0.0/16. This means that up to 65,536 containers
can be attached to this network (this is derived from the
CIDR block of /16).

o The com.docker.network.bridge.enable ip_
masquerade under Options indicates that the bridge
has IP masquerading enabled. This means that the
outside world cannot see the container’s private IP and
it will appear as if the requests are coming from the
Docker host.

o The com.docker.network.bridge.host _binding ipv4
indicates that the host binding is 0.0.0.0. This that the
bridge is bound to all interfaces on the host.

140

CHAPTER6 UNDERSTANDING DOCKER NETWORKS
In contrast, if you inspect the none network:

docker network inspect none

[

"Name": "none",
"Id": "d30afbe",
"Created": "2017-05-10T10:37:04.125762206Z",
"Scope": "local",
“Driver": "null",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": []
}’
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
}J
"ConfigOnly": false,
"Containers": {},
"Options": {},
"Labels": {}

The driver null indicates that no networking will be handled for this.

141

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Bridge Networks

Before you create a bridge network, you need to create two containers

running:
o MySQL database server

e adminer, a web-based portal for managing MySQL
databases

To create the MySQL container, run the following command:

docker run -d --name mysql -p 3306:3306 -e MYSQL ROOT
PASSWORD=dontusethisinprod mysql:8

Since you are starting in detached mode (as specified by the -d flag),
follow the logs until you are certain the container is up:

docker logs -f mysql
The result should be the following lines:

Initializing database

[...]

Database initialized

[...]

MySOL init process in progress...

[...]
MySOL init process done. Ready for start-up.

[...]

[Note] mysqld: ready for connections.
Version: '8.0.26' socket: '/var/run/mysqld/mysqld.sock’ port:
3306 MySQL Community Server (GPL)

[...]

142

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Ifyou see the last set of lines, the MySQL database container is ready.
Create the adminer container:

docker run -d --name adminer -p 8080:8080 adminer
Here are the logs of adminer:

docker logs -f adminer
PHP 7.4.22 Development Server started

That means adminer is ready. Now look at the two containers—
specifically, their networking aspects.

docker inspect mysql | jq ".[0].NetworkSettings.Networks"
{
"bridge": {
"IPAMConfig": null,
"Links": null,
"Aliases": null,
"NetworkID": "8ea951d",
"EndpointID": "c33e38",
"Gateway": "172.17.0.1",
"IPAddress": "172.17.0.2",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:11:00:03",
"DriverOpts": null

143

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

From this output, you know that the MySQL container has been
assigned an IP address of 172.17.0.2 on the default bridge network. Now
examine the adminer container:

docker inspect adminer | jq ".[0].NetworkSettings.Networks"
{
"bridge": {
"IPAMConfig": null,
"Links": null,
"Aliases": null,
"NetworkID": "8ea951d",
"EndpointID": "a26bcc",
"Gateway": "172.17.0.1",
"IPAddress": "172.17.0.3",
"IPPrefixLen": 16,
"IPvbGateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:11:00:04",
"DriverOpts": null

The adminer container is associated with IP address 0f 172.17.0.3
within the bridge network. However, since both containers are bound to
the host IP 0of 0.0.0.0, translated to all interfaces of the Docker host, you
should be able to connect by its port.

Within a bridge network, whether it’s the default Docker bridge
network or a custom bridge network that you create (you will see this in the
chapter’s exercise), all the containers are accessible using their container
names. However, these containers can be accessed from the host only if
their ports have been exposed. To demonstrate this, try to connect to the
database via adminer. Navigate to http://localhost:8080.

144

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Enter the server as mysql and try to log in. You'll notice that the login
will fail (see Figure 6-1).

<] localhost (o]

Adminer 4.6.2 Login

SQLSTATE[HY000] [2002] Connection

refused
System | MySQL <
Server mysal

Username | root

Password

Database

Login Permanent login

Figure 6-1. Connection to named host fails

Try to log in again, this time in the server box. Enter the IP address of
the MySQL container, as shown in Figure 6-2.

145

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

[NON) m] localhost (] i} (=]}

]
Adminer 4.6.2 Login
System | wmysaL B
Server ;1?2.17.0‘2|

Username | root

Password [

Database |

Login Permanent login

Figure 6-2. Trying to log in with the IP address of the container

When you try to log in, it should be successful (see Figure 6-3).

146

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

o0® < M localhost & th =0
' MySQL » 172.17.0.2 Logout
Adminer 4.2 Select database
DB: B Create database Privileges Process list
Variables Status
EQL stommand Import MySQL version: 5.7.18 through PHP extension
“Po PDO_MySQL

Logged as: root@172.17.0.3

‘ Database - Refresh | Collation Tables 23:1;,“‘ .
|T. information_schema |utf8_general_ci ? o _7
I . mysql latinl_swedish_ci . 7 ? ;
I | performance_schema | utf8_general_ci | ? ? ;
| _ |sys iutfs_generai_cl | ? "'

—Selected (0)—

Drop

Figure 6-3. Login with IP address is successful

The login is successful. While entering the IP is an acceptable
workaround when there’s only one dependent container, many
applications have multiple dependencies. This approach breaks down in
those cases.

Creating Named Bridge Networks

In this section, you'll create a database network and try to connect the
MySQL and the adminer container to the network. You can create a bridge
network by typing the following command:

docker network create <network name>

Docker gives you more options in terms of specifying the subnet, but
for most part the defaults are good. Note that the bridge network allows
you to create only a single subnet.

147

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Create a network called database using the following command:

docker network create database

Now inspect the network you created:

docker network inspect database

[

148

"Name": "database",
"Id": "8574145",
"Created": "2021-07-31T15:58:11.4652433Z",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": {},
"Config": [
{
"Subnet": "172.18.0.0/16",
"Gateway": "172.18.0.1"

b

"Internal”: false,

"Attachable": false,

"Ingress": false,

"ConfigFrom": {
"Network": ""

}J

"ConfigOnly": false,

"Containers": {},

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

"Options": {},
"Labels": {}

Note that the created network has a subnet of 172.18.0.0/16. Stop
and remove the existing containers using the following commands:

docker stop adminer
docker rm adminer
docker stop mysql
docker rm mysql

Now launch the MySQL container, this time connected to the database
network. The command is as follows:

docker run -d --network database --name mysql -p 3306:3306 -e
MYSQL_ROOT PASSWORD=dontusethisinprod mysql:8

Note the additional - -network flag, which tells Docker what network it
should attach the container to. Wait for the container to initialize. You can
also check the logs and ensure that container is ready:

docker logs -f mysql
The result should be the following lines:

Initializing database

[...]

Database initialized

[...]

MySOL init process in progress...

[...]
MySQL init process done. Ready for start up.

[...]

149

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

[Note] mysqld: ready for connections.
Version: '8.0.26"' socket: '/var/run/mysqld/mysqld.sock’
3306 MySQL Community Server (GPL)

Examine the container now:

docker inspect mysql | jq ".[0].NetworkSettings.Networks"
{
"database": {
"IPAMConfig": null,
"Links": null,
"Aliases": [
"6149cb2453da"
1,
"NetworkID": "8574145",
"EndpointID": "3343960402",
"Gateway": "172.18.0.1",
"IPAddress": "172.18.0.2",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:12:00:02",
"DriverOpts": null

Note that the container is part of the database network. You can
confirm this by inspecting the database network as well.

150

port:

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

docker network inspect database | jq ".[0].Containers"
{
"6149cb2": {

"Name": "mysql",

"EndpointID": "3343960",

"MacAddress": "02:42:ac:12:00:02",

"IPv4Address": "172.18.0.2/16",

"IPv6Address": ""

Note that the containers key in the database network has the MySQL
container. Launch the adminer container as well. Type the following
command:

docker run -d --name adminer -p 8080:8080 adminer

Notice that the --network command has been omitted. This means
adminer will be connected to the default bridge network:

docker inspect adminer | jq ".[0].NetworkSettings.Networks"
{
"bridge": {
"IPAMConfig": null,
"Links": null,
"Aliases": null,
"NetworkID": "8ea951d",
"EndpointID": "c1a5dfo",
"Gateway": "172.17.0.1",
"IPAddress": "172.17.0.2",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",

151

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:11:00:02",
"DriverOpts": null

}
}

Connecting Containers to Named Bridge Networks

Docker lets you easily connect a container to another network on the fly.
To do this, type the following command

dockr network connect <network name> <container name>

You need to connect the adminer container to the database network, as
follows:

docker network connect database adminer
Inspect the adminer container now:

docker inspect adminer | jq ".[0].NetworkSettings.Networks"
{
"bridge": {
"IPAMConfig": null,
"Links": null,
"Aliases": null,
"NetworkID": "8ea951d",

[...]
"DriverOpts": null

}J

"database": {
"IPAMConfig": {},
"Links": null,
"Aliases": [

152

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

"2a7363ec1888"
1,
"NetworkID": "8574145",

[...]
"DriverOpts": {}

Notice that the networks key has two networks, the default bridge
network and the database network that you just connected to. Since the
container doesn’t need to be connected to the default bridge network, you
can disconnect it. To do this, the command is as follows:

docker network disconnect bridge adminer

Examining the adminer container now using the following command,
you can see only the database network connected.

docker inspect adminer | jq ".[0].NetworkSettings.Networks"
{
"database": {
"IPAMConfig": {},
"Links": null,
"Aliases": [
"2a7363ec1888"

1,
"NetworkID": "8574145",

[...]
"DriverOpts": {}

153

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

The bridge network is no longer attached to the adminer network.
Launch adminer by navigating to http://localhost:8080. In the Server
field, type the name of the container that you want to connect to, that is,
the database container name, mysql, as shown in Figure 6-4.

_.-'.-. ¢ localhost ¢ t a »Ii
Adminer as.2 Login
System MySQL K
Server mysal

Password IOI.-C.IQ!.I‘I..’I ?v

|
|
Username | root ‘
|
|

Database

Login [|Permanent login

Figure 6-4. Connecting to container via named host

Enter the details and click Login. The login should be successful, and
you should see a screen like the one shown in Figure 6-5.

154

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

o0® < m localhost & t a +
MySQL » mysql Logout
Adminer 4.6.2 Select database
DB: B Create database Privileges Process list Variables
Status
g%o‘:fmma“d Import MySQL version: 5.7.18 through PHP extension PDO_MySQL
Logged as: root@172.25.0.3
Database - Refresh Collation Tables | 512 -
| I ICompute |
7 |information_sch utf8_g Lci | ? ?
) __!'n!‘st!l | Iatlnl;swed_ish:ci | ? ?_
performance_schema utf8_general_ci 7 ?
| |sys utf8_general_ci ? ?
Selected (0)

Drop

Figure 6-5. Named host resolves to IP and connects successfully

Thus, user-defined bridged networks make connecting services very
easy; you don’t have to mess and search for the IP addresses. Docker
makes it easy by letting you connect to the services using the name of the
container as the host. Docker handles the behind-the-scenes translation of
the container name to the IP address.

Host Networks

In a host network, Docker doesn’t create a virtual network for the
container; rather, the Docker host’s network interface is bound to the
container.

Host networks are excellent when you have only one container running
on the host and don’t need any bridge networks or network isolation. Now
you'll create a nginx container running in host mode to see how you can

run it.

155

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Earlier you saw that there is already a network called host. This is
not the name that governs whether the network is a host network; it’s
the driver. Recall that the host network has a host driver, and hence any
container connected to the host network will run in host network mode.
To start the container, you simply pass the --network host parameter.
Try the following command to start a nginx container and publish port 80
of the container to the host’s 8080 port.

docker run -d --network host -p 8080:80 nginx:alpine
WARNING: Published ports are discarded when using host network mode

Notice that Docker warns you that port publishing isn’t being used. Since
the container’s ports are directly bound to the Docker post, the concept of a
published port doesn’t arise. The actual command should be as follows:

docker run -d --network host nginx:alpine

Exercises

CONNECTING A MYSQL CONTAINER TO A NEWSBOT CONTAINER

In the previous chapter’s exercises, you wrote a Dockerfile for Newsbot and built
the container. You then used Docker volumes to persist the database across
containers. In this exercise, you will modify Newsbot so that the data persists to a
MySQL database, instead of being saved to an SQLite DB. You will then create a
custom bridge network to connect the project container and the MySQL container.

