Parallel Programming
with Python

Develop efficient parallel systems using the robust
Python environment

PACKT =

Parallel Programming
with Python

Develop efficient parallel systems using the
robust Python environment

Jan Palach

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Parallel Programming with Python

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014
Production reference: 1180614

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-839-7
www . packtpub.com

Cover image by Lis Marie Martini (1ismmartini@hotmail.com)

Credits

Author
Jan Palach

Reviewers
Cyrus Dasadia

Wei Di

Michael Galloy
Ludovic Gasc
Kamran Hussain

Bruno Torres

Commissioning Editor
Rebecca Youé

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Sankalp Pawar

Technical Editors
Novina Kewalramani

Humera Shaikh

Copy Editors
Roshni Banerjee

Sarang Chari

Gladson Monteiro

Project Coordinator
Lima Danti

Proofreaders
Simran Bhogal

Maria Gould
Paul Hindle

Indexers
Mehreen Deshmukh

Rekha Nair
Tejal Soni

Priya Subramani

Graphics
Disha Haria

Abhinash Sahu

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

About the Author

Jan Palach has been a software developer for 13 years, having worked with scientific
visualization and backend for private companies using C++, Java, and Python
technologies. Jan has a degree in Information Systems from Estacio de Sa University,
Rio de Janeiro, Brazil, and a postgraduate degree in Software Development from
Parand State Federal Technological University. Currently, he works as a senior system
analyst at a private company within the telecommunication sector implementing C++
systems; however, he likes to have fun experimenting with Python and Erlang — his
two technological passions. Naturally curious, he loves challenges and learning new
technologies, meeting new people, and learning about different cultures.

Acknowledgments

I had no idea how hard it could be to write a book with such a tight deadline among
so many other things taking place in my life. I had to fit the writing into my routine,
taking care of my family, karate lessons, work, Diablo III, and so on. The task was
not easy; however, I got to the end of it hoping that I have generated quality content
to please most readers, considering that I have focused on the most important thing
based on my experience.

The list of people I would like to acknowledge is so long that I would need a book
only for this. So, I would like to thank some people I have constant contact with
and who, in a direct or indirect way, helped me throughout this quest.

My wife Anicieli Valeska de Miranda Pertile, the woman I chose to share my love
with and gather toothbrushes with to the end of this life, who allowed me to have
the time to create this book and did not let me give up when I thought I could not
make it. My family has always been important to me during my growth as

a human being and taught me the path of goodness.

I would like to thank Fanthiane Ketrin Wentz, who beyond being my best friend is
also guiding me through the ways of martial arts, teaching me the values I will carry
during a lifetime —a role model for me. Lis Marie Martini, dear friend who provided
the cover for this book, and who is an incredible photographer and animal lover.

Big thanks to my former English teacher, reviser, and proofreader, Marina Melo,
who helped along the writing of this book. Thanks to the reviewers and personal
friends, Vitor Mazzi and Bruno Torres, who contributed a lot to my professional
growth and still do.

Special thanks to Rodrigo Cacilhas, Bruno Bemfica, Rodrigo Delduca, Luiz Shigunov,
Bruno Almeida Santos, Paulo Tesch (corujito), Luciano Palma, Felipe Cruz, and other
people with whom I often talk to about technology. A special thanks to Turma B.

Big thanks to Guido Van Rossum for creating Python, which transformed
programming into something pleasant; we need more of this stuff and less set/ get.

About the Reviewers

Cyrus Dasadia has worked as a Linux system administrator for over a decade
for organizations such as AOL and InMobi. He is currently developing CitoEngine,
an open source alert management service written entirely in Python.

Wei Di is a research scientist at eBay Research Labs, focusing on advanced computer
vision, data mining, and information retrieval technologies for large-scale e-commerce
applications. Her interest covers large-scale data mining, machine learning in
merchandising, data quality for e-commerce, search relevance, and ranking and
recommender systems. She also has years of research experience in pattern recognition
and image processing. She received her PhD from Purdue University in 2011 with
focuses on data mining and image classification.

Michael Galloy works as a research mathematician for Tech-X Corporation
involved in scientific visualizations using IDL and Python. Before that, he worked
for five years teaching all levels of IDL programming and consulting for Research
Systems, Inc. (now Exelis Visual Information Solutions). He is the author of Modern
IDL (modernidl.idldev.com) and is the creator/maintainer of several open source
projects, including IDLdoc, mgunit, dist_tools, and cmdline_tools. He has written
over 300 articles on IDL, scientific visualization, and high-performance computing
for his website michaelgalloy.com. He is the principal investigator for NASA
grants Remote Data Exploration with IDL for DAP bindings in IDL and A Rapid Model
Fitting Tool Suite for accelerating curve fitting using modern graphic cards.

Ludovic Gasc is a senior software integration engineer at Eyepea, a highly
renowned open source VoIP and unified communications company in Europe.
Over the last five years, Ludovic has developed redundant distributed systems
for Telecom based on Python (Twisted and now AsynclO) and RabbitMQ.

He is also a contributor to several Python libraries. For more information and
details on this, refer to https://github.com/GMLudo.

Kamran Husain has been in the computing industry for about 25 years,
programming, designing, and developing software for the telecommunication
and petroleum industry. He likes to dabble in cartooning in his free time.

Bruno Torres has worked for more than a decade, solving a variety of computing
problems in a number of areas, touching a mix of client-side and server-side
applications. Bruno has a degree in Computer Science from Universidade Federal
Fluminense, Rio de Janeiro, Brazil.

Having worked with data processing, telecommunications systems, as well as app
development and media streaming, he developed many different skills starting from
Java and C++ data processing systems, coming through solving scalability problems
in the telecommunications industry and simplifying large applications customization
using Lua, to developing apps for mobile devices and supporting systems.

Currently he works at a large media company, developing a number of solutions for
delivering videos through the Internet for both desktop browsers and mobile devices.

He has a passion for learning different technologies and languages, meeting people,
and loves the challenges of solving computing problems.

I dedicate this book in the loving memory of Carlos Farias Ouro de Carvalho Neto.

~Jan Palach

Table of Contents

Preface 1
Chapter 1: Contextualizing Parallel, Concurrent,
and Distributed Programming 7
Why use parallel programming? 9
Exploring common forms of parallelization 9
Communicating in parallel programming 1"
Understanding shared state 12
Understanding message passing 12
Identifying parallel programming problems 13
Deadlock 13
Starvation 13
Race conditions 14
Discovering Python's parallel programming tools 15
The Python threading module 15
The Python multiprocessing module 15
The parallel Python module 16
Celery — a distributed task queue 16
Taking care of Python GIL 16
Summary 17
Chapter 2: Designing Parallel Algorithms 19
The divide and conquer technique 19
Using data decomposition 20
Decomposing tasks with pipeline 21
Processing and mapping 22
Identifying independent tasks 22
Identifying the tasks that require data exchange 22
Load balance 23

Summary 23

Table of Contents

Chapter 3: Identifying a Parallelizable Problem 25
Obtaining the highest Fibonacci value for multiple inputs 25
Crawling the Web 27
Summary 28

Chapter 4: Using the threading and concurrent.futures Modules 29
Defining threads 29

Advantages and disadvantages of using threads 30
Understanding different kinds of threads 30
Defining the states of a thread 31
Choosing between threading and _thread 32
Using threading to obtain the Fibonacci series term with
multiple inputs 32
Crawling the Web using the concurrent.futures module 36
Summary 40

Chapter 5: Using Multiprocessing and ProcessPoolExecutor 41

Understanding the concept of a process 41
Understanding the process model 42
Defining the states of a process 42
Implementing multiprocessing communication 42
Using multiprocessing.Pipe 43
Understanding multiprocessing.Queue 45
Using multiprocessing to compute Fibonacci series terms
with multiple inputs 45
Crawling the Web using ProcessPoolExecutor 48
Summary 51
Chapter 6: Utilizing Parallel Python 53
Understanding interprocess communication 53
Exploring named pipes 54
Using named pipes with Python 54
Writing in a named pipe 55
Reading named pipes 56
Discovering PP 57
Using PP to calculate the Fibonacci series term on SMP architecture 59
Using PP to make a distributed Web crawler 61
Summary 66
Chapter 7: Distributing Tasks with Celery 67
Understanding Celery 67
Why use Celery? 68
Understanding Celery's architecture 68
Working with tasks 69

Lii]

Table of Contents

Discovering message transport (broker) 70
Understanding workers 70
Understanding result backends 71
Setting up the environment 71
Setting up the client machine 71
Setting up the server machine 73
Dispatching a simple task 73
Using Celery to obtain a Fibonacci series term 76
Defining queues by task types 79
Using Celery to make a distributed Web crawler 81
Summary 84
Chapter 8: Doing Things Asynchronously 85
Understanding blocking, nonblocking, and asynchronous operations 85
Understanding blocking operations 86
Understanding nonblocking operations 86
Understanding asynchronous operations 86
Understanding event loop 87
Polling functions 87
Using event loops 89
Using asyncio 89
Understanding coroutines and futures 90
Using coroutine and asyncio.Future 90
Using asyncio.Task 92
Using an incompatible library with asyncio 93
Summary 96
Index 99

[iii]

Preface

Months ago, in 2013, I was contacted by Packt Publishing professionals with the
mission of writing a book about parallel programming using the Python language.

I had never thought of writing a book before and had no idea of the work that was
about to come; how complex it would be to conceive this piece of work and how it
would feel to fit it into my work schedule within my current job. Although I thought
about the idea for over a couple of days, I ended up accepting the mission and said
to myself that it will be a great deal of personal learning and a perfect chance to
disseminate my knowledge of Python to a worldwide audience, and thus, hopefully
leave a worthy legacy along my journey in this life.

The first part of this work is to outline its topics. It is not easy to please everybody;
however, I believe I have achieved a good balance in the topics proposed in this mini
book, in which I intended to introduce Python parallel programming combining
theory and practice. I have taken a risk in this work. I have used a new format to show
how problems can be solved, in which examples are defined in the first chapters and
then solved by using the tools presented along the length of the book. I think this is an
interesting format as it allows the reader to analyze and question the different modules
that Python offers.

All chapters combine a bit of theory, thereby building the context that will provide
you with some basic knowledge to follow the practical bits of the text. I truly hope
this book will be useful for those adventuring into the world of Python parallel
programming, for I have tried to focus on quality writing.

Preface

What this book covers

Chapter 1, Contextualizing Parallel, Concurrent, and Distributed Programming, covers
the concepts, advantages, disadvantages, and implications of parallel programming
models. In addition, this chapter exposes some Python libraries to implement
parallel solutions.

Chapter 2, Designing Parallel Algorithms, introduces a discussion about some
techniques to design parallel algorithms.

Chapter 3, Identifying a Parallelizable Problem, introduces some examples of problems,
and analyzes if these problems can be divided into parallel pieces.

Chapter 4, Using the threading and concurrent.futures Modules, explains how to
implement each problem presented in Chapter 3, Identifying a Parallelizable Problem,
using the threading and concurrent.futures modules.

Chapter 5, Using Multiprocessing and ProcessPool Executor, covers how to implement
each problem presented in Chapter 3, Identifying a Parallelizable Problem, using
multiprocessing and ProcessPoolExecutor.

Chapter 6, Utilizing Parallel Python, covers how to implement each problem presented
in Chapter 3, Identifying a Parallelizable Problem, using the parallel Python module.

Chapter 7, Distributing Tasks with Celery, explains how to implement each problem
presented in Chapter 3, Identifying a Parallelizable Problem, using the Celery distributed
task queue.

Chapter 8, Doing Things Asynchronously, explains how to use the asyncio module
and concepts about asynchronous programming,.

What you need for this book

Previous knowledge of Python programming is necessary as a Python tutorial will
not be included in this book. Knowledge of concurrence and parallel programming
is welcome since this book is designed for developers who are getting started in
this category of software development. In regards to software, it is necessary to
obtain the following;:

* Python 3.3 and Python 3.4 (still under development) are required for
Chapter 8, Doing Things Asynchronously

* Any code editor of the reader's choice is required

* Parallel Python module 1.6.4 should be installed

[2]

Preface

* Celery framework 3.1 is required for Chapter 5, Using Multiprocessing and
ProcessPool Executor

* Any operating system of the reader's choice is required

Who this book is for

This book is a compact discussion about parallel programming using Python.

It provides tools for beginner and intermediate Python developers. This book is
for those who are willing to get a general view of developing parallel /concurrent
software using Python, and to learn different Python alternatives. By the end of
this book, you will have enlarged your toolbox with the information presented in
the chapters.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "In order to exemplify the use of the
multiprocessing.Pipe object, we will implement a Python program that creates
two processes, A and B."

A block of code is set as follows:

def producer task(conn) :
value = random.randint (1, 10)
conn.send (value)
print ('Value [%d] sent by PID [%d]' % (value, os.getpid()))
conn.close ()

Any command-line input or output is written as follows:

$celery -A tasks -Q sqgrt queue, fibo queue,webcrawler queue worker
--loglevel=info

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[31]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[4]

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Contextualizing
Parallel, Concurrent, and
Distributed Programming

Parallel programming can be defined as a model that aims to create programs that are
compatible with environments prepared to execute code instructions simultaneously.
It has not been too long since techniques of parallelism began to be used to develop
software. Some years ago, processors had a single Arithmetic Logic Unit (ALU)
among other components, which could only execute one instruction at a time during a
time space. For years, only a clock that measured in hertz to determine the number of
instructions a processor could process within a given interval of time was taken into
consideration. The more the number of clocks, the more the instructions potentially
executed in terms of KHz (thousands of operations per second), MHz (millions of
operations per second), and the current GHz (billions of operations per second).

Summing up, the more instructions per cycle given to the processor, the faster the
execution. During the '80s, a revolutionary processor came to life, Intel 80386, which
allowed the execution of tasks in a pre-emptive manner, that is, it was possible

to periodically interrupt the execution of a program to provide processor time to
another program; this meant pseudo-parallelism based on time-slicing.

In the late '80s, there came Intel 80486 that implemented a pipelining system, which
in practice, divided the stage of execution into distinct substages. In practical terms,
in a cycle of the processor, we could have different instructions being carried out
simultaneously in each substage.

All the advances mentioned in the preceding section resulted in several improvements
in performance, but it was not enough, as we were faced with a delicate issue that
would end up as the so-called Moore's law (http: //www.mooreslaw.org/).

Contextualizing Parallel, Concurrent, and Distributed Programming

The quest for high taxes of clock ended up colliding with physical limitations;
processors would consume more energy, thereby generating more heat. Moreover,
there was another as important issue: the market for portable computers was speeding
up in the '90s. So, it was extremely important to have processors that could make the
batteries of these pieces of equipment last long enough away from the plug. Several
technologies and families of processors from different manufacturers were born. As
regards servers and mainframes, Intel® deserves to be highlighted with its family

of products Core®, which allowed to trick the operating system by simulating the
existence of more than one processor even though there was a single physical chip.

In the Core® family, the processor got severe internal changes and featured
components called core, which had their own ALU and caches L2 and L3,
among other elements to carry out instructions. Those cores, also known as
logical processors, allowed us to parallel the execution of different parts of
the same program, or even different programs, simultaneously. The age core
enabled lower energy use with power processing superior to its predecessors.
As cores work in parallel, simulating independent processors, we can have a
multi-core chip and an inferior clock, thereby getting superior performance
compared to a single-core chip with higher clock, depending on the task.

So much evolution has, of course, changed the way we approach software designing.
Today, we must think of parallelism to design systems that make rational use of
resources without wasting them, thereby providing a better experience to the user
and saving energy not only in personal computers, but also at processing centers.
More than ever, parallel programming is in the developers' daily lives

and, apparently, it will never go back.

This chapter covers the following topics:

* Why use parallel programming?

* Introducing the common forms of parallelization

* Communicating in parallel programming

* Identifying parallel programming problems

* Discovering Python's programming tools

* Taking care of Python Global Interpreter Lock (GIL)

[8]

Chapter 1

Why use parallel programming?

Since computing systems have evolved, they have started to provide mechanisms
that allow us to run independent pieces of a specific program in parallel with one
another, thus enhancing the response and the general performance. Moreover,
we can easily verify that the machines are equipped with more processors and
these with plenty of more cores. So, why not take advantage of this architecture?

Parallel programming is a reality in all contexts of system development, from smart
phones and tablets, to heavy duty computing in research centers. A solid basis in
parallel programming will allow a developer to optimize the performance of an
application. This results in enhancement of user experience as well as consumption
of computing resources, thereby taking up less processing time for

the accomplishment of complex tasks.

As an example of parallelism, let us picture a scenario in which an application that,
amongst other tasks, selects information from a database, and this database has
considerable size. Consider as well, the application being sequential, in which tasks
must be run one after another in a logical sequence. When a user requests data, the
rest of the system will be blocked until the data return is not concluded. However,
making use of parallel programming, we will be allowed to create a new worker that
which will seek information in this database without blocking other functions in

the application, thus enhancing its use.

Exploring common forms of parallelization

There is a certain confusion when we try to define the main forms of paralleling
systems. It is common to find quotations on parallel and concurrent systems as if
both meant the same thing. Nevertheless, there are slight differences between them.

