
Pow
erful Python

Aaron Maxwell

Powerful
Python
Patterns and Strategies with Modern Python

ISBN: 978-1-098-17570-2
US $64.99	 CAN $81.99

PY THON / PROGR AMMING

Aaron Maxwell is a software
engineer and Pythonista. Through
a decade working in Silicon Valley
engineering teams, he gained
production experience in backend
engineering at scale, data science and
machine learning, test automation
infrastructure, DevOps and SRE,
cloud infrastructure, marketing
automation, and coding in a variety
of languages. He’s taught advanced
Python to over 10,000 technology
professionals worldwide.

How do you become proficient at writing complex, powerful
Python applications—without wasting time rehashing the
basics you already know or getting bogged down in features
that just don’t matter? In this unique book, author Aaron
Maxwell focuses on the Python first principles that act
to accelerate everything else: the 5% of programming
knowledge that makes the remaining 95% fall like dominos.

You’ll learn:

•	 Higher-order function abstractions to create powerful,
expressive code

•	 How to make all your Python code more robust and
scalable with generator design patterns

•	 Cognitive benefits of Pythonic comprehensions, how to
build more complex comprehension structures, and their
surprising link with generators

•	 Metaprogramming with decorators, for potent
abstractions and code reuse patterns that cannot be
captured any other way

•	 Python’s exception model for “out of band” signaling
of errors and other events

•	 Advanced object-oriented programming techniques
within Python’s object model

•	 How to leverage test-driven development to write better
software faster and get into “flow” coding states

•	 Effective module organization, basic and advanced Python
logging, and more

Powerful Python

“The concepts taught in Powerful Python are essential for anyone who takes
their Python skills seriously, and the relatable prose and clear examples
make it as simple as possible for the reader to learn those concepts.”

	 Rodrigo Girão Serrão
Author of mathspp.com

Aaron Maxwell

Powerful Python
Patterns and Strategies with Modern Python

978-1-098-17570-2

[LSI]

Powerful Python
by Aaron Maxwell

Copyright © 2025 MigrateUp LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Brian Guerin
Development Editor: Virginia Wilson
Production Editor: Aleeya Rahman
Copyeditor: Helena Stirling
Proofreader: Krsta Technology Solutions

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2024: First Edition

Revision History for the First Edition
2024-11-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098175702 for release details.

Powerful Python is a trademark of MigrateUp LLC. All rights reserved. The O’Reilly logo is a registered
trademark of O’Reilly Media, Inc. Powerful Python, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098175702

Table of Contents

Preface. vii

1. Scaling with Generators. 1
Iteration in Python 1
Generator Functions 4

Advancing next() 6
Converting to a Generator Function 7
Do You Need Generators? 8

Generator Patterns and Scalable Composability 9
Text Lines to Dicts 11
Composable Interfaces 12
Fanning Out 13
Fanning In 14

Python Is Filled with Iterators 16
The Iterator Protocol 17
Conclusion 21

2. Creating Collections with Comprehensions. 23
List Comprehensions 24
Formatting for Readability (and More) 26
Multiple Sources and Filters 27

Independent Clauses 28
Multiple Filters 29

Comprehensions and Generators 31
Dictionaries, Sets, and Tuples 34
Conclusion 36

iii

3. Advanced Functions. 37
Accepting and Passing Variable Arguments 37

Argument Unpacking 39
Variable Keyword Arguments 40
Keyword Unpacking 41
Combining Positional and Keyword Arguments 42

Functions as Objects 43
Key Functions in Python 47
Conclusion 49

4. Decorators. 51
The Basic Decorator 52

Generic Decorators 54
Decorating Methods 55

Data in Decorators 57
Accessing Inner Data 60
Nonlocal Decorator State 61

Decorators That Take Arguments 64
Class-Based Decorators 67

Implementing Class-Based Decorators 67
Benefits of Class-Based Decorators 69

Decorators for Classes 71
Conclusion 73

5. Exceptions and Errors. 75
The Basic Idea 75

Handling Exceptions 76
Exceptions for Flow Control 77
Finally Blocks 79
Dictionary Exceptions 81

Exceptions Are Objects 82
Raising Exceptions 84
Catching and Re-Raising 86
The Most Diabolical Python Antipattern 88
Conclusion 92

6. Classes and Objects: Beyond the Basics. 93
Properties 93

Property Patterns 96
Validation 96
Properties and Refactoring 98

iv | Table of Contents

The Factory Patterns 100
Alternative Constructors: The Simple Factory 100
Dynamic Type: The Factory Method Pattern 104

The Observer Pattern 106
The Simple Observer 107
A Pythonic Refinement 108
Several Channels 112

Magic Methods 114
Rebelliously Misusing Magic Methods 119
Conclusion 121

7. Automated Testing. 123
What Is Test-Driven Development? 124
Unit Tests and Simple Assertions 125
Fixtures and Common Test Setup 130
Asserting Exceptions 132
Using Subtests 133
Conclusion 136

8. Module Organization. 139
Spawning a Module 139
Creating Separate Libraries 143
Multifile Modules 145
Import Syntax and Version Control 148
Nested Submodule Structure 150
Antipattern Warning 152
Import Side Effects 155
Conclusion 158

9. Logging in Python. 159
The Basic Interface 159

Log Levels 160
Why Do We Have Log Levels? 161

Configuring the Basic Interface 162
Passing Arguments 165
Beyond Basic: Loggers 166
Log Destinations: Handlers and Streams 167
Logging to Multiple Destinations 170
Record Layout with Formatters 172
Conclusion 173

Table of Contents | v

Parting Words. 175

Index. 177

vi | Table of Contents

Preface

Python has become the lingua franca of modern computing. The thesis of this book is
that Python is the most important programming language in the world today…with
outsized rewards for those who master it. This book is designed to teach you tech‐
niques, patterns, and tools to permanently catapult your skill with everything Python
has to offer.

If you write Python code at least part of the time, this book will vastly amplify what
you can accomplish and increase the speed at which you do it. And slash the amount
of time you spend debugging, too.

Who This Book Is For
This book is for you if you know the basics of Python and have mastered just about
everything the beginner tutorials can teach you. It is also for those who want to learn
more advanced techniques and strategies, so you can do more with Python, and more
with coding, than you could before.

This book is not for people who want just enough Python to get by. Like I said,
Python is important, and rewards those who master it.

And this book is not for the unambitious. In writing, I assume you want to build a
career you are proud of, doing work with a high positive impact.

Further, this book is not for the mentally rigid. The difference between elite engineers
and “normal” coders lies in the distinctions they make, the mental models they lever‐
age, and their ability to perceive what others cannot.

The Two Levels of Learning
It is not enough to gather knowledge. What you really want is to develop new capabil‐
ities. Hence, this book recognizes two levels of learning.

vii

The first is the information level. This is the level of learning where you read some‐
thing, or I tell you something, and you memorize it. This puts facts, opinions, and
other information in your mind that you can recall later; parrot back to me; and use
in logical reasoning.

Which is great. We certainly need this, as a foundation.

But there is a deeper level of learning, called the ability level. The ability to do things
you could not do before, when you are writing code.

Both are important. But the ability level is what truly matters.

You see, the information level can be deceptive. It makes you feel like you understand
something. But then you go to write code using it, staring at a blank editor…and you
find yourself stuck. “Wait a second. How do I actually use this?”

Know that feeling? Of course you do. Every coder does.

That feeling means you have learned at the information level, but not yet at the ability
level. Because when you do, what you need just comes out of you, as naturally as
thought itself.

For the most part, reading a book or watching a video can only teach you at the infor‐
mation level. But this book aims to break that trend in several ways.

Our Strategy in This Book
Modern Problem #1: You have too much to learn.

Modern Problem #2: Society has evolved to reduce your time and energy for deep
focused learning, due to changes in technology and culture.

This seems like a recipe for misery. But there is a way out: what are called first
principles.

In any field of human activity—including Python coding—there are foundational
concepts which everything builds on. These include powerful distinctions, abstrac‐
tions, and mental models. When you learn what these first principles are and how to
work with them, you find yourself cutting through the noise and getting ahead much
more easily.

These first principles are accelerators, in that they give you the tools, inner resources,
and capabilities to solve many problems. It effectively creates a “95/5” rule: there is a
5% you can focus on learning, which makes the remaining 95% fall like dominos.

That 5% is what we mean by the first principles of Python. Which is what this book is
really about.

viii | Preface

Hence, this book is selective in what it covers. It is not a comprehensive “one stop
shop” for everything Python. Further, this book contains practical guidance based on
lessons learned when writing real-world software—often as part of a team of
engineers.

So factors like maintainability, robustness, and readability are considered more
important than anything else. There is a balance between leveraging powerful
abstractions, and writing code that is easy to work with by everyone on your team.
This book aims to walk that line.

Throughout, I give much attention to cognitive aspects of software development. How
do you write code that you and others can reason about easily, quickly, and accu‐
rately? This is one reason variable and function naming is important. But it goes far
beyond that syntax level… to intelligently choosing which language features and
library resources to use, and which to avoid.

This book is not large, as measured by number of pages. That’s a feature, not a bug:
you already have too much to read. The focus is on what’s most valuable, so that—as
much as possible—everything you learn will serve you for years.

Convention for Callables
This book employs a writing convention that purists will find controversial. In prose,
when referring to the names of identifiers, I use a monospace format. So the variable
“x” will be x, the class named “Point” will be Point, and so on.

The impurity: when referring to a function or method, I will append a pair of paren‐
theses to the identifier name. So the function called “compute” is referred to as com
pute(), not compute. I do this even when the function must be called with arguments;
that "()" is essentially an annotation, declaring that this identifier is callable. In my
experience teaching and writing about advanced Python, this improves reading com‐
prehension, so I maintain this convention throughout this book.

What’s Not Covered
Here are some topics I have chosen to omit:

• I barely mention anything outside the standard library. We have plenty to cover
just for Python and its included batteries.

• Type annotations. As we go to press, the dust is still settling on this rich feature.
And as dear as it is to some, it is far from universally used.

• Dataclasses. There are endless tutorials on this tool, and Chapter 6, “Classes and
Objects: Beyond the Basics” is already the largest in the book.

Preface | ix

• Concurrency. The fact is, most Python is written as single-threaded programs.
And doing justice to threading, multiprocessing, and asyncio could double the
page count.

• Anything depending on specific Python versions. Fortunately, the Python pat‐
terns and strategies that work best are surprisingly independent of version. It is
these slow changing yet powerful principles we focus on.

• Less commonly used features such as keyword-only and positional-only argu‐
ments, conditional (ternary) expressions, pattern matching, and so on. Not to say
they are not useful; but better for them to be covered elsewhere.

• And other topics people like, I am sure.

What is present covers the important keys of Python, many of which are not new, but
are criminally underused and misunderstood, and will be highly valuable for all
Pythonistas.

If you simply cannot bear the injustice of this book not covering your favorite Python
topic, I can only refer you to what the French poet Paul Valéry said. Which—trans‐
lated, paraphrased, and shortened—boils down to: “A work of art is never completed,
only abandoned.”

Such is this book, which I have invested nearly a full decade of my life producing for
you. At some point, if it is to be of value to anyone at all, I must ship this thing.

Getting the Most Out of This Book
It is ultimately up to you to transform the information in this book into ability-level
learning. And you do that by putting what you read into practice.

To help, I have created coding exercises for every chapter, plus other fun resources—
exclusively for readers of this book. To get these along with email notifications of
future book releases, go to https://powerfulpython.com/register and follow the
instructions.

For professional training options, go to https://powerfulpython.com and browse the
resources there. If you have feedback on this book; corrections; or suggestions for the
future, send them to aaron@powerfulpython.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

x | Preface

https://powerfulpython.com/register
https://powerfulpython.com
mailto:aaron@powerfulpython.com

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Powerful Python by
Aaron Maxwell (O’Reilly). Copyright 2025 MigrateUp LLC., 978-1-098-17570-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Preface | xi

mailto:permissions@oreilly.com
https://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/powerful_python.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
This book was nearly a decade in the making. And I have many to thank.

First, I want to thank the thousands of readers of the earlier, self-published editions of
this book—including the hundreds of professional students in Powerful Python Boot‐
camp. Your many excellent questions and comments—and pointing out bugs!—
helped me continually improve the book from day one.

Speaking of which, the O’Reilly team is stellar. If you are an author considering pub‐
lishing with this amazing group of people, I cannot recommend them enough. I
specifically want to thank my development editor, Virginia Wilson; my production
editor, Aleeya Rahman; Sarah Grey and Helena Stirling, who together caught more
errors than I thought possible; Brian Guerin, for ensuring the project got started in
the first place; Yasmina Greco, for wrangling the live O’Reilly training sessions that
formed fertile ground for researching this book; and others I am unfairly not men‐
tioning, or who worked behind the scenes.

xii | Preface

https://oreilly.com
mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/powerful_python
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

But the greatest heroes are the technical reviewers. I want to thank Peter Norvig,
whose deep feedback on the final self-published version stratospherically elevated this
O’Reilly edition; Rodrigo Girão Serrão, whose exceptional expertise in the Python
language prevented what would have been many terrible errors; Jess Males, who saved
you all from a number of confusingly worded passages and pointed out how to make
them comprehensible; and Han Qi, whose formidably sharp mind made it nearly
impossible for any bug to escape detection. To all of you, I cannot express enough my
gratitude for your help in creating this wonderful book, and making it the best it can
be.

Preface | xiii

CHAPTER 1

Scaling with Generators

This for loop seems simple:

for item in items:
 do_something_with(item)

And yet, miracles hide here. As you probably know, going through a collection one
element at a time is called iteration. Few understand how Python’s iteration system
really works and appreciate how deep and well-thought-out it is. This chapter makes
you one of those people. You gain the ability to write highly scalable Python applica‐
tions, which can handle ever-larger data sets in performant, memory-efficient ways.

Iteration is also core to one of Python’s most powerful tools: the generator function.
Generator functions are not just a convenient way to create useful iterators. They
enable some exquisite patterns of code organization, in a way that—by their very
nature—intrinsically encourage excellent coding habits.

This chapter is special, because understanding it threatens to make you a perma‐
nently better programmer in every language. Mastering Python generators tends to do
that, because of the distinctions and insights you gain along the way. Let’s dive in.

Iteration in Python
Python has a built-in function called iter(). When you pass it a collection, you get
back an iterator object:

>>> numbers = [7, 4, 11, 3]
>>> iter(numbers)
<list_iterator object at 0x10219dc50>

An iterator is an object producing the values in a sequence, one at a time:

1

>>> numbers_iter = iter(numbers)
>>> for num in numbers_iter:
... print(num)
7
4
11
3

You don’t normally need to use iter(). If you instead write for num in numbers,
what Python effectively does under the hood is call iter() on that collection. This
happens automatically. Whatever object it gets back is used as the iterator for that for
loop:

This...
for num in numbers:
 print(num)

... is effectively just like this:
numbers_iter = iter(numbers)
for num in numbers_iter:
 print(num)

An iterator over a collection is a separate object, with its own identity—which you
can verify with id():

>>> # id() returns a unique number for each object.
... # Different objects will always have different IDs.
>>> id(numbers)
4330133896
>>> id(numbers_iter)
4330216640

How does iter() actually get the iterator? It can do this in several ways, but one
relies on a magic method called __iter__(). This is a method any class (including
yours) may define, and it is called with no arguments. Each time, it produces a fresh
new iterator object object. Lists have this method, for example:

>>> numbers.__iter__
<method-wrapper '__iter__' of list object at 0x10130e4c8>
>>> numbers.__iter__()
<list_iterator object at 0x1013180f0>

Python makes a distinction between objects which are iterators, and objects which are
iterable. We say an object is iterable if and only if you can pass it to iter() and get
back a ready-to-use iterator. If that object has an __iter__() method, iter() will call
it to get the iterator. Python lists and tuples are iterable. So are strings, which is why
you can write for char in my_str: to iterate over my_str ’s characters. Any con‐
tainer you might use in a for loop is iterable.

A for loop is the most common way to step through a sequence. But sometimes your
code needs to step through in a finer-grained way. For this, use the built-in function

2 | Chapter 1: Scaling with Generators

next(). You normally call it with a single argument, which is an iterator. Each time
you call it, next(my_iterator) fetches and returns the next element:

>>> names = ["Tom", "Shelly", "Garth"]
>>> # Create a fresh iterator...
>>> names_it = iter(names)
>>> next(names_it)
'Tom'
>>> next(names_it)
'Shelly'
>>> next(names_it)
'Garth'

What happens if you call next(names_it) again? next() will raise a special built-in
exception, called StopIteration:

>>> next(names_it)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

Raising this specific exception is how an iterator signals that the sequence is done.
You rarely have to raise or catch this exception yourself, though we’ll see some pat‐
terns later where it is useful to do so. A good mental model for how a for loop works
is to imagine it calling next() each time through the loop, exiting when
StopIteration gets raised.

When using next() yourself, you can provide a second argument, for the default
value. If you do, next() will return that instead of raising StopIteration at the end:

>>> names = ["Tom", "Shelly", "Garth"]
>>> new_names_it = iter(names)
>>> next(new_names_it, "Rick")
'Tom'
>>> next(new_names_it, "Rick")
'Shelly'
>>> next(new_names_it, "Rick")
'Garth'
>>> next(new_names_it, "Rick")
'Rick'
>>> next(new_names_it)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>> next(new_names_it, "Jane")
'Jane'

Consider a different situation. What if you aren’t working with a simple sequence of
numbers? What if you are calculating or reading or otherwise obtaining the sequence
elements as you go along?

Iteration in Python | 3

Let’s start with a simple example. Suppose you need to write a function creating a list
of square numbers which will be processed by other code:

def fetch_squares(max_root):
 squares = []
 for n in range(max_root):
 squares.append(n**2)
 return squares

MAX = 5
for square in fetch_squares(MAX):
 do_something_with(square)

This works. But there are potential problems lurking here. Can you spot any?

Here’s one: what if MAX is not 5, but 10,000,000? Or 10,000,000,000? Or more? Your
memory footprint will be pointlessly dreadful: the code here creates a massive list,
uses it once, then throws it away. On top of that, the consuming for loop cannot even
start until the entire list of squares has been fully calculated. If some poor human is
using this program, they’ll wonder if it got stuck.

Even worse: What if you are not doing arithmetic to get each element—which is fast
and cheap—but making a truly expensive calculation? Or making an API call over the
network? Or reading from a database? Your program will be sluggish, perhaps unre‐
sponsive, and might even crash with an out-of-memory error. Its users will think
you’re a terrible programmer.

The solution is to create an iterator to start with, lazily computing each value only
when needed. Then each cycle through the loop happens just in time.

So how do you do that? It turns out there are several ways. But the best way is called a
generator function. And you’re going to love it!

Generator Functions
Python provides a tool called the generator function, which…well, it’s hard to describe
everything it gives you in one sentence. Of its many talents, I’ll first focus on how it is
a very useful shortcut for creating iterators.

A generator function looks a lot like a regular function. But instead of saying return,
it uses a new and different keyword: yield. Here’s a simple example:

def gen_nums():
 n = 0
 while n < 4:
 yield n
 n += 1

4 | Chapter 1: Scaling with Generators

Use it in a for loop like this:

>>> for num in gen_nums():
... print(num)
0
1
2
3

Let’s go through and understand this. When you call gen_nums() like a function, it
immediately returns a generator object:

>>> sequence = gen_nums()
>>> type(sequence)
<class 'generator'>

The generator function is gen_nums()—what we define and then call. A function is a
generator function if and only if it uses “yield” instead of “return”. The generator
object is what that generator function returns when called—sequence, in this case.

Memorize This Fact

A generator function will always return a generator object. It can
never return anything else.

This generator object is an iterator, which means you can iterate through it using
next() or a for loop:

>>> sequence = gen_nums()
>>> next(sequence)
0
>>> next(sequence)
1
>>> next(sequence)
2
>>> next(sequence)
3
>>> next(sequence)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

>>> # Or in a for loop:
... for num in gen_nums():
... print(num)
0
1
2
3

Generator Functions | 5

The flow of code works like this: when next() is called the first time, or the for loop
first starts, the body of gen_nums() starts executing at the beginning, returning the
value to the right of the yield.

Advancing next()
So far, this is much like a regular function. But the next time next() is called—or,
equivalently, the next time through the for loop—the function does not start at the
beginning again. It starts on the line after the yield statement. Look at the source of
gen_nums() again:

def gen_nums():
 n = 0
 while n < 4:
 yield n
 n += 1

gen_nums() is more general than a function or subroutine. It is actually a coroutine.
You see, a regular function can have several exit points (otherwise known as return
statements). But it has only one entry point: each time you call a function, it always
starts on the first line of the function body.

A coroutine is like a function, except it has several possible entry points. It starts with
the first line, like a normal function. But when it “returns”, the coroutine is not exit‐
ing, so much as pausing. Subsequent calls with next()—or equivalently, the next time
through the for loop—start at that yield statement again, right where it left off; the
reentry point is the line after the yield statement.

And that’s the key: Each yield statement simultaneously defines an exit point, AND a
reentry point.

For generator objects, each time a new value is requested, the flow of control picks up
on the line after the yield statement. In this case, the next line increments the vari‐
able n, then continues with the while loop.

Notice we do not raise StopIteration anywhere in the body of gen_nums(). When
the function body finally exits—after it exits the while loop, in this case—the genera‐
tor object automatically raises StopIteration.

Again: each yield statement simultaneously defines an exit point and a reentry point.
In fact, you can have multiple yield statements in a generator:

def gen_extra_nums():
 n = 0
 while n < 4:
 yield n
 n += 1
 yield 42 # Second yield

6 | Chapter 1: Scaling with Generators

Here’s the output you will get when you use it:

>>> for num in gen_extra_nums():
... print(num)
0
1
2
3
42

The second yield is reached after the while loop exits. When the function reaches
the implicit return at the end, the iteration stops. Reason through the code above, and
convince yourself it makes sense.

Converting to a Generator Function
Let’s revisit the earlier example of cycling through a sequence of squares. This is how
we first did it:

def fetch_squares(max_root):
 squares = []
 for num in range(max_root):
 squares.append(num**2)
 return squares

MAX = 5
for square in fetch_squares(MAX):
 do_something_with(square)

As an exercise, pause here, open up a new Python file, and see if you can write a
gen_squares() generator function that accomplishes the same thing.

Done? Great. Here’s what it looks like:

def gen_squares(max_root):
 for num in range(max_root):
 yield num ** 2

>>> MAX = 5
>>> for square in gen_squares(MAX):
... print(square)
0
1
4
9
16

Notice something important. gen_squares() includes the built-in range() function.
This returns an iterable object. That is important.

Because imagine range() returned a list. If that’s the case, and MAX is huge, that cre‐
ates a huge list inside your generator function, completely destroying its scalability.

Generator Functions | 7

The larger point: Generator functions are only as scalable as their least scalable line of
code. Generator functions potentially have a small memory footprint. But only if you
code them intelligently. When writing generator functions, watch out for hidden bot‐
tlenecks like this.

Do You Need Generators?
Strictly speaking, we don’t need generator functions for iteration. We just want them,
because they make useful patterns of scalability far easier.

For example: can you create an iterator without writing a generator function? Yes,
you can. For creating a list of square numbers, you can do it like this:

class SquaresIterator:
 def __init__(self, max_root_value):
 self.max_root_value = max_root_value
 self.current_root_value = 0
 def __iter__(self):
 return self
 def __next__(self):
 if self.current_root_value >= self.max_root_value:
 raise StopIteration
 square_value = self.current_root_value ** 2
 self.current_root_value += 1
 return square_value

You can use it like this:
for square in SquaresIterator(5):
 print(square)

Each value is obtained by invoking its __next__() method, until it raises
StopIteration. This produces the same output; but take a look at the source for the
SquaresIterator class and compare it to the source for the generator above. Which
is easier to read? Which is easier to maintain? And when requirements change, which
is easier to modify without introducing errors? Most people find the generator solu‐
tion easier and more natural.

 Authors often use the word "generator" by itself,
to mean either the generator function, _or_ the generator object
returned when you call it. Typically the writer thinks the intended
meaning is obvious from the context. Sometimes it is, but often
not. Sometimes the writer is not fully clear on the distinction to
begin with. But it is an important distinction to get. Just as there
is a big difference between a function and the value it returns when
you call it, so is there a big difference between the generator
function and the generator object it returns.

In your own thought and speech, I encourage you to only use the phrases “generator
function” and “generator object”, so you are always clear inside yourself, and in your
communication. (This also helps your teammates be more clear.) The only exception:

8 | Chapter 1: Scaling with Generators

when you truly mean “generator functions and objects”, referring to the language fea‐
ture as a broad concept, then it’s okay to just say “generators”. I’ll lead by example in
this book.

Generator Patterns and Scalable Composability
Here’s a little generator function:

def matching_lines_from_file(path, pattern):
 with open(path) as handle:
 for line in handle:
 if pattern in line:
 yield line.rstrip('\n')

This function, matching_lines_from_file(), demonstrates several important practi‐
ces for modern Python, and is worth studying. It does simple substring matching on
lines of a text file, yielding lines containing that substring.

The first line opens a read-only file object, called handle. If you haven’t been opening
your file objects using with statements, start today. The main benefit is that once the
with block is exited, the file object is automatically closed—even if an exception
causes a premature exit. It’s similar to:

try:
 handle = open(path)
 # read from handle
finally:
 handle.close()

(The try/finally is explained in Chapter 5.) Next we have for line in handle.
This useful idiom—which not many people seem to know about—works in a particu‐
lar way for text files. With each iteration through the for loop, a new line of text will
be read from the underlying text file, and placed in the line variable.

Sometimes people foolishly take another approach, which I have to warn you about:

Don't do this!!
for line in handle.readlines():

The readlines() (plural) method reads in the entire file, parses it into lines, and
returns a list of strings—one string per line. By now, you realize how this can destroy
scalability.

It bears repeating: a generator function is only as scalable as its least scalable line. So
code carefully, lest you create some memory bottleneck that renders the generator
function pointless.

Another approach you will sometimes see, which is scalable, is to use the file
object’s .readline() method (singular), which manually returns lines one at a time:

Generator Patterns and Scalable Composability | 9

.readline() reads and returns a single line of text,
or returns the empty string at end-of-file.
line = handle.readline()
while line != '':
 # do something with line
 # ...
 # At the end of the loop, read the next line.
 line = handle.readline()

But simply writing for line in handle is clearer and easier.

Assignment Expressions
A better way to use .readline() is with an assignment expression:

while (line := handle.readline()) != '':
 # do something with line
 # ...
 # No need to call .readline() again here.

An assignment statement, like x = y + 1, does not itself have a value. In other words,
you cannot write code like if (x = y + 1) > 2: in Python. This was a deliberate
choice in the language design, to make bugs like accidentally using = instead of ==
impossible.

But sometimes it is useful to assign a value, and use that value on the same line. This
while loop is a prime example. That is why Python added the := operator.

By using :=, we only have to write line := handle.readline() once instead of line
= handle.readline() twice. This is not just syntactic convenience; it can often elimi‐
nate repetitive code, as demonstrated here, and in some cases even lets us avoid dupli‐
cate computations.

This is properly called an assignment expression, but many call it the “walrus opera‐
tor”, because it kind of looks like a walrus if you squint and turn your head just right.

After that, it’s straightforward: matching lines have any trailing \n-character stripped,
and are yielded to the consumer. When writing generator functions, ask yourself:
“What is the maximum memory footprint of this function, and how can I minimize
it?” You can think of scalability as inversely proportional to this footprint. For
matching_lines_from_file(), it will be about equal to the size of the longest line in
the text file. So it is appropriate for the typical human-readable text file, whose lines
are small.

(It’s also possible to point it to, say, a ten-terabyte text file consisting of exactly one
line. If you expect something like that, you’ll need a different approach.)

10 | Chapter 1: Scaling with Generators

Text Lines to Dicts
Now, suppose a log file contains lines like these:

WARNING: Disk usage exceeding 85%
DEBUG: User 'tinytim' upgraded to Pro version
INFO: Sent email campaign, completed normally
WARNING: Almost out of beer

Say you exercise matching_lines_from_file() like so:

for line in matching_lines_from_file("log.txt", "WARNING:"):
 print(line)

That yields these records:

WARNING: Disk usage exceeding 85%
WARNING: Almost out of beer

Suppose your application needs that data in dict form:

{"level": "WARNING", "message": "Disk usage exceeding 85%"}
{"level": "DEBUG", "message":
 "User 'tinytim' upgraded to Pro version"}

We want to scalably transform the records from one form to another—from strings
(lines of the log file) to Python dicts. So let’s make a new generator function to con‐
nect them:

def parse_log_records(lines):
 for line in lines:
 level, message = line.split(": ", 1)
 yield {"level": level, "message": message}

Now we can connect the two:

log_lines is a generator object
log_lines = matching_lines_from_file("log.txt", "WARNING:")
for record in parse_log_records(log_lines):
 # record is a dict
 print(record)

Of course, parse_log_records() can be used on its own:

with open("log.txt") as handle:
 for record in parse_log_records(handle):
 print(record)

matching_lines_from_file() and parse_log_records() are like building blocks.
Properly designed, they can be used to build different data processing streams. I call
this scalable composability. It goes beyond designing composable functions and types.
Ask yourself how you can make the components scalable, and whatever is assembled
out of them scalable too.

Generator Patterns and Scalable Composability | 11

1 Remember: every generator object is an iterator. But not ever iterator is a generator object.

Composable Interfaces
Let’s discuss a particular design point. Both matching_lines_from_file() and
parse_log_records() produce an iterator. (Or, more specifically, a generator
object.)1 But they have a discrepancy on the input side: parse_log_records() accepts
an iterator, but matching_lines_from_file() requires a path to a file to read from.
This means matching_lines_from_file() combines two functions: reading lines of
text from a file, then filtering those lines based on some criteria.

Combining functions like this is often what you want in realistic code. But when
designing components to flexibly compose together, inconsistent interfaces like this
can be limiting. Let’s break up the services in matching_lines_from_file() into two
generator functions:

def lines_from_file(path):
 with open(path) as handle:
 for line in handle:
 yield line.rstrip('\n')

def matching_lines(lines, pattern):
 for line in lines:
 if pattern in line:
 yield line

You can compose these like so:

lines = lines_from_file("log.txt")
matching = matching_lines(lines, 'WARNING:')
for line in matching:
 print(line)

Or even redefine matching_lines_from_file() in terms of them:

def matching_lines_from_file(pattern, path):
 lines = lines_from_file(path)
 matching = matching_lines(lines, pattern)
 for line in matching:
 yield line

Conceptually, this factored-out matching_lines does a filtering operation; all lines
are read in, and a subset of them are yielded. parse_log_records() is different. One
input record (a str line) maps to exactly one output record (a dict). Mathematically,
it’s a mapping operation. Think of it as a transformer or adapter. lines_from_file()
is in a third category; instead of taking a stream as input, it takes a completely differ‐
ent parameter. Since it still returns an iterator of records, think of it as a source. And a

12 | Chapter 1: Scaling with Generators

2 From “Summer Rain” by Amy Lowell, https://www.poets.org/poetsorg/poem/summer-rain

3 line.split() returns a list of word strings. A lower-memory-footprint approach would be to create an itera‐
tor producing one word at a time.

real program will eventually want to do something with that stream, consuming it
without producing another iterator; call that a sink.

You need all these pieces to make a working program. When designing a chainable
set of generator functions like this—think of it as a toolkit for constructing internal
data pipelines—ask yourself whether each component is a sink or a source; whether it
does filtering or mapping; or whether it’s some combination of these. Just asking
yourself this question leads to a more usable, readable, and maintainable codebase.
And if you’re making a library which others will use, you’re more likely to end up
with a toolkit so powerfully flexible, people will use it to build programs you never
imagined.

Fanning Out
I want you to notice something about parse_log_records(). As I said, it fits in the
“mapping” category. And notice its mapping is one input (line of text) to one output
(dictionary). In other words, each record in the input (a str) becomes exactly one
record in the output (a dict).

That isn’t always the case. Sometimes, your generator function needs to consume sev‐
eral input records to create one output record. Or the opposite: one input record
yields several output records.

Here’s an example of the latter. Imagine a text file containing lines in a poem:2

all night our room was outer-walled with rain
drops fell and flattened on the tin roof
and rang like little disks of metal

Let’s create a generator function, words_in_text(), producing the words one at a
time. Here is a first approach:

lines is an iterator of text file lines,
e.g. returned by lines_from_file()
def words_in_text(lines):
 for line in lines:
 for word in line.split():
 yield word

This generator function3 takes a fan out approach. No input records are dropped,
which means it doesn’t do any filtering; it’s still purely in the “mapping” category of
generator functions. But the mapping isn’t one-to-one. Rather, one input record pro‐
duces one or more output records. Run the following code:

Generator Patterns and Scalable Composability | 13

https://www.poets.org/poetsorg/poem/summer-rain

poem_lines = lines_from_file("poem.txt")
poem_words = words_in_text(poem_lines)
for word in poem_words:
 print(word)

It will produce this output:

all
night
our
room
was
outer-walled
...

That first input record—“all night our room was outer-walled with rain”—yields eight
words (output records). Ignoring any blank lines in the poem, every line of prose will
produce at least one word—probably several.

Fanning In
The idea of fanning out is interesting, but simple enough. It’s more complex when we
go the opposite direction: fanning in. That means the generator function consumes
more than one input record to produce each output record. Doing this successfully
requires awareness of the input’s structure, and you’ll typically need to encode some
simple parsing logic.

Imagine a text file containing residential house sales data. Each record is a set of key-
value pairs, one pair per line, with records separated by blank lines:

address: 1423 99th Ave
square_feet: 1705
price_usd: 340210

address: 24257 Pueblo Dr
square_feet: 2305
price_usd: 170210

address: 127 Cochran
square_feet: 2068
price_usd: 320500

To read this data into a form usable in our code, what we want is a generator function
—let’s name it house_records()—which accepts a sequence of strings (lines) and
parses them into convenient dictionaries:

>>> lines_of_house_data = lines_from_file("housedata.txt")
>>> houses = house_records(lines_of_house_data)
>>> # Fetch the first record.
... house = next(houses)
>>> house['address']
'1423 99th Ave'

14 | Chapter 1: Scaling with Generators

>>> house = next(houses)
>>> house['address']
'24257 Pueblo Dr'

How would you create this? If practical, try it: pause here, open up a code editor, and
see if you can implement it.

Okay, time’s up. Here is one approach:

def house_records(lines):
 record = {}
 for line in lines:
 if line == '':
 yield record
 record = {}
 continue
 key, value = line.split(': ', 1)
 record[key] = value
 yield record

Notice where the yield keywords appear. The last line of the for loop reads individ‐
ual key-value pairs. An empty record dictionary is populated with data until lines
produces an empty line. That signals the current record is complete, so it’s yield-ed,
and a new record dictionary created. The end of the very last record in house
data.txt is signaled not by an empty line, but by the end of the file; that’s why we
need the final yield statement.

As defined, house_records() is a bit clunky if we’re normally reading from a text file.
It makes sense to define a new generator function accepting just the path to the file:

def house_records_from_file(path):
 lines = lines_from_file(path)
 for house in house_records(lines):
 yield house

Then in your program:
for house in house_records_from_file("housedata.txt"):
 print(house["address"])

You may have noticed many of these examples have a bit of boilerplate
when one generator function internally calls another. The last two lines of
house_records_from_file say:

 for house in house_records(lines):
 yield house

Python provides a shortcut to accomplish this in one line, with the yield from
statement:

def house_records_from_file(path):
 lines = lines_from_file(path)
 yield from house_records(lines)

Generator Patterns and Scalable Composability | 15

Even though “yield from” is two words, semantically it’s a single keyword, distinct
from yield. The yield from statement is used specifically in generator functions,
when they yield values directly from another generator object (or, equivalently, by
calling another generator function). Using it often simplifies your code, as you see in
house_records_from_file().

Going back a bit, here’s how it works with matching_lines_from_file():

def matching_lines_from_file(pattern, path):
 lines = lines_from_file(path)
 yield from matching_lines(lines, pattern)

The formal name for what yield from does is “delegating to a subgenerator”, which
instills a deeper connection between the containing and inner generator objects. In
particular, generator objects have certain methods—send(), throw(), and close()—
for passing information back into the context of the running generator function. I
won’t cover them here, as they are currently not widely used; you can learn
more by reading PEPs 342 and 380. If you do use them, yield from becomes neces‐
sary to enable the flow of information back into the scope of the running coroutine.

