
Practical Docker
with Python

Build, Release, and Distribute Your
Python App with Docker
—
Second Edition
—
Sathyajith Bhat

Practical Docker with
Python

Build, Release, and Distribute
Your Python App with Docker

Second Edition

Sathyajith Bhat

Practical Docker with Python: Build, Release, and Distribute Your Python

App with Docker

ISBN-13 (pbk): 978-1-4842-7814-7		 ISBN-13 (electronic): 978-1-4842-7815-4
https://doi.org/10.1007/978-1-4842-7815-4

Copyright © 2022 by Sathyajith Bhat

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Divya Modi
Copyeditor: Kezia Endsley

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484278147. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Sathyajith Bhat
Bangalore, Karnataka, India

https://doi.org/10.1007/978-1-4842-7815-4

To my parents, Jyothika and Jayakar Bhat U., who have
unconditionally supported me through my entire life.

v

Table of Contents

Chapter 1: ��Introduction to Containerization��1

What Is Docker?���1

Understanding Problems that Docker Solves���2

Containerization Through the Years���3

1979 �: chroot��4

2000 �: FreeBSD Jails��4

2005 �: OpenVZ��4

2006 �: cgroups��5

2008 �: LXC��5

Containers and Virtual Machines���5

Container Runtimes��7

OCI and CRI���8

Docker and Kubernetes���9

Summary���9

Chapter 2: ��Docker 101���11

Installing Docker��11

Installing Docker on Windows��12

Installing Docker on Windows Using WSL2 Backend��������������������������������������15

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

vi

Installing on macOS��18

Installing on Linux��19

Understanding Jargon Around Docker��22

Hands-on Docker��30

Summary���46

Chapter 3: ��Building the Python App���47

About the Project���47

Setting Up Telegram Messenger��48

BotFather: Telegram’s Bot Creation Interface��50

Creating the Bot with BotFather���51

Newsbot: The Python App��54

Getting Started with Newsbot��55

Running Newsbot���56

Sending Messages to Newsbot��57

Summary���60

Chapter 4: ��Understanding the Dockerfile��61

Dockerfile Primer���61

Build Context��62

Dockerignore��63

BuildKit���64

Building Using Docker Build���66

Tags��69

Dockerfile Instructions���71

FROM��71

WORKDIR��72

ADD and COPY��76

RUN���79

Table of Contents

vii

CMD and ENTRYPOINT��81

ENV���86

VOLUME��89

EXPOSE���89

LABEL���92

Guidelines and Recommendations for Writing Dockerfiles����������������������������������93

Using Multi-Stage Builds���94

Exercises��95

Summary���103

Chapter 5: ��Understanding Docker Volumes���������������������������������������105

Data Persistence��105

Example of Data Loss Within a Docker Container��106

tmpfs Mounts���108

Bind Mounts���109

Docker Volumes��114

Using Volumes When Starting a Container���118

The VOLUME Instruction in Dockerfiles��121

Exercises��121

Summary���132

Chapter 6: ��Understanding Docker Networks�������������������������������������133

Why Do We Need Container Networking?��133

Default Docker Network Drivers���134

Working with Docker Networks���137

Bridge Networks���142

Host Networks��155

Exercises��156

Summary���164

Table of Contents

viii

Chapter 7: ��Understanding Docker Compose��������������������������������������165

Overview of Docker Compose��165

Installing Docker Compose��167

Docker Compose Basics��168

Docker Compose Version Overview���168

Compose File Versioning and the Compose Spec���169

Version 1���170

Version 2���170

Version 3���171

Compose Specification��171

Docker Compose File Reference��175

Services Key���175

Build Key��175

Docker Compose CLI Reference���182

The build Subcommand��182

The down Subcommand���182

The exec Subcommand��182

The logs Subcommand���183

The stop subcommand���183

Exercises��183

Summary���198

Chapter 8: ��Preparing for Production Deployments����������������������������199

Continuous Integration (CI)��200

GitHub Actions��201

Table of Contents

ix

Container Orchestration���206

The Need for Orchestrators��206

How Do Orchestrators Work?���207

Exercises��220

Summary���233

Index��235

Table of Contents

xi

About the Author

Sathyajith Bhat is a seasoned DevOps/SRE

and Cloud Engineering professional currently

working as a Site Reliability Engineer at Adobe.

Prior to this, he introduced DevOps practices

at Styletag.com. 

Sathyajith is one of the organizers of the

AWS User Group Bengaluru and has been

recognized as an AWS Community Hero for his

contributions to the AWS Community. He is

also a volunteer Community Moderator at Super User and Web Apps Stack

Exchange and occasionally livestreams gaming and coding on Twitch at

twitch.tv/sathyabhat.

Sathyajith can be reached from these links:

Twitter: https://twitter.com/sathyabhat

LinkedIn: https://linkedin.com/in/sathyabhat

Email: contact@sathyasays.com

https://Styletag.com
https://twitter.com/sathyabhat
https://linkedin.com/in/sathyabhat
https://contact@sathyasays.com

xiii

About the Technical Reviewer

Sourav Bhattacharjee currently works

as a Senior Engineer with Oracle Cloud

Infrastructure. He earned his master’s degree

from the Indian Institute of Technology,

Kharagpur, India. Previously he worked with

IBM Watson Health Lab. He has developed

many scalable systems, published research

papers, and has a few patents under his name.

He is passionate about building large-scale

systems and machine learning solutions.  

xv

Acknowledgments

Thank you to my wife, Jyothsna, for being patient and for supporting me in

my career and while writing this book.

I would like to thank Celestin Suresh John, James Markham, and Divya

Modi from Apress for helping me immensely through all the stages of this

book.

I would like to thank my technical reviewer, Sourav Bhattacharjee, for

his constructive suggestions and pertinent feedback.

Last but not least, I would like to acknowledge the immense support

provided by Saurabh Minni, Ninad Pundalik, Prashanth H N, Ashwin

Murali, Varun Sabari, Mrityunjay Iyer, and Abhijith Gopal over the past few

years.

xvii

Introduction

Docker has exploded in popularity and has become the de facto target

as a containerization image format and a containerization runtime. With

modern applications getting more and more complicated, the increased

focus on microservices has led to the adoption of Docker. It allows for

applications, along with their dependencies, to be packaged into files as

a container that can run on any system. This results in faster turnaround

times in application deployment and less complexity. It all but negates the

chances of the “it-works-on-my-server-but-not-on-yours” problem.

Practical Docker with Python covers the fundamentals of

containerization, gets you acquainted with Docker, breaks down

terminology like Dockerfiles and Docker volumes, and takes you on a

guided tour of building a telegram bot using Python and containerizing the

application. This second edition builds on the foundation of the first, with

code updates and new examples that bring it up to date with the changes

in Docker; it also introduces a new chapter.

�The Book’s Structure
This book is divided into eight chapters—the first chapter starts with a

brief introduction to Docker and containerization. You will then take a

101 class in Docker—including installing, configuring, and understanding

some jargon around Docker. In Chapter 3, you look at the book’s project

and learn how to configure the chatbot.

xviii

Chapters 4 to 6 dive into the meat of Docker, focusing on Dockerfile,

Docker networks, and Docker volumes, along with practical exercises

on how to incorporate each of these into your project. In Chapter 7, you

learn about Docker Compose and see how you can run multi-container

applications. Finally, you learn what container orchestrators are, get an

overview of Kubernetes, and see how to set up Continuous Integration (CI)

using GitHub Actions, with a Docker image built and pushed to the Docker

Registry on each commit.

Introduction

1© Sathyajith Bhat 2022
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_1

CHAPTER 1

Introduction to
Containerization
This chapter looks at what Docker is, as well as what containerization

is and how it is different from virtualization. Other subtopics covered

include history of containerization, container runtimes, and container

orchestration.

�What Is Docker?
In order to answer this question, we need to clarify the word “Docker,”

because Docker has become synonymous with containers.

Docker Inc. is the company behind Docker. It was founded as dotCloud

Inc. in 2010 by Solomon Hykes. dotCloud engineers built abstraction and

tooling for Linux containers and used the Linux kernel features cgroups and

namespaces with the intention of reducing complexity around using Linux

containers. dotCloud made their tooling open source and changed the focus

from their Platform As A Service (PaaS) business to containerization. Docker

Inc. sold dotCloud to cloudControl, which eventually filed for bankruptcy.

Docker is the technology that provides for operating system level

virtualization, known as containers. It is important to note that this is

not the same as hardware virtualization. We will explore this later in the

chapter. Docker uses the resource isolation features of the Linux kernel,

such as cgroups, kernel namespaces, and OverlayFS, all within the same

https://doi.org/10.1007/978-1-4842-7815-4_1#DOI

2

physical or virtual machine. OverlayFS is a union-capable filesystem that

combines several files and directories into one in order to run multiple

applications that are isolated and contained from one other, all within the

same physical or virtual machine.

�Understanding Problems that Docker Solves
For the longest period, setting up a developer’s workstation was a highly

troublesome task for sysadmins. Even with complete automation of the

installation of developer tools, when you have a mix of different operating

systems, different versions of operating systems, and different versions

of libraries and programming languages, setting up a workspace that is

consistent and provides a uniform experience is nearly impossible. Docker

solves much of this problem by reducing the moving parts. Instead of

targeting operating systems and programming versions, the target is now

the Docker engine and the runtime. The Docker engine provides a uniform

abstraction from the underlying system, making it very easy for developers

to test their code.

Things get even more complicated on the production landscape.

Assume that you have a Python web application that is running on Python

2.7 on an Amazon Web Services EC2 instance. In an effort to modernize

the codebase, the application had some major upgrades, including a

change to Python version 3.5. Assume that this version of Python is not

available in the packages offered by the Linux distribution currently

running the existing codebases. To deploy this new application, you have

the choice of either of the following:

•	 Replace the existing instance

•	 Set up the Python Interpreter by

–– Changing the Linux distribution version to one that includes

the newer Python packages.

Chapter 1 Introduction to Containerization

3

–– Adding a third-party channel that offers a packaged version

of the newer Python version.

–– Doing an in-place upgrade, keeping the existing version

of the Linux distribution.

–– Compiling Python 3.5 from sources, which brings in

additional dependencies.

–– Or using something like virtualenv, which has its

own set of tradeoffs.

Whichever way you look at it, a new version deployment for the

application code brings about lots of uncertainty. As an operations

engineer, limiting the changes to the configuration is critical. Factoring

in an operating system change, a Python version change, and a change in

application code results in a lot of uncertainty.

Docker solves this issue by dramatically reducing the surface area of

the uncertainty. Your application is being modernized? No problem. Build

a new container with the new application code and dependencies and ship

it. The existing infrastructure remains the same. If the application doesn’t

behave as expected, then rolling back is as simple as redeploying the older

container—it is not uncommon to have all the generated Docker images

stored in a Docker Registry. Having an easy way to roll back without

messing with the current infrastructure dramatically reduces the time

required to respond to failures.

�Containerization Through the Years
While containerization has exploded in popularity over the past couple of

years, the concept of containerization actually goes back to the 1970s.

Chapter 1 Introduction to Containerization

4

�1979: chroot
The chroot system call was introduced in Version 7 of UNIX in 1979. The

premise of chroot was that it changed the apparent root directory for

the current running process and its children. A process initiated within

a chroot cannot access files outside the assigned directory tree. This

environment was known as the chroot jail.

�2000: FreeBSD Jails
Expanding on the chroot concept, FreeBSD added support for a

feature that allowed for partitioning of the FreeBSD system into

several independent, isolated systems, called jails. Each jail is a virtual

environment on the host system with its own set of files, processes,

and user accounts. While chroot only restricted processes to a view of

the filesystem, FreeBSD jails restricted activities of the jailed process

to the whole system, including the IP addresses that were bound to it.

This made FreeBSD jails the ideal way to test out new configurations of

Internet-connected software, making it easy to experiment with different

configurations while not allowing changes from the jail to affect the main

system outside.

�2005: OpenVZ
OpenVZ was quite popular in providing operating system virtualization

for low-end Virtual Private Server (VPS) providers. OpenVZ allowed for a

physical server to run multiple isolated operating system instances, known

as containers. OpenVZ used a patched Linux kernel, sharing it with all

the containers. Each container acted as a separate entity and had its own

virtualized set of files, users, groups, process trees, and virtual network

devices.

Chapter 1 Introduction to Containerization

5

�2006: cgroups
Originally known as process containers, cgroups (short for control groups)

were started by Google engineers. cgroups is a Linux kernel feature that

limits and isolates resource usage (such as CPU, memory, disk I/O, and

network) to a collection of processes. cgroups have been redesigned

multiple times, each redesign accounting for its growing number of use

cases and required features.

�2008: LXC
LXC provides operating-system level virtualization by combining Linux

kernel’s cgroups and support for isolated namespaces to provide an

isolated environment for applications. Docker initially used LXC to provide

the isolation features, but then switched to its own library.

�Containers and Virtual Machines
Many people assume that since containers isolate the applications, they

are the same as virtual machines. At first glance it looks like it, but the

fundamental difference is that containers share the same kernel as the

host.

Docker only isolates a single process (or a group of processes,

depending on how the image is built) and all the containers run on the

same host system. Since the isolation is applied at the kernel level, running

containers does not impose a heavy overhead on the host as compared

to virtual machines. When a container is spun up, the selected process

or group of processes still runs on the same host, without the need to

virtualize or emulate anything. Figure 1-1 shows the three apps running on

three different containers on a single physical host.

Chapter 1 Introduction to Containerization

6

In contrast, when a virtual machine is spun up, the hypervisor

virtualizes an entire system—from the CPU to RAM to storage. To support

this virtualized system, an entire operating system needs to be installed.

For all practical purposes, the virtualized system is an entire computer

running in a computer. Now if you can imagine how much overhead it

takes to run a single operating system, imagine how it’d be if you ran a

nested operating system! Figure 1-2 shows a representation of the three

apps running on three different virtual machines on a single physical host.

Figure 1-1.  Representation of three apps running on three different
containers

Chapter 1 Introduction to Containerization

7

Figures 1-1 and 1-2 give an indication of three different applications

running on a single host. In the case of a VM, not only do you need the

application’s dependent libraries, you also need an operating system to

run the application. In comparison, with containers, sharing the host OS’s

kernel with the application means that the overhead of an additional OS

is removed. Not only does this greatly improve the performance, it also

lets you improve the resource utilization and minimize wasted compute

power.

�Container Runtimes
A container image, when started and run, becomes a container. But for

this to happen, there must be a piece of software to bootstrap the required

resources to run a container. This software is called the container runtime.

Docker implements a container runtime using the containerd project,

which is now part of Cloud Native Computing Foundation’s graduated

project list.

Figure 1-2.  Representation of three apps running on three different
virtual machines

Chapter 1 Introduction to Containerization

https://containerd.io/
https://www.cncf.io/

8

containerd is not the only container runtime, however. There are

other container runtime projects, such as cri-o, rkt (which is not in active

development anymore), runC, and more.

�OCI and CRI
With more container runtimes being developed, there was a need for a

standard that would define what a container image is, the specifications of

the runtime. That’s where the Open Container Initiative (OCI) comes in.

OCI is an open governance structure for creating an industry-standard

specification for container images and runtimes, free from vendor-specific

features to promote an open ecosystem. The OCI currently has two

specifications: the Runtime Specification and the Image Specification.

The Runtime Specification defines how a container runtime should

unpack a container image into a filesystem and the steps to run the

container. This ensures that the container will run accurately as expected,

no matter which container runtime is in use.

The Image Specification defines an OCI Image format that contains

the required definitions on how to create an OCI image. An OCI Image

comprises the image manifest, a filesystem definition, and an image

configuration. The image manifest contains the metadata about the

contents and the dependencies of the image. An image configuration

includes data such as application arguments and environment variables.

Container Runtime Interface (CRI) is a Kubernetes-specific term that

defines how Kubernetes can interact with multiple container runtimes

and bootstrap the containers. Before CRI, Kubernetes supported only

the Docker runtime. With the requests coming in from the community to

support more container runtimes, the Kubernetes team implemented a

plugin interface for container runtimes. This plugin interface allows for

Kubernetes to support interchangeable container runtimes, allowing for

easy contributions from the community.

Chapter 1 Introduction to Containerization

https://cri-o.io/
https://github.com/rkt/rkt
https://github.com/opencontainers/runc

9

�Docker and Kubernetes
With Kubernetes usage increasing in the industry, a question that comes

up quite a lot is the difference between Docker and Kubernetes.

Kubernetes is an orchestrator for running containers and maintaining

their lifecycle. Docker is multi-purpose software that can not only build

container images but also run containers. While Docker can run and

maintain lifecycles of containers not only on single nodes but also on

multiple nodes using Docker Compose and Docker Swarm, Kubernetes

has emerged as the de facto standard for container orchestration.

Docker and Kubernetes are complementary—Docker builds the

container images while Kubernetes orchestrates the running of those

containers. Kubernetes can also schedule running replicas of the

containers over many nodes.

Chapter 8 takes a deeper look at container orchestration.

�Summary
In this chapter, you learned a bit about Docker the company, Docker

containers, and containers compared to virtual machines, as well as

about the real-world problems that containers are trying to solve. You

also took a brief look at what a container runtime is and how Docker and

Kubernetes complement each other. In the upcoming chapter, you take

an introductory tour of Docker and run a couple of hands-on sessions on

building and running containers.

Chapter 1 Introduction to Containerization

11© Sathyajith Bhat 2022
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_2

CHAPTER 2

Docker 101
Now that you understand a little bit better about how Docker works

and why its popularity has exploded, in this chapter, you’ll learn some

different terminology associated with Docker. You will also learn

how to Install Docker and understand Docker terms such as images,

containers, Dockerfiles, and Docker Compose. You also work with some

simple Docker commands on creating, running, and stopping Docker

containers.

�Installing Docker
Docker supports the Linux, macOS, and Windows platforms. It’s

straightforward to install Docker on most platforms and I’ll get to that

in a bit. Docker Inc. provides Community and Enterprise editions of the

Docker platform.

The Enterprise edition has the same features as the Community

edition, but it provides additional support and certified containers,

plugins, and infrastructure. For the purposes of this book and for most

general development and production uses, the Community edition is

suitable, thus I will be using that in this book.

https://doi.org/10.1007/978-1-4842-7815-4_2#DOI

12

�Installing Docker on Windows
Docker on Windows has some prerequisites that need to be met before you

can install it. These include:

•	 Hyper-V support

•	 Hardware virtualization support: This is typically

enabled from your system BIOS

•	 Only 64-bit editions of Windows 10 (Pro/Education/

Enterprise editions having the Anniversary Update

v1607) are supported at the moment

If you look at these prerequisites, you’ll notice that this looks like

what a virtualization setup would require, yet you learned in the previous

chapter that Docker is not virtualization. So why does Docker for Windows

require features required for virtualization?

The short answer is that Docker relies on numerous features, such as

namespaces and cgroups, and these are not available on Windows. To get

around this limitation, Docker for Windows creates a lightweight Hyper-V

container running a Linux kernel. If your computer has Windows 10 Home

edition, you should install Docker Desktop with the WSL 2 backend. This is

explained in the next section.

Let’s focus on installing Docker CE for Windows. This section assumes

that all the prerequisites have been met and Hyper-V is enabled. Head

over to https://store.docker.com/editions/community/docker-ce-

desktop-windows to download Docker CE.

Note  Make sure you select the Stable channel and click the Get
Docker CE button.

You may be prompted to enable Hyper-V and Containers support as

part of the install (see Figure 2-1).

Chapter 2 Docker 101

https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows

13

Click OK and finish the installation. You may be required to restart

your system, as enabling Hyper-V is a Windows system feature. Installing

this feature requires a restart to enable it.

Once the install is complete, open a command prompt window (or

PowerShell, if that is your preference) and type the following command to

check that Docker is installed and is working correctly.

docker run --rm hello-world

If the install went fine, you should see the response shown in Listing 2-1.

Listing 2-1.  Response from the docker run command on Windows

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b8dfde127a29: Pull complete

Digest: �sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd61edae1

4650eec68b2b345c

Status: Downloaded newer image for hello-world:latest

Figure 2-1.  Enable Hyper-V and containers feature

Chapter 2 Docker 101

14

Hello from Docker!

This message shows that your installation appears to be working

correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. �The Docker daemon pulled the "hello-world" image from the

Docker Hub.

 (amd64)

 3. �The Docker daemon created a new container from that image

which runs the executable that produces the output you are

currently reading.

 4. �The Docker daemon streamed that output to the Docker

client, which sent it to your terminal.

To try something more ambitious, you can run an Ubuntu

container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

...

We will take a deeper look later into what these commands mean,

so do not worry about understanding them. If you see the message

“installation appears to be working correctly,” you should be good for now.

Chapter 2 Docker 101

15

�Installing Docker on Windows Using WSL2
Backend
�About WSL

Announced with the 2016 Anniversary Update of Windows, Windows

Subsystem for Linux (WSL) is a way for developers to run GNU/Linux

applications from within Windows with no third-party Virtual Machine

setup or having to dual boot into Linux. WSL supports most of the

command-line applications and support for GUI applications is still in

early preview mode.

With the first release of WSL, Microsoft bundled a custom

compatibility layer for running Linux binary executables in Windows,

without the need to rewrite or recompile the source code of the

application. Microsoft did this using a translation layer, which intercepts

Linux system calls from Linux applications and translates them into

Windows systems calls.

For WSL2, Microsoft completely rearchitected how WSL works by

shipping a lightweight Virtual Machine (VM) with a Linux kernel. This

lightweight VM acts as the execution layer for Linux applications. Since

the Linux applications are now natively run on the Linux kernel on the

lightweight VM instead of using the translation layer, WSL2 supports all

the features of the Linux kernel and improves the performance of Linux

applications, as compared to the first edition of WSL.

While Virtual Machines bring up the problems of heavy resource

usage, Windows manages the WSL2 Virtual Machine behind the scenes,

complete with dynamic memory allocation, which increases/decreases

the memory consumption as your application requests/releases it. WSL2

is still in early stages, and you might see some occasional problems/

slowdowns or heavy memory consumption. A quick reboot of Windows

can mitigate these problems. You can also shut down and restart the VM,

which will make Windows release the memory reserved by Windows.

Chapter 2 Docker 101

16

�Requirements for Installing and Enabling WSL2

Before you can install WSL2, ensure that your computer has Windows 10

64-bit version 1903 or higher. WSL2 will not work on versions lesser than

1903. You can check the version by typing winver on a Terminal prompt, as

shown in Figure 2-2.

The installation steps for WSL2 are detailed on Microsoft’s website

at https://docs.microsoft.com/en-us/windows/wsl/install-

win10. Follow the steps listed under Manual Installation Steps to install

Figure 2-2.  Check your Windows version, as highlighted in the red
box

Chapter 2 Docker 101

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10

17

WSL2. I highly recommend that you install Windows Terminal as well,

as mentioned in the previous link, as it makes it easier to run Docker

commands in WSL2.

Once you have WSL installed, run the following command to ensure

WSL2 is set as the default version.

wsl --set-default-version 2

Install Docker Desktop with WSL2 Backend by downloading and

running the installer at https://desktop.docker.com/win/stable/

amd64/Docker%20Desktop%20Installer.exe. Once the install is

complete, open a command prompt window (or PowerShell, if that is

your preference) and type the following command to check that Docker is

installed and is working correctly.

docker run –rm hello-world

If the install went fine, you should see the response in Listing 2-2.

Listing 2-2.  Response from the docker run Command Using WSL

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b8dfde127a29: Pull complete

Digest: �sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd61edae1

4650eec68b2b345c

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working

correctly.

[...]

Chapter 2 Docker 101

https://desktop.docker.com/win/stable/amd64/Docker Desktop Installer.exe
https://desktop.docker.com/win/stable/amd64/Docker Desktop Installer.exe

18

The "Hello from Docker!" message indicates that Docker is installed

and is working correctly. Note that the actual output is like the one in

Listing 2-1 and has been trimmed in this instance.

�Installing on macOS
Installing Docker for Mac is much like installing any other application.

Go to https://store.docker.com/editions/community/docker-ce-

desktop-mac, click the Get Docker for CE Mac (stable) link, and double-

click the file to run the installer that is downloaded. Drag the Docker whale

to the Applications folder to install it, as shown in the Figure 2-3.

Once Docker is installed, open the Terminal app and run this

command to confirm the install was successful.

docker run --rm hello-world

Figure 2-3.  Installing Docker for Mac

Chapter 2 Docker 101

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac

19

If the install went fine, you should see the response shown in

Listing 2-3.

Listing 2-3.  Response from the docker run Command on macOS

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b8dfde127a29: Pull complete

Digest: �sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd61edae1

4650eec68b2b345c

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working

correctly.

[...]

The “Hello from Docker!” message indicates that Docker is installed

and is working correctly. Note that the actual output is like the one in

Listing 2-1 and has been trimmed in this instance.

�Installing on Linux
To install Docker on Linux, visit https://www.docker.com/community-

edition. Select the distro you’re using and follow the commands to install

Docker.

Chapter 2 Docker 101

https://www.docker.com/community-edition
https://www.docker.com/community-edition

20

The following section outlines the steps needed to install Docker on

Ubuntu.

	 1.	 Update the apt index:

sudo apt-get update

	 2.	 Install the necessary packages required to use a

repository over HTTPS:

sudo apt-get install \

 apt-transport-https \

 ca-certificates \

 curl \

 software-properties-common

	 3.	 Install Docker’s official GPG key:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg

| sudo apt-key add -

	 4.	 Add Docker’s stable repository:

sudo add-apt-repository \

 �"deb [arch=amd64] https://download.docker.com/linux/

ubuntu \

 $(lsb_release -cs) \

 stable"

	 5.	 Update the apt package index:

sudo apt-get update

	 6.	 Install Docker:

sudo apt-get install docker-ce

Chapter 2 Docker 101

21

�Additional Steps

Docker communicates via a UNIX socket that is owned by the root user.

You can avoid having to type sudo by following these steps:

Warning T he Docker group rights are still equivalent to the root user.

	 1.	 Create the Docker group:

sudo groupadd docker

	 2.	 Add your user to the docker group:

sudo usermod -aG docker $USER

	 3.	 Log out and log back in. Run the following command

to confirm that Docker is installed correctly:

docker run --rm hello-world

If the install went fine, you should see the response shown in Listing 2-4.

Listing 2-4.  Response from the docker run Command on Linux

docker run --rm hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b8dfde127a29: Pull complete

Digest: �sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd61edae1

4650eec68b2b345c

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working

correctly.

[...]

Chapter 2 Docker 101

22

The “Hello from Docker!” message indicates that Docker is installed

and is working correctly. Note that the actual output is like the one in

Listing 2-1 and has been trimmed in this instance.

�Understanding Jargon Around Docker
Now that you have Docker installed and running, it’s a good time to learn

the different terms that are associated with Docker.

�Layers

A layer is a modification applied to a Docker image as represented by an

instruction in a Dockerfile. Typically, a layer is created when a base image

is changed. For example, consider a Dockerfile that looks like this:

FROM ubuntu

Run mkdir /tmp/logs

RUN apt-get install vim

RUN apt-get install htop

In this case, Docker will consider the ubuntu image as the base image

and add three layers:

•	 One layer for creating /tmp/logs

•	 One other layer that installs vim

•	 A third layer that installs htop

When Docker builds the image, each layer is stacked one upon the

other and merged into a single layer using the union filesystem. Layers are

uniquely identified using SHA-256 hashes. This makes it easy to reuse and

cache them. When Docker scans a base image, it scans for the IDs of all

the layers that constitute the image and begins to download the layers. If a

layer exists in the local cache, it skips downloading the cached image.

Chapter 2 Docker 101

23

�Docker Image

Docker image is a read-only template that forms the foundation of your

application. It is very much like a shell script that prepares a system with

the desired state. In simpler terms, it’s equivalent to a cooking recipe that

has step-by-step instructions on creating the final dish.

A Docker image starts off with a base image—typically the one selected

is of an operating system you are most familiar with, such as Ubuntu. On

top of this image, you can add build your application stack, adding the

packages as and when required. There are many prebuilt images for some

of the most common application stacks, including Ruby on Rails, Django,

PHP-FPM with nginx, and so on. On the advanced scale, to keep the image

size as low as possible, you can also start off with slim packages such as

Alpine or even scratch, which is Docker’s reserved, minimal starting image

for building other images.

Docker images are created using a series of commands known as

instructions in a file known as the Dockerfile. The presence of a Dockerfile

in the root of a project repository is a good indicator that the program

is container-friendly. You can build own images from the associated

Dockerfile and the built image is then published to a Registry. You will take

a deeper look at Dockerfile in later chapters. For now, consider the Docker

image as the final executable package that includes everything needed

to run an application—the source code, the required libraries, and the

dependencies.

�Docker Tags

A tag is a name that uniquely identifies a specific version of a Docker

Image. Tags are plain text labels, often used to identify specific details, such

as the version, the base OS of the image, or the architecture of the Docker

image.

Chapter 2 Docker 101

24

Tagging a Docker image gives you the flexibility to refer uniquely to

a specific version, making it easier to roll back to previous versions of a

Docker image if the current image is not working as expected.

�Docker Container

A Docker image, when run in a host computer, spawns a process with its

own namespace and is known as a Docker container. The main difference

between a Docker image and a container is the presence of a thin read-

write layer known as the container layer. Any changes made to the

filesystem of a container—such as writing new files or modifying existing

files—are made to this writable container layer.

An important aspect to grasp is that when a container is running, the

changes are applied to the container layer and, when the container is

stopped/killed, the container layer is not saved. Hence, all changes are

lost. This aspect of containers is not understood very well and for this

reason, stateful applications and those requiring persistent data were

initially not recommended to be adoptable as containerized applications.

However, with Docker volumes, there are ways to get around this

limitation. Chapter 5 covers Docker volumes in more detail.

�Bind Mounts and Volumes

Recall that when a container is running, any changes to the container are

present in the container layer of the filesystem. In the case of a container

getting killed, the changes are lost, and the data is no longer accessible.