Within concurrent programming, we have a scenario in which a program dispatches
several workers and these workers dispute to use the CPU to run a task. The stage at
which the dispute takes place is controlled by the CPU scheduler, whose function is to
define which worker is apt for using the resource at a specific moment. In most cases,
the CPU scheduler runs the task of raking processes so fast that we might get the
impression of pseudo-parallelism. Therefore, concurrent programming is

an abstraction from parallel programming,.

[% Concurrent systems dispute over the same CPU to run tasks.]

[o]

Contextualizing Parallel, Concurrent, and Distributed Programming

The following diagram shows a concurrent program scheme:

>

ProcessO1
Concurrent
Program
R Process02 _— ;

CPU

Process
Queue

Concurrent programming scheme.

Parallel programming can be defined as an approach in which program data creates
workers to run specific tasks simultaneously in a multicore environment without the
need for concurrency amongst them to access a CPU.

Parallel systems run tasks simultaneously.
s

The following figure shows the concept of parallel systems:

| cpuor | | cruo2 | | cpuos | | cruoa |
| PROCESSO1 | | PROCESS02 PROCESS03 | | PROCESSO4 |
A A

| PARALLEL PROGRAM |

Parallel programming scheme.

Distributed programming aims at the possibility of sharing the processing by
exchanging data through messages between machines (nodes) of computing,
which are physically separated.

Distributed programming is becoming more and more popular for many reasons;
they are explored as follows:

[10]

Chapter 1

* Fault-tolerance: As the system is decentralized, we can distribute the
processing to different machines in a network, and thus perform individual
maintenance of specific machines without affecting the functioning of the
system as a whole.

* Horizontal scalability: We can increase the capacity of processing in
distributed systems in general. We can link new equipment with no need to
abort applications being executed. We can say that it is cheaper and simpler
compared to vertical scalability.

* Cloud computing: With the reduction in hardware costs, we need the growth
of this type of business where we can obtaining huge machine parks acting in a
cooperative way and running programs in a transparent way for their users.

[Distributed systems run tasks within physically-separated nodes.]

The following figure shows a distributed system scheme:

Message

Distributed programming scheme.

Communicating in parallel programming

In parallel programming, the workers that are sent to perform a task often need to
establish communication so that there can be cooperation in tackling a problem.

In most cases, this communication is established in such a way that data can be
exchanged amongst workers. There are two forms of communication that are more
widely known when it comes to parallel programming: shared state and message
passing. In the following sections, a brief description of both will be presented.

[11]

Contextualizing Parallel, Concurrent, and Distributed Programming

Understanding shared state

One the most well-known forms of communication amongst workers is shared state.
Shared state seems straightforward to use but has many pitfalls because an invalid
operation made to the shared resource by one of the processes will affect all of the
others, thereby producing bad results. It also makes it impossible for the program
to be distributed between multiple machines for obvious reasons.

[ustrating this, we will make use of a real-world case. Suppose you are a customer
of a specific bank, and this bank has only one cashier. When you go to the bank, you
must head to a queue and wait for your chance. Once in the queue, you notice that
only one customer can make use of the cashier at a time, and it would be impossible
for the cashier to attend two customers simultaneously without potentially making
errors. Computing provides means to access data in a controlled way, and there are
several techniques, such as mutex.

Mutex can be understood as a special process variable that indicates the level of
availability to access data. That is, in our real-life example, the customer has a
number, and at a specific moment, this number will be activated and the cashier
will be available for this customer exclusively. At the end of the process, this
customer will free the cashier for the next customer, and so on.

There are cases in which data has a constant value in a variable while

the program is running, and the data is shared only for reading
s

purposes. So, access control is not necessary because it will never
present integrity problems.

Understanding message passing

Message passing is used when we aim to avoid data access control and synchronizing
problems originating from shared state. Message passing consists of a mechanism for
message exchange in running processes. It is very commonly used whenever we are
developing programs with distributed architecture, where the message exchanges
within the network they are placed are necessary. Languages such as Erlang, for
instance, use this model to implement communication in its parallel architecture. Once
data is copied at each message exchange, it is impossible that problems occur in terms
of concurrence of access. Although memory use seems to be higher than in shared
memory state, there are advantages to the use of this model. They are as follows:

e Absence of data access concurrence

* Messages can be exchange locally (various processes) or in
distributed environments

[12]

Chapter 1

* This makes it less likely that scalability issues occur and enables
interoperability of different systems

* In general, it is easy to maintain according to programmers

Identifying parallel programming
problems

There are classic problems that brave keyboard warriors can face while battling in
the lands where parallel programming ghosts dwell. Many of these problems occur
more often when inexperienced programmers make use of workers combined with
shared state. Some of these issues will be described in the following sections.

Deadlock

Deadlock is a situation in which two or more workers keep indefinitely waiting for
the freeing of a resource, which is blocked by a worker of the same group for some
reason. For a better understanding, we will use another real-life case. Imagine the
bank whose entrance has a rotating door. Customer A heads to the side, which will
allow him to enter the bank, while customer B tries to exit the bank by using the
entrance side of this rotating door so that both customers would be stuck forcing
the door but heading nowhere. This situation would be hilarious in real life but
tragic in programming.

Deadlock is a phenomenon in which processes wait for a condition
VS to free their tasks, but this condition will never occur.

Starvation

This is the issue whose side effects are caused by unfair raking of one or more processes
that take much more time to run a task. Imagine a group of processes, A, which runs
heavy tasks and has data processor priority. Now, imagine that a process A with high
priority constantly consumes the CPU, while a lower priority process B never gets the
chance. Hence, one can say that process B is starving for CPU cycles.

[Starvation is caused by badly adjusted policies of process ranking.]

[13]

Contextualizing Parallel, Concurrent, and Distributed Programming

Race conditions

When the result of a process depends on a sequence of facts, and this sequence
is broken due to the lack of synchronizing mechanisms, we face race conditions.
They result from problems that are extremely difficult to filter in larger systems.
For instance, a couple has a joint account; the initial balance before operations is
$100. The following table shows the regular case, in which there are mechanisms
of protection and the sequence of expected facts, as well as the result:

Husband Wife Account balance (dollars)
100
Read balance 100
Adds 20 100
Concludes operation 120
Read balance 120
Withdraws 10 120
Concludes operation 110

Presents baking operations without the chance of race conditions occurrence

In the following table, the problematic scenario is presented. Suppose that the
account does not have mechanisms of synchronization and the order of operations
is not as expected.

Husband Wife Account balance (dollars)
100
Read balance 100
Withdraws 100 100
Reads balance 100
Withdraws 10 100
Concludes operation 0
updating balance
Concludes operation 90
updating balance

Analogy to balance the problem in a joint account and race conditions

There is a noticeable inconsistency in the final result due to the unexpected lack
of synchronization in the operations sequence. One of the parallel programming
characteristics is non-determinism. It is impossible to foresee the moment at which
two workers will be running, or even which of them will run first. Therefore,
synchronization mechanisms are essential.

[14]

Chapter 1

Non-determinism, if combined with lack of synchronization
s mechanisms, may lead to race condition issues.

Discovering Python's parallel
programming tools

The Python language, created by Guido Van Rossum, is a multi-paradigm, multi-
purpose language. It has been widely accepted worldwide due to its powerful
simplicity and easy maintenance. It is also known as the language that has batteries
included. There is a wide range of modules to make its use smoother. Within
parallel programming, Python has built-in and external modules that simplify
implementation. This work is based on Python 3.x.

The Python threading module

The Python threading module offers a layer of abstraction to the module _thread,
which is a lower-level module. It provides functions that help the programmer
during the hard task of developing parallel systems based on threads. The threading
module's official papers can be found at http://docs.python.org/3/library/
threading.html?highlight=threading#module-threadin.

The Python multiprocessing module

The multiprocessing module aims at providing a simple API for the use of parallelism
based on processes. This module is similar to the threading module, which simplifies
alternations between the processes without major difficulties. The approach that is
based on processes is very popular within the Python users' community as it is an
alternative to answering questions on the use of CPU-Bound threads and GIL

present in Python. The multiprocessing module's official papers can be found at
http://docs.python.org/3/library/multiprocessing.html?highlight=multi
processing#multiprocessing.

[15]

Contextualizing Parallel, Concurrent, and Distributed Programming

The parallel Python module

The parallel Python module is external and offers a rich API for the creation of parallel
and distributed systems making use of the processes approach. This module promises
to be light and easy to install, and integrates with other Python programs. The parallel
Python module can be found at http://parallelpython.com. Among some of the
features, we may highlight the following:

* Automatic detection of the optimal configuration

* The fact that a number of worker processes can be changed during runtime
* Dynamic load balance

* Fault tolerance

* Auto-discovery of computational resources

Celery — a distributed task queue

Celery is an excellent Python module that's used to create distributed systems and has
excellent documentation. It makes use of at least three different types of approach to
run tasks in concurrent form — multiprocessing, Eventlet, and Gevent. This work will,
however, concentrate efforts on the use of the multiprocessing approach. Also, the
link between one and another is a configuration issue, and it remains as a study so
that the reader is able to establish comparisons with his/her own experiments.

The Celery module can be obtained on the official project page at
http://celeryproject.org.

Taking care of Python GIL

GIL is a mechanism that is used in implementing standard Python, known as
CPython, to avoid bytecodes that are executed simultaneously by different threads.
The existence of GIL in Python is a reason for fiery discussion amongst users of

this language. GIL was chosen to protect the internal memory used by the CPython
interpreter, which does not implement mechanisms of synchronization for the
concurrent access by threads. In any case, GIL results in a problem when we decide
to use threads, and these tend to be CPU-bound. I/O Threads, for example, are out of
GIL's scope. Maybe the mechanism brings more benefits to the evolution of Python
than harm to it. Evidently, we could not consider only speed as a single argument to
determine whether something is good or not.

[16]

Chapter 1

There are cases in which the approach to the use of processes for tasks sided
with message passing brings better relations among maintainability, scalability,
and performance. Even so, there are cases in which there will be a real need for
threads, which would be subdued to GIL. In these cases, what could be done

is write such pieces of code as extensions in C language, and embed them into
the Python program. Thus, there are alternatives; it is up to the developer to
analyze the real necessity. So, there comes the question: is GIL, in a general way,
a villain? It is important to remember that, the PyPy team is working on an STM
implementation in order to remove GIL from Python. For more details about the
project, visit http: //pypy.org/tmdonate . html.

Summary

In this chapter, we learned some parallel programming concepts, and learned

about some models, their advantages, and disadvantages. Some of the problems

and potential issues when thinking of parallelism have been presented in a brief
explanations. We also had a short introduction to some Python modules, built-in and
external, which makes a developer's life easier when building up parallel systems.

In the next chapter, we will be studying some techniques to design parallel algorithms.

[17]

Designing Parallel Algorithms

While developing parallel systems, several aspects must be observed before you
start with the lines of code. Outlining the problem and the way it will be paralleled
from the beginning are essential in order to obtain success along the task. In this
chapter, we'll approach some technical aspects to achieve solutions.

This chapter covers the following topics:

* The divide and conquer technique
* Data decomposition
* Decomposing tasks with pipeline

* Processing and mapping

The divide and conquer technique

When you face a complex issue, the first thing to be done is to decompose the problem
in order to identify parts of it that may be handled independently. In general, the
parallelizable parts in a solution are in pieces that can be divided and distributed

for them to be processed by different workers. The technique of dividing and
conquering involves splitting the domain recursively until an indivisible unit of

the complete issue is found and solved. The sort algorithms, such as merge sort

and quick sort, can be resolved by using this approach.

Designing Parallel Algorithms

The following diagram shows the application of a merge sort in a vector of six
elements, making the divide and conquer technique visible:

1]3]4]5][12]20]

INPUT /
—S S s

I

' m— |

[5]3]20[12]14] 1] |
I

Merge sort (divide and conquer)

Using data decomposition

One of the ways to parallelize a problem is through data decomposition. Imagine

a situation in which the task is to multiply a 2 x 2 matrix, which we will call Matrix
A, by a scalar value of 4. In a sequential system, we will perform each multiplication
operation one after the other, generating the final result at the end of all the
instructions. Depending on the size of Matrix A, the sequential solution of the
problem may be time consuming. However, when decomposition of data is applied,
we can picture a scenario in which Matrix A is broken into pieces, and these pieces
are associated with the workers that process the received data in a parallel way.

The following diagram illustrates the concept of data decomposition applied to the
example of a 2 x 2 matrix multiplied by a scalar value:

DATA DECOMPOSITION
(EACH WORKER GETS

INPUT DATA A DATA CHUNK Computing results
TO PROCESS)
MATRIX A Workergl Workerg2 workergl workerg2
SCALAR

28]

Workerg3 Workerg4

6]
L@

workerg3 workerg4

k4.[§;]

Data decomposition in a matrix example

[20]

Chapter 2

The matrix problem presented in the preceding diagram had a certain symmetry
where each necessary operation to get to the final result was executed by a single
worker, and each worker executed the same number of operations to resolve the
problem. Nevertheless, in real world, there is an asymmetry of the relation between
the number of workers and the quantity of data that is decomposed, and this directly
affects the performance of the solution. Finally, the results generated by each worker
must be correlated in a way that the end of the program's output makes sense. In order
to establish this correlation, workers must establish communication among them by
means of using a message exchanging pattern or even a shared state standard.

The granularity choice of data decomposition might affect the
s performance of a solution.

Decomposing tasks with pipeline

The pipeline technique is used to organize tasks that must be executed in a
collaborative way to resolve a problem. Pipeline breaks large tasks into smaller
independent tasks that run in a parallel manner. The pipeline model could be
compared to an assembly line at a vehicle factory where the chassis is the raw
material, the input. As the raw material goes through different stages of production,
several workers perform different actions one after another until the end of the
process so that we can have a car ready. This model is very similar to the sequential
paradigm of development; tasks are executed on data one after another, and
normally, a task gets an input, which is the result of the previous task. So what
differentiates this model from the sequential technique? Each stage of the pipeline
technique possesses its own workers that act in a parallel way on the problem.

An example in the context of computing could be one in which a system processes
images in batches and persists data that is extracted into a database. We will have
the following sequence of facts:

* Input images are received and lined in parallel to be processed at the
second stage

* Images are parsed and useful information is sent to the third stage

* Filters are applied onto images in parallel during the third stage

* Data that results from the third stage is persisted in the database

Each stage of the pipeline technique acts in an isolated way with
its own workers. However, it establishes mechanisms of data
g communication so that there is an exchange of information.

[21]

Designing Parallel Algorithms

The following diagram illustrates the pipeline concept:

Workers Workers

(stgl) (st@3)
|| o]«
R

INPUT| — g g 5 8 — |OUTPUT

Nnln|ln|n

Workers Workers

(stg2) (stp4)

The pipeline technique

Processing and mapping

The number of workers is not always large enough to resolve a specific problem

in a single step. Therefore, the decomposition techniques presented in the previous
sections are necessary. However, decomposition techniques should not be applied
arbitrarily; there are factors that can influence the performance of the solution.

After decomposing data or tasks, the question we ought to ask is, "How do we divide
the processing load among workers to obtain good performance?" This is not an

easy question to answer, as it all depends on the problem under study.

Basically, we could mention two important steps when defining process mapping;:

* Identifying independent tasks
* Identifying tasks that require data exchange

Identifying independent tasks

Identifying independent tasks in a system allows us to distribute the tasks among
different workers, as these tasks do not need constant communication. As there

is no need for a data location, tasks can be executed in different workers without
impacting other task executions.

Identifying the tasks that require data
exchange

Grouping the tasks that establish constant communication in a single worker can
enhance the performance. This is true when there is a large load of data communication
as it may help reduce the overhead in exchange of the information within the tasks.

[22]

Chapter 2

Load balance

A relevant characteristic in a parallel solution is the way work units are distributed
over different computing resources. The more we distribute tasks to different
workers, the more we increase the granularity of the communication. On the other
hand, the more tasks we group in a single worker, the more we reduce the overhead
associated with communication. Still, we can increase idling, that is, idle computing
power. Idleness is not nice in parallel programming. Moreover, the increase of
location reduces the flexibility of the solution concerning the capacity to expand the
computing power by simply adding up more equipment. Within an architecture
based on messages (low data location), it is simple to add more machines to the
cluster or grid, which increases its processing power without even interrupting

the running of the system.

Summary

In this chapter, we discussed some ways to create parallel solutions. Your focus
should be on the importance of dividing the processing load among different
workers, considering the location and not the data.

In the next chapter, we will study how to identify a parallelizable problem.

[23]

ldentifying a
Parallelizable Problem

The previous chapter presented some of the different ways in which we can think
about a problem in terms of parallelism. Now we will analyze some specific problems
that will be useful in guiding us throughout the implementation.

This chapter covers the following topics:

* Obtaining the highest Fibonacci value for multiple inputs

* Crawling the Web

Obtaining the highest Fibonacci value for
multiple inputs

It is known that the Fibonacci sequence is defined as follows:

0,ifn=0;
F(n)= 1, ifn=1;
F(n-1) + F(n-2)if n >1;

In practical terms, calculating the Fibonacci value for the terms 0 to 10, the result
would be0,1,1,2,3,5,8,13, 21, 34, and 55.