Python Is Filled with Iterators
Iteration has snuck into many places in Python. The built-in range() returns an
iterable:

>>> seq = range(3)
>>> type(seq)
<class 'range'>
>>> for n in seq: print(n)
0
1
2

The built-in map, filter, zip, and enumerate functions all return iterators:

>>> numbers = [1, 2, 3]
>>> big_numbers = [100, 200, 300]
>>> def double(n):
... return 2 * n
>>> def is_even(n):
... return n % 2 == 0
>>> mapped = map(double, numbers)
>>> mapped
<map object at 0x1013ac518>
>>> for num in mapped: print(num)
2
4
6

16 | Chapter 1: Scaling with Generators

https://peps.python.org/pep-0342
https://www.python.org/dev/peps/pep-0380

>>> filtered = filter(is_even, numbers)
>>> filtered
<filter object at 0x1013ac668>
>>> for num in filtered: print(num)
2

>>> zipped = zip(numbers, big_numbers)
>>> zipped
<zip object at 0x1013a9608>
>>> for pair in zipped: print(pair)
(1, 100)
(2, 200)
(3, 300)

Notice that mapped is something called a “map object”, rather than a list of the results
of the calculation; filtered and zipped are similar. These are all iterators—giving
you all the benefits of iteration, built into the language.

The Iterator Protocol
This optional section explains Python’s iterator protocol in formal detail, giving you a
precise and low-level understanding of how generators, iterators, and iterables all
work. For the day-to-day coding of most programmers, it’s not nearly as important as
everything else in this chapter. That said, you need this information to implement
custom iterable collection types. Personally, I also find knowing the protocol helps
me reason through iteration-related issues and edge cases; by knowing these details,
I’m able to quickly troubleshoot and fix certain bugs that might otherwise eat up my
afternoon.

If this all sounds valuable to you, keep reading; otherwise, feel free to skip to the next
chapter. You can always come back to read it later.

As mentioned, Python makes a distinction between iterators, versus objects that are
iterable. The difference is subtle to begin with, and frankly it doesn’t help that the two
words sound nearly identical. Keep clear in your mind that iterator and iterable are
distinct but related concepts, and the following will be easier to understand.

Informally, an iterator is something you can pass to next(), or use exactly once in a
for loop. More formally, an object in Python is an iterator if it follows the iterator
protocol. And an object follows the iterator protocol if it meets the following criteria:

• It defines a method named __next__(), called with no arguments.
• Each time __next__() is called, it produces the next item in the sequence.
• Until all items have been produced. Then, subsequent calls to __next__() raise
StopIteration.

The Iterator Protocol | 17

4 This is a subset of what is called the sequence protocol. A Python object conforms to the sequence protocol if it
defines __getitem__(), and also __len__(), which returns the length of the sequence. But iter() is smart
enough to work even if only the __getitem__() method is defined.

• It also defines a boilerplate method named __iter__(), called with no argu‐
ments, and returning the same iterator. Its body is literally return self.

Any object with these methods can call itself a Python iterator. You are not intended
to call the __next__() method directly. Instead, you will use the built-in next()
function.

To understand better, here is how you might write your own next() function:

_NO_DEFAULT = object()
def next(it, default=_NO_DEFAULT):
 try:
 return it.__next__()
 except StopIteration:
 if default is _NO_DEFAULT:
 raise
 return default

(As a side note, notice how this function creates a unique sentinel value, _NO_DEFAULT,
rather than defaulting to a built-in value like None. A sentinel value is a value that
exists solely for signaling in the algorithm, and is meant to never overlap with a possi‐
ble value for real data. This way, you can pass any value to default that you like
without conflict.)

Now, all the above is for the iterator. Let’s explain the other word, “iterable”. Infor‐
mally, an object is iterable if you can use it in a for loop. More formally, a Python
object is iterable if it meets one of these two criteria:

• It defines a method called __iter__(), which creates and returns an iterator over
the elements in the container; or

• It defines __getitem__()—the magic method for square brackets—and lets you
reference foo[0], foo[1], etc., raising an IndexError once you go past the last
element.4

(Notice “iterator” is a noun, while “iterable” is usually an adjective. This can help you
remember which is which.)

When implementing your own container type, you probably want to make it iterable,
so you and others can use it in a for loop. Depending on the nature of the container,
it’s often easiest to implement the sequence protocol. As an example, consider this
UniqueList type, which is a kind of hybrid between a list and a set:

18 | Chapter 1: Scaling with Generators

class UniqueList:
 def __init__(self, items):
 self.items = []
 for item in items:
 self.append(item)
 def append(self, item):
 if item not in self.items:
 self.items.append(item)
 def __getitem__(self, index):
 return self.items[index]

Use it like this:

>>> u = UniqueList([3,7,2,9,3,4,2])
>>> u.items
[3, 7, 2, 9, 4]
>>> u[3]
9
>>> u[42]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 10, in __getitem__
IndexError: list index out of range

The __getitem__() method implements square-bracket access; basically, Python
translates u[3] into u.__getitem__(3). We’ve programmed this object’s square
brackets to operate much like a normal list, in that the initial element is at index 0,
and you get subsequent elements with subsequent integers, not skipping any. And
when you go past the end, it raises IndexError. If an object has a __getitem__()
method behaving in just this way, iter() knows how to create an iterator over it:

>>> u_iter = iter(u)
>>> type(u_iter)
<class 'iterator'>
>>> for num in u_iter:
... print(num)
3
7
2
9
4

Notice we get a lot of this behavior for free, simply because we’re using an actual list
internally (and thus delegating much of the __getitem__() logic to it). That’s a clue
for you, whenever you make a custom collection that acts like a list—or one of the
other standard collection types. If your object internally stores its data in one of the
standard data types, you’ll often have an easier time mimicking its behavior.

The Iterator Protocol | 19

5 This inheritance-based version demonstrates an “is-a” relationship, while the previous version a “has-a” rela‐
tionship. Both will work, but because a UniqueList could be considered a kind of list, one can argue that the
latter version makes more logical sense, and it will work in more intuitive ways with functions like
isinstance().

Sometimes you can shortcut even more by inheriting from something which is itera‐
ble. Another (and perhaps better 5) way to implement UniqueList is to inherit from
list:

class UniqueList(list):
 def __init__(self, items):
 for item in items:
 self.append(item)
 def append(self, item):
 if item not in self:
 super().append(item)

Then you can treat it as you would any Python list, with its full iterable qualities.

Writing a __getitem__() method which acts like a list’s is one way to make your class
iterable. (And optionally adding __len__().) The other involves writing an
__iter__() method. When called with no arguments, it must return some object
which follows the iterator protocol, described above. In the worst case, you’ll need to
implement something like the SquaresIterator class from earlier in this chapter,
with its own __next__() and __iter__() methods. But usually you don’t have to
work that hard—you can simply return a generator object instead. That means
__iter__() is a generator function itself, or it internally calls some other generator
function, returning its value.

Iterators must always have an __iter__() method, as do some iterables. Both are
called with no argument, and both return an iterator object. The only difference: the
__iter__() for the iterator returns its self, while an iterable’s __iter__() will create
and return a new iterator. And if you call it twice, you get two different iterators.

This similarity is intentional, to simplify control code that can accept either iterators
or iterables. Here’s the mental model you can safely follow: when Python’s runtime
encounters a for loop, it will start by invoking iter(sequence). This always returns
an iterator: either sequence itself, or (if sequence is only iterable) the iterator created
by sequence.__iter__().

Iterables are everywhere in Python. Almost all built-in collection types are iterable:
list, tuple, and set, and even dict. (Though you’ll probably want to use
dict.items()—a simple for x in some_dict will iterate just over the keys).

In your own custom collection classes, sometimes the easiest way to implement
__iter__() actually involves using iter(). For instance, this will not work:

20 | Chapter 1: Scaling with Generators

class BrokenInLoops:
 def __init__(self):
 self.items = [7, 3, 9]
 def __iter__(self):
 return self.items

If you try it, you get a TypeError:

>>> items = BrokenInLoops()
>>> for item in items:
... print(item)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: iter() returned non-iterator of type 'list'

It doesn’t work because __iter__() is supposed to return an iterator, but a list object
is not an iterator; it is simply iterable. You can fix this with a one-line change: use
iter() to create an iterator object inside of __iter__(), and return that object:

class WorksInLoops:
 def __init__(self):
 self.items = [7, 3, 9]
 def __iter__(self):
 # This class is identical to BrokenInLoops,
 # except for this next line.
 return iter(self.items)

This makes WorksInLoops itself iterable, because __iter__() returns an actual itera‐
tor object—making WorksInLoops follow the iterator protocol correctly. That
__iter__() method generates a fresh iterator each time:

>>> items = WorksInLoops()
>>> for item in items:
... print(item)
7
3
9
>>> for another_item in items:
... print(another_item)
7
3
9

Conclusion
Infusing your Python code with generators has a profound effect. All the code you
write becomes more memory-efficient, more responsive, and more robust. Your pro‐
grams are automatically able to gracefully handle larger input sizes than you anticipa‐
ted. And this naturally boosts your reputation as someone who consistently creates
high-quality software.

Conclusion | 21

CHAPTER 2

Creating Collections with Comprehensions

A list comprehension is a high-level, declarative way to create a list. It looks like this:

>>> squares = [n*n for n in range(6)]
>>> print(squares)
[0, 1, 4, 9, 16, 25]

This is essentially equivalent to the following:

>>> squares = []
>>> for n in range(6):
... squares.append(n*n)
>>> print(squares)
[0, 1, 4, 9, 16, 25]

Notice that in the first example, what you type is declaring what kind of list you want,
while the second is specifying how to create it. That’s why we say it is high-level and
declarative: it’s as if you are stating what kind of list you want created, then letting
Python figure out how to build it.

Python lets you write other kinds of comprehensions than lists. Here’s a simple dic‐
tionary comprehension, for example:

>>> blocks = { n: "x" * n for n in range(5) }
>>> print(blocks)
{0: '', 1: 'x', 2: 'xx', 3: 'xxx', 4: 'xxxx'}

This is equivalent to the following:

>>> blocks = dict()
>>> for n in range(5):
... blocks[n] = "x" * n
>>> print(blocks)
{0: '', 1: 'x', 2: 'xx', 3: 'xxx', 4: 'xxxx'}

23

The main benefits of comprehensions are readability and maintainability. Most peo‐
ple find them very readable; even developers encountering a comprehension for the
first time will usually find their first guess about what it means to be correct. You can’t
get more readable than that.

And there is a deeper, cognitive benefit: once you’ve practiced with comprehensions a
bit, you will find you can write them with very little mental effort—keeping more of
your attention free for other tasks.

Beyond lists and dictionaries, there are several other forms of comprehension you
will learn about in this chapter. As you become comfortable with them, you will find
them to be versatile and very Pythonic—meaning, they fit well into many other
Python idioms and constructs, lending new expressiveness and elegance to your
code.

List Comprehensions
List comprehensions are the most widely used kind of comprehension and are essen‐
tially a way to create and populate a list. Their structure looks like this:

[EXPRESSION for VARIABLE in SEQUENCE]

EXPRESSION is any Python expression, though in useful comprehensions, the expres‐
sion often has some variable in it. That variable is stated in the VARIABLE field.
SEQUENCE defines the source values the variable enumerates through, creating the
final sequence of calculated values.

Here’s the simple example we glimpsed earlier:

>>> squares = [n*n for n in range(6)]
>>> type(squares)
<class 'list'>
>>> print(squares)
[0, 1, 4, 9, 16, 25]

Notice the result is just a regular list. In squares, the expression is n*n; the variable is
n; and the source sequence is range(6). The sequence is a range object; in fact, it can
be any iterable…another list or tuple, a generator object, or something else.

The expression part can be anything that reduces to a value, including:

• Arithmetic expressions like n+3
• A function call like f(m), using m as the variable
• A slice operation (like s[::-1], to reverse a string)
• Method calls

24 | Chapter 2: Creating Collections with Comprehensions

Some complete examples:

>>> # First define some source sequences...
>>> pets = ["dog", "parakeet", "cat", "llama"]
>>> numbers = [9, -1, -4, 20, 11, -3]
>>> # And a helper function...
>>> def repeat(s):
... return s + s
...
>>> # Now, some list comprehensions:
>>> [2*m+3 for m in range(10, 20, 2)]
[23, 27, 31, 35, 39]
>>> [abs(num) for num in numbers]
[9, 1, 4, 20, 11, 3]
>>> [10 - x for x in numbers]
[1, 11, 14, -10, -1, 13]
>>> [pet.upper() for pet in pets]
['DOG', 'PARAKEET', 'CAT', 'LLAMA']
>>> ["The " + pet for pet in sorted(pets)]
['The cat', 'The dog', 'The llama', 'The parakeet']
>>> [repeat(pet) for pet in pets]
['dogdog', 'parakeetparakeet', 'catcat', 'llamallama']

Notice how all these fit the same structure. They all have the keywords for and in;
those are required in Python for any kind of comprehension you may write. These
are interleaved among three fields: the expression, the variable (the identifier from
which the expression is composed), and the source sequence.

The order of elements in the final list is determined by the order of the source
sequence. You can filter out elements by adding an if clause:

>>> def is_palindrome(s):
... return s == s[::-1]
...
>>> pets = ["dog", "parakeet", "cat", "llama"]
>>> numbers = [9, -1, -4, 20, 11, -3]
>>> words = ["bib", "bias", "dad", "eye", "deed", "tooth"]
>>>
>>> [n*2 for n in numbers if n % 2 == 0]
[-8, 40]
>>>
>>> [pet.upper() for pet in pets if len(pet) == 3]
['DOG', 'CAT']
>>>
>>> [n for n in numbers if n > 0]
[9, 20, 11]
>>>
>>> [word for word in words if is_palindrome(word)]
['bib', 'dad', 'eye', 'deed']

The structure is

[EXPR for VAR in SEQUENCE if CONDITION]

List Comprehensions | 25

1 Technically, the condition does not have to depend on the variable. But useful examples of this are extremely
rare.

where CONDITION is an expression that evaluates to True or False, depending on the
variable.1 Note that it can be either a function applied to the variable (is_
palindrome(word)), or a more complex expression. Choosing to use a function can
improve readability, and also let you apply filter logic whose code won’t fit on one
line.

A list comprehension must always have the for keyword, even if the beginning
expression is just the variable itself. For example:

>>> [word for word in words if is_palindrome(word)]
['bib', 'dad', 'eye', 'deed']

Sometimes people think word for word in words seems redundant (because it is),
and try to shorten it. But that does not work:

>>> [word in words if is_palindrome(word)]
 File "<stdin>", line 1
 [word in words if is_palindrome(word)]
 ^
SyntaxError: invalid syntax

Formatting for Readability (and More)
Realistic list comprehensions tend to be too long to fit nicely on a single line. And
they are composed of distinct logical parts, which can vary independently as the code
evolves. This creates a couple of inconveniences, which are solved by a convenient
fact: Python’s normal rules of whitespace are suspended inside the square brackets. You
can exploit this to make them more readable and maintainable, splitting them across
multiple lines:

def double_short_words(words):
 return [word + word
 for word in words
 if len(word) < 5]

Another variation, which some people prefer:

def double_short_words(words):
 return [
 word + word
 for word in words
 if len(word) < 5
]

What I’ve done here is split the comprehension across separate lines. You can, and
should, do this with any substantial comprehension. It’s great for several reasons, the

26 | Chapter 2: Creating Collections with Comprehensions

2 I like to think future version control tools will automatically resolve this kind of situation. I believe it will
require the tool to have knowledge of the language grammar, so it can parse and reason about different clau‐
ses in a line of code.

most important being the instant gain in readability. This comprehension has three
separate ideas expressed inside the square brackets: the expression (word + word);
the sequence (for word in words); and the filtering clause (if len(word) < 5).
These are logically separate aspects, and splitting them across different lines takes less
cognitive effort for a human to read and understand than the one-line version. It’s
effectively preparsed for you, as you read the code.

Splitting a comprehension over several lines has another benefit: it makes version
control and code review diffs more pinpointed. Imagine you and I are on the same
development team, working on this code base in different feature branches. In my
branch, I change the expression to word * 2; in yours, you change the threshold to
len(word) < 7. If the comprehension is on one line, version control tools will per‐
ceive this as a merge conflict, and whoever merges last will have to manually fix it.2

But since this list comprehension is split across three lines, our source control tool
can automatically merge both our branches. And if we’re doing code reviews like we
should be, the reviewer can identify the precise change immediately, without having
to scan the line and think.

Multiple Sources and Filters
You can have several for VAR in SEQUENCE clauses. This lets you construct lists
based on pairs, triplets, etc., from two or more source sequences:

>>> colors = ["orange", "purple", "pink"]
>>> toys = ["bike", "basketball", "skateboard", "doll"]
>>>
>>> [color + " " + toy
... for color in colors
... for toy in toys]
['orange bike', 'orange basketball', 'orange skateboard',
 'orange doll', 'purple bike', 'purple basketball',
 'purple skateboard', 'purple doll', 'pink bike',
 'pink basketball', 'pink skateboard', 'pink doll']

Every pair from the two sources, colors and toys, is used to calculate a value in the
final list. That final list has 12 elements, the product of the lengths of the 2 source
lists.

Notice the two for clauses are independent of each other; colors and toys are two
unrelated lists. Using multiple for clauses can sometimes take a different form, where
they are more interdependent. Consider this example:

Multiple Sources and Filters | 27

3 Refresher: The range() built-in returns an iterator over a sequence of integers, and can be called with 1, 2, or
3 arguments. The most general form is range(start, stop, step), beginning at start, going up to but not
including stop, in increments of step. Called with two arguments, the step-size defaults to 1; with one argu‐
ment, that argument is the stop, and the sequence starts at 0.

>>> ranges = [range(1,7), range(4,12,3), range(-5,9,4)]
>>> [float(num)
... for subrange in ranges
... for num in subrange]
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 4.0, 7.0, 10.0, -5.0,
-1.0, 3.0, 7.0]

The source sequence—ranges—is a list of range objects.3 Now, this list comprehen‐
sion has two for clauses again. But notice one depends on the other. The source of
the second is the variable for the first!

It’s not like the colorful-toys example, whose for clauses are independent of each
other. When chained together this way, order matters:

>>> [float(num)
... for num in subrange
... for subrange in ranges]
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
NameError: name 'subrange' is not defined

Python parses the list comprehension from left to right. If the first clause is for num
in subrange, at that point subrange is not defined. So you have to put for subrange
in ranges first. You can chain more than two for clauses together like this; the first
clause will just need to reference a previously-defined source, and the others can use
sources defined in the previous for clause, like subrange is defined.

Independent Clauses
Now, that’s for chained for clauses. If the clauses are independent, does the order
matter at all? It does, just in a different way. What’s the difference between these two
list comprehensions?

>>> colors = ["orange", "purple", "pink"]
>>> toys = ["bike", "basketball", "skateboard", "doll"]
>>>
>>> [color + " " + toy
... for color in colors
... for toy in toys]
['orange bike', 'orange basketball', 'orange skateboard',
'orange doll', 'purple bike', 'purple basketball',
'purple skateboard', 'purple doll', 'pink bike',
'pink basketball', 'pink skateboard', 'pink doll']
>>>

28 | Chapter 2: Creating Collections with Comprehensions

>>> [color + " " + toy
... for toy in toys
... for color in colors]
['orange bike', 'purple bike', 'pink bike', 'orange
basketball', 'purple basketball', 'pink basketball',
'orange skateboard', 'purple skateboard', 'pink
skateboard', 'orange doll', 'purple doll', 'pink doll']

The order here doesn’t matter in the sense it does for chained for clauses, where you
must put things in a certain order, or your program won’t run. Here, you have a
choice. And that choice does affect the order of elements in the final comprehension.

For both versions, the first element is “orange bike”. But the second element is differ‐
ent. Ask yourself: why? Why is the first element the same in both comprehensions?
And why is the second element different?

It has to do with which sequence is held constant while the other varies. It’s the same
logic that applies when nesting regular for loops:

>>> # Nested one way...
... build_colors_toys = []
>>> for color in colors:
... for toy in toys:
... build_colors_toys.append(color + " " + toy)
>>> build_colors_toys[0]
'orange bike'
>>> build_colors_toys[1]
'orange basketball'
>>>
>>> # And nested the other way.
... build_toys_colors = []
>>> for toy in toys:
... for color in colors:
... build_toys_colors.append(color + " " + toy)
>>> build_toys_colors[0]
'orange bike'
>>> build_toys_colors[1]
'purple bike'

The second for clause in the list comprehension corresponds to the inner for loop.
Its values vary through their range more rapidly than those in the outer one.

Multiple Filters
In addition to using several for clauses, you can have more than one if clause, for
multiple levels of filtering. Just write several of them in sequence:

>>> numbers = [9, -1, -4, 20, 17, -3]
>>> odd_positives = [
... num for num in numbers
... if num > 0
... if num % 2 == 1

Multiple Sources and Filters | 29

...]
>>> print(odd_positives)
[9, 17]

Here, I’ve placed each if clause on its own line, for readability—but I could have put
both on one line. When you have more than one if clause, they are “and-ed”
together, not “or-ed” together. Equivalent to this:

>>> numbers = [9, -1, -4, 20, 17, -3]
>>> odd_positives = [
... num for num in numbers
... if num > 0 and num % 2 == 1
...]
>>> print(odd_positives)
[9, 17]

The only difference is readability. When you feel one if clause with an “and” will be
more readable, do that; when you feel multiple if clauses will be more readable, do
that.

What if you want to include elements matching at least one of the if-clause criteria,
omitting only those not matching any? In that case, you must use a single if clause
with an “or”. You cannot “or” multiple if clauses together inside a comprehension.
For example, here’s how you can filter based on whether the number is a multiple of 2
or 3:

>>> numbers = [9, -1, -4, 20, 11, -3]
>>> [num for num in numbers
... if num % 2 == 0 or num % 3 == 0]
[9, -4, 20, -3]

You can also define a helper function. When your filtering logic is complex or non-
obvious, this will often improve readability, and is worth considering:

>>> numbers = [9, -1, -4, 20, 11, -3]
>>> def num_is_valid(num):
... return num % 2 == 0 or num % 3 == 0
...
>>> [num for num in numbers
... if num_is_valid(num)]
[9, -4, 20, -3]

The comprehension mini-language is not as expressive as Python itself, and some
lists cannot be expressed as a comprehension.

You can use multiple for and if clauses together:

>>> weights = [0.2, 0.5, 0.9]
>>> values = [27.5, 13.4]
>>> offsets = [4.3, 7.1, 9.5]
>>>
>>> [(weight, value, offset)

30 | Chapter 2: Creating Collections with Comprehensions

... for weight in weights

... for value in values

... for offset in offsets

... if offset > 5.0

... if weight * value < offset]
[(0.2, 27.5, 7.1), (0.2, 27.5, 9.5), (0.2, 13.4, 7.1),
(0.2, 13.4, 9.5), (0.5, 13.4, 7.1), (0.5, 13.4, 9.5)]

The only rule is that the first for clause must come before the first if clause. Other
than that, you can interleave for and if clauses in any order. Most people seem to
find it more readable to group all the for clauses together at first, then the if clauses
together at the end.

Comprehensions and Generators
List comprehensions create lists:

>>> squares = [n*n for n in range(6)]
>>> type(squares)
<class 'list'>

When you need a list, that’s great, but sometimes you don’t need a list, and you’d pre‐
fer something which does not blow up your memory footprint. It’s like the situation
near the start of Chapter 1:

This again.
NUM_SQUARES = 10*1000*1000
many_squares = [n*n for n in range(NUM_SQUARES)]
for number in many_squares:
 do_something_with(number)

The entire many_squares list must be fully created—all memory for it must be alloca‐
ted, and every element calculated—before do_something_with() is called even once.
And memory usage goes through the roof.

You know one solution: write a generator function, and call it. But there’s an easier
option: write a generator expression. This is the official name for it, but it really should
be called a “generator comprehension”, in my humble but correct opinion. Syntacti‐
cally, it looks like a list comprehension—except you use parentheses instead of square
brackets:

>>> generated_squares = (n*n for n in range(NUM_SQUARES))
>>> type(generated_squares)
<class 'generator'>

This generator expression creates a generator object, in the exact same way a list com‐
prehension creates a list. Any list comprehension you write, you can use to create an
equivalent generator object, just by swapping “("and")” for “ ["and"]”.

Comprehensions and Generators | 31

And you’re creating the object directly, without having to define a generator function
to call. In other words, a generator expression is a convenient shortcut when you
need a quick generator object:

This...
many_squares = (n*n for n in range(NUM_SQUARES))

... is EXACTLY EQUIVALENT to this:
def gen_many_squares(limit):
 for n in range(limit):
 yield n * n
many_squares = gen_many_squares(NUM_SQUARES)

As far as Python is concerned, these two versions of many_squares are completely
equivalent.

Everything you know about list comprehensions applies to generator expressions:
multiple for clauses, if clauses, etc. You only need to type the parentheses.

In fact, sometimes you can even omit them. When passing a generator expression as
an argument to a function, you will sometimes find yourself typing ((followed by)).
In that situation, Python lets you omit the inner pair.

Imagine, for example, you are sorting a list of customer email addresses, looking at
only those customers whose status is “active”:

>>> # User is a class with "email" and "is_active" fields.
... # all_users is a list of User objects.

>>> # Sorted list of active user's email addresses.
... # Passing in a generator expression.
>>> sorted((user.email for user in all_users
... if user.is_active))
['fred@a.com', 'sandy@f.net', 'tim@d.com']
>>>
>>> # Omitting the inner parentheses.
... # Still passing in a generator expression!
>>> sorted(user.email for user in all_users
... if user.is_active)
['fred@a.com', 'sandy@f.net', 'tim@d.com']

Notice how readable and natural this is (or will be, once you’ve practiced a bit). One
thing to watch out for: you can only inline a generator expression this way when
passing it to a function or method of one argument. Otherwise, you get a syntax
error:

>>>
>>> # Reverse that list. Whoops...
... sorted(user.email for user in all_users
... if user.is_active, reverse=True)
 File "<stdin>", line 2
SyntaxError: Generator expression must be parenthesized if not sole argument

32 | Chapter 2: Creating Collections with Comprehensions

Python cannot interpret what you mean here, because it is ambiguous in Python’s
grammar. So you must use the inner parentheses:

>>> # Okay, THIS will get the reversed list.
... sorted((user.email for user in all_users
... if user.is_active), reverse=True)
['tim@d.com', 'sandy@f.net', 'fred@a.com']

Sometimes it is more readable to assign the generator expression to a variable:

>>> active_emails = (
... user.email for user in all_users
... if user.is_active
...)

>>> sorted(active_emails, reverse=True)
['tim@d.com', 'sandy@f.net', 'fred@a.com']

Generator expressions without parentheses suggest a unified way of thinking about
comprehensions, that links generator expressions and list comprehensions together.
Here’s a generator expression for a sequence of squares:

(n**2 for n in range(10))

Here it is again, passed to the built-in list() function:

list(n**2 for n in range(10))

And here it is as a list comprehension:

[n**2 for n in range(10)]

When you understand generator expressions, it’s easy to see list comprehensions as a
derivative data structure. The same applies for dictionary and set comprehensions
(covered next). Even though Python does not work that way internally, this mental
model is fully consistent with Python’s semantics.

With this insight, you start seeing new opportunities to use all these comprehension
forms in your own code—improving readability, maintainability, and performance in
the process.

If generator expressions are so great, why would you ever use list comprehensions?
Generally speaking, your code will be more scalable and responsive if you use a gen‐
erator expression. Except, of course, when you actually need a list. There are several
considerations.

First, if the sequence is unlikely to be very big—and by “big”, I mean a minimum of
thousands of elements long—you probably won’t benefit from using a generator
expression. That’s just not big enough for the memory footprint to matter.

Next, generator expressions do not always fit the usage pattern you need. If you need
random access, or to go through the sequence twice, generator expressions won’t

Comprehensions and Generators | 33

work. Generator expressions also won’t work if you need to append or remove ele‐
ments, or change the value at some index so that you can look it up later.

This is especially important when writing a method or function whose return value is
a sequence. Do you return a generator expression, or a list comprehension?

In theory, there’s no reason to ever return a list instead of a generator object; the caller
can turn a generator object into a list just by passing it to list(). In practice, the
interface may be such that the caller will want an actual list; forcing them to deal with
a generator object will just get in the way. Also, if you are constructing the return
value as a list within the function, it’s silly to return a generator expression over it—
just return the actual list.

If your intention is to create a library usable by people who may not be advanced
Pythonistas, that can be an argument for returning lists. Almost all programmers are
familiar with list-like data structures. But fewer are familiar with how generators
work in Python, and may—quite reasonably—get confused when confronted with a
generator object.

Dictionaries, Sets, and Tuples
Just like a list comprehension creates a list, a dictionary comprehension creates a dic‐
tionary. You saw an example at the beginning of this chapter; here’s another. Suppose
you have this Student class:

class Student:
 def __init__(self, name, gpa, major):
 self.name = name
 self.gpa = gpa
 self.major = major

Given a list named students, containing Student instances, we can write a dictionary
comprehension mapping student names to their GPAs:

>>> { student.name: student.gpa for student in students }
{'Jim Smith': 3.6, 'Ryan Spencer': 3.1,
 'Penny Gilmore': 3.9, 'Alisha Jones': 2.5,
 'Todd Reynolds': 3.4}

The syntax differs from that of list comprehensions in two ways. Instead of square
brackets, you’re using curly braces—which makes sense, since this creates a
dictionary. The other difference is the expression field, whose format is “key: value”,
since a dict has key-value pairs. So the structure is:

{ KEY : VALUE for VARIABLE in SEQUENCE }

These are the only differences. Everything else you learned about list comprehensions
applies, including filtering with if clauses:

34 | Chapter 2: Creating Collections with Comprehensions

>>> def invert_name(name):
... first, last = name.split(" ", 1)
... return last + ", " + first
...
>>> # Get "lastname, firstname" of high-GPA students.
... { invert_name(student.name): student.gpa
... for student in students
... if student.gpa > 3.5 }
{'Smith, Jim': 3.6, 'Gilmore, Penny': 3.9}

You can create sets too. Set comprehensions look exactly like list comprehensions, but
with curly braces instead of square brackets:

>>> # A list of student majors...
... [student.major for student in students]
['Computer Science', 'Economics', 'Computer Science',
 'Economics', 'Basket Weaving']
>>> # And the same as a set:
... { student.major for student in students }
{'Economics', 'Computer Science', 'Basket Weaving'}
>>> # You can also use the set() built-in.
... set(student.major for student in students)
{'Economics', 'Computer Science', 'Basket Weaving'}

(How does Python distinguish between a set and dict comprehension? dict’s expres‐
sion is a key-value pair, while set’s is a single value.)

What about tuple comprehensions? This is fun: strictly speaking, Python doesn’t sup‐
port them. However, you can pretend it does by using tuple():

>>> tuple(student.gpa for student in students
... if student.major == "Computer Science")
(3.6, 2.5)

This creates a tuple, but it’s not a tuple comprehension. You’re calling the tuple con‐
structor, and passing it a single argument. What’s that argument? A generator expres‐
sion! In other words, you’re doing this:

>>> cs_students = (
... student.gpa for student in students
... if student.major == "Computer Science"
...)
>>> type(cs_students)
<class 'generator'>
>>> tuple(cs_students)
(3.6, 2.5)
>>>
>>> # Same as:
... tuple((student.gpa for student in students
... if student.major == "Computer Science"))
(3.6, 2.5)
>>> # But you can omit the inner parentheses.

Dictionaries, Sets, and Tuples | 35

tuple’s constructor takes an iterator as an argument. The cs_students is a generator
object (created by the generator expression), and a generator object is an iterator. So
you can pretend Python has tuple comprehensions, using “tuple(” as the opener and
“)” as the close. In fact, this also gives you alternate ways to create dictionary and set
comprehensions:

>>> # Same as:
... # { student.name: student.gpa for student in students }
>>> dict((student.name, student.gpa)
... for student in students)
{'Jim Smith': 3.6, 'Penny Gilmore': 3.9,
 'Alisha Jones': 2.5, 'Ryan Spencer': 3.1,
 'Todd Reynolds': 3.4}
>>> # Same as:
... # { student.major for student in students }
>>> set(student.major for student in students)
{'Computer Science', 'Basket Weaving', 'Economics'}

Remember, when you pass a generator expression into a function, you can omit the
inner parentheses. That’s why you can, for example, type

tuple(f(x) for x in numbers)

Instead of

tuple((f(x) for x in numbers))

One last point. Generator expressions are a scalable analog of list comprehensions; is
there any such equivalent for dicts, or for sets? No, but you can still construct genera‐
tor expressions and pass the resulting generator object to their constructor, much like
you did with tuple.

For dict, you will want the yielded elements to be (key, value) tuples. For sets, it is
maximally efficient to code that generator expression to only yield unique values. But
that is not always worth the trouble; if duplicates are generated, the set constructor
will handle it fine.

Conclusion
Comprehensions are a useful tool for readable, maintainable Python. Their sensible
succinctness and high-level, declarative nature make them easy to write, easy to read,
and easy to maintain. Use them more in your code, and you will find your Python
experience greatly improved.

36 | Chapter 2: Creating Collections with Comprehensions

CHAPTER 3

Advanced Functions

In this chapter, we go beyond the basics of using functions. I’ll assume you can write
functions with default argument values:

>>> def foo(a, b, x=3, y=2):
... return (a+b)/(x+y)
...
>>> foo(5, 0)
1.0
>>> foo(10, 2, y=3)
2.0
>>> foo(b=4, x=8, a=1)
0.5

Notice the way foo() is called the last time, with arguments out of order, and every‐
thing specified by key-value pairs. Not everyone knows that you can call most Python
functions this way. So long as the value of each argument is unambiguously specified,
Python doesn’t care how you call the function (and this case, we specify b, x, and a
out of order, letting y be its default value). We will leverage this flexibility later.

This chapter’s topics are useful and valuable on their own. And they are important
building blocks for some extremely powerful patterns, which you will learn in later
chapters. Let’s get started!

Accepting and Passing Variable Arguments
The foo() function above can be called with two, three, or four arguments. Some‐
times you want to define a function that can take any number of arguments—zero or
more, in other words. In Python, it looks like this:

37

Note the asterisk. That's the magic part
def takes_any_args(*args):
 print("Type of args: " + str(type(args)))
 print("Value of args: " + str(args))

Look carefully at the syntax here. takes_any_args() is just like a regular function,
except you put an asterisk right before the argument args. Within the function, args
is a tuple:

>>> takes_any_args("x", "y", "z")
Type of args: <class 'tuple'>
Value of args: ('x', 'y', 'z')
>>> takes_any_args(1)
Type of args: <class 'tuple'>
Value of args: (1,)
>>> takes_any_args()
Type of args: <class 'tuple'>
Value of args: ()
>>> takes_any_args(5, 4, 3, 2, 1)
Type of args: <class 'tuple'>
Value of args: (5, 4, 3, 2, 1)
>>> takes_any_args(["first", "list"], ["another","list"])
Type of args: <class 'tuple'>
Value of args: (['first', 'list'], ['another', 'list'])

args is a tuple, composed of those arguments passed, in order. Which means if you
call the function with no arguments, args will be an empty tuple.

This is different from declaring a function that takes a single argument, which hap‐
pens to be of type list or tuple:

>>> def takes_a_list(items):
... print("Type of items: " + str(type(items)))
... print("Value of items: " + str(items))
...
>>> takes_a_list(["x", "y", "z"])
Type of items: <class 'list'>
Value of items: ['x', 'y', 'z']
>>> takes_any_args(["x", "y", "z"])
Type of args: <class 'tuple'>
Value of args: (['x', 'y', 'z'],)

In these calls to takes_a_list() and takes_any_args(), the argument items is a list
of strings. We’re calling both functions the exact same way, but what happens inside
each function is different. Within takes_any_args(), the tuple named args has one
element—and that element is the list ["x", "y", "z"]. But in takes_a_list(),
items is the list itself.

This *args idiom gives you some very helpful programming patterns. You can work
with arguments as an abstract sequence, while providing a potentially more natural
interface for whomever calls the function.

38 | Chapter 3: Advanced Functions

1 This seems to be deeply ingrained; once I abbreviated it *a, only to have my code reviewer demand I change it
to *args. They wouldn’t approve my pull request until I changed it, so I did.

Above, I always name the argument args in the function signature. Writing *args is a
well-followed convention, but you can choose a different name—the asterisk is what
makes it a variable argument. For instance, this takes paths of several files as
arguments:

def read_files(*paths):
 data = ""
 for path in paths:
 with open(path) as handle:
 data += handle.read()
 return data

Most Python programmers use *args unless there is a reason to name that variable
something else.1 That reason is usually readability; read_files() is a good example.
If naming it something other than args makes the code more understandable, do it.

Argument Unpacking
The star modifier works in the other direction too. Intriguingly, you can use it with
any function. For example, suppose a library provides this function:

def order_book(title, author, isbn):
 """
 Place an order for a book.
 """
 print(f"Ordering '{title}' by {author} ({isbn})")
 # ...