Tip The source code and associated Dockerfile are available on
the GitHub repo of this book at https://github.com/Apress/
practical-docker-with-python,inthe source-code/
chapter-6/exercise-1 directory.

156

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Consider the following Dockerfile. It looks, and actually is, quite similar to
the Dockerfile you used in Exercise 2 of Chapter 5. The only change that is

needed is to Newsbot’s code so that it connects to the MySQL server instead

of reading from the SQLite database.
FROM python:3-alpine

RUN apk add gcc musl-dev python3-dev libffi-dev openssl-dev
WORKDIR /apps/subredditfetcher/

copy . .

RUN pip install -r requirements.txt

CMD ["python", "newsbot.py"]

Now build the container using the following command:

docker build -t sathyabhat/newsbot-mysql .

[+] Building 2.9s (11/11) FINISHED

=> [internal] load build definition from Dockerfile 0.1s

=> => transferring dockerfile: 38B 0.0s

=> [internal] load .dockerignore 0.1s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/python:3-
alpine 2.6s

=> [auth] library/python:pull token for registry-i.docker.io 0.0s
=> [1/5] FROM docker.io/library/python:3-alpine@sha256:1e8728b 0.0s

=> => resolve docker.io/library/python:3-alpine@sha256:1e8728b 0.0s

=> [internal] load build context 0.0s
=> => transferring context: 309B 0.0s

=> CACHED [2/5] RUN apk add gcc musl-dev python3-dev libffi-dev

openssl-dev cargo 0.0s
=> CACHED [3/5] WORKDIR /apps/subredditfetcher/ 0.0s
=> CACHED [4/5] COPY . . 0.0s

=> CACHED [5/5] RUN pip install --upgrade pip && pip install -r

requirements.txt 0.0s
=> exporting to image 0.0s

157

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

=> => exporting layers 0.0s
=> => writing image sha256:44cd813 0.0s
=> => naming to docker.io/sathyabhat/newsbot-mysql 0.0s

Create a new network called newsbot to which the containers will be
connected. To do this, type the following:

docker network create newsbot

Now you’ll bring up a new MySQL container and connect it to the network you
created previously. Since you want the data to persist, you will also mount the
MySQL database to a volume called newsbot-db. This exercise uses root for
the username and dontusethisinprod for the password. These credentials
are extremely weak and we highly recommend you not use them in the real
world.

Type the following command to start the MySQL container:

docker run -d --name mysql --network newsbot -v newsbot-db:/var/
lib/mysql -e MYSQL_ROOT_PASSWORD=dontusethisinprod mysql:8

Note the --network flag, which tells Docker to connect the mysql container
to the network called newsbot. MySQL saves all files related to the database
inthe /var/1ib/mysql directory, and the -v newsbot-db:/var/lib/
mysql flag instructs Docker to save the contents of the /var/1ib/mysql
directory in the container to the volume called newsbot-db. That way, the
contents are persisted even after the container has been removed.

Follow the logs and verify that the MySQL database is up:
docker logs mysql

Initializing database

[...]

Database initialized

[...]

158

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

MySOL init process in progress

[...]
MySQL init process done. Ready for start up.

[...]

2021-08-01T12:41:15.295013Z 0 [Note] mysqld: ready for
connections.

Version: '8.0.26"' socket: '/var/run/mysqld/mysqld.sock' port:
3306 MySOL Community Server (GPL)

The last couple of lines indicate that the MySQL database is up. Now start
the Newsbot container while connecting it to the newsbot network that you
created. To do this, type the following command:

docker run --rm --network newsbot --name newsbot-mysql -e NBT
ACCESS_TOKEN=<token> sathyabhat/newsbot-mysql

Take care to replace <token> with the value of the Newsbot API key
generated in Chapter 3.

You should see the following logs:

INFO: <module> - Starting up

INFO: <module> - Waiting for 60 seconds for db to come up

INFO: <module> - Checking on dbs

INFO: get updates - received response: {'ok': True, 'result': []}
INFO: get updates - received response: {'ok': True, 'result': []}

Since created a new volume, the sources that were set from the previous
chapter are not available.

Set the subreddit again from which the bot should fetch the data, say Docker.
To do this, from Telegram, find the bot and type /source docker. The logs
from the application should confirm the receipt of the command:

159

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

INFO:

INFO:

INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

handle_incoming_messages - Chat text received: /source

docker

handle_incoming messages - Sources set for 7342383

to docker
handle_incoming_messages - 7342383
post message - posting Sources set as

get_updates - received response: {'ok':
get updates - received response: {'ok':
get_updates - received response: {'ok':
get updates - received response: {'ok':

docker! to 7342383
True, 'result': []}
True, 'result': []}
True, 'result': []}

(1}

True, 'result':

Your Telegram window should look like the one shown in Figure 6-6.

f - ——

[source docker 6:50 PMv/

Sources set as docker! 550 P

©

Write a message...

=)

Figure 6-6. Acknowledgement of the subreddit source

Now you can fetch some content. To do this, type /fetch in the bot window.
The application should respond by loading a message and another chat with
the contents, as shown in Figure 6-7.

160

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Telegram

° SubRedditFetcherBot Q oo

bot
[fetch 6:52 pMv

Hang on, fetching your news.. 6:52 pu

Cronut - Docker Cron Demon - https://
www.reddit.com/r/docker/comments/8fbQaw/
cronut docker cron demon/

Kubernetes is hard? Learn Kubernetes in
Under 3 Hours: A Detailed Guide to
Orchestrating Containers - https://
www.reddit.com/r/docker/comments/8f1p9a/
kubernetes is hard learn kubernetes in unde
r 3/

How to populate a private registry with
images from hub.docker.com - https://
www.reddit.com/r/docker/comments/8fQuas/
how to populate a private reqgistry with imag

es/

dnsmasq on host as dns server for container -
https://www.reddit.com/r/docker/comments/

8f8lae/

dnsmasqg on_host as dns server for containe

74

Kubernetes Is Hard: Why EKS Makes It Easier
for Network and Security Architects -
Medium. - https://www.reddit.com/r/docker/
comments/8f0y6n/

Figure 6-7. The bot is fetching contents from the subreddit

161

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Now you’ll confirm that Newsbot is indeed saving the sources to the database.
To do this, connect to the running mysql container using the following
command:

docker exec --it mysql sh

Now in the container shell, type the following command to connect to the
MySQL server:

mysql -p

Enter the password (mentioned previously) to connect. You'll get the following
message if you entered the correct password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 32

Server version: 8.0.26 MySQL Community Server - GPL

Copyright (c) 2000, 2021, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql>

In the MySQL prompt, type the following command to ensure that the Newshot
database exists:

show databases;

162

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

You should see a database list similar to the following listing:

show databases;

| information_schema |
| mysql |
| newsbot

| performance_schema |
| sys |

5 rows in set (0.03 sec)

Type the following command to select the database and then fetch the
contents of the table called source:

use newsbot

select * from source;
R TR +
| person id | fetch from |
R TR +
| 7342383 | docker |
R TR +
1 row in set (0.00 sec)

This shows you that Newsbot can successfully connect to the MySQL
container and save data to the database.

163

CHAPTER6 UNDERSTANDING DOCKER NETWORKS

Summary

In this chapter, you learned about the basics of container networking and
the different modes of Docker networking. You also learned how to create
and work with custom Docker bridged networks and read about insights
into Docker host networks. Finally, you ran some hands-on exercises on
creating a separate Database container (using MySQL) and learned how
to connect the Database container to the Newsbot project. In the next
chapter, you learn about Docker Compose and how easy Docker Compose
makes it to run multiple, dependent containers.

164

CHAPTER 7

Understanding Docker
Compose

In the previous chapters, you learned about Docker and its associated
terminologies, took a deeper look into how you can build Docker
images using the Dockerfile, understood how to persist data generated
by containers, and linked various running containers with the help of
Docker’s network features.

In this chapter, you will look at Docker Compose, which is a tool
for running multi-container applications, bringing up various linked,
dependent containers, and more—and all with just one config file and a

command.

Overview of Docker Compose

As software becomes more complicated and as you move more toward
the microservices architecture, the number of components that need

to be deployed increases considerably as well. While microservices
might help keep the overall system fluid by encouraging loosely coupled
services, from an operations point of view, things get more complicated.
This is especially challenging when you have dependent applications.
For instance, for a web application to start working correctly, it needs

its database to be working before the web tier can start responding to
requests.

© Sathyajith Bhat 2022 165
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_7

https://doi.org/10.1007/978-1-4842-7815-4_7#DOI

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Docker makes it easy to tie each microservice to a container. Docker
Compose makes orchestration of all of these containers very easy. Without
Docker Compose, the container orchestration steps would involve building
the various images, creating the required networks, and then running the
application using a series of docker run commands in the necessary order.
As and when the number of containers increases and as the deployment
targets increase, running these steps manually becomes unreasonable and
you will need to go toward automation.

From alocal development point of view, bringing up multiple,
linked services manually gets very tedious and painful. Docker Compose
simplifies this a lot. By just providing a YAML file describing the containers
required and the relationship between the containers, Docker Compose
lets you bring up all the containers with a single command. And it’s not
just about bringing up the containers—Docker Compose also lets you do
the following:

e Build, stop, and start the containers associated with the
application.

o Tail the logs of the running containers, saving you the
trouble of having to open multiple terminal sessions for

each container.
o View the status of each container.

Docker Compose helps you enable Continuous Integration. By
providing multiple, disposable, reproducible environments, Docker
Compose lets you run integration tests in isolation, allowing for a clean-
room approach to these automated test cases. It lets you run the tests,
validate the results, and then tear down the environment cleanly.

166

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Installing Docker Compose

Docker Compose comes pre-installed as part of Docker Install and doesn’t
require any additional steps to get started on macOS and Windows
systems. On Linux systems, you can download the Docker Compose
binary from its GitHub Release page, available at https://github.com/
docker/compose/releases. Alternatively, you can run the following curl
command to download the correct binary.

sudo curl -L https://github.com/docker/compose/releases/
download/1.21.0/docker-compose-$(uname -s)-$(uname -m) -o /usr/
local/bin/docker-compose

If you have Python and pip installed, you can also use pip to install
docker-compose using the following command:

pip install docker-compose

Note Ensure that the version number in the pip install
docker-compose command matches the latest version of Docker
Compose on the GitHub Releases page. Otherwise, you will end up
with an outdated version.

Once the binary has been downloaded, change the permissions so that
it can be executed using the following command:

sudo chmod +x /usr/local/bin/docker-compose

If the file was downloaded manually, copy the downloaded file to
the /usr/local/bin directory before running the command. To confirm
that the install was successful and is working correctly, run the following
command:

docker-compose version

167

https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

The result should be versions of Docker Compose, something similar
to this:

docker-compose version 1.29.1, build 5becea4c
docker-py version: 5.0.0

CPython version: 3.9.0

OpenSSL version: OpenSSL 1.1.1g 21 Apr 2020

Docker Compose Basics

Unlike the Dockerfile, which is a set of instructions to the Docker Engine
about how to build the Docker image, the Compose file is a YAML
configuration file that defines the services, networks, and volumes that are
required for the application to be started. Docker expects the Compose
file to be present in the same path where the docker-compose command
is invoked and to be called docker-compose.yaml (or docker-compose.
yml). This can be overridden using the - flag followed by the path to the
Compose filename.

Docker Compose Version Overview

With Docker Desktop version 3.4, Docker introduced a newer version of
Docker Compose, known as Compose V2. Compose V2 is supposed to be
a drop-in replacement for the older version of compose. Docker extracted
the YAML file model of the Compose file, created a community around it,
and submitted it as a specification, known as the Compose specification.
Compose V2 implements the Compose specification. However, it is not
yet at feature parity with Compose V1 and can be enabled from within
Experimental Settings of Docker Desktop settings. Given the lack of
feature parity, this chapter focuses on Compose V1. If you need specific
features that are present in Compose V2, such as support for GPU devices

168

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

and profiles, you can use the rest of the chapter as a guide. Just replace
the docker-compose command (with the hyphen) with docker compose
(replace the hyphen with a space) and the commands should still work.