Identifying a Parallelizable Problem

An example of Python code to calculate Fibonacci returning the highest value using
the iterative method is as follows:

def fibonacci (input):
a, b=20,1
foritem in range (input) :
a, b =Db, a+b
return a

The Fibonacci function calculates the highest Fibonacci value for a specific piece

of input data. Let us picture a hypothetical scenario in which it is necessary to
calculate Fibonacci values, and this website will receive several inputs from a user.
Suppose the user provides an array of values as input, so making these calculations
sequentially would be interesting. But, what if 1 million users are connected at the
same time to make requests? In this case, some users would have to wait for quite
a long time until they are answered.

Let's think only within the context of the Python Fibonacci function presented in
the preceding code. How could we draw it so as to make use of parallelism where
there is an array of data input? The previous chapter displayed several techniques;
we could use one of them in this case —data decomposition. We could decompose
the array in units and dispatch a task associated with each unit to be executed by a
worker. The following diagram depicts the suggested solution:

I
{USER'S INPUT} | {WORKERS AND TASKS}
I

—— [WORKERGL] fib(3)
—~[WORKER@2| fib@)
[WORKER@3] fib(5)

——[WORKER@4 | fib(6)

' B
PARALLEL EXECUTION

Parallel Fibonacci for multiples inputs.

As a suggestion to the reader, complete the exercise of implementing
~ the use of a mechanism to cache computed values in order to avoid

Q wasting CPU time. We recommend something like memcached
(http://memcached.org/).

[26]

Chapter 3

Crawling the Web

Another problem to be studied throughout this book is the implementation of a
parallel Web crawler. A Web crawler consists of a computer program that browses
the Web to search for information on pages. The scenario to be analyzed is a problem
in which a sequential Web crawler is fed by a variable number of Uniform Resource
Locators (URLs), and it has to search all the links within each URL provided.
Imagining that the number of input URLs may be relatively large, we could plan

a solution looking for parallelism in the following way:

1.
2.

Group all the input URLs in a data structure.

Associate data URLs with tasks that will execute the crawling by obtaining
information from each URL.

Dispatch the tasks for execution in parallel workers.

The result from the previous stage must be passed to the next stage, which
will improve raw collected data, thereby saving them and relating them to
the original URLs.

As we can observe in the numbered steps for a proposed solution, there is a
combination of the following two methods:

Data decomposition: This occurs when we divide and associate URLs
to tasks

Task decomposition with pipeline: This contains a pipeline of three stages
and occurs when we chain the task of receiving, collecting, and organizing
the results of crawling

The following diagram shows the solution scheme:

1 1 1
Stage @ X Stage @1 X Stage @2 X Stage @3
1 1 1
{USER INPUT ! { GROUP URLs 7 ! {GEI' ALL LINKS FROMY ' (ASSOCIATE RESULTS
(URLs) ' LIN A DICTIONARY.J ! EACH URL 4 FROM CRAWLING WITH}
| | L EACH URL
1 1 1
! ‘ T, ! . ! 1 1
URLG1 ! {'URLAL":], v | Crawling [\ ooergn | ! {'URL@1": [LINKS],
URL@?2 | URG2:[], | Rl ! 'URL@2": [LINKS],
' | Crawing |y opkerg2 |
URL@3 ! ‘URW@3:[],) | __URLG2 ! 'URL@3": [LINKS],
WRLO4| | : V| Crawing yworkerg3 | L wRLa
' URWGA:TL} | URWG3 ! URL@A4" [LINKS],}
| *EACH URLHAS A | | Crawling |
[[WORKER®@4 | !
' LSTOFUNKS | [_URLG4 !
1 1 1

Parallel Web crawler

[27]

Identifying a Parallelizable Problem

Summary

In this chapter, we learned about common problems and potential solutions involving
parallelism. The problems presented will be shown using different parallel Python
libraries for the implementation of solutions.

In the next chapter, we will focus on solutions involving threads while using
the threading module, solutions involving the use of processes with the
multiprocessing module, and so on.

[28]

Using the threading and
concurrent.futures Modules

In the previous chapter, we presented some potential problems that may be solved
with parallelism. In this chapter, we will analyze the implementation of the solutions
of each problem using the threading module from the Python language.

This chapter covers the following topics:

* Defining threads
* Choosing between threading and _thread
* Using threading to obtain the Fibonacci series term for multiple inputs

* Crawling the Web using the concurrent . futures module

Defining threads

Threads are different execution lines in a process. Let us picture a program as if it
was a hive, and there is a process of collecting pollen inside this hive. This collection
process is carried out by several worker bees who work simultaneously in order to
solve the problem of lack of pollen. The worker bees play the role of threads, acting
inside a process and sharing resources to perform their tasks.

Threads belong to the same process and share the same memory space. Hence, the
developer's task is to control and access these areas of memory.

Using the threading and concurrent.futures Modules

Advantages and disadvantages of using
threads

Some advantages and disadvantages have to be taken into account when deciding
on the use of threads, and it depends on the language and operating system used
to implement a solution.

The advantages of using threads are as follows:

* The speed of communication of the threads in the same process, data
location, and shared information is fast

* The creation of threads is less costly than the creation of a process,
as it is not necessary to copy all the information contained in the context
of the main process

* Making the best use of data locality by optimizing memory access through
the processor cache memory

The disadvantages of using threads are as follows:
* Data sharing allows swift communication. However, it also allows the
introduction of difficult-to-solve errors by inexperienced developers.

* Data sharing limits the flexibility of the solution. Migrating to a distributed
architecture, for instance, may cause a real headache. In general, they limit
the scalability of algorithms.

Within the Python programming language, the use of CPU-bound
= threads may harm performance of the application due to GIL.

Understanding different kinds of threads

There are two types of threads, kernel and user. The kernel threads are the threads
that are created and managed by the operating system. The exchange of context,

scheduling, and concluding are all managed by the kernel of the current operating
system. For the user threads, these states are controlled by the package developer.

We can quote some advantages of each type of thread.
The advantages of the kernel threads are as follows:

* One kernel thread is referenced to one process. So if a kernel thread blocks,
others can still run.

[30]

Chapter 4

¢ The kernel threads can run on different CPUs.
The disadvantages of the kernel threads are as follows:

* The creation and synchronization routines are too expensive

* The implementation is platform dependent
The advantages of the user threads are as follows:

* The user thread has low cost for creation and synchronization

* The user thread is platform independent
The disadvantages of the user threads are as follows:
* All the user threads inside a process are related to only one kernel thread.

So, if one user thread blocks, all the other user threads can't run.

¢ The user threads can't run on different CPUs.

Defining the states of a thread
There are five possible states in a thread's life span. They are as follows:
* Creation: This is the main process that creates a thread, and after its creation,
it is sent to a line of threads ready for execution
* Execution: At this stage, the thread makes use of the CPU

* Ready: At this stage, the thread is in a line of threads ready for execution
and bound to be executed

* Blocked: At this stage, the thread is blocked to wait for an I/O operation
to happen, for example, and it does not make use of the CPU at this stage

* Concluded: At this stage, free resources are to be used in an execution and
end the life span of the thread

[31]

Using the threading and concurrent.futures Modules

Choosing between threading and _thread

The Python language offers two modules to support implementation for systems
based on threads: the _thread module (this Python module offers an API of lower
level for the use of threads; its documents can be found at http://docs.python.
org/3.3/library/_thread.html) and the threading module (this Python module
offers an API of higher level for the use of threads; its documents can be found
athttp://docs.python.org/3.3/library/threading.html). The threading
module offers a friendly interface for the _thread module, making its use more
convenient. The choice is up to the developer. If the developer finds it easy to use
threads at a lower level, implementing their own thread pool and cuddling with
locks and other primitive features, he/she would rather use thread. Otherwise,
threading is the most sensible choice.

Using threading to obtain the Fibonacci
series term with multiple inputs

Now it is time for the truth. The mission is to parallelize the execution of the terms

of the Fibonacci series when multiple input values are given. For didactical purposes,
we will fix the input values in the four elements and the four threads to process each
element, simulating a perfect symmetry among workers and tasks to be executed.
The algorithm will work as follows:

1. First, a list will store the four values to be calculated and the values will be
sent into a structure that allows synchronized access of threads.

2. After the values are sent to the synchronized structure, the threads that
calculate the Fibonacci series need to be advised that the values are ready
to be processed. For this, we will use a thread synchronization mechanism
called condition. (The Condition mechanism is one of the Python objects
that offer data access synchronization mechanisms shared among threads;
you can learn more at http://docs.python.org/3/library/threading.
html#threading.Condition.)

3. After each thread finishes their Fibonacci series calculation, the results will
be saved in a dictionary.

So, now we will present the code and comment on the interesting aspects.

[32]

Chapter 4

At the beginning of the code, we have the additional support to Unicode and

the import of the 1ogging, threading, and Queue modules. In addition, we have
defined the main data structures to be used in our example. A dictionary, which

we will call £ibo_dict, will store each integer (provided as an input) as a key, and
its respective key values will be the Fibonacci series values calculated. We have also
declared a Queue module present in the queue module, which will be the container
of our shared data among threads that calculate the Fibonacci series and the thread
that inserts elements in the Queue object. We will call this queue as shared_gueue.
Finally, we define the last data structure—a Python 1ist object with four elements
that simulates the set of values received by the program. The code is as follows:

#coding: utf-8
import logging, threading
from queue import Queue

logger = logging.getLogger ()
logger.setLevel (logging.DEBUG)
formatter = logging.Formatter('% (asctime)s - % (message)s')

ch = logging.StreamHandler ()
ch.setLevel (logging.DEBUG)
ch.setFormatter (formatter)
logger.addHandler (ch)

fibo dict = {}
shared queue = Queue()
input list = [3, 10, 5, 7]

Downloading the example code

purchased from your account at http: //www. packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

.\'Q You can download the example code files for all Packt books you have

In the following line of code, we will define an object from the threading module
called condition. This object aims to synchronize the access to resources according
to a specific condition.

queue _condition = threading.Condition()

The idea of using the condition object is to control the creation of a queue and the
processing that takes place in it.

[33]

Using the threading and concurrent.futures Modules

The next piece of code is a definition of the function to be executed by several
threads. We will call it fibonacci_task. The fibonacci task function receives

the condition object as an argument that will control the fibonacci_task access
to shared_gueue. Inside the function, we made use of the with statement (for

more information on the with statement, refer to http://docs.python.org/3/
reference/compound_stmts.html#with) to simplify the managing of the content.
Without the with statement, we would have to explicitly acquire the lock and release
it. With the with statement, we can acquire the lock at the beginning and release it
at the exit of the internal block. The following step in the fibonacci_task function
is to make a logical evaluation, telling the current thread, "while shared_queue is
empty, wait." This is the main use of the wait () method of the condition object.
The thread will wait until it gets notified that shared_queue is free to process.

Once we have the condition satisfied, the current thread will obtain an element in
shared_gqueue, which right away calculates the Fibonacci series value and generates
an entry in the fibo_dict dictionary. In the end, we make a call to the task_done ()
method, which aims to inform that a certain queued task has been extracted and
executed. The code is as follows:

def fibonacci task(condition) :
with condition:
while shared queue.empty () :
logger.info (" [%$s] - waiting for elements in queue.."
% threading.current thread() .name)
condition.wait ()
else:
value = shared queue.get ()
a, b=10, 1
for item in range (value) :
a, b=Db, a+b
fibo dict[value] = a
shared queue.task done ()
logger.debug (" [$s] fibonacci of key [%d] with
result [%d]l" %
(threading.current thread() .name, value,
fibo dict[valuel))

The second function that we defined is the queue task function that will be
executed by the thread responsible for populating shared_queue with elements to
be processed. We can notice the acquisition of condition received as an argument
to access shared_queue. For each item present in input_1list, the thread inserts
them in shared queue.

[34]

Chapter 4

After it inserts all the elements into shared gueue, the function notifies the threads
responsible for calculating the Fibonacci series that the queue is ready to be used.
This is done by using condition.notifyall () as follows:

def queue task(condition) :
logging.debug('Starting queue task...')
with condition:
for item in input list:
shared queue.put (item)

logging.debug ("Notifying fibonacci task threads
that the queue is ready to consume..")

condition.notifyAll ()

In the next piece of code, we created a set of four threads that will wait for the
preparing condition from shared_gueue. We then highlight the constructor of the
thread class that allows us to define the function. The thread will execute using the
target argument, and the arguments this function receives in args are as follows:

threads = [threading.Thread (
daemon=True, target=fibonacci task,
args=(queue_condition,)) for i in range(4)]

Then, we started the execution of the threads created to calculate the Fibonacci series
by using the following code:

[thread.start () for thread in threads]

In the next step, we created a thread that will populate shared_queue and start its
execution. The code is as follows:

prod = threading.Thread(name='queue task thread',K daemon=True,
target=queue task, args=(queue condition,))
prod.start ()

And finally, we called the join () method to all the threads that calculate the Fibonacci
series. The aim of this call is to make the main thread wait for the execution of the
Fibonacci series from these threads so that it will not end the main flux of the program
before the end of their process. Refer to the following code:

[thread.join() for thread in threads]

[35]

Using the threading and concurrent.futures Modules

As a result of the execution of this program, we have the following output:

o . W

IC:xUzersriceman Documentssskydrive _bkpsistDraf t python_codes 8397_84_1ztDraft>python parallel fibonacci.py
—26 19:=12: Thread-11 — wvaiting for elements in gueue.._.

[Thread—21 — waiting for elements in gueuwe...

[Thread—31 — waiting for elements in gueuwe...

[Thread—41 — waiting for elements in gueuwe...

Starting gqueue_task...

Notifying fibonacci_task threads that the gueue iz ready to consume..
[Thread—11 fibhonacci of key [3]1 with result [2]

[Thread-3]1 fibonacci of key [18]1 with

[Thread-2]1 fibonacci of key [5]1 with v

[Thread—4]1 fibonacci of key [?]1 with v

[MainThread]l — Result: {1@: 55, 3: 2,

2@13-12-26
2013-12-26
2013-12-26

IC:%Userssiceman“Documentssskydrive _bkpsistDraftspython_codes\8397_B4_1stDraft>_

The parallel_fibonacci.py output

Notice that at first the fibonacci_task threads are created and initialized, and then
they enter the waiting state. In the meantime, queue_task is created and populates
shared queue. In the end, queue_task notifies the fibonacci_task threads that
they can execute their tasks.

Notice that the order in which the fibonacci_task threads execute does not follow
a sequential logic, and the order may vary for each execution. This is a characteristic
of the use of threads: non-determinism.

Crawling the Web using the concurrent.
futures module

The following section will make use of our code by implementing the parallel

Web crawler. In this scheme, we will use a very interesting Python resource,
ThreadPoolExecutor, which is featured in the concurrent . futures module. In the
previous example, in which we analyzed parallel fibonacci.py, quite primitive
forms of threads were used. Also, at a specific moment, we had to create and initialize
more than one thread manually. In larger programs, it is very difficult to manage this
kind of situation. In such case, there are mechanisms that allow a thread pool. A thread
pool is nothing but a structure that keeps several threads, which are previously created,
to be used in a certain process. It aims to reuse threads, thus avoiding unnecessary
creation of threads —which is costly.

Basically, as mentioned in the previous chapter, we will have an algorithm that will
execute some tasks in stages, and these tasks depend on each other. Here, we will
study the code for our parallel Web crawler.