Notice there’s no asterisk. Suppose in another, completely different library, you fetch
the book info from this function:

def get_required_textbook(class_id):
 """
 Returns a tuple (title, author, ISBN)
 """
 # ...

Again, no asterisk. Now, one way you can bridge these two functions is to store the
tuple result from get_required_textbook(), then unpack it element by element:

>>> book_info = get_required_textbook(4242)
>>> order_book(book_info[0], book_info[1], book_info[2])
Ordering 'Writing Great Code' by Randall Hyde (1593270038)

Accepting and Passing Variable Arguments | 39

Writing code this way is tedious and error-prone. Fortunately, Python provides a bet‐
ter way. Let’s look at a different function:

def normal_function(a, b, c):
 print(f"a: {a} b: {b} c: {c}")

No trick here—it really is a normal, boring function, taking three arguments. If we
have those three arguments as a list or tuple, Python can automatically “unpack”
them for us. We just need to pass in that collection, prefixed with an asterisk:

>>> numbers = (7, 5, 3)
>>> normal_function(*numbers)
a: 7 b: 5 c: 3

Again, normal_function is just a regular function. We did not use an asterisk on the
def line. But when we call it, we take a tuple called numbers, and pass it in with the
asterisk in front. This is then unpacked within the function to the arguments a, b, and
c.

There is a duality here. We can use the asterisk syntax both in defining a function, and
in calling a function. The syntax looks very similar. But realize they are doing two dif‐
ferent things. One is packing arguments into a tuple automatically—called variable
arguments; the other is un-packing them—called argument unpacking. Be clear on the
distinction between the two in your mind.

Armed with this complete understanding, we can bridge the two book functions in a
much better way:

>>> book_info = get_required_textbook(4242)
>>> order_book(*book_info)
Ordering 'Writing Great Code' by Randall Hyde (1593270038)

This is more concise (less tedious to type), and more maintainable. As you get used to
the concept, you’ll find it increasingly natural and easy to use in the code you write.

Variable Keyword Arguments
So far we have just looked at functions with positional arguments—the kind where
you declare a function like def foo(a, b):, and then invoke it like foo(7, 2). You
know that a equal 7 and b equals 2 within the function, because of the order of the
arguments. Of course, Python also has keyword arguments:

>>> def get_rental_cars(size, doors=4,
... transmission='automatic'):
... template = "Looking for a {}-door {} car with {} transmission...."
... print(template.format(doors, size, transmission))
...
>>> get_rental_cars("economy", transmission='manual')
Looking for a 4-door economy car with manual transmission....

40 | Chapter 3: Advanced Functions

And remember, Python lets you call functions like this just using keyword arguments:

>>> def bar(x, y, z):
... return x + y * z
...
>>> bar(z=2, y=3, x=4)
10

These keyword arguments won’t be captured by the *args idiom. Instead, Python
provides a different syntax—using two asterisks instead of one:

def print_kwargs(**kwargs):
 for key, value in kwargs.items():
 print(f"{key} -> {value}")

The variable kwargs is a dictionary. (In contrast to args; remember, that was a tuple.)
It’s just a regular dict, so we can iterate through its key-value pairs with .items():

>>> print_kwargs(hero="Homer", antihero="Bart", genius="Lisa")
hero -> Homer
antihero -> Bart
genius -> Lisa

The arguments to print_kwargs() are key-value pairs. This is regular Python syntax
for calling functions; what’s interesting is happening inside the function. There, a
variable called kwargs is defined. It’s a Python dictionary, consisting of the key-value
pairs passed in when the function was called.

Here’s another example, which has a regular positional argument, followed by arbi‐
trary key-value pairs:

def set_config_defaults(config, **kwargs):
 for key, value in kwargs.items():
 # Do not overwrite existing values.
 if key not in config:
 config[key] = value

This is perfectly valid. You can define a function that takes some normal arguments,
followed by zero or more key-value pairs:

>>> config = {"verbosity": 3, "theme": "Blue Steel"}
>>> set_config_defaults(config, bass=11, verbosity=2)
>>> config
{'verbosity': 3, 'theme': 'Blue Steel', 'bass': 11}

Like with *args, naming this variable kwargs is just a strong convention; you can
choose a different name if that improves readability.

Keyword Unpacking
Just like *args, double-star works the other way too. We can take a regular function,
and pass it a dictionary using two asterisks:

Accepting and Passing Variable Arguments | 41

>>> def normal_function(a, b, c):
... print(f"a: {a} b: {b} c: {c}")
...
>>> numbers = {"a": 7, "b": 5, "c": 3}
>>> normal_function(**numbers)
a: 7 b: 5 c: 3

The keys of the dictionary must match up with how the function was declared. Other‐
wise you get an error:

>>> bad_numbers = {"a": 7, "b": 5, "z": 3}
>>> normal_function(**bad_numbers)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: normal_function() got an unexpected keyword argument 'z'

This is called keyword argument unpacking. It works regardless of whether that func‐
tion has default values for some of its arguments or not. So long as the value of each
argument is specified one way or another, you have valid code:

>>> def another_function(x, y, z=2):
... print(f"x: {x} y: {y} z: {z}")
...
>>> all_numbers = {"x": 2, "y": 7, "z": 10}
>>> some_numbers = {"x": 2, "y": 7}
>>> missing_numbers = {"x": 2}
>>> another_function(**all_numbers)
x: 2 y: 7 z: 10
>>> another_function(**some_numbers)
x: 2 y: 7 z: 2
>>> another_function(**missing_numbers)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: another_function() missing 1 required positional argument: 'y'

Combining Positional and Keyword Arguments
You can combine the syntax to use both positional and keyword arguments. In a
function signature, just separate *args and **kwargs by a comma:

def general_function(*args, **kwargs):
 for arg in args:
 print(arg)
 for key, value in kwargs.items():
 print(f"{key} -> {value}")

>>> general_function("foo", "bar", x=7, y=33)
foo
bar
x -> 7
y -> 33

42 | Chapter 3: Advanced Functions

This usage—declaring a function like def general_function(*args, **kwargs)—is
the most general way to define a function in Python. A function so declared can be
called in any way, with any valid combination of keyword and nonkeyword argu‐
ments—including no arguments.

Similarly, you can call a function using both—and both will be unpacked:

>>> def addup(a, b, c=1, d=2, e=3):
... return a + b + c + d + e
...
>>> nums = (3, 4)
>>> extras = {"d": 5, "e": 2}
>>> addup(*nums, **extras)
15

There’s one last point to understand, on argument ordering. When you def the func‐
tion, you specify the arguments in this order:

1. Positional arguments (nonkeyword) arguments
2. The *args nonkeyword variable arguments
3. The **kwargs keyword variable arguments

You can omit any of these when defining a function. But any that are present must be
in this order.

All these are valid function definitions.
def combined1(a, b, *args): pass
def combined2(x, y, z, **kwargs): pass
def combined3(*args, **kwargs): pass
def combined4(x, *args): pass
def combined5(u, v, w, *args, **kwargs): pass

Violating this order will cause errors:

>>> def bad_combo(**kwargs, *args): pass
 File "<stdin>", line 1
 def bad_combo(**kwargs, *args): pass
 ^
SyntaxError: invalid syntax

Functions as Objects
In Python, functions are ordinary objects—just like integers, lists, or instances of a
class you create. The implications are profound, letting you do certain very useful
things with functions. Leveraging this is one of those secrets separating average
Python developers from great ones, because of the extremely powerful abstractions
which follow.

Functions as Objects | 43

2 Meaning: alphabetically, but generalizing beyond the letters of the alphabet.

Once you get this, it can change the way you write software forever. In fact, these
advanced patterns for using functions in Python largely transfer to other languages
you will use in the future.

To explain, let’s start by laying out a problem and solution. Imagine you have a list of
strings representing numbers:

nums = ["12", "7", "30", "14", "3"]

Suppose we want to find the biggest integer in this list. The max() built-in does not
help:

>>> max(nums)
'7'

This isn’t a bug, of course; since the objects in nums are strings, max() compares each
element lexicographically.2 By that criteria, “7” is greater than “30”, for the same rea‐
son “g” comes after “ca” alphabetically. Essentially, max() is evaluating each element
by a different criterion than what we want.

Since max()’s algorithm is simple, let’s roll our own that compares based on the inte‐
ger value of the string:

def max_by_int_value(items):
 # For simplicity, assume len(items) > 0
 biggest = items[0]
 for item in items[1:]:
 if int(item) > int(biggest):
 biggest = item
 return biggest

>>> max_by_int_value(nums)
'30'

This gives us what we want: it returns the element in the original list which is maxi‐
mal, as evaluated by our criteria.

Now imagine working with different data where you have different criteria, for exam‐
ple, a list of actual integers:

integers = [3, -2, 7, -1, -20]

Suppose we want to find the number with the greatest absolute value—i.e., distance
from zero. That would be −20 here, but standard max() won’t do that:

>>> max(integers)
7

44 | Chapter 3: Advanced Functions

Again, let’s roll our own, using the built-in abs function:

def max_by_abs(items):
 biggest = items[0]
 for item in items[1:]:
 if abs(item) > abs(biggest):
 biggest = item
 return biggest

>>> max_by_abs(integers)
-20

One more example—a list of dictionary objects:

student_joe = {'gpa': 3.7, 'major': 'physics',
 'name': 'Joe Smith'}
student_jane = {'gpa': 3.8, 'major': 'chemistry',
 'name': 'Jane Jones'}
student_zoe = {'gpa': 3.4, 'major': 'literature',
 'name': 'Zoe Fox'}
students = [student_joe, student_jane, student_zoe]

Now, what if we want the record of the student with the highest GPA? Here’s a suit‐
able max function:

def max_by_gpa(items):
 biggest = items[0]
 for item in items[1:]:
 if item["gpa"] > biggest["gpa"]:
 biggest = item
 return biggest

>>> max_by_gpa(students)
{'name': 'Jane Jones', 'gpa': 3.8, 'major': 'chemistry'}

Just one line of code is different between max_by_int_value(), max_by_abs(), and
max_by_gpa(): the comparison line. max_by_int_value() compares int(item) to
int(biggest); max_by_abs() compares abs(item) to abs(biggest); and
max_by_gpa() compares item["gpa"] to biggest["gpa"]. Other than that, these
max() functions are identical.

I don’t know about you, but having nearly identical functions like this drives me nuts.
The way out is to realize the comparison is based on a value derived from the
element—not the value of the element itself. In other words: in each cycle through the
for loop, the two elements are not themselves compared. What is compared is some
derived, calculated value: int(item), or abs(item), or item["gpa"].

It turns out we can abstract out that calculation, using what we’ll call a key function. A
key function is a function that takes exactly one argument—an element in the list. It
returns the derived value used in the comparison. In fact, int works like a function,

Functions as Objects | 45

3 Python uses the word callable to describe something that can be called like a function. This can be an actual
function, a type or class name, or an object defining the __call__ magic method. Key functions are frequently
actual functions, but they can be any callable.

even though it’s technically a type, because int("42") returns 42.3 So types and other
callables work, as long as we can invoke it like a one-argument function.

This lets us define a very generic max function:

def max_by_key(items, key):
 biggest = items[0]
 for item in items[1:]:
 if key(item) > key(biggest):
 biggest = item
 return biggest

>>> # Old way:
... max_by_int_value(nums)
'30'
>>> # New way:
... max_by_key(nums, int)
'30'
>>> # Old way:
... max_by_abs(integers)
-20
>>> # New way:
... max_by_key(integers, abs)
-20

Pay attention: you are passing the function object itself—int and abs. You are not
invoking the key function in any direct way. In other words, you write int, not int().
This function object is then called as needed by max_by_key(), to calculate the
derived value:

 # key is actually int, abs, etc.
 if key(item) > key(biggest):

To sort the students by GPA, we need a function extracting the “gpa” key from each
student dictionary. There is no built-in function that does this, but we can define our
own and pass it in:

>>> # Old way:
... max_by_gpa(students)
{'gpa': 3.8, 'name': 'Jane Jones', 'major': 'chemistry'}

>>> # New way:
... def get_gpa(who):
... return who["gpa"]
...
>>> max_by_key(students, get_gpa)
{'gpa': 3.8, 'name': 'Jane Jones', 'major': 'chemistry'}

46 | Chapter 3: Advanced Functions

Again, notice get_gpa is a function object, and we are passing that function itself to
max_by_key. We never invoke get_gpa directly; max_by_key does that automatically.

You may be realizing now just how powerful this can be. In Python, functions are
simply objects—just as much as an integer, or a string, or an instance of a class is an
object. You can store functions in variables, pass them as arguments to other func‐
tions, and even return them from other function and method calls. This all provides
new ways for you to encapsulate and control the behavior of your code.

The Python standard library demonstrates some excellent ways to use such functional
patterns. Let’s look at a key (ha!) example.

Key Functions in Python
Earlier, you learned the built-in max() function doesn’t magically do what we want
when sorting a list of numbers-as-strings:

>>> nums = ["12", "7", "30", "14", "3"]
>>> max(nums)
'7'

Again, this isn’t a bug. max() just compares elements according to the data type, and
"7" > "12" evaluates to True. But it turns out max() is customizable. You can pass it
a key function!

>>> max(nums, key=int)
'30'

The value of key is a function taking one argument—an element in the list—and
returning a value for comparison. But max() isn’t the only built-in that accepts a key
function. min() and sorted() do as well:

>>> # Default behavior...
... min(nums)
'12'
>>> sorted(nums)
['12', '14', '3', '30', '7']
>>>
>>> # And with a key function:
... min(nums, key=int)
'3'
>>> sorted(nums, key=int)
['3', '7', '12', '14', '30']

Many algorithms can be cleanly expressed using min(), max(), or sorted(), along
with an appropriate key function. Sometimes a built-in (like int or abs) will provide
what you need, but often you’ll want to create a custom function. Since this is so
commonly needed, the operator module provides some helpers. Let’s revisit the
example of a list of student records.

Key Functions in Python | 47

>>> student_joe = {'gpa': 3.7, 'major': 'physics',
 'name': 'Joe Smith'}
>>> student_jane = {'gpa': 3.8, 'major': 'chemistry',
 'name': 'Jane Jones'}
>>> student_zoe = {'gpa': 3.4, 'major': 'literature',
 'name': 'Zoe Fox'}
>>> students = [student_joe, student_jane, student_zoe]
>>>
>>> def get_gpa(who):
... return who["gpa"]
...
>>> sorted(students, key=get_gpa)
[{'gpa': 3.4, 'major': 'literature', 'name': 'Zoe Fox'},
 {'gpa': 3.7, 'major': 'physics', 'name': 'Joe Smith'},
 {'gpa': 3.8, 'major': 'chemistry', 'name': 'Jane Jones'}]

This is effective, and a fine way to solve the problem. Alternatively, the operator
module’s itemgetter() creates and returns a key function that looks up a named dic‐
tionary field:

>>> from operator import itemgetter
>>>
>>> # Sort by GPA...
... sorted(students, key=itemgetter("gpa"))
[{'gpa': 3.4, 'major': 'literature', 'name': 'Zoe Fox'},
 {'gpa': 3.7, 'major': 'physics', 'name': 'Joe Smith'},
 {'gpa': 3.8, 'major': 'chemistry', 'name': 'Jane Jones'}]
>>>
>>> # Now sort by major:
... sorted(students, key=itemgetter("major"))
[{'gpa': 3.8, 'major': 'chemistry', 'name': 'Jane Jones'},
 {'gpa': 3.4, 'major': 'literature', 'name': 'Zoe Fox'},
 {'gpa': 3.7, 'major': 'physics', 'name': 'Joe Smith'}]

Notice itemgetter() is a function that creates and returns a function—itself a good
example of how to work with function objects. In other words, the following two key
functions are completely equivalent:

What we did above:
def get_gpa(who):
 return who["gpa"]

Using itemgetter instead:
from operator import itemgetter
get_gpa = itemgetter("gpa")

This is how you use itemgetter() when the sequence elements are dictionaries. It
also works when the elements are tuples or lists. Just pass a number index instead:

>>> # Same data, but as a list of tuples.
... student_rows = [
... ("Joe Smith", "physics", 3.7),
... ("Jane Jones", "chemistry", 3.8),

48 | Chapter 3: Advanced Functions

... ("Zoe Fox", "literature", 3.4),

...]
>>>
>>> # GPA is the 3rd item in the tuple, i.e. index 2.
... # Highest GPA:
... max(student_rows, key=itemgetter(2))
('Jane Jones', 'chemistry', 3.8)
>>>
>>> # Sort by major:
... sorted(student_rows, key=itemgetter(1))
[('Jane Jones', 'chemistry', 3.8),
 ('Zoe Fox', 'literature', 3.4),
 ('Joe Smith', 'physics', 3.7)]

operator also provides attrgetter() for creating key functions based on an
attribute of the element, and methodcaller() for creating key functions based off a
method’s return value—useful when the sequence elements are instances of your own
class:

class Student:
 def __init__(self, name, major, gpa):
 self.name = name
 self.major = major
 self.gpa = gpa
 def __repr__(self):
 return f"{self.name}: {self.gpa}"

>>> student_objs = [
... Student("Joe Smith", "physics", 3.7),
... Student("Jane Jones", "chemistry", 3.8),
... Student("Zoe Fox", "literature", 3.4),
...]
>>> from operator import attrgetter
>>> sorted(student_objs, key=attrgetter("gpa"))
[Zoe Fox: 3.4, Joe Smith: 3.7, Jane Jones: 3.8]

While these are sometimes directly useful, they are also valuable as examples of good
key functions. They demonstrate how to design key functions for real use cases, so
you can see when you benefit from creating your own.

Conclusion
Every coder knows the common ways of using functions. But most only scratch the
surface of what you can do with them. Much power is unlocked when you start think‐
ing of functions as just another object type. In addition to the useful patterns in this
chapter, it is also the foundation of more powerful metaprogramming techniques.
You will learn one of the most important ones in the next chapter.

Conclusion | 49

CHAPTER 4

Decorators

Python supports a powerful tool called the decorator. Decorators let you add rich fea‐
tures to groups of functions and methods, without modifying them at all; untangle
distinct, frustratingly intertwined concerns in your code, in ways not otherwise possi‐
ble; and build powerful, extensible software frameworks. Many of the most popular
and important Python libraries in the world leverage decorators. This chapter teaches
you how to do the same.

A decorator is something you apply to a function or method. You’ve probably seen
decorators before. There’s a decorator called property often used in classes:

class Person:
 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

 @property
 def full_name(self):
 return self.first_name + " " + self.last_name

>>> person = Person("John", "Smith")
>>> print(person.full_name)
John Smith

Note that it is printing person.full_name, not person.full_name().

For another example: in the Flask web framework, here is how you define a simple
home page:

@app.route("/")
def hello():
 return "<html><body>Hello World!</body></html>"

51

1 Or method. When talking about the target of a decorator, “function” will always mean “function or method”,
unless I say otherwise.

2 For Java people: this looks just like Java annotations. However, it is completely different. Python decorators are
not in any way similar.

The app.route("/") is a decorator, applied here to the function called hello(). So
an HTTP GET request to the root URL (“/”) will be handled by the hello() function.

A decorator works by adding behavior around a function 1—meaning, lines of code
which are executed before that function begins, after it returns, or both. It does not
alter any lines of code inside the function. Typically, when you go to the trouble to
define a decorator, you plan to use it on at least two different functions, usually more.
Otherwise you’d just put the extra code inside the lone function, and not bother writ‐
ing a decorator.

Using decorators is simple and easy; even someone new to programming can learn to
use them quickly. Our objective in this chapter is different: to give you the ability to
write your own decorators, in many different useful forms. This is not a beginner
topic; it barely qualifies as intermediate. Writing decorators requires a deep under‐
standing of several sophisticated Python features and how they play together. Most
Python developers never learn how to create them. In this chapter, you will.

The Basic Decorator
Once a decorator is written, using it is easy. You just write @ and the decorator name,
on the line before you define a function:

@some_decorator
def some_function(arg):
 # blah blah

This applies the decorator called some_decorator to some_function().2 Now, it turns
out this syntax with the @ symbol is a shorthand. In essence, when byte-compiling
your code, Python will translate the above into this:

def some_function(arg):
 # blah blah
some_function = some_decorator(some_function)

This is valid Python code too; it is what people did before the @ syntax came along.
The key here is the last line:

some_function = some_decorator(some_function)

First, understand that a decorator is just a function. That’s it. It happens to be a func‐
tion taking one argument, which is the function object being decorated. It then
returns a different function. In the code snippet above you are defining a function,

52 | Chapter 4: Decorators

3 Some authors use the phrase “decorated function” to mean “the function that is decorated”—what I’m calling
the “bare function”. If you read a lot of blog posts, you’ll find the phrase used both ways. (Sometimes in the
same article.) This book will consistently use the definitions I give here.

initially called some_function. (Remember that some_function is a variable holding
a function object, because that is what the def statement does.) That function object
is passed to some_decorator(), which returns a different function object, which is
finally stored in some_function.

To keep us sane, let’s define some terminology:

• The decorator is what comes after the @. It’s a function.
• The bare function is what is def‘ed on the next line. It is, obviously, also a

function.
• The end result is the decorated function. It’s the final function that you actually

call in your code.3

Your mastery of decorators will be most graceful if you remember one thing: a deco‐
rator is just a normal, boring function. It happens to be a function taking exactly one
argument, which is itself a function. And when called, the decorator returns a differ‐
ent function.

Let’s make this concrete. Here’s a simple decorator which logs a message to stdout
every time the decorated function is called.

def printlog(func):
 def wrapper(arg):
 print("CALLING: " + func.__name__)
 return func(arg)
 return wrapper

@printlog
def foo(x):
 print(x + 2)

This decorator creates a new function, called wrapper(), and returns that. This is
then assigned to the variable foo, replacing the undecorated, bare function:

Remember, this...
@printlog
def foo(x):
 print(x + 2)

...is the exact same as this:
def foo(x):
 print(x + 2)
foo = printlog(foo)

The Basic Decorator | 53

Here’s the result:

>>> foo(3)
CALLING: foo
5

At a high level, the body of printlog() does two things: define a function called
wrapper(), then return it. Most decorators follow that structure. Notice printlog()
does not modify the behavior of the original function foo itself; all wrapper() does is
print a message to standard output, before calling the original (bare) function.

Once you’ve applied a decorator, the bare function isn’t directly accessible anymore;
you can’t call it in your code. Its name now applies to the decorated version. But that
decorated function internally retains a reference to the bare function, calling it inside
wrapper().

Generic Decorators
This version of printlog() has a shortcoming, though. Look what happens when I
apply it to a different function:

>>> @printlog
... def baz(x, y):
... return x ** y
...
>>> baz(3, 2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: wrapper() takes 1 positional argument but 2 were given

Can you spot what went wrong?

printlog() is built to wrap a function taking exactly one argument. But baz has two,
so when the decorated function is called, the whole thing blows up. There’s no reason
printlog() needs to have this restriction; all it’s doing is printing the function name.
You can fix it by declaring wrapper() with variable arguments:

A MUCH BETTER printlog.
def printlog(func):
 def wrapper(*args, **kwargs):
 print("CALLING: " + func.__name__)
 return func(*args, **kwargs)
 return wrapper

This decorator is compatible with any Python function:

>>> @printlog
... def foo(x):
... print(x + 2)
...
>>> @printlog

54 | Chapter 4: Decorators

... def baz(x, y):

... return x ** y

...
>>> foo(7)
CALLING: foo
9
>>> baz(3, 2)
CALLING: baz
9

A decorator written this way, using variable arguments, will potentially work with
functions and methods written years later—code the original developer never imag‐
ined. This structure has proven to be powerful and versatile.

The prototypical form of Python decorators.
def prototype_decorator(func):
 def wrapper(*args, **kwargs):
 return func(*args, **kwargs)
 return wrapper

We don’t always do this, though. Sometimes you are writing a decorator that only
applies to a function or method with a very specific kind of signature, and it would be
an error to use it anywhere else. So feel free to break this rule when you have a reason.

Decorating Methods
Decorators apply to methods just as well as to functions. You often don’t need to
change anything: when the wrapper has a signature of wrapper(*args, **kwargs),
like printlog() does, it works just fine with any object’s method. But sometimes you
will see code like this:

Not really necessary.
def printlog_for_method(func):
 def wrapper(self, *args, **kwargs):
 print("CALLING: " + func.__name__)
 return func(self, *args, **kwargs)
 return wrapper

This wrapper() has one required argument, named self. It works fine when applied
to a method. But for the decorator I’ve written here, self is completely unnecessary,
and in fact, it has a downside.

Simply defining wrapper(*args, **kwargs) causes self to be considered one of the
args; such a decorator works just as well with both functions and methods. But if a
wrapper is defined to require self, that means it must always be called with at least
one argument. Suddenly you have a decorator that cannot be applied to functions
which do not take at least one argument. (The fact that it’s named self does not mat‐
ter; it’s just a temporary name for that first argument, inside the scope of wrapper().)

The Basic Decorator | 55

You can apply this decorator to any method, and to some functions. But if you apply
it to a function that takes no arguments, you’ll get a runtime error.

Now, here’s a different decorator:

Using self makes sense in this case:
def enhanced_printlog_for_method(func):
 def wrapper(self, *args, **kwargs):
 print("CALLING: {} on object ID {}".format(
 func.__name__, id(self)))
 return func(self, *args, **kwargs)
 return wrapper

It could be applied like this:

class Invoice:
 def __init__(self, id_number, total):
 self.id_number = id_number
 self.total = total
 self.owed = total
 @enhanced_printlog_for_method
 def record_payment(self, amount):
 self.owed -= amount

inv = Invoice(42, 117.55)
print(f"ID of inv: {id(inv)}")
inv.record_payment(55.35)

Here’s the output when you execute:

ID of inv: 4320786472
CALLING: record_payment on object ID 4320786472

This is a different story, because this wrapper()’s body explicitly uses the current
object—a concept that only makes sense for methods. That makes the self argument
perfectly appropriate. It prevents you from using this decorator on some functions.
But since you intend this decorator to only be applied to methods, it would be an
error to apply it to a function anyway.

When writing a decorator for methods, I recommend you get in the habit of making
your wrapper only take *args and **kwargs, except when you have a clear reason to
include self. After you’ve written decorators for a while, you’ll be surprised at how
often you end up using old decorators on new callables—both functions and methods
—in ways you never imagined at first. A signature of wrapper(*args, **kwargs)
preserves that flexibility. If the decorator turns out to need an explicit self argument,
it’s easy enough to put that in.

56 | Chapter 4: Decorators

4 In a real application, you’d write the average to some kind of log sink, but we’ll use print() here because it’s
convenient for learning.

Data in Decorators
Some valuable decorator patterns rely on using variables inside the decorator func‐
tion itself. This is not the same as using variables inside the wrapper function. Let me
explain.

Imagine you need to keep a running average of what a chosen function returns. And
further, you need to do this for a family of functions or methods. We can write a dec‐
orator called running_average to handle this. As you read, note carefully how data is
defined and used:

def running_average(func):
 data = {"total" : 0, "count" : 0}
 def wrapper(*args, **kwargs):
 val = func(*args, **kwargs)
 data["total"] += val
 data["count"] += 1
 print("Average of {} so far: {:.01f}".format(
 func.__name__, data["total"] / data["count"]))
 return val
 return wrapper

Each time the function is called, the average of all calls so far is printed out.4 The dec‐
orator itself is called once for each bare function it is applied to. Then, each time the
resulting decorated function is called in the code, the wrapper() function is what’s
actually executed.

So imagine applying running_average to a function like this:

@running_average
def foo(x):
 return x + 2

This executes running_average() as a function once, which creates an internal dic‐
tionary, named data, used to keep track of foo’s metrics.

But when you run foo(), you do NOT execute running_average() again. Instead,
each time you run the decorated function foo(), it is calling the wrapper() which
running_average() created internally. This means it can access data from its con‐
taining scope.

This may not all make sense yet, so let’s step through it. Running foo() several times
produces:

>>> foo(1)
Average of foo so far: 3.00

Data in Decorators | 57

3
>>> foo(10)
Average of foo so far: 7.50
12
>>> foo(1)
Average of foo so far: 6.00
3
>>> foo(1)
Average of foo so far: 5.25
3

The placement of data is important. Pop quiz:

• What happens if you move the line defining data up one line, outside the
running_average() function?

• What happens if you move that line down, into the wrapper() function?

Looking at the code above, decide on your answers to these questions before reading
further.

To answer the first question, here’s what it looks like if you create data outside the
decorator:

This version has a bug.
data = {"total" : 0, "count" : 0}
def outside_data_running_average(func):
 def wrapper(*args, **kwargs):
 val = func(*args, **kwargs)
 data["total"] += val
 data["count"] += 1
 print("Average of {} so far: {:.01f}".format(
 func.__name__, data["total"] / data["count"]))
 return func(*args, **kwargs)
 return wrapper

If you do this, every decorated function shares the exact same data dictionary! This
actually doesn’t matter if you only ever decorate just one function. But you never
bother to write a decorator unless it’s going to be applied to at least two:

@outside_data_running_average
def foo(x):
 return x + 2

@outside_data_running_average
def bar(x):
 return 3 * x

And that produces a problem:

>>> # First call to foo...
... foo(1)
Average of foo so far: 3.0

58 | Chapter 4: Decorators

3
>>> # First call to bar...
... bar(10)
Average of bar so far: 16.5
30
>>> # Second foo should still average 3.00!
... foo(1)
Average of foo so far: 12.0

Because outside_data_running_average() uses the same data dictionary for all the
functions it decorates, the statistics are conflated.

Now, for the other question: what if you define data inside wrapper()?

This version has a DIFFERENT bug.
def running_average_data_in_wrapper(func):
 def wrapper(*args, **kwargs):
 data = {"total" : 0, "count" : 0}
 val = func(*args, **kwargs)
 data["total"] += val
 data["count"] += 1
 print("Average of {} so far: {:.01f}".format(
 func.__name__, data["total"] / data["count"]))
 return func(*args, **kwargs)
 return wrapper

@running_average_data_in_wrapper
def foo(x):
 return x + 2

Look at the average as we call this decorated function multiple times:

>>> foo(1)
Average of foo so far: 3.0
3
>>> foo(5)
Average of foo so far: 7.0
7
>>> foo(20)
Average of foo so far: 22.0
22

Do you see why the running average is wrong? The data dictionary is reset every time
the decorated function is called, because it is reset every time wrapper() is called. This
is why it’s important to consider the scope when implementing your decorator. Here’s
the correct version again (repeated so you don’t have to skip back):

def running_average(func):
 data = {"total" : 0, "count" : 0}
 def wrapper(*args, **kwargs):
 val = func(*args, **kwargs)
 data["total"] += val
 data["count"] += 1

Data in Decorators | 59

 print("Average of {} so far: {:.01f}".format(
 func.__name__, data["total"] / data["count"]))
 return func(*args, **kwargs)
 return wrapper

So when exactly is running_average() executed? The decorator function itself is exe‐
cuted exactly once for every function it decorates. If you decorate N functions,
running_average() is executed N times, so we get N different data dictionaries, each
tied to one of the resulting decorated functions. This has nothing to do with how
many times a decorated function is executed. The decorated function is, basically, one
of the created wrapper() functions. That wrapper() can be executed many times,
using the same data dictionary that was in scope when that wrapper() was defined.

This is why running_average produces the correct behavior:

@running_average
def foo(x):
 return x + 2

@running_average
def bar(x):
 return 3 * x

>>> # First call to foo...
... foo(1)
Average of foo so far: 3.0
3
>>> # First call to bar...
... bar(10)
Average of bar so far: 30.0
30
>>> # Second foo gives correct average this time!
... foo(1)
Average of foo so far: 3.0
3

Accessing Inner Data
What if you want to peek into data? The way we’ve written running_average, you
can’t—at least not with ordinary Python code. data persists because of the reference
inside of wrapper(), and in a sense is veiled from outside access.

But there is an easy solution: simply assign data as an attribute to the wrapper object.
For example:

collectstats is much like running_average, but lets
you access the data dictionary directly, instead
of printing it out.
def collectstats(func):
 data = {"total" : 0, "count" : 0}
 def wrapper(*args, **kwargs):

60 | Chapter 4: Decorators

 val = func(*args, **kwargs)
 data["total"] += val
 data["count"] += 1
 return val
 wrapper.data = data
 return wrapper

See that line wrapper.data = data? Yes, you can do that. A function in Python is just
an object, and in Python, you can add new attributes to objects by just assigning
them. This conveniently annotates the decorated function:

@collectstats
def foo(x):
 return x + 2

>>> foo.data
{'total': 0, 'count': 0}
>>> foo(1)
3
>>> foo.data
{'total': 3, 'count': 1}
>>> foo(2)
4
>>> foo.data
{'total': 7, 'count': 2}

It’s clear now why collectstats doesn’t contain any print statement: you don’t need
one! We can check the accumulated numbers at any time, because this decorator
annotates the function itself, with that data attribute.

Nonlocal Decorator State
Let’s switch to another problem you might run into. Here’s a decorator that counts
how many times a function has been called:

Watch out, this has a bug...
count = 0
def countcalls(func):
 def wrapper(*args, **kwargs):
 global count
 count += 1
 print(f"# of calls: {count}")
 return func(*args, **kwargs)
 return wrapper

@countcalls
def foo(x):
 return x + 2

@countcalls
def bar(x):
 return 3 * x

Data in Decorators | 61

This version of countcalls() has a bug. Do you see it?

Here it is: this version stores count as global, meaning every function that is decora‐
ted will use the same variable:

>>> foo(1)
of calls: 1
3
>>> foo(2)
of calls: 2
4
>>> bar(3)
of calls: 3
9
>>> bar(4)
of calls: 4
12
>>> foo(5)
of calls: 5
7

No good can come from this, so we need a better way. But the solution is trickier than
it seems. Here’s one attempt:

Move count inside countcalls, and remove the
"global count" line. But it still has a bug...
def countcalls(func):
 count = 0
 def wrapper(*args, **kwargs):
 count += 1
 print(f"# of calls: {count}")
 return func(*args, **kwargs)
 return wrapper

But that just creates a different problem:

>>> foo(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 6, in wrapper
UnboundLocalError: local variable 'count' referenced before assignment

We can’t use global, because it’s not global. But we can use the nonlocal keyword:

Final working version!
def countcalls(func):
 count = 0
 def wrapper(*args, **kwargs):
 nonlocal count
 count += 1
 print(f"# of calls: {count}")
 return func(*args, **kwargs)
 return wrapper

62 | Chapter 4: Decorators

5 When you write data["count"] += 1, Python reads that as data.__setitem__("count", data["count"] +
1).

This finally works correctly:

>>> foo(1)
of calls: 1
3
>>> foo(2)
of calls: 2
4
>>> bar(3)
of calls: 1
9
>>> bar(4)
of calls: 2
12
>>> foo(5)
of calls: 3

Applying nonlocal gives the count variable a special scope that is part way between
local and global. Essentially, Python will search for the nearest enclosing scope that
defines a variable named count, and use it like it’s a global.

You may be wondering why we didn’t need to use nonlocal with the first version of
running_average above—here it is again, for reference:

def running_average(func):
 data = {"total" : 0, "count" : 0}
 def wrapper(*args, **kwargs):
 val = func(*args, **kwargs)
 data["total"] += val
 data["count"] += 1
 print("Average of {} so far: {:.01f}".format(
 func.__name__, data["total"] / data["count"]))
 return func(*args, **kwargs)
 return wrapper

The line count += 1 is actually modifying the value of the count variable itself,
because it really means count = count + 1. And whenever you modify (instead of
just read) a variable that was created in a larger scope, Python requires you to declare
that’s what you actually want, with global or nonlocal.

Here’s the sneaky thing: when you write data["count"] += 1, you are not actually
modifying data! Or rather, you’re not modifying the variable named data, which
points to a dictionary object. Instead, the statement data["count"] += 1 invokes a
method on the data object. (Specifically, __setitem__().5)

Data in Decorators | 63

This does change the state of the dictionary. But it doesn’t make data point to a differ‐
ent dictionary. In contrast, count += 1 makes count point to a different integer, so
use nonlocal there.

Decorators That Take Arguments
Early in this chapter, I showed you an example decorator from the Flask framework:

@app.route("/")
def hello():
 return "<html><body>Hello World!</body></html>"

This is different from any decorator we’ve implemented so far, because it actually
takes an argument. How do we write decorators that can do this? For example, imag‐
ine a family of decorators adding a number to the return value of a function:

def add2(func):
 def wrapper(n):
 return func(n) + 2
 return wrapper

def add4(func):
 def wrapper(n):
 return func(n) + 4
 return wrapper

@add2
def foo(x):
 return x ** 2

@add4
def bar(n):
 return n * 2

There is literally only one character difference between add2 and add4. Wouldn’t it be
better if we can do something like this:

@add(2)
def foo(x):
 return x ** 2

@add(4)
def bar(n):
 return n * 2

We can. The key is to understand that add is actually not a decorator; it is a function
that returns a decorator. In other words, add is a function that returns another func‐
tion—since the returned decorator is, itself, a function.