Even when a container is running, getting data out of the container is not

very straightforward. In addition, writing into the container’s writable

layer requires a storage driver to manage the filesystem. The storage driver

provides an abstraction on the filesystem available to persist the changes

and this abstraction often reduces performance.

Chapter 2 Docker 101

25

For these reasons, Docker provides different ways to mount data into a

container from the Docker host: volumes, bind mounts, or tmpfs volumes.

While tmpfs volumes are stored in the host system’s memory only, bind

mounts and volumes are stored in the host filesystem.

Chapter 5 explores Docker volumes in detail.

�Docker Repository

You learned earlier that you can leverage existing images of common

application stacks—have you ever wondered where these are stored and

how you can use them in building your application? A Docker Repository is

a place where you can upload and store Docker images. These repositories

allow for easy distribution of Docker images within your company or with

the public.

�Docker Registry

Docker Repositories need a central place to store the data—this central

place is a Docker Registry. A Docker Registry is a collection of various

Docker repositories. Docker Registries are hosted by third-party

companies, or you can self-host them if you need to meet more strict

compliance requirements. Docker Hub is a commonly used Docker

Registry. Some other popular Docker Registries include:

•	 Google Container Registry

•	 Amazon Elastic Container Registry

•	 JFrog Artifactory

Most of these registries also allow for the visibility level of the images

that you have pushed to be set as public/private. Private registries will

prevent your Docker images from being accessible to the public, allowing

you to set up access control so that only authorized users can use your

Docker images.

Chapter 2 Docker 101

26

�Dockerfile

A Dockerfile is a set of instructions that tells Docker how to build an image.

A typical Dockerfile includes the following:

•	 A FROM instruction that instructs Docker what the base

image is

•	 An ENV instruction to pass an environment variable

•	 A RUN instruction to run some shell commands (for

example, to install dependent programs that are not

available in the base image)

•	 A CMD or an ENTRYPOINT instruction that tells Docker

what executable is to be run when a container is started

As you can see, the Dockerfile instruction set has a clear and simple

syntax, which makes it easy to understand. You will take a deeper look at

Dockerfiles later in the book.

�Docker Engine

Docker engine is a core part of Docker. Docker Engine is a client-server

application that provides the platform, the runtime, and the tooling for

building and managing Docker images, Docker containers, and many

more. Docker Engine provides the following:

•	 Docker Daemon

•	 Docker CLI

•	 Docker API

Chapter 2 Docker 101

27

Docker Daemon

The Docker daemon is a service that runs in the background of the host

computer and handles the heavy lifting of most of the Docker commands.

The daemon listens for API requests for creating and managing Docker

objects such as containers, networks, and volumes. Docker daemon

can also talk to other daemons for managing and monitoring Docker

containers. Some examples of inter-daemon communication include

communication Datadog for container metrics monitoring and Aqua for

container security monitoring.

Docker CLI

Docker CLI is the primary way that you interact with Docker. Docker CLI

exposes a set of commands that you can provide. The Docker CLI forwards

the request to Docker daemon, which performs the necessary work.

While the Docker CLI includes a huge variety of commands and sub-

commands, the most common commands that you will work with in this

book are as mentioned:

docker build

docker pull

docker run

docker exec

Tip  Docker maintains an extensive reference of all the Docker
commands on its Documentation page at https://docs.docker.
com/engine/reference/commandline/cli/.

Chapter 2 Docker 101

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/

28

At any point in time, prepending help to a command will print the

required documentation about the command. For example, if you’re not

quite sure on where to start with Docker CLI, you can type the following:

docker help

Usage: docker COMMAND

A self-sufficient runtime for containers

Options:

 --config string �Location of client config files

(default

 ".docker")

 -D, --debug Enable debug mode

 -H, --host list Daemon socket(s) to connect to

 -l, --log-level string Set the logging level

 �("debug"|"info"|"warn"|"error"|"fatal")

 (default "info")

[..]

If you want to know more about Docker pull, type the following:

docker help pull

Usage: docker pull [OPTIONS] NAME[:TAG|@DIGEST]

Pull an image or a repository from a registry

Options:

 -a, --all-tags �Download all tagged images in

the repository

 --disable-content-trust �Skip image verification

(default true)

 --platform string �Set platform if server is

multi-platform

 capable

Chapter 2 Docker 101

29

Docker API

Docker also provides an API for interacting with the Docker engine. This

is particularly useful if there’s a need to create or manage containers from

within applications. Almost every operation supported by the Docker CLI

can be done via the API.

The simplest way to get started with the Docker API is to use curl to

send an API request. Windows Docker hosts can hit the TCP endpoint:

curl http://localhost:2375/images/json

[{"Containers":-1,"Created":1511223798,"Id":"sha256:f2a91732

366c0332ccd7afd2a5c4ff2b9af81f549370f7a19acd460f87686bc7","

Labels":null,"ParentId":"","RepoDigests":["hello-world@sha2

56:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158df3ee017

6d32b751"],"RepoTags":["hello-world:latest"],"SharedSize":-

1,"Size":1848,"VirtualSize":1848}]

On Linux and Mac, the same can be achieved by using curl to send

requests to the UNIX socket:

curl --unix-socket /var/run/docker.sock -X POST http://images/

json

[{"Containers":-1,"Created":1511223798,"Id":"sha256:f2a91732

366c0332ccd7afd2a5c4ff2b9af81f549370f7a19acd460f87686bc7","

Labels":null,"ParentId":"","RepoDigests":["hello-world@sha2

56:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158df3ee017

6d32b751"],"RepoTags":["hello-world:latest"],"SharedSize":-

1,"Size":1848,"VirtualSize":1848}]

�Docker Compose

Docker Compose is a tool for defining and running multi-container

applications. Much like how Docker allows you to build an image for your

application and run it in your container, Compose uses the same images

Chapter 2 Docker 101

30

in combination with a definition file (known as the compose file) to build,

launch, and run multi-container applications, including dependent and

linked containers.

The most common use case for Docker Compose is to run applications

and their dependent services (such as databases and caching providers)

in a same simple, streamlined manner as running a single container

application. Chapter 7 takes a deeper look at Docker Compose.

�Docker Machine

Docker Machine is a tool for installing Docker engines on multiple virtual

hosts and for managing the hosts. Docker Machine allows for creating

Docker hosts on local as well as remote systems, including on cloud

platforms such as Amazon Web Services, DigitalOcean, or Microsoft Azure.

�Hands-on Docker
You can now try some of the things you’ve read in this chapter. Before you

start exploring the various commands that are available, ensure that your

Docker install is correct and that it is working as expected.

Tip T o makes things easy to read and understand, we used a tool
called jq to process Docker’s JSON output. You can download and
install jq from https://stedolan.github.io/jq/.

Open a Terminal window and type the following command:

docker info

Chapter 2 Docker 101

https://stedolan.github.io/jq/

31

You should see a result like this one:

docker info

Containers: 0

 Running: 0

 Paused: 0

 Stopped: 0

Images: 1

Server Version: 17.12.0-ce

Storage Driver: overlay2

 Backing Filesystem: extfs

 Supports d_type: true

 Native Overlay Diff: true

Logging Driver: json-file

Cgroup Driver: cgroupfs

Plugins:

 Volume: local

 Network: bridge host ipvlan macvlan null overlay

 Log: �awslogs fluentd gcplogs gelf journald json-file

logentries splunk syslog

Swarm: inactive

Runtimes: runc

Default Runtime: runc

Init Binary: docker-init

containerd version: 89623f28b87a6004d4b785663257362d1658a729

runc version: b2567b37d7b75eb4cf325b77297b140ea686ce8f

init version: 949e6fa

Security Options:

 seccomp

 Profile: default

Kernel Version: 4.9.60-linuxkit-aufs

Operating System: Docker for Windows

Chapter 2 Docker 101

32

OSType: linux

Architecture: x86_64

CPUs: 2

Total Memory: 1.934GiB

Name: linuxkit-00155d006303

ID: Y6MQ:YGY2:VSAR:WUPD:Z4DA:PJ6P:ZRWQ:C724:6RKP:YCCA:3NPJ:TRWO

Docker Root Dir: /var/lib/docker

Debug Mode (client): false

Debug Mode (server): true

 File Descriptors: 19

 Goroutines: 35

 System Time: 2018-02-11T15:56:36.2281139Z

 EventsListeners: 1

Registry: https://index.docker.io/v1/

Labels:

Experimental: true

Insecure Registries:

 127.0.0.0/8

Live Restore Enabled: false

If you do not see message something similar, refer to previous sections

to install and validate your Docker install.

�Working with Docker Images

Now you can try looking at your available Docker images. To do this, type

the following command:

docker image ls

Chapter 2 Docker 101

33

Here’s a listing of the images available locally.

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest f2a91732366c 2 months ago 1.85kB

If you had pulled more images or run more containers, you’d have

seen a bigger list. Let’s look at the hello-world image. To do this, type the

following:

docker image inspect hello-world

 [

 {

 "Id": �"sha256:f2a91732366c0332ccd7afd2a5c4ff2b9af81f549

370f7a19acd460f87686bc7",

 "RepoTags": [

 "hello-world:latest"

],

 "RepoDigests": [

 �"hello-world@sha256:66ef312bbac49c39a89aa9bcc3cb4f3

c9e7de3788c944158df3ee0176d32b751"

],

 "Parent": "",

 "Comment": "",

 "Created": "2017-11-21T00:23:18.797567713Z",

 "Container": �"fb0b4536aac3a96065e1bedb2b637a6019feec666

c7699592206956c9d3adf5f",

 "ContainerConfig": {

 "Hostname": "fb0b4536aac3",

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

Chapter 2 Docker 101

34

 "AttachStderr": false,

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": [

 �"PATH=/usr/local/sbin:/usr/local/bin:/usr/

sbin:/usr/bin:/sbin:/bin"

],

 "Cmd": [

 "/bin/sh",

 "-c",

 "#(nop) ",

 "CMD [\"/hello\"]"

],

 "ArgsEscaped": true,

 "Image": �"sha256:2243ee460b69c4c036bc0e42a48eaa59e8

2fc7737f7c9bd2714f669ef1f8370f",

 "Volumes": null,

 "WorkingDir": "",

 "Entrypoint": null,

 "OnBuild": null,

 "Labels": {}

 },

 "DockerVersion": "17.06.2-ce",

 "Author": "",

 "Config": {

 "Hostname": "",

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

Chapter 2 Docker 101

35

 "AttachStderr": false,

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": [

 �"PATH=/usr/local/sbin:/usr/local/bin:/usr/

sbin:/usr/bin:/sbin:/bin"

],

 "Cmd": [

 "/hello"

],

 "ArgsEscaped": true,

 "Image": �"sha256:2243ee460b69c4c036bc0e42a48eaa59e8

2fc7737f7c9bd2714f669ef1f8370f",

 "Volumes": null,

 "WorkingDir": "",

 "Entrypoint": null,

 "OnBuild": null,

 "Labels": null

 },

 "Architecture": "amd64",

 "Os": "linux",

 "Size": 1848,

 "VirtualSize": 1848,

 "GraphDriver": {

 "Data": {

 �"MergedDir": �"/var/lib/docker/overlay2/5855bd20

ab2f521c39e1157f98f235b46d7c12c9d8

f69e252f0ee8b04ac73d33/merged",

Chapter 2 Docker 101

36

 "UpperDir": �"/var/lib/docker/overlay2/5855bd20a

b2f521c39e1157f98f235b46d7c12c9d8f6

9e252f0ee8b04ac73d33/diff",

 "WorkDir": �"/var/lib/docker/overlay2/5855bd20ab

2f521c39e1157f98f235b46d7c12c9d8f69e

252f0ee8b04ac73d33/work"

 },

 "Name": "overlay2"

 },

 "RootFS": {

 "Type": "layers",

 "Layers": [

 �"sha256:f999ae22f308fea973e5a25b57699b5daf6b0f1

150ac2a5c2ea9d7fecee50fdf"

]

 },

 "Metadata": {

 "LastTagTime": "0001-01-01T00:00:00Z"

 }

 }

]

docker inspect provides a lot of information about the image. Of

importance are the image properties Env, Cmd, and Layers, which tell

you about the environment variables, the executable that runs when the

container starts, and the layers associated with it.

The environment variables are as follows:

docker image inspect hello-world | jq .[].Config.Env

[

 �"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/

sbin:/bin"

]

Chapter 2 Docker 101

37

The startup command on the container is as follows:

docker image inspect hello-world | jq .[].Config.Cmd

[

 "/hello"

]

Layers associated with the image are as follows:

docker image inspect hello-world | jq .[].RootFS.Layers

[

 �"sha256:f999ae22f308fea973e5a25b57699b5daf6b0f1150ac2a5c2ea9d

7fecee50fdf"

]

�Working with a Real-World Docker Image

Let’s try looking at a more complex image. Nginx is a very popular reverse

proxy server for HTTP/S (among others), as well as a load balancer and a

webserver.

To pull down the nginx image, type the following:

docker pull nginx

Using default tag: latest

latest: Pulling from library/nginx

e7bb522d92ff: Pull complete

6edc05228666: Pull complete

cd866a17e81f: Pull complete

Digest: sha256:285b4

Status: Downloaded newer image for nginx:latest

Notice the first line:

Using default tag: latest

Chapter 2 Docker 101

38

Since you did not provide a tag, Docker uses the default tag called

latest. Docker Store lists the different tags associated with the image—so

if you’re looking for a specific tag/version, it’d be best to check on Docker

Store. Figure 2-4 shows a typical tag listing of an image.

Let’s try to pull an image with a specific tag, called stable. The

command remains the same as before. You must append the tag with a

colon to explicitly mention the tag:

docker pull nginx:stable

stable: Pulling from library/nginx

b4d181a07f80: Already exists

e929f62bc938: Pull complete

ca8370516c99: Pull complete

Figure 2-4.  Docker Store listing of nginx and the available tags

Chapter 2 Docker 101

39

6af693de7b22: Pull complete

c8fe6ce83489: Pull complete

7aa1fe8b4a84: Pull complete

Digest: sha256:a7c7c13

Status: Downloaded newer image for nginx:stable

docker.io/library/nginx:stable

The different hex numbers that you see are the associated layers of

the image. By default, Docker pulls the image from Docker Hub. You can

manually specify a different registry. This is useful if the Docker images

are not available on Docker Hub and are stored elsewhere, such as an

on-premises hosted artifactory. To specify a different registry, you have to

prepend the registry path to the image name. So, if the registry is hosted on

docker-private-docker-registry.example.com, the pull command will

now be:

docker pull private-docker-registry.example.com/nginx

If the registry needs authentication, you can log in to it by typing

docker login with the credentials, as shown here:

docker login -u <username> -p <password> private-docker-

registry.example.com

An unfortunate side-effect of this is that the entered password gets

recorded and saved in plaintext in the shell history. Docker helpfully warns

you about this message.

To prevent this, you can pipe in the password from a file into the

standard input for Docker to read this using the following command,

assuming that the password is stored in a file called docker_password

docker login -u <username> --password-stdin private-docker-

registry.example.com < docker_password

Chapter 2 Docker 101

40

Windows users using PowerShell can use the Get-Content cmdlet to

achieve the same as shown here:

Get-Content docker_password | docker login -u <username>

--password-stdin private-docker-registry.example.com

Now that you have the image, try starting a container. To start a

container and run the associated image, type docker run.

docker run -p 80:80 nginx

Try making a curl request to see if the nginx webserver is running:

curl http://localhost:80

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully

installed and

working. Further configuration is required.</p>

Chapter 2 Docker 101

41

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

This confirms that the nginx container is indeed up and running. In

this, you see an extra flag, -p. This flag tells Docker to publish the exposed

port from the Docker container to the host.

The first parameter after the flag is the port on the Docker host which

must be published, and the second parameter refers to the port within the

container. You can confirm that the image publishes the port using docker

inspect:

docker image inspect nginx | jq .[].Config.ExposedPorts

{

 "80/tcp": {}

}

You can change the port on which the service is published on the

Docker host by changing the first parameter after the -p flag, as follows:

docker run -p 8080:80 nginx

Now try doing a curl request to 8080 port:

curl http://localhost:8080

Chapter 2 Docker 101

42

You should see the same response. To list all the running containers,

type docker ps:

docker ps

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

fac5e92fdfac nginx "nginx -g 'daemon of…" 5 seconds ago

Up 3 seconds 0.0.0.0:80->80/tcp elastic_hugle

3ed1222964de nginx "nginx -g 'daemon of…" 16 minutes ago

Up 16 minutes 0.0.0.0:8080->80/tcp clever_thompson

The point to note is the names column. Docker auto-assigns a random

name when a container is started. Since you should use more meaningful

names, you can provide a name to the container by providing -n

required-name as the parameter.

Tip  Docker names are of the format adjective_surname and are
randomly generated, with the exception that if the adjective selected
is boring and the surname is Wozniak, Docker retries the name
generation.

Another point to note is that when you created a second container with

port publishing to port 8080, the other container continues to run. To stop

the container, you have to type this command:

docker stop <container-id>

Chapter 2 Docker 101

43

where container-id is available from this list. If the stop was successful,

Docker will echo the container ID back. If the container refuses to stop,

you can issue a kill command to force stop and kill the container:

docker kill <container-id>

Let’s try stopping a container. Type the following:

docker stop fac5e92fdfac

fac5e92fdfac

Now, let’s try killing the other container:

docker kill 3ed1222964de

3ed1222964de

Let’s confirm that the containers are no longer running, For this, type:

docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

So, what about the stopped containers—where are they? By default,

docker ps only shows the active, running containers. To list all the

containers, type:

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

fac5e92fdfac nginx "nginx -g 'daemon of…"

6 minutes ago Exited (0) 4 minutes ago elastic_hugle

3ed1222964de nginx "nginx -g 'daemon of…"

22 minutes ago Exited (137) 3 minutes ago clever_thompson

febda50b0a80 nginx "nginx -g 'daemon of…"

28 minutes ago Exited (137) 24 minutes ago

objective_franklin

Chapter 2 Docker 101

44

dc0c33a79fb7 nginx "nginx -g 'daemon of…"

33 minutes ago Exited (137) 28 minutes ago

vigorous_mccarthy

179f16d37403 nginx "nginx -g 'daemon of…"

34 minutes ago Exited (137) 34 minutes ago nginx-test

Even though the containers have been stopped and/or killed, these

containers continue to exist in the local filesystem. You can remove the

containers by typing:

docker rm <container-id>

docker rm fac5e92fdfac

fac5e92fdfac

Let’s confirm that the container was indeed removed:

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

3ed1222964de nginx "nginx -g 'daemon of…"

28 minutes ago Exited (137) 9 minutes ago clever_thompson

febda50b0a80 nginx "nginx -g 'daemon of…"

34 minutes ago Exited (137) 30 minutes ago

objective_franklin

dc0c33a79fb7 nginx "nginx -g 'daemon of…"

39 minutes ago Exited (137) 34 minutes ago

vigorous_mccarthy

179f16d37403 nginx "nginx -g 'daemon of…"

40 minutes ago Exited (137) 40 minutes ago nginx-test

Chapter 2 Docker 101

45

You can see from this table that that container with the fac5e92fdfac

ID is no longer shown and hence has been removed.

Similarly, you can list all the images present in the system by typing the

following:

docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

nginx 1.12-alpine-perl b6a456f1d7ae

4 weeks ago 57.7MB

nginx latest 3f8a4339aadd 6 weeks ago 108MB

hello-world latest f2a91732366c 2 months ago 1.85kB

kitematic/hello-world-nginx latest 03b4557ad7b9

2 years ago 7.91MB

Let’s try to remove the nginx image:

docker rmi 3f8a4339aadd

Error response from daemon: conflict: unable to delete

3f8a4339aadd (must be forced) - image is being used by stopped

container dc0c33a79fb7

In this case, Docker refuses to remove the image because there is a

reference to this image from another container. Until you remove all the

containers that use a particular image, you cannot remove the image

altogether.

Chapter 2 Docker 101

46

�Summary
In this chapter you learned about how to install Docker on various

operating systems. You also learned how to validate that Docker is installed

and working correctly and some commonly used terms associated with

Docker. Finally, you ran few practical exercises on Docker, including how

to pull an image, run a container, list the running containers and, finally,

how to stop and remove a container.

The next chapter takes a brief look at telegram, including how to

create and register a bot with telegram, and how to run your Python-based

Telegram Messaging bot, which will fetch posts from Reddit.

Chapter 2 Docker 101

47© Sathyajith Bhat 2022
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_3

CHAPTER 3

Building the
Python App
For many people getting into programming, one of their first issues is

figuring out what they can build. Programming is seldom learned by just

reading. Many people think they can read couple of guides and look at

the syntax and then easily learn how to program. But programming takes

hands-on practice.

For this reason, this book includes a sample Python project. The

project is not very complicated at the start, but it’s easy to continue

working further on the project, extending and customizing it as you gain

experience.

�About the Project

Note  This book assumes you have basic knowledge of Python and
have Python 3.6 or above installed.

To help you get acquainted with Docker, the book teaches you how

to take an existing Python app, run it from the Python command line,

introduce different Docker components, and then transition the app into a

containerized image.

https://doi.org/10.1007/978-1-4842-7815-4_3#DOI

48

The Python app is a simple application with a bot interface using

Telegram Messenger to fetch the last 10 stories from Reddit. Using

Telegram, you can subscribe to a list of subreddits. The web application

will check the subscribed subreddits for new posts and, if it finds new

topics, it will publish the topics to the bot interface. That interface will

deliver the message to Telegram Messenger, when requested by the user.

Initially, you will not be saving the preferences (i.e., the subreddit

subscriptions) and will focus on getting the bot up and running. Once

things are working fine, you will learn how to save the preferences to a text

file and, eventually, to a database.

�Setting Up Telegram Messenger
Before you can proceed, you need a Telegram Messenger account. To

sign up, go to https://telegram.org, download the application for

the platform of your choice, and install it. Once it’s running, you will be

asked to provide a cell phone number. Telegram uses this to validate your

account. Enter your cell phone number, as shown in Figure 3-1.

Chapter 3 Building the Python App

https://telegram.org/

49

Once you enter your number, you should get a one-time password to

log in. Enter the one-time password and sign in, as shown in Figure 3-2.

Figure 3-1.  Telegram signup page

Chapter 3 Building the Python App

50

�BotFather: Telegram’s Bot Creation
Interface
Telegram uses a bot called “BotFather” as its interface for creating new

bots and updating them. To get started with BotFather, in the search panel

type BotFather. From the chat window, type /start.

This will trigger BotFather to provide an introductory set of messages,

as shown in Figure 3-3.

Figure 3-2.  Telegram’s one-time password

Chapter 3 Building the Python App

51

�Creating the Bot with BotFather
You will be using BotFather to generate a new bot. Start by typing /newbot

in Telegram Messenger. This will trigger a series of questions that you

need to answer (most of them are straightforward). Due to Telegram’s

restrictions, the username for a bot must always end with bot. This means

that you might not get your desired username (see Figure 3-4).

Figure 3-3.  BotFather’s options

Chapter 3 Building the Python App

52

Along with the link to the documentation, you will notice that

Telegram has issued a token. HTTP is a stateless protocol—the webserver

does not know and does not keep track of who is requesting the resource.

The client needs to identify itself so that the webserver can identify the

client, authorize it, and serve the request. Telegram uses the API token

(henceforth, referred to as <token>, including in the code samples) as a

way of identifying and authorizing bots.

Caution  The token is extremely sensitive. If it’s leaked online,
anyone can post messages as your bot. Do not check it in with your
version control or publish it anywhere!

Figure 3-4.  Telegram bot ready for action

Chapter 3 Building the Python App

53

When working with APIs you are not familiar with, it’s always good

to use a good tool to test and explore the endpoints instead of typing the

code right away. Some examples of REST API test tools include Insomnia,

Postman, and curl.

Telegram’s Bot API documentation is available at https://core.

telegram.org/bots/api. To make a request, you have to include the

<token>. The general URL is as follows:

https://api.telegram.org/bot<token>/METHOD_NAME

Let’s try a sample API request that confirms the token is working as

expected. Telegram Bot API provides a /getMe endpoint for testing the

auth token. You can try it, first without the token, as shown in Listing 3-1.

Listing 3-1.  Making a curl Request to Telegram API Without a Token

curl https://api.telegram.org/bot/getMe

{

 "ok": false,

 "error_code": 404,

 "description": "Not Found"

}

Without the bot token, Telegram doesn’t honor the request. Now try

the token, as shown in Listing 3-2.

Listing 3-2.  Making a curl Request to Telegram API with a Valid Token

curl https://api.telegram.org/bot<token>/getMe

{

 "ok": true,

 "result": {

 "id": 495637361,

 "is_bot": true,

Chapter 3 Building the Python App

https://insomnia.rest/
https://www.getpostman.com/
https://curl.haxx.se/
https://core.telegram.org/bots/api
https://core.telegram.org/bots/api
https://api.telegram.org/bot<token>/METHOD_NAME

54

 "first_name": "SubRedditFetcherBot",

 "username": "SubRedditFetcher_Bot"

 }

}

You can see that, with the proper token, Telegram identifies and

authorizes the bot. This confirms that the bot token is proper, and you can

go ahead with the app.

�Newsbot: The Python App
Newsbot is a Python script that interacts with the bot with the help of the

Telegram Bot API. Newsbot does the following things:

•	 Continuously polls the Telegram API for new updates

being posted to the bot.

•	 If the keyword for fetching new updates was detected, it

fetches the news from the selected subreddits.

Behind the scenes, Newsbot handles these scenarios:

•	 If there’s a new message starting with /start or /help,

it shows simple help text about what to do.

•	 If there’s a message starting with /sources followed by

a list of subreddits, it accepts them as the subreddits

from the applicable Reddit posts.

Newsbot depends on a couple of Python libraries;

•	 Praw or Python Reddit API Wrapper, for fetching posts

from subreddits.

•	 Requests, one of the most popular Python libraries

for providing a simpler, cleaner API for making HTTP

requests.

Chapter 3 Building the Python App

https://core.telegram.org/bots/api

55

�Getting Started with Newsbot
To get started with Newsbot, download the source code of the bot. The

source code is available on the GitHub repository of the book, at https://

github.com/Apress/practical-docker-with-python.

If you’re familiar with Git, you can clone the repo using the following

command:

git clone https://github.com/Apress/practical-docker-with-

python.git

As an alternative, you can click the green Code button and choose

Download ZIP from the GitHub repository page to get the source code.

Once you have cloned the repo or extracted the ZIP, change to the

directory containing the source code by typing the following command:

cd practical-docker-with-python/source-code/chapter-3/python-app

Now install the dependencies. To do this, type the following:

pip3 install -r requirements.txt

pip  (Pip Installs Packages) is a package manager that installs Python
libraries. pip is included with Python 2.7.9 and later, and Python 3.4
and later. pip3 indicates that you are installing libraries for Python 3.
If pip is not installed, install it before proceeding.

The -r flag tells pip to install the required packages from
requirements.txt.

pip will check, download, and install the dependencies. If all goes well,

you should see the output in Listing 3-3.

Chapter 3 Building the Python App

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

56

Listing 3-3.  The Output from a Successful pip Install

Collecting praw==3.6.0 (from -r requirements.txt (line 1))

 Downloading praw-3.6.0-py2.py3-none-any.whl (74kB)

Collecting requests==2.18.4 (from -r requirements.txt (line 2))

[...]

Installing collected packages: requests, update-checker,

decorator, six, praw

Successfully installed decorator-4.0.11 praw-3.6.0

requests-2.18.4 six-1.10.0 update-checker-0.16

If some packages were already installed, pip will not reinstall them

and will inform you that the dependency is installed with a "Requirement

already satisfied" message.

�Running Newsbot
Let’s start the bot. The bot requires an authentication token from Telegram

that you created previously (referred to as <token>). This needs to be set

to an environment variable named as NBT_ACCESS_TOKEN. Without this

token, the bot will not run. To set this token, open a terminal and enter the

following command, depending on your platform.

Windows users:

setx NBT_ACCESS_TOKEN <token>

Linux and macOS users:

export NBT_ACCESS_TOKEN=<token>

Now, start the Python script by typing the following command:

python newsbot.py

Chapter 3 Building the Python App

57

If all’s well, you should be seeing periodic OK messages, as shown in

Listing 3-4. This means that Newsbot is running and is actively listening for

updates.

Listing 3-4.  Output from Newsbot When It Is Running and Listening

to Messages from Telegram

python newsbot.py

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

�Sending Messages to Newsbot
In this section, you try to send a message to Newsbot to see if it

accepts requests. From the BotFather window, click the link to the bot

(alternatively, you can also search using the bot username). Click the Start

button. This will trigger a /start command, which will be intercepted by

the bot.

Notice that the log window shows the incoming request and the

outgoing message being sent, as indicated in Listing 3-5.

Listing 3-5.  The Newsbot Responding to Commands

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result':

[{'update_id': 720594461, 'message': {'message_id': 5, 'from':

{'id': 7342383, 'is_bot': False, 'first_name': 'Sathya', 'last_

Chapter 3 Building the Python App

58

name': 'Bhat', 'username': 'sathyabhat', 'language_code': 'en-

US'}, 'chat': {'id': 7342383, 'first_name': 'Sathya', 'last_

name': 'Bhat', 'username': 'sathyabhat', 'type': 'private'},

'date': 1516558659, 'text': '/start', 'entities': [{'offset': 0,

'length': 6, 'type': 'bot_command'}]}}]}

INFO: handle_incoming_messages - Chat text received: /start

INFO: post_message - posting

 Hi! This is a News Bot which fetches news

from subreddits. Use "/source" to select a subreddit source.

 �Example "/source programming, games" fetches news from r/

programming, r/games.

 �Use "/fetch" for the bot to go ahead and fetch the news.

At the moment, bot will fetch total of 10 posts from all

subreddits

 to 7342383

INFO: get_updates - received response: {'ok': True, 'result': []}

Figure 3-5 shows the Telegram Messenger window.