[36]

Chapter 4

After importing some modules and setting up the logging file, we have created a
regular expression using a built-in module called re (complete documentation on
this module can be found at http://docs.python.org/3/howto/regex.html).
We will use it to filter links in the pages that are returned from the crawling stage.
The code is as follows:

html link regex = \
re.compile ('<a\s(?:.*?\s) *?href=[\""] (.*?) [\'"].*?>")

Following the sequence, we have populated a synchronized queue so that it simulates
certain input data. Then, we will declare a dictionary instance, which we will call
result_dict. In this, we will correlate the URLs and their respective links as a list
structure. The code is as follows:

urls = queue.Queue ()
urls.put ('http://www.google.com')

urls.put ('http://br.bing.com/"')
urls.put ('https://duckduckgo.com/ ")
urls.put ('https://github.com/")
urls.put ('http://br.search.yahoo.com/")

result dict = {}

In the following piece of code, a function called group_urls_task is defined to
extract URLs from the synchronized queue to populate result_dict. We can see
that the URLs are keys of result_dict. Another detail that we can observe is that
the get () function was used with two arguments. The first argument is True to
block the access to a synchronized queue. The second argument is a timeout of
0.05 to avoid this waiting getting too long in case of nonexistence of elements in
the synchronized queue. In some cases, you do not want to spend too much time
blocked in waiting for elements. The code is as follows:

def group urls task(urls):

try:
url = urls.get (True, 0.05)
result dict[url] = None
logger.info (" [%$s] putting url [%s] in dictionary..." % (

threading.current thread() .name, url))
except queue.Empty:
logging.error ('Nothing to be done, queue is empty')

[37]

Using the threading and concurrent.futures Modules

Now, we have the task that is responsible for accomplishing the crawling stage

for each URL sent as an argument for the crawl_task function. Basically, the crawling
stage is completed by obtaining all the links inside the page pointed by URL received.
A tuple returned by crawling contains the first element as a URL received by the
crawl_task function. As the second step, the list of links gets extracted. The requests
module (the official documentation about the request module can be found at
https://pypi.python.org/pypi/requests) was used to obtain the web pages
from URLs. The code is as follows:

def crawl task(url):

links = T[]

try:
request data = requests.get (url)
logger.info (" [%$s] crawling url [%s] ..." & (

threading.current thread() .name, url))

links = html_link regex.findall (request_data.text)

except:
logger.error (sys.exc_info() [0])
raise

finally:
return (url, links)

Analyzing the code further, we will see the creation of an ThreadPoolExecutor

object (more information about the ThreadPoolExecutor object can be found at
http://docs.python.org/3.3/library/concurrent.futures.html#concurrent.

futures.ThreadPoolExecutor) featured in the concurrent . futures module. In
the constructor of this ThreadPoolExecutor object, we are able to define a parameter
called max_workers. This parameter defines the number of threads in the thread

pool attached to the executor. Within the stage of removal of the URLs from the
synchronized queue and insertion of keys into result_dict, the choice was between
using three worker threads. The quantity will vary according to the problem. After
defining ThreadPoolExecutor and making use of the with statement to guarantee
ending routines, these routines will be executed in the output of the scope of the with
statement. In the ThreadPoolExecutor object's scope, we iterate it in the synchronized
queue and dispatch it to execute a reference for the queue containing URLs by means
of the submit method. Summing up, the submit method schedules a callable for

the execution and returns a Future object containing the scheduling created for the
execution. The submit method receives a callable and its arguments; in our case,

the callable is the task group_urls_task and the argument is a reference to our
synchronized queue. After these arguments are called, worker threads defined in the
pool will execute the bookings in a parallel, asynchronous way. The code is as follows:

with concurrent. futures.ThreadPoolExecutor (max workers=3) as\
group_link threads:

[38]

Chapter 4

for i in range(urls.gsize()):
group_link threads.submit (group urls task, urls)

After the previous code, we created another ThreadPoolExecutor; but this time, we
want to execute the crawling stage by using the keys generated by group_urls_task
in the previous stage. This time, there is a difference in the following line:

future tasks = {crawler link threads.submit (crawl task, url): url
for url in result dict.keys ()}

We have mapped a temporary dictionary called future_tasks. It will contain the
bookings made by submit, passing by each URL featured in result_dict. That

is, for each key, we create an entry in future_tasks. After mapping, we need to
collect the results from the bookings as they are executed using a loop, which seeks
completed entries in future_tasks using the concurrent . futures.as_completed
(fs, timeout=None) method. This call returns an iterator for instances of the
Future object. So, we can iterate in each result processed by the bookings that

have been dispatched. At the end of ThreadPoolExecutor, for the crawling threads,
we use the result () method from the Future object. In the case of the crawling
stage, it returns the resulting tuple. In this way, we generate the final entries in
future_tasks as shown in the following screenshot:

C:\UserssicemansDocumentssskydrive_bkpsistDraftspython_codes~8397_84_istDraft>python parallel web_crawler.y|

3

2013-12-26 t16:41 688 [Thread-1] putting uwl [http: “uwu_google_com] in dictionary...
2A13-12-26 t1hzdl, [Thread-1]1 putting url [htt #br_bing.coms]1 in dictionar
20813-12-26 :i6:41.689 [Thread—1] putting url [htt ssduckduckgo . com/] in dicti
2013-12-26 H [} [Thread—1] putting url [htt s7github.comns] in dlctlunaly -
2013-12-26 H [Thread—2]1 putting url [htt hr. h.yahoo.cons1 in dlctlonaly

2013-12-26 :16:41 .6 Starting new HTTP connection {1}): arch.yahoo.com

2813-12-26 :i6: Starting new HITP connection €1): -google.com

20813-12-26 t1hz41, arting new HITPS connection €(1)>: github_com

2013-12-26 :16: ET ~ HTTP-1.1' 382 278

2@13-12-26 :16:42 ET ~ HTTP-1.1" 2088 Hone

20813-12-26 H a9 Starting new HTTP connection <1): -google .com.br

2013-12-26 H [Thread—6]1 crawling url [http://br arch.yahoo.coms] ...
2013-12-26 t16:42 .6 Starting new HTTP connection <{1>: be.hing.com

2@13-12-26 :16: EI ~ HITP-1.1" 208 None

2A13-12-26 :16: ? _rd=ctrliei=r468Uu21F0aE8Qe JudHgCulgws_rd=cr HITP-s1.1" 288 None
2013-12-26 i p pavling url [http:/ www.google.com] -

2013-12-26 :16: Starting new HTTPS connection <1»>: duckduckgo.com

2@13-12-26 t16:42,9 "GET ~» HITP-1i.1" 288 Hone

2013-12-26 116:42,.9 [Thread-5] crawling url [https://github.coms1 ...

2@13-12-26 :16: "GET ~ HITP~1.1" 2U@ MNone

2013-12-26 :16: [Thread—4] crawling url [https:ssduckduckgo_coms] ...

2013-12-26 :16: [Thread-6]1 crawling url [http:ssbr_hing.coms1 ...

2813—12—26 L [http: /7www.google.com] with links : [http://www.google.com.br/imghp?hl=pt—BR&tah|
=wi...

2013-12-26 16 [https:~“github.cons] with links = [https://github.con/.
2013-12-26 :16:43.833 [http:/sbr.search.yahoo.comn/] with links = [http:/ he. yahoo com/s .
2013-12-26 t16:43, [http: /by _bing.cons] with links : [Aaccount/weh?sh=58&ru=x2f_
2013-12-26 :16:43,.834 [https i ssduckduckgo .coms1 with links = [rabout.

C:sUserssicemansDocumentssskydrive_bkpsistDraftspython_codes~8397_84_istDraft>

Crawling the Web in a parallel way

Once again, we can notice the order of the thread execution in each pool does not
present a logical order, which is a consequence of non-determinism. The important
thing is the printed items from result_dict showing the final result.

[39]

Using the threading and concurrent.futures Modules

Summary

In this chapter, we have focused on a theoretical notion of the use of threads. We have
implemented the examples that had been proposed in the previous chapter, making
use of the threading module and concurrent. futures. In this way, we illustrated
the module's mechanisms and flexibility.

In the next chapter, we will focus on how to solve these two problems using
multiprocessing and ProcessPoolExecutor.

[40]

Using Multiprocessing and
ProcessPoolExecutor

In the previous chapter, we studied how to use the threading module to solve
two case problems. Throughout this present chapter, we will study how to use

the multiprocessing module, which implements a similar interface to that of

threading. However, here we will use the processes paradigm.

This chapter covers the following topics:

* Understanding the concept of a process
* Understanding multiprocessing communication
* Using multiprocessing to obtain Fibonacci series terms with multiple inputs

* Crawling the Web using ProcessPoolExecutor

Understanding the concept of a process

We must understand processes in operating systems as containers for programs in
execution and their resources. All that is referring to a program in execution can be
managed by means of the process it represents —its data area, its child processes,
its estates, as well as its communication with other processes.

Using Multiprocessing and ProcessPoolExecutor

Understanding the process model

Processes have associated information and resources that allow their manipulation
and control. The operating system has a structure called the Process Control Block
(PCB), which stores information referring to processes. For instance, the PCB might
store the following information:

Process ID: This is the unique integer value (unsigned) and which identifies
a process within the operational system

Program counter: This contains the address of the next program instruction
to be executed

I/O information: This is a list of open files and devices associated with
the process

Memory allocation: This stores information about the memory space used
by and reserved for the process and the tables of paging

CPU scheduling: This stores information about the priority of the process
and points to the staggering queues

Priority: This defines the priority that the process will have in the acquisition
of the CPU

Current state: This states whether the process is ready, waiting, or running
CPU registry: This stores stack pointers and other information

Defining the states of a process

Processes possess three states that cross their life cycle; they are as follows:

Running: The process is making use of the CPU

Ready: The process that was waiting in the processes queue is now ready
to use the CPU

Waiting: The process is waiting for some I/O operation related to the task
it was executing

Implementing multiprocessing
communication

The multiprocessing module (http://docs.python.org/3/library/
multiprocessing.html) allows two ways of communication among processes,
both based on the message passing paradigm. As seen previously, the message
passing paradigm is based on the lack of synchronizing mechanisms as copies
of data are exchanged among processes.

[42]

Chapter 5

Using multiprocessing.Pipe

A pipe consists of a mechanism that establishes communication between two endpoints
(two processes in communication). It is a way to create a channel so as to exchange
messages among processes.

M The official Python documentation recommends the use of a pipe for
Q every two endpoints since there is no guarantee of reading safety by
another endpoint simultaneously.

In order to exemplify the use of the multiprocessing. Pipe object, we will implement
a Python program that creates two processes, A and B. Process A sends a random
integer value in intervals from 1 to 10 to process B, and process B will display it on

the screen. Now, let us check the program point by point.

Some essential modules have been imported to implement our example, as follows:

import os, random
from multiprocessing import Process, Pipe

The os module allows us to obtain the PID of the process, which executes a certain
point of the program by using os.getpid () (http://docs.python.org/3.3/
library/os.html). The os.getpid () call will return in a transparent form in our
example. It will return the PID of the respective processes responsible for running
tasks producer task and consumer task.

In the next part of the program, we will define the producer_task function, which,
among other things, will generate a random number using the random. randint (1,
10) call. The key point of this function is called conn. send (value), which uses a
connection object generated by pipe in the flux of the main program that has been
sent as an argument to the function. Observe the full body of the producer_task
function as follows:

def producer task(conn) :
value = random.randint (1, 10)
conn.send (value)
print ('Value [%d] sent by PID [%d]' % (value, os.getpid()))
conn.close ()

o Never forget to always call the close () method of a Pipe
~ connection which sends data through the send method. This is
Q important to finalize resources associated with the channel of
communication when this is no longer being used.

[43]

Using Multiprocessing and ProcessPoolExecutor

The task to be executed by the consumer process is quite simple, and its only goal

is to print the received value on screen, informing the PID of the consuming process.
To obtain the sent value from a channel of communication, we used the conn.

recv () call (http://docs.python.org/dev/library/multiprocessing.
html#multiprocessing.Connection.recv). The implementation of the
consumer_task function ended up like the following;:

def consumer task(conn) :
print ('Value [%d] received by PID [%d]' % (conn.recv (),
os.getpid()))

The final part of our little example realizes a call to the Pipe () object by creating two
connection objects that will be used by the consumer and producer processes. After
this call, the producer and consumer processes are created, sending the consumer_
task and producer_task functions as target functions respectively, as we may
observe in the following full code:

if name == ' main ':
producer conn, consumer conn = Pipe()
consumer = Process (target=consumer_ task,args=(consumer conn,))
producer = Process (target=producer task,args=(producer conn,))

consumer.start ()
producer.start ()

consumer.join ()
producer.join ()

After defining the processes, it is time to make a call to the start () method to
initiate the execution and the join () method so that the main process waits for the
execution of the producer and consumer processes.

In the following screenshot, we can see the output of the multiprocessing pipe.py
program:

C:wlzerssicemansSkyDrivesDocumentossistDraftspython_codes>C:\Python33spython.exe i
multiprocessing_pipe.py
Blalue [?]1 sent hy PID [119121

Walue [?] received by PID [134481

IC:“Users~iceman~SkyDrivesDocumentosslstDraf tpython_codes>

Output from multiprocessing_pipe.py

[44]

Chapter 5

Understanding multiprocessing.Queue

In the previous section, we analyzed the concept of a pipe to establish communication
among processes by creating a communication channel. Now, we will be analyzing
how to effectively establish this communication, making use of the Queue object,
which is implemented in the multiprocessing module. The available interfaces

for multiprocessing.Queue are quite similar to queue . Queue. However, the internal
implementation uses different mechanisms, such as an internal thread called feeder
thread, which transfers data from the data buffer of the queue to the pipes associated
with the destination processes. Both the pPipe and Queue mechanisms make use

of the message passing paradigm, which spares users from the need to use
synchronization mechanisms.

o Although the user of multiprocessing.Queue does not need to
~ use synchronization mechanisms, such as Locks for instance, but
Q internally, these mechanisms are used to transport data among buffers
and pipes in order to accomplish communication.

Using multiprocessing to compute
Fibonacci series terms with multiple
inputs

Let's implement the case study of processing a Fibonacci series for multiple inputs
using the processes approach instead of threads.

The multiprocessing fibonacci.py code makes use of the multiprocessing
module, and in order to run, it imports some essential modules as we can observe

in the following code:
import sys, time, random, re, requests

import concurrent.futures
from multiprocessing import, cpu count, current process, Manager

Some imports have been mentioned in the previous chapters; nevertheless, some
of the following imports do deserve special attention:

* cpu_count: This is a function that permits obtaining the quantity of CPUs
in a machine

* current_process: This is a function that allows obtaining information on
the current process, for example, its name

[45]

Using Multiprocessing and ProcessPoolExecutor

* Manager: This is a type of object that allows sharing Python objects
among different processes by means of proxies (for more information,
see http://docs.python.org/3/library/multiprocessing.html)

Following the code, we can notice that the first function will behave differently;
it will generate random values in an interval from 1 to 20 during 0-14 iterations.
These values will be inserted as keys in fibo_dict, a dictionary generated by a
Manager object.

M It is more common to use the message passing approach. However,
Q in some cases, we need to share a piece of data among different
processes as we can see on our £ibo_dict dictionary.

Let's now check the producer_ task method, as follows:

def producer task(q, fibo dict):
for i in range(15):
value = random.randint (1, 20)
fibo dict[value] = None

logger.info ("Producer [%s] putting value [%d] into

queue.. " % (current process () .name, value))
g.put (value)

The next step is to define the function that will calculate the Fibonacci series term
for each key in fibo_dict. It is noticeable that the only difference in relation to the
function presented in the previous chapter is the use of fibo_dict as an argument
to enable its use by different processes.

Let us check the consumer task function, as follows:

def consumer task(q, fibo dict):
while not g.empty () :

value = g.get (True, 0.05)

a, b=20,1

for item in range (value) :
a, b=D>b, a+b
fibo dict[value] = a

logger.info ("consumer [%s] getting value [%d] from

o

queue..." % (current process () .name, value))

[46]

Chapter 5

Going further with the code, we enter the main block of the program. In this main
block, some of the following variables are defined:

* data_gueue: This contains multiprocessing.Queue that is processed safely
by the standard

* number of_ cpus: This contains the value returned by the multiprocessing.
cpu_count function as explained earlier

* fibo_dict: This is a dictionary generated by the Manager object, where the
final results of the process will be inserted

Further in the code, we have created a process called producer to populate
data_gueue with random values using the producer_task function, as follows:

producer = Process (target=producer task, args=(data queue,
fibo dict))

producer.start ()

producer.join ()

We can observe that the signature on the initializer of the Process class is the
same as the one used on the Thread class, which is present in the threading
package. It receives a target function to be executed in parallel by the workers
and the arguments for this function. Then, we started the process execution and
made a call to the join () method so that the main process goes on only after the
conclusion of the producer process.

In the next chunk, we defined a list called consumer 1ist, which will store a list

of consumers with their processes already initialized. The reason for creating this
list is to call join () only after the beginning of the processes of all the workers. If
the join () function was called for each item in the loop, then only the first worker
would perform the job as the next iteration would be blocked waiting for the current
worker to end, and finally there would be nothing else to be processed by the next
worker; the following code represents this scenario:

consumer list = []
for i in range (number of cpus) :
consumer = Process (target=consumer task, args=(data_queue,
fibo dict))
consumer.start ()
consumer list.append (consumer)

[consumer.join() for consumer in consumer list]

[47]

Using Multiprocessing and ProcessPoolExecutor

Eventually, we presented the result iterating in fibo_dict, as shown in the
following screenshot:

2014-05-13 :01:13,424 - Producer [Process-2] putting value [13] into queue..
2014-05-13 :01:13,436 - consumer [Process-3] getting value [1] from queue...
2014-05-13 :01:13,439 - consumer [Process-3] getting value [17] from queue...
2014-05-13 :01:13,441 - consumer [Process-3] getting value [16] from queue...
2014-05-13 :01:13,443 - consumer [Process-3] getting value [20] from queue...
2014-05-13 16:01:13,449 - consumer [Process-3] getting value [14] from queue...
2014-05-13 :01:13,459 - consumer [Process-4] getting value [10] from queue...
2014-05-13 16:01:13,465 - consumer [Process-5] getting value [6] from queue...
2014-05-13 :01:13,468 - consumer [Process-6] getting value [7] from queue...
2014-05-13 :01:13,469 - consumer [Process-5] getting value [14] from queue...
2014-05-13 :01:13,470 - consumer [Process-5] getting value [2] from queue...
2014-05-13 :01:13,472 - consumer [Process-4] getting value [19] from queue...
2014-05-13 16:01:13,472 - consumer [Process-6] getting value [17] from queue...
2014-05-13 :01:13,474 - consumer [Process-3] getting value [12] from queue...
2014-05-13 16:01:13,477 - consumer [Process-4] getting value [13] from queue...
2014-05-13 :01:13,478 - consumer [Process-5] getting value [19] from queue..
:01:13,481 - {1: 1, 2: 1, 6: 8, 7: 13, 10: 55, 12: 144, 13: 233, 14 377, 16: 987,
:~/Documents/prog_exper1ments/python/8397 05_1stDrafts JJ

Output from multiprocessing_fibonacci.py

Crawling the Web using
ProcessPoolExecutor

Just as the concurrent . futures module offers ThreadPoolExecutor, which facilitates
the creation and manipulation of multiple threads, processes belong to the class of
ProcessPoolExecutor. The ProcessPoolExecutor class, which also featured in the
concurrent . futures pack, was used to implement our parallel Web crawler. In order
to implement this case study, we have created a Python module named process_

pool executor web crawler.py.