64 | Chapter 4: Decorators

To make this work, we write a function called add(), which creates and returns the
decorator:

def add(increment):
 def decorator(func):
 def wrapper(n):
 return func(n) + increment
 return wrapper
 return decorator

It’s easiest to understand from the inside out:

• The wrapper() function is just like in the other decorators. Ultimately, when you
call foo() (the original function name), it’s actually calling wrapper().

• Moving up, we have the aptly named decorator. It is a function.
• At the top level is add. This is not a decorator. It’s a function that returns a

decorator.

Notice the closure here. The increment variable is encapsulated in the scope of the
add() function. We cannot access its value outside the decorator, in the calling con‐
text. But we don’t need to, because wrapper() itself has access to it.

Suppose the Python interpreter is parsing your program and encounters the follow‐
ing code:

@add(2)
def f(n):
 #

Python takes everything between the @ symbol and the end-of-line character as a sin‐
gle Python expression—add(2) in this case. That expression is evaluated. This all
happens at compile time. Evaluating the decorator expression means executing
add(2), which will return a function object. That function object is the decorator. It’s
named decorator inside the body of the add() function, but it doesn’t really have a
name at the top level; it’s just applied to f().

What can help you see more clearly is to think of functions as things that are stored
in variables. In other words, if I write def foo(x): in my code, I can say to myself:
“I’m creating a function called foo”.

But there is another way to think about it. I could instead say: “I’m creating a func‐
tion object, and storing it in a variable called foo”. Believe it or not, this is closer to
how Python actually works. So things like this are possible:

>>> def foo():
... print("This is foo")
>>> baz = foo
>>> baz()

Decorators That Take Arguments | 65

This is foo
>>> # foo and baz have the same id()... so they
... # refer to the same function object.
>>> id(foo)
4301663768
>>> id(baz)
4301663768

Now, back to add. As you realize add(2) returns a function object, it’s easy to imagine
storing that in a variable named add2. As a matter of fact, you can do this:

add2 = add(2)
@add2
def foo(x):
 return x ** 2

Remember that @ is a shorthand:

This...
@some_decorator
def some_function(arg):
 # blah blah

... is translated by Python into this:
def some_function(arg):
 # blah blah
some_function = some_decorator(some_function)

So for add, the following are all equivalent:

add2 = add(2) # Store the decorator in the add2 variable

This function definition...
@add2
def foo(x):
 return x ** 2

... is translated by Python into this:
def foo(x):
 return x ** 2
foo = add2(foo)

But also, this...
@add(2)
def foo(x):
 return x ** 2

... is translated by Python into this:
def foo(x):
 return x ** 2
foo = add(2)(foo)

66 | Chapter 4: Decorators

Look over these variations, and trace through what’s going on in your mind, until you
understand how they are all equivalent. The expression add(2)(foo) in particular is
interesting. Python parses this left-to-right. So it first executes add(2), which returns
a function object. In this expression, that function has no name; it is temporary and
anonymous. The very next character is “(”. This causes Python to take that anony‐
mous function object, and immediately call it. It is called with the argument foo
(which is the bare function—the function which we are decorating). The anonymous
function then returns a different function object, which we finally store in the variable
called foo, reassigning that variable name.

Study that previous paragraph until you fully get it. This is important.

Notice that in the line foo = add(2)(foo), the name foo means something different
each time it’s used. When you write something like n = n + 3, the name n refers to
something different on either side of the equals sign. In the exact same way, in the
line foo = add(2)(foo), the variable foo holds two different function objects on the
left and right sides.

Class-Based Decorators
I lied to you.

I repeatedly told you that a decorator is just a function. Well, decorators are usually
implemented as functions; that is true. But it is also possible to implement a decorator
as a class. In fact, any decorator that you can implement as a function can be imple‐
mented with a class instead.

Why would you do this? For certain kinds of decorators, classes are better suited.
They can be more readable, and otherwise easier to work with. In addition, they let
you use the full feature set of Python’s object system. For example, if you have a col‐
lection of related decorators, you can leverage inheritance to collect their shared code.

Most decorators are probably better implemented as functions, though it depends on
whether you prefer object-oriented or functional abstractions. It is best to learn both
ways, then decide which you prefer in your own code on a case-by-case basis.

Implementing Class-Based Decorators
The secret to decorating with classes is a magic method: __call__(). Any object can
implement __call__() to make itself callable—meaning, it can be called like a func‐
tion. Here’s an example:

class Prefixer:
 def __init__(self, prefix):
 self.prefix = prefix

Class-Based Decorators | 67

 def __call__(self, message):
 return self.prefix + message

We can call instances of this class like a function:

>>> simonsays = Prefixer("Simon says: ")
>>> simonsays("Get up and dance!")
'Simon says: Get up and dance!'

Just looking at simonsays("Get up and dance!") in isolation, you’d never guess it is
anything other than a normal function. In fact, it’s an instance of Prefixer.

What’s happening is that any time you type an identifier name, followed by the “(”
(left parenthesis) character, Python immediately translates that into the __call__()
method. In fact, amazingly enough, this is true even for regular functions!

>>> def f(x):
... return x + 1
>>> # This...
>>> f(2)
3
>>> # ... is the EXACT SAME as this:
>>> f.__call__(2)
3

When you use __call__(), you are hooking into something very fundamental in
how Python works.

You can use __call__() to implement decorators. Before proceeding, think back to
the @printlog decorator.Using this information about __call__(), how might you
implement printlog() as a class instead of a function? I encourage you to pause and
try implementing it yourself, before you proceed.

The basic approach is to pass func (the bare function) to the constructor of a decora‐
tor class, and adapt wrapper() to be the __call__() method. Like this:

class PrintLog:
 def __init__(self, func):
 self.func = func
 def __call__(self, *args, **kwargs):
 print(f"CALLING: {self.func.__name__}")
 return self.func(*args, **kwargs)

Compare to the function version you saw earlier:
def printlog(func):
 def wrapper(*args, **kwargs):
 print("CALLING: " + func.__name__)
 return func(*args, **kwargs)
 return wrapper

>>> @PrintLog
... def foo(x):
... print(x + 2)

68 | Chapter 4: Decorators

...
>>> @printlog
... def baz(x, y):
... return x ** y
...
>>> foo(7)
CALLING: foo
9
>>> baz(3, 2)
CALLING: baz
9

From the user’s point of view, @Printlog and @printlog work exactly the same.

Benefits of Class-Based Decorators
Class-based decorators have some advantages over function-based decorators. For
one thing, the decorator is a class, which means you can leverage inheritance. So if
you have a family of related decorators, you can reuse code between them. Here’s an
example:

import sys
class ResultAnnouncer:
 stream = sys.stdout
 prefix = "RESULT"
 def __init__(self, func):
 self.func = func
 def __call__(self, *args, **kwargs):
 value = self.func(*args, **kwargs)
 self.stream.write(f"{self.prefix}: {value}\n")
 return value

class StdErrResultAnnouncer(ResultAnnouncer):
 stream = sys.stderr
 prefix = "ERROR"

Another benefit is when you prefer to accumulate state in object attributes, instead of
a closure. For example, the countcalls function decorator (discussed in “Nonlocal
Decorator State” on page 61) could be implemented as a class:

class CountCalls:
 def __init__(self, func):
 self.func = func
 self.count = 0
 def __call__(self, *args, **kwargs):
 self.count += 1
 print(f"# of calls: {self.count}")
 return self.func(*args, **kwargs)

@CountCalls
def foo(x):
 return x + 2

Class-Based Decorators | 69

6 This would also be a way to expose the data dict of the @collectstats decorator, from earlier in the chapter.
7 I believe it may have more to do with what language you “grew up” with. Someone who first learned to code in

Java will tend to think best in terms of classes; someone with a mathematical background, or whose first cod‐
ing language was more function oriented, will tend to think better in terms of nested functions.

Notice this also lets us access foo.count, if we want to check the count outside of the
decorated function. The function version didn’t let us do this.6

When creating decorators which take arguments, the structure is a little different. In
this case, the constructor accepts not the func object to be decorated, but the parame‐
ters on the decorator line. The __call__() method must take the func object, define
a wrapper function, and return it—similar to simple function-based decorators:

Class-based version of the "add" decorator above.
class Add:
 def __init__(self, increment):
 self.increment = increment
 def __call__(self, func):
 def wrapper(n):
 return func(n) + self.increment
 return wrapper

You then use it like you would any other argument-taking decorator:

>>> @Add(2)
... def foo(x):
... return x ** 2
...
>>> @Add(4)
... def bar(n):
... return n * 2
...
>>> foo(3)
11
>>> bar(77)
158

Any function-based decorator can be implemented as a class-based decorator; you
simply adapt the decorator function itself to __init__(), and wrapper() to
__call__(). It’s possible to design class-based decorators which cannot be translated
into a function-based form, though.

For certain complex decorators, some people feel that class-based decorators are eas‐
ier to read than function-based ones. In particular, many people seem to find multi‐
nested def statements hard to reason about. Others (including your author) feel the
opposite. This is a matter of preference,7 and I recommend you practice with both
styles before coming to your own conclusions.

70 | Chapter 4: Decorators

In this section, I have capitalized the names of class-based decorators. I did this
because I think it makes this section easier to understand. But that is not what I
actually do in real code.

We have conflicting conventions here. Python class names are capitalized, and func‐
tion names start with a lowercase letter. But whether a decorator is implemented as a
function or class is an implementation detail. In fact, you may create a decorator as a
function, and then later refactor it as a class—or vice versa. People using your decora‐
tor probably do not know or care whether it’s a class or a function; to change its cas‐
ing each time is a waste of effort, and breaks all the code using that decorator already.

So in my own code, I always use function-name conventions for decorators, even if
they are implemented as a class. Essentially creating a higher-priority naming con‐
vention. I suggest you do this also; it will make it easier for everyone using the deco‐
rators you write, including you.

Decorators for Classes
I lied to you again. I said decorators are applied to functions and methods. Well, they
can also be applied to classes.

Understand this has nothing to do with the last section’s topic, on implementing deco‐
rators as classes. A decorator can be implemented as a function, or as a class; and that
decorator can be applied to a function, or to a class. They are independent ideas.
Here, we are talking about how to decorate classes instead of functions.

To introduce an example, let me explain Python’s built-in repr() function. When
called with one argument, this returns a string, meant to represent the passed object.
It’s similar to str(); the difference is that while str() returns a human-readable
string, repr() is meant to return a string version of the Python code needed to recre‐
ate it. So imagine a simple Penny class:

class Penny:
 value = 1

penny = Penny()

Ideally, repr(penny) returns the string "Penny()". But that’s not what happens by
default:

>>> class Penny:
... value = 1
>>> penny = Penny()
>>> repr(penny)
'<__main__.Penny object at 0x10229ff60>'

You can fix this by implementing a __repr__() method on your classes, which
repr() will use:

Decorators for Classes | 71

>>> class Penny:
... value = 1
... def __repr__(self):
... return "Penny()"
>>> penny = Penny()
>>> repr(penny)
'Penny()'

Let’s create a decorator that will automatically add a __repr__() method to any class.
You might be able to guess how it works. Instead of a wrapper function, the decorator
returns a class:

>>> def autorepr(cls):
... def cls_repr(self):
... return f"{cls.__name__}()"
... cls.__repr__ = cls_repr
... return cls
...
>>> @autorepr
... class Penny:
... value = 1
...
>>> penny = Penny()
>>> repr(penny)
'Penny()'

It’s suitable for classes with no-argument constructors, like Penny. Note how the dec‐
orator modifies cls directly. The original class is returned; that original class just now
has a __repr__() method. Can you see how this is different from what we did with
decorators of functions? With those, the decorator returned a new, different function
object.

Another strategy for decorating classes is closer in spirit: creating a new subclass
within the decorator, returning that subclass in place of the original:

def autorepr_subclass(cls):
 class NewClass(cls):
 def __repr__(self):
 return f"{cls.__name__}()"
 return NewClass

This has the disadvantage of creating a new type:

>>> @autorepr_subclass
... class Nickel:
... value = 5
...
>>> nickel = Nickel()
>>> type(nickel)
<class '__main__.autorepr_subclass.<locals>.NewClass'>

72 | Chapter 4: Decorators

The resulting object’s type is not obviously related to the decorated class. That makes
debugging harder, creates unclear log messages, and throws a greasy wrench into the
middle of your inheritance hierarchy. For this reason, I recommend the first
approach.

Class decorators tend to be less useful in practice than those for functions and meth‐
ods. One real use is to automatically add dynamically generated methods. But they
are more flexible than that. You can even express the singleton pattern using class
decorators:

def singleton(cls):
 instances = {}
 def get_instance():
 if cls not in instances:
 instances[cls] = cls()
 return instances[cls]
 return get_instance

There is only one Elvis.
@singleton
class Elvis:
 pass

Note the IDs are the same:

>>> elvis1 = Elvis()
>>> elvis2 = Elvis()
>>> id(elvis1)
4410742144
>>> id(elvis2)
4410742144

This singleton class decorator does not return a class; it returns a function object
(get_instance). This means that in your code, Elvis will actually be that function
object, rather than a class.

This is not without consequences; writing code like isinstance(elvis1, Elvis) will
raise a TypeError, for example. This and other effects create code situations which
are confusing, to say the least. It illustrates once again why we want to be careful
about what is actually returned when we write decorators for classes.

Conclusion
Decorators are a powerful tool for metaprogramming in Python. It is no mistake that
some of the most successful and famous Python libraries use them extensively in
their codebase. When you learn to write decorators, not only do you add this power
tool to your toolbox, but you also permanently level up your deep understanding of
Python itself.

Conclusion | 73

CHAPTER 5

Exceptions and Errors

Errors happen. That’s why every practical programming language provides a rich
framework for dealing with them.

Python’s error model is based on exceptions. Some of you reading this are familiar
with exceptions, and some are not. Some of you have used exceptions in other lan‐
guages, but not yet with Python. This chapter is for all of you.

If you are familiar with how exceptions work in Java, C++, or C#, you’ll find Python
uses similar concepts, even if the syntax is rather different. And beyond those similar‐
ities lie uniquely Pythonic patterns.

We start with the basics. Even if you’ve used Python exceptions before, I recommend
reading all of this chapter. Odds are you will learn useful things, even in sections
which appear to discuss what you’ve seen before.

The Basic Idea
An exception is a way to interrupt the normal flow of code. When an exception
occurs, the block of Python code will stop executing—literally in the middle of the
line—and immediately jump to another block of code, designed to handle the
situation.

Often an exception means an error of some sort, but it doesn’t have to be. It can be
used to signal anticipated events, which are best handled in an interrupt-driven way.
Let’s illustrate the common, simple cases first, before exploring more sophisticated
patterns.

You’ve already encountered exceptions, even if you didn’t realize it. Here’s a little pro‐
gram using a dict:

75

favdessert.py
def describe_favorite(category):
 "Describe my favorite food in a category."
 favorites = {
 "appetizer": "calamari",
 "vegetable": "broccoli",
 "beverage": "coffee",
 }
 return "My favorite {} is {}.".format(
 category, favorites[category])

message = describe_favorite("dessert")
print(message)

When run, this program exits with an error:

Traceback (most recent call last):
 File "favdessert.py", line 12, in <module>
 message = describe_favorite("dessert")
 File "favdessert.py", line 10, in describe_favorite
 category, favorites[category])
KeyError: 'dessert'

When you look up a missing dictionary key like this, we say that Python raises a Key
Error. (In other languages, the terminology is “throw an exception”. Same idea;
Python uses the word “raise” instead of “throw”.) That KeyError is an exception. In
fact, most errors you see in Python are exceptions. This includes IndexError for bad
indices (e.g., in lists), TypeError for incompatible types, ValueError for bad values,
and so on. When an error occurs, Python responds by raising an exception.

Handling Exceptions
An exception needs to be handled. If not, your program will crash. You handle it with
try/except blocks. They look like this:

Replace the last few lines with the following:
try:
 message = describe_favorite("dessert")
 print(message)
except KeyError:
 print("I have no favorite dessert. I love them all!")

Notice the structure. You have the keyword try, followed by an indented block of
code, immediately followed by except KeyError, which has its own block of code.
We say the except block catches the KeyError exception.

Run the program with these new lines, and you get the following output:

I have no favorite dessert. I love them all!

76 | Chapter 5: Exceptions and Errors

Importantly, the new program exits successfully; its exit code to the operating system
indicates “success” rather than “failure”.

Here’s how try and except work:

• Python starts executing lines of code in the try block.
• If Python gets to the end of the try block and no exceptions are raised, Python

skips over the except block completely. None of its lines are executed, and
Python proceeds to the next line after (if there is one).

• If an exception is raised anywhere in the try block, the program immediately
stops—in the middle of the line, skipping the rest of that line and any remaining
lines in the try block.

• Python then checks whether the exception type (KeyError, in this case) matches
the except clause. If so, it jumps to the matching block’s first line.

• If the exception does not match the except block, the exception ignores it, acting
like the block isn’t even there. If no higher-level code has an except block to
catch that exception, the program will crash.

Let’s wrap these lines of code in a function:

def print_description(category):
 try:
 message = describe_favorite(category)
 print(message)
 except KeyError:
 print(f"I have no favorite {category}. I love them all!")

Notice how print_description() behaves differently, depending on what you feed
it:

>>> print_description("dessert")
I have no favorite dessert. I love them all!
>>> print_description("appetizer")
My favorite appetizer is calamari.
>>> print_description("beverage")
My favorite beverage is coffee.
>>> print_description("soup")
I have no favorite soup. I love them all!

Exceptions for Flow Control
Exceptions are not just for damage control. You will sometimes use them as a flow-
control tool, to deal with ordinary variations you know can occur at runtime. Sup‐
pose, for example, your program loads data from a file, in JSON format. You import
the json.load() function in your code:

from json import load

The Basic Idea | 77

1 Not a real library, so far as I know. But after this book is published, I’m sure one of you will make a library
with that name, just to mess with me.

2 Especially in larger applications, exception handling often integrates with logging. See Chapter 9 for details.

json is part of Python’s standard library, so it’s always available. Now, imagine there’s
an open-source library called speedyjson,1 with a load() function just like what’s in
the standard library—except twice as fast. And your program works with big JSON
files, so you want to preferentially use the speedyjson version when available. In
Python, importing something that does not exist raises an ImportError:

If speedyjson isn't installed...
>>> from speedyjson import load
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
ImportError: No module named 'speedyjson'

How can you use speedyjson if it’s there, yet gracefully fall back on json when it’s
not? Use a try/except block:

try:
 from speedyjson import load
except ImportError:
 from json import load

If speedyjson is installed and importable, load() will refer to its version of the func‐
tion in your code. Otherwise you get json.load().

A single try can have multiple except blocks. For example, int() will raise a Type
Error if passed a nonsensical type; it raises ValueError if the type is acceptable, but
its value cannot be converted to an integer:

try:
 value = int(user_input)
except ValueError:
 print("Bad value from user")
except TypeError:
 print("Invalid type (probably a bug)")

More realistically, you might log different error events2 with different levels of
severity:

try:
 value = int(user_input)
except ValueError:
 logging.error("Bad value from user: %r", user_input)
except TypeError:
 logging.critical(
 "Invalid type (probably a bug): %r", user_input)

78 | Chapter 5: Exceptions and Errors

If an exception is raised, Python will check whether its type matches the first except
block. If not, it checks the next. The first matching except block is executed, and all
others are skipped over entirely—so you will never have more than one of the except
blocks executed for a given try. Of course, if none of them match, the exception con‐
tinues rising until something catches it. (Or the process dies.)

There’s a good rule of thumb that I suggest you start building as a habit now: put as
little code as possible in the try block. You do this so your except block(s) will not
catch or mask errors that they should not.

Finally Blocks
Sometimes you will want to have clean-up code that runs no matter what, even if an
exception is raised. You can do this by adding a finally block:

try:
 line1
 line2
 # etc.
finally:
 line1
 line2
 # etc.

The code in the finally block is always executed. If an exception is raised in the try
block, Python will immediately jump to the finally block, run its lines, then raise
the exception. If an exception is not raised, Python will run all the lines in the try
block, then run the lines in the finally block. It’s a way to say, “Run these lines no
matter what”.

You can also have one (or more) except clauses:

try:
 line1
 line2
 # etc.
except FirstException:
 line1
 line2
 # etc.
except SecondException:
 line1
 line2
 # etc.
finally:
 line1
 line2
 # etc.

The Basic Idea | 79

What’s executed and when depends on whether an exception is raised. If not, the
lines in the try block will run, followed by the lines in the finally block; none of the
except blocks run. If an exception is raised, and it matches one of the except blocks,
then the finally block runs last. The order is: the try block (up until the exception is
raised), then the matching except block, and then the finally block.

What if an exception is raised, but there is no matching except block? The except
blocks are ignored, because none of them match. The lines of code in try are exe‐
cuted, up until the exception is raised. Python immediately jumps to the finally
block; when its lines finish, only then is the exception raised.

It’s important to understand this ordering. When you include a finally block, and
an exception is raised that does not match any except block, then the code in the
finally block runs before that exception gets passed to the next higher level. A
finally block is like insurance, for code that must run, no matter what.

Here’s a good example. Imagine writing control code that does batch calculations on a
fleet of cloud virtual machines. You issue an API call to rent them, and pay by the
hour until you release them. Your code might look something like this:

fleet_config is an object with the details of what
virtual machines to start, and how to connect them.
fleet = CloudVMFleet(fleet_config)
job_config details what kind of batch calculation to run.
job = BatchJob(job_config)
.start() makes the API calls to rent the instances,
blocking until they are ready to accept jobs.
fleet.start()
Now submit the job. It returns a RunningJob handle.
running_job = fleet.submit_job(job)
Wait for it to finish.
running_job.wait()
And now release the fleet of VM instances, so we
don't have to keep paying for them.
fleet.terminate()

Now imagine running_job.wait() raises a socket.timeout exception (which means
the network connection has timed out). This causes a stack trace, and the program
crashes; or maybe some higher-level code actually catches the exception.

Regardless, now fleet.terminate() is never called. Whoops. That could be really
expensive.

To save your bank balance (or keep your job), rewrite the code using a finally block:

fleet = CloudVMFleet(fleet_config)
job = BatchJob(job_config)
try:
 fleet.start()
 running_job = fleet.submit_job(job)

80 | Chapter 5: Exceptions and Errors

 running_job.wait()
finally:
 fleet.terminate()

This code expresses the idea: “no matter what, terminate the fleet of rented virtual
machines.” Even if an error in fleet.submit_job(job) or running_job.wait()
makes the program crash, it will still call fleet.terminate() with its dying breath.

Dictionary Exceptions
Let’s look at dictionaries again. When working directly with a dictionary, you can use
the “if key in dictionary” pattern to avoid a KeyError, instead of try/except blocks:

Another approach we could have taken with favdessert.py
def describe_favorite_or_default(category):
 'Describe my favorite food in a category.'
 favorites = {
 "appetizer": "calamari",
 "vegetable": "broccoli",
 "beverage": "coffee",
 }
 if category in favorites:
 message = "My favorite {} is {}.".format(
 category, favorites[category])
 else:
 message = f"I have no favorite {category}. I love them all!"
 return message

message = describe_favorite_or_default("dessert")
print(message)

The general pattern is:

Using "if key in dictionary" idiom.
if key in mydict:
 value = mydict[key]
else:
 value = default_value

Contrast with "try/except KeyError".
try:
 value = mydict[key]
except KeyError:
 value = default_value

Many developers prefer using the “if key in dictionary” idiom, or using dict.get().
Sometimes you cannot do that, because the dict is buried in some code where you
cannot get to it. A try/except block catching KeyError is your only choice then.

The Basic Idea | 81

Exceptions Are Objects
An exception is an object: an instance of an exception class. KeyError, IndexError,
TypeError, and ValueError are all built-in classes, which inherit from a base class
called Exception. The code except KeyError: means “if the exception just raised is
of type KeyError, run this block of code.”

So far, I haven’t shown you how to deal with those exception objects directly. And
often, you won’t need to. But sometimes you want more information about what hap‐
pened, and capturing the exception object can help. Here’s the structure:

try:
 do_something()
except ExceptionClass as exception_object:
 handle_exception(exception_object)

Here, ExceptionClass is some exception class, like KeyError, etc. In the except block,
exception_object will be an instance of that class. You can choose any name for that
variable; no one actually calls it exception_object. Most prefer shorter names like
ex, exc, or err. The methods and contents of that object will depend on the kind of
exception, but almost all will have an attribute called args that will be a tuple of what
was passed to the exception’s constructor. The args of a KeyError, for example, will
have one element—the missing key:

Atomic numbers of noble gases.
nobles = {'He': 2, 'Ne': 10,
 'Ar': 18, 'Kr': 36, 'Xe': 54}
def show_element_info(elements):
 for element in elements:
 print('Atomic number of {} is {}'.format(
 element, nobles[element]))
try:
 show_element_info(['Ne', 'Ar', 'Br'])
except KeyError as err:
 missing_element = err.args[0]
 print(f"Missing data for element: {missing_element}")

Running this code gives you the following output:

Atomic number of Ne is 10
Atomic number of Ar is 18
Missing data for element: Br

The interesting bit is in the except block. Writing except KeyError as err stores
the exception object in the err variable. That lets us look up the offending key, by
peeking in err.args. We could not get the offending key any other way, unless we
want to modify show_element_info() (which we may not want to do, or perhaps
can’t do, as described before).

82 | Chapter 5: Exceptions and Errors

Let’s walk through a more sophisticated example. In the os module, the makedirs()
function will create a directory:

Creates the directory "riddles", relative
to the current directory.
import os
os.makedirs("riddles")

By default, if the directory already exists, makedirs() will raise FileExistsError.
Imagine you are writing a web application, and need to create an upload directory for
each new user. That directory should not exist yet; if it does, that’s an error and needs
to be logged. Our upload directory–creating function might look like this:

First version....
import os
import logging
UPLOAD_ROOT = "/var/www/uploads/"
def create_upload_dir(username):
 userdir = os.path.join(UPLOAD_ROOT, username)
 try:
 os.makedirs(userdir)
 except FileExistsError:
 logging.error(
 "Upload dir for new user already exists")

It’s great we are detecting and logging the error, but the error message isn’t informa‐
tive enough to be helpful. We at least need to know the offending username, but it’s
even better to know the directory’s full path (so you don’t have to dig in the code to
remind yourself what UPLOAD_ROOT was set to).

Fortunately, FileExistsError objects have an attribute called filename. This is a
string, and the path to the already-existing directory. We can use that to improve the
log message:

Better version!
import os
import logging
UPLOAD_ROOT = "/var/www/uploads/"
def create_upload_dir(username):
 userdir = os.path.join(UPLOAD_ROOT, username)
 try:
 os.makedirs(userdir)
 except FileExistsError as err:
 logging.error("Upload dir already exists: %s",
 err.filename)

Only the except block is different. That filename attribute is perfect for a useful log
message.

Exceptions Are Objects | 83

Raising Exceptions
ValueError is a built-in exception that signals some data is of the correct type, but its
format isn’t valid. It shows up everywhere:

>>> int("not a number")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'not a number'

Your own code can raise exceptions, just like int() does. It should, in fact, so you
have better error messages. (And sometimes for other reasons—more on that later.)
You can do this with the raise statement. The most common form is this:

raise ExceptionClass(arguments)

For ValueError specifically, it might look like this:

def positive_int(value):
 number = int(value)
 if number <= 0:
 raise ValueError(f"Bad value: {value}")
 return number

Focus on the raise line in positive_int(). You simply create an instance of Value
Error, and pass it directly to raise. Really, the syntax is raise exception_object—
though usually you just create the object inline. ValueError ’s constructor takes one
argument, a descriptive string. This shows up in stack traces and log messages, so be
sure to make it informative and useful:

>>> positive_int("-3")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in positive_int
ValueError: Bad value: -3
>>> positive_int(-7.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in positive_int
ValueError: Bad value: -7.0

Let’s show a more complex example. Imagine you have a Money class:

class Money:
 def __init__(self, dollars, cents):
 self.dollars = dollars
 self.cents = cents
 def __repr__(self):
 # Renders the object nicely on the prompt.
 return f"Money({self.dollars}, {self.cents})"
 # Plus other methods, which aren't important to us now.

84 | Chapter 5: Exceptions and Errors

3 It is better to make this a class method of Money, rather than a separate function. That is a separate topic,
though; see @classmethod in Chapter 6 for details.

Your code needs to create Money objects from string values, like “$140.75”. The con‐
structor takes dollars and cents, so you create a function to parse that string and
instantiate Money for you:

import re
def money_from_string(amount):
 # amount is a string like "$140.75"
 match = re.search(
 r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$', amount)
 dollars = int(match.group('dollars'))
 cents = int(match.group('cents'))
 return Money(dollars, cents)

Your new function3 works like this:

>>> money_from_string("$140.75")
Money(140, 75)
>>> money_from_string("$12.30")
Money(12, 30)
>>> money_from_string("Big money")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in money_from_string
AttributeError: 'NoneType' object has no attribute 'group'

This error isn’t clear; you must read the source and think about it to understand what
went wrong. We have better things to do than decrypt stack traces. You can improve
this function’s usability by having it raise a ValueError.

import re
def money_from_string(amount):
 match = re.search(
 r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$', amount)
 # Adding the next two lines here
 if match is None:
 raise ValueError(f"Invalid amount: {amount}")
 dollars = int(match.group('dollars'))
 cents = int(match.group('cents'))
 return Money(dollars, cents)

The error message is now much more informative:

>>> money_from_string("Big money")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 6, in money_from_string
ValueError: Invalid amount: 'Big money'

Raising Exceptions | 85

Catching and Re-Raising
In an except block, you can re-raise the current exception. It’s very simple; just write
raise by itself, with no arguments:

try:
 do_something()
except ExceptionClass:
 handle_exception()
 raise

You don’t need to store the exception object in a variable. It’s a shorthand, exactly
equivalent to this:

try:
 do_something()
except ExceptionClass as err:
 handle_exception()
 raise err

This “catch and release” only works in an except block. It requires some higher-level
code to catch the exception and deal with it. But it enables several useful code pat‐
terns. One is when you want to delegate handling the exception to higher-level code,
but also want to inject some extra behavior closer to the exception source. For
example:

try:
 process_user_input(value)
except ValueError:
 logging.info("Invalid user input: %s", value)
 raise

If process_user_input() raises a ValueError, the except block will execute the log‐
ging line. Other than that, the exception propagates as normal.

This catch-and-release pattern is also useful when you need to execute code before
deciding whether to re-raise the exception at all. Earlier, we used a try/except block
pair to create an upload directory, logging an error if it already exists:

Remember this? Python 3 code, from earlier.
import os
import logging
UPLOAD_ROOT = "/var/www/uploads/"
def create_upload_dir(username):
 userdir = os.path.join(UPLOAD_ROOT, username)
 try:
 os.makedirs(userdir)
 except FileExistsError as err:
 logging.error("Upload dir already exists: %s",
 err.filename)

86 | Chapter 5: Exceptions and Errors

This approach relies on FileExistsError, which was introduced in Python 3. How
did people do this in Python 2? Even though you may never work with this older ver‐
sion, it’s worth studying the different approach required, as it demonstrates a widely
useful exception-handling pattern. Let’s take a look.

FileExistsError subclasses the more general OSError. This exception type has been
around since the early days of Python, and in Python 2, makedirs() simply raises
OSError. But OSError can indicate many problems other than the directory already
existing: a lack of filesystem permissions, a system call getting interrupted, or even a
timeout over a network-mounted filesystem. We need a way to distinguish between
these possibilities.

OSError objects have an errno attribute, indicating the precise error. These corre‐
spond to the variable errno in a C program, with different integer values meaning
different error conditions. Most higher-level languages—including Python—reuse
the constant names defined in the C API; in particular, the standard constant for “file
already exists” is EEXIST (which happens to be set to the number 17 in most imple‐
mentations). These constants are defined in the errno module in Python, so you just
type from errno import EEXIST in your program.

In versions of Python with FileExistsError, the general pattern is:

• Optimistically create the directory.
• If FileExistsError is raised, catch it and log the event.

In Python 2, you must do this instead:

• Optimistically create the directory.
• If OSError is raised, catch it.
• Inspect the exception’s errno attribute. If it’s equal to EEXIST, this means the

directory already existed; log that event.
• If errno is something else, it means we don’t want to catch this exception here;

re-raise the error.

The code:

How to accomplish the same in Python 2.
import os
import logging
from errno import EEXIST
UPLOAD_ROOT = "/var/www/uploads/"
def create_upload_dir(username):
 userdir = os.path.join(UPLOAD_ROOT, username)
 try:
 os.makedirs(userdir)

Catching and Re-Raising | 87

 except OSError as err:
 if err.errno != EEXIST:
 raise
 logging.error("Upload dir already exists: %s",
 err.filename)

The only difference between the Python 2 and 3 versions is the except clause. But
there’s a lot going on there. First, we’re catching OSError rather than FileExists
Error. But we may or may not re-raise the exception, depending on the value of its
errno attribute. Basically, a value of EEXIST means the directory already exists. So we
log it and move on. Any other value indicates an error we aren’t prepared to handle
right here, so re-raise in order to pass it to higher-level code.

The Most Diabolical Python Antipattern
You know about design patterns: time-tested solutions to common code problems.
And you’ve probably heard of antipatterns: solutions to code problems that seem to be
good, but actually turn out to be harmful.

In Python, one antipattern is most harmful of all.

I wish I could avoid even telling you about it. If you don’t know it exists, you can’t use
it in your code. Unfortunately, you might stumble on it somewhere and adopt it, not
realizing the danger. So it is my duty to warn you.

Here’s the punchline. The following is the most self-destructive code a Python devel‐
oper can write:

try:
 do_something()
except:
 pass

Python lets you completely omit the argument to except. If you do that, it will catch
every exception. That’s pretty harmful right there; remember, the more pin-pointed
your except clauses are, the more precise your error handling can be, without sweep‐
ing unrelated errors under the rug. And typing except: will sweep every unrelated
error under the rug.

But it’s much worse than that, because of the pass in the except clause. What
except: pass does is silently and invisibly hide error conditions that you’d otherwise
quickly detect and fix.

(Instead of "except:“, you’ll sometimes see variants like "except Exception:" or
"except Exception as ex:“. They amount to the same thing.)

88 | Chapter 5: Exceptions and Errors

This creates the worst kind of bug. Have you ever been troubleshooting a bug, and just
couldn’t figure out where in the codebase it came from, getting more and more frus‐
trated as the hours roll by? This is how you create that in Python.

I first understood this antipattern after joining an engineering team, in an explosively
growing Silicon Valley startup. We had a critical web service, that needed to be up
24/7. The engineers took turns being “on call” in case of a critical issue. An obscure
Unicode bug somehow kept triggering, waking up engineers—in the middle of the
night!—several times a week. But no one could figure out how to reproduce the bug,
or even track down exactly how it was happening in the large code base.

After a few months of this nonsense, some of the senior engineers got fed up and
devoted themselves to rooting out the problem. One senior engineer did nothing for
three full days except investigate it, ignoring other responsibilities as they piled up. He
made some progress, and took useful notes on what he found, but in the end, he did
not figure it out. He ran out of time and had to give up.

Then, a second senior engineer took over. Using the first engineer’s notes as a starting
point, he also dug into it, ignoring emails and other commitments for another three
full days. And he failed. He made progress, adding usefully to the notes. But in the
end, he had to give up too.

Finally, after these six long days, they passed the torch to me—the new engineer on
the team. I wasn’t too familiar with the codebase, but their notes gave me a lot to go
on. So I dove in on Day 7, and completely ignored everything else for six hours
straight.

Finally, late in the day, I isolated the problem to a single block of code:

try:
 extract_address(location_data)
except:
 pass

That was it. The data in location_data was corrupted, causing the extract_
address() call to raise a UnicodeError. Which the program then completely silenced.
Not even producing a stack trace; simply moving on, as if nothing had happened.

After nearly seven full days of engineer effort, we pinpointed the error to this one
block of code. I un-suppressed the exception, and almost immediately reproduced
the bug—with a full stack trace.

Once I did that…can you guess how long it took us to fix the bug?

TEN MINUTES.

The Most Diabolical Python Antipattern | 89

That’s right. A full week of engineer time was wasted, all because this antipattern
somehow snuck into our codebase. Had it not, then the first time it woke up an engi‐
neer, it would have been obvious what the problem was, and how to fix it. The code
would have been patched by the end of the day, and we all would have immediately
moved on.