Figure 3-5.  The response from Newsbot to the start message

Chapter 3 Building the Python App

59

Try setting a source subreddit. From the Telegram Messenger window,

type the following:

/source python

You should get a positive acknowledgement from the bot, saying the

source was selected (see Figure 3-6).

Figure 3-6.  Sources assigned

Now you can tell the bot to fetch some news. To do this, type:

/fetch

The bot should send an acknowledgement message about fetching the

posts. Then it will publish the posts from Reddit (see Figure 3-7).

Chapter 3 Building the Python App

60

The bot works; it’s fetching the top posts as expected. In the next series

of chapters, you learn how to move Newsbot to Docker.

�Summary
In this chapter, you learned about the details of the book’s Python Project,

which is a chatbot. You also learned how to install and configure Telegram

Messenger, how to use Telegram’s BotFather to create the bot, how to

install the dependencies for the bot and, finally, how to run the bot and

ensure that it works correctly. In the next chapter, you dive deep into

Docker, learn more about Dockerfiles, and containerize the Newsbot app

by writing a Dockerfile for it.

Figure 3-7.  Newsbot posting the top news from the Python
subreddit

Chapter 3 Building the Python App

61© Sathyajith Bhat 2022
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_4

CHAPTER 4

Understanding
the Dockerfile
Now that you have a better understanding of Docker and its associated

terminology, this chapter shows you how to convert your project into a

containerized application using Docker. In this chapter, you learn what

a Dockerfile is, including its syntax, and learn how to write a Dockerfile.

With a better understanding of Dockerfiles, you can work toward the first

step in writing a Dockerfile for the Newsbot app.

�Dockerfile Primer
For a traditionally deployed application, building and packaging an

application was often quite tedious. With the aim to automate the build

and packaging of the application, people turned to different utilities, such

as GNU Make, maven, Gradle, and so on, to build the application package.

Similarly, in the Docker world, a Dockerfile is an automated way to build

your Docker images.

The Dockerfile contains special instructions that tell the Docker

Engine about the steps required to build an image. To invoke a build using

Docker, you issue the Docker build command. Listing 4-1 shows a typical

Dockerfile.

https://doi.org/10.1007/978-1-4842-7815-4_4#DOI

62

Listing 4-1.  A Typical Dockerfile

FROM ubuntu:latest

LABEL author="sathyabhat"

LABEL description="An example Dockerfile"

RUN apt-get install python

COPY hello-world.py

CMD python hello-world.py

Looking at this Dockerfile, it’s easy to see what we’re telling the Docker

Engine to build. However, don’t let the simplicity fool you—Dockerfiles let

you build complex conditions when generating your Docker images. When

a Docker build command is issued, it builds the Docker images from the

Dockerfile and a build context.

�Build Context
A build context is a file or set of files available at a specific path or URL. To

understand this better, say you have some supporting files that you need

during a Docker image build—for instance, an application-specific config

file that was generated earlier and needs to be part of the container.

The build context can be local or remote—you can even set the build

context to the URL of a Git repository, which can come in handy if the

source files are not located in the same host as the Docker daemon or if

you want to test feature branches. You simply set the context to the branch.

The build command would look like this:

docker build https://github.com/sathyabhat/sample-repo.

git#mybranch

Similarly, to build images based on your Git tags, the build command

would look like this:

docker build https://github.com/sathyabhat/sample-repo.git#mytag

Chapter 4 Understanding the Dockerfile

63

Working on a feature via a pull request? Want to try that pull request?

Not a problem, you can even set the context to a pull request:

docker build https://github.com/sathyabhat/sample-repo.

git#pull/1337/head

The build command sets the context to the path or URL provided,

uploading the files available to the Docker daemon and allowing it to build

the image. You are not limited to a build context of an URL or path. If you

pass an URL to a remote tarball (i.e., a .tar file), the tarball at the URL is

downloaded onto the Docker daemon and the build command is issued

with that as the build context.

Caution I f you provide the Dockerfile on the root (/) directory and
set that as the context, doing so will transfer your hard disk contents
to the Docker daemon.

�Dockerignore
You should now understand that the build context transfers the contents of

the current directory to the Docker daemon during the build. Consider the

case where the context directory has a lot of files/directories that are not

relevant to the build process. Uploading these files/directories can cause

a significant increase in network traffic. A Dockerignore file, much like

gitignore, allows you to define files that are exempt from being transferred

during the build process.

The ignore list is provided by a file known as .dockerignore and

when the Docker CLI finds this file, it modifies the context to exclude

the files/patterns provided in the file. Anything starting with a hash (#)

Chapter 4 Understanding the Dockerfile

64

is considered a comment and ignored. The following snippet shows a

sample .dockerignore file that excludes the temp, .git, and .DS_Store

directories:

/temp

.DS_Store

.git

�BuildKit
With the 18.09 release of the Docker Engine, Docker overhauled their

container build system using BuildKit. BuildKit is now the default build

system for Docker. For most users, BuildKit works exactly as the legacy

build system. BuildKit has a new command output for Docker image

builds and, as a result, provides more detailed feedback about the build

process.

If you see output that’s different from other learning resources, that

means they may have not been updated with the output from BuildKit.

BuildKit also tries to parallelize the build steps as much as possible, so you

can expect faster build speeds, especially for containers that have a lot of

Dockerfile instructions. For advanced users, BuildKit also introduces the

ability to pass secrets into the build stage without the secret being in the

final layer. The build output, when using BuildKit, is shown in Listing 4-2.

(Note that the sha output has been truncated due to space constraints.)

Listing 4-2.  Build Output When BuildKit Is Enabled

docker build .

[+] Building 11.6s (6/6) FINISHED

 => [internal] load build definition from Dockerfile 0.1s

 => => transferring dockerfile: 84B 0.0s

 => [internal] load .dockerignore 0.1s

 => => transferring context: 2B 0.0s

Chapter 4 Understanding the Dockerfile

65

 => �[internal] load metadata for docker.io/library/

ubuntu:latest 8.7s

 => [auth] library/ubuntu:pull token for registry-1.docker.io 0.0s

 => [1/1] FROM docker.io/library/ubuntu:latest@sha256:aba80b7 2.7s

 => => resolve docker.io/library/ubuntu:latest@sha256:aba80b7 0.0s

 => => sha256:aba80b7 1.20kB / 1.20kB 0.0s

 => => sha256:376209 529B / 529B 0.0s

 => => sha256:987317 1.46kB / 1.46kB 0.0s

 => => sha256:c549ccf8 28.55MB / 28.55MB 1.1s

 => => extracting sha256:c549ccf 1.2s

 => exporting to image 0.0s

 => => exporting layers 0.0s

 => => writing image sha256:f2afdc

As of writing this chapter, it is still possible to switch back to the legacy

build process by setting the DOCKER_BUILDKIT flag, as shown in Listing 4-3.

Listing 4-3.  Switching Back to the Legacy Build Process

DOCKER_BUILDKIT=0 docker build .

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM ubuntu:latest

latest: Pulling from library/ubuntu

c549ccf8d472: Already exists

Digest: sha256:aba80b77e27148d99c034a987e7da3a287ed455390352663

418c0f2ed40417fe

Status: Downloaded newer image for ubuntu:latest

 ---> 9873176a8ff5

Step 2/2 : CMD echo Hello World!

 ---> Running in d5ca2635eecd

Removing intermediate container d5ca2635eecd

 ---> 77711564634f

Successfully built 77711564634f

Chapter 4 Understanding the Dockerfile

66

Unless you encounter any problems, I do not recommend switching

back to the legacy build process. Stick to using Docker BuildKit. If you’re

not seeing the new build output, ensure that you have updated to the latest

version of Docker.

�Building Using Docker Build
You’ll return to the sample Dockerfile a bit later. Let’s start with a

simple Dockerfile first. Copy the following snippet to a file and save it as

Dockerfile:

FROM ubuntu:latest

CMD echo Hello World!

Now build this image using the docker build command. You’ll see

the response as shown in Listing 4-4. (Note that the sha output has been

truncated.)

Listing 4-4.  Response from Docker Engine as it Builds the

Dockerfile

 docker build .

[+] Building 11.6s (6/6) FINISHED

 => [internal] load build definition from Dockerfile0.1s

 => => transferring dockerfile: 84B 0.0s

 => [internal] load .dockerignore 0.1s

 => => transferring context: 2B0.0s

 => �[internal] load metadata for docker.io/library/

ubuntu:latest 8.7s

 => [auth] library/ubuntu:pull token for registry-1.docker.io 0.0s

 => [1/1] FROM docker.io/library/ubuntu:latest@sha256:aba80b7 2.7s

 => => resolve docker.io/library/ubuntu:latest@sha256:aba80b7 0.0s

Chapter 4 Understanding the Dockerfile

67

 => => sha256:aba80b7 1.20kB / 1.20kB 0.0s

 => => sha256:376209 529B / 529B 0.0s

 => => sha256:987317 1.46kB / 1.46kB 0.0s

 => => sha256:c549ccf8 28.55MB / 28.55MB 1.1s

 => => extracting sha256:c549ccf 1.2s

 => exporting to image0.0s

 => => exporting layers 0.0s

 => => writing image sha256:f2afdc

You can see that the Docker build works in steps, each step

corresponding to one instruction of the Dockerfile. Now try the build

process again.

docker build .

[+] Building 0.1s (5/5) FINISHED

=> [internal] load build definition from Dockerfile 0.0s

=> => transferring dockerfile: 37B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

=> [internal] load metadata for docker.io/library/ubuntu:latest 0.0s

=> CACHED [1/1] FROM docker.io/library/ubuntu:latest 0.0s

=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:f2afdcc 0.0s

Note how much faster the build process is the second time around.

Docker has already cached the layers and doesn’t have to pull them again.

To run this image, use the docker run command followed by the image ID

f2afdcc:

docker run f2afdcc

Hello World!

Chapter 4 Understanding the Dockerfile

68

So, the Docker runtime was able to start a container and run the

command defined by the CMD instruction; hence, you get the output. Now,

starting a container from an image by typing the image ID gets tedious fast.

You can make this easier by tagging the image with an easy-to-remember

name. You can do this by using the docker tag command, as shown here:

docker tag <image id> <tag name>

docker tag f2afdcc sathyabhat/hello-world

You’ll look at deeper look at tags in the next section. Docker also

validates that the Dockerfile has valid instructions and they are in the

proper syntax. Consider the earlier Dockerfile, shown in Listing 4-5.

Listing 4-5.  Dockerfile for Python with an Invalid Instruction

FROM ubuntu:latest

LABEL author="sathyabhat"

LABEL description="An example Dockerfile"

RUN apt-get install python

COPY hello-world.py

CMD python hello-world.py

If you try to build this Dockerfile, Docker will complain about an error,

as shown here:

docker build -f Dockerfile.invalid .

[+] Building 0.1s (2/2) FINISHED

=> [internal] load build definition from Dockerfile.invalid 0.0s

=> => transferring dockerfile: 336B 0.0s

=> [internal] load .dockerignore 0.0s

=> => transferring context: 2B 0.0s

failed to solve with frontend dockerfile.v0: failed to create

LLB definition: dockerfile parse error line 6:

COPY requires at least two arguments, but only one was

provided. Destination could not be determined.

Chapter 4 Understanding the Dockerfile

69

You’ll get back to fixing this problem a little later in the chapter.

For now, it’s time to look at some of the commonly used Dockerfile

instructions and at tagging images.

�Tags
A tag is a name that uniquely identifies a specific version of a Docker

image. Tags are plain-text labels often used to identify specific details, such

as the version, the base OS of the image, or the architecture of the Docker

image. Tagging a Docker image gives you the flexibility to refer uniquely to

a specific version, which makes it easier to roll back to previous versions of

a Docker image if the current image is not working as expected.

If a tag is not specified, Docker will apply a string called "latest" as

the default tag. The "latest" tag is often the source of many problems,

especially for new Docker users. Many believe that having "latest" as the

tag would mean that the Docker image is the latest version of the image

and would always be updated to the latest version. This is not true—

latest was chosen as a convention but doesn’t have any special meaning

to it.

I do not recommend using latest as a tag, especially with production

workloads. During development stages, omitting the tag will result in the

"latest" tag being applied to every build. If there were a breaking change,

since the tag is common, the previous images would get overwritten. This

makes rolling back to the previous version of the image difficult unless

you noted the SHA-hash of the image. Using specific tags makes it easier

to determine, at a glance, what tag or version of Docker image is running

on the container. Using specific tags also reduces the chance of breaking

changes being propagated, especially if you tag your image as latest and

have a breaking change or a bug. The next time your container crashes or

restarts, it might pull the image with the breaking change or bug.

Chapter 4 Understanding the Dockerfile

70

Docker images can be tagged and retagged using the docker tag

command:

docker tag <image id> <tag name>

docker tag f2afdcc sathyabhat/hello-world

The tag names will typically have the Docker Registry prefixed to the

tag name. If a registry name is not specified, Docker will assume the image

is part of Docker Hub and will try to pull it from there. The tags can be

assigned as part of the build process by passing the -t flag, as shown in

Listing 4-6.

Listing 4-6.  Adding a Tag When Building the Image

docker build -t sathyabhat/helloworld .

[+] Building 0.2s (5/5) FINISHED

=> [internal] load build definition from Dockerfile0.0s

=> => transferring dockerfile: 37B 0.0s

=> [internal] load .dockerignore 0.1s

=> => transferring context: 2B0.0s

=> �[internal] load metadata for docker.io/library/

ubuntu:latest0.0s

=> CACHED [1/1] FROM docker.io/library/ubuntu:latest 0.0s

=> exporting to image 0.0s

=> => exporting layers 0.0s

=> => writing image sha256:f2afdcc 0.0s

=> => naming to docker.io/sathyabhat/helloworld

Note that even though you did not mention docker.io as part of the

tag, it was prefixed to the tag name, as mentioned. The last line tells you

that the image was tagged successfully. You can verify this by searching for

docker images:

Chapter 4 Understanding the Dockerfile

71

docker images sathyabhat/helloworld

REPOSITORY TAG IMAGE ID CREATED SIZE

sathyabhat/helloworld latest f2afdccf8eeb 3 weeks ago 72.7MB

�Dockerfile Instructions
When looking at a Dockerfile, you’re mostly likely to run into the following

instructions.

•	 FROM

•	 ADD

•	 COPY

•	 RUN

•	 CMD

•	 ENTRYPOINT

•	 ENV

•	 VOLUME

•	 LABEL

•	 EXPOSE

Let’s see what they do.

�FROM
As you learned earlier, every image needs to start from a base image. The

FROM instruction tells the Docker Engine the base image to be used for

subsequent instructions. Every valid Dockerfile must start with a FROM

instruction. The syntax is as follows:

FROM <image> [AS <name>]

Chapter 4 Understanding the Dockerfile

72

OR

FROM <image>[:<tag>] [AS <name>]

OR

FROM <image>[@<digest>] [AS <name>]

Where <image> is the name of a valid Docker image from any public/

private repository. As mentioned, if the tag is skipped, Docker will fetch the

image tagged as latest.

�WORKDIR
The WORKDIR instruction sets the current working directory for the RUN, CMD,

ENTRYPOINT, COPY, and ADD instructions. WORKDIR is useful when you have

multiple directories in the source code and you want some specific actions

to be done within these specific directories. WORKDIR is also frequently used

to set a separate location for the application to run in the container. The

syntax is as follows:

WORKDIR /path/to/directory

WORKDIR can be set multiple times in a Dockerfile and, if a relative

directory succeeds a previous WORKDIR instruction, it will be relative to the

previously set working directory. Let’s look at an example demonstrating this.

Consider this Dockerfile:

FROM ubuntu:latest

WORKDIR /app

CMD pwd

The Dockerfile fetches the latest tagged image from Ubuntu as the

base image, sets the current working directory to /app, and runs the pwd

command when the image is run. The pwd command prints the current

working directory.

Chapter 4 Understanding the Dockerfile

73

Let’s try to build and run this and examine the output:

docker build -t sathybhat/workdir .

[+] Building 0.7s (6/6) FINISHED

 => [internal] load build definition from Dockerfile 0.0s

 => => transferring dockerfile: 36B 0.0s

 => [internal] load .dockerignore0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/

ubuntu:latest 0.6s

 => [1/2] FROM docker.io/library/ubuntu:latest@sha256:b3e2e4 0.0s

 => CACHED [2/2] WORKDIR /app 0.0s

 => exporting to image 0.0s

 => => exporting layers 0.0s

 => => writing image sha256:f8853df 0.0s

 => => naming to docker.io/sathybhat/workdir

Now you run the newly built image:

docker run sathybhat/workdir

/app

The result of pwd makes it clear that the current working directory is set

as /app by way of the WORKDIR instruction. Modify the Dockerfile to add a

couple of WORKDIR instructions, as shown here:

FROM ubuntu:latest

WORKDIR /usr

WORKDIR src

WORKDIR app

CMD pwd

Chapter 4 Understanding the Dockerfile

74

Let’s build and run the new image:

docker build -t sathybhat/workdir .

[+] Building 0.7s (8/8) FINISHED

 => [internal] load build definition from Dockerfile 0.0s

 => => transferring dockerfile: 121B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/

ubuntu:latest 0.6s

 => [1/4] FROM docker.io/library/ubuntu:latest@sha256:b3e2e47 0.0s

 => CACHED [2/4] WORKDIR /usr 0.0s

 => CACHED [3/4] WORKDIR src 0.0s

 => CACHED [4/4] WORKDIR app 0.0s

 => exporting to image 0.0s

 => => exporting layers 0.0s

 => => writing image sha256:207b405 0.0s

 => => naming to docker.io/sathyabhat/workdir

Note that the image ID has changed, so that’s a new image being built

with the same tag:

docker run sathybhat/workdir

/usr/src/app

As expected, the WORKDIR instructions of the relative directory have

appended to the initial absolute directory set. By default, the WORKDIR is

set as /, so any WORKDIR instructions featuring a relative directory will be

appended to /. Here’s an example demonstrating this. Let’s modify the

Dockerfile as follows:

Chapter 4 Understanding the Dockerfile

75

FROM ubuntu:latest

WORKDIR var

WORKDIR log/nginx

CMD pwd

Build the image:

docker build -t sathyabhat/workdir .

[+] Building 1.8s (8/8) FINISHED

 => [internal] load build definition from Dockerfile 0.0s

 => => transferring dockerfile: 115B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/

ubuntu:latest 1.6s

 => [auth] library/ubuntu:pull token for registry-1.docker.io 0.0s

 => �CACHED [1/3] FROM docker.io/library/ubuntu:latest@

sha256:b3e2e47 0.0s

 => [2/3] WORKDIR var 0.0s

 => [3/3] WORKDIR log/nginx 0.0s

 => exporting to image 0.0s

 => => exporting layers 0.0s

 => => writing image sha256:e7ded5d 0.0s

 => => naming to docker.io/sathyabhat/workdir

Now run it:

docker run sathyabhat/workdir

/var/log/nginx

Notice that you did not set any absolute working directory in the

Dockerfile—the relative directories were appended to the default.

Chapter 4 Understanding the Dockerfile

76

�ADD and COPY
At first glance, the ADD and COPY instructions seem to be the same—they

allow you to transfer files from the host to the container’s filesystem. COPY

supports basic copying of files to the container, whereas ADD has support

for features like tarball auto extraction (i.e., Docker will automatically

extract compressed files added from local directory) and remote URL

support (i.e., Docker will download the resources from a remote URL).

The syntax for both are quite similar:

ADD <source> <destination>

COPY <source> <destination>

The ADD instruction is useful when you’re adding files from remote

URLs or you have compressed files from the local filesystem that need to

be automatically extracted into the container filesystem.

As an example, the following COPY instruction copies a single file called

hugo to the /app directory in the container:

COPY hugo /app/

The following ADD instruction fetches a compressed file called

hugo_0.88.0_Linux-64bit.tar.gz from the URL but doesn’t

automatically decompress the file:

ADD https://github.com/gohugoio/hugo/releases/download/v0.88.0/

hugo_0.88.0_Linux-64bit.tar.gz /app/

While the following ADD instruction will copy and automatically extract

the contents of the compressed file to the /app directory in the container.

ADD hugo_0.88.0_Linux-64bit.tar.gz /app/

For Dockerfiles used to build Linux containers, both instructions let

you change the owner/group of the files being added to the container. This

is done using the --chown flag, as follows:

Chapter 4 Understanding the Dockerfile

77

ADD --chown=<user>:<group> <source> <destination>

COPY --chown=<user>:<group> <source> <destination>

For example, if you want to add requirements.txt from the current

working directory to the /usr/share/app directory, the instruction would

be as follows:

ADD requirements.txt /usr/share/app

COPY requirements.txt /usr/share/app

Both ADD and COPY support wildcards while specifying patterns. For

example, having the following instructions in your Dockerfile will copy all

the files with the .py extension to the /apps/ directory of the image.

ADD *.py /apps/

COPY *.py /apps/

Note D ocker recommends using COPY over ADD, especially when
it’s a local file that’s being copied.

There are some points to consider when choosing COPY versus ADD. In

the case of the COPY instruction:

•	 If the <destination> does not exist in the image, it will

be created.

•	 All new files/directories are created with UID and GID

as 0—that is, as the root user. To change this, you can

use the --chown flag.

•	 If the files/directories contain special characters, they

need to be escaped.

Chapter 4 Understanding the Dockerfile

78

•	 The <destination> can be absolute or relative paths. In

case of relative paths, the relativeness will be inferred

from the path set by the WORKDIR instruction.

•	 If the <destination> doesn’t end with a trailing slash,

it will be considered a file and the contents of the

<source> will be written into <destination>.

•	 If the <source> is specified as a wildcard pattern, the

<destination> must be a directory and must end with

a trailing slash; otherwise, the build process will fail.

•	 The <source> must be within the build context. It

cannot be a file/directory outside of the build context

because the first step of a Docker build process involves

sending the context directory to the Docker daemon.

In case of the ADD instruction:

•	 If the <source> is a URL and the <destination> is

not a directory and doesn’t end with a trailing slash,

the file is downloaded from the URL and copied into

<destination>.

•	 If the <source> is a URL and the <destination> is a

directory and ends with a trailing slash, the filename is

inferred from the URL and the file is downloaded and

copied to <destination>/<filename>.

•	 If the <source> is a local tarball of a known

compression format, the tarball is unpacked as

a directory. Remote tarballs, however, are not

uncompressed.

Chapter 4 Understanding the Dockerfile

79

�RUN
The RUN instruction will execute any command during the build step of

the container. This creates a new layer that is available for the next steps in

the Dockerfile. It is important to note that the command following the RUN

instruction runs only when the image is being built. The RUN instruction

has no relevance when a container has started and is running.

RUN has two forms, the shell form and the exec form. In the shell form,

the command is written space-delimited, as shown here:

RUN <command>

This form makes it possible to use shell variables, subcommands,

command pipes, and command chains in the RUN instruction itself.

Consider a scenario where you want to embed the kernel release

version into the home directory of the Docker image. You can get the kernel

release and version using the uname –rv command. This output can be

then printed using echo and then redirected to a file called kernel-info in

the home directory of the image. You can do this with the RUN instruction

in shell form, as shown here:

RUN echo `uname -rv` > $HOME/kernel-info

In exec form, the command is written comma-delimited and

surrounded by quotes, as shown here:

RUN ["executible", "parameter 1", " parameter 2"] (the exec

form)

Unless you need to use shell features like chaining and redirection, it is

recommended to use the exec form for the RUN instruction.

Chapter 4 Understanding the Dockerfile

80

�Layer Caching

When the image is built, Docker will cache the layers that it has pulled.

This is evident from the build logs. Consider the following Dockerfile:

FROM ubuntu:latest

RUN apt-get update

The build log when you run docker build is shown here:

docker build -f Dockerfile .

[+] Building 8.1s (7/7) FINISHED

 => [internal] load build definition from Dockerfile 0.1s

 => => transferring dockerfile: 96B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/

ubuntu:latest 1.8s

 => �[auth] library/ubuntu:pull token for registry-1.docker.io 0.0s

 => �CACHED [1/2] FROM docker.io/library/ubuntu:latest@

sha256:b3e2e47 0.0s

 => [2/2] RUN apt-get update 6.0s

 => exporting to image 0.2s

 => => exporting layers 0.1s

 => => writing image sha256:a9824f6

The logs indicate that, instead of redownloading the layer for the base

Ubuntu image, Docker uses the cached layer saved to disk. This applies to

all the layers that are created—and Docker creates a new layer whenever

it encounters RUN, COPY, or ADD instructions. Having the right order of

instructions can greatly improve whether Docker will reuse the layers. This

can not only improve the image build speed, but also reduce container

start times by virtue of having lesser number of layers to download.

Chapter 4 Understanding the Dockerfile

81

Due to the way layer caching works, it is always best to chain the

package update and package install as a single RUN instruction. Consider a

Dockerfile where the run instructions are as shown here:

RUN apt-get update

RUN apt-get install pkg1

RUN apt-get install pkg2

RUN apt-get install pkg3

When Docker builds this image, it caches the four layers created by

the four RUN commands. To reduce the number of layers, and to prevent

packages not being able to be installed due to the package cache being out

of date, it is best to chain the update and installs, as shown here:

RUN apt-get update && apt-get install -y \

 pkg1 \

 pkg2 \

 pkg3 \

 pkg4

This creates a single layer with the packages to be installed, and any

change in any of the packages will invalidate the cache and cause a new

layer to be created with the updated packages. If you want to explicitly

instruct Docker to avoid using the cache, then passing --no-cache flag to

the docker build command will skip using the cache.

�CMD and ENTRYPOINT
The CMD and ENTRYPOINT instructions define which command is executed

when running a container. The syntax for both is shown here:

Chapter 4 Understanding the Dockerfile

82

CMD ["executable","param1","param2"] (exec form)

CMD ["param1","param2"] (as default parameters to ENTRYPOINT)

CMD command param1 param2 (shell form)

ENTRYPOINT ["executable", "param1", "param2"] (exec form)

ENTRYPOINT command param1 param2 (shell form)

The ENTRYPOINT instruction is best when you want your container to

function like an executable, and the CMD instruction provides the defaults

for an executing container. Consider the Dockerfile shown here:

FROM ubuntu:latest

RUN apt-get update && \

 apt-get install -y curl && \

 rm -rf /var/lib/apt/lists/*

CMD ["curl"]

In this Docker image, Ubuntu is the base image, curl is installed on it,

and curl is the parameter for the CMD instruction. This means that when

the container is created and run, it will run curl without any parameters.

Let’s build the image for the Dockerfile shown here:

docker build –t sathyabhat/curl .

[+] Building 11.8s (6/6) FINISHED

 => [internal] load build definition from Dockerfile 0.0s

 => => transferring dockerfile: 50B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/

ubuntu:latest 0.7s

 => �CACHED [1/2] FROM docker.io/library/ubuntu:latest@

sha256:b3e2e47 0.0s

 => [2/2] RUN apt-get update && apt-get install -y curl 10.7s

 => exporting to image 0.3s

Chapter 4 Understanding the Dockerfile

83

 => => exporting layers 0.3s

 => => writing image sha256:8a9fc4b 0.0s

 => => naming to docker.io/sathyabhat/curl

You can see the result when you run the container:

docker run sathyabhat/curl

curl: try 'curl --help' or 'curl --manual' for more information

This is because curl expects a parameter to be passed. You can override

the CMD instruction by passing arguments to the docker run command. As

an example, try to curl wttr.in, which fetches the current weather.

docker run sathyabhat/curl wttr.in

docker: Error response from daemon: OCI runtime create failed:

container_linux.go:296: starting container process caused

"exec: \"wttr.in\": executable file not found in $PATH": unknown.

Uh oh, an error. As mentioned, the parameters after docker run are

used to override the CMD instruction. However, you have passed only wttr.

in as the argument, not the executable itself. For the override to work

properly, you need to pass in the executable, which is curl, as well:

docker run sathyabhat/curl -s wttr.in

Weather report: Gurgaon, India

 Haze

 _ - _ - _ - 24-25 °C

 _ - _ - _ ↖ 13 km/h

 _ - _ - _ - 3 km

 0.0 mm

Passing an executable every time to override a parameter can be quite

tedious. This is where the combination of ENTRYPOINT and CMD shines. You

can set ENTRYPOINT to the executable while the parameter can be passed

from the command line and will be overridden.

Chapter 4 Understanding the Dockerfile

84

Modify the Dockerfile as follows:

FROM ubuntu:latest

RUN apt-get update && \

apt-get install -y curl

ENTRYPOINT ["curl", "-s"]

Build the image again:

docker build -t sathyabhat/curl .

[+] Building 0.7s (6/6) FINISHED

 => �[internal] load build definition from Dockerfile.listing-

4-x-5 0.0s

 => => transferring dockerfile: 157B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/ubuntu:latest 0.6s

 => [1/2] FROM docker.io/library/ubuntu:latest@sha256:b3e2e47 0.0s

 => CACHED [2/2] RUN apt-get update && apt-get install -y curl 0.0s

 => exporting to image 0.0s

 => => exporting layers 0.0s

 => => writing image sha256:7e31728 0.0s

 => => naming to docker.io/sathyabhat/curl

Now you can curl any URL by just passing the URL as a parameter,

instead of having to add the executable as well.

docker run sathyabhat/curl wttr.in

Weather report: Gurgaon, India

 Haze

 _ - _ - _ - 24-25 °C

 _ - _ - _ ↖ 13 km/h

 _ - _ - _ - 3 km

 0.0 mm

Chapter 4 Understanding the Dockerfile

85

Of course, curl is just an example here. You can replace curl with

any other program that accepts parameters (such as load-testing utilities,

benchmarking utilities, etc.) and the combination of CMD and ENTRYPOINT

makes it easy to distribute the image.

Note that the ENTRYPOINT must be provided in exec form—writing it in

shell form means that the parameters are not passed properly and will not

work as expected. Table 4-1 is from Docker’s Reference Guide. It explains

the matrix of allowed ENTRYPOINT/CMD combinations, assuming p1_cmd,

p1_entry and p2_cmd, p2_entry are the CMD and ENTRYPOINT variations of

commands p1 and p2 that you want to run in the container.