Compose File Versioning and the Compose Spec

Although the Compose file is a YAML file, Docker uses the version key

at the start of the file to determine which features of the Docker Engine
are supported. There are three versions of the Compose file format. With
Docker Compose v1.27.0 and Docker Compose V2, Docker has unified
the version 2.x and 3.x of the Compose file format and submitted it to the
Community as a specification. Here’s a brief description of the previous
three versions of the Compose file format:

e Version 1: Version 1 is considered a legacy format. If
a Docker Compose file doesn't have a version key at
the start of the YAML file, Docker considers it to be a
version 1 format. Version 1 has been deprecated and is
no longer supported.

e Version 2.x: Version 2.x identified by the version 2.x
key at the start of the YAML file.

e Version 3.x: Version 3.x identified by the version 3.x
key at the start of the YAML file.

o Compose spec: The compose spec unifies versions
2.x and 3.x of the Compose file format and has been
submitted it to the Community as a specification. The
Compose specification also deprecates the version key.

The differences between the three major versions are discussed in the
following sections.

169

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Version 1

Docker Compose files that do not have a version key at the root of the
YAML file are considered to be Version 1 compose files. Version 1 will be
deprecated and removed in a future version of Docker Compose, so I do
not recommend writing Version 1 files. Besides the deprecation, Version 1
has the following major drawbacks:

e Version 1 files cannot declare named services, volumes,
or build arguments.

o Container discovery is enabled only by using the
links flag.

Version 2

Docker Compose Version 2 files have a version key with a value of 2 or 2.x.
Version 2 introduces a few changes, which makes version 2 incompatible
with previous versions of Compose files. These include:

o All services must be present in the services key.

¢ All containers are located on an application-specific
default network and the containers can be discovered
by the hostname, which is specified by the service

name.
¢ Links are made redundant.

o The depends_on flag is introduced allowing for you to
specify dependent containers and the order in which
the containers are brought up.

170

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Version 3

Docker Compose Version 3 files have a version key with a value 3 or
3.x. Version 3 removes several options that were deprecated, including
volume_driver, volumes from, and many more. Version 3 also adds a
deploy key, which is used for deployment and running of services on
Docker Swarm.

Compose Specification

Docker unified versions 2.x and 3.x of the Compose file format and
introduced the Compose specification. With Docker Compose version 1.27
and above, Docker implements the Compose spec as the current latest
format. Docker has also declared the previous versions as legacy, although
they are still supported. The Compose Specification also deprecates the
version key in the Compose file. The Compose Specification allows you

to define container applications not tied to any specific Cloud provider,
comprising fundamental building blocks required for multi-container
application:

o Services key defines the compute aspects,
implemented as one or more containers.

o Networks key defines how services communicate with
each other.

o Volumes key defines how services store persistent data.

A sample reference Compose file is shown in Listing 7-1.

171

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Listing 7-1. A Sample Docker Compose File

services:
database:
image: mysql

environment:
MYSQL_ROOT_PASSWORD: dontusethisinprod
volumes:
- db-data:/var/lib/mysql
webserver:

image: 'nginx:alpine’
ports:
- 8080:80
depends_on:
- cache
- database
cache:
image: redis

volumes:
db-data:

Similar to the Dockerfile, the Compose file is very readable and makes
it easy to follow along. This compose file is for a typical web application
that includes a webserver, a database server, and a caching server. The
Compose file declares that when Docker Compose runs, it will bring up
three services—the webserver, the database server, and the caching server.
The webserver depends on the database and the cache service, which
means that unless the database and the cache service are brought up,
the webservice will not be brought up. The cache and the database keys
indicate that for cache, Docker must bring up the Redis image and the
MySQL image for the database.

172

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE
To bring up all the containers, issue the following command:
docker-compose up -d

[+] Running 4/4

Network code default Created 0.1s
Container code database 1 Started 1.2s
Container code_cache_1 Started 1.1s
Container code webserver 1 Started 2.3s

Once the command is issued, Docker will bring up all the services in
the background. Note that even though the Compose file has the definition
of the database first, the webserver second, and the cache as the last,
Docker still brings up the caching container and the database container
before bringing up the webserver container. This is because you defined
the depends_on key for the webserver as follows:

depends_on:
- cache
- database

This tells Docker to bring up the cache and the database containers
first before bringing up the webserver. Docker Compose, however, will not
wait and check that the cache container is ready to accept connections and
then bring up the database container—it merely brings up the containers
in the specified order.

You can see the logs by typing the following command:

docker-compose logs

webserver 1 | [notice] 1#1: nginx/1.21.1
database 1 | [Note] [Entrypoint]: Switching to dedicated user

"mysql’
cache 1 | # Server initialized
cache_1 | * Ready to accept connections

173

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Docker will aggregate the STDOUT of each container and will be
streaming them when run in the foreground. By default, docker-compose
logs will only show a snapshot of the logs. If you want the logs to be
streamed continuously, you can append the -f or --follow flag to tell
Docker to keep streaming the logs. Alternatively, if you want to see the last
n logs from each container, you can type this:

docker-compose logs --tail=n

where n is the required number of lines that you want to see. Stopping
the containers is as simple as issuing the stop command, as shown here:

docker-compose stop

[+] Running 3/3

Container code webserver 1 Stopped 0.5s
Container code database 1 Stopped 1.4s
Container code cache 1 Stopped 0.4s

To resume the stopped containers, issue the start command:

docker-compose start

[+] Running 3/3
Container code database 1 Started 1.8s
Container code_cache_1 Started 1.9s
Container code webserver 1 Started 0.7s

To completely tear down the containers, issue the following command:
docker-compose down

This will stop all containers and will also remove the associated
containers, networks, and volumes that were created when docker-
compose up was issued.

174

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

[+] Running 4/4
i Container code webserver 1 Removed 0.5s
Container code cache 1 Removed 0.6s
Container code database 1 Removed 1.3s
i Network code default Removed 0.2s

Docker Compose File Reference

Recall that the Compose file is a YAML file for configuration that Docker
reads and sets up the Compose job. This section explains what the
different keys in a Docker Compose file do.

Services Key

Services is the first root key of the Compose YAML and it’s the
configuration of the container that needs to be created.

Build Key

The build key contains the configuration options that are applied at build
time. The build key can be a path to the build context or a detailed object
consisting of the context and optional Dockerfile location:

services:
app:
build: ./app
services:
app:
build:
context: ./app
Dockerfile: dockerfile-app

175

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Context Key

The context key sets the context of the build. If the context is a relative
path, the path is considered relative to the Compose file’s location.

build:
context: ./app
Dockerfile: dockerfile-app

Image Key

If the image tag is supplied along with the build option, Docker will build
the image, and then name and tag the image with the supplied image

name and tag.

services:
app:
build: ./app
image: sathyabhat:app

environment/env_file Key

The environment key sets the environment variables for the application,
while env_file provides the path to the environment file that’s read to set
the environment variables. Both environment and env_file can accept a
single file or multiple files as an array.

In the following example, for the app service, two environment
variables—PATH and API_KEY, with values /home and thisisnotavalidkey,
respectively—are set to the app service.

services:

app:
image: mysql

176

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

environment:
PATH: /home
API KEY: thisisnotavalidkey

In the following example, the environment variables from a file called
.env are fetched, and the values are assigned to the app service.

services:
app:
image: mysql
env_file: .env

In the following example, multiple environment files defined under the
env_file key are fetched, and the values are assigned to the app service.

services:
app:
image: mysql
env_file:
- common.env
- app.env
- secrets.env

depends_on Key

This key is used to set the dependency requirements across various
services. Consider this config:

services:
database:
image: mysql
webserver:
image: nginx:alpine

177

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

depends_on:
- cache
- database
cache:

image: redis

When docker-compose up is issued, Docker will bring up the services
as per the defined dependency order. In the previous case, Docker brings
up the cache and database services before bringing up the webserver
service.

Caution With the depends_on key, Docker will only bring up the
services in the defined order; it will not wait for each service to be
ready and then bring up the successive service.

Image Key

This key specifies the name of the image to be used when a container is
brought up. If the image doesn’t exist locally, Docker will attempt to pull
it if the build key is not present. If the build key is in the Compose file,
Docker will attempt to build and tag the image.

services:
database:
image: mysql

ports Key

This key specifies the ports that will be exposed to the port. When
providing this key, you can specify both ports (i.e., the Docker host port
to which the container port will be exposed or just the container port), in
which case, a random, ephemeral port number on the host is selected.

178

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

services:
database:
image: nginx
ports:
- "8080:80"

services:
database:
image: nginx
ports:
- "80"

Volumes Key

Volumes is available as a top-level key as well as a suboption available to a
service. When volumes are referred to as top-level keys, it lets you provide
the named volumes that will be used for services at the bottom. The
configuration for this looks like this:

services:
database:
image: mysql
environment:
MYSQL_ROOT PASSWORD: dontusethisinprod
volumes:
- "dbdata:/var/lib/mysql”
webserver:

image: nginx:alpine
depends_on:

- cache

- database

179

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

cache:
image: redis

volumes:
dbdata:

In the absence of the top-level volumes key, Docker will throw an error
when creating the container. Consider the following configuration, where
the volumes key has been skipped:

services:
database:
image: mysql
environment:
MYSQL_ROOT PASSWORD: dontusethisinprod
volumes:
- "dbdata:/var/lib/mysql”
webserver:
image: nginx:alpine

depends_on:
- cache
- database
cache:

image: redis
Trying to bring up the containers throws an error, as shown here:

docker-compose up
service "database" refers to undefined volume dbdata: invalid
compose project

It is possible to use bind mounts as well. Instead of referring to the
named volume, all you have to do is provide the path. Consider this
configuration:

180

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

services:
database:
image: mysql
environment:
MYSQL_ROOT PASSWORD: dontusethisinprod
volumes:
- ./dbdir:/var/lib/mysql
webserver:
image: nginx:alpine

depends_on:
- cache
- database
cache:

image:redis

The volume key has a value of . /dbdir:/var/1ib/mysql, which means
Docker will mount dbdir in the current directory to the /var/1ib/mysql
directory of the container. Relative paths are considered in relation to the
directory of the Compose file.

Restart Key

The restart key provides the restart policy for the container. By default,
the restart policy is set as no, which means Docker will not restart the
container, no matter what. The following restart policies are available:

o no: Container will never restart
o always: Container will always restart after exit

o on-failure: Container will restart if it exits due to an

error

e unless-stopped: Container will always restart unless
exited explicitly or if the Docker daemon is stopped

181

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Docker Compose CLI Reference

The docker-compose command comes with its own set of subcommands.
The following sections explain them.

The build Subcommand

The build command reads the Compose file, scans for build keys, and
then proceeds to build and tag the image. The images are tagged as
project_service. If the Compose file doesn’t have a build key, Docker will
skip building any images. The usage is as follows:

docker-compose build <options> <service...>

If the service name is provided, Docker will proceed to build the image
for just that service. Otherwise, it will build images for all the services.
Some of the commonly used options are as follows:

--compress: Compresses the build context
--no-cache Ignore the build cache when building the image

The down Subcommand

The down command stops the containers and will proceed to remove the
containers, volumes, and networks. Its usage is as follows:

docker-compose down

The exec Subcommand

The compose exec command is equivalent to the docker exec command.
It lets you run ad hoc commands on any of the containers. Its usage is as
follows:

docker-compose exec <service> <command>

182

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

The logs Subcommand

The logs command displays the log output from all the services. Its usage
is as follows:

docker-compose logs <options> <service>

By default, logs will only show the last logs and for all services. You can
show logs for just one service by providing the service name. The -f option
follows the log output.

The stop subcommand

The stop command stops the containers. Its usage is as follows:

docker-compose stop

Exercises

BUILDING AND RUNNING A MYSQL DATABASE CONTAINER WITH
A WEB Ul FOR MANAGING THE DATABASE

In this exercise, you will build a multi-container application consisting of a
container for the MySQL database and another container for adminer, a
popular Web Ul for MySQL. Since you already have prebuilt images for MySQL
and adminer, you won’t need to build them.

Tip The source code, Dockerfile, and docker-compose files
associated with this exercise are available on the GitHub repo of this
book at https://github.com/Apress/practical-docker-
with-python,inthe source-code/chapter-7/exercise-1
directory.