The cruelty of this antipattern comes from how it completely hides all helpful infor‐
mation. Normally, when a bug causes a problem in your code, you can inspect the
stack trace, identify what lines of code are involved, and start solving it. With The
Most Diabolical Python Antipattern (TMDPA), none of that information is available.
What line of code did the error come from? Which file in your Python application,
for that matter? In fact, what was the exception type? Was it a KeyError? A Unicode
Error? Or even a NameError, coming from a mistyped variable name? Was it
OSError, and if so, what was its errno? You don’t know. You can’t know.

In fact, TMDPA often hides the fact that an error has even occurred. This is one of the
ways bugs hide from you during development, then sneak into production, where
they’re free to cause real damage.

We never did figure out why the original developer wrote except: pass to begin
with. I think that at the time, location_data may have sometimes been empty, caus‐
ing extract_address() to innocuously raise a ValueError. In other words, if
ValueError was raised, it was appropriate to ignore that and move on. By the time
the other two engineers and I were involved, the codebase had changed so that was
no longer how things worked. But the broad except block remained, like a land mine
lurking in a lush field.

No one wants to wreak such havoc in their Python code, of course. People do this
because they expect errors to occur in the normal course of operation, in some spe‐
cific way. They are simply catching too broadly, without realizing the full
implications.

So what should you do instead? There are two basic choices. In most cases, it’s best to
modify the except clause to catch a more specific exception. For the situation above,
the following would have been a much better choice:

try:
 extract_address(location_data)
except ValueError:
 pass

Here, ValueError is caught and appropriately ignored. If UnicodeError raises, it
propagates and (if not caught) the program crashes. That would have been great in
our situation. The error log would have a full stack trace clearly telling us what hap‐
pened, and we’d be able to fix it in 10 minutes.

90 | Chapter 5: Exceptions and Errors

As a variation, you may want to insert some logging:

try:
 extract_address(location_data)
except ValueError:
 logging.info(
 "Invalid location for user %s", username)

The other reason people write except: pass is a bit more valid. Sometimes, a code
path simply must broadly catch all exceptions, and continue running regardless. This
is common in the top-level loop for a long-running, persistent process. The problem
is that except: pass hides all information about the problem, including that the
problem even exists.

Fortunately, Python provides an easy way to capture that error event,
and all the information you need to fix it. The logging module has a function called
exception(), which will log your message along with the full stack trace of the current
exception. So you can write code like this:

import logging

def get_number():
 return int('foo')
try:
 x = get_number()
except:
 logging.exception('Caught an error')

The log will contain the error message, followed by a formatted stack trace spread
across several lines:

ERROR:root:Caught an error
Traceback (most recent call last):
 File "example-logging-exception.py", line 5, in <module>
 x = get_number()
 File "example-logging-exception.py", line 3, in get_number
 return int('foo')
ValueError: invalid literal for int() with base 10: 'foo'

This stack trace is priceless. Especially in more complex applications, it’s often not
enough to know the file and line number where an error occurs. It’s at least as impor‐
tant to know how that function or method was called—what path of executed code
led to it being invoked. Otherwise you can never determine what conditions lead to
that function or method being called in the first place. The stack trace, in contrast,
gives you everything you need to know.

The Most Diabolical Python Antipattern | 91

Defeating This Diabolical Antipattern
I wish except: pass was not valid Python syntax. I think much grief would be spared
if it was. But it’s not my call, and changing it now is probably not practical.

Your only defense is to be vigilant. That includes educating your fellow developers.
Does your team hold regular engineering meetings? Ask for five minutes at the next
one to explain this antipattern, its cost to everyone’s productivity, and the simple
solutions.

Even better: if there are local Python or technical meetups in your area, volunteer to
give a short talk. These meetups almost always need speakers, and you will be helping
so many of your fellow developers.

There is a longer article explaining this situation at https://powerfulpython.com/blog/
the-most-diabolical-python-antipattern . Simply sharing the URL will educate people
too. And feel free to write your own blog post, with your own explanation of the sit‐
uation, and how to fix it. Serve your fellow engineers by evangelizing this important
knowledge.

Conclusion
Exceptions are a fundamental part of Python. But most Python coders only have a
partial understanding of how they work. When you gain a deep understanding, one
immediate benefit is that you decipher errors faster. Beyond that, you learn to write
code that is more readable, more robust, and handles potential errors better. In short,
your Python programs improve in every way.

92 | Chapter 5: Exceptions and Errors

https://powerfulpython.com/blog/the-most-diabolical-python-antipattern
https://powerfulpython.com/blog/the-most-diabolical-python-antipattern

CHAPTER 6

Classes and Objects: Beyond the Basics

This chapter assumes you are familiar with the basics of object-oriented program‐
ming (OOP) in Python: creating classes, defining methods, and simple inheritance.
You will build on that knowledge in this chapter.

As with any object-oriented language, it’s useful to learn about design patterns—reus‐
able solutions to common problems involving classes and objects. A lot has been
written about design patterns. And while much of it applies to Python, it tends to
apply differently.

That is because many design-pattern books and articles are written for languages like
Java, C++, and C#. But as a language, Python is different. Its dynamic typing, first-
class functions, and other additions all mean the “standard” design patterns just work
differently.

So let’s learn what Pythonic OOP is really about.

Properties
Python objects have attributes. “Attribute” is a general term meaning “whatever is to
the right of the dot” in an expression like x.y or z.f(). Member variables and meth‐
ods are two kinds of attributes. But Python has another kind of attribute called
properties.

A property is a hybrid: a cross between a method and a member variable. The idea is
to create an attribute that acts like a member variable from the outside, but reading or
writing to this attribute triggers method calls internally.

93

1 In OOP, when working with properties, we call the method which “reads” the current value the getter. And the
method you call to set a new value is called the setter.

You’ll set this up with a special decorator called @property. A simple example:

class Person:
 def __init__(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname

 @property
 def fullname(self):
 return self.firstname + " " + self.lastname

By instantiating this, you can access fullname like it is a member variable:

>>> joe = Person("Joe", "Smith")
>>> joe.fullname
'Joe Smith'

Look carefully for the actual member variables here. There are two, firstname and
lastname, set in the constructor. This class also has a method called fullname. But
after creating the instance, we reference joe.fullname as a member variable; we don’t
call joe.fullname() as a method. However, when you read the value of joe.full
name, the fullname() method is invoked.

This is all due to the @property decorator. When applied to a method, this decorator
makes it inaccessible as a method. You must access it like a member variable. In fact,
if you try to call it as a method, you get an error:

>>> joe.fullname()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object is not callable

As defined above, fullname is read-only. We cannot modify it:

>>> joe.fullname = "Joseph Smith"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

In other words, Python properties are read-only by default. Another way of saying
this is that @property automatically defines a getter, but not a setter.1 If you want full
name to be writable, here is how you define its setter:

class Person:
 def __init__(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname

94 | Chapter 6: Classes and Objects: Beyond the Basics

 @property
 def fullname(self):
 return self.firstname + " " + self.lastname

 @fullname.setter
 def fullname(self, value):
 self.firstname, self.lastname = value.split(" ", 1)

This lets you assign to joe.fullname:

>>> joe = Person("Joe", "Smith")
>>> joe.firstname
'Joe'
>>> joe.lastname
'Smith'
>>> joe.fullname = "Joseph Smith"
>>> joe.firstname
'Joseph'
>>> joe.lastname
'Smith'

So we have two methods named fullname(). The first one, decorated with
@property, is dispatched (invoked) when you read the value of joe.fullname. The
second one, decorated with @fullname.setter, is dispatched when you assign to
joe.fullname. Python picks which to run, depending on whether you are getting or
setting.

The first time I saw this, I had many questions. “Wait, why is this fullname method
defined twice? And why is the second decorator named @fullname, and why does it
have a setter attribute? How on earth does this even work?!”

The code is actually designed to work this way. The @property line, followed by def
fullname, must come first. Those two lines create the property to begin with, and also
create the getter. By “create the property”, I mean that an object named fullname
exists in the namespace of the class, and it has an attribute named fullname.setter.
This fullname.setter is a decorator that is applied to the next def fullname, chris‐
tening it as the setter for the fullname property.

It’s okay to not fully understand how this works. A full explanation relies on under‐
standing not only decorators, but also Python’s descriptor protocol, which is beyond
the scope of this chapter. Fortunately, you don’t have to understand how it works in
order to use it.

What you see here with the Person class is one way properties are useful: they are
magic attributes which act like member variables, but their value is derived from
other member variables. This denormalizes the object’s data, and lets you access the
attribute like it is a member variable. You’ll see a situation where that is extremely
useful later.

Properties | 95

2 This is akin to protected in languages like Java. But unlike Java, Python does not enforce it. Instead, it is a
convention you are expected to follow.

Property Patterns
Properties enable a useful collection of design patterns. One—as mentioned—is cre‐
ating read-only member variables. In the first version of Person, the fullname
“member variable” is a dynamic attribute; it does not exist on its own, but instead cal‐
culates its value at runtime.

It’s also common to have the property backed by a single, non-public member vari‐
able. That pattern looks like this:

class Coupon:
 def __init__(self, amount):
 self._amount = amount
 @property
 def amount(self):
 return self._amount

This allows the class itself to modify the value internally, but prevent outside code
from doing so:

>>> coupon = Coupon(1.25)
>>> coupon.amount
1.25
>>> coupon.amount = 1.50
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

In Python, prefixing a member variable or method by a single underscore signals it is
protected; it should only be accessed internally, inside methods of that class or its
subclasses.2 This property pattern says, “You can read the value of this attribute, but
you cannot change it”.

Validation
There is another pattern between “regular member variable” and “read-only”: the
value can be changed, but you must validate it first. Suppose you and I are developing
some software that manages live events. We write a Ticket class, representing tickets
sold to attendees:

class Ticket:
 def __init__(self, price):
 self.price = price
 # And some other methods...

96 | Chapter 6: Classes and Objects: Beyond the Basics

One day, we find a bug in our web UI that lets shifty customers adjust the price to a
negative value. So we end up paying them to go to the concert. Not good!

The first priority is, of course, to fix the bug in the UI. But how do we modify our
code to prevent this from ever happening again? Before reading further, look at the
Ticket class and ponder—how could you use properties to make this kind of bug
impossible in the future?

The answer: verify the new price is non-negative in the setter:

Version 1...
class Ticket:
 def __init__(self, price):
 self._price = price
 @property
 def price(self):
 return self._price
 @price.setter
 def price(self, new_price):
 # Only allow non-negative prices.
 if new_price < 0:
 raise ValueError("Nice try")
 self._price = new_price

This lets the price be adjusted, but only to sensible values:

>>> t = Ticket(42)
>>> t.price = 24 # This is allowed.
>>> print(t.price)
24
>>> t.price = -1 # This is NOT.
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 11, in price
ValueError: Nice try

However, there’s a defect in this new Ticket class. Can you spot it? (And how to fix
it?)

The problem is that while we can’t change the price to a negative value, this first ver‐
sion lets us create a ticket with a negative price to begin with. That’s because we wrote
self._price = price in the constructor. The solution is to use the setter in the con‐
structor instead:

Final version, with modified constructor. (Constructor
is different; code for getter & setter is the same.)
class Ticket:
 def __init__(self, price):
 # instead of "self._price = price"
 self.price = price
 @property
 def price(self):

Properties | 97

 return self._price
 @price.setter
 def price(self, new_price):
 # Only allow positive prices.
 if new_price < 0:
 raise ValueError("Nice try")
 self._price = new_price

Yes, you can reference self.price in methods of the class. When we write
self.price = price, Python translates this to calling the price setter—that is, the
second price() method. This final version of Ticket centralizes all reads and writes
of self._price in the property—a useful encapsulation technique. The idea is to cen‐
tralize any special behavior for that member variable in the getter and setter, even for
the class’s internal code. In practice, sometimes other methods will need to violate
this rule; if so, you simply reference self._price and move on. But as much as you
can, only use the protected (underscore) member variable in the getter and setter, and
that will naturally tend to boost the quality of your code.

Properties and Refactoring
Imagine writing a simple money class:

class Money:
 def __init__(self, dollars, cents):
 self.dollars = dollars
 self.cents = cents
 # And some other methods...

Suppose you put this class in a library many developers use: people on your current
team, perhaps developers on different teams. Maybe you release it as open source, so
developers around the world use and rely on this class.

One day you realize that many of Money’s methods—which do calculations on the
money amount—could be simpler and more straightforward if they operated
on the total number of cents, rather than dollars and cents separately. So you refactor
the internal state:

class Money:
 def __init__(self, dollars, cents):
 self.total_cents = dollars * 100 + cents

This creates a major maintainability problem. Do you spot it?

Here’s the trouble: your original Money has member variables named dollars and
cents. And since many developers are using these variables, changing to
total_cents breaks all their code!

98 | Chapter 6: Classes and Objects: Beyond the Basics

money = Money(27, 12)
message = "I have {:d} dollars and {:d} cents."
This line breaks, because there's no longer
dollars or cents attributes.
print(message.format(money.dollars, money.cents))

If no one but you uses this class, there’s no real problem—you can just refactor your
own code. But otherwise, coordinating this change with everyone’s different codeba‐
ses is a nightmare. It becomes a barrier to improving your own code.

So, what do you do? Can you think of a way to handle this situation?

You get out of this mess using properties. You want two things to happen:

1. The class uses total_cents internally.
2. All code using dollars and cents continues to work, without modification.

You’ll do this by replacing dollars and cents with total_cents internally, but also
creating getters and setters for these attributes. Take a look:

class Money:
 def __init__(self, dollars, cents):
 self.total_cents = dollars * 100 + cents
 # Getter and setter for dollars...
 @property
 def dollars(self):
 # // is integer division
 return self.total_cents // 100
 @dollars.setter
 def dollars(self, new_dollars):
 self.total_cents = 100 * new_dollars + self.cents
 # And for cents.
 @property
 def cents(self):
 return self.total_cents % 100
 @cents.setter
 def cents(self, new_cents):
 self.total_cents = 100 * self.dollars + new_cents

Now, I can get and set dollars and cents all day:

>>> money = Money(27, 12)
>>> money.total_cents
2712
>>> money.cents
12
>>> money.dollars = 35
>>> money.total_cents
3512

Properties | 99

Python’s way of doing properties brings many benefits. In languages like Java, the fol‐
lowing story can play out:

1. A newbie developer starts writing Java classes. They want to expose some state, so
they create public member variables.

2. They use this class everywhere. Other developers use it too.
3. One day, the developer decides to change the name or type of that member vari‐

able, or even delete it entirely (like what we did with Money).
4. But that would break everyone’s code. So they can’t.

This is not a problem for Java developers in practice, because they quickly learn to
make all their variables private by default—proactively creating getters and setters for
every publicly exposed chunk of data. They realize this boilerplate is far less painful
than the alternative, because if everyone must use the public getters and setters to
begin with, you always have the freedom to make internal changes later.

This works well enough. But it is distracting, and just enough trouble that there’s
always the temptation to make that member variable public, and be done with it.

In Python, we have the best of both worlds. You can freely create member variables—
which are public by default—and refactor them as properties if and when you ever
need to. No one using your code even has to know.

The Factory Patterns
There are several design patterns with the word “factory” in their names. Their unify‐
ing idea is providing a handy, simplified way to create useful, potentially complex
objects. The two most important forms are:

• Where the object’s type is fixed, but we want to have several different ways to cre‐
ate it. This is called the Simple Factory Pattern.

• Where the factory dynamically chooses one of several different types. This is
called the Factory Method Pattern.

Let’s look at how you do these in Python.

Alternative Constructors: The Simple Factory
Imagine a simple Money class, suitable for currencies which have dollars and cents:

class Money:
 def __init__(self, dollars, cents):
 self.dollars = dollars
 self.cents = cents

100 | Chapter 6: Classes and Objects: Beyond the Basics

We looked at this in the previous section, changing what member variables it has. But
let’s roll back, and focus instead on the constructor’s interface. This constructor is
convenient when we have the dollars and cents as separate integer variables. But there
are many other ways to specify an amount of money. Perhaps you’re modeling a giant
jar of pennies:

Emptying the penny jar...
total_pennies = 3274
dollars = total_pennies // 100
cents = total_pennies % 100
total_cash = Money(dollars, cents)

Suppose your code repeatedly splits pennies into dollars and cents, over and over.
And you’re tired of re-re-typing this calculation, plus there is a chance you could
make a mistake eventually. You could change the constructor, but that means refac‐
toring all Money-creating code, and perhaps a lot of code fits the current constructor
better anyway. Some languages let you define several constructors, but Python makes
you pick one.

In this case, you can usefully create a factory function. A factory function takes the
data you have, uses that to calculate what the class constructor needs, then returns the
instance. For example:

Factory function taking a single argument, returning
an appropriate Money instance.
def money_from_pennies(total_cents):
 dollars = total_cents // 100
 cents = total_cents % 100
 return Money(dollars, cents)

Imagine that, in the same codebase, you also need to parse strings like "$140.75".
Here’s another factory function for that:

Another factory, creating Money from a string amount.
import re
def money_from_string(amount):
 match = re.search(
 r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$', amount)
 if match is None:
 raise ValueError(f"Invalid amount: {amount}")
 dollars = int(match.group('dollars'))
 cents = int(match.group('cents'))
 return Money(dollars, cents)

These are effectively alternate constructors: callables we can use with different argu‐
ments, which are used to create the final instance. But this approach has problems.
First, it’s awkward to have them as separate functions, defined outside of the class.
But more importantly: what happens if you subclass Money? Suddenly
money_from_string() and money_from_pennies() are worthless, because they are
hard-coded to use Money.

The Factory Patterns | 101

Python solves these problems with a flexible and powerful feature: the classmethod
decorator. Use it like this:

class Money:
 def __init__(self, dollars, cents):
 self.dollars = dollars
 self.cents = cents
 @classmethod
 def from_pennies(cls, total_cents):
 dollars = total_cents // 100
 cents = total_cents % 100
 return cls(dollars, cents)

The function money_from_pennies() is now a method of the Money class, called
from_pennies(). But it has a new argument: cls. When applied to a method defini‐
tion, classmethod modifies how that method is invoked and interpreted. The first
argument is not self, which would be an instance of the class. The first argument is
now the class itself. In the method body, self isn’t mentioned at all; instead, cls is a
variable holding the current class object—Money in this case. So the last line is creat‐
ing a new instance of Money:

>>> piggie_bank_cash = Money.from_pennies(3217)
>>> type(piggie_bank_cash)
<class '__main__.Money'>
>>> piggie_bank_cash.dollars
32
>>> piggie_bank_cash.cents
17

Notice from_pennies() is invoked on the class itself, not an instance of the class. This
is already nicer code organization. But now it works with inheritance:

>>> class TipMoney(Money):
... pass
...
>>> tip = TipMoney.from_pennies(475)
>>> type(tip)
<class '__main__.TipMoney'>

This is the real benefit of class methods. You define it once on the base class, and all
subclasses can leverage it, substituting their own type for cls. This makes class meth‐
ods perfect for the simple factory in Python. The final line returns an instance of cls,
using its regular constructor. And cls refers to whatever the current class is: Money,
TipMoney, or some other subclass.

For the record, here’s how to translate money_from_string():

class Money:
 # ...
 def from_string(cls, amount):
 match = re.search(

102 | Chapter 6: Classes and Objects: Beyond the Basics

 r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$', amount)
 if match is None:
 raise ValueError(f"Invalid amount: {amount}")
 dollars = int(match.group('dollars'))
 cents = int(match.group('cents'))
 return cls(dollars, cents)

Class methods are a superior way to implement factories in Python. If we subclass
Money, that subclass will have from_pennies() and from_string() methods that cre‐
ate objects of that subclass, without any extra work on our part. And if we change the
name of the Money class, we only have to change it in one place, not three.

This form of the factory pattern is called Simple Factory, a name I don’t love. I prefer
to call it Alternate Constructor. Especially in the context of Python, it describes well
what @classmethod is most useful for. And it suggests a general principle for design‐
ing your classes. Look at this complete code of the Money class, and I’ll explain:

import re
class Money:
 def __init__(self, dollars, cents):
 self.dollars = dollars
 self.cents = cents
 @classmethod
 def from_pennies(cls, total_cents):
 dollars = total_cents // 100
 cents = total_cents % 100
 return cls(dollars, cents)
 @classmethod
 def from_string(cls, amount):
 match = re.search(
 r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$', amount)
 if match is None:
 raise ValueError(f"Invalid amount: {amount}")
 dollars = int(match.group('dollars'))
 cents = int(match.group('cents'))
 return cls(dollars, cents)

You can think of this class as having several constructors. As a general rule, you’ll
want to make __init__() the most generic one, and implement the others as class
methods. Sometimes, that means one of the class methods will be used more often
than __init__().

When using a new class, most developers’ intuition will be to reach for the default
constructor first, without thinking to check the provided class methods—if they even
know about that feature of Python in the first place. You may need to educate your
teammates. (Hint: Good examples in the class’s code docs go a long way.)

The Factory Patterns | 103

Dynamic Type: The Factory Method Pattern
This next factory pattern, called Factory Method, is quite different. The idea is that
the factory will create an object, but will choose its type from one of several possibili‐
ties, dynamically deciding at runtime based on some criteria. It’s typically used when
you have one base class, and are creating an object that can be one of several different
derived classes.

Let’s see an example. Imagine you are implementing an image processing library, cre‐
ating classes to read the image from storage. So you create a base ImageReader class,
and several derived types:

import abc
class ImageReader(metaclass=abc.ABCMeta):
 def __init__(self, path):
 self.path = path
 @abc.abstractmethod
 def read(self):
 pass # Subclass must implement.
 def __repr__(self):
 return f"{self.__class__.__name__}({self.path})"

class GIFReader(ImageReader):
 def read(self):
 # Read a GIF

class JPEGReader(ImageReader):
 def read(self):
 # Read a JPEG

class PNGReader(ImageReader):
 def read(self):
 # Read a PNG

The ImageReader class is marked abstract, requiring subclasses to implement the
read() method. So far, so good.

When reading an image file, if its extension is .gif, I want to use GIFReader. And if it
is a JPEG image, I want to use JPEGReader, and so on. The logic is:

1. Analyze the file path name to get the extension.
2. Choose the correct reader class based on that.
3. Create the appropriate reader object.

This process is a prime candidate for automation. Let’s define a little helper function:

def extension_of(path):
 # returns "png", "gif", "jpg", etc.
 position_of_last_dot = path.rfind('.')
 return path[position_of_last_dot+1:]

104 | Chapter 6: Classes and Objects: Beyond the Basics

With these pieces, we can now define the factory:

def get_image_reader(path):
 image_type = extension_of(path)
 if image_type == 'gif':
 reader_class = GIFReader
 elif image_type == 'jpg':
 reader_class = JPEGReader
 elif image_type == 'png':
 reader_class = PNGReader
 else:
 raise ValueError(f"Unknown extension: {image_type}")
 return reader_class(path)

Classes in Python can be put in variables, just like any other object. We take full
advantage here, by storing the appropriate ImageReader subclass in reader_class.
Once we decide on the proper value, the last line creates and returns the reader
object.

This correctly working code is already more concise, readable, and maintainable than
what some languages force you to go through. But in Python, we can do even better.
We can use the built-in dictionary type to make it more readable, and easier to update
and maintain over time:

READERS = {
 'gif' : GIFReader,
 'jpg' : JPEGReader,
 'png' : PNGReader,
 }
def get_image_reader(path):
 reader_class = READERS[extension_of(path)]
 return reader_class(path)

Here we have a global variable mapping filename extensions to ImageReader sub‐
classes. This lets us readably implement get_image_reader() in two lines. Finding
the correct class is a simple dictionary lookup, and then we instantiate and return the
instance. If we need to support new image formats in the future, we can simply add a
line in the READERS definition. (And, of course, define its reader class.)

What if we encounter an extension not in the mapping, like .tiff? As written above,
the code will raise a KeyError. That may be what we want. Or perhaps we want to
catch that exception and re-raise a different exception. ValueError is a good choice;
this is what the previous version of get_image_reader() raised.

Alternatively, we may want to fall back on some default. Let’s create a new reader
class, meant as an all-purpose fallback:

class RawByteReader(ImageReader):
 def read(self):
 # Read raw bytes

The Factory Patterns | 105

Then you can write the factory like:

def get_image_reader(path):
 try:
 reader_class = READERS[extension_of(path)]
 except KeyError:
 reader_class = RawByteReader
 return reader_class(path)

Or more briefly:

def get_image_reader(path):
 reader_class = READERS.get(extension_of(path), RawByteReader)
 return reader_class(path)

This design pattern is commonly called the Factory Method pattern, which wins my
award for Worst Design Pattern Name in History. That name (which appears to origi‐
nate from a Java implementation detail) fails to tell you anything about what this pat‐
tern is actually for. I myself call it the Dynamic Type pattern, which I feel is much
more descriptive and useful.

So far, we have looked at patterns that are mostly confined to a single class. But there
are richer patterns involving multiple codesigned classes, interacting with each other.
Let’s look at one.

The Observer Pattern
The Observer pattern provides a “one-to-many” relationship. That’s a vague descrip‐
tion, so let’s make it more specific.

In the Observer pattern, there’s one root object, called the observable. This object
knows how to detect some kind of event of interest. It can literally be anything: a cus‐
tomer makes a new purchase; someone subscribes to an email list; or maybe it moni‐
tors a fleet of cloud instances, detecting when a machine’s disk usage exceeds 75%.
You use this pattern when the code to reliably detect the event of interest is at least
slightly complicated; that detection code is encapsulated inside the observable.

In this pattern, you also have other objects, called observers, which need to know
when that event occurs, so they can take some action in response. You don’t want to
reimplement the robust detection algorithm in each, of course. Instead, these observ‐
ers register themselves with the observable. The observable then notifies each
observer—by calling a method on that observer—for each event. This separation of
concerns is the heart of the observer pattern.

I must tell you: I don’t like the names of things in this pattern. The words “observable”
and “observer” are a bit obscure, and sound confusingly similar—especially if your
native tongue is not English. There is another terminology, however, which many
developers find easier: pub-sub.

106 | Chapter 6: Classes and Objects: Beyond the Basics

3 Technically, pub-sub is a more general architectural pattern that can apply to distributed systems. In contrast,
the Observer pattern is always limited to what’s inside a single process. That is the scope we will focus on here.

In this terminology, instead of an “observable,” you create a publisher object, which
watches for events. One or more subscribers (instead of “observers”) ask that
publisher to notify them when the event happens. I’ve found the pattern is easier to
reason about when looked at in this way, so that is the terminology I’m going to use.3

Let’s make this concrete, with code.

The Simple Observer
We’ll start with the basic Observer pattern, as it’s often documented in design pattern
books—except we’ll translate it to Python. In this simple form, each subscriber must
implement a method called update(). Here’s an example:

class Subscriber:
 def __init__(self, name):
 self.name = name
 def update(self, message):
 print(f"{self.name} got message: {message}")

update() takes a string. It’s okay to define an update() method taking other argu‐
ments, or even calling it something other than update(); the publisher and sub‐
scriber just need to agree on the protocol. But we’ll use a single string argument.

Now, when a publisher detects an event, it notifies the subscriber by calling its
update() method. Here’s what a basic Publisher class looks like:

class Publisher:
 def __init__(self):
 self.subscribers = set()
 def register(self, who):
 self.subscribers.add(who)
 def unregister(self, who):
 self.subscribers.discard(who)
 def dispatch(self, message):
 for subscriber in self.subscribers:
 subscriber.update(message)
 # Plus other methods, for detecting the event.

Let’s step through:

• A publisher needs to keep track of its subscribers, right? We’ll store them in a set
object, named self.subscribers, created in the constructor.

• A subscriber is added with register(). Its argument who is an instance of Sub
scriber. Who calls register()? It could be anyone. The subscriber can register
itself, or some external code can register a subscriber with a specific publisher.

The Observer Pattern | 107

• unregister() is there in case a subscriber no longer needs to be notified of the
events.

• When the event of interest occurs, the publisher notifies its subscribers by calling
its dispatch() method. Usually this is invoked by the publisher itself, in some
other method of the class (not shown) that implements the event-detection logic.
It simply cycles through the subscribers, calling update() on each.

Using these two classes in code is straightforward enough:

Create a publisher and some subscribers.
pub = Publisher()
bob = Subscriber('Bob')
alice = Subscriber('Alice')
john = Subscriber('John')

Register the subscribers, so they get notified.
pub.register(bob)
pub.register(alice)
pub.register(john)

Now, the publisher can dispatch messages:

Send a message...
pub.dispatch("It's lunchtime!")
John unsubscribes...
pub.unregister(john)
... and a new message is sent.
pub.dispatch("Time for dinner")

Here’s the output from running the above:

John got message "It's lunchtime!"
Bob got message "It's lunchtime!"
Alice got message "It's lunchtime!"
Bob got message "Time for dinner"
Alice got message "Time for dinner"

This is the basic Observer pattern, and pretty close to how you’d implement the idea
in languages like Java, C#, and C++. But Python’s feature set differs from those lan‐
guages. That means we can do different things.

A Pythonic Refinement
Python’s functions are first-class objects. This means you can store a function in a
variable—not the value returned when you call a function, but the function itself—as
well as pass it as an argument to other functions and methods. Some other languages
support this too (or something like it, such as function pointers), but Python’s strong
support gives us a convenient opportunity for this design pattern.

108 | Chapter 6: Classes and Objects: Beyond the Basics

The standard Observer pattern requires the publisher to hard-code a certain method
(usually named update()) that the subscriber must implement. But maybe you need
to register a subscriber which doesn’t have that method. What then? If it’s your own
class, you can just add it. If you are importing the subscriber class from another
library (which you can’t or don’t want to modify), perhaps you can add the method by
subclassing it.

Sometimes you can’t do any of those things—or you could, but it’s a lot of trouble, and
you want to avoid it. What then?

Let’s extend the traditional observer pattern, and make register() more flexible.
Suppose you have these subscribers:

This subscriber uses the standard "update"
class SubscriberOne:
 def __init__(self, name):
 self.name = name
 def update(self, message):
 print(f'{self.name} got message "{message}"')
This one wants to use "receive"
class SubscriberTwo:
 def __init__(self, name):
 self.name = name
 def receive(self, message):
 print(f'{self.name} got message "{message}"')

SubscriberOne is the same subscriber class we saw before. SubscriberTwo is almost
the same: instead of update(), it has a method named receive(). Let’s modify
Publisher so it can work with objects of either subscriber type:

class Publisher:
 def __init__(self):
 self.subscribers = dict()
 def register(self, who, callback=None):
 if callback is None:
 callback = who.update
 self.subscribers[who] = callback
 def dispatch(self, message):
 for callback in self.subscribers.values():
 callback(message)
 def unregister(self, who):
 del self.subscribers[who]

There’s a lot going on here, so let’s break it down. Look first at the constructor: it cre‐
ates a dict instead of a set. You’ll see why in a moment.

The Observer Pattern | 109

Now focus on register():

 def register(self, who, callback=None):
 if callback is None:
 callback = who.update
 self.subscribers[who] = callback

It can be called with one or two arguments. With one argument, who is a subscriber of
some sort, and callback defaults to None. In that case, the method body sets call
back to who.update. Notice the lack of parentheses; who.update is a method object. It’s
just like a function object, except it happens to be tied to an instance. And just like a
function object, you can store it in a variable, pass it as an argument to another func‐
tion, and so on (refer to Chapter 3 for more details). So we’re storing it in a variable
called callback.

What if register() is called with two arguments? Here’s how that might look:

pub = Publisher()
alice = SubscriberTwo('Alice')
pub.register(alice, alice.receive)

alice.receive is another method object; this object is assigned to callback. Regard‐
less of whether register() is called with one argument or two, the last line inserts
callback into the dictionary:

 self.subscribers[who] = callback

Take a moment to appreciate the remarkable flexibility of Python dictionaries. Here,
you are using an arbitrary instance of either SubscriberOne or SubscriberTwo as a
key. These two classes are unrelated by inheritance, so from Python’s viewpoint they
are completely distinct types. And for that key, you insert a method object as its value.
Python does this seamlessly, without complaint! Many languages would make you
jump through hoops to accomplish this.

Now it is clear why self.subscribers is a dict and not a set. Earlier, we only
needed to keep track of who the subscribers were. Now, we also need to remember
the callback for each subscriber. These are used in the dispatch() method:

 def dispatch(self, message):
 for callback in self.subscribers.values():
 callback(message)

dispatch() only needs to cycle through the values, because it just needs to call each
subscriber’s update method (even if it’s not called update()). Notice we don’t have to
reference the subscriber object to call that method; the method object internally has a
reference to its instance (i.e., its "self"), so callback(message) calls the right
method on the right object. In fact, the only reason we keep track of subscribers at all
is so we can unregister() them.

110 | Chapter 6: Classes and Objects: Beyond the Basics

Let’s put this together with a few subscribers:

pub = Publisher()
bob = SubscriberOne('Bob')
alice = SubscriberTwo('Alice')
john = SubscriberOne('John')

pub.register(bob, bob.update)
pub.register(alice, alice.receive)
pub.register(john)

pub.dispatch("It's lunchtime!")
pub.unregister(john)
pub.dispatch("Time for dinner")

Here’s the output:

Bob got message "It's lunchtime!"
Alice got message "It's lunchtime!"
John got message "It's lunchtime!"
Bob got message "Time for dinner"
Alice got message "Time for dinner"

Pop quiz. Look at the Publisher class again:

class Publisher:
 def __init__(self):
 self.subscribers = dict()
 def register(self, who, callback=None):
 if callback is None:
 callback = who.update
 self.subscribers[who] = callback
 def dispatch(self, message):
 for callback in self.subscribers.values():
 callback(message)

Does callback have to be a method of the subscriber? Or can it be a method of a
different object, or something else? Think about this before you continue…

It turns out callback can be any callable, provided it has a signature compatible with
how it’s called in dispatch(). That means it can be a method of some other object, or
even a normal function. This lets you register subscriber objects without an update
method at all:

This subscriber doesn't have ANY suitable method!
class SubscriberThree:
 def __init__(self, name):
 self.name = name
... but we can define a function...
todd = SubscriberThree('Todd')
def todd_callback(message):
 print(f'Todd got message "{message}"')
... and pass it to register:

The Observer Pattern | 111

pub.register(todd, todd_callback)
And then, dispatch a message:
pub.dispatch("Breakfast is Ready")

Sure enough, this works:

Todd got message "Breakfast is Ready"

Several Channels
So far, we’ve assumed that the publisher watches for only one kind of event. But what
if there are several? Can we create a publisher that knows how to detect all of them,
and let subscribers decide which they want to know about?

To implement this, let’s say a publisher has several channels that subscribers can sub‐
scribe to. Each channel notifies for a different event type. For example, if your pro‐
gram monitors a cluster of virtual machines, one channel signals when a certain
machine’s disk usage exceeds 75% (a warning sign, but not an immediate emergency);
and another signals when disk usage goes over 90% (much more serious, and may
begin to impact performance on that virtual machine). Some subscribers will want to
know when the 75% threshold is crossed; some, the 90% threshold; and some might
want to be alerted for both. What’s a good way to express this in Python code?

Let’s work with the mealtime-announcement code above. Rather than jumping right
into the code, let’s mock up the interface first. We want to create a publisher with two
channels, like so:

Two channels, named "lunch" and "dinner".
pub = Publisher(['lunch', 'dinner'])

This constructor is different; it takes a list of channel names. Let’s also pass the chan‐
nel name to register(), since each subscriber will register for one or more:

Three subscribers, of the original type.
bob = Subscriber('Bob')
alice = Subscriber('Alice')
john = Subscriber('John')

Two args: channel name & subscriber
pub.register("lunch", bob)
pub.register("dinner", alice)
pub.register("lunch", john)
pub.register("dinner", john)

Now, on dispatch, the publisher needs to specify the event type. So just like with
register(), we’ll prepend a channel argument:

pub.dispatch("lunch", "It's lunchtime!")
pub.dispatch("dinner", "Dinner is served")

112 | Chapter 6: Classes and Objects: Beyond the Basics

When correctly working, we’d expect this output:

Bob got message "It's lunchtime!"
John got message "It's lunchtime!"
Alice got message "Dinner is served"
John got message "Dinner is served"

Pop quiz (and if it’s practical, pause here to write your own Python code): how would
you implement this new, multi-channel Publisher?