The code initiates with the imports known from the previous examples, such as
requests, the Manager module, and so on. In relation to the definition of the tasks,
and referring to the use of threads, little has changed compared to the example from
the previous chapter, except that now we send data to be manipulated by means of
function arguments; refer to the following signatures:

The group urls_ task function is defined as follows:
def group urls task(urls, result dict, html link regex)
The crawl task function is defined as follows:

def crawl_task(url, html_link regex)

[48]

Chapter 5

Let's now look at a chunk of the code where there are subtle but relevant changes.
Entering the main chunk, we declared an object of the type Manager, which will now
allow the sharing of the queue and not only the dictionary containing the process
result. To define this queue named urls containing the URLs that need to be crawled,
we will use the Manager . Queue object. For the result_dictionary, we will use the
Manager .dict object aiming to use a dictionary managed by proxies.

The following chunk of code illustrates these definitions:

if name == ' main ':
manager = Manager ()
urls = manager.Queue ()
urls.put ('http://www.google.com')
urls.put ('http://br.bing.com/"')
urls.put ('https://duckduckgo.com/ ")
urls.put ('https://github.com/")
urls.put ('http://br.search.yahoo.com/")
result dict = manager.dict()

Then, we defined the regular expression to be used in the crawler stage, and we
obtained the number of processors in the machine that run the program as shown
in the following code

html link regex = \
re.compile('<a\s (?:.*?\g) *?href=[\""] (.*?2) [\'"].*?>")

number of cpus = cpu count ()

In the final chunk, we can notice the consistency in the APIs that are in the
concurrent . futures module. The following chunk is exactly the one used in our
example using ThreadPoolExecutor, as mentioned in the previous chapter. However,
it is enough to change the class to ProcessPoolExecutor by altering the internal
behavior and tackling the GIL issue for CPU-bound processes without breaking the
code. Check the following chunks; both create ProcesspPoolExecutor with workers
with limits equal to the number of processors in the machine. The first executor is for
grouping the URLSs in the dictionary with the standard None value.

The second executor proceeds with the crawling stage.

The following is the chunk of code for executor 1:

with concurrent.futures.ProcessPoolExecutor (
max workers=number_of_ cpus) as group_link processes:
for 1 in range(urls.gsize()):
group_link processes.submit (group_urls_task, urls,
result_dict, html_link regex)

[49]

Using Multiprocessing and ProcessPoolExecutor

The following is the chunk of code for executor 2:

with concurrent.futures.ProcessPoolExecutor (
max workers=number of cpus) as crawler link processes:

future tasks = {crawler link processes.submit (crawl task,
url, html link regex):
url for url in result_dict.keys()}

for future in concurrent.futures.as completed(
future tasks):
result dict [future.result () [0]] = future.result() [1]

1
‘Q Keying from the multithreaded paradigm to multiprocess using

concurrent. futures is somewhat simpler.

We can check the program output process_pool_executor_web_crawler.py as
shown in the following screenshot:

yipman@foshan:~/Documents/prog_experiments/python/8397_05_1stDraft$ /opt/python
[Process-2] putting url [http://www.google.com] in dictionary...

[Process-3] putting url [http://br.bing.com/] in dictionary...

[Process-4] putting url [https://duckduckgo.com/] in dictionary...

[Process-5] putting url [https://github.com/] in dictionary...

[Process-2] putting url [http://br.search.yahoo.com/] in dictionary...
[Process-9] crawling url [http://www.google.com] ...

[Process-6] crawling url [http://br.search.yahoo.com/] ...

[Process-8] crawling url [http://br.bing.com/] ...

[Process-7] crawling url [https://duckduckgo.com/] ...

[Process-9] crawling url [https://github.com/] ...

[https://duckduckgo.com/] with links : [/about...

[http://br.search.yahoo.com/] with links : [https://br.yahoo.com/...
[http://www.google.com] with links : [http://www.google.com.br/imghp?hl=pt-BR&t
[http://br.bing.com/] with links : [/account/web?sh=5&ru=%2f...
[https://github.com/] with links : [#start-of-content...
vipman@foshan:~/Documents/prog experiments/python/8397 05 1stDrafts H

Output from process_pool_executor_web_crawler.py

[50]

Chapter 5

Summary

In this chapter, we observed the general concepts about processes and implemented
case studies using the multiple processes approach to compute the Fibonacci series
terms and the Web crawler in a parallel way.

In the next chapter, we will look at multiple processes using the parallel Python
module, which is not a built-in module within Python. We will learn about the
concept of inter-process communication and how to use pipes to communicate
between processes.

[51]

Utilizing Parallel Python

In the previous chapter, we learned how to use the multiprocessing and
ProcessPoolExecutor modules to solve two case problems. This chapter
will present named pipes and how to use Parallel Python (PP) to perform
parallel tasks with processes.

In this chapter, we will cover the following topics:

* Understanding interprocess communication
* Discovering PP
* Using PP to calculate the Fibonacci series on SMP architecture

* Using PP to make a distributed Web crawler

Understanding interprocess
communication

Interprocess communication (IPC) consists of mechanisms that allow the exchange
of information among processes.

There are several means to implement IPC, and in general, they depend on the
chosen architecture for the runtime environment. In some cases, for example, where
processes run on the same machine, we could use various types of communication,
such as shared memory, message queues, and pipes. When processes are physically
distributed in clusters, for instance, we could use sockets and Remote Procedure
Call (RPC).

Utilizing Parallel Python

In Chapter 5, Using Multiprocessing and ProcessPool Executor, we verified the use

of regular pipes among other things. We also studied the communication among
processes that have a common parent process. But, sometimes it is necessary to
perform communication between unrelated processes (processes with different
parent processes). We might ask ourselves if the communication between unrelated
processes could be done through their addressing space. Nevertheless, a process
never accesses the addressing space from another process. Thus, we must use
mechanisms called named pipes.

Exploring named pipes

Within the POSIX systems, such as Linux, we should keep in mind that everything,
absolutely everything, can be summed up to files. For each task we perform, there is
a file somewhere, and we can also find a £ile descriptor attached to it, which allows
us to manipulate these files.

File descriptors are mechanisms that allow the user programs to access
o files for read/ write operations. Normally, a file is referenced by a
~ unique file descriptor. More information about the file descriptors can
Q be found at http://publib.boulder.ibm.com/infocenter/
pseries/v5r3/index.jsp?topic=/com.ibm.aix.genprogc/
doc/genprogc/fdescript.htm

Named pipes are nothing but mechanisms that allow IPC communication through
the use of file descriptors associated with special files that implement, for instance,
a First-In, First-Out (FIFO) scheme for writing and reading the data. Named pipes
differ from regular pipes by the method with which they manage information.
While the named pipes make use of the file descriptors and special files in a file
system, regular pipes are created in memory.

Using named pipes with Python

The use of named pipes in Python is quite simple, and we will illustrate this by
implementing two programs performing unidirectional communication. The first
program is named write_to_named_pipe.py, and its function is to write a message
in the pipe with 22 bytes, informing a string and PID of the process that generated
it. The second program is called read_from named_pipe.py, and it will perform
the reading of the information and will show the message content, adding its PID.

At the end of the execution, the read from_named_pipe.py process will show
I pid [<The PID of reader process>] received a message => Hello from pid
[the PID of writer process].

[54]

Chapter 6

To illustrate the interdependency between writing and reading the processes in a
named pipe, we will execute the reader and writer in two distinct consoles. But before
checking the result, let's analyze the codes for both programs.

Writing in a named pipe
In Python, named pipes are implemented through the system calls. In the following

code, we will explain the functioning of the write_to_named_pipe.py program line
by line.

We start with the input of the os module, which will provide access to the system
calls we will use the following line of code:

import os

According to the code, we will explain the _ main _ chunk that creates the named
pipe and a special file, FIFO, which stores messages. The first line of the _ main
chunk defines the label we will give to our named pipe, as follows:

named pipe = "my pipe"

Then, we verify that our named pipe already exists. In the case that it does not,
we will create it by means of the system call, mkfifo, as follows:

if not os.path.exists(named pipe) :
os.mkfifo (named pipe)

The mkfifo call creates a special file that implements a FIFO mechanism for the
writing and reading of messages through a named pipe.

Now, we call our write_message function to pass the named_pipe argument
and aHello from pid [%d] message. This function will write the message in
a file managed by the named pipe received as an argument. The definition of
the write message function can be seen as follows:

def write message(input pipe, message) :
fd = os.open(input pipe, os.O WRONLY)

os.write(fd, (message % str(os.getpid())))
os.close (£d)

We can observe that in the first line of the function, we have a call to a system

call, open, which, in the event of its success, returns a file descriptor that allows

us to manage the writing and reading of data in the FIFO file. Notice that we can
control the opening mode of our FIFO file by using flags. As for the write message
function, it is interesting to only write data in it. Refer to the following code:

fd = os.open(input pipe, os.0O WRONLY)

[55]

Utilizing Parallel Python

After the successful opening of the named pipe, we write the message in the channel
informed by the PID of the writer process as follows:

)

os.write(fd, (message % os.getpid()))

At the end, it is important to close the communication channel using the close
call as follows. In this way, the communication and freeing the computer resources
are involved:

os.close (£d)

Reading named pipes

To read our named pipe, we have implemented a Python program called read from
pipe.py, which uses the os module to manipulate the named pipes. The main chunk,
which triggers the process, is simple. We define a label to the named pipe we will use.
In this case, the same named pipe is used in the writing program as follows:

named pipe = "my pipe"

Then, we call the read_message function, which will read the content written by
write to named pipe.py. The definition of the read message function can be seen
as follows:

def read message (input_type) :
fd = os.open(input pipe, os_ RONLY)
message = (
"I pid [%d] received a message => %s"
% (os.getpid(), os.read(fd, 22))
os.close (fd)

return message

The open call needs no introduction. The new thing here is our read call, which
performs the reading of a quantity in bytes. In our case, it is 22 bytes if a file descriptor
is given. After the message is read, it is returned by the function. At the end, the close
call must be executed to close the communication channel.

M The validity of the open file descriptor was verified. It is up to the user
Q to deal with the exceptions related to the use of file descriptors and
named pipes.

[56]

Chapter 6

As a result, we have the following screenshot illustrating the execution of the
write_to_named_pipe and read_from named_pipe programs:

iceman@iceman-ThinkPad-X220: /tmp x iceman@iceman-ThinkPad-X220: ~/Downloads

o \ X ..-ThinkPad-X220: .‘(mp| + | X ...ThinkPad-X220: ftmp ‘

iceman-ThinkPad-X220:/tmp$ python2.7 write_to_named pipe.py iceman@iceman-ThinkPad-X220:/tmp$ python2.7 read from_named_pipe.py
I pid [16018] received a message => Hello from pid [16017]
iceman@iceman-ThinkPad-X220:/tmp$ D iceman@iceman-ThinkPad-X220:/tmp$ I

Result from write_to_named_pipe.py and read_from_named_pipe.py

Discovering PP

The previous section introduced a low-level mechanism to establish communication
among the processes using system calls directly. This was necessary to contextualize
the communication between processes in the Linux and Unix environments. Now,
we will use a Python module, PP, to establish IPC communication not only among
local processes, but also physically distributed throughout a computer network.

The available PP module documentation is not extensive. We can find the documents
and FAQs at http://www.parallelpython.com/component/option, com smf/.
The API provides a wide notion of how this tool should be used; it is simple

and straightforward.

The most important advantage of using PP is the abstraction that this module
provides. Some important features of PP are as follows:

* Automatic detection of number of processors to improve load balance
* Many processors allocated can be changed at runtime
* Load balance at runtime

* Auto-discovery resources throughout the network

The PP module implements the execution of parallel code in two ways. The first
way considers the SMP architecture, where there are multiple processors/cores in
the same machine. The second alternative would be distributing the tasks through
machines in a network, configuring, and thus forming a cluster. In both cases, the
exchange of information among the processes receives a call of abstraction, which
allows us not to worry about details such as pipes and sockets. We simply exchange
the information through arguments and function returns using callbacks. Refer to
the following example.

[57]

Utilizing Parallel Python

There is a class, called Server, present in the API of PP, which we can use to
encapsulate and dispatch tasks among local and remote processes. There are
some important arguments in the initializer (__init_) from the Server class.
The most relevant arguments are as follows:

ncpus: This argument allows us to define the number of worker processes,
which will execute tasks. If a value is not informed, it will automatically
detect how many processors/cores the machine has and create a total of
worker processes based on this to optimize the use of resources.

ppservers: This argument represents a tuple containing names or IP
addresses of machines that we call Parallel Python Execution Servers
(PPES). A PPES consists of a network machine that has the ppserver.
py utility running and waiting for tasks to be executed. There are other
arguments that can be visualized at http://www.parallelpython.com/
content/view/15/30/.

An instance of the server class has, among several methods, the submit
method that allows us to dispatch tasks to their destinations. The submit
function has the following signature:

submit (self, func, args=(), depfuncs=(), modules=(),
callback=None, callbackargs=(), group='default',
globals=None)

Among the main arguments of the submit method, we could highlight the
following parameters:

func: This function is executed by the local processes or remote servers.
args: This function executes the necessary arguments for the func function.

modules: This function executes the modules that the remote code or process
needs to import for the execution of func. For example, if the dispatched
function uses the time module, in the tuple modules, a string with this
module name has to be passed as modules=('time',).

callback: This is a function we will make use of later on. It is very
interesting when we need to manipulate results of the process from the
function dispatched in the func argument. The return of the dispatched
function is sent as an argument to callback.

Other arguments will be featured as we analyze the code for the next sections.

[58]

Chapter 6

Using PP to calculate the Fibonacci
series term on SMP architecture

Time to get into action! Let's solve our case study involving the Fibonacci series for
multiple inputs using PP in the SMP architecture. I am using a notebook armed with
a two-core processor and four threads.

We will import only two modules for this implementation, os and pp. The os module
will be used only to obtain a PID of the processes in execution. We will have a list
called input_1list with the values to be calculated and a dictionary to group the
results, which we will call result_dict. Then, we go to the chunk of code as follows:

import os, pp
input_list = [4, 3, 8, 6, 10]
result dict = {}

Then, we define a function called fibo_task, which will be executed by parallel
processes. It will be our func argument passed by the submit method of the Server
class. The function does not feature major changes in relation to previous chapters,
except that the return is now done by using a tuple to encapsulate the value received
in the argument and a message containing a PID and a calculated Fibonacci term.
Take a look at the following complete function:

def fibo_ task(value):
a, b=20,1
for item in range (value) :
a, b=D>b, a+b
message = "the fibonacci calculated by pid %d was %d" \
% (os.getpid(), a)
return (value, message)

The next step is to define our callback function, which we will call aggregate
results. The callback function will be called as soon as the £ibo_task function
returns the result of its execution. Its implementation is quite simple and only shows
a status message, generating afterwards an input in result_dict, containing as

a key the value passed to the fibo_dict function, and as a result, the message
returned by the process that calculated the Fibonacci term. The following code is the
complete implementation of the aggregate_results function:

def aggregate results(result) :

)

print "Computing results with PID [%d]" % os.getpid()
result dict[result[0]] = result[1l]

[59]

Utilizing Parallel Python

Now, we have two functions to be defined. We have to create an instance of the
Server class to dispatch the tasks. The following line of code creates an instance
of server:

job _server = pp.Server|()

In the preceding example, we used standard values for arguments. In the next
section, we will make use of some available arguments.

Now that we have an instance of the Server class, let's iterate each value of our
input_list, dispatching the fibo_task function through the submit call, passing as
arguments to the input value in the args tuple the module that needs to be imported
so that the function is executed correctly and callback registers aggregate results.
Refer to the following chunk of code:

for item in input list:
job_server.submit (fibo task, (item,), modules=('os',),
callback=aggregate results)

Finally, we have to wait till the end of all the dispatched tasks. Therefore, we can use
the wait method of the server class as follows:

job_server.wait ()

R There is another way to obtain the return of an executed function
~ beyond using a callback function. The submit method returns an
Q object type, pp. _Task, which contains the result of the execution
when the execution finishes.