Table 4-1.  Commands for ENTRYPOINT/CMD Combinations

No ENTRYPOINT ENTRYPOINT

exec_entry

p1_entry

ENTRYPOINT ["exec_

entry", "p1_entry"]

No CMD Error, not allowed /bin/sh -c

exec_entry

p1_entry

exec_entry p1_entry

CMD ["exec_

cmd", "p1_

cmd"]

exec_cmd p1_

cmd

/bin/sh -c

exec_entry

p1_entry

exec_entry p1_entry

exec_cmd p1_cmd

CMD ["p1_

cmd", "p2_

cmd"]

p1_cmd p2_cmd /bin/sh -c

exec_entry

p1_entry

exec_entry p1_entry

p1_cmd p2_cmd

CMD exec_

cmd p1_cmd

/bin/sh -c

exec_cmd p1_

cmd

/bin/sh -c

exec_entry

p1_entry

exec_entry p1_entry /

bin/sh -c exec_cmd

p1_cmd

Chapter 4 Understanding the Dockerfile

86

The following points are important to remember about the shell and

exec forms:

•	 As mentioned earlier, you can specify RUN, CMD, and

ENTRYPOINT in shell form and exec form. Which should

be used will entirely depend on the requirements. But

as general guide:

•	 In shell form, the command is run in a shell with

the command as a parameter. This form provides

for a shell where shell variables, subcommands,

commanding piping, and chaining are possible.

•	 In exec form, the command does not invoke a

command shell. This means that normal shell

processing (such as $VARIABLE substitution, piping,

etc.) will not work.

•	 A program started in shell form will run as a

subcommand of /bin/sh -c. This means the

executable will not be running as PID and will not

receive UNIX signals. As a consequence, a Ctrl+C to

send a SIGTERM will not be forwarded to the container

and the application might not exit correctly.

�ENV
The ENV instruction sets the environment variables to the image. The ENV

instruction has two forms:

ENV <key> <value>

ENV <key>=<value> ...

In the first form, the entire string after the <key> is considered the

value, including whitespace characters. Only one variable can be set per

line in this form.

Chapter 4 Understanding the Dockerfile

87

In the second form, multiple variables can be set at one time, with the

equals (=) character assigning value to the key.

The environment variables set are persisted through the container

runtime. They can be viewed using docker inspect.

Consider this Dockerfile:

FROM ubuntu:latest

ENV LOGS_DIR="/var/log"

ENV APPS_DIR /apps/

Build the Docker image:

docker build -t sathyabhat/env .

[+] Building 1.7s (6/6) FINISHED

 => �[internal] load build definition from Dockerfile.listing-

4-x-6 0.0s

 => => transferring dockerfile: 50B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/

ubuntu:latest 1.6s

 => �[auth] library/ubuntu:pull token for registry-1.docker.io 0.0s

 => �CACHED [1/1] FROM docker.io/library/ubuntu:latest@

sha256:b3e2e47 0.0s

 => exporting to image 0.0s

 => => exporting layers 0.0s

 => => writing image sha256:23eb815 0.0s

 => => naming to docker.io/sathyabhat/env

You can inspect the environment variables by using the following

command:

docker inspect sathyabhat/env | jq ".[0].Config.Env"

Chapter 4 Understanding the Dockerfile

88

The output will be as follows:

[

 �"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/

sbin:/bin",

 "LOGS_DIR=/var/log",

 "APPS_DIR=/apps/"

]

The environment variables defined for a container can be changed

when running a container with the -e flag. In the previous example,

change the LOGS_DIR value to /logs for a container. This is achieved by

typing the following command:

docker run -it -e LOGS_DIR="/logs" sathyabhat/env

You can confirm the changed value by typing the following command

at the terminal:

printenv | grep LOGS

LOGS_DIR=/logs

Type exit to close the interactive terminal of the container. To assign

multiple environment variables, pass the additional environment variables

using the -e flag, just as the first environment variable. In the previous

example, if you were to override LOGS_DIR as well as APPS_DIR, it can be

done using the following command:

docker run -it -e LOGS_DIR="/logs" -e APPS_DIR="/opt"

sathyabhat/env

printenv | grep DIR

LOGS_DIR=/logs

APPS_DIR=/opt

Type exit to close the interactive terminal of the container.

Chapter 4 Understanding the Dockerfile

89

�VOLUME
The VOLUME instruction tells Docker to create a mount point on the

container and mount it externally from the host. For instance, an

instruction like this:

VOLUME /var/logs/nginx

tells Docker to mark the /var/logs/nginx directory as a mount point,

with the data being mounted from the Docker host. This, when combined

with the volume flag on the Docker run command, will result in data being

persisted on the Docker host as a volume. This volume can then be backed

up, moved, or transferred using Docker CLI commands. You will learn

more about volumes in a later chapter in this book.

�EXPOSE
The EXPOSE instruction tells Docker that the container listens for the

specified network ports at runtime. The syntax is as follows:

EXPOSE <port> [<port>/<protocol>...]

For example, if you want to expose port 80, the EXPOSE instruction is as

follows:

EXPOSE 80

If you want to expose port 53 on TCP and UDP, the Dockerfile

instruction is the following:

EXPOSE 53/tcp

EXPOSE 53/udp

You can also include the port number and whether the port listens on

TCP/UDP or both. If not specified, Docker assumes the protocol to be TCP.

Chapter 4 Understanding the Dockerfile

90

Note A n EXPOSE instruction doesn’t publish the port. For the port
to be published to the host, you need to use the -p flag with docker
run to publish and map the ports.

Here’s a sample Dockerfile that uses the nginx image with port 80

exposed in the container.

FROM nginx:alpine

EXPOSE 80

Build the container:

[+] Building 0.4s (5/5) FINISHED

 => [internal] load build definition from Dockerfile 0.0s

 => => transferring dockerfile: 50B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/

nginx:alpine 0.2s

 => �CACHED [1/1] FROM docker.io/library/nginx:alpine@

sha256:9152859 0.0s

 => exporting to image 0.0s

 => => exporting layers 0.0s

 => => writing image sha256:33fcd52 0.0s

 => => naming to docker.io/sathyabhat/web

To run this container, you have to provide the host port to which it is to

be mapped. Map it to port 8080 on the host to port 80 of the container. To

do that, type the following command:

docker run -d -p 8080:80 sathyabhat:web

Chapter 4 Understanding the Dockerfile

91

The -d flag makes the nginx container run in the background and the

 -p flag does the port mapping. Confirm that the container is running:

curl http://localhost:8080

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully

installed and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

Chapter 4 Understanding the Dockerfile

92

�LABEL
The LABEL instruction adds metadata to an image as a key-value pair.

LABEL <key>=<value> <key>=<value> <key>=<value> …

An image can have multiple labels and is typically used to add some

metadata to assist in searching and organizing images and other Docker

objects. Docker recommends the following guidelines.

•	 For keys:

•	 Authors of third-party tools should prefix each key

with reverse DNS notation of a domain owned by

them: for example, com.sathyasays.my-image.

•	 com.docker.*, io.docker.*, and org.

dockerproject.* are reserved by Docker for

internal use.

•	 Label keys should begin and end with lowercase

letters and should contain only lowercase

alphanumeric characters and the period (.) and

hyphen (-) characters. Consecutive hyphens and

periods are not allowed.

•	 The period (.) separates the namespace fields.

•	 For values:

•	 Label values can contain any data type that can

be represented as a string, including JSON, XML,

YAML, and CSV types.

Chapter 4 Understanding the Dockerfile

93

�Guidelines and Recommendations
for Writing Dockerfiles
The following are some guidelines and best practices for writing

Dockerfiles as recommended by Docker.

•	 Containers should be ephemeral. Docker

recommends that images generated by Dockerfiles

should be as ephemeral as possible. You should be able

to stop, destroy, and restart the container at any point

with minimal setup and configuration to the container.

The container should ideally not write data to the

container filesystem, and any persistent data should be

written to Docker volumes or to data storage managed

outside the container (for example, using a block

storage like Amazon S3).

•	 Keep the build context minimal. You read about build

context earlier in this chapter. It’s important to keep

the build context as minimal as possible to reduce the

build times and the image size. This can be done by

making effective use of the .dockerignore file.

•	 Use multi-stage builds. Multi-stage builds help in

drastically reducing the size of the image without

having to write complicated scripts to transfer/keep the

required artifacts. Multi-stage builds are described in

the next section.

•	 Skip unwanted packages. Having unwanted or nice-

to-have packages increases the size of the image,

introduces unwanted dependent packages, and

increases the surface area for attacks.

Chapter 4 Understanding the Dockerfile

94

•	 Minimize the number of layers. While not as big of a

concern as they used to be, it’s still important to reduce

the number of layers in the image. As of Docker 1.10

and above, only RUN, COPY, and ADD instructions create

layers. With these in mind, having a minimal of these

instructions or combining many lines of the respective

instructions reduces the number of layers, ultimately

reducing the size of the image.

�Using Multi-Stage Builds
As of version 17.05 and above, Docker added support for multi-stage

builds, allowing complex image builds to be performed without the Docker

image being unnecessarily bloated. Multi-stage builds are especially useful

when you’re building images of applications that require some additional

build-time dependencies but are not needed during runtime. Most

common examples are applications written using programming languages

such as Go or Java, where prior to multi-stage builds, it was common to

have two different Dockerfiles. One was for the build and the other was for

the release and the orchestration of the artifacts from the build time image

to the runtime image.

With multi-stage builds, a single Dockerfile can be leveraged for build

and deploy images—the build images can contain the build tools required

for generating the binary or the artifact. In the second stage, the artifact

can be copied over to the runtime image, thereby considerably reducing

the size of the runtime image. For a typical multi-stage build, a build stage

has several layers—each layer for installing tools required to build the

application, generate the dependencies, and generate the application. In

the final layer, the application built from build stages is copied over to the

final layer and only that layer is considered for building the image. The

build layers are discarded, drastically reducing the size of the final image.

Chapter 4 Understanding the Dockerfile

95

Although this book doesn’t focus on multi-stage builds in detail, you

will try an exercise on how to create a multi-stage build and see how much

smaller using a slim image with multi-stage build makes the final image.

More details about multi-stage builds are available on Docker’s website at

https://docs.docker.com/develop/develop-images/multistage-build/.

�Exercises

BUILDING A SIMPLE HELLO WORLD DOCKER IMAGE

The start of the chapter introduced a simple Dockerfile that did not build due

to syntax errors. In this exercise, you see how to fix that Dockerfile and add

some of the instructions that you learned in this chapter.

Tip  The source code and associated Dockerfile are available on
the GitHub repo of the book, at https://github.com/Apress/
practical-docker-with-python, in the source-code/
chapter-4/exercise-1 directory.

The original Dockerfile is as follows:

FROM ubuntu:latest

LABEL author="sathyabhat"

LABEL description="An example Dockerfile"

RUN apt-get install python

COPY hello-world.py

CMD python hello-world.py

Trying to build this will result in an error since hello-world.py is missing.

Let’s fix the build error. To do this, you need to add a hello-world.py that

reads an environment variable, NAME, and prints Hello, $NAME!. If the

environment variable is not defined, it will print "Hello, World!".

Chapter 4 Understanding the Dockerfile

https://docs.docker.com/develop/develop-images/multistage-build/
https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

96

The contents of hello-world.py are as follows:

#!/usr/bin/env python3

from os import getenv

if getenv('NAME') is None:

 name = 'World'

else:

 name = getenv('NAME')

print(f"Hello, {name}!")

The corrected Dockerfile is as follows:

FROM python:3-alpine

LABEL description="Dockerfile for Python script which prints

Hello, Name"

COPY hello-world.py /app/

ENV NAME=Readers

CMD python3 /app/hello-world.py

Build the Dockerfile:

docker build -t sathyabhat/chap04-ex1 .

[+] Building 1.9s (8/8) FINISHED

 => [internal] load build definition from Dockerfile 0.0s

 => => transferring dockerfile: 37B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/python:3-

alpine 1.7s

 => �[auth] library/python:pull token for registry-1.docker.

io 0.0s

 => [internal] load build context 0.0s

Chapter 4 Understanding the Dockerfile

97

 => => transferring context: 36B 0.0s

 => �[1/2] FROM docker.io/library/python:3-alpine@

sha256:3998e97 0.0s

 => CACHED [2/2] COPY hello-world.py /app/ 0.0s

 => exporting to image 0.0s

 => => exporting layers 0.0s

 => => writing image sha256:538be87 0.0s

 => => naming to docker.io/sathyabhat/chap04-ex1

Confirm the image name and size:

docker images sathyabhat/chap04-ex1

REPOSITORY TAG IMAGE ID CREATED SIZE

sathyabhat/chap04-ex1 latest 538be873d192 3 hours ago 45.1MB

Run the Docker image:

docker run sathyabhat/chap04-ex1

Hello, Readers!

Try overriding the environment variable at runtime. You can do this by

providing the -e parameter with docker run:

docker run -e NAME=all sathyabhat/chap04-ex1

Hello, all!

Congrats! You’ve successfully written your first Dockerfile and built your first

Docker image.

Chapter 4 Understanding the Dockerfile

98

A LOOK AT SLIM DOCKER RELEASE IMAGE (USING MULTI-STAGE BUILDS)

In this exercise, you will build two Docker images. The first image uses a

standard build with python:3 as the base image, whereas the second image

gives an overview of how multi-stage builds can be utilized.

Tip T he source code and associated Dockerfile are available on
the GitHub repo of the book at https://github.com/Apress/
practical-docker-with-python, in the source-code/
chapter-4/exercise-2/ directory.

Building the Docker Image Using a Standard Build

Create a requirements.txt file with the following content:

praw==3.6.0

Create a Dockerfile with the following content:

FROM python:3

COPY requirements.txt .

RUN pip install -r requirements.txt

Now build the Docker image:

[+] Building 7.2s (8/8) FINISHED

 => [internal] load build definition from Dockerfile 0.3s

 => => transferring dockerfile: 114B 0.0s

 => [internal] load .dockerignore 0.3s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/

python:3 0.0s

 => [internal] load build context 0.6s

Chapter 4 Understanding the Dockerfile

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

99

 => => transferring context: 54B 0.0s

 => [1/3] FROM docker.io/library/python:3 1.6s

 => [2/3] COPY requirements.txt . 0.2s

 => [3/3] RUN pip install -r requirements.txt 3.3s

 => exporting to image 1.6s

 => => exporting layers 1.5s

 => => writing image sha256:03191af 0.0s

 => => naming to docker.io/sathyabhat/base-build

The image was built successfully! Let’s determine the size of the image:

docker images sathyabhat/base-build

Repository Tag Image ID Created Size

sathyabhat/base-build latest 03191af About a minute ago 895MB

The Docker image sits at a fairly hefty 895MB, even though you did not add

any of your application code, just a dependency. Let’s rewrite it to a multi-

stage build.

Building the Docker Image Using a Multi-Stage Build

FROM python:3 as python-base

COPY requirements.txt .

RUN pip install -r requirements.txt

FROM python:3-alpine

COPY --from=python-base /root/.cache /root/.cache

COPY --from=python-base requirements.txt .

RUN pip install -r requirements.txt && rm -rf /root/.cache

The Dockerfile is different in that there are multiple FROM statements,

signifying the different stages. In the first stage, you build the required

packages using the python:3 image, which has the necessary build tools.

Chapter 4 Understanding the Dockerfile

100

In the second stage, you copy the files installed in the first stage, reinstall

them (notice this time that pip fetches the cached files and doesn’t build them

again), and then delete the cached install files. The build logs are shown here:

[+] Building 0.6s (13/13) FINISHED

 => [internal] load build definition from Dockerfile 0.2s

 => => transferring dockerfile: 35B 0.0s

 => [internal] load .dockerignore .1s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/python:3-

alpine .2s

 => [internal] load metadata for docker.io/library/python:3 0.0s

 => [internal] load build context .1s

 => => transferring context: 37B 0.0s

 => �[stage-1 1/4] FROM docker.io/library/python:3-alpine@

sha256:3998e97 0.0s

 => [python-base 1/3] FROM docker.io/library/python:3 0.0s

 => CACHED [python-base 2/3] COPY requirements.txt . 0.0s

 => �CACHED [python-base 3/3] RUN pip install -r requirements.

txt 0.0s

 => �CACHED [stage-1 2/4] COPY --from=python-base /root/.cache /

root/.cache 0.0s

 => �CACHED [stage-1 3/4] COPY --from=python-base requirements.

txt . 0.0s

 => �CACHED [stage-1 4/4] RUN pip install -r requirements.txt &&

rm -rf /root/.cache 0.0s

 => exporting to image 0.1s

 => => exporting layers 0.0s

 => => writing image sha256:35c85a8 0.0s

 => => naming to docker.io/sathyabhat/multistage-build

Examining the size of the image using docker images shows you that using

a multi-stage build has reduced the image size by quite a lot. This translates to

reduced image sizes, faster application starts, and even reduced costs, as you

are saving on bandwidth that is required to pull the container image.

Chapter 4 Understanding the Dockerfile

101

docker images sathyabhat/multistage-build

Repository Tag Image ID Created Size

sathyabhat/

multistage-build

latest 35c85a8497b5 About a minute ago 54.2MB

WRITING A DOCKERFILE FOR NEWSBOT

In this exercise, you will write the Dockerfile for Newsbot, the Telegram

chatbot project.

Tip  The source code and associated Dockerfile are available on
the GitHub repo of the book at https://github.com/Apress/
practical-docker-with-python, in the source-code/
chapter-4/exercise-3/ directory.

Let’s review what you need for this project:

•	 A Docker image based on Python 3

•	 The project dependencies listed in requirements.txt

•	 An environment variable named NBT_ACCESS_TOKEN

Now that you have what you need, you can compose the Dockerfile. The

general steps to composing a Dockerfile are as follows

	1.	S tart with a proper base image.

	2.	 Make a list of files required for the application.

	3.	 Make a list of environment variables required for the

application.

Chapter 4 Understanding the Dockerfile

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

102

	4.	 Copy the application files to the image using the COPY instruction.

	5.	S pecify the environment variable with the ENV instruction.

Combining these steps, you arrive at this Dockerfile.

FROM python:3-alpine

WORKDIR /apps/subredditfetcher/

COPY . .

RUN ["pip", "install", "-r", "requirements.txt"]

CMD ["python", "newsbot.py"]

Now build the image:

[+] Building 0.9s (9/9) FINISHED

 => [internal] load build definition from Dockerfile 0.1s

 => => transferring dockerfile: 182B 0.0s

 => [internal] load .dockerignore 0.2s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/python:3-

alpine 0.4s

 => [1/4] FROM docker.io/library/python:3-alpine@sha256:3998e97 0.0s

 => [internal] load build context 0.1s

 => => transferring context: 392B 0.0s

 => CACHED [2/4] WORKDIR /apps/subredditfetcher/ 0.0s

 => CACHED [3/4] COPY . . 0.0s

 => �CACHED [4/4] RUN ["pip", "install", "-r", "requirements.

txt"] 0.0s

 => exporting to image 0.1s

 => => exporting layers 0.0s

 => => writing image sha256:783b4c0 0.0s

 => => naming to docker.io/sathyabhat/newsbot

Now run the container. Take care to replace <token> with the Telegram Bot

API key that you created in Chapter 3.

docker run –e NBT_ACCESS_TOKEN=<token> sathyabhat/newsbot

Chapter 4 Understanding the Dockerfile

103

You should be seeing logs from the bot to ensure that it’s running:

INFO: <module> - Starting up

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

If you see these logs, congratulations! Not only did you write the Dockerfile for

Newsbot, but you also built it and ran it successfully.

�Summary
In this chapter, you gained a better understanding of what a Dockerfile is

by reviewing its syntax. You are now one step closer to mastering writing a

Dockerfile for Newsbot.

Chapter 4 Understanding the Dockerfile

105© Sathyajith Bhat 2022
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_5

CHAPTER 5

Understanding Docker
Volumes
In the previous chapters, you learned about Docker and its associated

terminologies and took a deeper look into how you can build Docker

images using the Dockerfile. In this chapter, you look at data persistency

strategies for Docker containers and learn why you need special strategies

for data persistence.

�Data Persistence
Traditionally, most compute solutions come with associated ways to

persist and save data. In the case of virtual machines, a virtual disk is

emulated, and the data saved to this virtual disk is saved as a file on the

host computer. Cloud providers such as Amazon Web Services (AWS)

provide different services, such as Amazon Elastic Block Store (EBS) and

Amazon Elastic File Systems (EFS). These services provide an endpoint

that can be mounted on the host virtual machine; data saved to these

mount points is persisted and replicated.

When it comes to containers, the story is different. Containers

were meant and designed for stateless workloads and the design of the

container layers shows that. Chapter 2 explained that a Docker image is

https://doi.org/10.1007/978-1-4842-7815-4_5#DOI

106

a read-only template made of various layers. When the image is run as a

container, a container with a small write-only layer of the data is created.

This means that

•	 Data is tightly locked to the host and makes running

applications that share data across multiple containers

and applications difficult.

•	 Data doesn’t persist when a container is terminated

and extracting the data out of the container isn’t

possible in an easy manner.

•	 Writing to a container’s write layer requires a storage

driver to manage the filesystem. Storage drivers do not

provide an acceptable level of performance in terms of

read/write speeds and large amounts of data written to

a container’s write layer can lead to the container and

the Docker daemon running out of memory.

�Example of Data Loss Within a Docker
Container
To demonstrate the features of the write layer, let’s bring up a container

from an Ubuntu base image. You will create a file within the Docker

container, stop the container, and see the behavior of the container.

	 1.	 Start by creating a nginx container:

 docker run -d --name nginx-test nginx

	 2.	 Open a terminal within the container:

 docker exec -it nginx-test bash

Chapter 5 Understanding Docker Volumes

107

	 3.	 Create a copy of nginx’s default.conf to a new

config file:

 cd /etc/nginx/conf.d

 cp default.conf nginx-test.conf

	 4.	 You won’t be modifying the contents of nginx-test.

conf since it’s immaterial. Now you need to stop the

container. From the Docker host terminal, type the

following:

 docker stop nginx-test

	 5.	 Start the container again:

 docker start nginx-test

	 6.	 Open a terminal within the container:

 docker exec -it nginx-test bash

	 7.	 Let’s see if the changes are still around:

 cd /etc/nginx/conf.d

 ls

 default.conf nginx-test.conf

	 8.	 Since the container was only stopped, the data

persists. Let’s stop it, remove the container, and then

bring up a new one and observe what happens:

 docker stop nginx-test

 docker rm nginx-test

	 9.	 Start a new container:

 docker run -d --name nginx-test nginx

Chapter 5 Understanding Docker Volumes

108

	 10.	 Now that a new container is up and running,

connect to the container’s terminal:

 docker exec -it nginx-test bash

	 11.	 Examine the contents of the conf.d directory of nginx:

 cd /etc/nginx/conf.d

 ls

 default.conf

Since the container was removed, the write-only layer associated

with the container was also removed and the files created are no longer

accessible. For a containerized stateful application, such as an application

that requires a database, this means that when an existing container is

removed or a new container is added, the data from the previous container

is no longer accessible. To mitigate this, Docker offers various strategies to

persist the data.

•	 tmpfs mounts

•	 Bind mounts

•	 Volumes

�tmpfs Mounts
As the name suggests, a tmpfs creates a mount in a tmpfs, which is a

temporary file storage facility. The directories mounted in tmpfs appear as

a mounted filesystem but are stored in memory, not to persistent storage

such as a disk drive.

tmpfs mounts are limited to Docker containers on Linux. A tmpfs

mount is temporary and the data is stored in Docker’s hosts memory. Once

the container is stopped, the tmpfs mount is removed and the files written

to the tmpfs mount are lost.

Chapter 5 Understanding Docker Volumes

109

To create a tmpfs mount, you can use the --tmpfs flag when running a

container, as shown here:

docker run -it --name docker-tmpfs-test --tmpfs /tmpfs-mount

ubuntu bash

Let’s examine the container:

docker inspect docker-tmpfs-test | jq ".[0].HostConfig.Tmpfs"

{

 "/tmpfs-mount": ""

}

This output tells you that there is a tmpfs config mapped to the /

tmpfs-mount directory of the container.

tmpfs mounts are best for containers that generate data that doesn’t

need to be persisted and doesn’t have to be written to the container’s

writable layer.

�Bind Mounts
In bind mounts, the file/directory on the host machine is mounted into

the container. In contrast, when using a Docker volume, a new directory

is created within Docker’s storage directory on the Docker host and the

contents of the directory are managed by Docker.

Let’s see how you can use bind mounts. You’ll try to mount the Docker

host’s home directory to a directory called host-home within the container.

To do this, type the following command:

docker run -it --name bind-mount-container -v $HOME:/host-home

ubuntu bash

Inspecting the created container reveals the different characteristics

about the mount.

Chapter 5 Understanding Docker Volumes

110

docker inspect bind-mount-container | jq ".[0].Mounts"

[

 {

 "Type": "bind",

 "Source": "/home/sathya",

 "Destination": "/host-home",

 "Mode": "",

 "RW": true,

 "Propagation": "rprivate"

 }

]

This output says that the mount is of bind type, the source (i.e.,

the directory of the Docker host being mounted) is /home/sathya (i.e.,

the home directory), and the destination of the mount is /host-home.

The “Propagation” property refers to bind propagation—a property

indicating whether the mounts created for a bind mount are reflected

onto the replicas of that mount. Bind propagation is applicable only to

Linux hosts. For bind mounts, this property typically doesn’t need to

be modified. The RW flag indicates that the mounted directory can be

written to. Let’s examine the contents of the host-home to see that the

mounts are indeed proper.

	 1.	 Open the container’s interactive terminal using the

following command:

 docker run -it -v $HOME:/host-home ubuntu bash

	 2.	 In the terminal of the container, type the following:

 cd /host-home

 ls

Chapter 5 Understanding Docker Volumes

111

	 3.	 The output of the command should be a listing of

your Docker hosts’ home directory. Try creating a

file in the host-home directory. For this, type the

following command:

 cd /host-home

 �echo "This is a file created from container having

kernel `uname -r`" > host-home-file.txt

This command creates a file called host-home-file.txt, which

contains the text "This is a file created from container having

kernel 4.9.87-linuxkit-aufs" in the /host-home directory of the

container. Note the content will vary based on the host OS and kernel

version.

Since this is a bind mount of the home directory of the Docker host, the

file should also be created in the home directory of the Docker host. You

can see if this is indeed the case.

	 1.	 Open a new terminal window in your Docker host

and type the following command:

 cd ~

 ls host-home-file.txt

	 2.	 You should be seeing this output, indicating the

presence of the file:

 ls host-home-file.txt

 host-home-file.txt

	 3.	 Now check the contexts of the file:

 cat host-home-file.txt

Chapter 5 Understanding Docker Volumes

112

This file should have the same contents as you saw in the previous

section. This confirms that the file created in the container is indeed

available outside the container. Since you are concerned with data

persistence after the container has been stopped, removed, and started

again, let’s see what happens.

Stop the container by entering the following command in the Docker

host terminal.

docker stop bind-mount-container

docker rm bind-mount-container

Confirm that the file on the Docker host is still present:

cat ~/host-home-file.txt

This is a file created from container having kernel

4.9.87-linuxkit-aufs

Bind mounts are of immense help and are most often used during

the development phase of an application. By having bind mounts, you

can prepare the application for production by using the same container

as production while mounting the source directory as a bind mount. This

allows developers to have rapid code-test-iterate cycles without requiring

the need to rebuild the Docker image.

Caution R emember with bind mounts, the data flow goes both
ways on the Docker host as well as on the container. Any destructive
actions (such as deleting a directory) will negatively impact the
Docker host as well.

As the caution, take utmost care when mounting the host OS directory

into the container as a bind mount. This is even more important if the

mounted directory is a broad one—such as the home directory (as shown

previously) or the root directory. A script gone rogue or a mistaken rm -rf

Chapter 5 Understanding Docker Volumes

113

command can completely bring down the Docker host. To mitigate this,

you can create a bind mount with a read-only option so that the directory

is mounted read-only.

To do this, you can provide a read-only parameter with the docker run

command. The commands are as follows:

docker run -it --name read-only-bind-mount -v $HOME:/host-

home:ro ubuntu bash

Now inspect the container that was created:

docker inspect read-only-bind-mount | jq ".[0].Mounts"

[

 {

 "Type": "bind",

 "Source": "/home/sathya",

 "Destination": "/host-home",

 "Mode": "ro",

 "RW": false,

 "Propagation": "rprivate"

 }

]

You can see that the “RW” flag is now false and the Mode is set to read-

only (ro). Let’s try writing to the file as earlier.

Open the container terminal:

docker run -it --name read-only-bind-mount -v $HOME:/host-

home:ro ubuntu bash

Typo the following command to create a file in the container:

echo "This is a file created from container having kernel

`uname -r`" > host-home-file.txt

bash: host-home-file.txt: Read-only file system

Chapter 5 Understanding Docker Volumes

114

The write fails and bash tells you that it was because the filesystem is

mounted read-only. Any destructive operations are also met with the same

error:

rm host-home-file.txt

rm: cannot remove 'host-home-file.txt': Read-only file system

�Docker Volumes
Docker volulmes are the current recommended method of persisting data

stored in containers. Volumes are completely managed by Docker and

have many advantages over bind mounts:

•	 Volumes are easier to back up or transfer than bind

mounts.

•	 Volumes work on both Linux and Windows containers.

•	 Volumes can be shared among multiple containers

without problems.

�Docker Volume Subcommands

Docker exposes the Volume API as a series of subcommands. The

commands are as follows:

•	 docker volume create

•	 docker volume inspect

•	 docker volume ls

•	 docker volume prune

•	 docker volume rm

Chapter 5 Understanding Docker Volumes

115

�Volume Create

The volume create subcommand is used to create named volumes. The

most common use case is to generate a named volume. The usage for the

command is as follows:

docker volume create --name=<name of the volume> --label=<any

extra metadata>

Tip D ocker object labels are discussed in Chapter 4.