There are several approaches, but the simplest I’ve found relies on creating a separate
subscribers dictionary for each channel. Here’s one approach:

class Publisher:
 def __init__(self, channels):
 # Create an empty subscribers dict
 # for every channel
 self.channels = { channel : dict()
 for channel in channels }

 def register(self, channel, who, callback=None):
 if callback is None:
 callback = who.update
 subscribers = self.channels[channel]
 subscribers[who] = callback

 def dispatch(self, channel, message):
 subscribers = self.channels[channel]
 for callback in subscribers.values():
 callback(message)

This Publisher has a dict called self.channels, which maps channel names
(strings) to subscriber dictionaries. register() and dispatch() are not too different:
they simply have an extra step, in which subscribers is looked up in self.channels.
I use that variable just for readability, and I think it’s well worth the extra line of code:

Works the same. But a bit less readable.
 def register(self, channel, who, callback=None):
 if callback is None:
 callback = who.update
 self.channels[channel][who] = callback

These are some variations of the general Observer pattern, and I’m sure you can
imagine more. What I want you to notice are the options available in Python when
you leverage function objects, and other Pythonic features.

The Observer Pattern | 113

Magic Methods
Suppose we want to create a class to work with angles, in degrees. We want this class
to help us with some standard bookkeeping:

• An angle will be at least 0, but less than 360.
• If we create an angle outside this range, it automatically wraps around to an

equivalent, in-range value:
— If we add 270 degrees and 270 degrees, it evaluates to 180 degrees instead of

540 degrees.
— If we subtract 180 degrees from 90 degrees, it evaluates to 270 degrees instead

of -90 degrees.
— If we multiply an angle by a real number, it wraps the final value into the cor‐

rect range.
• And while we’re at it, we want to enable all the other behaviors we normally want

with numbers: comparisons like “less than” and “greater than or equal to” or “==”
(i.e., equals); division (which doesn’t normally require casting into a valid range,
if you think about it); and so on.

Let’s see how we might approach this, by creating a basic Angle class:

class Angle:
 def __init__(self, value):
 self.value = value % 360

The modular division in the constructor is kind of neat: if you reason through it with
a few positive and negative values, you’ll find the math works out correctly whether
the angle is overshooting or undershooting. This meets one of our key criteria
already: the angle is normalized to be from 0 up to 360.

But how does it handle addition? We get an error if we try it directly:

>>> Angle(30) + Angle(45)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'Angle' and 'Angle'
>>>

We can easily define a method called add, which will let us write code like angle3 =
angle1.add(angle2). But it’s better to reuse the familiar arithmetic operators every‐
one knows. Python lets us do that, through a collection of object hooks called magic
methods. Magic methods let you define classes so that their instances can be used
with all of Python’s standard operators. That includes arithmetic (+ - * / //), equality
(==), inequality (!=), comparisons (< > >= \<=), bit-shifting operations, and even con‐
cepts like exponentiation and absolute value.

114 | Chapter 6: Classes and Objects: Beyond the Basics

Few classes will need all of these, but sometimes it’s valuable to have them available.
Let’s see how they can improve our Angle type.

The pattern for each magic method is the same. For a given operation—say, addition
—there is a special method name that starts with double-underscores. For addition,
it’s __add__()—the others also have sensible names. All you have to do is define that
method, and you can use instances of your class with that operator.

When you discuss magic methods in face-to-face, verbal conversation, you’ll find
yourself saying things like “underscore underscore add underscore underscore” over
and over. That’s a lot of syllables. So people in the Python community use a kind of
verbal abbreviation, with a word they invented: dunder. That’s not a real word;
Python people made it up. When you say “dunder foo”, it means “underscore under‐
score foo underscore underscore”. This isn’t used in writing, because it’s not needed—
you can just write __foo__. But at Python gatherings, you’ll sometimes hear people
say it. Use it; it saves you a lot of energy when talking.

Anyway, back to dunder add—I mean, __add__(). For operations like addition—
which take two values, and return a third—you write the method like this:

 def __add__(self, other):
 return Angle(self.value + other.value)

The first argument needs to be called self, because this is Python. The second does
not have to be called other, but often is. This lets us use the normal addition operator
for arithmetic:

>>> total = Angle(30) + Angle(45)
>>> total.value
75

There are similar operators for subtraction, multiplication, and so on, as shown in
Table 6-1:

Table 6-1. Arithmetic magic methods

Method Operation

__add__() a + b

__sub__() a - b

__mul__() a * b

__truediv__() a / b (floating-point division)

__mod__() a % b

__pow__() a ** b

Essentially, Python translates a + b to a.__add__(b); a % b to a.__mod__(b); and so
on. You can also hook into bit-operation operators (see Table 6-2).

Magic Methods | 115

Table 6-2. Bit-operation magic methods

Method Operation

__lshift__() a << b

__rshift__() a >> b

__and__() a & b

__xor__() a ^ b

__or__() a | b

So a & b translates to a.__and__(b), for example.

Since __and__() corresponds to the bitwise-and operator (for expressions like “foo &
bar”), you might wonder what the magic method is for logical-and (“foo and bar”),
or logical-or (“foo or bar”). Sadly, there is none; because of how Python’s Boolean
logic short-circuits, there is not really a good way to do magic methods for them. For
this reason, sometimes libraries will hijack the & and | operators to mean logical
and/or, instead of bitwise and/or.

The default representation of an Angle object isn’t very useful:

>>> Angle(30)
<__main__.Angle object at 0x106df9198>

It tells us the type, and the hex object ID, but we’d rather it tell us something about the
value of the angle. There are two magic methods that can help. The first is __str__(),
which is used when printing a result:

class Angle:
 # ...
 def __str__(self):
 return f"{self.value} degrees"

The print() function uses this, and so do str() and the string formatting
operations:

>>> print(Angle(30))
30 degrees
>>> print(f"{Angle(30) + Angle(45)}")
75 degrees
>>> print("{}".format(Angle(30) + Angle(45)))
75 degrees
>>> str(Angle(135))
'135 degrees'
>>> some_angle = Angle(45)
>>> f"{some_angle}"
'45 degrees'

Sometimes you want a string representation that is more precise, which might be at
odds with a human-friendly representation. Imagine you have several subclasses (for

116 | Chapter 6: Classes and Objects: Beyond the Basics

instance, PitchAngle and YawAngle in some kind of aircraft-related library), and you
want an easy way to log the exact type and arguments needed to recreate the object.
Python provides a second magic method for this purpose, called __repr__():

class Angle:
 # ...
 def __repr__(self):
 return f"Angle({self.value})"

You access this by calling either the repr() built-in function, or by passing the !r
conversion to the formatting string:

>>> repr(Angle(75))
'Angle(75)'
>>> print('{!r}'.format(Angle(30) + Angle(45)))
Angle(75)
>>> print(f"{Angle(30) + Angle(45)!r}")
Angle(75)

You can think of both of these as working like str(), but invoking __repr__()
instead of __str__().

The official guideline is that the output of __repr__() can be passed to eval() to
recreate the object exactly. It’s not enforced by the language, and is not always practi‐
cal, or even possible. But when you can follow that guideline, it is useful for logging
and debugging.

We also want to be able to compare two Angle objects. The most basic comparison is
equality, provided by __eq__(). It should return True or False:

class Angle:
 # ...
 def __eq__(self, other):
 return self.value == other.value

If defined, this method is used by the == operator:

>>> Angle(3) == Angle(3)
True
>>> Angle(7) == Angle(1)
False

By default, the == operator is based on the object ID. So an expression like x == y
evaluates to True if x and y have the same ID, and otherwise evaluates to False. That
is rarely useful:

>>> class BadAngle:
... def __init__(self, value):
... self.value = value
...
>>> BadAngle(3) == BadAngle(3)
False

Magic Methods | 117

What’s left are the fuzzier comparison operations: less than, greater than, and so on.
Python’s documentation calls these “rich comparison” methods, so you can feel weal‐
thy when using them (see Table 6-3).

Table 6-3. Rich comparison magic methods

Method Operation

__lt__() less than (<)

__le__() less than or equal (\<=)

__gt__() greater than (>)

__ge__() greater than or equal (>=)

For example:

class Angle:
 # ...
 def __gt__(self, other):
 return self.value > other.value

Now the greater-than operator works correctly:

>>> Angle(100) > Angle(50)
True

Similarly, with __ge__(), __lt__(), etc. If you don’t define these, you get an error:

>>> BadAngle(8) > BadAngle(4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: BadAngle() > BadAngle()

__gt__() and __lt__() are reflections of each other. What that means is that, in
many cases, you only have to define one of them. Suppose you implement __gt__()
but not __lt__(), then do this:

>>> a1 = Angle(3)
>>> a2 = Angle(7)
>>> a1 < a2
True

This works thanks to some just-in-time introspection the Python runtime does. The
a1 < a2 is translated to a1.__lt__(a2). If Angle.__lt__() is indeed defined, that
method is executed, and the expression evaluates to its return value.

a1 < a2 is true if and only if a2 > a1. For this reason, if __lt__() does not exist, but
__gt__() does, then Python will rewrite the angle comparison: a1.__lt__(a2)
becomes a2.__gt__(a1). This is then evaluated, and the expression a1 < a2 is set to
its return value. There are some situations where you will need to define both, for
example, if the comparison is based on several member variables.

118 | Chapter 6: Classes and Objects: Beyond the Basics

4 Which you will rarely do in real code (you will ingest from a CSV file or something instead), but it is conve‐
nient for demonstrating here.

Rebelliously Misusing Magic Methods
Magic methods are interesting enough, and quite handy when you need them. But
depending on the kind of applications you work on, you will rarely need to define a
class whose instances can be added, subtracted, or compared.

Things get much more interesting, though, when you don’t follow the rules.

Here’s a fascinating fact: methods like __add__() are supposed to do addition. But it
turns out that Python does not enforce this. And methods like __gt__() are supposed
to return True or False. But if you write a __gt__() which returns something that
isn’t a bool…Python will not complain at all.

This creates amazing possibilities.

To illustrate, let me tell you about Pandas. You probably know that Pandas is an excel‐
lent data-processing library. It’s become extremely popular among data scientists who
use Python. Pandas has a convenient data type called a DataFrame. It represents a
two-dimensional collection of data, organized into rows, with labeled columns:

import pandas
df = pandas.DataFrame({
 'A': [-137, 22, -3, 4, 5],
 'B': [10, 11, 121, 13, 14],
 'C': [3, 6, 91, 12, 15],
 })

There are several ways to create a DataFrame; here I’ve chosen to use a dictionary.4

The keys are column names; the values are lists, which become that column’s data. So
you visually rotate each list 90 degrees:

>>> print(df)
 A B C
0 -137 10 3
1 22 11 6
2 -3 121 91
3 4 13 12
4 5 14 15

The rows are numbered for you, and the columns nicely labeled in a header. The A
column, for example, has different positive and negative numbers.

Now, one of the many useful things you can do with a DataFrame is filter out rows
meeting certain criteria. This doesn’t change the original DataFrame; instead, it

Rebelliously Misusing Magic Methods | 119

creates a new DataFrame, containing just the rows you want. For example, you can
say, “Give me the rows of df in which the A column has a positive value”:

>>> positive_a = df[df.A > 0]
>>> print(positive_a)
 A B C
1 22 11 6
3 4 13 12
4 5 14 15

All you have to do is pass in “df.A > 0” in the square brackets.

But there’s something weird going on here. Take a look at the line in which
positive_a is defined. Do you notice anything unusual there? Anything strange?

Here’s what is odd: the expression “df.A > 0” ought to evaluate to either True, or
False. Right? It’s supposed to be a Boolean value with exactly one bit of information.
But the source dataframe, df, has many rows. Real dataframes can easily have tens of
thousands, even millions of rows of data. There’s no way a Boolean literal can express
which of those rows to keep and which to discard. How does this even work?

Turns out, it’s not Boolean at all:

>>> comparison = (df.A > 0)
>>> type(comparison)
<class 'pandas.core.series.Series'>
>>> print(comparison)
0 False
1 True
2 False
3 True
4 True
Name: A, dtype: bool

Yes, you can do that, thanks to Python’s dynamic type system. Python translates “df.A
> 0” into “df.A.__gt__(0)”. And that __gt__() method doesn’t have to return a
bool. In fact, in Pandas, it returns a Series object (which is like a vector of data),
containing True or False for each row. And when that’s passed into df[]—the square
brackets being handled by the __getitem__() method—that Series object is used to
filter rows.

To see what this looks like, let’s re-invent part of the interface of Pandas. I’ll create a
library called fakepandas, which instead of DataFrame has a type called Dataset:

class Dataset:
 def __init__(self, data):
 self.data = data
 self.labels = sorted(data.keys())
 def __getattr__(self, label: str):
 # Makes references like df.A work.

120 | Chapter 6: Classes and Objects: Beyond the Basics

 return Column(label)
 # Plus some other methods.

If I have a Dataset object named ds, with a column named A, the __getattr__()
method causes references like ds.A to return a Column object:

import operator
class Column:
 def __init__(self, name):
 self.name = name
 def __gt__(self, value):
 return Comparison(self.name, value, operator.gt)

This Column class has a __gt__() method, which makes expressions like “ds.A > 0”
return an instance of a class called Comparison. It represents a lazy calculation for
when the actual filtering happens later. Notice its constructor arguments: a column
name, a threshold value, and a callable to implement the comparison. (The operator
module has a function called gt() that takes two arguments, expressing a greater-
than comparison).

You can even support complex filtering criteria like ds[ds.C + 2 < ds.B]. It’s all
possible by leveraging magic methods in these unorthodox ways. If you care about
the details, I wrote an article delving into that. My goal here isn’t to tell you how to re-
invent the Pandas interface, so much as to get you to realize what’s possible.

Have you ever implemented a compiler? If so, you know the parsing phase is a signifi‐
cant development challenge. Using Python magic methods in this manner does much
of the hard work of lexing and parsing for you. And the best part is how natural and
intuitive the result can be for end users. You are essentially implementing a domain-
specific language on top of regular Python syntax, but consistently enough that peo‐
ple quickly become fluent and productive within its rules. They often won’t even
think to ask why the rules seem to be bent; they won’t notice that “df.A > 0” isn’t
acting like a Boolean. That’s a clear sign of success. It means you have designed your
library so well, other developers become effortlessly productive.

Conclusion
Most Python users know how to write simple classes and methods. But as you can
see, Python’s object system has a lot more to it than that. Learning more advanced
OOP opens up great opportunities for you, and allows you to create code structures
you would otherwise never produce. Take everything you learned in this chapter, and
put it into action.

Conclusion | 121

https://powerfulpython.com/blog/rebellious-magic-methods-python-syntax

1 https://docs.python.org/3/library/unittest.html
2 You may be in a third category, having a lot of experience with a non-xUnit testing framework. If so, you

should probably pretend you’re in the first group. You’ll be able to move quickly.

CHAPTER 7

Automated Testing

Writing automated tests is one of those things that separates average developers from
the best in the world. Master this skill, and you will be able to write far more complex
and powerful software than you ever could before. It is a superpower that changes the
arc of your career.

Some of you have, so far, little or no experience writing automated tests, in any lan‐
guage. This chapter is primarily written for you. It introduces many fundamental
ideas of test automation, explains the problems it is supposed to solve, and teaches
how to apply Python’s tools for doing so.

Some of you will have extensive experience using standard test frameworks in other
languages (such as JUnit in Java, PHPUnit in PHP, and so on). Generally speaking, if
you have mastered an xUnit framework in another language, and are fluent in
Python, you may be able to start skimming Python’s unittest module docs1 and be
productive in minutes. Python’s test library, unittest, maps closely to how most
xUnit libraries work.2

If you are more experienced, I believe it is worth your time to at least skim this chap‐
ter, and perhaps study it thoroughly. I have woven in useful, real-world wisdom for
software testing in general, and for Python specifically. This includes topics like how
to organize Python test code, writing maintainable test code, useful features like subt‐
ests, and even cognitive aspects of programming… like getting into an enjoyable,
highly productive “flow” state via test-driven development.

123

https://docs.python.org/3/library/unittest.html

3 If you haven’t done one of these yet, you will someday.

With that in mind, let’s start with the core ideas for writing automated tests. We’ll
then apply those ideas specifically to Python.

What Is Test-Driven Development?
An automated test is a program that tests another program. Generally, it tests a spe‐
cific portion of that program: a function, a method, a class, or some group of these
things chunked together. We call that portion the system under test, sometimes abbre‐
viated as SUT.

If the system under test is working correctly, the automated test passes; if not, that test
fails—which means it catches the error and immediately tells you what is wrong. Real
applications accumulate many of these tests as development proceeds.

People have different names for different kinds of automated tests: unit tests, integra‐
tion tests, end-to-end tests, etc. These distinctions are useful, but we won’t need to
worry about them right now. They all share the same foundation.

In this chapter, we do test-driven development, or TDD. Test-driven development
means you start working on each new feature or bugfix by writing the automated test
for it first. You write the test; run it, to verify that it fails (and make sure that test code
is actually working); and only then write the actual code for the feature. You know it
works when the test passes.

This is a different process from implementing the feature first, then writing a test for
it. Writing the test first forces you to think through the interfaces of your code,
answering the question, “How will I know my code is working?” That immediate
benefit is useful, but it is not the whole story.

TDD’s greatest midterm benefits are mostly cognitive. As you become competent and
comfortable with its tactics and techniques, you learn to easily get into a state of flow
—where you find yourself repeatedly implementing feature after feature, keeping
your focus with ease for long periods of time. You can honestly surprise and delight
yourself with how much you accomplish in a short period of time.

But even greater benefits emerge over time. We’ve all done substantial refactorings of
a large codebase, changing fundamental aspects of its architecture.3 Such refactorings
—which threaten to break the application in confusing, hidden ways—become
straightforward and safe when you have test code in place already, and use TDD to
refactor from that foundation. You first update the tests: modifying where needed,
and writing new tests as appropriate. Then all you have to do is make them pass. It

124 | Chapter 7: Automated Testing

might still be a lot of work. But you can be confident in the correctness of your code,
once the new tests pass.

Among developers who know how to write tests, some love to do TDD in their day-
to-day work. Some like to do it part of the time; some hate it, and do it rarely or
never. However, the absolute best way to quickly master unit testing is to strictly do
TDD for a while. So I’ll teach you how to do that. You do not have to do it forever if
you don’t want to.

Python’s standard library ships with two modules for creating unit tests: doctest and
unittest. Most engineering teams prefer unittest, as it is more full-featured
than doctest. This isn’t just a convenience. There is a low ceiling of complexity that
doctest can handle, and real applications will quickly bump up against that limit.
With unittest, the sky is more or less the limit.

And because unittest maps closely to the xUnit libraries used in many other lan‐
guages, if you are already familiar with Python, and have used an xUnit library in any
language, you will feel right at home with unittest. That said, unittest has some
unique tools and idioms—partly because of differences in the Python language, and
partly from unique extensions and improvements. We will learn the best of what
unittest has to offer as we go along.

Another popular option is pytest. This is not in the standard library, but it is widely
used. For brevity, we will focus on unittest in this chapter. Once you learn the prin‐
ciples, picking up pytest is straightforward.

Unit Tests and Simple Assertions
Imagine a class representing an angle:

>>> small_angle = Angle(60)
>>> small_angle.degrees
60
>>> small_angle.is_acute()
True
>>> big_angle = Angle(320)
>>> big_angle.is_acute()
False
>>> funny_angle = Angle(1081)
>>> funny_angle.degrees
1
>>> total_angle = small_angle + big_angle
>>> total_angle.degrees
20

Unit Tests and Simple Assertions | 125

4 Remember from Chapter 6; __add__() is a magic method which makes binary addition with + work.

As you can see, Angle keeps track of the angle size, wrapping around so it’s in a range
of 0 up to 360 degrees. You also have an is_acute() method, to tell you if its size is
under 90 degrees, and an __add__() method for arithmetic.4

Suppose this Angle class is defined in a file named angles.py. Here’s how we create a
simple test for it—in a separate file, named test_angles.py:

import unittest
from angles import Angle

class TestAngle(unittest.TestCase):
 def test_degrees(self):
 small_angle = Angle(60)
 self.assertEqual(60, small_angle.degrees)
 self.assertTrue(small_angle.is_acute())
 big_angle = Angle(320)
 self.assertFalse(big_angle.is_acute())
 funny_angle = Angle(1081)
 self.assertEqual(1, funny_angle.degrees)

 def test_arithmetic(self):
 small_angle = Angle(60)
 big_angle = Angle(320)
 total_angle = small_angle + big_angle
 self.assertEqual(20, total_angle.degrees,
 'Adding angles with wrap-around')

As you look over this code, notice a few things:

• There’s a class called TestAngle. You just define it, but you do not create any
instance of it. It subclasses TestCase.

• You define two methods, test_degrees() and test_arithmetic().
• Both test_degrees() and test_arithmetic() have assertions, using some

methods of TestCase: assertEqual(), assertTrue(), and assertFalse().
• The last assertion includes a custom message as its third argument.

To see how this works, let’s define a stub for the Angle class in angles.py:

angles.py - stub version
class Angle:
 def __init__(self, degrees):
 self.degrees = 0
 def is_acute(self):
 return False

126 | Chapter 7: Automated Testing

5 For running Python on the command line, this book uses python for the executable. But depending on how
Python was installed on your computer, you may actually need to run python3 instead. Check by running
python -V, which reports the version number. If it says 2.7 or lower, that is the legacy version; you want to
run python3 instead.

 def __add__(self, other_angle):
 return Angle(0)

This Angle class defines all the attributes and methods it is expected to have, but
otherwise does nothing useful. We need a stub like this to verify the test can run cor‐
rectly, and alert us to the fact that the code isn’t working yet.

The unittest module is used not just to define tests, but also to run them. You do so
on the command line like this:5

python -m unittest test_angles.py

Run the test, and you’ll see the following output:

$ python -m unittest test_angles.py
FF
===
FAIL: test_arithmetic (test_angle.TestAngle)
--
Traceback (most recent call last):
 File "/src/test_angles.py", line 18, in test_arithmetic
 self.assertEqual(20, total_angle.degrees, 'Adding angles with wrap-around')
AssertionError: 20 != 0 : Adding angles with wrap-around

===
FAIL: test_degrees (test_angle.TestAngle)
--
Traceback (most recent call last):
 File "/src/test_angles.py", line 7, in test_degrees
 self.assertEqual(60, small_angle.degrees)
AssertionError: 60 != 0

--
Ran 2 tests in 0.001s

FAILED (failures=2)

Notice:

• Both test methods are shown. They both have a failed assertion highlighted.
• test_degrees() makes several assertions, but only the first one has been run—

once it fails, the others are not executed.
• For each failing assertion, you are given the line number, its expected and actual

values, and its test method.

Unit Tests and Simple Assertions | 127

6 In current Python versions, the test methods are executed in alphabetical order. This order is fragile, because
it changes when you add a new test method.

• The custom message in test_arithmetic() shows up in the output.

This demonstrates one useful way to organize your test code: in a single test module
(test_angles.py), you define one or more subclasses of unittest.TestCase. Here, I
just define TestAngle, containing tests for the Angle class. Within this, I create sev‐
eral test methods, for testing different aspects of the class. In each of these test meth‐
ods, I can have as many assertions as makes sense.

It’s traditional to start a test class name with the string Test, but that is not required;
unittest will find all subclasses of TestCase automatically. But every method must
start with the string test. If it starts with anything else (even Test), unittest will not
run its assertions.

Running the test and watching it fail is an important first step. It verifies that the test
does, in fact, actually test your code. As you write more and more tests, you’ll occa‐
sionally create a test; run it, expecting it to fail; and find that it unexpectedly passes.
That’s a bug in your test code! Fortunately you ran the test first, so you caught it right
away.

In the test code, we defined test_degrees() before test_arithmetic(), but they
were actually run in the opposite order. It’s important to craft your test methods to be
self-contained, and not depend on one being run before the other, for several reasons.
One of them is that the order in which they are defined is generally not the order in
which they are executed.6

(If you find yourself wanting to run tests in a certain order, this might be better han‐
dled with setUp() and tearDown(), explained in the next section.)

At this point, we have a correctly failing test. If I’m using version control and working
in a branch, this is a good moment to check in the test code, because it specifies the
correct behavior (even if it’s presently failing). The next step is to actually make that
test pass. Here’s one way to do it:

angles.py, version 2
class Angle:
 def __init__(self, degrees):
 self.degrees = degrees % 360
 def is_acute(self):
 return self.degrees < 90
 def __add__(self, other_angle):
 return Angle(self.degrees + other_angle.degrees)

128 | Chapter 7: Automated Testing

7 This could be you, months or years down the road. Be considerate of your future self!

Now when I run my tests again, they all pass:

python -m unittest test_angles.py
..
--
Ran 2 tests in 0.000s

OK

assertEqual(), assertTrue(), and assertFalse() will be the most common asser‐
tion methods you use, along with assertNotEqual(), which does the opposite of
assertEqual(). TestCase provides many others, such as assertIs(), assertIs
None(), assertIn(), and assertIsInstance()—along with “not” variants like
assertIsNot(). Each takes an optional final message-string argument, like “Adding
angles with wrap-around” in test_arithmetic() above. If the test fails, the message
is printed in the output, which can give helpful advice to whoever is troubleshooting
a broken test.7

If you try checking that two dictionaries are equal, and they are not, the output is tail‐
ored to the data type: highlighting which key is missing, or which value is incorrect,
for example. This also happens with lists, tuples, and sets, making troubleshooting
much easier. What’s actually happening is that unittest provides certain type-
specialized assertions, such as assertDictEqual(), assertListEqual(), and more.
You almost never need to invoke them directly: if you invoke assertEqual() with
two dictionaries, it automatically dispatches to assertDictEqual(), and similar for
the other types. So you get this usefully detailed error reporting for free.

The assertEqual() lines take two arguments, and I always write the expected, cor‐
rect value first:

small_angle = Angle(60)
self.assertEqual(60, small_angle.degrees)

It does not matter whether the expected value is first or second, but it’s smart to pick
an order and stick with it—at least throughout a single codebase, and maybe for all
code you write. Sticking with a consistent order greatly improves the readability of
your test output, because you never have to decipher which is which. Believe me, this
will save you a lot of time; nothing will throw off your momentum more than confus‐
ing the expected and actual values for each other, only to realize 20 minutes later you
had them mixed up in your head. If you’re on a team, negotiate with your teammates
to agree on a consistent order, and enforce it.

Unit Tests and Simple Assertions | 129

Fixtures and Common Test Setup
As an application grows and you write more tests, you will find yourself writing
groups of test methods that start or end with the same lines of code. This repeated
code—which does some kind of pretest setup, and/or after-test cleanup—can be con‐
solidated in the special methods setUp() and tearDown().

Each of your TestCase subclasses can define setUp(), tearDown(), both, or neither. If
defined, setUp() is executed just before each test method starts; tearDown() is run
just after. This is repeated for every single test method.

Here’s a realistic example of when you might use it. Imagine working on a tool that
saves its state between runs in a special JSON file. We’ll call this the “state file”. On
start, your tool reads the state from the file; if the tool has any state change while run‐
ning, that gets written to the file on exit.

It makes sense to write a class to manage this state file. A stub might look like:

statefile.py - Stub version
class State:
 def __init__(self, state_file_path):
 # Load the stored state data, and save
 # it in self.data.
 self.data = { }
 def close(self):
 # Handle any changes on application exit.

In fleshing out this stub, we want our tests to verify the following:

• If I alter the value of an existing key, that updated value is written to the state file.
• If I add a new key-value pair to the state, it is recorded correctly in the state file.
• If I remove a key-value pair from the state, it is also removed in the state file.
• If the state is not changed, the state file’s content stays the same.

For each test, we want the state file to be in a known starting state. Afterward, we
want to remove that file so that our tests don’t leave garbage on the filesystem. Here’s
how the setUp() and tearDown() methods accomplish this:

import os
import unittest
import shutil
import tempfile
from statefile import State

INITIAL_STATE = '{"foo": 42, "bar": 17}'

class TestState(unittest.TestCase):
 def setUp(self):

130 | Chapter 7: Automated Testing

 self.testdir = tempfile.mkdtemp()
 self.state_file_path = os.path.join(
 self.testdir, 'statefile.json')
 with open(self.state_file_path, 'w') as outfile:
 outfile.write(INITIAL_STATE)
 self.state = State(self.state_file_path)

 def tearDown(self):
 shutil.rmtree(self.testdir)

 def test_change_value(self):
 self.state.data["foo"] = 21
 self.state.close()
 reloaded_statefile = State(self.state_file_path)
 self.assertEqual(21,
 reloaded_statefile.data["foo"])

 def test_add_key_value_pair(self):
 self.state.data["baz"] = 42
 self.state.close()
 reloaded_statefile = State(self.state_file_path)
 self.assertEqual(42, reloaded_statefile.data["baz"])

 def test_remove_key_value_pair(self):
 del self.state.data["bar"]
 self.state.close()
 reloaded_statefile = State(self.state_file_path)
 self.assertNotIn("bar", reloaded_statefile.data)

 def test_no_change(self):
 self.state.close()
 with open(self.state_file_path) as handle:
 checked_content = handle.read()
 self.assertEqual(INITIAL_STATE, checked_content)

In setUp(), you create a fresh temporary directory, and write the contents of INI
TIAL_DATA inside. Since we know each test will be working with a State object based
on that initial data, we create that object, and save it in self.state. Each test can
then work with that object, confident that it is in the same consistent starting state,
regardless of what any other test method does. In effect, setUp() creates a private
sandbox for each test method.

The tests in TestState would all work reliably with just setUp(). But we also want to
clean up the temporary files we create; otherwise, they will accumulate over time with
repeated test runs. The tearDown() method runs after each test_* method com‐
pletes, even if some of its assertions fail. This ensures the temp files and directories
are all removed completely.

The generic term for this kind of preparation is called a test fixture. A test fixture is
whatever needs to be done or set up before a test can properly run. In this case, we set

Fixtures and Common Test Setup | 131

up the text fixture by creating the state file, and the State object. A text fixture can be
a mock database, a set of files in a known state, some kind of network connection, or
even starting a server process. You can do all these with setUp().

tearDown() is for shutting down and cleaning up the text fixture: deleting files, stop‐
ping the server process, etc. You will not always need a tear-down, but in some cases
it is essential. If setUp() starts some kind of server process, for example, and tear
Down() fails to terminate it, then setUp() may not be able to run for the next test.

When you write these method names, the camel-casing matters. People sometimes
misspell them as setup() or teardown(), then wonder why they are not automati‐
cally invoked. Any uncaught exception in either setUp() or tearDown() will cause
that test to fail, after which unittest immediately skips to the next test. For errors in
setUp(), this means none of that test’s assertions will run (though it still shows as a
clear error in the output). For tearDown(), the test is marked as failing, even if all the
individual assertions passed.

Asserting Exceptions
Sometimes your code is supposed to raise an exception, under certain conditions. If
that condition occurs, and your code does not raise the correct exception, that’s a bug.
How do you write test code for this situation?

You can verify that behavior with a special method of TestCase, called
assertRaises(). It’s used in a with statement in your test; the block under the with
statement is asserted to raise the exception.

For example, suppose you are writing a library that translates Roman numerals into
integers. You might define a function called roman2int():

>>> roman2int("XVI")
16
>>> roman2int("II")
2

In thinking about the best way to design this function, you decide that passing non‐
sensical input to roman2int() should raise a ValueError. Here’s how you write a test
to assert that behavior:

import unittest
from roman import roman2int

class TestRoman(unittest.TestCase):
 def test_roman2int_error(self):
 with self.assertRaises(ValueError):
 roman2int("This is not a valid roman numeral.")

If you run this test, and roman2int() does not raise the error, this is the result:

132 | Chapter 7: Automated Testing

$ python -m unittest test_roman2int.py
F
===
FAIL: test_roman2int_error (test_roman2int.TestRoman)
--
Traceback (most recent call last):
 File "/src/test_roman2int.py", line 7, in test_roman2int_error
 roman2int("This is not a valid roman numeral.")
AssertionError: ValueError not raised

--
Ran 1 test in 0.000s

FAILED (failures=1)

When you fix the bug, and roman2int() raises ValueError like it should, the test
passes.

Using Subtests
Sometimes you will want to iterate through many test inputs, to thoroughly validate
the input range and cover many edge cases. You could simply write a parade of assert
methods, but that becomes tediously repetitive, and more importantly, it will stop
with the first failing assertion. Sometimes it is tremendously helpful to run all these
assertions so that you have a full picture of which are passing and which are not.

Python’s unittest library supports this with a feature called subtests. This lets you
conveniently iterate through a potentially large collection of test inputs, with well-
presented (and easy to comprehend) reporting output. Pytest calls its version of this
feature parameterized tests, which is probably a better name. But since we are focused
on unittest, we will call them subtests.

Imagine a function called numwords(), which counts the number of unique words in
a string (ignoring punctuation, spelling, and spaces):

>>> numwords("Good, good morning. Beautiful morning!")
3

Suppose you want to test how numwords() handles excess whitespace. You can easily
imagine a dozen different reasonable inputs that will result in the same return value,
and want to verify it can handle them all. You might create something like this:

class TestWords(unittest.TestCase):
 def test_whitespace(self):
 self.assertEqual(2, numwords("foo bar"))
 self.assertEqual(2, numwords(" foo bar"))
 self.assertEqual(2, numwords("foo\tbar"))
 self.assertEqual(2, numwords("foo bar"))
 self.assertEqual(2, numwords("foo bar \t \t"))
 # And so on, and so on...

Using Subtests | 133

Seems a bit repetitive, doesn’t it? The only thing varying is the argument to num
words(). We might benefit from using a for loop:

 def test_whitespace_forloop(self):
 texts = [
 "foo bar",
 " foo bar",
 "foo\tbar",
 "foo bar",
 "foo bar \t \t",
]
 for text in texts:
 self.assertEqual(2, numwords(text))

At first glance, this seems better: more readable and maintainable. If we add new var‐
iants, it’s just another line in the texts list. And if I rename numwords(), I only need
to change it in one place in the test.

However, using a for loop like this creates more problems than it solves. Suppose you
run this test and get the following failure:

$ python -m unittest test_words_forloop.py
F
===
FAIL: test_whitespace_forloop (test_words_forloop.TestWords)
--
Traceback (most recent call last):
 File "/src/test_words_forloop.py", line 17, in test_whitespace_forloop
 self.assertEqual(2, numwords(text))
AssertionError: 2 != 3

--
Ran 1 test in 0.000s

FAILED (failures=1)

Look closely, and you’ll realize that numwords() returned 3 when it was supposed to
return 2.

Pop quiz: out of all the inputs in the list, which caused the bad return value?

The way we’ve written the test, there is no way to know. All you can infer is that at
least one of the test inputs produced an incorrect value. You don’t know which one.
That’s the first problem.

The second problem—which the original test also suffers from—is that everything
stops with the first failed assertion. For this kind of function, knowing all the failing
inputs, and the incorrect results they create, would be very helpful for quickly under‐
standing what’s going on.

134 | Chapter 7: Automated Testing

Subtests solve these problems. Our for-loop solution is actually quite close. All we
have to do is add one line. Do you see it below?

 def test_whitespace_subtest(self):
 texts = [
 "foo bar",
 " foo bar",
 "foo\tbar",
 "foo bar",
 "foo bar \t \t",
]
 for text in texts:
 with self.subTest(text=text):
 self.assertEqual(2, numwords(text))

Just inside the for loop, we write with self.subTest(text=text). This creates a
context in which assertions can be made, and even fail. Regardless of whether they
pass or not, the test continues with the next iteration of the for loop. At the end, all
failures are collected and reported in the test result output, like this:

$ python -m unittest test_words_subtest.py

===
FAIL: test_whitespace_subtest (test_words_subtest.TestWords) (text='foo\tbar')
--
Traceback (most recent call last):
 File "/src/test_words_subtest.py", line 16, in test_whitespace_subtest
 self.assertEqual(2, numwords(text))
AssertionError: 2 != 3

===
FAIL: test_whitespace_subtest (test_words_subtest.TestWords) (text='foo bar \t \t')
--
Traceback (most recent call last):
 File "/src/test_words_subtest.py", line 16, in test_whitespace_subtest
 self.assertEqual(2, numwords(text))
AssertionError: 2 != 4

--
Ran 1 test in 0.000s

FAILED (failures=2)

Behold the opulence of information in this output:

• Each individual failing input has its own detailed summary.
• We are told what the full value of text was.
• We are told what the actual returned value was, and it is clearly compared to the

expected value.
• No values are skipped. We can be confident that these two are the only failures.

Using Subtests | 135

This is much better. The two offending inputs are “foo\tbar” and “foo bar \t \t”.
These are the only values containing tab characters, so you can quickly realize the
nature of the bug: tab characters are being counted as separate words.

Let’s look at these three lines of code again:

 for text in texts:
 with self.subTest(text=text):
 self.assertEqual(2, numwords(text))

The key-value arguments to self.subTest() are shown in the reporting output. You
can pass in whatever key-value pairs you like; they can be anything that helps you
understand exactly what is wrong when a test fails. Often you will want to pass every‐
thing that varies from the test cases; here, that is only the string passed to num
words().