In the end, we will iterate the results of the printing entries through our dictionary
as follows:

)

print "Main process PID [%d]" % os.getpid()
for key, value in result dict.items():

)

print "For input %d, %s" % (key, value)

[60]

Chapter 6

The following screenshot illustrates the output of the program:

@2 iceman@iceman-ThinkPad-X220: ~/Documentos/8307_06_pp_codes |

iceman@iceman-ThinkPad-X220:~/Documentos/8307_06_pp_codes$ python fibonacci_pp_smp.py
Computing results with PID [23467]
Computing results with PID [23467]
Computing results with PID [23467]
Computing results with PID [23467]
Computing results with PID [23467]

Main process PID [23467]

For input 8, the fibonacci calculated by pid 23470 was 21
For input 1@, the fibonacci calculated by pid 23468 was 55
For input 3, the fibonacci calculated by pid 23469 was 2

For input 4, the fibonacci calculated by pid 23468 was 3

For input 6, the fibonacci calculated by pid 23471 was 8
iceman@iceman-ThinkPad-X228:~/Documentos /8387_06_pp_codess I

Result from fibonacci_pp_smp.py

Using PP to make a distributed Web
crawler

Now that we have executed the codes in parallel using PP to dispatch the local
processes, it is time to verify that the code is executed in a distributed way.
For this, we will use the following three different machines:

* Iceman-Thinkad-X220: Ubuntu 13.10
e Iceman-Q470C-500P4C: Ubuntu 12.04 LTS
* Asgard-desktop: Elementary OS

The idea is to dispatch the executions to the three machines listed using PP. For this,
we will make use of a case study of the Web crawler. In the code of web_crawler_
pp_cluster.py, for each URL informed in the input_1list, we will dispatch a

local or remote process for execution, and at the end of each execution, a callback
function will group the URLs and their first three links found.

Let us analyze the code step by step to understand how to get to a solution to this
problem. First, we will import the necessary modules and define the data structures
to be used. As in the previous section, we will create an input_1list and a dictionary
that will contain the final results of processing. Refer to the following code:

import os, re, requests, pp

url list = ['http://www.google.com/', 'http://gizmodo.uol.com.br/"',
'https://github.com/', 'http://br.search.yahoo.com/',
'http://www.python.org/', 'http://www.python.org/psft/"']

result dict = {}

[61]

Utilizing Parallel Python

Now, our aggregate_results function, which will be our callback again, changes
little in relation to the example presented for the Fibonacci term. We only changed
the format of the message to be inserted in the dictionary and also the fact that the
return to this callback will be a tuple containing the PID of the process that executed
it, the hostname where it was executed, and the first three links found. Refer to the
aggregate results function as follows:

def aggregate results(result):

)

print "Computing results in main process PID [%d]" %

os.getpid()

message = "PID %d in hostname [%$s] the following links were "\
"found: %s" % (result[2], result[3], result[l])

result dict[result[0]] = message

The next step is to define the crawl_task function, which will be dispatched by an
instance of the server class. The function is similar to the one presented in previous
chapters, aiming to gather existing links in the page shown by the URL received as an
argument. The only difference is that the return is a tuple. Refer to the following code:

def crawl task(url):
html link regex = \
re.compile('<a\s (?:.*?\g) *?href=[\"'"] (.*?) [\'"].*?>")

request data = requests.get (url)
links = html_link regex.findall (request_data.text) [:3]
return (url, links, os.getpid(), os.uname () [1])

After the main and callback functions are written, we must create an instance of the
Server class to distribute the executions in the machines through the network. For
this, we will work on some arguments in the initializer of the server class. The first
argument receives a tuple with the IP addresses or hostnames of the machines that
will execute tasks. In our case, beyond the local machine, we will inform the

two others presented previously. Let us define the tuple as follows:

ppservers = ("192.168.25.21", "192.168.25.9")

M In case you do not want to inform and wish to autodiscover
Q the machines available to receive tasks, use the * string in the
ppservers tuple.

Define the tuple identifying the servers. We will create an instance of server
as follows:

job_dispatcher = pp.Server (ncpus=1, ppservers=ppservers,
socket timeout=60000)

[62]

Chapter 6

It is noticeable that there are some changes in relation to the previous example.

First, we have passed the value 1 to the ncpus argument. This will cause PP to create
a single local process, and if necessary, dispatch other tasks to remote machines. The
second argument defined was the tuple of the servers we created in the previous
step. Finally, we defined a timeout for the socket(s) used in the communication with
a pretty high value only for the purposes of testing. The goal is to avoid the closing
of the channel by timeout.

After an instance of the server class is created, it is time to dispatch our functions
for execution. Let us iterate in each URL and pass them to the submit method of the
Server instance as follows:

for url in url list:
job_dispatcher.submit (crawl task, (url,),
modules=('os', 're', 'requests',),
callback=aggregate results)

The significant change in relation to the previous example, where a Fibonacci series
was calculated, is the sending of the necessary modules for execution.

M You must be thinking why the PP module has not been passed in
Q the tuple module. It is simple; the PP execution environment already
makes this import for us. After all, it needs to do this in remote nodes.

To finalize our parallel and distributed Web crawlers, we have to wait till the end of
the executions to show their outputs. Notice that by the end, there is a new element
in the print_stats method of the Server class, which shows some interesting
statistics of the executions as follows:

job dispatcher.wait ()

print "\nMain process PID [%d]\n" % os.getpid()
for key, value in result dict.items():
print "** For url %s, %s\n" % (key, value)
job_dispatcher.print stats()

Before executing the program, we need to initialize the ppserver.py utility in

the remote machines; ppserver.py -a -disthe command used here for this,
where -a is the option for autodiscovery, allowing the server to be found by clients
who do not specify the IP address. The other argument is -d, which shows the
information on how the activities of the server are performing by means of a log.

[63]

Utilizing Parallel Python

Let us visualize the output in the following order:

* First, the following screenshot shows the stages in the main node, which
creates and distributes tasks:

iceman@iceman-ThinkPad-X220:-/Documentos /8307 06 pp codes$ python2.7 web crawler pp cluster.py

Computing results in main pro s PID [170827]

Computing results in main p s PID [17027]

Computing results in main s PID [17027]

Computing results in main proc PID [17027]

** For url htt gizmodo.uol.com.br/, PID 23639 in hostname [iceman-Q470C-580P4C] the following links were
found: [u'http:/ vela.uol.com.br/", u'http://www.kotaku.com.br/', u'http://extratime.uol.com.br/'

** For url http://br.search. yahuo com/, PID 23640 in hostname [iceman-Q470C-500P4C] the following links were
found: [u'http://br.yahoo. /', u'http://br.images.search.yahoo.com/search/images?&fr=brsfp2', u'http://br
.video,search.yahoo.com/video?&fr=sfp']

** For url http://www.google.com/, PID 1763@ in hostname [iceman-ThinkPad-X220] the following links were fou
nd: [u'http://www.google.com.br/imghp?hl=pt-BR&tab=wi', u'http://maps.google.com.br/maps?hl=pt-BR&tab=wl', u

‘https://play.google.com/thl=pt-BR&tab=w8"]

** For url https "fgllhub com/, PID 19543 in hostname [asgard-desktop] the following links were found: [u'ht
tps://github.com/', u'/join', u'/login']

Job execution statistics:
job 'ounf | % of all jobs | job time sum | time er]ﬁh | er
1.8652 | .932602 92. .25.21:60000
8.6687 | ;]
1.6741 | 67412 .168. .9:68808
Time elapsed since server creation 2.13039803505
0 active tasks, 1 cores

None
iceman@iceman-ThinkPad-X228:~/Documentos/8387 06 pp codess |}

Creating and distributing tasks

* Then, the ppservers.py server is initialized and the processing tasks are
seen in the following screenshots (Output from ppserver.py at iceman-Q470C-
500P4C and Output from ppserver.py at asgard-desktop).

* Inthe preceding screenshot, it is noticeable that the statistics bring about
interesting information, such as the quantity of tasks that have been distributed
among different destinations, the timing of each task, and the total in each
destination. Another relevant point in the preceding screenshot is the fact that
the callback functions are only executed in the main process, the ones in the
dispatching tasks. So, it is important to keep in mind that you should not make
the callback tasks excessively heavy, as they may consume too many resources
from the main node; it obviously depends on the specifics of each case.

* The following screenshot shows the output in the DEBUG mode of the
ppserver.py server executing in host iceman-Q470C-500P4C:

[64]

Chapter 6

iceman@iceman-Q470C-500P4C:~$ ppserver.py -a -d

2014-02-11 :49:54,487 - pp - INFO - Creating server instance (pp-1.6.4)

2014-02-11 :49:54,487 pp INFO - Running on Python 2.7.3 linux2

2014-02-11 :49:54,713 INFO - pp local server started with 4 workers

2014-02-11 :49:54,713 DEBUG - Strarting network server interface=0.0.0.0 port=60000
2014-02-11 :49:54,714 DEBUG - Listening (0.0.0.0, 60000)

2014-02-11 :49:54,715 DEBUG - Server sends broadcast to (255.255.255.255, 60000)
2014-02-11 :49:54,715 DEBUG - Discovered host (192.168.25.21, 60000) message=S
2014-02-11 :49:56,426 DEBUG Discovered host (192.168.25.9, 60000) message=S
2014-02-11 :50:00,430 DEBUG Control message received: STAT

2014-02-11 :50:00,575 DEBUG Control message received: EXEC

2014-02-11 :50:00,625 DEBUG Control message received: EXEC

2014-02-11 :50:00,691 DEBUG - Control message received: EXEC

2014-02-11 :50:00,775 DEBUG - Control message received: EXEC

2014-02-11 :50:00,777 DEBUG Task @ inserted

2014-02-11 :50:00,777 DEBUG Task 1 inserted

2014-02-11 :50:00,778 INFO - Task O started

2014-02-11 :50:00,779 INFO - Task 1 started

2014-02-11 :50:00,808 DEBUG - Control message received:

2014-02-11 :50:00,878 DEBUG - Control message received:

2014-02-11 :50:00,942 DEBUG - Control message received:

2014-02-11 :50:01,013 DEBUG - Control message received:

2014-02-11 :50:01,514 DEBUG - Task © ended

2014-02-11 :50:01,911 DEBUG - Task 1 ended

2014-02-11 :50:04,723 DEBUG - Server sends broadcast to (255.255.255.255, 60000)
2014-02-11 :50:04,723 DEBUG - Discovered host (192.168.25.21, 60000) message=S
2014-02-11 :50:06,506 - pp DEBUG - Discovered host (192.168.25.9, 60000) message=S
~C2014-02-11 10:50:12,731 - pp - DEBUG - Closing server socket
iceman@iceman-Q470C-500P4C:~$ |]

Output from ppserver.py at iceman-Q470C-500P4C

* The following screenshot shows the output in the DEBUG mode of the
ppserver.py server executing in the asgard-desktop host:

2014-02-11 10:50:02,701 - pp - DEBUG - Closing client socket

DEBUG:pp:Closing client socket

2014-02-11 10:50:02,702 - pp - DEBUG - Cleosing client socket

DEBUG:pp:Closing client socket

2014-02-11 10:50:02,702 - pp - DEBUG Closing client socket

DEBUG:pp:Closing client socket

2014-02-11 10:50:02,702 - pp - DEBUG - Closing client socket

DEBUG:pp:Closing client socket

2014-02-11 10:50:06,527 - pp - DEBUG - Server sends broadcast to (255.255.255.255, 60000)
DEBUG:pp:Server sends broadcast to (255.255.255.255, 60000)

2014-02-11 10:50:06,527 - pp - DEBUG - Discovered host (192.168.25.9, 60000) message=S
DEBUG: pp:Discovered host (192.168.25.9, 60000) message=S

2014-02-11 10:50:16,537 - pp - DEBUG - Server sends broadcast to (255.255.255.255, 60000)
DEBUG:pp:Server sends broadcast to (255.255.255.255, 60000)

2014-02-11 10:50:16,538 - pp - DEBUG - Discovered host (192.168.25.9, 60000) message=S
DEBUG: pp:Discovered host (192.168.25.9, 60000) message=S

~C2014-02-11 10:50:19,609 - pp - DEBUG - Closing server socket

DEBUG:pp:Closing server socket

iceman@asgard-desktop:~$ l

Output from ppserver.py at asgard-desktop

[65]

Utilizing Parallel Python

Summary

We studied the use of a low-level resource to establish communication among
processes with no relation between them. Further, we have taken a look at using
the PP module, which helps us abstract the communication among the local
processes, including distributed processes. PP is a convenient tool for building
simple, small, parallel, and distributed Python applications.

In the next chapter, we will learn how to use a module called Celery for the
execution of tasks in a parallel and distributed way.

[66]

Distributing Tasks with Celery

In the previous chapter, we learned about using parallel Python. We saw the
implementation of case studies, including Fibonacci series terms and Web crawler
using the parallel Python module. We learned how to establish communication
among processes using pipes and how to distribute processes among different
machines in a network. In this chapter, we will study how to distribute tasks among
different machines in a network by using the Celery framework.

In this chapter, we will cover the following topics:

* Understanding Celery

* Understanding Celery's architecture

* Setting up the environment

* Dispatching a simple task

* Using Celery to obtain a Fibonacci series term

* Using Celery to make a distributed Web crawler

Understanding Celery

Celery is a framework that offers mechanisms to lessen difficulties while creating
distributed systems. The Celery framework works with the concept of distribution
of work units (tasks) by exchanging messages among the machines that are
interconnected as a network, or local workers. A task is the key concept in Celery;
any sort of job we must distribute has to be encapsulated in a task beforehand.

Distributing Tasks with Celery

Why use Celery?

We could justify the use of Celery by listing some of its positive points:

* It distributes tasks in a transparent way among workers that are spread

over the Internet, or local workers

* It changes, in a simple way, the concurrence of workers through setup

(processes, threads, Gevent, Eventlet)

* It supports synchronous, asynchronous, periodic, and scheduled tasks

e [t re-executes tasks in case of errors

result when it's done.

Understanding Celery's architecture

Celery has an architecture based on pluggable components and a mechanism of
message exchange that uses a protocol according to a selected message transport

(broker). This is illustrated in the following diagram:

It is common for some developers to claim that synchronous tasks
are the same as real-time tasks. This is an unnecessary confusion
M as the concepts are totally different. For a real-time task, we should
Q understand that the task has a window of time in which it has to be
executed. In case it does not happen, then this task will be aborted or
paused for further execution, while a synchronous task returns the

(tasks)

Task queue X

Task queue Y

messages
(tasks)

Backend

Read task results

results

) Getting
Sending tasks to
messages | Message transport (broker) | perform

Task queue N
. Sending \

Getting
tasks to
perform

Workers B

Store task
results

The Celery architecture

Now, let us go through each item within Celery's architecture in detail.

[68]

Chapter 7

Working with tasks

The client components, as presented in the previous diagram, have the function of
creating and dispatching tasks to the brokers.

We will now analyze a code example that demonstrates the definition of a task
by using the @app . task decorator, which is accessible through an instance of
Celery application that, for now, will be called app. The following code example
demonstrates a simple Hello World app:

@app . task
def hello world() :
return "Hello I'm a celery task"

Al

~Q Any callable can be a task.

As we mentioned earlier, there are several types of tasks: synchronous, asynchronous,
periodic, and scheduled. When we perform a task call, it returns an instance of type
AsyncResult. The AsyncResult object is an object that allows the task status to be
checked, its ending, and obviously, its return when it exists. However, to make use

of this mechanism, another component, the result backend, has to be active. This will
be explained further in this chapter. To dispatch a task, we should make use of some
of the following methods of the task:

* delay(arg, kwarg=value): Thisis a shortcut to call the apply async
method.

* apply async((arg,), {'kwarg': value}): This allows the setting up
of a series of interesting parameters for the execution of the task. Some of
them are as follows:

° countdown: This represents the number of seconds available in

the future so that the task execution is started. The default task is
executed immediately.

expires: This represents the period of time or date after which
a certain task will no longer be executed.

retry: In the case of a failure in the connection or sending of
a task, this parameter has to be resent.

qgueue: This is a line to which the task has to be referred.

[69]

Distributing Tasks with Celery

° serializer: This represents a data format for the serialization of
tasks in disk, and some examples include json, yaml, and others.

° 1link: This links one or more tasks to be executed in case the sent task
is executed successfully.

° link_error: This links one or more tasks to be executed in the case
of a failure in the execution of the task.

* apply((arg,), {'kwarg': value}): This executes a task in the local
process in a synchronous way, thereby blocking up to the point a result
is ready.

Celery also provides mechanisms to accompany the status of a task,
M which is quite useful to track and map the real status of processing.
Q More information about the task status built-in is available at
http://celery.readthedocs.org/en/latest/reference/
celery.states.html.

Discovering message transport (broker)

A broker is definitely a key component in Celery. Through it, we get to send and
receive messages and communicate with workers. Celery supports a large number
of brokers. However, to some of these, not all Celery mechanisms are implemented.
The most complete in terms of functionality are RabbitMQ and Redis. In this book,
we will use Redis as a broker as well as result backend. A broker has the function

of providing a means of communication between client applications that send tasks
and workers that will execute them. This is done by using task queues. We can have
several network machines with brokers waiting to receive messages to be consumed
by workers.