For example, this command Creates a named volume called nginx-

volume:

docker volume create --name=nginx-volume

�Volume Inspect

The volume inspect command displays detailed information about a

volume. The usage for this command is as follows:

docker volume inspect <volume-name>

Taking the example of the nginx-volume name, you can find more

details by typing:

docker volume inspect nginx-volume

This will bring up the following result:

docker volume inspect nginx-volume

[

 {

 "CreatedAt": "2018-04-17T13:51:02Z",

 "Driver": "local",

Chapter 5 Understanding Docker Volumes

116

 "Labels": {},

 �"Mountpoint": "/var/lib/docker/volumes/nginx-volume/

_data",

 "Name": "nginx-volume",

 "Options": {},

 "Scope": "local"

 }

]

This command is useful when you want to copy/move/take a backup

of a volume. The mount path property lists the location on the Docker

host, which is where the file containing the data of the volume is saved.

�List Volumes

The volume ls command shows all the volumes present in the host. The

usage is as follows:

docker volume ls

�Prune Volumes

The volume prune command removes all unused local volumes. The usage

is as follows:

docker volume prune

Docker considers volumes that are not used by at least one container

unused. Since unused volumes can end up using a considerable amount of

disk space, it’s not a bad idea to run the prune command at regular intervals,

especially on local development machines. You can append --force to the

end of command, which will not ask for confirmation of deletion when the

command is run.

Chapter 5 Understanding Docker Volumes

117

�Remove Volumes

The volume rm command removes volumes whose names are provided as

parameters. The usage is as follows:

docker volume rm <name>

In the case of the volume created previously, the command would be

as follows:

docker volume rm nginx-volume

Docker will not remove a volume that is in use and will return an

error. For instance, if you try to delete the nginx-volume volume, which is

attached to the container, you will get the following error message:

docker volume rm nginx-volume

Error response from daemon: unable to remove volume: remove

nginx-volume: volume is in use - [6074757a]

Note E ven if the container is stopped, Docker will consider the
volume to be in use.

The long piece of identifier is the ID of the container associated with

the volume. If the volume is associated with multiple containers, all the

container IDs will be listed. More details about the associated container

can be found by using the docker inspect command, as follows:

docker inspect 6074757a

Chapter 5 Understanding Docker Volumes

118

�Using Volumes When Starting a Container
The command for creating a container with a volume attached is shown

here:

docker run --name container-with-volume -v data:/data ubuntu

In this example, a container called container-with-volume is created

with a volume called data being mapped to the /data directory inside the

container. When using volumes, instead of providing the full path of the

host directory, you provide a volume name where the data will be stored.

Behind the scenes, Docker will create and manage this volume by mapping

it to a directory on the host.

Let’s examine the container that was created using the following

command:

docker inspect container-with-volume | jq ".[0].Mounts"

[

 {

 "Type": "volume",

 "Name": "data",

 "Source": "/var/lib/docker/volumes/data/_data",

 "Destination": "/data",

 "Driver": "local",

 "Mode": "z",

 "RW": true,

 "Propagation": ""

 }

]

Looking at the mounts section, you can conclude that Docker created

a new volume called data with the contents of the volume being managed

by Docker in the host directory of /var/lib/docker/volumes/data/_data.

This volume is mounted to the /data directory of the container.

Chapter 5 Understanding Docker Volumes

119

These volumes can also be generated ahead of time using the following

command:

docker volume create info

You can use docker volume inspect to examine the volume’s

properties:

docker volume inspect info

[

 {

 "CreatedAt": "2021-07-27T19:23:00Z",

 "Driver": "local",

 "Labels": {},

 "Mountpoint": "/var/lib/docker/volumes/info/_data",

 "Name": "images",

 "Options": {},

 "Scope": "local"

 }

]

You can now refer to this volume when creating/running a container,

as shown here:

docker run -it --name info-container -v info:/container-info

ubuntu bash

Let’s try to create the same file as earlier. From the terminal within the

container, type the following:

echo "This is a file created from container having kernel

`uname -r`" > /container-info/docker_kernel_info.txt

Chapter 5 Understanding Docker Volumes

120

Exit the container, and then stop and remove the container using the

following commands:

exit

docker stop info-container

docker rm info-container

In the absence of volumes, when the container was removed, its

writable layer would be removed as well. Let’s see what happens when

you launch a new container with the volume attached. Remember that

this is not a bind mount, so you are not explicitly forwarding any of the

directories from the Docker host. The following command will start a shell

on the container named new-info-container with a volume called info

mounted into the /container-info directory in the container.

docker run -it --name new-info-container -v info:/container-

info ubuntu bash

Examine the contents of the /data-volume directory of the container,

as follows:

cd /container-info/

ls

docker-kernel-info.txt

Examine the contents of docker-kernel-info.txt, as follows:

cat docker_kernel_info.txt

This is a file created from container having kernel

4.9.87-linuxkit-aufs.

When you write a file into a directory that is mounted and mapped

to a volume, the data is persisted in the volume. When you launch a new

container, providing the volume name along with the run command

attaches the volume to the container, making any previously saved data

available to the newly launched container.

Chapter 5 Understanding Docker Volumes

121

�The VOLUME Instruction in Dockerfiles
The VOLUME instruction marks the path mentioned after the instruction as

an externally stored data volume that’s managed by Docker. The syntax is

as shown:

VOLUME ["/data-volume"]

The paths mentioned after the instruction can be a JSON array or an

array of paths separated by space.

Note T he VOLUME instruction in a Dockerfile doesn’t support
named volumes. As a result, when the container runs, the volume
name will be an autogenerated name.

�Exercises

BUILDING AND RUNNING AN NGINX CONTAINER WITH VOLUMES AND
BIND MOUNTS

In this exercise, you will build an nginx Docker image with a Docker volume

attached that contains a custom nginx configuration. In the second part of

the exercise, you will attach a bind mount and a volume containing a static

web page and a custom nginx configuration. The intent of the exercise is to

help you understand how to leverage volumes and bind mounts to make local

development easy.

Tip T he source code and associated Dockerfile are available on
the GitHub repo of this book at https://github.com/Apress/
practical-docker-with-python, in the source-code/
chapter-5/exercise-1 directory.

Chapter 5 Understanding Docker Volumes

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

122

Start with the Dockerfile, as follows.

FROM nginx:alpine

COPY default.conf /etc/nginx/conf.d

VOLUME ["/var/lib"]

EXPOSE 80

This Dockerfile takes a base nginx image, overwrites the default.

conf nginx configuration file with the custom default.conf nginx

configuration file, and declares /var/lib as a volume. You can build this by

using the following command in the docker-volume-bind-mount directory

present in the repo:

docker build -t sathyabhat/nginx-volume .

[+] Building 0.9s (7/7) FINISHED

 => [internal] load build definition from Dockerfile 0.0s

 => => transferring dockerfile: 37B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/

nginx:alpine 0.8s

 => [internal] load build context 0.0s

 => => transferring context: 34B 0.0s

 => �[1/2] FROM docker.io/library/nginx:alpine@

sha256:ad14f34 0.0s

 => CACHED [2/2] COPY default.conf /etc/nginx/conf.d 0.0s

 => exporting to image 0.0s

 => => exporting layers 0.0s

 => => writing image sha256:f6f3af7 0.0s

 => => naming to docker.io/sathyabhat/nginx-volume 0.0s

Chapter 5 Understanding Docker Volumes

123

Before you run this image, look at the custom nginx default.conf

contents:

server {

 listen 80;

 server_name localhost;

 location / {

 root /srv/www/starter;

 index index.html index.htm;

 }

 access_log /var/log/nginx/access.log;

 access_log /var/log/nginx/error.log;

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root /usr/share/nginx/html;

 }

}

The nginx config is a simple config; it tells nginx to serve a default file

called index.html to /srv/www/starter/. Let’s run the Docker container.

Since nginx is listening to port 80, you need to tell Docker to publish the ports

using the -p flag:

docker run -d --name nginx-volume -p 8080:80 sathyabhat/nginx-

volume

Note that you are publishing from the Docker host’s port 8080 to port

80 of the container. Try to load the web page by navigating to http://

localhost:8080.

Chapter 5 Understanding Docker Volumes

124

When you load the website, you’ll see a HTTP 404 - Page Not Found error (see

Figure 5-1). This is because in the nginx config file, you directed nginx to

serve index.html. However, you have not yet copied the index.html file

to the container and have not mounted the location of the index.html to the

container as a bind mount. As a result, nginx cannot find the index.html file.

You can correct this error by copying the website files to the container, as you

saw in the previous chapter. In this exercise, you will leverage the bind mount

feature you learned about earlier and mount the entire directory containing the

sources. All that is needed is to use pass the bind mount flag that you learned

about earlier. You don’t have to make changes to the Dockerfile.

Stop the existing container using the following command:

docker stop nginx-volume

Figure 5-1.  A 404 error when the source directory is not mounted

Chapter 5 Understanding Docker Volumes

125

Now, start a new container with the bind mount, as shown in the following

command:

docker run -d --name nginx-volume-bind -v "$(pwd)"/:/srv/www -p

8080:80 sathyabhat/nginx-volume

Confirm that the container is running using the following command:

docker ps

You should see a list of running containers, as shown here:

CONTAINER

ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

54c857ca065b sathyabhat/nginx-volume "nginx -g 'daemon of..."

6 minutes ago Up 6 minutes 0.0.0.0:8080->80/tcp

nginx-volume-bind

Confirm that the volumes and mounts are correct using this command:

docker inspect nginx-volume-bind | jq ".[].Mounts"

[

 {

 "Type": "bind",

 �"Source": �"/code/practical-docker-with-python/docker-volume-

bind-mount/",

 "Destination": "/srv/www",

 "Mode": "",

 "RW": true,

 "Propagation": "rprivate"

 },

 {

 "Type": "volume",

 "Name": "c069ba7",

Chapter 5 Understanding Docker Volumes

126

 "Source": "/var/lib/docker/volumes/c069ba7/_data",

 "Destination": "/var/lib",

 "Driver": "local",

 "Mode": "",

 "RW": true,

 "Propagation": ""

 }

]

Let’s navigate to the same URL again. If the mounts section looks fine, then

you should see the page in Figure 5-2.

Success!

Figure 5-2.  nginx serving the web page successfully

Chapter 5 Understanding Docker Volumes

127

ADDING VOLUMES TO NEWSBOT

In the previous chapter’s exercises, you wrote a Dockerfile for Newsbot.

However, as you might have noticed, killing the container resets the state of

Newsbot and you need to customize the bot all over again. To fix this, you will

add an SQLite database and the data file of this database will be saved to a

Docker volume. By completing this exercise, you will know you can persist the

data from a container by saving it to a volume and then reattach the volume to

a new container.

The Newsbot source code has been slightly modified from the codebase so

that the preferences, (i.e., which subreddit the news should be fetched from)

are saved to a SQLite database.

Tip T he source code and associated Dockerfile are available on
the GitHub repo of this book at https://github.com/Apress/
practical-docker-with-python, in the source-code/
chapter-5/exercise-2 directory.

The Dockerfile is modified as shown here:

FROM python:3-alpine

RUN apk add gcc musl-dev python3-dev libffi-dev openssl-dev

WORKDIR /apps/subredditfetcher/

COPY . .

RUN pip install -r requirements.txt

CMD ["python", "newsbot.py"]

In this Dockerfile, you start with python:3-alpine as the base image.

You add the RUN step to install some library dependencies required for the

Python packages. You then copy the source code into the container and install

the required Python packages. Another notable change is the addition of the

Chapter 5 Understanding Docker Volumes

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

128

VOLUME instruction. As you learned earlier, this is to tell Docker to mark the

directory specified to be managed as a volume, even if you did not specify the

required volume name in the docker run command.

Build the image using the following command:

docker build -t sathyabhat/newsbot-sqlite .

The build logs are shown here:

[+] Building 9.5s (11/11) FINISHED

 => [internal] load build definition from Dockerfile 0.1s

 => => transferring dockerfile: 38B 0.0s

 => [internal] load .dockerignore 0.1s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/python:3-

alpine 2.3s

 => [auth] library/python:pull token for registry-1.docker.io 0.0s

 => [internal] load build context 0.1s

 => => transferring context: 6.23kB 0.0s

 => �[1/5] FROM docker.io/library/python:3-alpine@sha256:eb31d7f 0.0s

 => �CACHED [2/5] RUN apk add gcc musl-dev python3-dev libffi-dev

openssl-dev 0.0s

 => CACHED [3/5] WORKDIR /apps/subredditfetcher/ 0.0s

 => [4/5] COPY . . 0.1s

 => [5/5] RUN pip install -r requirements.txt 6.3s

 => exporting to image 0.4s

 => => exporting layers 0.3s

 => => writing image sha256:6605a7a 0.0s

 => => naming to docker.io/sathyabhat/newsbot-sqlite 0.0s

Now run the bot using the docker run command. Note that you provide

the volume name via the -v flag. Don’t forget to pass the Newsbot API key

generated in Chapter 3 to the NBT_ACCESS_TOKEN environment variable.

docker run --rm --name newsbot-sqlite -e NBT_ACCESS_TOKEN -v

newsbot-data:/data sathyabhat/newsbot-sqlite

Chapter 5 Understanding Docker Volumes

129

The run command creates a new container called newsbot-sqlite, with a

volume called newsbot-data attached to the container and mounted to the /

data directory inside the container. The --rm flag ensures that the container

is removed when it is stopped.

If the bot starts fine, you should start seeing these logs:

docker run --rm --name newsbot-sqlite -e NBT_ACCESS_

TOKEN=<token> -v newsbot-data:/data sathyabhat/newsbot-sqlite

INFO: <module> - Starting newsbot

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

Try setting a subreddit from which the bot should fetch the data, say Python.

To do this, from Telegram, find the bot and type /source python.

The logs from the application should confirm the receipt of the command:

INFO: - �handle_incoming_messages - Chat text received: /source

python

INFO: - �handle_incoming_messages - Sources set for nnn

to python

INFO: - handle_incoming_messages - nnn

INFO: - post_message - posting Sources set as python! to nnn

The Telegram window should now look like Figure 5-3.

Figure 5-3.  Acknowledgement of the subreddit source

Chapter 5 Understanding Docker Volumes

130

Now you can fetch some content. To do this, type /fetch in the bot window.

The application should respond with a loading message and another chat with

the contents (see Figure 5-4).

You can now test for data persistency by stopping the bot, removing the

container, and creating a new container. First stop Newsbot by pressing

Ctrl+C. Since you started the container using the --rm flag, Docker will

automatically remove the container. Create a new container by typing the

same command you used previously to launch the container:

docker run --rm --name newsbot-sqlite -e NBT_ACCESS_TOKEN -v

newsbot-data:/data sathyabhat/newsbot-sqlite

Figure 5-4.  The bot is fetching contents from subreddit

Chapter 5 Understanding Docker Volumes

131

Figure 5-5.  Newsbot fetching contents from subreddit after removing
and starting a new container

Now, in the Telegram chat window, type /fetch again. Since the subreddit

source has been saved to the database, you should see the content from the

previously configured subreddit (see Figure 5-5).

Look at the content again—the Docker volume setup is working correctly.

Congrats! You have successfully set up data persistence for this project.

Chapter 5 Understanding Docker Volumes

132

�Summary
In this chapter, you learned why data persistence is a problem in

containers and the different strategies Docker offers for managing data

persistence. You also took a deep dive into configuring volumes and

learned how they differ from bind mounts. Finally, you ran some hands-

on exercises on how to work with bind mounts and volumes and added

volumes support for Newsbot. In the next chapter, you will learn more

about Docker networking and learn how containers can connect to each

other.

Chapter 5 Understanding Docker Volumes

133© Sathyajith Bhat 2022
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_6

CHAPTER 6

Understanding Docker
Networks
In the previous chapters, you learned about Docker and its associated

terminologies, took a deeper look into how to build Docker images

using the Dockerfile, and learned about how to persist data generated by

containers.

In this chapter, you will look at networking in Docker and learn how

containers can talk to each other and discover each other with the help of

Docker’s networking features.

�Why Do We Need Container Networking?
Traditionally, most compute solutions are thought of as single-purpose

solutions—it is not often that you come across a single host (or a Virtual

Machine) hosting multiple workloads—especially production workloads.

With containers, the scenario changes. With lightweight containers and

the presence of advanced orchestration platforms such as Kubernetes

and DC/OS, it is very common to have multiple containers of different

workloads running on the same host with different instances of the

application distributed across multiple hosts. In such cases, container

networking helps in allowing (or limiting) cross-container talk. And to

facilitate this process, Docker comes with different modes of networks.

https://doi.org/10.1007/978-1-4842-7815-4_6#DOI

134

Tip  Docker’s networking subsystem is implemented by pluggable
drivers; Docker comes with four drivers out of the box, with more drivers
being available from Docker Store, available at https://store.
docker.com/search?category=network&q=&type=plugin.

It is important to note that all of Docker’s networking modes are

achieved via Software Defined Networking (SDN). Specifically, on Linux

systems, Docker modifies iptables rules to provide the required level of

access/isolation.

�Default Docker Network Drivers
With a standard install of Docker, the following network drivers are

available:

•	 Bridge

•	 Host

•	 Overlay

•	 Macvlan

•	 None

�Bridge Networks

A bridge network is a user-defined network that allows for all containers

connected on the same network to communicate with each other. The

benefit is that the containers on the same bridge network can connect,

discover, and talk to each other while those not on the same bridge

cannot communicate directly. Bridge networks are useful when you have

containers running on the same host that need to talk to each other—if the

containers that need to communicate are on different Docker hosts, then

an overlay network is needed.

Chapter 6 Understanding Docker Networks

https://store.docker.com/search?category=network&q=&type=plugin
https://store.docker.com/search?category=network&q=&type=plugin

135

When Docker is installed and started, a default bridge network is

created and newly started containers connect to it. However, it is always

better if you create a bridge network yourself. The reasons are multiple:

•	 Better isolation across containers. As you

learned, containers on the same bridge network

are discoverable and can talk to each other. They

automatically expose all ports to each other, and

no ports are exposed to the outside world. Having

a separate user-defined bridged network for each

application provides better isolation between

containers of different applications.

•	 Easy name resolution across containers. For

services joining the same bridged network,

containers can connect to each other by name. For

containers on the default bridged network, the only

way for containers to connect to each other is via IP

addresses or by using the --link flag, which has been

deprecated.

•	 Easy attachment/detachment of containers on
user-defined networks. For containers on the default

network, the only way to detach them is to stop the

running container and re-create it on the new network.

�Host Networks

As the name suggests, with a host network, a container is attached to the

Docker host. This means that any traffic coming to the host is routed to the

container. Since all of container’s ports are directly attached to the host, in

this mode, the concept of publishing ports doesn’t make sense. Host mode

is perfect when you have only one container running on the Docker host.

Chapter 6 Understanding Docker Networks

136

�Overlay Networks

Overlay networks create a network spanning multiple docker hosts. This

type of network is called an overlay because it lays on top of the existing

host network, allowing containers connected to the overlay network to

communicate across multiple hosts. Overlay networks are an advanced

topic and are primarily used when a cluster of Docker hosts is set up in

Swarm mode. Overlay networks also let you encrypt the application data

traffic across the them.

�Macvlan Networks

Macvlan networks leverage the Linux Kernel’s ability to assign multiple

logical addresses based on MAC to a single physical interface. This

means that you can assign a MAC address to a container’s virtual network

interface, making it appear as if the container has a physical network

interface connected to the network. This brings unique opportunities,

especially for legacy applications that expect a physical interface to be

present and connected to the physical network.

Macvlan networks require an additional dependency on the Network

Interface Card (NIC) to support what is known as “promiscuous” mode—a

special mode that allows the NIC to receive all traffic and direct it to a

controller, instead of receiving only traffic that the NIC expects to receive.

�None Networking

When a container is launched, Docker connects the container to the

default bridge network. The bridge network allows the container to make

outgoing network requests. Although container networking is definitely

a feature and highlight, there are many cases where an application must

be completely isolated and must not allow for incoming or outgoing

requests—especially with high security and compliance requirement

applications. In such cases, a none networking comes in handy.

Chapter 6 Understanding Docker Networks

137

As the name suggests, none networking is when the container isn’t

connected to any network interface and does not receive or send any

network traffic. In this networking mode, only the loopback interface is

created, allowing the container to talk to itself, but not to the outside world

or with other containers.

A container can be launched with none networking using the

command shown here:

docker run -d --name nginx --network=none -p 80:80 nginx

Trying to curl the endpoint results in an instant Connection Refused,

indicating that the container is not accepting connections.

curl localhost

curl: (7) Failed to connect to localhost port 80 after 1 ms:

Connection refused

If you open an interactive terminal with the container and try an

outgoing network request using curl, as shown here:

docker exec -it nginx sh

curl google.com

curl: (6) Could not resolve host: google.com

You’ll see that there is no networking configured. The container cannot

receive or send network traffic.

�Working with Docker Networks
Now that you conceptually understand the different network modes, you

can try some of them. This chapter only looks at the bridge network, as it’s

the most commonly used driver. Much like the other subsystems, Docker

comes with a subcommand for handling Docker networks. To get started,

try the following command:

docker network

Chapter 6 Understanding Docker Networks

138

You should see an explanation of the available options:

docker network

Usage: docker network COMMAND

Manage networks

Options:

Commands:

 connect Connect a container to a network

 create Create a network

 disconnect Disconnect a container from a network

 inspect Display detailed information on one or more networks

 ls List networks

 prune Remove all unused networks

 rm Remove one or more networks

Now look at which networks are available. To do this, type the following:

docker network ls

At the minimum, you should see these networks listed:

docker network ls

NETWORK ID NAME DRIVER SCOPE

8ea951d9f963 bridge bridge local

790ed54b21ee host host local

38ce4d23e021 none null local

Each of these corresponds to the three different types of networks

mentioned previously—the bridge, the host, and the none type of

networks. You can examine the details of the networking by typing the

following:

docker network inspect <network id or name>

Chapter 6 Understanding Docker Networks

139

For instance, if you want to check the default bridge network, type the

following command:

docker network inspect bridge

[

 {

 "Name": "bridge",

 "Id": "c540708",

 "Created": "2018-04-17T13:10:43.002552762Z",

 "Scope": "local",

 "Driver": "bridge",

 "EnableIPv6": false,

 "IPAM": {

 "Driver": "default",

 "Options": null,

 "Config": [

 {

 "Subnet": "172.17.0.0/16",

 "Gateway": "172.17.0.1"

 }

]

 },

 "Internal": false,

 "Attachable": false,

 "Ingress": false,

 "ConfigFrom": {

 "Network": ""

 },

 "ConfigOnly": false,

 "Containers": {},

 "Options": {

 "com.docker.network.bridge.default_bridge": "true",

Chapter 6 Understanding Docker Networks

140

 "com.docker.network.bridge.enable_icc": "true",

 �"com.docker.network.bridge.enable_ip_masquerade":

"true",

 �"com.docker.network.bridge.host_binding_ipv4":

"0.0.0.0",

 "com.docker.network.bridge.name": "docker0",

 "com.docker.network.driver.mtu": "1500"

 },

 "Labels": {}

 }

]

Among other things, you can see that:

•	 The com.docker.network.bridge.default_bridge key

under Options indicates that the bridge is the default.

•	 "EnableIPv6": false indicates that IPv6 is disabled

for this bridge.

•	 The "Subnet" key under IPAM – Config indicates

that the Docker network subnet has a CIDR of

172.17.0.0/16. This means that up to 65,536 containers

can be attached to this network (this is derived from the

CIDR block of /16).

•	 The com.docker.network.bridge.enable_ip_

masquerade under Options indicates that the bridge

has IP masquerading enabled. This means that the

outside world cannot see the container’s private IP and

it will appear as if the requests are coming from the

Docker host.

•	 The com.docker.network.bridge.host_binding_ipv4

indicates that the host binding is 0.0.0.0. This that the

bridge is bound to all interfaces on the host.

Chapter 6 Understanding Docker Networks

141

In contrast, if you inspect the none network:

docker network inspect none

[

 {

 "Name": "none",

 "Id": "d30afbe",

 "Created": "2017-05-10T10:37:04.125762206Z",

 "Scope": "local",

 "Driver": "null",

 "EnableIPv6": false,

 "IPAM": {

 "Driver": "default",

 "Options": null,

 "Config": []

 },

 "Internal": false,

 "Attachable": false,

 "Ingress": false,

 "ConfigFrom": {

 "Network": ""

 },

 "ConfigOnly": false,

 "Containers": {},

 "Options": {},

 "Labels": {}

 }

]

The driver null indicates that no networking will be handled for this.

Chapter 6 Understanding Docker Networks

142

�Bridge Networks
Before you create a bridge network, you need to create two containers

running:

•	 MySQL database server

•	 adminer, a web-based portal for managing MySQL

databases

To create the MySQL container, run the following command:

docker run -d --name mysql -p 3306:3306 -e MYSQL_ROOT_

PASSWORD=dontusethisinprod mysql:8

Since you are starting in detached mode (as specified by the -d flag),

follow the logs until you are certain the container is up:

docker logs -f mysql

The result should be the following lines:

Initializing database

[...]

Database initialized

[...]

MySQL init process in progress...

[...]

MySQL init process done. Ready for start-up.

[...]

[Note] mysqld: ready for connections.

Version: '8.0.26' socket: '/var/run/mysqld/mysqld.sock' port:

3306 MySQL Community Server (GPL)

[...]

Chapter 6 Understanding Docker Networks

143

If you see the last set of lines, the MySQL database container is ready.

Create the adminer container:

docker run -d --name adminer -p 8080:8080 adminer

Here are the logs of adminer:

docker logs -f adminer

PHP 7.4.22 Development Server started

That means adminer is ready. Now look at the two containers—

specifically, their networking aspects.

docker inspect mysql | jq ".[0].NetworkSettings.Networks"

{

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 "NetworkID": "8ea951d",

 "EndpointID": "c33e38",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:03",

 "DriverOpts": null

 }

}

Chapter 6 Understanding Docker Networks

144

From this output, you know that the MySQL container has been

assigned an IP address of 172.17.0.2 on the default bridge network. Now

examine the adminer container:

docker inspect adminer | jq ".[0].NetworkSettings.Networks"

{

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 "NetworkID": "8ea951d",

 "EndpointID": "a26bcc",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.3",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:04",

 "DriverOpts": null

 }

}

The adminer container is associated with IP address of 172.17.0.3

within the bridge network. However, since both containers are bound to

the host IP of 0.0.0.0, translated to all interfaces of the Docker host, you

should be able to connect by its port.

Within a bridge network, whether it’s the default Docker bridge

network or a custom bridge network that you create (you will see this in the

chapter’s exercise), all the containers are accessible using their container

names. However, these containers can be accessed from the host only if

their ports have been exposed. To demonstrate this, try to connect to the

database via adminer. Navigate to http://localhost:8080.

Chapter 6 Understanding Docker Networks

145

Enter the server as mysql and try to log in. You’ll notice that the login

will fail (see Figure 6-1).

Try to log in again, this time in the server box. Enter the IP address of

the MySQL container, as shown in Figure 6-2.

Figure 6-1.  Connection to named host fails

Chapter 6 Understanding Docker Networks

146

When you try to log in, it should be successful (see Figure 6-3).

Figure 6-2.  Trying to log in with the IP address of the container

Chapter 6 Understanding Docker Networks

147

The login is successful. While entering the IP is an acceptable

workaround when there’s only one dependent container, many

applications have multiple dependencies. This approach breaks down in

those cases.

�Creating Named Bridge Networks

In this section, you’ll create a database network and try to connect the

MySQL and the adminer container to the network. You can create a bridge

network by typing the following command:

docker network create <network name>

Docker gives you more options in terms of specifying the subnet, but

for most part the defaults are good. Note that the bridge network allows

you to create only a single subnet.

Figure 6-3.  Login with IP address is successful

Chapter 6 Understanding Docker Networks

148

Create a network called database using the following command:

docker network create database

Now inspect the network you created:

docker network inspect database

[

 {

 "Name": "database",

 "Id": "8574145",

 "Created": "2021-07-31T15:58:11.4652433Z",

 "Scope": "local",

 "Driver": "bridge",

 "EnableIPv6": false,

 "IPAM": {

 "Driver": "default",

 "Options": {},

 "Config": [

 {

 "Subnet": "172.18.0.0/16",

 "Gateway": "172.18.0.1"

 }

]

 },

 "Internal": false,

 "Attachable": false,

 "Ingress": false,

 "ConfigFrom": {

 "Network": ""

 },

 "ConfigOnly": false,

 "Containers": {},

Chapter 6 Understanding Docker Networks

149

 "Options": {},

 "Labels": {}

 }

]

Note that the created network has a subnet of 172.18.0.0/16. Stop

and remove the existing containers using the following commands:

docker stop adminer

docker rm adminer

docker stop mysql

docker rm mysql

Now launch the MySQL container, this time connected to the database

network. The command is as follows:

docker run -d --network database --name mysql -p 3306:3306 -e

MYSQL_ROOT_PASSWORD=dontusethisinprod mysql:8

Note the additional --network flag, which tells Docker what network it

should attach the container to. Wait for the container to initialize. You can

also check the logs and ensure that container is ready:

docker logs -f mysql

The result should be the following lines:

Initializing database

[...]

Database initialized

[...]

MySQL init process in progress...

[...]

MySQL init process done. Ready for start up.

[...]

Chapter 6 Understanding Docker Networks

150

[Note] mysqld: ready for connections.

Version: '8.0.26' socket: '/var/run/mysqld/mysqld.sock' port:

3306 MySQL Community Server (GPL)

[...]

Examine the container now:

docker inspect mysql | jq ".[0].NetworkSettings.Networks"

{

 "database": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": [

 "6149cb2453da"

],

 "NetworkID": "8574145",

 "EndpointID": "3343960402",

 "Gateway": "172.18.0.1",

 "IPAddress": "172.18.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:12:00:02",

 "DriverOpts": null

 }

}

Note that the container is part of the database network. You can

confirm this by inspecting the database network as well.