183

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 7 UNDERSTANDING DOCKER COMPQSE
You can start with the Docker Compose file, as follows:

services:
mysql:
image: mysql
environment:
MYSQL _ROOT PASSWORD: dontusethisinprod
ports:
- 3306:3306
volumes:
- dbdata:/var/lib/mysql
adminer:
image: adminer
ports:
- 8080:8080

volumes:
dbdata:

This Compose file combines everything that you learned in this book into

one concise file. Since you are targeting the Compose spec, you can omit

the version tag. Under Services, define two services—one for the database,
which pulls in a Docker image called mysql. When the container is created,
an environment variable, MYSQL_ROOT_PASSWORD, sets the root password for
the database and port 3306 from the container is published to the host.

The data in the MySQL database is stored in a volume known as dbdata and
is mounted to the /var/1ib/mysql directory of the container. This is where
MySQL stores the data. In other words, any data saved to the database in the
container is handled by the volume named dbdata. The other service, called
as adminer, just pulls in a Docker image called adminer and publishes port
8080 from the container to the host.

184

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Validate the Compose file by typing the following command:

docker-compose config

If everything is okay, Docker will print out the Compose file as it as parsed; it
should look like this:

services:
adminer:

image: adminer

networks:
default: null

ports:

- mode: ingress
target: 8080
published: 8080
protocol: tcp

mysql:

environment:
MYSQL _ROOT_PASSWORD: dontusethisinprod

image: mysql

networks:
default: null
ports:

- mode: ingress
target: 3306
published: 3306
protocol: tcp

volumes:

- type: volume
source: dbdata
target: /var/lib/mysql
volume: {}

185

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

networks:
default:
name: docker-compose-adminer default
volumes:
dbdata:
Run all containers by typing the command as follows:

docker-compose up -d
The containers will start in the background, as shown here:

docker-compose up -d

[+] Running 3/3
¢ Network docker-compose-adminer default Created 0.1s
i Container docker-compose-adminer adminer 1 Started 1.0s
i Container docker-compose-adminer mysql 1 Started 1.1s

Now take a look at the logs. Type the following command:

docker-compose logs
adminer 1 | PHP 7.4.22 Development Server (http://[::]:8080)
started

mysql 1 | [Note] [Entrypoint]: Entrypoint script for MySQL
Server 8.0.26-1debian10 started.
mysql 1 | [System] [MY-010931] [Server] /usr/sbin/mysqld:

ready for connections. Version: '8.0.26'

This tells you that the adminer Ul and MySQL database are ready. Try logging
in by navigating to http://localhost:8080. The adminer login page (see
Figure 7-1) should load.

186

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

@ ® < (il} localhost & th (] o

Adminer 4.2 Login

: System . MySQL %]

Server db

Username
Password |

Database

Login Permanent login

Figure 7-1. adminer login page

Notice that the server has been populated with the value db. Since docker-
compose creates its own network for the application, the hostname for each
container is the service name. In this case, the MySQL database service name
is mysql and the database will be accessible via the mysql hostname. Enter
the username as root and the password as the one entered in the MYSQL _
ROOT_PASSWORD environment variable (see Figure 7-2).

187

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

oe2e < M localhost & t
Adminer a6.2 Login

[system | mysaL

| Server mysg||

Username root

| Password ssssssscsssscsses

Database

Login Permanent login

Figure 7-2. adminer login details

If the details are correct, you should see the database page shown in
Figure 7-3.

188

e8e® < > M

Adminer as.2

DB: B

SQL command Import
Export

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

localhost < :]

MySQL » mysqgl

Select database

S

Logout

Create database Privileges Process list Variables Status
MySQL version: 5.7.18 through PHP extension PDO_MySQL
Logged as: root@172.23.0.3

Database - Refresh | Collation Tables | Size - Compute
...... h UtfB_ Ici ? ?
mysql latinl_swedish_ci 7 [
perfor _sch utfB_g Ici ? ?
sYs utfB_general_ci ? . ?

Selected (0)

Drop

Figure 7-3. Database details available once you're logged in

CONVERTING NEWSBOT TO A DOCKER COMPOSE PROJECT

In the exercise in Chapter 6, you added volumes to Newsbot and the data was
persisted to a MySQL container. You also brought up the newsbot and mysql

containers separately and connected them to the common bridge network.

In this exercise, you will write a Docker Compose file containing the Newsbot
container and MySQL container, with an attached volume to persist the data.
In this exercise, you will see how easy Docker Compose makes it to bring up
multiple containers, each with their associated properties.

Tip The source code, Dockerfile, and docker -compose files
associated with this exercise are available on the GitHub repo of this book

athttps://github.com/Apress/practical-docker-with-

python, in the source-code/chapter-7/exercise-2 directory.

189

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Let’s create a new Docker Compose file and add the following contents:

services:
newsbot:
build: .
depends_on:
- mysql
restart: "on-failure"
environment:
- NBT_ACCESS_TOKEN=${NBT ACCESS TOKEN}
networks:
- newsbot

mysql:

image: mysql
volumes:

- newsbot-db:/var/lib/mysql
environment:

- MYSQL_ROOT_PASSWORD=dontusethisinprod
networks:

- newsbot

volumes:
newsbot-db:

networks:
newsbot:

Since you need two services, one for Newsbot and one for the MySQL server,
there are keys corresponding to each of them. For Newsbot, you add a
depends_on key with a value of mysql to indicate that the MySQL container
should be started before Newsbot. But as you saw earlier, Docker doesn’t wait
for the MySQL container to be ready, so Newsbot has been modified to wait 60
seconds before attempting to connect to the mysql container. There is also a
restart policy to restart the newsbot container on failure of the application.

190

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Newsbot requires the Telegram bot API token, which you pass to the container
environment variable NBT_ACCESS_TOKEN from the same host environment
variable. Each of the two services also has a network key indicating that the
containers are to be connected to the newsbot network. Finally, you add

the top-level keys for volume and network, declared as newsbot-db for
persisting MySQL data for the volume and newsbot as the network.

You can verify that the Compose file is correct and valid by typing the config
command shown here:

docker-compose config

Docker prints the config of the Compose that you wrote, similar to the
Compose file itself.

services:
mysql:
environment:
MYSQL_ROOT_PASSWORD: dontusethisinprod
image: mysql
networks:
newsbot: null
volumes:
- type: volume
source: newsbot-db
target: /var/lib/mysql
volume: {}
newsbot:
build:
context: exercise-2/newsbot-compose
dockerfile: exercise-2/newsbot-compose/Dockerfile
depends_on:
mysql:
condition: service started
environment:

191

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

NBT ACCESS TOKEN: ""
networks:
newsbot: null
restart: on-failure
networks:
newsbot:
name: newsbot-compose newsbot
volumes:
newsbot-db:
name: newsbot-compose newsbot-db

Now run the Compose application. Don’t forget to pass the <token> with the
value of the Newsbot API key that you generated in Chapter 3.

NBT_ACCESS_TOKEN=<token> docker-compose up
You should see the containers being built and started up, like this:

[+] Running 4/4

i Network newsbot-compose newsbot Created 0.0s
i Volume "newsbot-compose newsbot-db" Created 0.0s
¢ Container newsbot-compose mysql 1 Started 1.6s
i Container newsbot-compose newsbot 1 Started 1.8s

Attaching to mysql 1, newsbot 1
newsbot 1 | INFO: <module> - Starting up
newsbot_1 | INFO: <module> - Waiting for 60 seconds for db to

come up
mysql 1 | [System] [MY-013577] [InnoDB] InnoDB
initialization has ended.

mysql 1 | [System] [MY-010931] [Server] /usr/sbin/mysqld:

ready for connections. Version: '8.0.26' socket: '/var/run/
mysqld/mysqld.sock' port: 3306 MySQL Community Server - GPL.
newsbot_1 | INFO: <module> - Checking on dbs

newsbot 1 | INFO: get updates - received response: {'ok':
True, 'result': []}

192

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

newsbot 1 | INFO: get updates - received response: {'ok':
True, 'result': []}
newsbot 1 | INFO: get updates - received response: {'ok':
True, 'result': []}
newsbot 1 | INFO: get updates - received response: {'ok':
True, 'result': []}

The last line indicates that the bot is working. Try setting a source and fetching
the data by typing /sources docker and then /fetch into the Telegram
bot. If all goes well, you should see the result in Figure 7-4.

Telegram

9] @
SubRedditFetcherBot
< bot

[source docker 9:22 AM
Sources set as docker! 922 Ay

ffetch 9:23 AMw

K L
o
o
o

Hang on, fetching your news.. 9.2z au

Liman: Basic docker monitoring web application. - https://
www.reddit.com/r/docker/comments/8edgav/
liman basic docker monitoring web application/

Querying Docker Hub via API...7 - https://www.reddit.com/r/
docker/comments/8ee36k/querying docker hub via api/

Everything Docker? - https://www.reddit.com/r/docker/
comments/8ebdqgu/everything docker/

Make my own image, combine in one? - https:// .
www.reddit.com/r/docker/comments/8ebnu5/ N
make my own image combine in one/

@ Write a message.. (Té) \O/

Figure 7-4. The subreddit fetcher bot in action

193

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

You can go one step further by modifying the Compose file to include the
adminer service so that you have a WebUI to check that the contents are
being saved to the database. Modify the existing Docker compose file to
include the adminer service as shown here and save it to a file called
docker-compose.adminer.yml:

services:
newsbot:
build: .
depends_on:
- mysql
restart: "on-failure"
environment:
- NBT_ACCESS_TOKEN=${NBT_ACCESS_TOKEN}
networks:
- newsbot

mysql:

image: mysql
volumes:

- newsbot-db:/var/lib/mysql
environment:

- MYSQL_ROOT_PASSWORD=dontusethisinprod
networks:

- newsbot

adminer:
image: adminer
ports:
- 8080:8080
networks:
- newsbot

volumes:
newsbot-db:

194

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

networks:
newsbot:

Confirm that the Compose file is valid by typing the config command as
follows:

docker-compose -f docker-compose.adminer.yml config
services:
adminer:
image: adminer
networks:
newsbot: null
ports:
- mode: ingress
target: 8080
published: 8080
protocol: tcp
mysql:
environment:
MYSQL_ROOT_PASSWORD: dontusethisinprod
image: mysql
networks:
newsbot: null
volumes:
- type: volume
source: newsbot-db
target: /var/lib/mysql
volume: {}
newsbot:
build:
context: exercise-2/newsbot-compose
dockerfile: exercise-2/newsbot-compose/Dockerfile
depends_on:
mysql:
condition: service started

195

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

environment:
NBT_ACCESS_TOKEN: ""
networks:
newsbot: null
restart: on-failure
networks:
newsbot:
name: newsbot-compose newsbot
volumes:
newsbot-db:
name: newsbot-compose newsbot-db

Now tear down the existing Compose file using the following command:
docker-compose down

[+] Running 3/3

i Container newsbot-compose newsbot 1 Removed 1.0s
i Container newsbot-compose mysql 1 Removed 0.1s
Network newsbot-compose newsbot Removed 0.1s

Since the data is persisted to volumes, you shouldn’t be worried about data
loss.

Bring up the service again using the following command. Don’t forget to pass
the <token> with the value of the Newsbot API key that you generated in
Chapter 3.

NBT_ACCESS_TOKEN=<token> docker-compose -f docker-compose.
adminer.yml up

Running 4/4
it Network newsbot-compose newsbot Created 0.1s
i Container newsbot-compose adminer 1 Started 7.1s
it Container newsbot-compose mysql 1 Started 7.1s
i Container newsbot-compose newsbot 1 Started 5.1s
Attaching to adminer 1, mysql 1, newsbot 1

196

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

mysql 1 | [System] [MY-010931] [Server] /usr/sbin/mysqld:
ready for connections. Version: '8.0.26"' socket: '/var/run/
mysqld/mysqld.sock' port: 3306 MySQL Community Server - GPL.
newsbot 1 | INFO: <module> - Starting up

newsbot_1 | INFO: <module> - Waiting for 60 seconds for db to
come up

newsbot_1 | INFO: <module> - Checking on dbs

newsbot 1 | INFO: get updates - received response: {'ok': True,
'result': []}

Navigate to adminer by heading to http://localhost:8080. Log in using
the root username, with the password set in the MYSQL_ROOT_PASSWORD
value and the Server value as mysql. Click the Newsbot database, source as
the table, and then choose Select Data. You should see the subreddit that you
earlier set to source (see Figure 7-5).

e0e < m localhost & a} s

MySQL » mysql » newsbot » Select: source Logout

Adminer 4.2 Select: source

DB: | newsbot B Select data Show structure Alter table New item

SQL command Irport Select —Search— —Sort — Limit —Text length —Action
Export Create table 50 & 100 = Select
select message SELECT * FROM “source’ LIMIT 50 Edit

select reguest

select source Modify | person_id fetch_from

edit 7342383 docker

Whole result Modify Selected (0) Export (1)
1 row Save Edit Clone Dulete
Import

Figure 7-5. The project running with data saved to the database

Success! The application is running, and the data is saved to the MySQL
database and persisted, despite removing and re-creating the containers.