Be clear that in these three lines, the symbol text is used for two different things.
Look at lines 1, 2, and 3 again:

 for text in texts:
 with self.subTest(text=text):
 self.assertEqual(2, numwords(text))

In line 1, the text is the same variable that is passed to numwords() on line 3. But on
line 2, in the call to subTest(), you have text=text. The left-hand text is actually a
parameter that is used in the reporting output if the test fails. The right-hand side is
the value of that parameter, which, in this case, happens to also be called text.

It can clarify if we use input_text as the parameter to subTest() instead:

 for text in texts:
 with self.subTest(input_text=text):
 self.assertEqual(2, numwords(text))

Then the failure output might look like:
FAIL: test_whitespace_subtest (test_words_subtest.TestWords) (input_text='foo\tbar')

See how at the end of that FAIL line, it says input_text instead of text? That is
because we used a different argument parameter when calling subTest(). In fact, we
can use whatever parameter name we want, but it often works best if we use same
identifier name throughout.

Conclusion
Let’s recap the big ideas. Test-driven development means we create the test first, along
with whatever stubs we need to make the test run. We then run it and watch it fail.
This is an important step. You must run the test and see it fail.

136 | Chapter 7: Automated Testing

This is important for two reasons. You don’t really know if the test is correct until you
verify that it can fail. As you write automated tests more and more over time, you will
be surprised at how often you write a test and run it, expecting to see it fail, only to
discover it passes. As far as I can tell, every good, experienced software engineer still
occasionally does this—even after doing TDD for years! This is why we build the
habit of always verifying the test fails first.

The second reason is more subtle. As you gain experience with TDD and become
comfortable with it, you will find the cycle of writing tests and making them pass lets
you get into a state of flow. This means you are enjoyably productive and focused, in
a way that is easy to maintain over time. You will get addicted to this.

Is it important that you strictly follow TDD? People have different opinions on this,
some of them very strong. Personally, I went through a period of almost a year where
I followed TDD quite strictly. As a result, I got very good at writing tests, and writing
them rapidly.

Now that I’ve developed that level of skill, I find that I follow TDD most of the time,
but less often than I did when learning. I have noticed that TDD is most powerful
when I have great clarity on the software’s design, architecture and APIs; it helps me
get into a cognitive state that seems accelerated, so I can more easily maintain my
mental focus, and produce quality code faster.

But I find it very hard to write good tests when I don’t yet have that clarity—when I
am still thinking through how I will structure the program and organize the code. In
fact, I find TDD slows me down in that phase, as any test I write will probably have to
be completely rewritten several times, if not deleted, before things stabilize. In these
situations, I prefer to get a first version of the code working through manual testing,
then write the tests afterward.

For this reason, if your particular job requires a lot of exploratory coding—data sci‐
entists, I am looking at you—then TDD may not be something you do all the time. If
that is the case, there are many benefits to still doing it as much as you can. Remem‐
ber, this is a superpower. But only if you use it.

No matter your situation, I encourage you to find a way to do strict TDD for a period
of time, simply because of what it will teach you. As you develop your skill at writing
tests, you can step back and evaluate how you want to integrate it into your daily
routine.

Conclusion | 137

1 A component is a general term for some modular unit of software. Simple components can be a function; a
class; or an instance of a class. Components can also be larger-scale structures, such as whole libraries or serv‐
ices. But in this chapter, “component” just means “something you can import from a Python module”.

CHAPTER 8

Module Organization

For anything more than a small program, you will want to organize your code into
modules. This is also the unit of organization for reusable libraries—both libraries
you create, and outside code you import into your own codebase.

Python’s module system is a delight: easy to use, well designed, and extremely flexible.
Making full use requires understanding its mechanisms for imports, and how that
works with namespacing. We will dive deep into all of that in this chapter.

In particular, we will focus on how modules evolve. Requirements change over time;
as new requirements come in, and as you get more clarity on existing requirements,
and how to best organize your codebase. So we will cover the best practices for refac‐
toring and updating module structure during the development process.

This is an important and practical part of working with modules. But for some rea‐
son, it is never talked or written about. Until now.

Spawning a Module
To touch on everything important about modules, we will follow the lifecycle of a
small Python script that gradually grows in scope and lines of code—eventually grow‐
ing to a point where we want to package its components 1 into reusable modules. We
do this not just for sensible organization, but also so we can import them into other
applications. This evolution from script to spin-off library happens all the time in real
software development.

139

Imagine you create a little Python script, called findpattern.py. Its job is simple: to
scan through a text file, and print out those lines which contain a certain substring.

This is similar to a program called grep in the Linux (and Unix) world, which oper‐
ates on a stream of lines of text, filtering for those which match a pattern you specify.
findpattern.py is less powerful than grep. But it is more portable, and—more
importantly—lets us illustrate everything we need in this chapter.

findpattern.py
import sys

def grepfile(pattern, path):
 with open(path) as handle:
 for line in handle:
 if pattern in line:
 yield line.rstrip('\n')

pattern, path = sys.argv[1], sys.argv[2]
for line in grepfile(pattern, path):
 print(line)

This program defines a generator function called grepfile(), which may remind you
of the matching_lines_from_file() function in Chapter 1—because it demonstrates
many of the same Python best practices. It takes two arguments: pattern, the sub‐
string pattern to search for, and path, the path to the file to search in.

Imagine you have a file named log.txt, containing simple log messages, one per line,
like this:

ERROR: Out of milk
WARNING: Running low on orange juice
INFO: Temperature adjusted to 39 degrees
ERROR: Alien spacecraft crashed

Your program needs to get these two values from the command line. So you invoke
the program like this:

% python findpattern.py ERROR log.txt

It is best to do extract the command-line arguments with a specialist library for pars‐
ing them, such as Python’s built-in argparse module. But to avoid a side quest
explaining how that works, we will simply extract them from argv in the sys module.

sys.argv is a list of strings. Its first element, at index 0, is the name of the program
you are running; so its value will be "findpattern.py" in this case. What we want are
the command-line arguments, ERROR and log.txt. These will be at indices 1 and 2 in
sys.argv, respectively. So we load those into the pattern and path variables. With
that out of the way, we can simply iterate through the generator object returned by
grepfile(), printing out each matching line.

140 | Chapter 8: Module Organization

Whenever you create a Python file, that also creates a module of the same name
(minus the .py extension). So our findpattern.py file, in addition to being a com‐
plete program, also creates a module named findpattern. This happens automati‐
cally; you do not have to declare this, or take any extra steps.

Whenever you have a module, that means you can import from it. In particular, we
have a nice function named grepfile(), which is general enough that we may want
to reuse it in other programs. Let’s do that.

You decide to create a program called finderrors.py to show only the ERROR lines
—similar to findpattern.py, but more specialized.

grepfile() is a good tool for implementing this, so you decide to import it. Your first
version looks like this:

finderrors.py
import sys
from findpattern import grepfile

path = sys.argv[1]
for line in grepfile('ERROR:', path):
 print(line)

This looks straightforward. But when you run the program, you get a strange error:

$ python finderrors.py log.txt
Traceback (most recent call last):
 File "finderrors.py", line 3, in <module>
 from findpattern import grepfile
 File "findpattern.py", line 10, in <module>
 pattern, path = sys.argv[1], sys.argv[2]
IndexError: list index out of range

IndexError? What on earth would cause that?

Let’s step through the stack trace. You can see that the error originates in line 3 of
finderrors.py. That is interesting, because it is the import line—where grepfile()
is imported from the findpattern module.

Next, the stack trace descends into the findpattern.py file. Specifically, on line 10,
where it unpacks variables from sys.argv.

Now you understand the problem. findpattern.py was written to use as a stand‐
alone program. But we are creating a new program and want to reuse code. In the
process of importing, sys.argv is unpacked, expecting two arguments, instead of the
one argument which finderrors.py actually takes.

When you import from a module, Python creates that module by executing its code.
It executes the def statements to create the functions, and executes the class

Spawning a Module | 141

statements to create the classes. But in the process of creating the module, Python
executes the entire file—including that sys.argv line.

So what do we do? The code is correct for running findpattern.py. But it doesn’t
allow finderrors.py to run. How do we import from findpattern and allow both
programs to run?

The solution is to use a main guard. It looks like this:

Replace the final 3 lines of findpattern.py with this:
if __name__ == "__main__":
 pattern, path = sys.argv[1], sys.argv[2]
 for line in grepfile(pattern, path):
 print(line)

We have taken the last three lines and indented them inside an “if” block. The “if”
condition references a magic variable called __name__. This variable is automatically
and globally defined, and will always have a string value. But to understand the
nature of that value, we must first understand something about how Python pro‐
grams are executed.

When you execute a Python program, often the code which makes up the program is
spread across more than one file. That is what happens here, right? When you run
finderrors.py, some of this program’s code is in that file. But some of the code is in
the findpattern.py file. So the Python code for this program is distributed over two
different files.

But here’s the important point: whenever you run a Python program consisting of
several files, one of those will be the main executable for the program. That is the file
which will show in the process table or task manager of the operating system. When
you run the finderrors.py program, then finderrors.py is the main executable.
That is what will show up in the process table, even though it is also utilizing code in
the findpattern.py file. Of course, real Python programs often use dozens, hun‐
dreds, or even thousands of distinct Python files, especially when your program uses
many libraries.

And so, back to __name__. This magic variable will have one of two values:

• If it is referenced inside the main executable file, its value will be the string
“__main__”.

• If it is referenced in any other Python file, it will be the name of the module that
file creates.

And so we use this in findpattern.py, to make this file usable as a stand-alone pro‐
gram, and as a module which can be imported from. By checking the value of
__name__, we effectively partition the file into two parts: code which is always

142 | Chapter 8: Module Organization

executed (and thus its objects are importable), and code which is executed only when
this file is itself run as a program.

Here is the full source of our amended findpattern.py:

import sys

def grepfile(pattern, path):
 with open(path) as handle:
 for line in handle:
 if pattern in line:
 yield line.rstrip('\n')

if __name__ == "__main__":
 pattern, path = sys.argv[1], sys.argv[2]
 for line in grepfile(pattern, path):
 print(line)

Let’s step through this. Suppose you execute findpattern.py as the program. Then
the findpattern.py file is the main executable, so the value of __name__ will be equal
to “__main__”. This means the “if” condition evaluates to True, and the final three
lines are executed.

In contrast, imagine you run finderrors.py. This file imports from the findpattern
module, which means all lines in the findpattern.py file are executed. But the value
of __name__ is set to the string “findpattern”. So the “if” condition evaluates to
False, and the final three lines are skipped. Now both programs work:

$ python findpattern.py ERROR log.txt
ERROR: Out of milk
ERROR: Alien spacecraft crashed
$ python finderrors.py log.txt
ERROR: Out of milk
ERROR: Alien spacecraft crashed

Creating Separate Libraries
Time passes, and new requirements roll in—as they always do. You now need a var‐
iant of the grepfile() function, which is case insensitive. Let’s call it igrepfile().

In your team, suppose you are in charge of finderrors.py, and your coworker is in
charge of findpattern.py. You are importing the grepfile() function from find
pattern.py. But where are you going to put the new igrepfile() function?

You cannot put it in findpattern.py. Your coworker is politely allowing you to reuse
his code by importing from the findpattern module, but he draws the line at adding
new functions he does not care about to his file. That is just creating more mainte‐
nance work for him.

Creating Separate Libraries | 143

At this point, it makes more sense to organize the code into a different module. Up to
now, findpattern.py has been filling two completely different roles. It’s a program
that does something useful, and it is a container of sorts: holding components that
can be reused by other programs—the grepfile() function, in particular.

Now you are going to separate these roles. You create a new file, called greputils.py.
It is not meant to be an executable program. Its sole purpose is to create a module,
called greputils, holding reusable code.

In particular, it will define the grepfile() function. You cut the entire definition of
grepfile() from findpattern.py, and paste it into greputils.py. Then in both
findpattern.py and finderrors.py, you add this import statement:

from greputils import grepfile

Congratulations: you have created a reusable library for your team’s software.

This is a great step forward in code organization. You can stuff whatever new classes
and functions make sense in this greputils module…without molesting any other
program which relies on it. A clear separation of roles.

Notice something else: this has evolved naturally. The entire process described above
is fully realistic, in terms of how a module of reusable code “emerges” during normal
application development. This example shows how it happens in a team, but it hap‐
pens much the same way when you are developing solo. As you develop new pro‐
grams, you naturally find you want to reuse functions and classes from your previous
projects, and it only makes sense to collect them all in a single convenient module.

The current versions of our files:

greputils.py
def grepfile(pattern, path):
 with open(path) as handle:
 for line in handle:
 if pattern in line:
 yield line.rstrip('\n')

findpattern.py
import sys

from greputils import grepfile
pattern, path = sys.argv[1], sys.argv[2]
for line in grepfile(pattern, path):
 print(line)

finderrors.py
import sys
from greputils import grepfile

path = sys.argv[1]

144 | Chapter 8: Module Organization

for line in grepfile('ERROR:', path):
 print(line)

Continuing to the next phase of our module’s evolution, imagine you keep adding
new functions and classes over time. So the greputils.py file gets bigger and bigger,
with more and more lines of code.

To make it concrete: imagine you often have to check whether a text file contains a
certain substring. You just want a yes or no answer to that question; you don’t need
the set of lines that match, you just want to know whether at least one line matches,
or none of them do.

This function should return True if the text file contains that string, and False other‐
wise. You call this function contains():

def contains(pattern, path):
 with open(path) as handle:
 for line in handle:
 if pattern in line:
 return True
 return False

You also create a case-insensitive version named icontains(), and so on; you con‐
tinue creating new functions and classes over time as you and your teammates need
them, always adding them to greputils.py.

Eventually, this file will just get too big. It is going to be awkward to work with at best,
and encourage excessive intercoupling and code entanglement at worst. If there are
multiple developers hacking the same codebase, it may even increase the frequency of
merge conflicts. And code logically separated into different files is just easier to work
with, as separate tabs in IDEs.

So we refactor the module. Make this distinction: the module is not the file
greputils.py. Rather, the module is greputils, which happens to be implemented as
a file named greputils.py. But there are other ways to implement the same module,
with the same contents and the exact same interface for importing.

Specifically, we can implement the module as a collection of several files, organized in
a particular way. How do you do that?

Multifile Modules
The first step is to create a directory, with the name of the module: greputils. And
this directory will contain several files.

The first is a file named __init__.py. Just like the method for Python classes, except
with .py at the end. This is where we create the interface to the module, in terms of
what you can import from it directly.

Multifile Modules | 145

But in order to do that, we first create another file in the greputils folder, which we
will call files.py. This is where we will put the file-grepping functions: grepfile(),
igrepfile(), and any others we have created so far. We will also create a third file,
named contain.py, which is where we put the “does this file contain this string”
functions, like contains() and icontains(). Now, our filesystem layout looks like
this:

greputils/
greputils/__init__.py
greputils/files.py
greputils/contain.py

This solves our giant file problem. We can put as many files in this greputils folder
as we want. No matter how many classes and functions we invent, we can split them
up into reasonably sized files, each defining a submodule within the main greputils
module.

But we have one more step, which returns us to the __init__.py file. Remember I
said this file creates the import interface of the module. Originally, when everything
lived in a single greputils.py file, you could write code like:

used by findpattern.py
from greputils import grepfile

used by a different program
from greputils import icontains

When you refactor a function, you want its interface and outward behavior to be
unchanged. Your modified implementation should be invisible to anyone using that
function. A close analogy holds for modules. When we “refactor” it to be a directory
rather than a single file, we want these import statements to continue to work just as
they did before.

When you implement a module as a single file, people can automatically import any‐
thing in the module with a simple from MODULENAME import ... statement. But
when you implement a module as a directory, that is not automatic. You must explic‐
itly declare what components will be directly importable in this way.

You do that in the __init__.py file. To see how it works, we must understand a new
concept, called submodules.

When you implement a module as a directory, the files in that directory create sub‐
modules. These are accessed in a hierarchy under the top-level module, using a
dotted-name syntax. For example, if grepfile() is in the greputils/files.py file,
then you can import it with a statement like:

from greputils.files import grepfile

146 | Chapter 8: Module Organization

But we do not want to break all our existing import statements. Even if we did not
mind the extra typing. The solution relies on the fact that anything inside greputils/
__init__.py will be directly importable from the module itself. So all we have to do
is import the submodule contents into the __init__.py file. One way is to do it like
this:

inside greputils/__init__.py
(Spoiler: Don't do it like this, there is a better way).
from greputils.files import grepfile

That will actually work. But it is not as modular as it could be. What if you change the
name of the module in the future? This creates a new place we need to change it, or
miss it and create a bug. Or maybe we want to reorganize the module in some other
way, which creates the same problem.

Instead, do a relative import. Inside the __init__.py file, write this:

inside greputils/__init__.py
from .files import grepfile

So you are importing from .files, not greputils.files. That leading “.” is impor‐
tant here. This is what makes it a relative import, and its syntax only works inside a
module that is implemented as a directory. When you use it inside the __init__.py
file, it will import objects from sub-modules relative to that directory, and make them
accessible inside the __init__.py file.

We do all this because anything in the __init__.py file is directly importable from
the module itself. In other words, because of these relative imports, this statement
works again:

from greputils import grepfile

We do this for all components for all the submodules. Our final __init__.py file,
including everything we have created so far, looks like this:

greputils/__init__.py
from .files import grepfile, igrepfile
from .contain import contains, icontains

Now we can import all these functions—grepfile(), igrepfile(), contains(), and
icontains()—directly:

In one program...
from greputils import contains, grepfile

And in another:
from greputils import icontains, igrepfile

You can be selective in what you import into the __init__.py file. Your submodules
may contain internal helper functions and classes which you do not necessarily want

Multifile Modules | 147

other people importing, using, and crafting their code to depend on. This is likely to
be common, in fact, as your modules grow beyond a certain size.

Handling this is easy: simply do not import them into the __init__.py file. Then
they are not directly importable from the module. Someone can still import them
from the dotted path of the submodule if they peek into the source to find they are
there, but few people will do that. And if you change one of those internal compo‐
nents later in a way that breaks their code, that is arguably their problem and not
yours.

Import Syntax and Version Control
When importing multiple components, you can do it all on one line, with a single
import statement. The greputils/__init__.py does this, importing from its sub‐
modules:

greputils/__init__.py
from .files import grepfile, igrepfile
from .contain import contains, icontains

If you are importing a couple of items, that works fine. But suppose you are import‐
ing more. Putting all those on one line creates problems, especially if you are working
in a team.

Imagine you and I are developing the same codebase, in different feature branches. In
your branch, you add a new function named grepfileregex(). You put this in grep
utils/files.py, and modify greputils/__init__.py like this:

from .files import grepfile, igrepfile, grepfileregex

In my branch, I rename igrepfile() to grepfilei(). And edit the __init__.py file
like this:

from .files import grepfile, grepfilei

When we finish our work in the branch, and merge into main, suddenly we have a
race condition. Whoever merges first will have no problem. But the one who merges
last will get a merge conflict. Our current version-control tools do not know how to
resolve this manually; the loser of this race condition has to manually clean it up. It is
time-consuming at best, and it risks creating new bugs at worst.

There is an easy solution. Python allows you to split imported components over sev‐
eral lines, using this syntax:

from .files import (
 grepfile,
 igrepfile,
)
from .contain import (

148 | Chapter 8: Module Organization

 contains,
 icontains,
)

Note the parentheses. This is much better, because our version control software can
resolve the merge automatically, without the risk of introducing new bugs. As a gen‐
eral rule, if you are importing more than one item, your life will be happier if you
split the import over several lines in this way.

Notice another detail here. Just looking at the first relative import:

from .files import (
 grepfile,
 igrepfile,
)

Do you see how there is a comma after “igrepfile”, even though it is the last item in
the sequence? Python does not require you to put a comma there. But I recommend
you do, because it pinpoints the diffs even further.

Imagine you do not put that comma there, then add your new grepfileregex()
function. So you are changing it from this:

no ending comma
from .files import (
 grepfile,
 igrepfile
)

…to this:

from .files import (
 grepfile,
 igrepfile,
 grepfileregex
)

You are adding a line for grepfileregex() but also modifying the previous line—
adding a comma after igrepfile. So the diff will delete the old line without the
comma, and add two lines. Like this:

- igrepfile
+ igrepfile,
+ grepfileregex

In contrast, if you append a comma after every imported item, you are changing it
from this:

WITH an ending comma
from .files import (
 grepfile,
 igrepfile,
)

Import Syntax and Version Control | 149

…to this:

from .files import (
 grepfile,
 igrepfile,
 grepfileregex,
)

This means your diff goes from three lines down to just one:

+ grepfileregex,

Like I said: more pinpointed diffs. Only good can come from that. Not only will you
have fewer merge conflicts. If your team is doing code reviews, the reviewer will have
to think less to decipher what you are changing. They are less likely to miss a bug that
would otherwise be easy for them to catch.

Nested Submodule Structure
This directory structure for modules is recursive. A module can be implemented as a
file, or as a directory; and this also applies to submodules, sub-submodules, and so
on.

Imagine you add a new submodule, called greputils.net, collecting functions that
check for contents of URLs over a network. At first, greputils.net does not have
many functions or classes. So this submodule is implemented as a single file, net.py,
in the greputils folder.

But over time, you add something like this:

greputils/
greputils/__init__.py
greputils/files.py
greputils/contain.py
greputils/net/__init__.py
greputils/net/html.py
greputils/net/text.py
greputils/net/json.py

At this point, you have a choice to make about the module interface—which will be
somewhat dictated by how other code is using the greputils.net components
already. In the first choice, you will import components into greputils/net/
__init__.py, like this:

in greputils/net/__init__.py
from .html import (
 grep_html,
 grep_html_as_text,
)
from .json import (
 grep_json,

150 | Chapter 8: Module Organization

 grep_json_many,
)

This makes each of these functions importable from the greputils.net submodule.
So in the top-level __init__.py file, we can simply do a relative import:

in greputils/__init__.py
from .net import (
 grep_html,
 grep_html_as_text,
 grep_json,
 grep_json_many,
)

With this organization, you can import the grep_html() function from greputils
directly, but also from the greputils.net submodule:

This...
from greputils import grep_html
Or this.
from greputils.net import grep_html

Both of these will successfully import the function. Whether you want people to do
both is a different question.

In this case, we started with a file named greputils/net.py, which means everything
was originally importable from greputils.net. For this reason, there may be existing
code which does that, in any program which uses greputils. By arranging these two
__init__.py files in this way, we allow that code to continue working unmodified,
while also allowing grep_html to be imported from greputils directly.

We have another choice. We could instead import from the most nested submodules,
directly into the top-level __init__.py file, like this:

in greputils/__init__.py
from .net.html import (
 grep_html,
 grep_html_as_text,
)
from .net.json import (
 grep_json,
 grep_json_many,
)

Plus the other relative imports from other submodules.

See how this is different? Rather than importing grep_html() from .net, it is instead
imported from .net.html—and similar for the others.

So if you do it this way, what goes in net/__init__.py? Nothing. In this case, you can
make that file empty. The consequence is that from greputils.net import

Nested Submodule Structure | 151

grep_html will not work; you can only import it from greputils. But if that would
not break any existing code, then you may decide there is no reason to support any‐
thing but the top-level import. This is certainly an option if you are creating the full
module with a nested file structure from the start.

You might wonder: if net/__init__.py is empty, is it necessary? No, it is not.
Modern Python allows you to omit an empty __init__.py file entirely. So the file list
will look like this:

greputils/
greputils/__init__.py
greputils/files.py
greputils/contain.py
greputils/net/html.py
greputils/net/text.py
greputils/net/json.py

See how there is only one __init__.py file, at the top-level module directory.

Notice that throughout this process, from the very start, the interface to greputils
did not change. Back when we had a single greputils.py file, you could write from
greputils import grepfile. And you can write the same thing now, when grep
utils is a directory instead of a file.

In other words, whether you implement your module as a single file or as a directory
is just an implementation detail. The developer using your code doesn’t have to know
or care how you made the module. When you make the change, people using the
module probably won’t even notice.

This evolution is quite common. It happens just as I have described in realistic soft‐
ware development cycles.

Antipattern Warning
There is an antipattern I have to tell you about. It looks like this:

from some_module import *

You are using a “from...import” statement, but the final field is not a sequence of
components to import. Instead, it is the literal “*” character. For greputils, it would
look like this:

from greputils import *

What this does is import every single object from the module. Every function, every
class, every global variable. It drops them all into your current namespace. Like
dumping a bucket of smelly fish all over the floor.

152 | Chapter 8: Module Organization

This is a problem for several reasons. But the worst reason is that it creates a time
bomb. Suppose your application uses greputils, and also another module called
filesearch. And imagine you write these two import lines:

from greputils import *
from filesearch import *

You know that greputils has a function called grepfile(). And let’s say the file
search module does not contain anything with this name, so there is no conflict. You
test your code, it works great, and you deploy it. Everything is great.

Now imagine several months pass, and filesearch has a critical security update. So
without you even knowing, someone in your organization—on the DevOps team, or
another developer—decides to upgrade filesearch. But this update also introduces a
new function, called grepfile()—which is completely unrelated to the grepfile()
function in greputils, even though it has the same name.

What does Python do? Because the import from filesearch comes second, Python
will silently override the greputils version. In other words, when you call grep
file() in your program, you are suddenly calling filesearch.grepfile(), not
greputils.grepfile().

What happens next? If you are lucky, this will cause an immediate and obvious error.
Unit tests will fail, or a manual test will catch it before you deploy.

If you are not lucky, you have a time bomb.

In this case, the code path using grepfile() is not immediately triggered. It gets
deployed to production, and everything appears to work correctly. And the applica‐
tion may continue to run fine just long enough for everyone to forget about the
library upgrade.

Until, when you least expect it, that code path containing grepfile() finally runs.
Boom.

You may not be this unlucky. But if you are, this is just about the worst kind of bug. It
is unpredictable and disruptive. And it can be hard to fix simply because it is far
enough removed in time that the probable cause is no longer fresh in anyone’s mind.

You can get other problems from importing star, but in my opinion this is the worst
one. The only protection is to not do it at all.

So what do you do instead? After all, when someone imports star, they’re not trying to
ruin your life. Normally they do it because the module has many functions and
classes they need to use.

There are several strategies. If you only need to import a few components, just import
each by name. Just like we have been doing:

Antipattern Warning | 153

from greputils import grepfile

And then later in your code:
grepfile("pattern to match", "/path/to/file.txt")

This has the advantage of being completely precise and specific. But it is inconvenient
when you are importing more than a few items.

An alternative: simply import the module itself. This is just like importing star, except
everything is namespaced inside the module. So you get none of the name conflict
problems. Like this:

import greputils

And then later in your code:
greputils.grepfile("pattern to match", "/path/to/file.txt")

The downside is that you have to type the module name over and over. To alleviate
this, Python lets you abbreviate the module name when you import it, with an "as"
clause. For example, we can rename greputils to gu inside your code:

import greputils as gu

And then later in your code:
gu.grepfile("pattern to match", "/path/to/file.txt")

It is like creating a more convenient alias for the module, for use just inside your pro‐
gram. This is commonly used in different Python library ecosystems:

Data scientists are smart enough to use this a lot.
import numpy as np
import pandas as pd

Then in your code, you can refer to np.array, pd.DataFrame, and so on.

This renaming trick works not just with modules, but also with items imported from
a module. So if you are calling a function with a long name over and over, you can
give it a shorter or better name:

Import a function and rename it:
from greputils import igrepfile as cigrep

Similar to:
from greputils import igrepfile
cigrep = igrepfile

This is not just useful for making function names shorter. It also can improve clarity.
For example, the tremendously useful dateutil library provides a function that can
automagically parse just about any date-time string you give it, returning a nice date
time.datetime instance:

154 | Chapter 8: Module Organization

>>> from dateutil.parser import parse
>>> parse('Sat Aug 10 08:03:50 2074')
datetime.datetime(2074, 8, 10, 8, 3, 50)
>>> parse('01-05-2081 11:39pm')
datetime.datetime(2081, 1, 5, 23, 39)
>>> parse('5/15/57 22:29')
datetime.datetime(2057, 5, 15, 22, 29)

That is extremely useful. But parse() is almost the most generic name you can give
to a function. It just does not give enough of a clue what the function actually does.
You might as well call it compute().

So what I do is rename the function when I import it:

from dateutil.parser import parse as parse_datetime

Then my code can invoke it with the much more informative name of parse_date
time():

>>> parse_datetime('Sat Aug 10 08:03:50 2074')
datetime.datetime(2074, 8, 10, 8, 3, 50)
>>> parse_datetime('01-05-2081 11:39pm')
datetime.datetime(2081, 1, 5, 23, 39)
>>> parse_datetime('5/15/57 22:29')
datetime.datetime(2057, 5, 15, 22, 29)

While renaming on import can be useful, it is also possible to overdo it, to the point
the code becomes harder to read. As a general rule, I recommend you use this feature
to improve readability, and otherwise simply use the original name.

Import Side Effects
Normally, the files of your module will contain definitions of classes and functions,
and perhaps assign top-level variables. They might also import from sub-modules
which follow the same pattern.

Modules constructed this way have no side effects of code execution during the
import itself. But that does not mean there is no execution of code. In fact, that is
exactly what happens every time you import.

Few people understand this important point. It relates to what we discussed near the
start of this chapter, when we learned about the concept of a “main guard”. Imagine
you have a module with this code (using ... as a placeholder for code I am omitting
here):

CSV_FIELDS = [
 'date',
 'revenue',
 ...
]

Import Side Effects | 155

class MissingContent(Exception):
 ...

def extract_params(text):
 ...

class UserData:
 def __init__(self, first_name, last_name, email):
 ...

This module provides several components:

• A list of strings, called CSV_FIELDS
• An exception called MissingContent
• A function called extract_params()
• A class called UserData

All of these are objects. Yes, even the classes and the function, because in Python
everything is an object. How were these objects created? They were created because
Python executes the lines of code which define them.

To put it another way, consider these lines:

class UserData:
 def __init__(self, first_name, last_name, email):
 ...

This is a class statement. Python will execute this class statement. Executing this
statement will create a new object, called UserData, which is a class. This will be
inserted into the current scope, so lines of code after this class statement can create
instances of the class. Lines of code prior to this statement cannot, because the class
statement which created the class object has not been executed yet.

Everything said applies to function definitions, too:

def extract_params(text):
 ...

This def statement is Python code which is executed. The effect of that execution is to
create a function object, named extract_params(). After that statement is executed,
other Python code can invoke that function.

It is import to understand there is no special difference between class and function
definitions, versus “normal” code. In order to create the class or function object,
Python must execute the class or def statements. At this level, it is exactly the same
as a statement like x = 1, as far as Python is concerned.

So when Python imports a module, it must execute that module’s code first. But this is
“all or nothing”. When you import a class, Python does not scan through the code to

156 | Chapter 8: Module Organization

2 Could Python be designed to simply execute the relevant class statement only? Not really. Python is so
dynamic as a language, that a class which is defined early in the file can be renamed by a line near the end of
that file. The only way to ensure the correct class is imported is to execute the whole module.

find just that class statement, and only execute that. It executes the whole module.2

That is why we need to use main guards (i.e., the if __name__ == "__main__" trick).

Some modules exploit this to do import-time code execution on purpose. This is typ‐
ically used for some kind of initialization or side effect that will take place when that
specific module is first imported. For example, imagine a module which creates a
database connection object at the top-level:

database.py

Function to create a new network connection to the DB
def initiate_database_connection():
 ...

Go ahead and create a connection handle
This will be a top-level object,
importable from the module.
conn = initiate_database_connection()

This is sometimes useful or necessary. But I suggest you avoid import-time side
effects, unless you have a compelling reason.

For one, these import-time side effects are often surprising for people who reuse your
code. That can include you, months down the road after you’ve written the module,
and have completely forgotten that importing it will trigger some kind of microser‐
vice connection, for example. Another way of saying this: import-time side effects
violate the Principle of Least Surprise.

Another problem: you cannot control the exact timing. Python will execute that
module code at some point. But when is not defined by the language. It is hard to
predict what order Python will execute individual module files. And the order can
change without warning as you evolve the code, or when you upgrade to a new ver‐
sion of Python. Imagine a program where lines could change order each time you run
it; import-time side effects are a bit like that.

Finally, they are inflexible. You cannot avoid executing that code if you do not want
to; your only option is to not use the module at all. You generally cannot customize
its behavior, because the import itself triggers the execution with hard-coded
arguments.

The database example above is guilty of all these crimes. It’s a good example of what
not to do.

Import Side Effects | 157

That said, creating import-time side effects is sometimes necessary—or at least useful
enough that it is worth the downsides. If you encounter that situation, do not worry
about it; go ahead and do it. But always ask if you can organize your application to
avoid it.

Conclusion
Python’s module system is so nicely designed that you can go far with it just by
understanding a few basics. And having read this chapter, you know there is a lot
more depth. That simple interface over complex and powerful semantics makes it
possible to amplify the impact of the code you write. You create functions and classes
which solve hard problems that people care about, package them in a nice module
interface, and suddenly you have empowered a lot of folks to do more with less effort.
It is a form of leverage. And whether you are distributing an open source project, cre‐
ating a module for your team, or even just packaging your code to make it easier for
you to reuse in the future, this investment of your effort always comes back to you in
positive ways.

158 | Chapter 8: Module Organization

CHAPTER 9

Logging in Python

Logging is critical in many kinds of software. For long-running software systems, it
enables continuous telemetry and reporting. And for all software, it can provide
priceless information for troubleshooting and postmortems. The bigger the applica‐
tion, the more important logging becomes. But even small scripts can benefit.

Python provides logging through the logging module. In my opinion, this module is
one of the more technically impressive parts of Python’s standard library. It’s well-
designed, flexible, thread safe, and richly powerful. It’s also complex, with many mov‐
ing parts, making it hard to learn well. This chapter gets you over most of that
learning curve, so you can fully benefit from what logging has to offer. The payoff is
well worth it and will serve you for years.

Broadly, there are two ways to use logging. One, which I’m calling the basic interface,
is appropriate for scripts—meaning, Python programs that are small enough to fit in
a single file. For more substantial applications, it’s typically better to use logger objects,
which give more flexible, centralized control, and access to logging hierarchies. We’ll
start with the former, to introduce the key ideas.

The Basic Interface
Here’s the easiest way to use Python’s logging module:

import logging
logging.warning('Look out!')

Save this in a script and run it, and you’ll see this printed out:

WARNING:root:Look out!

159

1 These beautifully crisp descriptions, which I cannot improve upon, are largely taken from the Logging
HOWTO documentation.

You can do useful logging right away, by calling functions in the logging module
itself. You invoked logging.warning(), and the output line started with WARNING.
You can also call logging.error(), which gives a different prefix:

ERROR:root:Look out!

Log Levels
We say that warning and error are at different message log levels. You have a spec‐
trum of log levels to choose from, in order of increasing severity:1

debug
Detailed information, typically of interest only when diagnosing problems or
during development.

info
Confirmation that things are working as expected.

warning
An indication that something unexpected happened, or indicative of some prob‐
lem in the near future (e.g., “disk space low”). The software is still working as
expected.

error
Due to a more serious problem, the software has not been able to perform some
function.

critical
A serious error, indicating that the program itself may be unable to continue
running.

You use them all just like logging.warning() and logging.error():

logging.debug("Small detail. Useful for troubleshooting.")
logging.info("This is informative.")
logging.warning("This is a warning message.")
logging.error("Uh oh. Something went wrong.")
logging.critical("We have a big problem!")

Each has a corresponding uppercased constant in the library (such as logging.
WARNING for logging.warning()). Use these when defining the log level threshold.
Run the above, and here is the output:

160 | Chapter 9: Logging in Python

https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html

WARNING:root:This is a warning message.
ERROR:root:Uh oh. Something went wrong.
CRITICAL:root:We have a big problem!

Where did the debug and info messages go? As it turns out, the default logging
threshold is logging.WARNING, which means only messages of that severity or greater
are actually generated; the others are ignored completely. The list of log levels above
is in order of increasing severity; debug is considered strictly less severe than info,
and so on. Change the log level threshold using the basicConfig() function:

logging.basicConfig(level=logging.INFO)
logging.info("This is informative.")
logging.error("Uh oh. Something went wrong.")

Run this new program, and the INFO message gets printed:

INFO:root:This is informative.
ERROR:root:Uh oh. Something went wrong.

Again, the order is debug(), info(), warning(), error(), and critical(), from low‐
est to highest severity. When we set the log level threshold, we declare that we only
want to see messages of that level or higher. Messages of a lower level are not printed.
When you set level to logging.DEBUG, you see everything; set it to logging.
CRITICAL, and you only see critical messages; and so on.

The phrase “log level” means two different things, depending on context. It can mean
the severity of a message, which you set by choosing which of the functions to use—
logging.warning(), etc. Or it can mean the threshold for ignoring messages, which
is signaled by the constants: logging.WARNING, etc.