Chapter 6 Understanding Docker Networks

151

docker network inspect database | jq ".[0].Containers"

{

 "6149cb2": {

 "Name": "mysql",

 "EndpointID": "3343960",

 "MacAddress": "02:42:ac:12:00:02",

 "IPv4Address": "172.18.0.2/16",

 "IPv6Address": ""

 }

}

Note that the containers key in the database network has the MySQL

container. Launch the adminer container as well. Type the following

command:

docker run -d --name adminer -p 8080:8080 adminer

Notice that the --network command has been omitted. This means

adminer will be connected to the default bridge network:

docker inspect adminer | jq ".[0].NetworkSettings.Networks"

{

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 "NetworkID": "8ea951d",

 "EndpointID": "c1a5df0",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

Chapter 6 Understanding Docker Networks

152

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:02",

 "DriverOpts": null

 }

}

�Connecting Containers to Named Bridge Networks

Docker lets you easily connect a container to another network on the fly.

To do this, type the following command:

dockr network connect <network name> <container name>

You need to connect the adminer container to the database network, as

follows:

docker network connect database adminer

Inspect the adminer container now:

docker inspect adminer | jq ".[0].NetworkSettings.Networks"

{

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 "NetworkID": "8ea951d",

[...]

 "DriverOpts": null

 },

 "database": {

 "IPAMConfig": {},

 "Links": null,

 "Aliases": [

Chapter 6 Understanding Docker Networks

153

 "2a7363ec1888"

],

 "NetworkID": "8574145",

 [...]

 "DriverOpts": {}

 }

}

Notice that the networks key has two networks, the default bridge

network and the database network that you just connected to. Since the

container doesn’t need to be connected to the default bridge network, you

can disconnect it. To do this, the command is as follows:

docker network disconnect bridge adminer

Examining the adminer container now using the following command,

you can see only the database network connected.

docker inspect adminer | jq ".[0].NetworkSettings.Networks"

{

 "database": {

 "IPAMConfig": {},

 "Links": null,

 "Aliases": [

 "2a7363ec1888"

],

 "NetworkID": "8574145",

[...]

 "DriverOpts": {}

 }

}

Chapter 6 Understanding Docker Networks

154

The bridge network is no longer attached to the adminer network.

Launch adminer by navigating to http://localhost:8080. In the Server

field, type the name of the container that you want to connect to, that is,

the database container name, mysql, as shown in Figure 6-4.

Enter the details and click Login. The login should be successful, and

you should see a screen like the one shown in Figure 6-5.

Figure 6-4.  Connecting to container via named host

Chapter 6 Understanding Docker Networks

155

Figure 6-5.  Named host resolves to IP and connects successfully

Thus, user-defined bridged networks make connecting services very

easy; you don’t have to mess and search for the IP addresses. Docker

makes it easy by letting you connect to the services using the name of the

container as the host. Docker handles the behind-the-scenes translation of

the container name to the IP address.

�Host Networks
In a host network, Docker doesn’t create a virtual network for the

container; rather, the Docker host’s network interface is bound to the

container.

Host networks are excellent when you have only one container running

on the host and don’t need any bridge networks or network isolation. Now

you’ll create a nginx container running in host mode to see how you can

run it.

Chapter 6 Understanding Docker Networks

156

Earlier you saw that there is already a network called host. This is

not the name that governs whether the network is a host network; it’s

the driver. Recall that the host network has a host driver, and hence any

container connected to the host network will run in host network mode.

To start the container, you simply pass the --network host parameter.

Try the following command to start a nginx container and publish port 80

of the container to the host’s 8080 port.

docker run -d --network host -p 8080:80 nginx:alpine

WARNING: Published ports are discarded when using host network mode

Notice that Docker warns you that port publishing isn’t being used. Since

the container’s ports are directly bound to the Docker post, the concept of a

published port doesn’t arise. The actual command should be as follows:

docker run -d --network host nginx:alpine

�Exercises

CONNECTING A MYSQL CONTAINER TO A NEWSBOT CONTAINER

In the previous chapter’s exercises, you wrote a Dockerfile for Newsbot and built

the container. You then used Docker volumes to persist the database across

containers. In this exercise, you will modify Newsbot so that the data persists to a

MySQL database, instead of being saved to an SQLite DB. You will then create a

custom bridge network to connect the project container and the MySQL container.

Tip T he source code and associated Dockerfile are available on
the GitHub repo of this book at https://github.com/Apress/
practical-docker-with-python, in the source-code/
chapter-6/exercise-1 directory.

Chapter 6 Understanding Docker Networks

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

157

Consider the following Dockerfile. It looks, and actually is, quite similar to

the Dockerfile you used in Exercise 2 of Chapter 5. The only change that is

needed is to Newsbot’s code so that it connects to the MySQL server instead

of reading from the SQLite database.

FROM python:3-alpine

RUN apk add gcc musl-dev python3-dev libffi-dev openssl-dev

WORKDIR /apps/subredditfetcher/

COPY . .

RUN pip install -r requirements.txt

CMD ["python", "newsbot.py"]

Now build the container using the following command:

docker build -t sathyabhat/newsbot-mysql .

[+] Building 2.9s (11/11) FINISHED

 => [internal] load build definition from Dockerfile 0.1s

 => => transferring dockerfile: 38B 0.0s

 => [internal] load .dockerignore 0.1s

 => => transferring context: 2B 0.0s

 => �[internal] load metadata for docker.io/library/python:3-

alpine 2.6s

 => �[auth] library/python:pull token for registry-1.docker.io 0.0s

 => [1/5] FROM docker.io/library/python:3-alpine@sha256:1e8728b 0.0s

 => => resolve docker.io/library/python:3-alpine@sha256:1e8728b 0.0s

 => [internal] load build context 0.0s

 => => transferring context: 309B 0.0s

 => �CACHED [2/5] RUN apk add gcc musl-dev python3-dev libffi-dev

openssl-dev cargo 0.0s

 => CACHED [3/5] WORKDIR /apps/subredditfetcher/ 0.0s

 => CACHED [4/5] COPY . . 0.0s

 => �CACHED [5/5] RUN pip install --upgrade pip && pip install -r

requirements.txt 0.0s

 => exporting to image 0.0s

Chapter 6 Understanding Docker Networks

158

 => => exporting layers 0.0s

 => => writing image sha256:44cd813 0.0s

 => => naming to docker.io/sathyabhat/newsbot-mysql 0.0s

Create a new network called newsbot to which the containers will be

connected. To do this, type the following:

docker network create newsbot

Now you’ll bring up a new MySQL container and connect it to the network you

created previously. Since you want the data to persist, you will also mount the

MySQL database to a volume called newsbot-db. This exercise uses root for

the username and dontusethisinprod for the password. These credentials

are extremely weak and we highly recommend you not use them in the real

world.

Type the following command to start the MySQL container:

docker run -d --name mysql --network newsbot -v newsbot-db:/var/

lib/mysql -e MYSQL_ROOT_PASSWORD=dontusethisinprod mysql:8

Note the --network flag, which tells Docker to connect the mysql container

to the network called newsbot. MySQL saves all files related to the database

in the /var/lib/mysql directory, and the -v newsbot-db:/var/lib/

mysql flag instructs Docker to save the contents of the /var/lib/mysql

directory in the container to the volume called newsbot-db. That way, the

contents are persisted even after the container has been removed.

Follow the logs and verify that the MySQL database is up:

docker logs mysql

Initializing database

[...]

Database initialized

[...]

Chapter 6 Understanding Docker Networks

159

MySQL init process in progress

[...]

MySQL init process done. Ready for start up.

[...]

2021-08-01T12:41:15.295013Z 0 [Note] mysqld: ready for

connections.

Version: '8.0.26' socket: '/var/run/mysqld/mysqld.sock' port:

3306 MySQL Community Server (GPL)

The last couple of lines indicate that the MySQL database is up. Now start

the Newsbot container while connecting it to the newsbot network that you

created. To do this, type the following command:

docker run --rm --network newsbot --name newsbot-mysql -e NBT_

ACCESS_TOKEN=<token> sathyabhat/newsbot-mysql

Take care to replace <token> with the value of the Newsbot API key

generated in Chapter 3.

You should see the following logs:

INFO: <module> - Starting up

INFO: <module> - Waiting for 60 seconds for db to come up

INFO: <module> - Checking on dbs

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

Since created a new volume, the sources that were set from the previous

chapter are not available.

Set the subreddit again from which the bot should fetch the data, say Docker.

To do this, from Telegram, find the bot and type /source docker. The logs

from the application should confirm the receipt of the command:

Chapter 6 Understanding Docker Networks

160

INFO: �handle_incoming_messages - Chat text received: /source

docker

INFO: �handle_incoming_messages - Sources set for 7342383

to docker

INFO: handle_incoming_messages - 7342383

INFO: post_message - posting Sources set as docker! to 7342383

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

INFO: get_updates - received response: {'ok': True, 'result': []}

Your Telegram window should look like the one shown in Figure 6-6.

Now you can fetch some content. To do this, type /fetch in the bot window.

The application should respond by loading a message and another chat with

the contents, as shown in Figure 6-7.

Figure 6-6.  Acknowledgement of the subreddit source

Chapter 6 Understanding Docker Networks

161

Figure 6-7.  The bot is fetching contents from the subreddit

Chapter 6 Understanding Docker Networks

162

Now you’ll confirm that Newsbot is indeed saving the sources to the database.

To do this, connect to the running mysql container using the following

command:

docker exec --it mysql sh

Now in the container shell, type the following command to connect to the

MySQL server:

mysql –p

Enter the password (mentioned previously) to connect. You’ll get the following

message if you entered the correct password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 32

Server version: 8.0.26 MySQL Community Server - GPL

Copyright (c) 2000, 2021, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current

input statement.

mysql>

In the MySQL prompt, type the following command to ensure that the Newsbot

database exists:

show databases;

Chapter 6 Understanding Docker Networks

163

You should see a database list similar to the following listing:

show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| newsbot |

| performance_schema |

| sys |

+--------------------+

5 rows in set (0.03 sec)

Type the following command to select the database and then fetch the

contents of the table called source:

use newsbot

select * from source;

+-----------+------------+

| person_id | fetch_from |

+-----------+------------+

| 7342383 | docker |

+-----------+------------+

1 row in set (0.00 sec)

This shows you that Newsbot can successfully connect to the MySQL

container and save data to the database.

Chapter 6 Understanding Docker Networks

164

�Summary
In this chapter, you learned about the basics of container networking and

the different modes of Docker networking. You also learned how to create

and work with custom Docker bridged networks and read about insights

into Docker host networks. Finally, you ran some hands-on exercises on

creating a separate Database container (using MySQL) and learned how

to connect the Database container to the Newsbot project. In the next

chapter, you learn about Docker Compose and how easy Docker Compose

makes it to run multiple, dependent containers.

Chapter 6 Understanding Docker Networks

165© Sathyajith Bhat 2022
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_7

CHAPTER 7

Understanding Docker
Compose
In the previous chapters, you learned about Docker and its associated

terminologies, took a deeper look into how you can build Docker

images using the Dockerfile, understood how to persist data generated

by containers, and linked various running containers with the help of

Docker’s network features.

In this chapter, you will look at Docker Compose, which is a tool

for running multi-container applications, bringing up various linked,

dependent containers, and more—and all with just one config file and a

command.

�Overview of Docker Compose
As software becomes more complicated and as you move more toward

the microservices architecture, the number of components that need

to be deployed increases considerably as well. While microservices

might help keep the overall system fluid by encouraging loosely coupled

services, from an operations point of view, things get more complicated.

This is especially challenging when you have dependent applications.

For instance, for a web application to start working correctly, it needs

its database to be working before the web tier can start responding to

requests.

https://doi.org/10.1007/978-1-4842-7815-4_7#DOI

166

Docker makes it easy to tie each microservice to a container. Docker

Compose makes orchestration of all of these containers very easy. Without

Docker Compose, the container orchestration steps would involve building

the various images, creating the required networks, and then running the

application using a series of docker run commands in the necessary order.

As and when the number of containers increases and as the deployment

targets increase, running these steps manually becomes unreasonable and

you will need to go toward automation.

From a local development point of view, bringing up multiple,

linked services manually gets very tedious and painful. Docker Compose

simplifies this a lot. By just providing a YAML file describing the containers

required and the relationship between the containers, Docker Compose

lets you bring up all the containers with a single command. And it’s not

just about bringing up the containers—Docker Compose also lets you do

the following:

•	 Build, stop, and start the containers associated with the

application.

•	 Tail the logs of the running containers, saving you the

trouble of having to open multiple terminal sessions for

each container.

•	 View the status of each container.

Docker Compose helps you enable Continuous Integration. By

providing multiple, disposable, reproducible environments, Docker

Compose lets you run integration tests in isolation, allowing for a clean-

room approach to these automated test cases. It lets you run the tests,

validate the results, and then tear down the environment cleanly.

Chapter 7 Understanding Docker Compose

167

�Installing Docker Compose
Docker Compose comes pre-installed as part of Docker Install and doesn’t

require any additional steps to get started on macOS and Windows

systems. On Linux systems, you can download the Docker Compose

binary from its GitHub Release page, available at https://github.com/

docker/compose/releases. Alternatively, you can run the following curl

command to download the correct binary.

sudo curl -L https://github.com/docker/compose/releases/

download/1.21.0/docker-compose-$(uname -s)-$(uname -m) -o /usr/

local/bin/docker-compose

If you have Python and pip installed, you can also use pip to install

docker-compose using the following command:

pip install docker-compose

Note E nsure that the version number in the pip install
docker-compose command matches the latest version of Docker
Compose on the GitHub Releases page. Otherwise, you will end up
with an outdated version.

Once the binary has been downloaded, change the permissions so that

it can be executed using the following command:

sudo chmod +x /usr/local/bin/docker-compose

If the file was downloaded manually, copy the downloaded file to

the /usr/local/bin directory before running the command. To confirm

that the install was successful and is working correctly, run the following

command:

docker-compose version

Chapter 7 Understanding Docker Compose

https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases

168

The result should be versions of Docker Compose, something similar

to this:

docker-compose version 1.29.1, build 5becea4c

docker-py version: 5.0.0

CPython version: 3.9.0

OpenSSL version: OpenSSL 1.1.1g 21 Apr 2020

�Docker Compose Basics
Unlike the Dockerfile, which is a set of instructions to the Docker Engine

about how to build the Docker image, the Compose file is a YAML

configuration file that defines the services, networks, and volumes that are

required for the application to be started. Docker expects the Compose

file to be present in the same path where the docker-compose command

is invoked and to be called docker-compose.yaml (or docker-compose.

yml). This can be overridden using the -f flag followed by the path to the

Compose filename.

�Docker Compose Version Overview
With Docker Desktop version 3.4, Docker introduced a newer version of

Docker Compose, known as Compose V2. Compose V2 is supposed to be

a drop-in replacement for the older version of compose. Docker extracted

the YAML file model of the Compose file, created a community around it,

and submitted it as a specification, known as the Compose specification.

Compose V2 implements the Compose specification. However, it is not

yet at feature parity with Compose V1 and can be enabled from within

Experimental Settings of Docker Desktop settings. Given the lack of

feature parity, this chapter focuses on Compose V1. If you need specific

features that are present in Compose V2, such as support for GPU devices

Chapter 7 Understanding Docker Compose

169

and profiles, you can use the rest of the chapter as a guide. Just replace

the docker-compose command (with the hyphen) with docker compose

(replace the hyphen with a space) and the commands should still work.

�Compose File Versioning and the Compose Spec
Although the Compose file is a YAML file, Docker uses the version key

at the start of the file to determine which features of the Docker Engine

are supported. There are three versions of the Compose file format. With

Docker Compose v1.27.0 and Docker Compose V2, Docker has unified

the version 2.x and 3.x of the Compose file format and submitted it to the

Community as a specification. Here’s a brief description of the previous

three versions of the Compose file format:

•	 Version 1: Version 1 is considered a legacy format. If

a Docker Compose file doesn't have a version key at

the start of the YAML file, Docker considers it to be a

version 1 format. Version 1 has been deprecated and is

no longer supported.

•	 Version 2.x: Version 2.x identified by the version 2.x

key at the start of the YAML file.

•	 Version 3.x: Version 3.x identified by the version 3.x

key at the start of the YAML file.

•	 Compose spec: The compose spec unifies versions

2.x and 3.x of the Compose file format and has been

submitted it to the Community as a specification. The

Compose specification also deprecates the version key.

The differences between the three major versions are discussed in the

following sections.

Chapter 7 Understanding Docker Compose

170

�Version 1
Docker Compose files that do not have a version key at the root of the

YAML file are considered to be Version 1 compose files. Version 1 will be

deprecated and removed in a future version of Docker Compose, so I do

not recommend writing Version 1 files. Besides the deprecation, Version 1

has the following major drawbacks:

•	 Version 1 files cannot declare named services, volumes,

or build arguments.

•	 Container discovery is enabled only by using the

links flag.

�Version 2
Docker Compose Version 2 files have a version key with a value of 2 or 2.x.

Version 2 introduces a few changes, which makes version 2 incompatible

with previous versions of Compose files. These include:

•	 All services must be present in the services key.

•	 All containers are located on an application-specific

default network and the containers can be discovered

by the hostname, which is specified by the service

name.

•	 Links are made redundant.

•	 The depends_on flag is introduced allowing for you to

specify dependent containers and the order in which

the containers are brought up.

Chapter 7 Understanding Docker Compose

171

�Version 3
Docker Compose Version 3 files have a version key with a value 3 or

3.x. Version 3 removes several options that were deprecated, including

volume_driver, volumes_from, and many more. Version 3 also adds a

deploy key, which is used for deployment and running of services on

Docker Swarm.

�Compose Specification
Docker unified versions 2.x and 3.x of the Compose file format and

introduced the Compose specification. With Docker Compose version 1.27

and above, Docker implements the Compose spec as the current latest

format. Docker has also declared the previous versions as legacy, although

they are still supported. The Compose Specification also deprecates the

version key in the Compose file. The Compose Specification allows you

to define container applications not tied to any specific Cloud provider,

comprising fundamental building blocks required for multi-container

application:

•	 Services key defines the compute aspects,

implemented as one or more containers.

•	 Networks key defines how services communicate with

each other.

•	 Volumes key defines how services store persistent data.

A sample reference Compose file is shown in Listing 7-1.

Chapter 7 Understanding Docker Compose

172

Listing 7-1.  A Sample Docker Compose File

services:

 database:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 volumes:

 - db-data:/var/lib/mysql

 webserver:

 image: 'nginx:alpine'

 ports:

 - 8080:80

 depends_on:

 - cache

 - database

 cache:

 image: redis

volumes:

 db-data:

Similar to the Dockerfile, the Compose file is very readable and makes

it easy to follow along. This compose file is for a typical web application

that includes a webserver, a database server, and a caching server. The

Compose file declares that when Docker Compose runs, it will bring up

three services—the webserver, the database server, and the caching server.

The webserver depends on the database and the cache service, which

means that unless the database and the cache service are brought up,

the webservice will not be brought up. The cache and the database keys

indicate that for cache, Docker must bring up the Redis image and the

MySQL image for the database.

Chapter 7 Understanding Docker Compose

173

To bring up all the containers, issue the following command:

docker-compose up -d

[+] Running 4/4

 ⠿ Network code_default Created 0.1s
 ⠿ Container code_database_1 Started 1.2s
 ⠿ Container code_cache_1 Started 1.1s
 ⠿ Container code_webserver_1 Started 2.3s

Once the command is issued, Docker will bring up all the services in

the background. Note that even though the Compose file has the definition

of the database first, the webserver second, and the cache as the last,

Docker still brings up the caching container and the database container

before bringing up the webserver container. This is because you defined

the depends_on key for the webserver as follows:

depends_on:

 - cache

 - database

This tells Docker to bring up the cache and the database containers

first before bringing up the webserver. Docker Compose, however, will not

wait and check that the cache container is ready to accept connections and

then bring up the database container—it merely brings up the containers

in the specified order.

You can see the logs by typing the following command:

docker-compose logs

webserver_1 | [notice] 1#1: nginx/1.21.1

database_1 | [Note] [Entrypoint]: Switching to dedicated user

'mysql'

cache_1 | # Server initialized

cache_1 | * Ready to accept connections

Chapter 7 Understanding Docker Compose

174

Docker will aggregate the STDOUT of each container and will be

streaming them when run in the foreground. By default, docker-compose

logs will only show a snapshot of the logs. If you want the logs to be

streamed continuously, you can append the -f or --follow flag to tell

Docker to keep streaming the logs. Alternatively, if you want to see the last

n logs from each container, you can type this:

docker-compose logs --tail=n

where n is the required number of lines that you want to see. Stopping

the containers is as simple as issuing the stop command, as shown here:

docker-compose stop

[+] Running 3/3

 ⠿ Container code_webserver_1 Stopped 0.5s
 ⠿ Container code_database_1 Stopped 1.4s
 ⠿ Container code_cache_1 Stopped 0.4s

To resume the stopped containers, issue the start command:

docker-compose start

[+] Running 3/3

 ⠿ Container code_database_1 Started 1.8s
 ⠿ Container code_cache_1 Started 1.9s
 ⠿ Container code_webserver_1 Started 0.7s

To completely tear down the containers, issue the following command:

docker-compose down

This will stop all containers and will also remove the associated

containers, networks, and volumes that were created when docker-

compose up was issued.

Chapter 7 Understanding Docker Compose

175

[+] Running 4/4

 ⠿ Container code_webserver_1 Removed 0.5s
 ⠿ Container code_cache_1 Removed 0.6s
 ⠿ Container code_database_1 Removed 1.3s
 ⠿ Network code_default Removed 0.2s

�Docker Compose File Reference
Recall that the Compose file is a YAML file for configuration that Docker

reads and sets up the Compose job. This section explains what the

different keys in a Docker Compose file do.

�Services Key
Services is the first root key of the Compose YAML and it’s the

configuration of the container that needs to be created.

�Build Key
The build key contains the configuration options that are applied at build

time. The build key can be a path to the build context or a detailed object

consisting of the context and optional Dockerfile location:

services:

 app:

 build: ./app

services:

 app:

 build:

 context: ./app

 Dockerfile: dockerfile-app

Chapter 7 Understanding Docker Compose

176

�Context Key

The context key sets the context of the build. If the context is a relative

path, the path is considered relative to the Compose file’s location.

build:

 context: ./app

 Dockerfile: dockerfile-app

�Image Key

If the image tag is supplied along with the build option, Docker will build

the image, and then name and tag the image with the supplied image

name and tag.

services:

 app:

 build: ./app

 image: sathyabhat:app

�environment/env_file Key

The environment key sets the environment variables for the application,

while env_file provides the path to the environment file that’s read to set

the environment variables. Both environment and env_file can accept a

single file or multiple files as an array.

In the following example, for the app service, two environment

variables—PATH and API_KEY, with values /home and thisisnotavalidkey,

respectively—are set to the app service.

services:

 app:

 image: mysql

Chapter 7 Understanding Docker Compose

177

 environment:

 PATH: /home

 API_KEY: thisisnotavalidkey

In the following example, the environment variables from a file called

.env are fetched, and the values are assigned to the app service.

services:

 app:

 image: mysql

 env_file: .env

In the following example, multiple environment files defined under the

env_file key are fetched, and the values are assigned to the app service.

services:

 app:

 image: mysql

 env_file:

 - common.env

 - app.env

 - secrets.env

�depends_on Key

This key is used to set the dependency requirements across various

services. Consider this config:

services:

 database:

 image: mysql

 webserver:

 image: nginx:alpine

Chapter 7 Understanding Docker Compose

178

 depends_on:

 - cache

 - database

 cache:

 image: redis

When docker-compose up is issued, Docker will bring up the services

as per the defined dependency order. In the previous case, Docker brings

up the cache and database services before bringing up the webserver

service.

Caution  With the depends_on key, Docker will only bring up the
services in the defined order; it will not wait for each service to be
ready and then bring up the successive service.

�Image Key

This key specifies the name of the image to be used when a container is

brought up. If the image doesn’t exist locally, Docker will attempt to pull

it if the build key is not present. If the build key is in the Compose file,

Docker will attempt to build and tag the image.

services:

 database:

 image: mysql

�ports Key

This key specifies the ports that will be exposed to the port. When

providing this key, you can specify both ports (i.e., the Docker host port

to which the container port will be exposed or just the container port), in

which case, a random, ephemeral port number on the host is selected.

Chapter 7 Understanding Docker Compose

179

services:

 database:

 image: nginx

 ports:

 - "8080:80"

services:

 database:

 image: nginx

 ports:

 - "80"

�Volumes Key

Volumes is available as a top-level key as well as a suboption available to a

service. When volumes are referred to as top-level keys, it lets you provide

the named volumes that will be used for services at the bottom. The

configuration for this looks like this:

services:

 database:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 volumes:

 - "dbdata:/var/lib/mysql"

 webserver:

 image: nginx:alpine

 depends_on:

 - cache

 - database

Chapter 7 Understanding Docker Compose

180

 cache:

 image: redis

volumes:

 dbdata:

In the absence of the top-level volumes key, Docker will throw an error

when creating the container. Consider the following configuration, where

the volumes key has been skipped:

services:

 database:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 volumes:

 - "dbdata:/var/lib/mysql"

 webserver:

 image: nginx:alpine

 depends_on:

 - cache

 - database

 cache:

 image: redis

Trying to bring up the containers throws an error, as shown here:

docker-compose up

service "database" refers to undefined volume dbdata: invalid

compose project

It is possible to use bind mounts as well. Instead of referring to the

named volume, all you have to do is provide the path. Consider this

configuration:

Chapter 7 Understanding Docker Compose

181

services:

 database:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 volumes:

 - ./dbdir:/var/lib/mysql

 webserver:

 image: nginx:alpine

 depends_on:

 - cache

 - database

 cache:

 image:redis

The volume key has a value of ./dbdir:/var/lib/mysql, which means

Docker will mount dbdir in the current directory to the /var/lib/mysql

directory of the container. Relative paths are considered in relation to the

directory of the Compose file.

�Restart Key

The restart key provides the restart policy for the container. By default,

the restart policy is set as no, which means Docker will not restart the

container, no matter what. The following restart policies are available:

•	 no: Container will never restart

•	 always: Container will always restart after exit

•	 on-failure: Container will restart if it exits due to an

error

•	 unless-stopped: Container will always restart unless

exited explicitly or if the Docker daemon is stopped

Chapter 7 Understanding Docker Compose

182

�Docker Compose CLI Reference
The docker-compose command comes with its own set of subcommands.

The following sections explain them.

�The build Subcommand
The build command reads the Compose file, scans for build keys, and

then proceeds to build and tag the image. The images are tagged as

project_service. If the Compose file doesn’t have a build key, Docker will

skip building any images. The usage is as follows:

docker-compose build <options> <service...>

If the service name is provided, Docker will proceed to build the image

for just that service. Otherwise, it will build images for all the services.

Some of the commonly used options are as follows:

--compress: Compresses the build context

--no-cache Ignore the build cache when building the image

�The down Subcommand
The down command stops the containers and will proceed to remove the

containers, volumes, and networks. Its usage is as follows:

docker-compose down

�The exec Subcommand
The compose exec command is equivalent to the docker exec command.

It lets you run ad hoc commands on any of the containers. Its usage is as

follows:

docker-compose exec <service> <command>

Chapter 7 Understanding Docker Compose

183

�The logs Subcommand
The logs command displays the log output from all the services. Its usage

is as follows:

docker-compose logs <options> <service>

By default, logs will only show the last logs and for all services. You can

show logs for just one service by providing the service name. The -f option

follows the log output.

�The stop subcommand
The stop command stops the containers. Its usage is as follows:

docker-compose stop

�Exercises

BUILDING AND RUNNING A MYSQL DATABASE CONTAINER WITH
A WEB UI FOR MANAGING THE DATABASE

In this exercise, you will build a multi-container application consisting of a

container for the MySQL database and another container for adminer, a

popular Web UI for MySQL. Since you already have prebuilt images for MySQL

and adminer, you won’t need to build them.

Tip T he source code, Dockerfile, and docker-compose files
associated with this exercise are available on the GitHub repo of this
book at https://github.com/Apress/practical-docker-
with-python, in the source-code/chapter-7/exercise-1
directory.

Chapter 7 Understanding Docker Compose

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

184

You can start with the Docker Compose file, as follows:

services:

 mysql:

 image: mysql

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 ports:

 - 3306:3306

 volumes:

 - dbdata:/var/lib/mysql

 adminer:

 image: adminer

 ports:

 - 8080:8080

volumes:

 dbdata:

This Compose file combines everything that you learned in this book into

one concise file. Since you are targeting the Compose spec, you can omit

the version tag. Under Services, define two services—one for the database,

which pulls in a Docker image called mysql. When the container is created,

an environment variable, MYSQL_ROOT_PASSWORD, sets the root password for

the database and port 3306 from the container is published to the host.

The data in the MySQL database is stored in a volume known as dbdata and

is mounted to the /var/lib/mysql directory of the container. This is where

MySQL stores the data. In other words, any data saved to the database in the

container is handled by the volume named dbdata. The other service, called

as adminer, just pulls in a Docker image called adminer and publishes port

8080 from the container to the host.