197

CHAPTER 7 UNDERSTANDING DOCKER COMPOSE

Summary

In this chapter, you learned about Docker Compose, including how to
install it and why it is used. You also took a deep dive into the Docker
Compose file and the CLI. You ran some exercises on building multi-
containers applications with Docker Compose. You also learned how to
extend the Newsbot project to a multi-container application using Docker
Compose, by adding a linked database and a Web UI to edit the database.

198

CHAPTER 8

Preparing for
Production
Deployments

In the previous chapters, you learned about Docker and its associated
terminologies and took a deeper look into how to build Docker images
using the Dockerfile. You also learned how to persist data generated by
containers and you enabled network communication across the running
containers with help of Docker’s network features. You then learned how
Docker Compose makes it easy to run multi-container applications by
writing your requirements in a simple YAML file and providing that as an
input to Docker Compose.

In this chapter, you learn how to prepare your Docker image to deploy
your application in production, including a brief overview of Continuous
Integration, and how to set up Continuous Integration with GitHub
Actions. The chapter touches upon container orchestration and the
various orchestrators available. It includes an overview of one of the most
popular container orchestrators in the market, Kubernetes.

© Sathyajith Bhat 2022 199
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_8

https://doi.org/10.1007/978-1-4842-7815-4_8#DOI

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Continuous Integration (Cl)

Continuous Integration is the practice of automatically having each
developer’s code changes merged into the main branch of a source code
repository, multiple times a day. Along with merge, the process also runs
different tests—including unit tests, integration tests, functional tests—
and when all the tests pass, a build artifact is created and saved, usually to
some sort of artifact storage.

This generated artifact is taken into the next steps, deployed to
development and staging environments to form what is known as the
CI/CD (Continuous Integration/Continuous Delivery) pipeline. As the
software build and test process matures, it is not uncommon for many
teams to switch from Continuous Delivery to Continuous Deployment. In
Continuous Delivery, the final artifact is ready to be deployed at any time,
but the deployment is usually manually initiated. Continuous Deployment
completely automates the end-to-end build-to-release pipeline, with the
final build artifacts being automatically deployed as well.

CI/CD has become quite popular in today’s software development
lifecycle because of the rapid feedback cycle a CI/CD pipeline provides.
With a well-defined pipeline, it’s possible for a developer to open a GitHub
Pull Request with the changes to their source, have the Continuous
Integration pipeline kick into effect, start the tests for the new code, get
a static analysis done, and have an artifact ready for deployment, all in
a span of a few minutes, and automatically with no one having to start
anything or run things manually.

With Docker, CI/CD becomes even more effortless. With Dockerfile,
there’s a simple, reproducible way to rebuild the required image with the
dependencies, and the Docker image’s portability means that the image
can run on any host that has the Docker daemon installed on it. This is
an important distinction from the previous way of packaged software.
The Docker image is self-contained. No more hassles about getting the
dependencies right with the required versions, host OS dependencies,

200

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

and so on. For microservices, testing dependent systems as part of source
code check-in becomes even easier. With a Docker Compose file that has
the required services defined, a simple docker-compose up is sufficient to
bring up the services and test them.

There are many CI tools in the market, and most of the Source Code
Management (SCM) systems—such as GitHub and GitLab—themselves
provide a subset of Continuous Integration features. The next section
explains how to set up Continuous Integration on GitHub using GitHub
Actions.

GitHub Actions

GitHub Actions makes it easy to set up automated deploys and workflows
that revolve around the Git repository you're working on. With GitHub
Actions, you can define a workflow that gets triggered on every commit or
push it to a branch to do a variety of actions. These actions can vary from
simplistic echoes to complex linting, spinning up multiple containers.

GitHub Actions are event driven, so a workflow is triggered based on
specific events such as a new pull request being opened or a new commit
being pushed to the repository, just to name a few. Every event triggers a
workflow. A workflow can have one or more jobs, and a job can include a
series of steps to build, test, package, or release on GitHub or elsewhere,
such as the Python Package Index (PyPI) or Docker Hub.

GitHub Actions run on servers called runners. Runners have the
GitHub Actions runner application installed on them, listening for
commands. GitHub provides hosted runners, but you can run your own
runners. This is especially useful if you have compliance requirements to
build the software in your own environment.

The steps to be performed as part of the pipeline are defined using a
file known as the Actions Workflow file. The workflow file uses a YAML-
based specification to define the events, jobs, and steps that need to be

201

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

run, with support for conditionals to allow for specific jobs to run when
conditions are met. For GitHub Actions to pick up and run a workflow,
GitHub expects these workflow files to be saved in the .github/workflows
directory at the root of the repository.

In this section, you will write a sample workflow file that will run on
each commit. Before proceeding, you should have an empty public GitHub
repo to test GitHub Actions. A sample workflow file is shown in Listing 8-1.

Listing 8-1. A Sample Github Actions Workflow File

name: Run compose
on: [push]

jobs:
Tun-compose:
timeout-minutes: 10
runs-on: ubuntu-latest

steps:
- name: Checkout
uses: actions/checkout@vi
- name: Start containers
run: docker-compose version

Tip The syntax and the keys for the Actions spec file are available
on the GitHub documentation page at https://docs.github.
com/en/actions/reference/workflow-syntax-for-
github-actions.

202

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

There are various keys in the Actions YAML file that you can examine:

o name: The name key defines the name of the workflow
file that will be shown on the Actions tab.

o on: The on key defines the event during which the
workflow will be triggered. This lets you determine at
what point or during which event the workflow should
be run.

e timeout-minutes: The timeout key lets you define how
long a job can run before being cancelled by GitHub.

e runs-on: The runs-on key defines the runner on which
the job runs.

o steps: The steps key defines the steps a specific job
must run.

o uses: This key tells GitHub to fetch a specific action.
Besides the steps you can run, GitHub Actions also
allow you to use third-party actions that you have
developed, reducing the need to rebuild everything. In
this specific example, you instruct GitHub Actions to
fetch the checkout action, which does a Git checkout
and downloads the source code to the runner.

e run: The run key lets you define custom commands
that can be run. This is useful when you want to
run something that is not covered by the custom
commands.

Looking at the Actions workflow file again, it defines a GitHub runner
that will check out the source code and run a docker-compose version
command.

203

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Save this file as .github/workflows/compose.yaml, commit the files,
and push this to the GitHub repo. Once you push the commit to the remote
repository, GitHub should start the workflow immediately. From your
GitHub repository page, click the Actions tab, and you can see the result of
the workflow.

If you prefer a CLI approach, GitHub has a CLI tool that can give you
feedback without having to open a tab and navigate to actions. To get
started, you need to install the GitHub CLI, as mentioned in https://cli.
github.com/.

Once the CLI is installed, open a new terminal session. Authenticate
with GitHub by typing the following command:

gh auth login

Follow the instructions and you should be able to log in successfully.
Once you're logged in, switch to the public repo directory that you created.
Change to the newly cloned repo using the following command:

cd <repo>

Once in the repo, you can look at the workflows using the gh workflow
list command:

gh workflow list

This should show only one workflow, the one that you created, as
shown here:

gh workflow list
Run compose active <workflow id>

The number at the end is the ID of the workflow. You can examine the
results of the workflow using the workflow view command, as shown here:

204

https://cli.github.com/
https://cli.github.com/

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS
gh workflow view <workflow id>

Run compose - compose.yaml
ID: <workflow id>

Total runs 1
Recent runs
v test actions Run compose master push <run id>

You can dive deeper into this run by using the gh run command, as
shown here:

gh run view <run id>

v master Run compose - <run id>
Triggered via push about 10 hours ago

JOBS
v run-compose in 5s (ID <job id»)

You can further dig into the results of the job with the job ID and the gh
run command with the --job parameter:

gh run view --job <job id>

v master Run compose - <run id>
Triggered via push about 10 hours ago

v run-compose in 5s (ID <job id»)
v Set up job
v Checkout
v Start containers
v Complete job

205

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Thus, with a simple YAML file, you've defined and set up your
Continuous Integration workflow, which will get automatically triggered
upon every new push. This example only shows a simple example of
running a docker-compose version command. However, with the
wealth of custom community-built actions as well as support for custom
commands, it is easy to set up a comprehensive Continuous Integration
system that can run linters, perform container security checks, and even
build a new image. Later in the chapter, as part of the exercise, you will
see this in action and set up a CI system for Newsbot so that a new Docker
image gets built on every push.

Container Orchestration

Orchestration is the process of deploying a container to a suitable host

(or many hosts) and managing the lifecycle of the deployed containers,
including scaling up or down the number of containers as well as the
underlying nodes based on the different metrics, such as CPU/memory
utilization, network traffic, and so on. Orchestration also handles replacing
the nodes and containers when they crash or error out. Orchestrators are
used to perform many of the manual tasks that are needed to keep the
containers running smoothly, without the need for manual intervention by
human operators.

The Need for Orchestrators

Earlier, you learned that containers make it easy to deploy applications.
With a single command, you can get one or more services up and running,
with the required dependencies self-contained within the Docker image,
or multiple linked containers that are expressed in Docker Compose files.
The question then arises—if the application and dependencies are self-
contained, why do you need orchestrators?

206

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Containers ease the pain of running linked services for a developer.
Developers can build their images, run them locally, and continue working
on the local changes without having to update the local development setup or
deploy the software to designated development environments. This process
would be evolving and changing, especially when you have multiple people
working on projects. By eliminating the toil involved in running software and
empowering a developer to run their applications with a simple docker run
or docker-compose up, Docker makes it easier to iterate and build.

In a production landscape, things get much more complicated.
Containers make production deployments easier, but having to run many
containers and having to maintain their lifecycle becomes a tedious affair.
Why would you need to run multiple containers, you might wonder.

Consider Newsbot, the chatbot application that you've been working
on throughout this book. It is a simple Python application that keeps
polling the Telegram bot API, responds to messages, and posts back to
Telegram. When you have a fewer number of requests, a single container
is enough to respond to requests in a timely manner. However, as more
people start using it, the number of requests the bot must handle increases
significantly, and at a certain point, having just one container will be
insufficient to respond to the requests. To cope with the demand, you need
to scale up by increasing the number of containers. Without orchestrators,
to do this, you have to run the command to bring up new containers.
Doing this once or twice is okay, but having to do this repeatedly is not
feasible. This is where orchestrators come in.

How Do Orchestrators Work?

While exact implementations of orchestrators differ across various tools,
the general process remains the same. Most orchestrators are usually
segmented into two tiers:

e Control tier, also known as the control plane
o Worker tier, also known as the worker plane

207

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

The control plane of an orchestrator handles incoming requests and
operations related to controlling, running, and managing the orchestrator,
while the worker plane handles the actual scheduling and orchestration of
the containers in the designated nodes.

The orchestration process starts with a declarative description of
the intended goal: this can be a YAML or a JSON file that describes
what services to run, where to download the required container images
(typically pointing to a Container registry), the number of replicas to run,
what type of networking is needed to link the containers, and where to
store the persistent data. If this looks like the Docker Compose file you
learned about in Chapter 7, that is a valid observation.

A Compose Spec file describes these exact requirements. However,
Docker Compose was meant and designed for single nodes. It cannot
orchestrate a container across multiple nodes and is not suitable as an
orchestrator, especially for workloads that span multiple nodes. For single-
node workloads, however, it might be easier and simpler to use Docker
Compose.

Once the orchestrator receives a request to increase the number of
containers or to deploy a new container, it will perform a series of steps

before running the container:

e The scheduler determines the node where the
container is to be scheduled. This is done based on
several constraints that may be in place, such as the
required memory, CPU needed by the container,
whether a GPU or specific classes of storage are
required, and so on.

e Asuitable node is selected; a request is sent to start the
container. This includes different steps such as pulling
the Docker image (if it is not present already), setting
up the container network, and associating with the
required volumes.