Understanding workers

Workers are responsible for executing the tasks they have received. Celery displays
a series of mechanisms so that we can find the best way to control how workers will
behave. We can define the mechanisms as follows:

* Concurrency mode: This is the mode with which workers will perform,
for instance, processes, threads, Eventlet, and Gevent

* Remote control: Using this mechanism, we can send messages directly to
a specific worker or a list of them through a high priority queue aiming to
alter their behavior, including runtime

[70]

Chapter 7

* Revoking tasks: Using this mechanism, we can instruct one or more workers
to ignore the execution of one or more tasks

Many more features can be set up and even altered in runtime if necessary. For
instance, the number of tasks a worker executes per period of time, from which
queue the workers will consume the most time, and and so on. More information
about workers is available at http://docs.celeryproject.org/en/latest/
userguide/workers.html#remote-control.

Understanding result backends

The result backend component has the role of storing the status and result of the
task to return to the client application. From the result backend supported by Celery,
we can highlight RabbitMQ), Redis, MongoDB, Memcached, among others. Each result
backend listed previously has strong and weak points. Refer to http://docs.
celeryproject.org/en/latest/userguide/tasks.html#task-result-backends
for further information.

Now, we have a general idea of the Celery architecture and its components. So,
let us set up a developing environment that will be used to implement our case studies.

Setting up the environment

In this section, we will set up two machines in Linux. The first one, hostname
foshan, will perform the client role, where app Celery will dispatch the tasks to

be executed. The other machine, hostname Phoenix, will perform the role of a broker,
result backend, and the queues consumed by workers.

Setting up the client machine

Let us start the setup of the client machine. In this machine, we will set up a virtual
environment with Python 3.3, using the tool pyvenv. The goal of pyvenv is to not
pollute Python present in the operating system with additional modules, but to
separate the developing environments necessary for each project. We will execute
the following command to create our virtual environment:

$pyvenv celery env

[71]

Distributing Tasks with Celery

The preceding line creates a directory called celery env in the current path,
which contains all the structures necessary to isolate the developing environment
in Python. The following screenshot illustrates the structure created in the
celery_env directory:

shan: ~/documents/parallel_programming_with_python/celery env

:~/documents/parallel programming with python/celery env$ ls

incl 1 pyvenv fg
yipman@foshan:~/documents/parallel programming with python/celery env$ |:|

Structure of a virtual Python environment

After the creation of this virtual environment, we can start our work and install the
packages to be used. However, first of all, we need to activate it. For this, we will
execute the following command from the root of celery env:

$source bin/activate

A change in the prompt of the command, such as celery_env on the left of the
prompt, which will indicate that they are now in an activated environment. All you
do in terms of installing packages and Python will result in changes in this directory
but not in the system.

M Using a - -system-site-packages flag, we can create virtual
Q environments that have access to site-packages present in Python
that is installed in the system. However, this is not recommended.

Now, we have a virtual environment and starting off from the point from where
you already installed setuptools or pip, we will install the necessary packages for
our client. Let's install the Celery framework with the following command:

$pip install celery

The following screenshot shows the installed framework v3.1.9, which will be used
in this book:

The Celery framework

[72]

Chapter 7

Now, we need to install the support to Redis in our Celery so that our Client
transmits messages through our broker. We use the following command for
this purpose:

$pip install celeryl[redis]

We have now got the infrastructure of our client completed. Before coding,
we must set up our server where the brokers and workers will remain.

Setting up the server machine

To set up the server machine, we will start by installing Redis, which will be our
broker and result backend. We will do this using the following command:

$sudo apt-get install redis-server
To start Redis, just execute the following command:
$redis-server

If it was successful, an output similar to the following screenshot will be exhibited:

iceman@phoenix:~/8397_07_brokerS$ redis-server

[5834] 16 Mar 21:55:39 # Warning: no config file specified, using the default confiq
o/redis.conf’

[5834] 16 Mar 21:55:39 * Server started, Redis version 2.2.12

[5834] 16 Mar 21:55:39 # WARNING overcommit_memory is set to @! Background save may

ercommit_memory = 1' to fetc/sysctl.conf and then reboot or run the command 'sysctl
[5834] 16 Mar 21:55:39 * DB loaded from disk: @ seconds

[5834] 16 Mar 21: 39 * The server is now ready to accept connections on port 6379
[5834] 16 Mar 21:55:39 - 0 clients connected (8 slaves), 798592 bytes in use

Redis server running

Dispatching a simple task

At this point, we have a ready environment. Let's test it by sending a task that will
calculate the square root of a value and return a result.

First, we must define our task module tasks.py inside the server. Let's check
the description of the tasks.py module. In the following chunk of code, we have
imports necessary for our function that will calculate the square root:

from math import sqgrt
from celery import Celery

[73]

Distributing Tasks with Celery

Now, let's create the following instance of Celery, which will represent our
client application:

app = Celery('tasks', broker='redis://192.168.25.21:6379/0")

We have created an instance of Celery that will control some aspects of our application.
Notice that in its initializer, we informed the name of the module in which definitions
of the task are present and we stated the address of the broker as a second argument.

Then, we have to set up our result backend, which will also be in Redis, as follows:

app.config.CELERY RESULT BACKEND = 'redis://192.168.25.21:6379/0"'

With the basics ready, let's define our task with the @app . task decorator:

@app . task
def square root (value) :
return sqrt (value)

At this point, since we have our tasks.py module defined, we need to initiate

our workers inside the server, where Redis and Celery (with support to Redis) are
installed. For this, we have created a separated directory to keep it organized; we will
call it 8397_07_broker. We will copy our tasks.py module inside this directory and
run the following command from it:

$celery -A tasks worker --loglevel=INFO

The preceding command initiates a Celery server, and by means of the - parameter

informs where the instance of application Celery is defined, and the implementation

of the tasks. The following screenshot shows part of the Celery application initialized
beside the server:

(8397_07_broker) iceman@phoenix:~/8397_07_brokerS celery -A tasks worker --loglevel=info

celery@phoenix v3.1.9 (Cipater)

- Linux-3.8.0-37-generic-x86_64-with-debian-wheezy-sid

-- [config]
.> app: tasks:0x7f318a8c2d50
> transport: redis:/f/192.168.25.21:6379/0
.> results: redis://192.168.25.21:6379/0
> concurrency: 4 (prefork)

kR EREE

[queues]

- .> celery exchange=celery(direct) key=celery

. tasks.sqrt_task

[2014-83-17 16:06:34,867: INFO/MainProcess] Connected to redis:/f192.168.25.21:6379/0
[2014-03-17 16:06:34,880: INFO/MainProcess] mingle: searching for neighbors
[2014-03-17 16:06:35,894: INFO/MainProcess] mingle: all alone

[2014-83-17 16:06:35,914: WARNING/MainProcess] celery@phoenix ready.

Celery server side started

[74]

Chapter 7

Now, we have a Celery server waiting to receive tasks and send them to workers.
The next step is to create an application on the client side to call tasks.

1
‘\Q It is important not to skip this stage as the following sections will make

use of the structure created previously.

In the machine that represents the client, we have our virtual environment
celery_env already set up, remember? So, now it is simpler to create a step-by-step
module task_dispatcher.py, as follows:

1. We import the 1ogging module to exhibit information referring to the
execution of the program and the celery class inside the celery module,
as follows:
import logging
from celery import Celery

2. The next step is to create an instance of the celery class informing the
module containing the tasks and then the broker, as done in the server side.
This is done with the following code:

#logger configuration...

app = Celery('tasks',
broker='redis://192.168.25.21:6379/0")

app.conf.CELERY RESULT BACKEND =
'redis://192.168.25.21:6397/0"

A result backend was supposed to be set up directly on the initialization
of a Celery instance; however, the setup was ignored by the framework

~ during the experiment.

Q There are more elegant ways of setting up a Celery app — by creating
a Python module and inserting it in the command line. We will do it
directly in the code to keep the simplicity of the examples.

As we are going to reuse this module to implement calls to tasks in future
sections of this chapter, let us create a function to encapsulate the sending

of the sqrt_task (value) task. We will create the manage sqgrt task (value)
function as follows:

def manage sqgrt task(value) :
result = app.send task('tasks.sqgrt task', args=(value,))
logging.info (result.get())

[75]

Distributing Tasks with Celery

We can notice in the preceding chunk that the client application does not need

to recognize the implementation of the side server. By means of send_task that

is inside the celery class, we can invoke tasks only by informing a string in the
<module. task> format and passing arguments in tuple format. Finally, we exhibit
the result in the log.

Inthe main block, we executed the call to the manage sqrt task (value)
function by passing the input value as 4:

if name == ' main ':
manage sqgrt_ task(4)

The following screenshot shows the result of the execution of file task_
dispatcher.py:

INFO/MainProcess] Received task: tasks.sqrt task[54b604c6-93fb-49f2-be55-0T0891a04252]

INFO/MainProcess] Task tasks.sqrt_task[54b604c6-93fb-49f2-be55-0f0891a04252] succeeded in 0.

sqrt_task in the Celery server

In client side, the result is obtained through a call to the get () method, which is
featured in the AsyncResult instance returned by send_task (). We can check the
result in the following screenshot:

(celery_env) yipman@foshan:~!Ducﬁménts/para1leLprogrammingﬁwith;python/celeryﬁenv$ python task_dispatcher.py

2014-03-20 13:17:22,587 - 2.0

sqrt_task result in client side

Using Celery to obtain a Fibonacci
series term

Let us again go and distribute our multiple inputs in order to calculate the nth
Fibonacci term, each of them in a distributed way. The function that calculates
Fibonacci will change a little in relation to the previous chapters. The changes
are small; now we have the @eapp . task decorator and a small change in the
return message.

In the tasks.py module (created previously), which is in the server machine
where also the broker is, we will stop the execution of Celery (Ctrl + C) and add
the fibo_task task. This is done by using the following code:

@app.task
def fibo task(value) :
a, b =20,1

for item in range (value) :

[76]

Chapter 7

a, b=Db, a+ b
message = "The Fibonacci calculated with task id %s" \

" was %d" % (fibo_ task.request.id, a)
Return (value, message)

A point to observe is that we obtain the ID of the task with the <task.request.id>
call. The request object is an object in the task class, which provides a context to
the execution of the task. The context gives us information, for instance, the ID of
the task.

After adding the new task to the tasks.py module, let us initiate Celery again and
the result is shown in the following screenshot:

[config]
app: tasks:0x7f68de79ff10
transport: redis://192.168.25.21:6379/0
results: redis://192.168.25.21:6379/0
concurrency: 4 (prefork)
_ *kkkkik

dkkdkdk [queues]

.> celery exchange=celery(direct) key=celery

. tasks.fibo_task
. tasks.sqrt_task

fibo_task loaded

Now that we have our fibo_task task loaded in the Celery server, we will implement
the call to this function in the client side.

In the task_dispatcher.py module featured in the client machine, we will declare
our input_list in order to test it, as follows:

input list = [4, 3, 8, 6, 10]

As we did in the sqrt_task task created in the previous section, we will create a
method to organize our calls without polluting the _ main__ block. We will name
this function manage_fibo_task. Check out the following implementation:

def manage fibo task(value list):
async_result dict = {x: app.send task('tasks.fibo task',
args=(x,)) for x in value list}

for key, value in async result dict.items():
logger.info("value [%d] -> %s" % (key, value.get () [1]))

[77]

Distributing Tasks with Celery

In the manage_fibo_task function, we created a dictionary called async_result_
dict, populating the same pair of key values. key is the item passed as an argument
to obtain the umpteenth term of Fibonacci and value is the instance of AsyncResult
returned from the call to the send task method. With this method, we can monitor
the status and result of a task.

Finally, we iterated the dictionary exhibiting the input values and their respective
umpteenth obtained terms of Fibonacci. The get () function of the AsyncResult
class allows us to obtain the processing results.

It is possible to notice that the get () function might not return an immediate result
as the processing will still be taking place. A call to the get () method in the client
side can block the processing that comes after the call. It is a good idea to unite the
call to the ready () method, permitting to check whether a result is ready to

be obtained.

So, our result exhibition loop could be something similar to the following code:

for key, value in async result dict.items():
if value.ready() :
logger.info("Value [%d] -> %s" % (key,
value.get () [1]))
else:

°

logger.info("Task [%s] is not ready" % value.task id)

Depending on the type of task to be executed, there may be a considerable delay in the
result. Therefore, by calling get () without considering the return status, we can block the
code running at the point where the get () function was called. To tackle this, we should
define an argument called t imeout in the get (timeout=x) method. So, by minimizing
this blocking, we can prevent tasks from having problems in returning results, which would
impact the running of the execution for an indefinite time.

Finally, we added a call to the manage fibo_task function, passing as argument to
our input_1list. The code is as follows:

if name == ' main ':

#manage sqrt task(4)
manage fibo task(input list)

[78]

Chapter 7

When we execute the code in task_dispatcher. py, the following output server can
be visualized in the side:

The server side for fibo_task

In the client side, we have the following output:

(celery_env) yipman@foshan:~/Documents/parallel_programming_with_python/celery env$ python task_dispatcher.py
2014-03-20 16:31:08,390 - Value [8] -> The fibonacci calculated by worker 6a47e7b2-cdff-4ba0-981d-29bf71bf4096 was 21
2014-03-20 16:31:08,393 - Value [10] -> The fibonacci calculated by worker cdcaff99-677b-42d5-b591-ec6a0dce24ca was 55
Value [3] -> The fibonacci calculated by worker 71d47e08-71e8-4559-a209-f8c17c06ecaa was 2

2014-03-20 16:31:08,397 -
2014-03-20 16:31:08,401 - Value [4] -> The fibonacci calculated by worker 6f73ca3e-76f1-4a25-b6b0-102bb6d724ea was 3

2014-03-20 16:31:08,404 Value [6] -> The fibonacci calculated by worker c1f11463-18b0-45d9-b0eb-ef47868702ed was 8

The client side for fibo_task

Defining queues by task types

The task that is responsible for calculating Fibonacci was implemented and is running.
We can see that all tasks are being sent to a default queue of Celery. However, there
are ways to route a task to different queues; let us refactor our architecture in server
side and implement what is known as routing task from the client side. We will specify
queues for each type of task.

At the moment we start the Celery server in the server side, we will establish

three different queues. These will now be seen and consumed by the workers.

The queues are fibo_queue for Fibonacci tasks, sqrt_queue for square root tasks,
and webcrawler_queue for the Web crawler ones. However, what is the advantage
of having task fluxes separated? Let's observe them as follows:

* It groups tasks of the same type to make their monitoring easier

* It defines workers dedicated to consume a specific queue, thereby
enhancing performance

* It distributes queues with heavier tasks to brokers allocated in machines
with better performance

[79]

Distributing Tasks with Celery

. The preceding points are not going to be explained in this book,
~ but we can make a load balance by initializing the Celery servers
Q and even distributing brokers with dedicated queues in a network.
I recommend that you try this cluster style using Celery.

To set up the queues in the server, we only need to initiate Celery with the
following command:

$celery -A tasks -Q sqgrt_queue, fibo queue,webcrawler queue worker

--loglevel=info

The following screenshot shows the active files in server:

[queues]
.> fibo_queue exchange=fibo_queue(direct) key=fibo_queue

.> sqrt_queue exchange=sqrt_queue(direct) key=sqrt_queue
.> webcrawler_queue exchange=webcrawler_queue(direct) key=webcrawler_queue

Different queues in the Celery server

Before moving to the next example, let us route the sending of the existing tasks
to their queues. In the server side, in the task_dispatcher.py module, we will
alter the send_task calls so that the next time the tasks are dispatched, they will
be directed to distinct queues. We will now alter the sqrt_task call as follows:

app.send_task('tasks.sqrt_task',6 args=(value,),
queue='sgrt_gqueue', routing key='sqgrt_ queue')

Then, we will alter the fibo_task call as follows:

app.send task('tasks.fibo task', args=(x,), queue='fibo queue',
routing key='fibo queue')

If you have an interest in monitoring queues, checking the quantity of
tasks addressed to them, and other things, the Celery documentation
provides a great deal of information at http://celery.

*Q readthedocs.org/en/latest/userguide/monitoring.html.

In any case, while using Redis, its own utility redis-c1i can be a tool.

As queues and tasks, workers can also be monitored and adjusted.
More information is available at http://celery.readthedocs.
org/en/latest/userguide/monitoring.html#workers.

[80]

Chapter 7

Using Celery to make a distributed
Web crawler

We will now move on to adapting our Web crawler to Celery. We already have
webcrawler gqueue, which is responsible for encapsulating web-type hcrawler
tasks. However, in the server side, we will create our crawl task task inside the
tasks.py module.

First, we will add our imports to the re and requests modules, which are the
modules for regular expression and the HTTP library respectively. The code is
as follows:

import re
import requests

Then, we will define our regular expression, which we studied in the previous
chapters, as follows:

hTML_link regex = re.compile (
'<a\s (?:.*?\s) *?href=[\""] (.*?) [\'"].*?>")

Now, we will place our crawl_task function in the Web crawler, add the
@app . task decorator, and change the return message a bit, as follows:

@app . task

def crawl task(url):
request data = requests.get (url)
links = html_link regex.findall (request_data.text)
message = "The task %s found the following links %s.."\
Return message

Notice that the list of links found won't necessarily match the following screenshot:

[tasks]
tasks.crawl_task

tasks.fibo_task
tasks.sqrt_task

crawl_task added to the Celery server

Let's then scroll up Celery again and see. At this point, with our new task
loaded, it is time to implement the task called crawl_task in the client side
in the task dispatcher.py module.