Chapter 7 Understanding Docker Compose

185

Validate the Compose file by typing the following command:

docker-compose config

If everything is okay, Docker will print out the Compose file as it as parsed; it

should look like this:

services:

 adminer:

 image: adminer

 networks:

 default: null

 ports:

 - mode: ingress

 target: 8080

 published: 8080

 protocol: tcp

 mysql:

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 image: mysql

 networks:

 default: null

 ports:

 - mode: ingress

 target: 3306

 published: 3306

 protocol: tcp

 volumes:

 - type: volume

 source: dbdata

 target: /var/lib/mysql

 volume: {}

Chapter 7 Understanding Docker Compose

186

networks:

 default:

 name: docker-compose-adminer_default

volumes:

 dbdata:

Run all containers by typing the command as follows:

docker-compose up -d

The containers will start in the background, as shown here:

docker-compose up -d

[+] Running 3/3

 ⠿ Network docker-compose-adminer_default Created 0.1s
 ⠿ Container docker-compose-adminer_adminer_1 Started 1.0s
 ⠿ Container docker-compose-adminer_mysql_1 Started 1.1s

Now take a look at the logs. Type the following command:

docker-compose logs

adminer_1 | PHP 7.4.22 Development Server (http://[::]:8080)

started

mysql_1 | [Note] [Entrypoint]: Entrypoint script for MySQL

Server 8.0.26-1debian10 started.

mysql_1 | [System] [MY-010931] [Server] /usr/sbin/mysqld:

ready for connections. Version: '8.0.26'

This tells you that the adminer UI and MySQL database are ready. Try logging

in by navigating to http://localhost:8080. The adminer login page (see

Figure 7-1) should load.

Chapter 7 Understanding Docker Compose

187

Notice that the server has been populated with the value db. Since docker-

compose creates its own network for the application, the hostname for each

container is the service name. In this case, the MySQL database service name

is mysql and the database will be accessible via the mysql hostname. Enter

the username as root and the password as the one entered in the MYSQL_

ROOT_PASSWORD environment variable (see Figure 7-2).

Figure 7-1.  adminer login page

Chapter 7 Understanding Docker Compose

188

If the details are correct, you should see the database page shown in

Figure 7-3.

Figure 7-2.  adminer login details

Chapter 7 Understanding Docker Compose

189

CONVERTING NEWSBOT TO A DOCKER COMPOSE PROJECT

In the exercise in Chapter 6, you added volumes to Newsbot and the data was

persisted to a MySQL container. You also brought up the newsbot and mysql

containers separately and connected them to the common bridge network.

In this exercise, you will write a Docker Compose file containing the Newsbot

container and MySQL container, with an attached volume to persist the data.

In this exercise, you will see how easy Docker Compose makes it to bring up

multiple containers, each with their associated properties.

Tip T he source code, Dockerfile, and docker-compose files
associated with this exercise are available on the GitHub repo of this book
at https://github.com/Apress/practical-docker-with-
python, in the source-code/chapter-7/exercise-2 directory.

Figure 7-3.  Database details available once you’re logged in

Chapter 7 Understanding Docker Compose

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

190

Let’s create a new Docker Compose file and add the following contents:

services:

 newsbot:

 build: .

 depends_on:

 - mysql

 restart: "on-failure"

 environment:

 - NBT_ACCESS_TOKEN=${NBT_ACCESS_TOKEN}

 networks:

 - newsbot

 mysql:

 image: mysql

 volumes:

 - newsbot-db:/var/lib/mysql

 environment:

 - MYSQL_ROOT_PASSWORD=dontusethisinprod

 networks:

 - newsbot

volumes:

 newsbot-db:

networks:

 newsbot:

Since you need two services, one for Newsbot and one for the MySQL server,

there are keys corresponding to each of them. For Newsbot, you add a

depends_on key with a value of mysql to indicate that the MySQL container

should be started before Newsbot. But as you saw earlier, Docker doesn’t wait

for the MySQL container to be ready, so Newsbot has been modified to wait 60

seconds before attempting to connect to the mysql container. There is also a

restart policy to restart the newsbot container on failure of the application.

Chapter 7 Understanding Docker Compose

191

Newsbot requires the Telegram bot API token, which you pass to the container

environment variable NBT_ACCESS_TOKEN from the same host environment

variable. Each of the two services also has a network key indicating that the

containers are to be connected to the newsbot network. Finally, you add

the top-level keys for volume and network, declared as newsbot-db for

persisting MySQL data for the volume and newsbot as the network.

You can verify that the Compose file is correct and valid by typing the config

command shown here:

docker-compose config

Docker prints the config of the Compose that you wrote, similar to the

Compose file itself.

services:

 mysql:

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 image: mysql

 networks:

 newsbot: null

 volumes:

 - type: volume

 source: newsbot-db

 target: /var/lib/mysql

 volume: {}

 newsbot:

 build:

 context: exercise-2/newsbot-compose

 dockerfile: exercise-2/newsbot-compose/Dockerfile

 depends_on:

 mysql:

 condition: service_started

 environment:

Chapter 7 Understanding Docker Compose

192

 NBT_ACCESS_TOKEN: ""

 networks:

 newsbot: null

 restart: on-failure

networks:

 newsbot:

 name: newsbot-compose_newsbot

volumes:

 newsbot-db:

 name: newsbot-compose_newsbot-db

Now run the Compose application. Don’t forget to pass the <token> with the

value of the Newsbot API key that you generated in Chapter 3.

NBT_ACCESS_TOKEN=<token> docker-compose up

You should see the containers being built and started up, like this:

[+] Running 4/4

 ⠿ Network newsbot-compose_newsbot Created 0.0s
 ⠿ Volume "newsbot-compose_newsbot-db" Created 0.0s
 ⠿ Container newsbot-compose_mysql_1 Started 1.6s
 ⠿ Container newsbot-compose_newsbot_1 Started 1.8s

Attaching to mysql_1, newsbot_1

newsbot_1 | INFO: <module> - Starting up

newsbot_1 | INFO: <module> - Waiting for 60 seconds for db to

come up

mysql_1 | [System] [MY-013577] [InnoDB] InnoDB

initialization has ended.

mysql_1 | [System] [MY-010931] [Server] /usr/sbin/mysqld:

ready for connections. Version: '8.0.26' socket: '/var/run/

mysqld/mysqld.sock' port: 3306 MySQL Community Server - GPL.

newsbot_1 | INFO: <module> - Checking on dbs

newsbot_1 | INFO: get_updates - received response: {'ok':

True, 'result': []}

Chapter 7 Understanding Docker Compose

193

newsbot_1 | INFO: get_updates - received response: {'ok':

True, 'result': []}

newsbot_1 | INFO: get_updates - received response: {'ok':

True, 'result': []}

newsbot_1 | INFO: get_updates - received response: {'ok':

True, 'result': []}

The last line indicates that the bot is working. Try setting a source and fetching

the data by typing /sources docker and then /fetch into the Telegram

bot. If all goes well, you should see the result in Figure 7-4.

Figure 7-4.  The subreddit fetcher bot in action

Chapter 7 Understanding Docker Compose

194

You can go one step further by modifying the Compose file to include the

adminer service so that you have a WebUI to check that the contents are

being saved to the database. Modify the existing Docker compose file to

include the adminer service as shown here and save it to a file called

docker-compose.adminer.yml:

services:

 newsbot:

 build: .

 depends_on:

 - mysql

 restart: "on-failure"

 environment:

 - NBT_ACCESS_TOKEN=${NBT_ACCESS_TOKEN}

 networks:

 - newsbot

 mysql:

 image: mysql

 volumes:

 - newsbot-db:/var/lib/mysql

 environment:

 - MYSQL_ROOT_PASSWORD=dontusethisinprod

 networks:

 - newsbot

 adminer:

 image: adminer

 ports:

 - 8080:8080

 networks:

 - newsbot

volumes:

 newsbot-db:

Chapter 7 Understanding Docker Compose

195

networks:

 newsbot:

Confirm that the Compose file is valid by typing the config command as

follows:

docker-compose -f docker-compose.adminer.yml config

services:

 adminer:

 image: adminer

 networks:

 newsbot: null

 ports:

 - mode: ingress

 target: 8080

 published: 8080

 protocol: tcp

 mysql:

 environment:

 MYSQL_ROOT_PASSWORD: dontusethisinprod

 image: mysql

 networks:

 newsbot: null

 volumes:

 - type: volume

 source: newsbot-db

 target: /var/lib/mysql

 volume: {}

 newsbot:

 build:

 context: exercise-2/newsbot-compose

 dockerfile: exercise-2/newsbot-compose/Dockerfile

 depends_on:

 mysql:

 condition: service_started

Chapter 7 Understanding Docker Compose

196

 environment:

 NBT_ACCESS_TOKEN: ""

 networks:

 newsbot: null

 restart: on-failure

networks:

 newsbot:

 name: newsbot-compose_newsbot

volumes:

 newsbot-db:

 name: newsbot-compose_newsbot-db

Now tear down the existing Compose file using the following command:

docker-compose down

[+] Running 3/3

 ⠿ Container newsbot-compose_newsbot_1 Removed 1.0s
 ⠿ Container newsbot-compose_mysql_1 Removed 0.1s
 ⠿ Network newsbot-compose_newsbot Removed 0.1s

Since the data is persisted to volumes, you shouldn’t be worried about data

loss.

Bring up the service again using the following command. Don’t forget to pass

the <token> with the value of the Newsbot API key that you generated in

Chapter 3.

NBT_ACCESS_TOKEN=<token> docker-compose -f docker-compose.

adminer.yml up

Running 4/4

 ⠿ Network newsbot-compose_newsbot Created 0.1s
 ⠿ Container newsbot-compose_adminer_1 Started 7.1s
 ⠿ Container newsbot-compose_mysql_1 Started 7.1s
 ⠿ Container newsbot-compose_newsbot_1 Started 5.1s
Attaching to adminer_1, mysql_1, newsbot_1

Chapter 7 Understanding Docker Compose

197

mysql_1 | [System] [MY-010931] [Server] /usr/sbin/mysqld:

ready for connections. Version: '8.0.26' socket: '/var/run/

mysqld/mysqld.sock' port: 3306 MySQL Community Server - GPL.

newsbot_1 | INFO: <module> - Starting up

newsbot_1 | INFO: <module> - Waiting for 60 seconds for db to

come up

newsbot_1 | INFO: <module> - Checking on dbs

newsbot_1 | INFO: get_updates - received response: {'ok': True,

'result': []}

Navigate to adminer by heading to http://localhost:8080. Log in using

the root username, with the password set in the MYSQL_ROOT_PASSWORD

value and the Server value as mysql. Click the Newsbot database, source as

the table, and then choose Select Data. You should see the subreddit that you

earlier set to source (see Figure 7-5).

Success! The application is running, and the data is saved to the MySQL

database and persisted, despite removing and re-creating the containers.

Figure 7-5.  The project running with data saved to the database

Chapter 7 Understanding Docker Compose

198

�Summary
In this chapter, you learned about Docker Compose, including how to

install it and why it is used. You also took a deep dive into the Docker

Compose file and the CLI. You ran some exercises on building multi-

containers applications with Docker Compose. You also learned how to

extend the Newsbot project to a multi-container application using Docker

Compose, by adding a linked database and a Web UI to edit the database.

Chapter 7 Understanding Docker Compose

199© Sathyajith Bhat 2022
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4_8

CHAPTER 8

Preparing for
Production
Deployments
In the previous chapters, you learned about Docker and its associated

terminologies and took a deeper look into how to build Docker images

using the Dockerfile. You also learned how to persist data generated by

containers and you enabled network communication across the running

containers with help of Docker’s network features. You then learned how

Docker Compose makes it easy to run multi-container applications by

writing your requirements in a simple YAML file and providing that as an

input to Docker Compose.

In this chapter, you learn how to prepare your Docker image to deploy

your application in production, including a brief overview of Continuous

Integration, and how to set up Continuous Integration with GitHub

Actions. The chapter touches upon container orchestration and the

various orchestrators available. It includes an overview of one of the most

popular container orchestrators in the market, Kubernetes.

https://doi.org/10.1007/978-1-4842-7815-4_8#DOI

200

�Continuous Integration (CI)
Continuous Integration is the practice of automatically having each

developer’s code changes merged into the main branch of a source code

repository, multiple times a day. Along with merge, the process also runs

different tests—including unit tests, integration tests, functional tests—

and when all the tests pass, a build artifact is created and saved, usually to

some sort of artifact storage.

This generated artifact is taken into the next steps, deployed to

development and staging environments to form what is known as the

CI/CD (Continuous Integration/Continuous Delivery) pipeline. As the

software build and test process matures, it is not uncommon for many

teams to switch from Continuous Delivery to Continuous Deployment. In

Continuous Delivery, the final artifact is ready to be deployed at any time,

but the deployment is usually manually initiated. Continuous Deployment

completely automates the end-to-end build-to-release pipeline, with the

final build artifacts being automatically deployed as well.

CI/CD has become quite popular in today’s software development

lifecycle because of the rapid feedback cycle a CI/CD pipeline provides.

With a well-defined pipeline, it’s possible for a developer to open a GitHub

Pull Request with the changes to their source, have the Continuous

Integration pipeline kick into effect, start the tests for the new code, get

a static analysis done, and have an artifact ready for deployment, all in

a span of a few minutes, and automatically with no one having to start

anything or run things manually.

With Docker, CI/CD becomes even more effortless. With Dockerfile,

there’s a simple, reproducible way to rebuild the required image with the

dependencies, and the Docker image’s portability means that the image

can run on any host that has the Docker daemon installed on it. This is

an important distinction from the previous way of packaged software.

The Docker image is self-contained. No more hassles about getting the

dependencies right with the required versions, host OS dependencies,

Chapter 8 Preparing for Production Deployments

201

and so on. For microservices, testing dependent systems as part of source

code check-in becomes even easier. With a Docker Compose file that has

the required services defined, a simple docker-compose up is sufficient to

bring up the services and test them.

There are many CI tools in the market, and most of the Source Code

Management (SCM) systems—such as GitHub and GitLab—themselves

provide a subset of Continuous Integration features. The next section

explains how to set up Continuous Integration on GitHub using GitHub

Actions.

�GitHub Actions
GitHub Actions makes it easy to set up automated deploys and workflows

that revolve around the Git repository you’re working on. With GitHub

Actions, you can define a workflow that gets triggered on every commit or

push it to a branch to do a variety of actions. These actions can vary from

simplistic echoes to complex linting, spinning up multiple containers.

GitHub Actions are event driven, so a workflow is triggered based on

specific events such as a new pull request being opened or a new commit

being pushed to the repository, just to name a few. Every event triggers a

workflow. A workflow can have one or more jobs, and a job can include a

series of steps to build, test, package, or release on GitHub or elsewhere,

such as the Python Package Index (PyPI) or Docker Hub.

GitHub Actions run on servers called runners. Runners have the

GitHub Actions runner application installed on them, listening for

commands. GitHub provides hosted runners, but you can run your own

runners. This is especially useful if you have compliance requirements to

build the software in your own environment.

The steps to be performed as part of the pipeline are defined using a

file known as the Actions Workflow file. The workflow file uses a YAML-

based specification to define the events, jobs, and steps that need to be

Chapter 8 Preparing for Production Deployments

202

run, with support for conditionals to allow for specific jobs to run when

conditions are met. For GitHub Actions to pick up and run a workflow,

GitHub expects these workflow files to be saved in the .github/workflows

directory at the root of the repository.

In this section, you will write a sample workflow file that will run on

each commit. Before proceeding, you should have an empty public GitHub

repo to test GitHub Actions. A sample workflow file is shown in Listing 8-1.

Listing 8-1.  A Sample Github Actions Workflow File

name: Run compose

on: [push]

jobs:

 run-compose:

 timeout-minutes: 10

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 uses: actions/checkout@v1

 - name: Start containers

 run: docker-compose version

Tip T he syntax and the keys for the Actions spec file are available
on the GitHub documentation page at https://docs.github.
com/en/actions/reference/workflow-syntax-for-
github-actions.

Chapter 8 Preparing for Production Deployments

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions

203

There are various keys in the Actions YAML file that you can examine:

•	 name: The name key defines the name of the workflow

file that will be shown on the Actions tab.

•	 on: The on key defines the event during which the

workflow will be triggered. This lets you determine at

what point or during which event the workflow should

be run.

•	 timeout-minutes: The timeout key lets you define how

long a job can run before being cancelled by GitHub.

•	 runs-on: The runs-on key defines the runner on which

the job runs.

•	 steps: The steps key defines the steps a specific job

must run.

•	 uses: This key tells GitHub to fetch a specific action.

Besides the steps you can run, GitHub Actions also

allow you to use third-party actions that you have

developed, reducing the need to rebuild everything. In

this specific example, you instruct GitHub Actions to

fetch the checkout action, which does a Git checkout

and downloads the source code to the runner.

•	 run: The run key lets you define custom commands

that can be run. This is useful when you want to

run something that is not covered by the custom

commands.

Looking at the Actions workflow file again, it defines a GitHub runner

that will check out the source code and run a docker-compose version

command.

Chapter 8 Preparing for Production Deployments

204

Save this file as .github/workflows/compose.yaml, commit the files,

and push this to the GitHub repo. Once you push the commit to the remote

repository, GitHub should start the workflow immediately. From your

GitHub repository page, click the Actions tab, and you can see the result of

the workflow.

If you prefer a CLI approach, GitHub has a CLI tool that can give you

feedback without having to open a tab and navigate to actions. To get

started, you need to install the GitHub CLI, as mentioned in https://cli.

github.com/.

Once the CLI is installed, open a new terminal session. Authenticate

with GitHub by typing the following command:

gh auth login

Follow the instructions and you should be able to log in successfully.

Once you’re logged in, switch to the public repo directory that you created.

Change to the newly cloned repo using the following command:

cd <repo>

Once in the repo, you can look at the workflows using the gh workflow

list command:

gh workflow list

This should show only one workflow, the one that you created, as

shown here:

gh workflow list

Run compose active <workflow id>

The number at the end is the ID of the workflow. You can examine the

results of the workflow using the workflow view command, as shown here:

Chapter 8 Preparing for Production Deployments

https://cli.github.com/
https://cli.github.com/

205

gh workflow view <workflow id>

Run compose - compose.yaml

ID: <workflow id>

Total runs 1

Recent runs

✓ test actions Run compose master push <run id>

You can dive deeper into this run by using the gh run command, as

shown here:

gh run view <run id>

✓ master Run compose · <run id>
Triggered via push about 10 hours ago

JOBS

✓ run-compose in 5s (ID <job id>)

You can further dig into the results of the job with the job ID and the gh

run command with the --job parameter:

gh run view --job <job id>

✓ master Run compose · <run id>
Triggered via push about 10 hours ago

✓ run-compose in 5s (ID <job id>)
 ✓ Set up job
 ✓ Checkout
 ✓ Start containers
 ✓ Complete job

Chapter 8 Preparing for Production Deployments

206

Thus, with a simple YAML file, you’ve defined and set up your

Continuous Integration workflow, which will get automatically triggered

upon every new push. This example only shows a simple example of

running a docker-compose version command. However, with the

wealth of custom community-built actions as well as support for custom

commands, it is easy to set up a comprehensive Continuous Integration

system that can run linters, perform container security checks, and even

build a new image. Later in the chapter, as part of the exercise, you will

see this in action and set up a CI system for Newsbot so that a new Docker

image gets built on every push.

�Container Orchestration
Orchestration is the process of deploying a container to a suitable host

(or many hosts) and managing the lifecycle of the deployed containers,

including scaling up or down the number of containers as well as the

underlying nodes based on the different metrics, such as CPU/memory

utilization, network traffic, and so on. Orchestration also handles replacing

the nodes and containers when they crash or error out. Orchestrators are

used to perform many of the manual tasks that are needed to keep the

containers running smoothly, without the need for manual intervention by

human operators.

�The Need for Orchestrators
Earlier, you learned that containers make it easy to deploy applications.

With a single command, you can get one or more services up and running,

with the required dependencies self-contained within the Docker image,

or multiple linked containers that are expressed in Docker Compose files.

The question then arises—if the application and dependencies are self-

contained, why do you need orchestrators?

Chapter 8 Preparing for Production Deployments

207

Containers ease the pain of running linked services for a developer.

Developers can build their images, run them locally, and continue working

on the local changes without having to update the local development setup or

deploy the software to designated development environments. This process

would be evolving and changing, especially when you have multiple people

working on projects. By eliminating the toil involved in running software and

empowering a developer to run their applications with a simple docker run

or docker-compose up, Docker makes it easier to iterate and build.

In a production landscape, things get much more complicated.

Containers make production deployments easier, but having to run many

containers and having to maintain their lifecycle becomes a tedious affair.

Why would you need to run multiple containers, you might wonder.

Consider Newsbot, the chatbot application that you’ve been working

on throughout this book. It is a simple Python application that keeps

polling the Telegram bot API, responds to messages, and posts back to

Telegram. When you have a fewer number of requests, a single container

is enough to respond to requests in a timely manner. However, as more

people start using it, the number of requests the bot must handle increases

significantly, and at a certain point, having just one container will be

insufficient to respond to the requests. To cope with the demand, you need

to scale up by increasing the number of containers. Without orchestrators,

to do this, you have to run the command to bring up new containers.

Doing this once or twice is okay, but having to do this repeatedly is not

feasible. This is where orchestrators come in.

�How Do Orchestrators Work?
While exact implementations of orchestrators differ across various tools,

the general process remains the same. Most orchestrators are usually

segmented into two tiers:

•	 Control tier, also known as the control plane

•	 Worker tier, also known as the worker plane

Chapter 8 Preparing for Production Deployments

208

The control plane of an orchestrator handles incoming requests and

operations related to controlling, running, and managing the orchestrator,

while the worker plane handles the actual scheduling and orchestration of

the containers in the designated nodes.

The orchestration process starts with a declarative description of

the intended goal: this can be a YAML or a JSON file that describes

what services to run, where to download the required container images

(typically pointing to a Container registry), the number of replicas to run,

what type of networking is needed to link the containers, and where to

store the persistent data. If this looks like the Docker Compose file you

learned about in Chapter 7, that is a valid observation.

A Compose Spec file describes these exact requirements. However,

Docker Compose was meant and designed for single nodes. It cannot

orchestrate a container across multiple nodes and is not suitable as an

orchestrator, especially for workloads that span multiple nodes. For single-

node workloads, however, it might be easier and simpler to use Docker

Compose.

Once the orchestrator receives a request to increase the number of

containers or to deploy a new container, it will perform a series of steps

before running the container:

•	 The scheduler determines the node where the

container is to be scheduled. This is done based on

several constraints that may be in place, such as the

required memory, CPU needed by the container,

whether a GPU or specific classes of storage are

required, and so on.

•	 A suitable node is selected; a request is sent to start the

container. This includes different steps such as pulling

the Docker image (if it is not present already), setting

up the container network, and associating with the

required volumes.

Chapter 8 Preparing for Production Deployments

209

•	 Start the container.

•	 If the container has been configured with health

checks, wait for the health checks to be positive before

signaling that the container is ready to accept the

workload.

•	 Once the container is up and running, the orchestrator

will continuously monitor the health check of the

container. If the health check fails, the orchestrator will

terminate the container and bring up a new container

in its place.

This entire process happens continuously in a loop and the

orchestrator checks every few seconds for every container request that has

been submitted to the orchestrator.

�Popular Orchestrators

Kubernetes is quite possibly the most popular orchestrator but is no

means the only orchestrator around. Other orchestrators that are available

include:

•	 Docker Swarm

•	 DC/OS

•	 HashiCorp Nomad

With DC/OS reaching end-of-life and longer being supported,

HashiCorp Nomad is slowly becoming more popular in smaller companies

that do not need all the bells and whistles of Kubernetes. Another point

to note is that you don’t have to run a container orchestrator yourself

to make the best use of containers. There are many managed container

orchestrators that handle the control plane of the orchestrator. This frees

you of the operational burden of having to run, maintain, and upgrade

Chapter 8 Preparing for Production Deployments

210

the control plane of the clusters and you can focus purely on running

and maintaining your application. Some of these managed orchestrators

include:

•	 Amazon EKS

•	 Amazon ECS

•	 Amazon Fargate

•	 Azure Kubernetes Service

•	 Azure Container Instances

•	 Google Kubernetes Engine

•	 Google Cloud Run

Amazon ECS, Amazon Fargate, Azure Container Instances, and Google

Cloud Run use each company’s respective proprietary orchestration

engines and have their custom specifications that need to be submitted,

after which the containers will be scheduled and orchestrated.

Amazon EKS, Azure Kubernetes Service, and Google Kubernetes

Engine are managed Kubernetes services that support all the features that

you expect from a Kubernetes provider. Kubernetes is a huge topic and

covering all its features is a topic for another book and out of scope for

this chapter. For this reason, the next sections bring up a test Kubernetes

cluster using kind (Kubernetes in Docker) and attempt to run some

sample applications.

�Kubernetes

Kubernetes (also known as k8s) has emerged as the most popular

container orchestrator today. Kubernetes is an open source system for

deploying, scaling, operating, and managing containerized applications.

Kubernetes was created by a group of Google engineers who used their

Chapter 8 Preparing for Production Deployments

211

experience running Borg, an internal container orchestrator at Google, to

build an open source project. Kubernetes simplifies some complexities

and eases the pain points observed while using Borg. Kubernetes gained

popularity due to the relative ease of use and the features it provides out of

the box, including but not limited to:

•	 Automated rollouts and rollbacks

•	 Full container lifecycle management

•	 Support for horizontal and vertical scaling

•	 Self-healing capabilities, including container and

node-level failure resilience

•	 Advanced Role-Based Access Control (RBAC) features

to allow access only to authorized users and groups

A Kubernetes cluster has various nodes that run containerized

applications. These nodes are usually powered by virtual machines

running in the cloud. In the industry, Kubernetes nodes are also seen

running on powerful bare-metal hardware running in on-premises data

center machines as well as at the edge, running on low-power devices.

As noted in the previous section, the nodes are further segmented into

Kubernetes control planes and worker planes, which include various

components.

Kubernetes Control Plane

The Kubernetes control plane components control the state of the cluster

and managing the workloads to be scheduled across the cluster. The

control plane includes various components, and each component can be

Chapter 8 Preparing for Production Deployments

212

run on either a single master node or multiple master nodes, where high

availability and fault tolerance is required. The control plane components

include:

•	 Kubernetes API server (or kube-apiserver): The

kube-apiserver exposes the Kubernetes API and acts as

a frontend to the cluster, through which any request to

the Kubernetes cluster is accepted.

•	 Etcd: etcd is a highly available key-value store that is used

as the backing store for Kubernetes cluster data. Losing

etcd is a catastrophic loss and as such all measures

should be taken to back up the data periodically.

•	 Scheduler: The Kubernetes Scheduler constantly

monitors the available nodes onto which the workloads

can be scheduled. When new requests come to start

a new workload, it determines and schedules the

relevant node where the workload can be scheduled.

•	 Controller manager: A controller is a process that is

responsible for maintaining the status of individual

subcomponents, such as the status of individual nodes,

one-time jobs, among others. The controller manager

runs each of these controllers and ensures that they are

working as expected.

Kubernetes Worker Plane

The Kubernetes worker plane includes one or many worker nodes, with

each node running various node components that maintain the workloads.

The components include:

•	 Kubelet: The kubelet is a process that runs on every

node in the cluster and registers the node it is running

with the API server to accept workloads. The kubelet

Chapter 8 Preparing for Production Deployments

213

ensures that the containers and workloads are running

in the node and maintains the lifecycle of a container,

as directed by the API server.

•	 Kube-proxy: The kube-proxy is a network proxy that

runs on every node and implements the networking

features of Kubernetes. The kube-proxy maintains the

network rules and sessions and routes traffic to the

desired containers.

Most of the interactions with the Kubernetes are via the API, and the

kubectl command-line application lets you control Kubernetes clusters by

talking to the Kubernetes API. The kubectl application implements all the

commands required to interact with the cluster and, internally, kubectl

converts the API calls into respective API calls to the kube-apiserver to

perform these actions.

A Look at kind

Setting up an entire Kubernetes cluster is quite an elaborate and tedious

process that involves lots of steps, including creating and provisioning TLS

certificates, provisioning the required nodes and installing the various

components, joining the various worker and master nodes, and so on.

While setting this up for a production use case can be done using various

tools such as kOps (Kubernetes Operations), kubeadm, and so on, to test

locally, you do not have to use these.

kind, short for Kubernetes in Docker, is a tool for running local

Kubernetes clusters using Docker containers acting as nodes. The

Kubernetes project itself uses kind to test cluster releases, and you can use

kind for local development and testing. kind consists of a self-contained

Go binary that interacts with Docker CLI to bring up and configure the

Kubernetes clusters with almost no configuration for a single node cluster.

If you need to simulate multiple nodes, you can provide a configuration file

with the required number of nodes to bootstrap such a cluster.

Chapter 8 Preparing for Production Deployments

214

Creating Kubernetes Clusters Using kind

Before you can create the Kubernetes clusters, you need to download and

install kind. This can be done by heading over to kind’s static releases page

on GitHub at https://github.com/kubernetes-sigs/kind/releases.

Once the required binary has been installed, you can invoke kind by

providing the full path on the disk where kind is saved.

Note T his section refers only to the kind command, but be sure
to substitute the full path to the kind binary, especially if the kind
binary has not been moved to a location referenced by the PATH
variable.

You also need to download and install kubectl, the command-line

program that is used to interact with Kubernetes clusters. You can do this

by following the instructions present in the Kubernetes documentation

page at https://kubernetes.io/docs/tasks/tools/.

To create a cluster, run the following command:

kind create cluster --name kind

The cluster creation can take a couple of minutes, but once it is done,

you should see these logs:

kind create cluster --name kind

Creating cluster "kind" ...

 ✓ Ensuring node image (kindest/node:v1.21.1) 🖼
 ✓ Preparing nodes 📦
 ✓ Writing configuration 📜
 ✓ Starting control-plane 🕹
 ✓ Installing CNI 🔌

Chapter 8 Preparing for Production Deployments

https://github.com/kubernetes-sigs/kind/releases
https://kubernetes.io/docs/tasks/tools/

215

 ✓ Installing StorageClass 💾
Set kubectl context to "kind-kind"

You can now use your cluster with:

kubectl cluster-info --context kind-kind

Thanks for using kind! 😊

You can look at the containers brought up by kind using the docker ps

command, as shown here:

docker ps

CONTAINER ID IMAGE NAMES

5a5ba27eac95 kindest/node:v1.21.1 kind-control-plane

Now look at the pods that are running in the cluster. To do this, type

the following command:

kubectl get pods -A

This command lists all the running pods. A pod is the smallest

execution unit in Kubernetes. By default, kubectl commands fetch

resources from the namespace that is currently activated as a context. To

show pods from all namespaces, including the system namespaces, pass

the flag -A.