208

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

e Start the container.

o Ifthe container has been configured with health
checks, wait for the health checks to be positive before
signaling that the container is ready to accept the
workload.

e Once the container is up and running, the orchestrator
will continuously monitor the health check of the
container. If the health check fails, the orchestrator will
terminate the container and bring up a new container
in its place.

This entire process happens continuously in a loop and the
orchestrator checks every few seconds for every container request that has
been submitted to the orchestrator.

Popular Orchestrators

Kubernetes is quite possibly the most popular orchestrator but is no
means the only orchestrator around. Other orchestrators that are available
include:

¢ Docker Swarm
¢ DC/OS
e HashiCorp Nomad

With DC/OS reaching end-of-life and longer being supported,
HashiCorp Nomad is slowly becoming more popular in smaller companies
that do not need all the bells and whistles of Kubernetes. Another point
to note is that you don’t have to run a container orchestrator yourself
to make the best use of containers. There are many managed container
orchestrators that handle the control plane of the orchestrator. This frees
you of the operational burden of having to run, maintain, and upgrade

209

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

the control plane of the clusters and you can focus purely on running
and maintaining your application. Some of these managed orchestrators
include:

e Amazon EKS

e Amazon ECS

e Amazon Fargate

e Azure Kubernetes Service
e Azure Container Instances
¢ Google Kubernetes Engine
e Google Cloud Run

Amazon ECS, Amazon Fargate, Azure Container Instances, and Google
Cloud Run use each company’s respective proprietary orchestration
engines and have their custom specifications that need to be submitted,
after which the containers will be scheduled and orchestrated.

Amazon EKS, Azure Kubernetes Service, and Google Kubernetes
Engine are managed Kubernetes services that support all the features that
you expect from a Kubernetes provider. Kubernetes is a huge topic and
covering all its features is a topic for another book and out of scope for
this chapter. For this reason, the next sections bring up a test Kubernetes
cluster using kind (Kubernetes in Docker) and attempt to run some
sample applications.

Kubernetes

Kubernetes (also known as k8s) has emerged as the most popular
container orchestrator today. Kubernetes is an open source system for
deploying, scaling, operating, and managing containerized applications.
Kubernetes was created by a group of Google engineers who used their

210

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

experience running Borg, an internal container orchestrator at Google, to
build an open source project. Kubernetes simplifies some complexities
and eases the pain points observed while using Borg. Kubernetes gained
popularity due to the relative ease of use and the features it provides out of
the box, including but not limited to:

e Automated rollouts and rollbacks
o Full container lifecycle management
e Support for horizontal and vertical scaling

o Self-healing capabilities, including container and
node-level failure resilience

e Advanced Role-Based Access Control (RBAC) features
to allow access only to authorized users and groups

A Kubernetes cluster has various nodes that run containerized
applications. These nodes are usually powered by virtual machines
running in the cloud. In the industry, Kubernetes nodes are also seen
running on powerful bare-metal hardware running in on-premises data
center machines as well as at the edge, running on low-power devices.
As noted in the previous section, the nodes are further segmented into
Kubernetes control planes and worker planes, which include various

components.

Kubernetes Control Plane

The Kubernetes control plane components control the state of the cluster
and managing the workloads to be scheduled across the cluster. The
control plane includes various components, and each component can be

211

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

run on either a single master node or multiple master nodes, where high
availability and fault tolerance is required. The control plane components
include:

o Kubernetes API server (or kube-apiserver): The
kube-apiserver exposes the Kubernetes API and acts as
a frontend to the cluster, through which any request to
the Kubernetes cluster is accepted.

o Etcd: eted is a highly available key-value store that is used
as the backing store for Kubernetes cluster data. Losing
etcd is a catastrophic loss and as such all measures
should be taken to back up the data periodically.

e Scheduler: The Kubernetes Scheduler constantly
monitors the available nodes onto which the workloads
can be scheduled. When new requests come to start
a new workload, it determines and schedules the
relevant node where the workload can be scheduled.

o Controller manager: A controller is a process that is
responsible for maintaining the status of individual
subcomponents, such as the status of individual nodes,
one-time jobs, among others. The controller manager
runs each of these controllers and ensures that they are
working as expected.

Kubernetes Worker Plane

The Kubernetes worker plane includes one or many worker nodes, with
each node running various node components that maintain the workloads.

The components include:

¢ Kubelet: The kubelet is a process that runs on every
node in the cluster and registers the node it is running
with the API server to accept workloads. The kubelet

212

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

ensures that the containers and workloads are running
in the node and maintains the lifecycle of a container,
as directed by the API server.

e Kube-proxy: The kube-proxy is a network proxy that
runs on every node and implements the networking
features of Kubernetes. The kube-proxy maintains the
network rules and sessions and routes traffic to the
desired containers.

Most of the interactions with the Kubernetes are via the API, and the
kubectl command-line application lets you control Kubernetes clusters by
talking to the Kubernetes API. The kubectl application implements all the
commands required to interact with the cluster and, internally, kubectl
converts the API calls into respective API calls to the kube-apiserver to
perform these actions.

A Look at kind

Setting up an entire Kubernetes cluster is quite an elaborate and tedious
process that involves lots of steps, including creating and provisioning TLS
certificates, provisioning the required nodes and installing the various
components, joining the various worker and master nodes, and so on.
While setting this up for a production use case can be done using various
tools such as kOps (Kubernetes Operations), kubeadm, and so on, to test
locally, you do not have to use these.

kind, short for Kubernetes in Docker, is a tool for running local
Kubernetes clusters using Docker containers acting as nodes. The
Kubernetes project itself uses kind to test cluster releases, and you can use
kind for local development and testing. kind consists of a self-contained
Go binary that interacts with Docker CLI to bring up and configure the
Kubernetes clusters with almost no configuration for a single node cluster.
If you need to simulate multiple nodes, you can provide a configuration file
with the required number of nodes to bootstrap such a cluster.

213

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Creating Kubernetes Clusters Using kind

Before you can create the Kubernetes clusters, you need to download and
install kind. This can be done by heading over to kind’s static releases page
on GitHub at https://github.com/kubernetes-sigs/kind/releases.
Once the required binary has been installed, you can invoke kind by
providing the full path on the disk where kind is saved.

Note This section refers only to the kind command, but be sure
to substitute the full path to the kind binary, especially if the kind
binary has not been moved to a location referenced by the PATH
variable.

You also need to download and install kubectl, the command-line
program that is used to interact with Kubernetes clusters. You can do this
by following the instructions present in the Kubernetes documentation
page at https://kubernetes.io/docs/tasks/tools/.

To create a cluster, run the following command:

kind create cluster --name kind

The cluster creation can take a couple of minutes, but once it is done,
you should see these logs:

kind create cluster --name kind

Creating cluster "kind" ...

v Ensuring node image (kindest/node:vi1.21.1)
v Preparing nodes)

v Writing configuration

v Starting control-plane &

v Installing (NI %

214

https://github.com/kubernetes-sigs/kind/releases
https://kubernetes.io/docs/tasks/tools/

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

v Installing StorageClass
Set kubectl context to "kind-kind"
You can now use your cluster with:

kubectl cluster-info --context kind-kind
Thanks for using kind!

You can look at the containers brought up by kind using the docker ps
command, as shown here:

docker ps
CONTAINER ID IMAGE NAMES
5a5ba27eac95 kindest/node:v1.21.1 kind-control-plane

Now look at the pods that are running in the cluster. To do this, type

the following command:
kubectl get pods -A

This command lists all the running pods. A pod is the smallest
execution unit in Kubernetes. By default, kubectl commands fetch
resources from the namespace that is currently activated as a context. To
show pods from all namespaces, including the system namespaces, pass
the flag -A.

NAME READY STATUS
coredns-6p84s 1/1 Running
coredns-ctpsm 1/1 Running
etcd 1/1 Running
kindnet-76dht 1/1 Running
kube-apiserver 1/1 Running
kube-controller-manager 1/1 Running
kube-proxy-871bc 1/1 Running
kube-scheduler 1/1 Running

215

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

From the running pods, you can see various pods, each corresponding
to the component you learned about in the previous section. To delete the
cluster, type the delete command, as shown here:

kind delete cluster --name kind

Running a Sample Service in Kubernetes

Now that you understand container orchestration a little better, let’s see
how you can take a Docker image and orchestrate it. For this section, you
will create a sample Kubernetes cluster using kind. Once you have a cluster
running, you will deploy a sample nginx container. While the Docker
image is simplistic, it gives you a good idea of the steps needed when
you go from running containers locally using a docker run command to
deploying a container using Kubernetes.

First, you will create a new Kubernetes cluster using kind. Type the
following command to start the cluster:

kind create cluster --name nginx-deploy

Creating cluster "nginx-deploy” ...

v Ensuring node image (kindest/node:vi1.21.1)
v Preparing nodes)

v Writing configuration

v Starting control-plane &

v Installing CNI %

v Installing StorageClass

Set kubectl context to "kind-nginx-deploy"

You can now use your cluster with:

kubectl cluster-info --context kind-nginx-deploy
Thanks for using kind!

216

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Pods and Deployments

In Kubernetes, a pod is the core component for running applications. A
pod has at least one container but can also accommodate groups of related
containers. A deployment is a Kubernetes object that creates pods, tells
Kubernetes how many copies of pods should be created, and indicates
when/how a new pod should be updated. To create a deployment, you
can apply a YAML file with the Kubernetes specification that describes the
pods to run.

Alternatively, for a quick start, you can also use the kubectl
application to create a deployment, passing only the name of the Docker
image with which the deployment is to be created. This is suitable for
quick test deploys, but isn’t recommended for full deploys. To create a
deployment with a Docker image, run the command shown here:

kubectl create deployment nginx --image <docker image:tag>

To create a Kubernetes deployment with a Docker image, use this
command:

kubectl create deployment nginx --image nginx:1.21
deployment.apps/nginx created

While this command lets you create a sample deployment quickly,
updating the existing deployment can get tedious. By creating a
Kubernetes spec YAML and updating the YAML as and when you desire,
you can instruct kubectl to apply the YAML file. Let’s examine the spec of
the deploy that was created because of this deployment. To do this, type
the following command:

kubectl get deploy nginx -o yaml > nginx-deploy.yaml

This will output the deployment specification in a YAML format and
save it to a file called nginx-deploy.yaml. Open this file in your favorite
code editor. You should see the contents of the file, as shown in Listing 8-2.

217

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Listing 8-2. A Kubernetes Deployment Object Specification File in
YAML

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: nginx
name: nginx
namespace: default
spec:
replicas: 1
selector:
matchLabels:
app: nginx
strategy:
rollingUpdate:

maxSurge: 25%

maxUnavailable: 25%

type: RollingUpdate
template:
metadata:
creationTimestamp: null
labels:
app: nginx
spec:

containers:

- image: nginx:1.21
imagePullPolicy: IfNotPresent
name: nginx
resources: {}

218

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
restartPolicy: Always
schedulerName: default-scheduler
securityContext: {}
terminationGracePeriodSeconds: 30
status: {}

While an in-depth explanation of each of these fields would be out of
scope for this book, it is still worth noting several additional features that
an orchestrator like Kubernetes can provide over a container being started
and run using the docker run command. Some of the noteworthy features
include:

e A namespace key to isolate applications in their own
scope, allowing for stronger application of role-based
access policies.

e Labels to allow objects to be identified across the
cluster.

o Areplicas key, indicating how many replicas of the
container the orchestrator should always maintain.

o Astrategy object to indicate how a new container image
should be deployed, how many new containers should
be rolled out, and what the tolerance percent should be
for the number of unavailable containers.

e AnimagePullPolicy that describes when and how the
container images are to be pulled from the container
registry.

219

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

These are just some features for a Deployment object. Kubernetes
supports more built-in objects for specialized workloads:

o A StatefulSet lets you run one or many pods for which
the persistence and state need to be tracked (for
example, database workloads).

e A DaemonSet runs the pods on every node of the
cluster (for example, logging agents).

e Jobs and CronJobs run one-off tasks and stop when
they’re done.

Thus, orchestrators provide a world of features for running various
and specialized workloads. Not everyone who needs containers will
benefit from orchestrators, because of the overhead involved in running
and maintaining them. For a large organization, an orchestrator is an
invaluable investment when considering moving the workloads to

containers.