You can also use the constants in the more general logging.log function—for exam‐
ple, a debug message:

logging.log(logging.DEBUG,
 "Small detail. Useful for troubleshooting.")
logging.log(logging.INFO, "This is informative.")
logging.log(logging.WARNING, "This is a warning message.")
logging.log(logging.ERROR, "Uh oh. Something went wrong.")
logging.log(logging.CRITICAL, "We have a big problem!")

This lets you control the log level dynamically, at runtime. For example:

def log_results(message, level=logging.INFO):
 logging.log(level, "Results: " + message)

Why Do We Have Log Levels?
If you haven’t worked with similar logging systems before, you may wonder why we
have different log levels, and why you’d want to control the filtering threshold. It’s
easiest to see this if you’ve written Python scripts with repeated calls to print()—

The Basic Interface | 161

2 You can call it more than once, but anything beyond the first call has no effect. No error is raised, so you need
to be careful that you call it exactly one time.

including some that are useful for diagnosis when something goes wrong, but a dis‐
traction when everything is working fine.

The fact is, some of those print()’s are more important than others. Some indicate
mission-critical problems that you always want to know about—possibly to the point
of waking up an engineer so that they can deploy a fix immediately. Some are impor‐
tant, but can wait until the next work day. Some are details which may have been
important in the past, and might be in the future, so you don’t want to remove them;
in the meantime, they are just line noise.

Log levels help you solve these problems. As you develop and evolve your code over
time, you continually add new logging statements of the appropriate severity. You
now even have the freedom to be proactive. With “logging” via print(), each log
statement has a cost—certainly in signal-to-noise ratio, and also potentially in perfor‐
mance. So you might debate whether to include that print statement at all.

But with logging you can insert info messages, for example, to log certain events
occurring as they should. In development, those INFO messages help you verify that
certain things are happening. In production, you may not want to have them clutter‐
ing up the logs, so you just set the threshold higher. If you are doing some kind of
monitoring in production, and temporarily need that information, you can adjust the
log level threshold to output those messages; when you are finished, you can adjust it
back to exclude them again.

When troubleshooting, you can liberally introduce debug-level statements to provide
extra detailed statements. When done, you simply adjust the log level to turn them
off. You can leave them in the code with barely any effect on performance, eliminat‐
ing any risk of introducing more bugs when you go through and remove them. This
also leaves them available if they are needed in the future.

Configuring the Basic Interface
You can change the log-level threshold by calling a function called basicConfig():

logging.basicConfig(level=logging.INFO)
logging.debug("You won't see this message!")
logging.error("But you will see this one.")

If you use it at all, basicConfig() must be called exactly once,2 and it must happen
before the first logging event. (Meaning, before the first call to debug(), or

162 | Chapter 9: Logging in Python

3 These restrictions are not in place for logger objects, described later.

warning(), etc.) Additionally, if your program has several threads, basicConfig()
must be called from the main thread—and only the main thread.3

You’ve already met one of the configuration options: level. Some of the other
options include:

filename

Write log messages to the given file, rather than stderr.

filemode

Set to "a" to append to the log file (the default), or "w" to overwrite.

format

The format of log records.

By default, log messages are written to standard error. You can also write them to a
file—one per line—to be easily read later. Do this by setting filename to the log file
path. By default it appends log messages, meaning that it will only add to the end of
the file if it isn’t empty. If you’d rather the file be emptied before the first log message,
set filemode to "w". Be careful about doing that, of course, because you can easily
lose old log messages if the application restarts:

Wipes out previous log entries when program restarts
logging.basicConfig(filename="log.txt", filemode="w")
logging.error("oops")

The other value you can pick is "a", for append—that’s the default, and it will proba‐
bly serve you better in production. "w" is generally better during development,
though. I have wasted many hours of my life wondering why I was seeing a message
indicating a bug in the log file, only to realize it came from two edits ago, before I had
fixed the bug. Now, I set up my development environment to wipe the logs with every
run.

format defines what chunks of information the final log record will include, and how
they are laid out. These chunks are called attributes in the logging module docs. One
of these attributes is the actual log message—the string you pass when you call log
ging.warning(), and so on. Often you will want to include other attributes as well.
Consider the kind of log record we saw above:

WARNING:root:Collision imminent

This record has three attributes, separated by colons. First is the log level name, and
the last is the actual string message you pass when you call logging.warning(). In

Configuring the Basic Interface | 163

4 https://docs.python.org/3/library/logging.html#logrecord-attributes

the middle is the name of the underlying logger object. basicConfig() uses a logger
called “root”; we’ll learn more about that later.

You specify the layout you want by setting format to a string that defines certain
named fields, according to percent-style formatting. Three of them are levelname,
the log level; message, the message string passed to the logging function; and name,
the name of the underlying logger. Here’s an example:

logging.basicConfig(
 format="Log level: %(levelname)s, msg: %(message)s")
logging.warning("Collision imminent")

If you run this as a program, you get the following output:

Log level: WARNING, msg: Collision imminent

The default formatting string is:

%(levelname)s:%(name)s:%(message)s

You indicate named fields in percent-formatting by %(FIELDNAME)X, where “X” is a
type code: s for string, d for integer (decimal), and f for floating-point.

Many other attributes are provided, if you want to include them. Table 9-1 shows a
select few from the full list.4

Table 9-1. LogRecord attributes

Attribute Format Description
asctime %(asctime)s Human-readable date/time

funcName %(funcName)s Name of function containing the logging call

lineno %(lineno)d The line number of the logging call

message %(message)s The log message

pathname %(pathname)s Full pathname of the source file of the logging call

levelname %(levelname)s Text logging level for the message (DEBUG, INFO, WARNING, ERROR, CRITICAL)

name %(name)s The logger’s name

You might be wondering why log record format strings use Python 2’s ancient
percent-formatting style, even in modern Python. As it turns out, backward-
compatibility reasons made percent-formatting the only practical choice for the log‐
ging module, even after the Python 3 reboot.

164 | Chapter 9: Logging in Python

https://docs.python.org/3/library/logging.html#logrecord-attributes

5 https://docs.python.org/3/howto/logging-cookbook.html#use-of-alternative-formatting-styles

If you want to use the newer string formatting anyway, it is certainly possible.5 But
doing so is complicated enough, and has enough landmines, that it may not be worth
the effort. I recommend you simply use percent-formatting with your Python
logging.

Passing Arguments
You’ll often want to include some kind of runtime data in the logged message. Specify
the final log message like this:

num_fruits = 14
fruit_name = "oranges"
logging.info(
 "We ate %d of your %s. Thanks!",
 num_fruits, fruit_name)

The output:

INFO:root:We ate 14 of your oranges. Thanks!

We call info() with three parameters. First is the format string; the second and third
are arguments. The general form is:

logging.info(format, *args)

You can pass zero or more arguments, so long as each has a field in the format string:

Do it like this:
logging.info("%s, %s, %s, %s, %s, %s and %s",
 "Doc", "Happy", "Sneezy", "Bashful",
 "Dopey", "Sleepy", "Grumpy")

You must resist the obvious temptation to format the string fully, and pass that to the
logging function:

num_fruits = 14
fruit_name = "oranges"
logging.warning(
 "Don't do this: %d %s" % (num_fruits, fruit_name))
logging.warning(
 "Or this: {} {}".format(
 num_fruits, fruit_name))
logging.warning(
 f"And definitely not this: {num_fruits} {fruit_name}")

All of these work, in the sense that you will get correct log messages. But each surren‐
ders important performance benefits logging normally provides. Remember: when
the line of code with the log message is executed, it may not actually trigger a log

Passing Arguments | 165

https://docs.python.org/3/howto/logging-cookbook.html#use-of-alternative-formatting-styles

event. If the log level threshold is higher than the message itself, the line does noth‐
ing. In that case, there is no reason to format the string.

In the “do it like this” form, the string is formatted if and only if a log event actually
happens, so that’s fine. But if you format the string yourself, it’s always formatted.
That takes up system memory and CPU cycles even if no logging takes place. If the
code path with the logging call is only executed occasionally, that’s not a big deal. But
it impairs the program when a debug message is logged in the middle of a tight loop.
When you originally code the line, you never really know where it might migrate in
the future, or who will call your function in ways you never imagined. So I recom‐
mend you always use the recommended form in your logging calls.

There is another point to make about f-strings. Realize that f-strings are Python syn‐
tax for constructing string literals. When you use an f-string, the final string is ren‐
dered at the expression level. There is no way to delay that calculation or make it
“lazy”. This makes it impossible to use the deferred string rendering the logging func‐
tions are designed for.

So just use the supported form, where the first argument is the format string, and
subsequent arguments are the parameters for it. You can also use named fields, by
passing a dictionary as the second argument—though you must use the percent-
formatting named-field format:

fruit_info = {"count": 14, "name": "oranges"}
logging.info(
 "We ate %(count)d of your %(name)s. Thanks!",
 fruit_info)

Beyond Basic: Loggers
The basic interface is simple and easy to set up. It works well in single-file scripts.
Larger Python applications tend to have different logging needs, however. logging
meets these needs through a richer interface, called logger objects—or simply, loggers.

Actually, you have been using a logger object all along: when you call logging.
warning() (or the other log functions), they convey messages through what is called
the root logger—the primary, default logger object. This is why the word “root” shows
in some example output.

logger.basicConfig() operates on this root logger. You can fetch the actual root
logger object by calling logging.getLogger():

>>> logger = logging.getLogger()
>>> logger.name
'root'

166 | Chapter 9: Logging in Python

As you can see, it knows its name is “root”. Logger objects have all the same functions
(methods, actually) that the logging module itself has:

import logging
logger = logging.getLogger()
logger.debug("Small detail. Useful for troubleshooting.")
logger.info("This is informative.")
logger.warning("This is a warning message.")
logger.error("Uh oh. Something went wrong.")
logger.critical("We have a big problem!")

Save this in a file and run it, and you’ll see the following output:

This is a warning message.
Uh oh. Something went wrong.
We have a big problem!

This is different from what we saw with basicConfig(), which printed out this:

WARNING:root:This is a warning message.
ERROR:root:Uh oh. Something went wrong.
CRITICAL:root:We have a big problem!

This is a step backward compared to basicConfig(). The log message does not dis‐
play the log level, or any other useful information. The log level threshold is hard-
coded to logging.WARNING, with no way to change it. The logging output will be
written to standard error and nowhere else, regardless of where you actually need it
to go.

Let’s take inventory of what we want to control here. We want to choose our log
record format, control the log level threshold, and write messages to different streams
and destinations. You do all this with a tool called a handler.

Log Destinations: Handlers and Streams
By default, loggers write to standard error. It is possible to select a different destina‐
tion—or even several destinations—for each log record:

• You can write log records to a file. This is very common.
• You can write records to a file, and also parrot it to stderr.
• Or you can write to stdout, or both.
• You can simultaneously log messages to two different files.
• You can log (say) INFO and higher messages to one file, and ERROR and higher to

another.
• You can write records to a remote log server through an API.
• You can set a different, custom log format for each destination.

Log Destinations: Handlers and Streams | 167

This is all managed through what are called handlers. In Python logging, a handler’s
job is to take a log record, and make sure it gets recorded in the appropriate destina‐
tion. That destination can be a file; a stream like stderr or stdout; or something more
abstract, like inserting into a queue, or transmitting via an RPC or HTTP call.

By default, logger objects don’t have any handlers. You can verify this using the
hasHandlers() method:

>>> logger = logging.getLogger()
>>> logger.hasHandlers()
False

With no handler, a logger has the following behavior:

• Messages are written to stderr.
• Only the message is written, nothing else. There’s no way to add fields or other‐

wise modify it.
• The log level threshold is logging.WARNING. There is no way to change that.

To change this behavior, your first step is to create a handler. Nearly all logger objects
you ever use will have custom handlers. Let’s see how to create a simple handler that
writes messages to a file, called log.txt.

import logging
logger = logging.getLogger()
log_file_handler = logging.FileHandler("log.txt")
logger.addHandler(log_file_handler)
logger.debug("A little detail")
logger.warning("Boo!")

The logging module provides a class called FileHandler. It takes a file path argu‐
ment, and will write log records into that file, one per line. When you run this code,
log.txt will be created (if it doesn’t already exist), and will contain the string “Boo!”
followed by a newline. (If log.txt did exist already, the logged message would be
appended to the end of the file.)

“A little detail” is not written, because it’s below the default logger threshold of
WARNING. You can change that by calling a method named setLevel() on the logger
object:

import logging
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
log_file_handler = logging.FileHandler("log.txt")
logger.addHandler(log_file_handler)
logger.debug("A little detail")
logger.warning("Boo!")

168 | Chapter 9: Logging in Python

This writes the following in log.txt:

A little detail
Boo!

Confusingly, you can call setLevel() on a logger with no handlers, but it has no
effect:

Doing it wrong:
import logging
logger = logging.getLogger()
logger.setLevel(logging.DEBUG) # No effect.
logger.debug("This won't work :(")

To change the threshold from the default of logging.WARNING, you must both add a
handler, and change the logger’s level.

What if you want to log to stdout? Do that with a StreamHandler:

import logging
import sys
logger = logging.getLogger()
out_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(out_handler)
logger.warning("Boo!")

If you save this in a file and run it, you’ll get “Boo!” on standard output. Notice that
logging.StreamHandler takes sys.stdout as its argument. You can create a Stream
Handler without an argument too, in which case it will write its records to standard
error:

import logging
logger = logging.getLogger()
Same as StreamHandler(sys.stderr)
stderr_handler = logging.StreamHandler()
logger.addHandler(stderr_handler)
logger.warning("This goes to standard error")

In fact, you can pass any file-like object; The object just needs to define compatible
write and flush methods. Theoretically, you could even log to a file by creating a
handler like StreamHandler(open("log.txt", "a"))—but in that case, it’s better to
use a FileHandler so that it can manage opening and closing the file.

Most of the handlers you might need are provided for you in the logging module.
The most common handlers you use will probably be StreamHandler and File
Handler. Others include:

• WatchedFileHandler and RotatingFileHandler, for logging to rotated log files
• SocketHandler and DatagramHandler for logging over network sockets
• HTTPHandler for logging over an HTTP REST interface

Log Destinations: Handlers and Streams | 169

6 https://docs.python.org/3/library/logging.handlers.html

• QueueHandler and QueueListener for queuing log records across thread and
process boundaries

See the official docs6 for details. At times, you may need to create a custom handler,
by subclassing logging.Handler. This lets you log to any destination you need to.

Logging to Multiple Destinations
Suppose you want your long-running application to log all messages to a file, includ‐
ing debug-level records. At the same time, you want warnings, errors, and criticals
logged to the console. How do you do this?

We’ve given you part of the answer already. A single logger object can have multiple
handlers: all you have to do is call addHandler() multiple times, passing a different
handler object for each. For example, here is how you parrot all log messages to the
console (via standard error) and also to a file:

import logging
logger = logging.getLogger()
Remember, StreamHandler defaults to using sys.stderr
console_handler = logging.StreamHandler()
logger.addHandler(console_handler)
Now the file handler:
logfile_handler = logging.FileHandler("log.txt")
logger.addHandler(logfile_handler)
logger.warning(
 "This goes to both the console, AND log.txt.")

This combines what we learned above. We create two handlers—a StreamHandler
named console_handler, and a FileHandler named logfile_handler—and add
both to the same logger (via addHandler). That’s all you need to log to multiple desti‐
nations in parallel. Sure enough, if you save the above in a script and run it, you’ll
find the messages are both written into log.txt, as well as printed on the console
(through standard error).

How do we make it so every record is written in the log file, but only those of log
ging.WARNING or higher get sent to the console screen? Do this by setting log level
thresholds for both the logger object and the individual handlers. Both logger objects
and handlers have a method called setLevel(), which take a log level threshold as an
argument:

my_logger.setLevel(logging.DEBUG)
my_handler.setLevel(logging.INFO)

170 | Chapter 9: Logging in Python

https://docs.python.org/3/library/logging.handlers.html

If you set the level for a logger, but not its handlers, the handlers inherit from the
logger:

my_logger.setLevel(logging.ERROR)
my_logger.addHandler(my_handler)
my_logger.error("This message is emitted by my_handler.")
my_logger.debug("But this message will not.")

You can override that at the handler level. Here, I create two handlers. One handler
inherits its threshold from the logger, while the other does its own thing:

import logging
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)

verbose_handler = logging.FileHandler("verbose.txt")
logger.addHandler(verbose_handler)

terse_handler = logging.FileHandler("terse.txt")
terse_handler.setLevel(logging.WARNING)
logger.addHandler(terse_handler)

logger.debug("This message appears in verbose.txt ONLY.")
logger.warning("And this message appears in both files.")

There’s a caveat, though: a handler can only make itself more selective than its logger,
not less. If the logger chooses a threshold of logger.DEBUG, its handler can choose a
threshold of logger.INFO, or logger.ERROR, and so on. But if the logger defines a
strict threshold—say, logger.INFO—an individual handler cannot choose a lower
one, like logger.DEBUG. So something like this won’t work:

This doesn't quite work...
import logging
my_logger = logging.getLogger()
my_logger.setLevel(logging.INFO)
my_handler = logging.StreamHandler()
my_handler.setLevel(logging.DEBUG) # FAIL!
my_logger.addHandler(my_handler)
my_logger.debug("No one will ever see this message :(")

There’s a subtle corollary of this. By default, a logger object’s threshold is set to
logger.WARNING. So if you don’t set the logger object’s log level at all, it implicitly cen‐
sors all handlers:

import logging
my_logger = logging.getLogger()
my_handler = logging.StreamHandler()
my_handler.setLevel(logging.DEBUG) # FAIL!
my_logger.addHandler(my_handler)
No one will see this message either.
my_logger.debug("Because anything under WARNING gets filtered.")

Logging to Multiple Destinations | 171

The logger object’s default log level is not always permissive enough for all handlers
you might want to define. So you will generally want to start by setting the logger
object to the lowest threshold needed by any log-record destination, and tighten that
threshold for each handler as needed.

Bringing this all together, we can now accomplish what we originally wanted—to ver‐
bosely log everything into a log file, while duplicating only the more interesting mes‐
sages onto the console:

import logging
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
Warnings and higher only on the console.
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.WARNING)
logger.addHandler(console_handler)
But allow everything to go into the log file.
logfile_handler = logging.FileHandler("log.txt")
logger.addHandler(logfile_handler)

logger.warning("This goes to both the console, AND into log.txt.")
logger.debug("While this only goes to the file.")

Add as many handlers as you want. Each can have different log levels. You can log to
many different destinations, using the different built-in handler types mentioned
above. If those don’t do what you need, implement your own subclass of logging.
Handler and use that.

Record Layout with Formatters
So far, we’ve only shown you how to create logger objects that will write just the log
message and nothing else. At the very least, you probably want to annotate that with
the log level. You may also want to insert the time and other information. How do
you do that?

The answer is to use a formatter. A formatter converts a log record into something
that is recorded in the handler’s destination. That’s an abstract way of saying it; more
simply, a typical formatter just converts the record into a usefully formatted string
that contains the actual log message, as well as the other fields you care about.

The procedure is to create a Formatter object, then associate it with a handler (using
the latter’s setFormatter() method). Creating a formatter is easy—it normally takes
just one argument, the format string:

import logging
my_handler = logging.StreamHandler()
fmt = logging.Formatter("My message is: %(message)s")
my_handler.setFormatter(fmt)
my_logger = logging.getLogger()

172 | Chapter 9: Logging in Python

my_logger.addHandler(my_handler)
my_logger.warning("WAKE UP!!")

If you run this in a script, the output will be:

My message is: WAKE UP!!

Notice the attribute for the message, %(message)s, included in the string. This is just
a normal formatting string in the older, percent-formatting style. It’s exactly equiva‐
lent to using the format argument when you call basicConfig(). For this reason, you
can use the same attributes, arranged however you like (see Table 9-1).

Conclusion
The larger your program, the more valuable logging becomes. You can get along
without it so long as you write nothing but small Python scripts. But having read this
far, your ambitions are likely higher. For more sophisticated software systems, smart
use of Python’s rich logging module helps you create better software faster, and keep
it running great.

Conclusion | 173

Parting Words

We have come a long way, haven’t we?

Congratulations on completing this book. If you have read carefully, and tried to
apply what you have learned in your own coding, you now understand real-world
Python at a deeper level than the vast majority of Python coders.

But in another sense, your journey has just begun. You have a great foundation of
knowledge, new mental models, and powerful distinctions. The next step is to master
applying them in what you do, writing Python software every day.

To help, I have created coding exercises for every chapter, plus other fun resources—
exclusively for readers of this book. To get these along with email notifications of
future book releases, go to https://powerfulpython.com/register and follow the instruc‐
tions.

You can reach me by email at aaron@powerfulpython.com. For professional training
options, go to https://powerfulpython.com and browse the resources there.

Creating this book has been an incredible journey. I thank you for joining me along
the way.

175

https://powerfulpython.com/register
mailto:aaron@powerfulpython.com
https://powerfulpython.com

Index

Symbols
() (parentheses) in generator comprehensions,

32
* syntax, 37, 39
*args, 37
:= (assignment expression) operator, 10
@classmethod, 85, 102
@property, 51, 93
[] operator, accessing list elements, 19

A
absolute value, finding number with greatest,

44
actual and expected values (in tests), 129
antipatterns, 88

import *, 152
most harmful antipattern in Python, 88

argparse, 140
argument unpacking, 39

keyword arguments, 41
arguments

accepting and passing variable arguments,
37

combining positional and keyword argu‐
ments, 42
order of arguments, 43

decorators taking arguments, 64
variable keyword arguments, 40

argv, 140
“as” clause, renaming modules and items from

modules, 154
assertions, 126

asserting exceptions, 132
methods for, 129

assignment expressions, 10
attrgetter, 49
attributes, 93

dynamic, 96
in logging, 163

selection of, 164
automated tests, 123

C
__call__ magic method, 68
callables, 46, 67
callbacks, 111
camel case names, 132
catch-and-release pattern (exceptions), 86
class statements, 156
class-based decorators

benefits of, 69
implementing, 67

classes, 93
storing in variables, 105

classmethod decorator, 102
command line, running Python on, 127
community for readers of this book, 175
components, 139
comprehensions, 23

benefits of comprehensions, 24
chaining dependent for clauses, 27
dictionary, 34
filtering elements with if clause, 25
formatting comprehensions, 26
generator, 31
list comprehensions, 24
multiple for and if clauses, 27
relationship between multiple if clauses, 30

177

set, 35
tuple, 35

constructors, alternative, in simple factory pat‐
tern, 101

context processors, 9
coroutines, comparison with functions, 6
critical log level, 160

D
DataFrame, 119
DatagramHandler, 169
debug log level, 160
decorators, 51

basic, 52
class-based decorators, 67

benefits of, 69
implementing, 67

data in decorators, 57
accessing inner data, 60

decorators for classes, 71
decorators for methods, 55
decorators taking arguments, 64
generic, 54
state in decorators, 57

nonlocal state, 61
defining functions, 43
design patterns, 88, 93

factory method pattern, 104
Observer pattern, 106
simple factory pattern, 100

destinations for log messages, 167
logging to multiple destinations, 170

dict
converting records from strings to dicts, 11
exceptions from dict, 76

dictionaries
dictionary exceptions, 81
finding largest value in, 45
as function arguments, 41
remarkable flexibility of in Python, 110

dictionary comprehensions, 23, 34
diffs, more pinpointed, 149
doctest, 125
domain-specific language (DSL), 121
dunder, 115
dynamic types, factory method pattern, 104

E
EEXIST, 87

errno, 87
error log level, 160
error messages, better, 84
errors, 75

(see also exceptions)
except, 76

modifying to catch more specific exception,
90

multiple except blocks with try, 78, 79
pass in except clause, 88
re-raising current exception in, 86
storing exception object in err variable, 82

exception() function (logging module), 91
exceptions, 75

asserting in tests, 132
basic idea of, 75
dictionary exceptions, 81
finally blocks and, 79
flow control and, 77
handling, 76-77
importing libraries and exceptions, 78
logging and exceptions, 78
most harmful antipattern in Python, 88
multiple except clauses, 79
as objects, 82-83
order of execution in try-except-finally, 80
raising exceptions, 84
re-raising exceptions, 86

expected and actual values (in tests), 129

F
factory functions, 101
factory method pattern, 104
factory patterns, 100
fanning in, 14
fanning out, 13
FileExistsError, 83, 87
FileHandler (in logging module), 168, 169
filemode option (logging), 163
filename option (logging), 163
files

logging to file, 163
working with files, 9

filter function, 16
filtering, 12

using a DataFrame, 119
filters, multiple, in comprehensions, 29
finally, 79
Flask web framework, 51, 64

178 | Index

flow, 124
flow control, exceptions for, 77-79
for clauses, multiple, in comprehensions, 27

chaining dependent for clauses, 27
independent for clauses, 28
using with multiple if clauses, order of, 31

for keyword (in comprehensions), 25
for loops

generator functions in, 5
iterator in, 2
nesting, 29

format option (logging), 163
format strings, 164
newer format strings, 164

formatters, 172
formatting code for version control and code

reviews, 27
function objects, 43

adding data attribute to, 60
function objects in decorators, 52
passing as arguments, 46

function-based decorator, implementing as
class-based decorators, 70

functions, 37
accepting and passing variable arguments,

37-43
comparison with coroutines, 6
decorators, 51
definitions of, import side-effects, 156
key functions, 47-49

G
generator comprehensions, 31

relationship between generator expressions
and generator comprehensions, 32

trade-offs in generator comprehensions vs.
list comprehensions, 33

generator expressions, 31
relationship between generator expressions

and generator comprehensions, 32
trade-offs in generator expressions vs. list

comprehensions, 33
generator functions, 1, 4

defining grepfile function (example), 140
difference between generator objects and, 5

generator objects
difference between generator functions and,

5

methods passing information back into con‐
text of the running generator function,
16

returning list instead of, 34
getters and setters, 94
grep, 140

H
handling exceptions, 76-77
helper function, defining for complex filters in

comprehensions, 30
HTTPHandler, 169

I
if clauses

filtering elements with, 25
filtering with in dictionary comprehensions,

34
if key in dictionary pattern, 81
multiple if clauses in comprehensions

using with multiple for clauses, 31
multiple, in comprehensions, 27, 29

import * antipattern, 152
import statements, 148

relative, 147
ImportError, 78
imports, 139

import side-effects, 155
importing components from nested sub‐

modules, 150
importing from a module, 141
importing from multifile modules, 146
renaming on import, 154

in keyword (comprehensions), 25
IndexError, 76, 141
info log level, 160
inheritance

of class methods, 102
from iterables, 20

__init__ method, 103
__init__.py file, 145

omitting empty file, 152
integration tests, 124
itemgetter, 48
iter(), 1, 18
iterable, 2, 17, 18
iterables

collection types in Python, 20
difference between iterators and iterables, 2

Index | 179

iteration, 1
iterator protocol, 17
iterators, 1, 17

creating without generator function, 8
difference between iterators and iterables, 2
many iterators in Python, 16

J
JUnit, 123

K
key functions, 45, 47

in Python built-in functions, 47
KeyError, 76, 81, 105
keyword arguments

combining with positional arguments, 42
unpacking, 41
variable, 40

kwargs, 41

L
lexicographic ordering, 44
Linux, 140
list comprehensions, 23, 24-26

chaining dependent for clauses, 27
filtering elements with if clause, 25
formatting list comprehensions, 26
independent for clauses in, 28
multiple for and if clauses, 27
relationship between multiple if clauses, 30
trade-offs in generator expressions versus

list comprehensions, 33
logging, 159

basic interface to logging, 159
configuring logging’s basic interface, 162
handlers for logging, 167, 169
log levels, 160, 161
log sinks, 167
logger objects, 159, 166
logging to multiple destinations, 170
parameters for log messages, 165
record layout with formatters, 172
sinks for logging, 167

logging.exception() function, 91

M
magic methods, 2, 114-119

leveraging in unorthodox ways, 119-121

main guard, 142
map function, 16
mapping operations, 12
max, 44, 47
merge conflicts in version control, 148
method objects, 110
methodcaller, 49
methods

@property decorator and, 94
applying decorators to, 55
benefit of class methods, 102
classmethod decorator applied to, 102
decorators, 51

min, 47
modules, 139

creating alias for, 154
evolution from small Python script to mod‐

ule, 139
import side-effects, 155
multifile, 145
organizing code into separate libraries, 143
submodules, 146, 150

N
__name__ magic variable, 142
naming conventions, Python classes and func‐

tions, 71
next() function, 2, 5

advancing, 6
nonlocal, 62, 63

O
object-oriented programming (OOP), 93
objects, 93
observable (in Observer design pattern), 106
observer (in Observer design pattern), 106
Observer pattern, 106-113

basic or simple form of, 107-108
publisher having several channels, 112-113
Pythonic refinement of, registering sub‐

scribers, 108-112
operator, 47
OSError, 87

P
pandas, 119
parameterized tests, 133
PHPUnit, 123

180 | Index

positional arguments, 40
combining with keyword arguments, 42

process table, 142
properties

benefits of Python properties, 100
design patterns, 96
in OOP, 93
and refactoring, 98

property decorator, 93
protected, 96
pub-sub design pattern, 106
publisher, 107

having several channels, 112
Publisher class example, 107

pytest, 125

Q
QueueHandler, 170
QueueListener, 170

R
raising exceptions, 84

re-raising exceptions, 86
range objects, 28
range(), 7, 16, 28
readability and comprehensions, 24, 26
records (logging), layout with formatters, 172
refactoring, 98, 124

of public member variables as properties in
Python, 100

relationship between generator expressions and
generator comprehensions, 32

relative import, 147
__repr__ method, implementing on classes, 71
repr(), 71, 116
root logger, 166
RotatingFileHandler, 169

S
scalability

of generator functions, 7
minimizing memory footprint of generator

functions, 10
readline() versus readlines() method, 9

scalable composability, 11
self argument, decorators and, 55
sentinel value, 18
sequence protocol, 18

Series object, 120
set comprehensions, 35
setters, 94, 97
setUp (in unit tests), 130
side-effects of imports, 155
simple factory design pattern, 100
singleton pattern, expressing using class deco‐

rators, 73
SocketHandler, 169
sorted, 47
source control management, 148
sources and sinks, 13

multiple sources in comprehensions, 27
sinks for logging, 167

stderr, logging to, 167, 168
stdout, logging to, 169
StopIteration, 3
str(), 71, 116
StreamHandler (in logging module), 169
submodules, 146, 150
subscribers, 107

Subscriber class example, 107
subscriber dictionary for each channel, 113

subtests, 133
syntax, 41
sys.argv, 140
system under test (SUT), 124

T
TDD (see test-driven development)
tearDown (in unit tests), 130
test classes, 128
test fixtures, 130, 131
test-driven development (TDD), 124

key concepts and importance of, 136
TestCase class, 126
tests

automated tests, 123
integration tests, 124
unit tests, 123, 124

The Most Diabolical Python Antipattern
(TMDPA), 88
defeating, 92

try, 76
multiple except blocks with, 78
putting as little code as possible in try block,

79
tuples

function arguments as, 38

Index | 181

tuple comprehensions, 35
TypeError, 76, 78

U
UnicodeError, 89
unit tests, 123, 124

and simple assertions, 125
unittest, 125
Unix, 140

V
validation of changes in member variables, 96
ValueError, 76, 78, 84, 105

raising in a test, 132
variable arguments, 37, 42

asterisk (*) syntax with, 39
use with decorators, 54
variable keyword arguments, 40

version control, 148

W
walrus operator (:=), 10

warning log level, 160
WatchedFileHandler, 169
with statements

opening files, 9

X
xUnit, 123, 125

Y
yield from, 15
yield statements, 4

in conversion of string records to dictio‐
nary, 15

and coroutines, 6
multiple, in generators, 6

Z
zip function, 16

182 | Index

About the Author
Aaron Maxwell is a software engineer and Pythonista. Through a decade working in
Silicon Valley engineering teams, including two Unicorns, he has gained strong pro‐
duction experience in backend engineering at scale; data science and machine learn‐
ing; test automation infrastructure; DevOps and SRE; cloud infrastructure; marketing
automation; and more. He codes in a variety of languages, including plenty of
Python.

Aaron then pivoted to training, developing an innovative curriculum for intermedi‐
ate and advanced Python which he has taught to over 10,000 technology professio‐
nals worldwide—in nearly every engineering domain, country, and culture.

Colophon
The animal on the cover of Powerful Python is a red-tailed boa (Boa constrictor con‐
strictor). Also known as the Colombian boa, these large snakes can be found in the
Sonoran desert in Mexico and all throughout Central America, and as far as the
northern regions of Peru.

While red-tailed boas are popularly known for being the largest snake species, in real‐
ity, they are actually modest in size compared to others. Red-tailed boas are 10 to 12
feet long and can weigh anywhere between 25 and 50 pounds. They can be identified
by their irregular, black oval patches that cover their tan scales; the blotches on their
tails are more reddish in color. In the wild, red-tailed boas have an estimated lifespan
of 15 years, but they can live up to 25 years in human care.

Red-tailed boas live in woodlands and rainforests, usually making their homes in hol‐
lowed logs or tree branches. They are nocturnal hunters and are known for ambush‐
ing their prey; red-tailed boas squeeze their prey and kill them by shutting down their
vital organs and swallowing them whole. A red-tailed boa’s diet usually consists of liz‐
ards, rodents, birds, eggs, and sometimes other snakes. A large meal can sustain them
for up to a month.

Although the status of red-tailed boas has not yet been assessed, they do face many
threats, including habitation loss and illegal pet trade. Many of the animals on
O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Dover. The series design is by Edie Freedman, Ellie Volckhausen, and Karen
Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The text font
is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code
font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O’Reilly learning platform free for 10 days.

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. 718900_7x9.1875

https://www.oreilly.com/start-trial/?utm_medium=content+synd&utm_source=general+ad&utm_campaign=tria

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	The Two Levels of Learning
	Our Strategy in This Book
	What’s Not Covered
	Getting the Most Out of This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Scaling with Generators
	Iteration in Python
	Generator Functions
	Advancing next()
	Converting to a Generator Function
	Do You Need Generators?

	Generator Patterns and Scalable Composability
	Text Lines to Dicts
	Composable Interfaces
	Fanning Out
	Fanning In

	Python Is Filled with Iterators
	The Iterator Protocol
	Conclusion

	Chapter 2. Creating Collections with Comprehensions
	List Comprehensions
	Formatting for Readability (and More)
	Multiple Sources and Filters
	Independent Clauses
	Multiple Filters

	Comprehensions and Generators
	Dictionaries, Sets, and Tuples
	Conclusion

	Chapter 3. Advanced Functions
	Accepting and Passing Variable Arguments
	Argument Unpacking
	Variable Keyword Arguments
	Keyword Unpacking
	Combining Positional and Keyword Arguments

	Functions as Objects
	Key Functions in Python
	Conclusion

	Chapter 4. Decorators
	The Basic Decorator
	Generic Decorators
	Decorating Methods

	Data in Decorators
	Accessing Inner Data
	Nonlocal Decorator State

	Decorators That Take Arguments
	Class-Based Decorators
	Implementing Class-Based Decorators
	Benefits of Class-Based Decorators

	Decorators for Classes
	Conclusion

	Chapter 5. Exceptions and Errors
	The Basic Idea
	Handling Exceptions
	Exceptions for Flow Control
	Finally Blocks
	Dictionary Exceptions

	Exceptions Are Objects
	Raising Exceptions
	Catching and Re-Raising
	The Most Diabolical Python Antipattern
	Conclusion

	Chapter 6. Classes and Objects: Beyond the Basics
	Properties
	Property Patterns
	Validation
	Properties and Refactoring

	The Factory Patterns
	Alternative Constructors: The Simple Factory
	Dynamic Type: The Factory Method Pattern

	The Observer Pattern
	The Simple Observer
	A Pythonic Refinement
	Several Channels

	Magic Methods
	Rebelliously Misusing Magic Methods
	Conclusion

	Chapter 7. Automated Testing
	What Is Test-Driven Development?
	Unit Tests and Simple Assertions
	Fixtures and Common Test Setup
	Asserting Exceptions
	Using Subtests
	Conclusion

	Chapter 8. Module Organization
	Spawning a Module
	Creating Separate Libraries
	Multifile Modules
	Import Syntax and Version Control
	Nested Submodule Structure
	Antipattern Warning
	Import Side Effects
	Conclusion

	Chapter 9. Logging in Python
	The Basic Interface
	Log Levels
	Why Do We Have Log Levels?

	Configuring the Basic Interface
	Passing Arguments
	Beyond Basic: Loggers
	Log Destinations: Handlers and Streams
	Logging to Multiple Destinations
	Record Layout with Formatters
	Conclusion

	Parting Words
	Index
	About the Author
	Colophon