NAME READY STATUS

coredns-6p84s 1/1 Running

coredns-ctpsm 1/1 Running

etcd 1/1 Running

kindnet-76dht 1/1 Running

kube-apiserver 1/1 Running

kube-controller-manager 1/1 Running

kube-proxy-87lbc 1/1 Running

kube-scheduler 1/1 Running

Chapter 8 Preparing for Production Deployments

216

From the running pods, you can see various pods, each corresponding

to the component you learned about in the previous section. To delete the

cluster, type the delete command, as shown here:

kind delete cluster --name kind

Running a Sample Service in Kubernetes

Now that you understand container orchestration a little better, let’s see

how you can take a Docker image and orchestrate it. For this section, you

will create a sample Kubernetes cluster using kind. Once you have a cluster

running, you will deploy a sample nginx container. While the Docker

image is simplistic, it gives you a good idea of the steps needed when

you go from running containers locally using a docker run command to

deploying a container using Kubernetes.

First, you will create a new Kubernetes cluster using kind. Type the

following command to start the cluster:

kind create cluster --name nginx-deploy

Creating cluster "nginx-deploy" ...

 ✓ Ensuring node image (kindest/node:v1.21.1) 🖼
 ✓ Preparing nodes 📦
 ✓ Writing configuration 📜
 ✓ Starting control-plane 🕹
 ✓ Installing CNI 🔌
 ✓ Installing StorageClass 💾
Set kubectl context to "kind-nginx-deploy"

You can now use your cluster with:

kubectl cluster-info --context kind-nginx-deploy

Thanks for using kind! 😊

Chapter 8 Preparing for Production Deployments

217

Pods and Deployments

In Kubernetes, a pod is the core component for running applications. A

pod has at least one container but can also accommodate groups of related

containers. A deployment is a Kubernetes object that creates pods, tells

Kubernetes how many copies of pods should be created, and indicates

when/how a new pod should be updated. To create a deployment, you

can apply a YAML file with the Kubernetes specification that describes the

pods to run.

Alternatively, for a quick start, you can also use the kubectl

application to create a deployment, passing only the name of the Docker

image with which the deployment is to be created. This is suitable for

quick test deploys, but isn’t recommended for full deploys. To create a

deployment with a Docker image, run the command shown here:

kubectl create deployment nginx --image <docker image:tag>

To create a Kubernetes deployment with a Docker image, use this

command:

kubectl create deployment nginx --image nginx:1.21

deployment.apps/nginx created

While this command lets you create a sample deployment quickly,

updating the existing deployment can get tedious. By creating a

Kubernetes spec YAML and updating the YAML as and when you desire,

you can instruct kubectl to apply the YAML file. Let’s examine the spec of

the deploy that was created because of this deployment. To do this, type

the following command:

kubectl get deploy nginx -o yaml > nginx-deploy.yaml

This will output the deployment specification in a YAML format and

save it to a file called nginx-deploy.yaml. Open this file in your favorite

code editor. You should see the contents of the file, as shown in Listing 8-2.

Chapter 8 Preparing for Production Deployments

218

Listing 8-2.  A Kubernetes Deployment Object Specification File in

YAML

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: nginx

 name: nginx

 namespace: default

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 strategy:

 rollingUpdate:

 maxSurge: 25%

 maxUnavailable: 25%

 type: RollingUpdate

 template:

 metadata:

 creationTimestamp: null

 labels:

 app: nginx

 spec:

 containers:

 - image: nginx:1.21

 imagePullPolicy: IfNotPresent

 name: nginx

 resources: {}

Chapter 8 Preparing for Production Deployments

219

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: {}

 terminationGracePeriodSeconds: 30

status: {}

While an in-depth explanation of each of these fields would be out of

scope for this book, it is still worth noting several additional features that

an orchestrator like Kubernetes can provide over a container being started

and run using the docker run command. Some of the noteworthy features

include:

•	 A namespace key to isolate applications in their own

scope, allowing for stronger application of role-based

access policies.

•	 Labels to allow objects to be identified across the

cluster.

•	 A replicas key, indicating how many replicas of the

container the orchestrator should always maintain.

•	 A strategy object to indicate how a new container image

should be deployed, how many new containers should

be rolled out, and what the tolerance percent should be

for the number of unavailable containers.

•	 An imagePullPolicy that describes when and how the

container images are to be pulled from the container

registry.

Chapter 8 Preparing for Production Deployments

220

These are just some features for a Deployment object. Kubernetes

supports more built-in objects for specialized workloads:

•	 A StatefulSet lets you run one or many pods for which

the persistence and state need to be tracked (for

example, database workloads).

•	 A DaemonSet runs the pods on every node of the

cluster (for example, logging agents).

•	 Jobs and CronJobs run one-off tasks and stop when

they’re done.

Thus, orchestrators provide a world of features for running various

and specialized workloads. Not everyone who needs containers will

benefit from orchestrators, because of the overhead involved in running

and maintaining them. For a large organization, an orchestrator is an

invaluable investment when considering moving the workloads to

containers.

�Exercises
In this chapter, you learned about basic Continuous Integration and

Container Orchestration. Now you can try some hands-on exercises on

building a Continuous Integration workflow and running a multi-node

orchestrator using kind and Kubernetes on a local computer.

Chapter 8 Preparing for Production Deployments

221

CREATING MULTI-NODE CLUSTERS WITH KIND

You learned earlier that kind, short for Kubernetes in Docker, is

a tool for running local Kubernetes clusters using Docker containers acting

as nodes. For this exercise, you will learn how you can spin up a multi-node

Kubernetes cluster using kind.

Tip T he kind configuration file associated with this exercise is
available on the GitHub repo of this book at https://github.com/
Apress/practical-docker-with-python, in the source-
code/chapter-8/exercise-1 directory.

kind makes it easy to create multi-node clusters to test locally. For this, first

create a kind configuration file in YAML. The config file in Listing 8-3 shows

the configuration that is needed to create a multi-node cluster with three

control-plane nodes and three workers.

Listing 8-3.  Configuration Needed to Create a Multi-Node Cluster

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

- role: control-plane

- role: control-plane

- role: worker

- role: worker

- role: worker

Chapter 8 Preparing for Production Deployments

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

222

Save the file as kind-multi-node.yml. Now, create a new cluster using

the command you used before, but with an extra flag (to use this file as the

configuration file), as shown here:

kind create cluster --name kind-multi-node --config kind-multi-

node.yml

The cluster creation can take a couple of minutes, but once it is done, you

should see the logs shown here:

Creating cluster "kind-multi-node" ...

 ✓ Ensuring node image (kindest/node:v1.21.1) 🖼
 ✓ Preparing nodes 📦 📦 📦 📦 📦 📦
 ✓ Configuring the external load balancer ⚖️
 ✓ Writing configuration 📜
 ✓ Starting control-plane 🕹
 ✓ Installing CNI 🔌
 ✓ Installing StorageClass 💾
 ✓ Joining more control-plane nodes 🎮
 ✓ Joining worker nodes 🚜
Set kubectl context to "kind-kind-multi-node"

You can now use your cluster with:

kubectl cluster-info --context kind-kind-multi-node

Not sure what to do next? 😅 Check out https://kind.sigs.k8s.

io/docs/user/quick-start/

You can look at the containers brought up by kind by using the docker ps

command, as shown here:

CONTAINER ID IMAGE NAMES

0f27d1316302 kindest/haproxy:v202 �kind-multi-node-external-

load-balancer

2a5b37dc51cc kindest/node:v1.21.1 kind-multi-node-worker

4413cc424783 kindest/node:v1.21.1 �kind-multi-node-control-

plane2

Chapter 8 Preparing for Production Deployments

223

bf6f2db610d9 kindest/node:v1.21.1 �kind-multi-node-control-

plane3

c11c07e67abd kindest/node:v1.21.1 kind-multi-node-worker3

02afa01cdce6 kindest/node:v1.21.1 �kind-multi-node-control-

plane

e2e2d427a70f kindest/node:v1.21.1 kind-multi-node-worker2

Since kind uses a container as a way to simulate nodes, you can see that

there are three control-plane nodes, three worker nodes, and an external load

balancer node to route the traffic coming into the cluster. With a multi-node

Kubernetes cluster available at your disposal, running your containerized

applications on a production-grade orchestrator is easy.

SETTING UP CONTINUOUS INTEGRATION FOR NEWSBOT

In this exercise, you will set up a Continuous Integration workflow for Newsbot

that will run flake8, build the Docker image, and push the resulting image

to Docker Hub. The Continuous Integration workflow will be set up using

GitHub Actions, but the same principle could be applied using any Continuous

Integration tool.

Tip T he source code and Dockerfile associated with this exercise,
as well as the GitHub Actions workflow file, are all available on the
GitHub repo of this book at https://github.com/Apress/
practical-docker-with-python, in the source-code/
chapter-8/exercise-2 directory.

Chapter 8 Preparing for Production Deployments

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

224

This exercise also assumes that you are working with the Newsbot source

code and the Dockerfile from Chapter 7, Exercise 2. You will also be setting

up the workflow for the repo of the book, that is, https://github.com/

Apress/practical-docker-with-python. You are encouraged to fork

this repo, clone it to your local computer, and practice this in your fork or

implement the same in a completely different repository.

Earlier in the chapter, you learned that the GitHub Actions workflow file is

a YAML-based spec file. Let’s start with the sample spec file that you used

earlier. You will modify this to add three steps:

	1.	 Check out the source code.

	2.	I nstall the required Python version.

	3.	I nstall the required dependencies using pip.

The workflow file is shown in Listing 8-4.

Listing 8-4.  GitHub Actions Workflow File to Install the

Dependencies

name: Lint and build Docker

on: [push, pull_request]

jobs:

 lint:

 timeout-minutes: 10

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 uses: actions/checkout@v1

 - name: Setup Python

 uses: actions/setup-python@v2

 with:

 python-version: "3.7"

Chapter 8 Preparing for Production Deployments

https://github.com/Apress/practical-docker-with-python
https://github.com/Apress/practical-docker-with-python

225

 - name: Install Dependencies

 run: |

 python -m pip install --upgrade pip

 pwd

 cd source-code/chapter-7/exercise-2/newsbot-compose

 pip install -r requirements.txt

Save this file to .github/workflows/build-newsbot.yaml in the Git

repository, commit the changes, and push the changes to GitHub. The GitHub

Action should trigger immediately. As you saw earlier, you’ll use the GitHub CLI

to verify that the action was triggered.

First verify that the workflow was created. Type the following command:

gh workflow list

Remember to select the correct base repository if prompted. You should see a

result like this one:

gh workflow list

Lint and build Docker active <workflow id>

You can examine a summary of the workflow status using the following

command:

gh workflow view <workflow id>

Lint and build Docker - build-newsbot.yaml

ID: <workflow id>

Total runs 1

Recent runs

✓ add workflow Lint and build Docker add-lint-build-
workflow push <run id>

The tick indicates that the workflow run was successful. You can examine

the details of the run in further detail, as you learned earlier, but for now,

it’s sufficient to know it was successful. Let’s add some more steps to the

workflow.

Chapter 8 Preparing for Production Deployments

226

Most CI workflows will have some sort of Linting and Style Guide reporter

so that the written code adheres to the programming languages and/or the

organization’s guidelines. For this workflow, you will add flake8, which will

analyze the code and provide suggestions for improvements. With this change,

the GitHub Actions workflow file now looks like Listing 8-5.

Listing 8-5.  GitHub Actions Workflow Updated to Analyze Source

Code

name: Lint and build Docker

on: [push, pull_request]

jobs:

 lint:

 timeout-minutes: 10

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 uses: actions/checkout@v1

 - name: Setup Python

 uses: actions/setup-python@v2

 with:

 python-version: "3.7"

 - name: Install Dependencies

 run: |

 python -m pip install --upgrade pip

 cd source-code/chapter-7/exercise-2/newsbot-compose

 pip install -r requirements.txt

 - name: Lint with flake8

 run: |

 pip install flake8

 cd source-code/chapter-7/exercise-2/newsbot-compose

Chapter 8 Preparing for Production Deployments

227

 # run flake8 first to detect any python syntax errors

 �flake8 . --count --select=E9,F63,F7,F82 --show-source

--statistics

 # run again to exit treating all errors as warnings

 �flake8 . --count --exit-zero --max-complexity=10

--statistics

Save the changes, commit them to the repo, and push the changes to the

remote. This should trigger the workflow run again, and you can examine the

run using the gh CLI app. Since you know that the workflow exists, you can

look at the most recent workflow runs instead, using the following command:

gh run list

STATUS NAME WORKFLOW ID

✓ <commit message> Lint and build Docker <run id>
X <commit message> Lint and build Docker <run id>

✓ <commit message> Lint and build Docker <run id>

You’re interested in the details of the last run, so look at it using the following

command, taking care to substitute the value of run ID from the output of the

previous command:

gh run view <run id>

You should get a result similar to this one shown here:

gh run view <run id>

✓ add-lint-build-workflow Lint and build Docker · <run id>
Triggered via push about 4 minutes ago

JOBS

✓ lint in 17s (ID <job id>)

Thus, the Lint is working as expected. Let’s extend this workflow to add a

Docker Build and Push job. You define a new job, called docker-build, and

the steps to check out the code and run the docker build command.

Chapter 8 Preparing for Production Deployments

228

Since this runs on every pull request or pushes, instead of tagging it with an

arbitrary version, you can use GITHUB_SHA, which is an environment variable

exposed by GitHub that contains the hash of the Git commit that was used

to build the Docker image. Due to space constraints, only the section related

to the Docker build is highlighted here; the whole code can be seen in the

exercise on the GitHub repo.

 docker-build:

 timeout-minutes: 10

 runs-on: ubuntu-latest

 needs: lint

 steps:

 - name: Checkout

 uses: actions/checkout@v1

 - name: Build Docker Image

 run: |

 cd source-code/chapter-7/exercise-2/newsbot-compose

 docker build -t newsbot:${GITHUB_SHA} .

Save this section to the workflow file, commit it, and push the changes to the

GitHub repo. This should once again trigger the GitHub workflow. Examine the

recent runs using the following command:

STATUS NAME WORKFLOW EVENT ID

✓ <commit message> Lint and build Docker <run id>
✓ <commit message> Lint and build Docker <run id>
X <commit message> Lint and build Docker <run id>

✓ <commit message> Lint and build Docker <run id>

Look at the last run using the following command:

gh run view <run id>

✓ add-lint-build-workflow Lint and build Docker · <run id>
Triggered via push about 20 hours ago

Chapter 8 Preparing for Production Deployments

229

JOBS

✓ lint in 11s (ID <job id>)
✓ docker-build in 2m57s (ID <job id>)

You can see that the Docker build job was also successful. You can examine

the full job logs using the following command:

gh run view --log --job=<job id>

The logs are shown in Listing 8-6.

Listing 8-6.  The Full Job Logs

docker-build Set up job Current runner version: '2.280.3'

docker-build Set up job ##[group]Operating System

docker-build Set up job Ubuntu

docker-build Set up job 20.04.2

docker-build Set up job LTS

...

docker-build Build Docker Image Step 7/7 : CMD ["python",

"newsbot.py"]

docker-build Build Docker Image ---> Running in 6f3911bd1009

docker-build �Build Docker Image Removing intermediate container

6f3911bd1009

docker-build Build Docker Image ---> ab0d26e8298e

docker-build Build Docker Image Successfully built ab0d26e8298e

docker-build Build Docker Image Successfully tagged

newsbot:639bc2

To complete the exercise, add a final step to push the newly built Docker

image to the Docker Hub. Before you can do this, you have to create an

account on https://hub.docker.com. Make a note of the username and

password that was used to the register—you’ll be using it to authenticate with

Chapter 8 Preparing for Production Deployments

https://hub.docker.com

230

the GitHub Action. To push to your Docker Hub repository, you have to make

two changes:

	1.	P refix your Docker Hub username to the image in the build step.

	2.	A dd the Docker Hub credentials to GitHub.

To add the Docker Hub credentials, from the GitHub repository where you are

pushing the changes, choose Settings, Secrets. Click New Repository Secret,

add DOCKER_USERNAME as the name, and enter your Docker Hub username.

Repeat the same process for the password, with the name DOCKER_

PASSWORD and value as Docker Hub password that you used to register your

account. Once both have been added, the Secrets section should look like

Figure 8-1.

With the credentials added to GitHub, you can now modify the job to inject

these secrets. This can be done by referencing the secret name using the

${{ secrets.SecretName }} format. The docker-build section of the

workflow file should now look like Listing 8-7.

Listing 8-7.  docker-build Job Updated with Added Docker Hub

Credentials and Push to Docker Hub

 docker-build:

 timeout-minutes: 10

 runs-on: ubuntu-latest

 needs: lint

Figure 8-1.  Secrets configured in the GitHub repository settings

Chapter 8 Preparing for Production Deployments

231

 steps:

 - name: Checkout

 uses: actions/checkout@v1

 - name: Build Docker Image

 env:

 DOCKER_USERNAME: ${{ secrets.DOCKER_USERNAME }}

 DOCKER_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}

 run: |

 cd source-code/chapter-7/exercise-2/newsbot-compose

 docker login -u ${DOCKER_USERNAME} -p ${DOCKER_PASSWORD}

 docker build -t ${DOCKER_USERNAME}/newsbot:${GITHUB_SHA} .

 docker push ${DOCKER_USERNAME}/newsbot:${GITHUB_SHA}

Now verify that the push happened successfully. As earlier, you can find the

latest runs with the gh run list command:

gh run list

STATUS NAME WORKFLOW EVENT ID

✓ <commit message> Lint and build Docker <run id>
X <commit message> Lint and build Docker <run id>

✓ <commit message> Lint and build Docker <run id>

Then find the results of the workflow using the following command:

 gh run view <run id>

✓ add-lint-build-workflow Lint and build Docker · <run id>
Triggered via push about 59 minutes ago

JOBS

✓ lint in 14s (ID <job id>)
✓ docker-build in 3m57s (ID <job id>)

Chapter 8 Preparing for Production Deployments

232

And to view the results of the docker-build job, type the following

command:

gh run view --job <job id>

✓ add-lint-build-workflow Lint and build Docker · 1198342464
Triggered via push about 1 hour ago

✓ docker-build in 3m57s (ID 3507041628)
 ✓ Set up job
 ✓ Checkout
 ✓ Build Docker Image
 ✓ Complete job

You can see from the summary that all the steps were completed successfully.

To examine the logs of the job, issue the command shown here:

gh run view --log --job=<job id>

docker-build Set up job Ubuntu

docker-build Set up job 20.04.3

docker-build Set up job LTS

[...]

docker-build Build Docker Image Step 7/7 : CMD ["python",

"newsbot.py"]

docker-build Build Docker Image Successfully built b65633d72071

docker-build Build Docker Image Successfully tagged ***/newsbot

:48e085beba409747b3a87dcf918549017ae8c173

docker-build Build Docker Image The push refers to repository

[docker.io/***/newsbot]

[...]

docker-build Build Docker Image 54d6343a1c01: Pushed

You have successfully configured Continuous Integration to build the Docker

Image on every push. When you look at the GitHub Actions page, it should look

like Figure 8-2. You can now refer to this image and tag to deploy.

Chapter 8 Preparing for Production Deployments

233

�Summary
In this chapter, you learned about Continuous Integration and how to use

Continuous Integration to build Docker images automatically after every

Git commit, making it easier to test containers and applications. You also

learned about container orchestrators, got an overview of Kubernetes,

and learned how to use kind to deploy a Kubernetes cluster on your local

system to make testing your Docker applications easier and ready for

production deployments. Finally, you tried some exercises on deploying

a multi-node Kubernetes cluster for local development using kind and

setting up a Continuous Integration pipeline that validates, lints the

Newsbot source code, and then builds and publishes the Newsbot Docker

image to the Docker Hub automatically on every commit, using GitHub

Actions. With this, I hope you can apply the principles you learned in the

book and implement similar steps in your applications!

Figure 8-2.  GitHub Actions for the Newsbot lint and build

Chapter 8 Preparing for Production Deployments

235© Sathyajith Bhat 2022
S. Bhat, Practical Docker with Python, https://doi.org/10.1007/978-1-4842-7815-4

Index
A
Actions Workflow file, 201
ADD instruction, 76, 78
Adminer container, 144
Amazon Elastic Block Store

(EBS), 105
Amazon Elastic File Systems

(EFS), 105
Amazon Web Services (AWS), 105

B
Bind mounts, 25, 109–114
Borg, 211
Bridge networks, 134, 135

adminer container, 144
containers connection,

152–155
creation, 147–152
host network, 155, 156
Login with IP address, 147
MySQL container, 142, 145

Build context, 62, 63
Build key

context key, 176
depends_on key, 177

environment/env_file key, 176
image key, 176
ports key, 178
volumes key, 179, 180

BuildKit
building, Docker build, 66–69
build output, 64
DOCKER_BUILDKIT flag, 65
legacy Build Process, 65
tags, 69–71

build subcommand, 182

C
cgroups, 5
chroot, 4
Cloud providers, 105
CMD instruction, 82, 83, 85, 86
compose exec command, 182
Compose file format, 30, 169
Compose specification, 168, 171,

172, 174
Containers, 1, 4, 5, 7

behavior, 106
layer, 24
runtime, 7
volumes, 118–120

https://doi.org/10.1007/978-1-4842-7815-4#DOI

236

Containerization
cgroups, 5
chroot, 4
containers/virtual

machines, 5, 7
FreeBSD Jails, 4
LXC, 5
OpenVZ, 4

Container Runtime
Interface (CRI), 8

Context key, 176
Continuous delivery, 200
Continuous Integration (CI)

definition, 200
GitHub actions, 201–206
pipeline, 200
tools, 201

Control tier, 207
COPY instruction, 77

D
DaemonSet, 220
Data persistence, 105, 106
Default Docker network drivers

bridge network, 134, 135
host network, 135
Macvlan networks, 136
overlay networks, 136

Deployment, 217
Docker, 1, 9

API, 29
CLI, 27, 28

containers, 1, 24
problem understanding, 2, 3

Docker Compose, 29
basics, 168
build key, 175 (see Build key)
CLI reference, 182, 183
installation, 167, 168
Newsbot convertion to,

189–193, 195–197
overview, 165, 166
sample file, 172
services key, 175
version 1, 170
version 2, 170
version 3, 171

Docker daemon, 27
Docker engine

Docker API, 29
Docker CLI, 27, 28
Docker daemon, 27

Dockerfile, 23, 26
guidelines and

recommendations,
writing, 93, 94

Primer, 61–63
Docker Hub, 201
Dockerignore, 63
Docker images, 23, 32–37
Docker Machine, 30
Docker Networks

bridge networks (see Bridge
networks)

default bridge network, 139

INDEX

237

none network, 141
options, 138
subcommand for handling, 137

Docker Registry, 25
Docker Repository, 25
down command, 182

E
ENTRYPOINT instruction,

82, 83, 85, 86
ENV instruction, 86, 88
Environment key, 176
EXPOSE instruction, 89–91

F
FreeBSD Jails, 4
FreeBSD system, 4
FROM instruction, 71

G
Get-Content cmdlet, 40
GitHub Actions, 201–206

H
Hands-on Docker

Docker images, 32–37
docker info, 30
real-world Docker Image, 37–45

Hello world docker image, 95, 97
Host network, 135, 155, 156

I, J
Image key, 176
imagePullPolicy, 219
Installation Docker

on Linux, 19–22
on macOS, 18, 19
on Windows, 12–14
Windows Subsystem for

Linux, 15–18
Instructions, 23
Instructions, Dockerfile

ADD and COPY, 76–78
CMD and ENTRYPOINT, 81–86
ENV, 86, 88
EXPOSE, 89–91
FROM, 71
LABEL, 92
RUN, 79–81
VOLUME, 89
WORKDIR, 72–75

K
Kubelet, 212
kube-proxy, 213
Kubernetes, 9

cluster, 211
container orchestrator, 210
control plane, 211, 212
creation clusters,

kind, 214, 216
pods and deployments, 217, 219
running service, 216

INDEX

238

setting up, 213
use and the features, 211
worker plane, 212

L
LABEL instruction, 92
Labels, 219
Layer, 22
List volumes, 116
logs command, 183

M
Macvlan networks, 136
Multi-node clusters with

kind, 221, 222
Multi-stage builds, 94

N
Namespace key, 219
NBT_ACCESS_TOKEN, 56
Network Interface Card (NIC), 136
Newsbot

adding volumes, 127–131
bot, source code, 55
MYSQL container connection,

156–161, 163
Python script, 54
running, 56
scenarios, 54

sending messages, 57–60
setting up continuous

integration, 223, 225–233
writing dockerfile, 101–103

nginx config, 123
nginx Docker image, 121–123
Nginx, 37
None networking, 137

O
Open Container Initiative (OCI), 8
OpenVZ, 4
Orchestration

Compose Spec file, 208
deploy container, 208
implementations, 207
Kubernetes (see Kubernetes)
managed, 210
process, 206, 208
tiers, 207

Overlay networks, 136

P, Q
Platform As A Service (PaaS), 1
Pods, 217
Ports key, 178
Prune volumes, 116
Python app

Newsbot (see Newsbot)
Python Package

Index (PyPI), 201

Kubernetes (cont.)

INDEX

239

R
Replicas key, 219
Restart key, 181
RUN instruction, 79–81

S
Services key, 175
Software Defined Networking

(SDN), 134
Source code management

(SCM), 201
StatefulSet, 220
stop command, 183

T, U
Tag, 23
Telegram Messenger

BotFather
API documentation, 53
Bot creation, 51–54
options, 51

one-time password, 50
signup page, 49

tmpfs mounts, 108, 109
Typical Dockerfile, 62

V
Virtual machine (VM), 7, 15
Virtual private server (VPS), 4
VOLUME instruction, 89
Volumes, 25

container, 118–120
create, 115
inspect, 115
instruction in Dockerfiles, 121
list, 116
prune, 116
removes, 117
subcommands, 114

Volumes key, 179, 180

W, X, Y, Z
Windows Subsystem for Linux

(WSL), 15–18
WORKDIR instruction, 72–75
Worker tier, 207

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Containerization
	What Is Docker?
	Understanding Problems that Docker Solves

	Containerization Through the Years
	1979: chroot
	2000: FreeBSD Jails
	2005: OpenVZ
	2006: cgroups
	2008: LXC

	Containers and Virtual Machines
	Container Runtimes
	OCI and CRI

	Docker and Kubernetes
	Summary

	Chapter 2: Docker 101
	Installing Docker
	Installing Docker on Windows
	Installing Docker on Windows Using WSL2 Backend
	About WSL
	Requirements for Installing and Enabling WSL2

	Installing on macOS
	Installing on Linux
	Additional Steps

	Understanding Jargon Around Docker
	Layers
	Docker Image
	Docker Tags
	Docker Container
	Bind Mounts and Volumes
	Docker Repository
	Docker Registry
	Dockerfile
	Docker Engine
	Docker Daemon
	Docker CLI
	Docker API

	Docker Compose
	Docker Machine

	Hands-on Docker
	Working with Docker Images
	Working with a Real-World Docker Image

	Summary

	Chapter 3: Building the Python App
	About the Project
	Setting Up Telegram Messenger
	BotFather: Telegram’s Bot Creation Interface
	Creating the Bot with BotFather

	Newsbot: The Python App
	Getting Started with Newsbot
	Running Newsbot
	Sending Messages to Newsbot

	Summary

	Chapter 4: Understanding the Dockerfile
	Dockerfile Primer
	Build Context

	Dockerignore
	BuildKit
	Building Using Docker Build
	Tags

	Dockerfile Instructions
	FROM
	WORKDIR
	ADD and COPY
	RUN
	Layer Caching

	CMD and ENTRYPOINT
	ENV
	VOLUME
	EXPOSE
	LABEL

	Guidelines and Recommendations for Writing Dockerfiles
	Using Multi-Stage Builds
	Exercises
	Summary

	Chapter 5: Understanding Docker Volumes
	Data Persistence
	Example of Data Loss Within a Docker Container
	tmpfs Mounts
	Bind Mounts
	Docker Volumes
	Docker Volume Subcommands
	Volume Create
	Volume Inspect
	List Volumes
	Prune Volumes
	Remove Volumes

	Using Volumes When Starting a Container
	The VOLUME Instruction in Dockerfiles
	Exercises
	Summary

	Chapter 6: Understanding Docker Networks
	Why Do We Need Container Networking?
	Default Docker Network Drivers
	Bridge Networks
	Host Networks
	Overlay Networks
	Macvlan Networks
	None Networking

	Working with Docker Networks
	Bridge Networks
	Creating Named Bridge Networks
	Connecting Containers to Named Bridge Networks

	Host Networks

	Exercises
	Summary

	Chapter 7: Understanding Docker Compose
	Overview of Docker Compose
	Installing Docker Compose
	Docker Compose Basics
	Docker Compose Version Overview
	Compose File Versioning and the Compose Spec
	Version 1
	Version 2
	Version 3

	Compose Specification
	Docker Compose File Reference
	Services Key
	Build Key
	Context Key
	Image Key
	environment/env_file Key
	depends_on Key
	Image Key
	ports Key
	Volumes Key
	Restart Key

	Docker Compose CLI Reference
	The build Subcommand
	The down Subcommand
	The exec Subcommand
	The logs Subcommand
	The stop subcommand

	Exercises
	Summary

	Chapter 8: Preparing for Production Deployments
	Continuous Integration (CI)
	GitHub Actions

	Container Orchestration
	The Need for Orchestrators
	How Do Orchestrators Work?
	Popular Orchestrators
	Kubernetes
	Kubernetes Control Plane
	Kubernetes Worker Plane
	A Look at kind
	Creating Kubernetes Clusters Using kind
	Running a Sample Service in Kubernetes
	Pods and Deployments

	Exercises
	Summary

	Index