Exercises

In this chapter, you learned about basic Continuous Integration and
Container Orchestration. Now you can try some hands-on exercises on
building a Continuous Integration workflow and running a multi-node
orchestrator using kind and Kubernetes on a local computer.

220

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

CREATING MULTI-NODE CLUSTERS WITH KIND

You learned earlier that kind, short for Kubernetes in Docker, is
a tool for running local Kubernetes clusters using Docker containers acting
as nodes. For this exercise, you will learn how you can spin up a multi-node
Kubernetes cluster using kind.

Tip The kind configuration file associated with this exercise is
available on the GitHub repo of this book at https://github.com/
Apress/practical-docker-with-python,inthe source-
code/chapter-8/exercise-1 directory.

kind makes it easy to create multi-node clusters to test locally. For this, first
create a kind configuration file in YAML. The config file in Listing 8-3 shows
the configuration that is needed to create a multi-node cluster with three
control-plane nodes and three workers.

Listing 8-3. Configuration Needed to Create a Multi-Node Cluster

kind: Cluster
apiVersion: kind.x-k8s.io/vialpha4

nodes:

role:
role:
role:
role:
role:
role:

control-plane
control-plane
control-plane
worker
worker
worker

221

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Save the file as kind-multi-node.yml. Now, create a new cluster using
the command you used before, but with an extra flag (to use this file as the
configuration file), as shown here:

kind create cluster --name kind-multi-node --config kind-multi-
node.yml

The cluster creation can take a couple of minutes, but once it is done, you
should see the logs shown here:

Creating cluster "kind-multi-node" ...

v Ensuring node image (kindest/node:v1.21.1)
Preparing nodes) Y QO O B @
Configuring the external load balancer &B
Writing configuration

Starting control-plane &

Installing CNI %

Installing StorageClass

Joining more control-plane nodes (X

NN N N NN

V' Joining worker nodes g3
Set kubectl context to "kind-kind-multi-node"
You can now use your cluster with:

kubectl cluster-info --context kind-kind-multi-node
Not sure what to do next? @& Check out https://kind.sigs.k8s.
io/docs/user/quick-start/

You can look at the containers brought up by kind by using the docker ps
command, as shown here:

CONTAINER ID IMAGE NAMES

0f27d1316302 kindest/haproxy:v202 kind-multi-node-external-
load-balancer

2a5b37dc51cc kindest/node:vi.21.1 kind-multi-node-worker

4413cc424783 kindest/node:vi1.21.1 kind-multi-node-control-
plane2

222

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

bf6f2db610d9 kindest/node:vi.21.1 kind-multi-node-control-
plane3

c11c07e67abd kindest/node:v1.21.1 kind-multi-node-worker3

02afa0lcdce6 kindest/node:v1.21.1 kind-multi-node-control-
plane

e2e2d427a70f kindest/node:vi.21.1 kind-multi-node-worker2

Since kind uses a container as a way to simulate nodes, you can see that
there are three control-plane nodes, three worker nodes, and an external load
balancer node to route the traffic coming into the cluster. With a multi-node
Kubernetes cluster available at your disposal, running your containerized
applications on a production-grade orchestrator is easy.

SETTING UP CONTINUOUS INTEGRATION FOR NEWSBOT

In this exercise, you will set up a Continuous Integration workflow for Newsbot
that will run flake8, build the Docker image, and push the resulting image

to Docker Hub. The Continuous Integration workflow will be set up using
GitHub Actions, but the same principle could be applied using any Continuous
Integration tool.

Tip The source code and Dockerfile associated with this exercise,
as well as the GitHub Actions workflow file, are all available on the
GitHub repo of this book at https://github.com/Apress/
practical-docker-with-python,inthe source-code/
chapter-8/exercise-2 directory.

223

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

This exercise also assumes that you are working with the Newsbot source
code and the Dockerfile from Chapter 7, Exercise 2. You will also be setting
up the workflow for the repo of the book, that is, https://github.com/
Apress/practical-docker-with-python. You are encouraged to fork
this repo, clone it to your local computer, and practice this in your fork or
implement the same in a completely different repository.

Earlier in the chapter, you learned that the GitHub Actions workflow file is
a YAML-based spec file. Let’s start with the sample spec file that you used
earlier. You will modify this to add three steps:

1. Check out the source code.
2. Install the required Python version.
3. Install the required dependencies using pip.

The workflow file is shown in Listing 8-4.

Listing 8-4. GitHub Actions Workflow File to Install the
Dependencies

name: Lint and build Docker
on: [push, pull request]

jobs:
lint:
timeout-minutes: 10
runs-on: ubuntu-latest

steps:
- name: Checkout
uses: actions/checkout@vi

- name: Setup Python
uses: actions/setup-python@v2
with:
python-version: "3.7"

224

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

- name: Install Dependencies
run: |
python -m pip install --upgrade pip
pwd
cd source-code/chapter-7/exercise-2/newsbot-compose
pip install -r requirements.txt

Save this file to . github/workflows/build-newsbot.yaml in the Git
repository, commit the changes, and push the changes to GitHub. The GitHub
Action should trigger immediately. As you saw earlier, you'll use the GitHub CLI
to verify that the action was triggered.

First verify that the workflow was created. Type the following command:
gh workflow list

Remember to select the correct base repository if prompted. You should see a
result like this one:

gh workflow list
Lint and build Docker active <workflow id>

You can examine a summary of the workflow status using the following
command:

gh workflow view <workflow id>
Lint and build Docker - build-newsbot.yaml
ID: <workflow id>

Total runs 1

Recent runs

v add workflow Lint and build Docker add-lint-build-
workflow push <run id>

The tick indicates that the workflow run was successful. You can examine
the details of the run in further detail, as you learned earlier, but for now,
it’s sufficient to know it was successful. Let’s add some more steps to the
workflow.

225

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Most CI workflows will have some sort of Linting and Style Guide reporter

so that the written code adheres to the programming languages and/or the
organization’s guidelines. For this workflow, you will add flake8, which will
analyze the code and provide suggestions for improvements. With this change,
the GitHub Actions workflow file now looks like Listing 8-5.

Listing 8-5. GitHub Actions Workflow Updated to Analyze Source
Code

name: Lint and build Docker
on: [push, pull request]

jobs:
lint:
timeout-minutes: 10
runs-on: ubuntu-latest

steps:
- name: Checkout
uses: actions/checkout@vi

- name: Setup Python
uses: actions/setup-python@v2
with:
python-version: "3.7"

- name: Install Dependencies
run: |
python -m pip install --upgrade pip
cd source-code/chapter-7/exercise-2/newsbot-compose
pip install -r requirements.txt

- name: Lint with flake8
run: |
pip install flake8
cd source-code/chapter-7/exercise-2/newsbot-compose

226

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

run flake8 first to detect any python syntax errors
flake8 . --count --select=E9,F63,F7,F82 --show-source
--statistics

run again to exit treating all errors as warnings
flake8 . --count --exit-zero --max-complexity=10
--statistics

Save the changes, commit them to the repo, and push the changes to the
remote. This should trigger the workflow run again, and you can examine the
run using the gh CLI app. Since you know that the workflow exists, you can
look at the most recent workflow runs instead, using the following command:

gh run list

STATUS NAME WORKFLOW 1D

v <commit message> Lint and build Docker <run id>
X <commit message> Lint and build Docker <run id>
v <commit message> Lint and build Docker <run id>

You're interested in the details of the last run, so look at it using the following
command, taking care to substitute the value of run ID from the output of the
previous command:

gh run view <run id>
You should get a result similar to this one shown here:

gh run view <run id>

v add-lint-build-workflow Lint and build Docker - <run id>
Triggered via push about 4 minutes ago

JOBS

v lint in 17s (ID <job id>)

Thus, the Lint is working as expected. Let’s extend this workflow to add a
Docker Build and Push job. You define a new job, called docker-build, and
the steps to check out the code and run the docker build command.

227

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Since this runs on every pull request or pushes, instead of tagging it with an
arbitrary version, you can use GITHUB_SHA, which is an environment variable
exposed by GitHub that contains the hash of the Git commit that was used

to build the Docker image. Due to space constraints, only the section related
to the Docker build is highlighted here; the whole code can be seen in the
exercise on the GitHub repo.

docker-build:
timeout-minutes: 10
runs-on: ubuntu-latest
needs: lint

steps:
- name: Checkout
uses: actions/checkout@vi

- name: Build Docker Image
run: |
cd source-code/chapter-7/exercise-2/newsbot-compose
docker build -t newsbot:${GITHUB_SHA} .

Save this section to the workflow file, commit it, and push the changes to the
GitHub repo. This should once again trigger the GitHub workflow. Examine the
recent runs using the following command:

STATUS NAME WORKFLOW EVENT ID
v <commit message> Lint and build Docker <run id>
v <commit message> Lint and build Docker <run id>
X <commit message> Lint and build Docker <run id>
v <commit message> Lint and build Docker <run id>

Look at the last run using the following command:
gh run view <run id>
v add-lint-build-workflow Lint and build Docker - <run id>

Triggered via push about 20 hours ago

228

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

JOBS
v lint in 11s (ID <job id>)
v docker-build in 2m57s (ID <job id>)

You can see that the Docker build job was also successful. You can examine
the full job logs using the following command:

gh run view --log --job=<job id>

The logs are shown in Listing 8-6.

Listing 8-6. The Full Job Logs

docker-build Set up job Current runner version: '2.280.3'
docker-build Set up job ##[group]Operating System
docker-build Set up job Ubuntu

docker-build Set up job 20.04.2

docker-build Set up job LTS

docker-build Build Docker Image Step 7/7 : CMD ["python",

"newsbot.py"]

docker-build Build Docker Image ---> Running in 63911bd1009

docker-build Build Docker Image Removing intermediate container
613911bd1009

docker-build Build Docker Image ---> ab0d26e8298e

docker-build Build Docker Image Successfully built abod26e8298e

docker-build Build Docker Image Successfully tagged

newsbot:639bc2

To complete the exercise, add a final step to push the newly built Docker
image to the Docker Hub. Before you can do this, you have to create an
account on https://hub.docker.com. Make a note of the username and
password that was used to the register—you’ll be using it to authenticate with

229

https://hub.docker.com

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

the GitHub Action. To push to your Docker Hub repository, you have to make
two changes:

1. Prefix your Docker Hub username to the image in the build step.
2. Add the Docker Hub credentials to GitHub.

To add the Docker Hub credentials, from the GitHub repository where you are
pushing the changes, choose Settings, Secrets. Click New Repository Secret,
add DOCKER_USERNAME as the name, and enter your Docker Hub username.
Repeat the same process for the password, with the name DOCKER _
PASSWORD and value as Docker Hub password that you used to register your
account. Once both have been added, the Secrets section should look like
Figure 8-1.

Repository secrets
B DOCKER_PASSHORD Updated now Update Remove

B DOCKER_USERNAME Updated 1 minute ago Update Remove

Figure 8-1. Secrets configured in the GitHub repository settings

With the credentials added to GitHub, you can now modify the job to inject
these secrets. This can be done by referencing the secret name using the
${{ secrets.SecretName }} format. The docker-build section of the
workflow file should now look like Listing 8-7.

Listing 8-7. docker-build Job Updated with Added Docker Hub
Credentials and Push to Docker Hub

docker-build:
timeout-minutes: 10
runs-on: ubuntu-latest
needs: lint

230

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

steps:
- name: Checkout
uses: actions/checkout@vi

- name: Build Docker Image
env:
DOCKER_USERNAME: ${{ secrets.DOCKER_USERNAME }}
DOCKER_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}

run: |
cd source-code/chapter-7/exercise-2/newsbot-compose
docker login -u ${DOCKER_USERNAME} -p ${DOCKER_PASSWORD}
docker build -t ${DOCKER_USERNAME}/newsbot:${GITHUB_SHA} .
docker push ${DOCKER_USERNAME}/newsbot:${GITHUB_SHA}

Now verify that the push happened successfully. As earlier, you can find the
latest runs with the gh run list command:

gh run list

STATUS NAME WORKFLOW EVENT 1ID
v <commit message> Lint and build Docker <run id>
X <commit message> Lint and build Docker <run id>
v <commit message> Lint and build Docker <run id>

Then find the results of the workflow using the following command:
gh run view <run id>

v add-lint-build-workflow Lint and build Docker - <run id>
Triggered via push about 59 minutes ago

JOBS
v lint in 14s (ID <job id>)
v docker-build in 3m57s (ID <job id>)

231

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

And to view the results of the docker-build job, type the following
command:

gh run view --job <job id>

v add-lint-build-workflow Lint and build Docker - 1198342464
Triggered via push about 1 hour ago

v docker-build in 3m57s (ID 3507041628)
v Set up job
v Checkout
v Build Docker Image
v Complete job

You can see from the summary that all the steps were completed successfully.
To examine the logs of the job, issue the command shown here:

gh run view --log --job=<job id>

docker-build Set up job Ubuntu

docker-build Set up job 20.04.3

docker-build Set up job LTS

[...]

docker-build Build Docker Image Step 7/7 : CMD ["python",
"newsbot.py"]

docker-build Build Docker Image Successfully built b65633d72071
docker-build Build Docker Image Successfully tagged ***/newsbot
:48e085bebas09747b3a87dct918549017ae8c173

docker-build Build Docker Image The push refers to repository
[docker.io/***/newsbot]

[...]

docker-build Build Docker Image 54d6343a1c01: Pushed

You have successfully configured Continuous Integration to build the Docker
Image on every push. When you look at the GitHub Actions page, it should look
like Figure 8-2. You can now refer to this image and tag to deploy.

232

CHAPTER 8 PREPARING FOR PRODUCTION DEPLOYMENTS

Triggered via push 2 days ago Status Total duration Artifacts

@ SathyaBhat pushed -0- cc73bb7 add-1int-build-workflow Success 4m 37s <

build-newsbot.yaml

on: push

O lint 145 8 —— o @ docker-build 4m 35

Figure 8-2. GitHub Actions for the Newsbot lint and build

Summary

In this chapter, you learned about Continuous Integration and how to use
Continuous Integration to build Docker images automatically after every
Git commit, making it easier to test containers and applications. You also
learned about container orchestrators, got an overview of Kubernetes,
and learned how to use kind to deploy a Kubernetes cluster on your local
system to make testing your Docker applications easier and ready for
production deployments. Finally, you tried some exercises on deploying
a multi-node Kubernetes cluster for local development using kind and
setting up a Continuous Integration pipeline that validates, lints the
Newsbot source code, and then builds and publishes the Newsbot Docker
image to the Docker Hub automatically on every commit, using GitHub
Actions. With this, I hope you can apply the principles you learned in the
book and implement similar steps in your applications!

233

Index

A

Actions Workflow file, 201

ADD instruction, 76, 78

Adminer container, 144

Amazon Elastic Block Store
(EBS), 105

Amazon Elastic File Systems
(EFS), 105

Amazon Web Services (AWS), 105

B

Bind mounts, 25, 109-114
Borg, 211
Bridge networks, 134, 135
adminer container, 144
containers connection,
152-155
creation, 147-152
host network, 155, 156
Login with IP address, 147
MySQL container, 142, 145
Build context, 62, 63
Build key
context key, 176
depends_on key, 177

© Sathyajith Bhat 2022

environment/env_file key, 176
image key, 176
ports key, 178
volumes key, 179, 180
BuildKit
building, Docker build, 66-69
build output, 64
DOCKER_BUILDKIT flag, 65
legacy Build Process, 65
tags, 69-71
build subcommand, 182

C

cgroups, 5
chroot, 4
Cloud providers, 105
CMD instruction, 82, 83, 85, 86
compose exec command, 182
Compose file format, 30, 169
Compose specification, 168, 171,
172,174

Containers, 1,4, 5,7

behavior, 106

layer, 24

runtime, 7

volumes, 118-120

235

S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4

https://doi.org/10.1007/978-1-4842-7815-4#DOI

INDEX

Containerization
cgroups, 5
chroot, 4
containers/virtual
machines, 5, 7
FreeBSD Jails, 4
LXC, 5
OpenVZ, 4
Container Runtime
Interface (CRI), 8
Context key, 176
Continuous delivery, 200
Continuous Integration (CI)
definition, 200
GitHub actions, 201-206
pipeline, 200
tools, 201
Control tier, 207
COPY instruction, 77

D

DaemonSet, 220
Data persistence, 105, 106
Default Docker network drivers
bridge network, 134, 135
host network, 135
Macvlan networks, 136
overlay networks, 136
Deployment, 217
Docker, 1,9
API, 29
CLI, 27, 28

236

containers, 1, 24
problem understanding, 2, 3
Docker Compose, 29
basics, 168
build key, 175 (see Build key)
CLI reference, 182, 183
installation, 167, 168
Newsbot convertion to,
189-193, 195-197
overview, 165, 166
sample file, 172
services key, 175
version 1, 170
version 2, 170
version 3, 171
Docker daemon, 27
Docker engine
Docker API, 29
Docker CLI, 27, 28
Docker daemon, 27
Dockerfile, 23, 26
guidelines and
recommendations,
writing, 93, 94
Primer, 61-63
Docker Hub, 201
Dockerignore, 63
Docker images, 23, 32-37
Docker Machine, 30
Docker Networks
bridge networks (see Bridge
networks)
default bridge network, 139

none network, 141

options, 138

subcommand for handling, 137
Docker Registry, 25
Docker Repository, 25
down command, 182

E

ENTRYPOINT instruction,
82, 83, 85, 86

ENV instruction, 86, 88

Environment key, 176

EXPOSE instruction, 89-91

F

FreeBSD Jails, 4
FreeBSD system, 4
FROM instruction, 71

G

Get-Content cmdlet, 40
GitHub Actions, 201-206

H

Hands-on Docker

Docker images, 32-37

docker info, 30

real-world Docker Image, 37-45
Hello world docker image, 95, 97
Host network, 135, 155, 156

INDEX

l,J
Image key, 176
imagePullPolicy, 219
Installation Docker
on Linux, 19-22
on macQOS, 18, 19
on Windows, 12-14
Windows Subsystem for
Linux, 15-18
Instructions, 23
Instructions, Dockerfile
ADD and COPY, 76-78
CMD and ENTRYPOINT, 81-86
ENV, 86, 88
EXPOSE, 89-91
FROM, 71
LABEL, 92
RUN, 79-81
VOLUME, 89
WORKDIR, 72-75

K

Kubelet, 212
kube-proxy, 213
Kubernetes, 9
cluster, 211
container orchestrator, 210
control plane, 211, 212
creation clusters,
kind, 214, 216
pods and deployments, 217, 219
running service, 216

237

INDEX

Kubernetes (cont.)
setting up, 213
use and the features, 211
worker plane, 212

L

LABEL instruction, 92
Labels, 219

Layer, 22

List volumes, 116

logs command, 183

Macvlan networks, 136

Multi-node clusters with
kind, 221, 222

Multi-stage builds, 94

N

Namespace key, 219
NBT_ACCESS_TOKEN, 56

Network Interface Card (NIC), 136

Newsbot
adding volumes, 127-131
bot, source code, 55

MYSQL container connection,

156-161, 163
Python script, 54
running, 56
scenarios, 54

238

sending messages, 57-60
setting up continuous
integration, 223, 225-233
writing dockerfile, 101-103
nginx config, 123
nginx Docker image, 121-123
Nginx, 37
None networking, 137

O

Open Container Initiative (OCI), 8

OpenVZ, 4

Orchestration
Compose Spec file, 208
deploy container, 208
implementations, 207
Kubernetes (see Kubernetes)
managed, 210
process, 206, 208
tiers, 207

Overlay networks, 136

P,Q
Platform As A Service (PaaS), 1
Pods, 217
Ports key, 178
Prune volumes, 116
Python app

Newsbot (see Newsbot)
Python Package

Index (PyPI), 201

R

Replicas key, 219
Restart key, 181
RUN instruction, 79-81

S

Services key, 175

Software Defined Networking
(SDN), 134

Source code management
(SCMm), 201

StatefulSet, 220

stop command, 183

T, U
Tag, 23
Telegram Messenger
BotFather
API documentation, 53
Bot creation, 51-54
options, 51
one-time password, 50
signup page, 49

INDEX

tmpfs mounts, 108, 109
Typical Dockerfile, 62

\'

Virtual machine (VM), 7, 15
Virtual private server (VPS), 4
VOLUME instruction, 89
Volumes, 25

container, 118-120

create, 115

inspect, 115

instruction in Dockerfiles, 121

list, 116

prune, 116

removes, 117

subcommands, 114
Volumes key, 179, 180

W XY,Z

Windows Subsystem for Linux
(WSL), 15-18

WORKDIR instruction, 72-75

Worker tier, 207

239

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Containerization
	What Is Docker?
	Understanding Problems that Docker Solves

	Containerization Through the Years
	1979: chroot
	2000: FreeBSD Jails
	2005: OpenVZ
	2006: cgroups
	2008: LXC

	Containers and Virtual Machines
	Container Runtimes
	OCI and CRI

	Docker and Kubernetes
	Summary

	Chapter 2: Docker 101
	Installing Docker
	Installing Docker on Windows
	Installing Docker on Windows Using WSL2 Backend
	About WSL
	Requirements for Installing and Enabling WSL2

	Installing on macOS
	Installing on Linux
	Additional Steps

	Understanding Jargon Around Docker
	Layers
	Docker Image
	Docker Tags
	Docker Container
	Bind Mounts and Volumes
	Docker Repository
	Docker Registry
	Dockerfile
	Docker Engine
	Docker Daemon
	Docker CLI
	Docker API

	Docker Compose
	Docker Machine

	Hands-on Docker
	Working with Docker Images
	Working with a Real-World Docker Image

	Summary

	Chapter 3: Building the Python App
	About the Project
	Setting Up Telegram Messenger
	BotFather: Telegram’s Bot Creation Interface
	Creating the Bot with BotFather

	Newsbot: The Python App
	Getting Started with Newsbot
	Running Newsbot
	Sending Messages to Newsbot

	Summary

	Chapter 4: Understanding the Dockerfile
	Dockerfile Primer
	Build Context

	Dockerignore
	BuildKit
	Building Using Docker Build
	Tags

	Dockerfile Instructions
	FROM
	WORKDIR
	ADD and COPY
	RUN
	Layer Caching

	CMD and ENTRYPOINT
	ENV
	VOLUME
	EXPOSE
	LABEL

	Guidelines and Recommendations for Writing Dockerfiles
	Using Multi-Stage Builds
	Exercises
	Summary

	Chapter 5: Understanding Docker Volumes
	Data Persistence
	Example of Data Loss Within a Docker Container
	tmpfs Mounts
	Bind Mounts
	Docker Volumes
	Docker Volume Subcommands
	Volume Create
	Volume Inspect
	List Volumes
	Prune Volumes
	Remove Volumes

	Using Volumes When Starting a Container
	The VOLUME Instruction in Dockerfiles
	Exercises
	Summary

	Chapter 6: Understanding Docker Networks
	Why Do We Need Container Networking?
	Default Docker Network Drivers
	Bridge Networks
	Host Networks
	Overlay Networks
	Macvlan Networks
	None Networking

	Working with Docker Networks
	Bridge Networks
	Creating Named Bridge Networks
	Connecting Containers to Named Bridge Networks

	Host Networks

	Exercises
	Summary

	Chapter 7: Understanding Docker Compose
	Overview of Docker Compose
	Installing Docker Compose
	Docker Compose Basics
	Docker Compose Version Overview
	Compose File Versioning and the Compose Spec
	Version 1
	Version 2
	Version 3

	Compose Specification
	Docker Compose File Reference
	Services Key
	Build Key
	Context Key
	Image Key
	environment/env_file Key
	depends_on Key
	Image Key
	ports Key
	Volumes Key
	Restart Key

	Docker Compose CLI Reference
	The build Subcommand
	The down Subcommand
	The exec Subcommand
	The logs Subcommand
	The stop subcommand

	Exercises
	Summary

	Chapter 8: Preparing for Production Deployments
	Continuous Integration (CI)
	GitHub Actions

	Container Orchestration
	The Need for Orchestrators
	How Do Orchestrators Work?
	Popular Orchestrators
	Kubernetes
	Kubernetes Control Plane
	Kubernetes Worker Plane
	A Look at kind
	Creating Kubernetes Clusters Using kind
	Running a Sample Service in Kubernetes
	Pods and Deployments

	Exercises
	Summary

	Index