[81]

Distributing Tasks with Celery

First, we need a list of links that will be our data input; we will call it url_1list.
The code to do this is as follows:

url list = ['http://www.google.com',
'http://br.bing.com',
'http://duckduckgo.com',
'http://github.com',
'http://br.search.yahoo.com']

We will create, as we did in other tasks, a manage_crawl_task function containing
the logic of the crawl_task call in order to organize the _ main__ block. The code
is as follows:

def manage crawl task(url list):

async_result dict = {url: app.send task('tasks.crawl task',
args=(url,), queue='webcrawler queue',
routing key='webcrawler gqueue') for url in url list}

for key, value in async result dict.items():
if value.ready() :
logger.info("%s -> %s" % (key, value.get()))
else:

logger.info("The task [%$s] 1s not ready" %
value.task_id)

Asin manage_fibo_task we have created in the previous function, a dictionary
containing the current URL as key, and an object (AsyncResult) as a value is passed

to the function. After that, we checked the task status and have taken the result to the

tasks that are concluded.

Now, we can insert the call of the function in the main block to test its
functioning. The code is as follows:

if main == '_ main ':
#manage sqgrt task(4)
#manage fibo task (input list)
manage crawl task(url list)

[82]

Chapter 7

While running our task_dispatcher.py code, we have the following output

on the server side:

0/MainPre
MainPr

lainProcess] Rece
MainProcess

2014-03- 49: 9: IN g Starting m

2014-03- N Worker-1] Starti

[MainPr Ta tas
-4829-b25

tarting new HTTP - : git .G
lainProc] Task ta 5 t 2e9f7593-F156-441a-a80b
e9f7593-f156-441a-a8 found the followi

rker-3] Starting n
MainProc T

crawl_task on the server side

Finally, we have the execution output in the client side, as shown in the
following screenshot:

'roiram'\nfuith:b;rlhr.!n;.fCE'l.eri':envé- python tas
aabld-2411-4aff-a457-66686a43 f found the following links ['https

-» The task 4b9c44&f-b6d5-4dd3-Be96-81a35c4bacé2 found the followlng links ['javascr

3f -b321-635bc61611c3 found the following links ['#start-of
-4446-addé 1466b84F7 found the following 1in
al

1f5b57 found the following lin

crawl_task on the client side

Celery is a great tool that offers a good range of resources. We explored the basic

resources that we consider necessary for this chapter. Yet, there is a lot more to
explore and we recommend that you experiment with it in a real-life project.

[83]

Distributing Tasks with Celery

Summary

In this chapter, we discussed the Celery distributed task queue. We also visualized its
architecture, analyzed its key components, and saw how to set up an environment to
build basic applications with Celery. It is possible to write a book only about Celery,
and I hope that I have been fair and just while choosing the topics throughout.

In the next chapter, we will study the asyncio module as well as learn how to
execute processing in an asynchronous way. We will also have a brief introduction
to coroutines, and learn how to use them with asyncio.

[84]

Doing Things Asynchronously

In the previous chapter, we learned how to distribute tasks using the Celery
framework and parallelize computing in different machines linked by a network.
Now, we are going to explore asynchronous programming, event loop, and coroutines,
which are resources featured in the asyncio module available in Python Version 3.4.
We are also going to learn to make use of those in combination with executors.

In this chapter, we will cover:

* Blocking, nonblocking, and asynchronous operations
* Understanding event loop

* Using asyncio

Understanding blocking, nonblocking,
and asynchronous operations

Understanding the different approaches to task execution is extremely important
to model and conceive a scalable solution. Knowing when to use asynchronous,
blocking, and nonblocking operations can make an enormous difference in the
response time of a system.

Doing Things Asynchronously

Understanding blocking operations

In the case of a blocking operation, we can use the example of attending a customer
at a bank counter. When the customer's number is called for attendance, all the
attention of the cashier is focused on this specific customer. Until the necessity

of the current customer is achieved, the cashier can't attend another customer
simultaneously. Now, with this in mind, imagine a bank agency with only two
cashiers and an influx of 100 customers per hour; we have then a flow problem.
This case illustrates the blocking of processing, when a task needs to wait for
another to end, blocking the access to resources.

Al

~ In the blocking of processing, the solicitor blocks the result until its
solicitation is fulfilled.

Understanding nonblocking operations

It is easy to confuse nonblocking operations with asynchronous operations; however,
they are different concepts that work really well in unison being often used this way.
Let us again use a real-world scenery to illustrate this situation. Back to the bank
environment, imagine that among the clients waiting to be attended, there is a client

X who needs to withdraw a benefit, but benefits are not available at the moment. The
cashier, instead of blocking the attendance to other clients until the benefit withdrawal
is available, simply signalizes to client X to return at another moment or another date.

Al

~ A non-blocking operator is one that, at a minimal blocking sign,
returns a control code or exception that tells the solicitor to retry later.

Understanding asynchronous operations

Back to the bank agency example, imagine that each cashier has 10 assistants to
execute tasks that take longer; now consider our agency has two cashiers, each one
with 10 assistants. As clients arrive, if client X has a solicitation that could block the
queue for an unlimited amount of time, this solicitation is dispatched to an assistant
that will do the job in the background and will approach the client X directly when
his or her answer is ready, thus freeing the cashier to process the request from the
following client without having to wait for the previous accomplishment.

[86]

Chapter 8

Asynchronous operations notify the end of solicitations by means of
N callbacks, coroutines, and other mechanisms.

Q A callback function is a function that is called when a certain condition
occurs. It is commonly used to handle results from asynchronous
processing.

Understanding event loop

In order to understand the concept of event loop, we need to understand the
elements that form its inner structure.

We will use the term resource descriptor to refer to the socket descriptor as well
as file descriptor.

Polling functions

The polling technique is implemented by different operating systems aiming to
monitor the status of one or more resource descriptors. Systems implement this
technique by means of functions. Polling functions form the basis of event loops.
We can often find these models being referred to as readiness notification scheme
due to the fact that the polling function notifies the one interested in the event,
that the resource descriptor is ready for interaction; the one interested, however,
might/might not accomplish the desired operation.

In terms of Linux, for instance, we have the following polling functions:
* select (): This POSIX implementation presents some disadvantages,
which are as follows:
° Limitation in the number of resource descriptors to be monitored

° Complexity O(n), where n represents the number of connected
clients, which makes it unviable for servers to attend multiple
clients simultaneously

* poll(): This is an enhancement in response to select (), with the
following features:
° Allows a larger range of resource descriptors to be monitored
° Complexity O(n) as select ()
° Allows a larger variety of types of monitored events

Reuses entry data in its call, in contrast to select ()

[87]

Doing Things Asynchronously

* epoll (): This is a powerful implementation to Linux and has the attractive
feature of constant complexity O(1). The epol1 () function offers two
behaviors to monitor events through the epoll_wait () call (http://
refspecs.linux-foundation.org/LSB 4.0.0/LSB-Core-generic/LSB-
Core-generic/libc-epoll-wait-1.html). To define these two behaviors,
let's imagine a scenery where we have a producer writing data in a socket
(that has an associated socket descriptor) and a consumer waiting to
accomplish the reading of data:

[e]

Level-triggered: When the consumer accomplishes a call to
epoll_wait (), it will get the status of that resource descriptor
immediately returned to the solicited event, indicating the
possibility (or not) of executing the reading operation (in our case).
So, level-triggered behavior is directly related to the status of the
event and not the event itself.

Edge-triggered: A call to epoll_wait () will return only when the
writing event in the socket is concluded and data is available. So,
in edge-triggered behavior the focus is the event itself having taken
place and not the possibility of executing any event.

On other platforms, there are also polling functions available, such as
kqueue for BSD and Mac OS X.

M Polling functions are useful to create applications with a single thread
that can manage multiple operations in concurrent way. Tornado web
Q server (http://www.tornadoweb.org/en/stable/overview.
html), for example, was written using non-blocking 1/O, and as a
polling function, it supports epoll and kqueue for Linux and BSD/
Mac OS X, respectively.

Polling functions work in the following steps:

1. Apoller objectis created.

2. We can register or not one or more resource descriptors in poller.
3. The polling function is executed in the created poller object.

1
‘Q Poller is an interface that provides abstraction to the use of

polling functions.

[88]

Chapter 8

Using event loops

We can define event loops as abstractions that ease up using polling functions to
monitor events. Internally, event loops make use of poller objects, taking away the
responsibility of the programmer to control the tasks of addition, removal, and
control of events.

Loops of events, in general, make use of callback functions to treat the occurrence
of an event; for example, given a resource descriptor A, when a writing event
happens in A, there will be a callback function for it. Some examples of applications
that implement event loop in Python are listed as follows:

Tornado web server (http://www.tornadoweb.org/en/stable/): This has
a strong point—it uses epol1 as the polling function if the environment is
Linux and has kqueue support in case of BSD or Mac OS X

Twisted (https://twistedmatrix.com/trac/): This is a popular framework
of Python applications and offers an implementation of the event loop

asyncio (https://docs.python.org/3.4/library/asyncio.html):
This module written by Guido Van Rossum, among others, offers an
implementation of an event loop. It is featured in Python 3.4

Gevent (http://www.gevent .org/): This provides an event loop based
on libev

Eventlet (https://pypi.python.org/pypi/eventlet): This implements an
event loop based on libevent

Using asyncio
We can define asyncio as a module that came to reboot asynchronous programming

in Python. The asyncio module allows the implementation of asynchronous
programming using a combination of the following elements:

Event loop: This was already defined in the previous section. The asyncio
module allows an event loop per process.

Coroutines: As mentioned in the official documentation of asyncio, "A
coroutine is a generator that follows certain conventions." Its most interesting
feature is that it can be suspended during execution to wait for external
processing (some routine in I/O) and return from the point it had stopped
when the external processing is done.

[89]

Doing Things Asynchronously

* Futures: The asyncio module defines its own object Future. Futures
represent a processing that has still not been accomplished.

* Tasks: This is a subclass of asyncio.Future to encapsulate and
manage coroutines.

Beyond these mechanisms, asyncio provides a series of other features for

the developing of applications, such as transports and protocols, which allow
communication by means of channels using TCP, SSL, UDP, and pipes, among
other things. More information on asyncio is available at https: //docs.python.
org/3.4/library/asyncio.html.

Understanding coroutines and futures

To be able to define a coroutine in asyncio, we use the @asyncio.coroutine
decorator, and we must make use of the yield fromsyntax to suspend the coroutine
in order to execute an operation I/O or another computing that might block the
event loop where the coroutine will execute. But how does this mechanism of
suspension and resumption work? Coroutines work together with the asyncio.
Future objects. We can summarize the operation as follows:

* Coroutine is initialized, and an asyncio.Future object is instanced
internally or passed as an argument to coroutine.

* Onreaching the point of the coroutine where there is use of yield from,
the coroutine is then suspended to wait for computing evoked in yield
from. The yield from instance waits for the yield from <coroutine or
asyncio.Future or asyncio.Tasks> construction.

* When the evoked computing in yield fromends, the coroutine executes the
set_result (<result>) method of the asyncio.Future object related to the
coroutine, telling the event loop that coroutine can be resumed.

M When we use the asyncio. Task object to encapsulate a coroutine,
we do not need to explicit the use of a asyncio. Future object, as the
asyncio.Task object is already a subclass of asyncio.Future.

Using coroutine and asyncio.Future

Let us verify some example code using coroutine and the asyncio. Future object:

import asyncio

@asyncio.coroutine

[90]

Chapter 8

def sleep coroutine(f):
yield from asyncio.sleep(2)
f.set result ("Done!™")

In the preceding chunk, we defined our coroutine named sleep coroutine, which
receives an object asyncio.Future as an argument. In the sequence, our coroutine
will be suspended for the execution of asyncio.sleep (2), which will sleep for 2
seconds; we must observe that the asyncio. sleep function is already compatible
with asyncio. Therefore, it returns as future; however, due to didactic reasons,

we included our asyncio.Future object passed as an argument to illustrate how
the resumption could be done in a coroutine explicitly via asyncio.Future.set_
result (<result>).

Eventually, we had our main block, where we created our asyncio.Future object
and in line 1loop = asyncio.get event loop (), we created an instance of the
event loop from asyncio to execute our coroutine, as shown in the following code:

if name == ' main_':
future = asyncio.Future ()
loop = asyncio.get event loop()
loop.run until complete(sleep coroutine (future))

1
‘\Q Tasks and coroutines only execute when the event loop

is in execution.

In the final line, 1oop.run until complete (sleep coroutine (future)), we ask
our event loop to run until our coroutine has finished its execution. This is done
through the BaseEventLoop.run_until_complete method presented in the
BaseEventLoop class.

The magic to resume a coroutine in asynciois in the set_result
M method of asyncio.Future object. All the coroutines to be
Q resumed need to wait for asyncio.Future to execute the set
result method. So, the event loop of asyncio will know that
computing has ended and it can resume the coroutine.

[91]

Doing Things Asynchronously

Using asyncio.Task

As mentioned before, the asyncio.Task class is a subclass of asyncio. Future
and aims at managing a coroutine. Let us check an example code named
asyncio_task_sample.py, where more than one object of asyncio.Task

will be created and dispatched for execution in an event loop of asyncio:

import asyncio

@asyncio.coroutine
def sleep coro(name, seconds=1):
print (" [$s] coroutine will sleep for %d second(s).."

)

% (name, seconds))
yield yfrom asyncio.sleep (seconds)
print (" [$s] done!" % name)

Our coroutine, called sleep_coro, will receive two arguments: name, which will
function as an identifier of our coroutine, and seconds with standard value 1,
which will indicate for how many seconds the coroutine will be suspended.

Moving on to the main block, we defined a list containing three objects of type
asyncio.Task named Task-2, which will sleep for 10 seconds, and Task-B and
Task-C, which will sleep for 1 second each. See the following code:

if name == ' main ':
tasks = [asyncio.Task(sleep coro('Task-A', 10)),
asyncio.Task (sleep coro('Task-B')
)
s

asyncio.Task (sleep coro('Task-C'
loop.run until complete(asyncio.gather (*task

)
),
)]
))

Still in the main block, we define our event loop making use of the BaseEventLoop.
run until complete function; however, this one receives no more than one
coroutine as argument, but a call to asyncio.gather (refer to https://docs.
python.org/3.4/library/asyncio-task.html#task-functions for more
information), which is the function that returns as future attaching the results

of the list of coroutines or futures received as arguments. The output of the
asyncio_task_sample.py program is shown in the following screenshot:

yipman@foshan:~/Documents/packpub_chapter®8_codes$ python3.4 asyncio_task_sample.py
[Task-A] coroutine will sleep for 10 second(s)...
[Task-B] coroutine will sleep for 1 second(s)...
[Task-C] coroutine will sleep for 1 second(s)...

[Task-B] done!
[Task-C] done!
[Task-A] done!
yipman@foshan:~/Documents/packpub_chapter08_codess |

asyncio_task_sample.py output

[92]

Chapter 8

It is noticeable that the output of the program presents the tasks being performed in
the order they are declared; however, none of them can block the event loop. This is
due to the fact that Task-B and Task-C sleep less and end before Task-A that sleeps
10 times more and is dispatched first. A scene where Task-A blocks an event loop

is catastrophic.

Using an incompatible library with asyncio

The asyncio module is still recent within the Python community. Some libraries
are still not fully compatible. Let us refactor our previous section example
asyncio task sample.py and alter the function from asyncio.sleep to time.
sleep in the t ime module that does not return as a future and check its behavior.
We altered the yield from asyncio.sleep (seconds) linetoyield from time.
sleep (seconds).We obviously need to import the t ime module to make use of
the new sleep. Running the example, notice the new behavior in the output shown
in the following screenshot:

yipman@foshan:~/Documents/packpub_chapter®8_codes$ python3.4 asyncio_task_sample.py
[Task-A] coroutine will sleep for 16 second(s)...
[Task-B] coroutine will sleep for 1 second(s)...
[Task-C] coroutine will sleep for 1 second(s)...
Traceback (most recent call last):
File "asyncio_task_sample.py", line 19, in <module>
loop.run_until_complete(asyncio.gather(*tasks))
File "/usr/1lib/python3.4/asyncio/base_events.py", line 208, in run_until_complete
return future.result()
File "/usr/lib/python3.4/asyncio/futures.py", line 243, in result
raise self._exception
File "/usr/lib/python3.4/asyncio/tasks.py", line 302, in _step
result = next(coro)
File "asyncio_task_sample.py", line 9, in sleep_coro
yield from time.sleep(sleep_seconds)
TypeError: 'NoneType' object 1s not iterable
yipman@foshan:~/Documents/packpub_chapter08_codess |J

asyncio_task_sample.py output using time.sleep

We can notice that the coroutines are initialized normally, but an error occurs as the
yield from syntax waits for a coroutine or asyncio.Future, and time.sleep does
not generate anything at its end. So, how should we proceed in these cases? The
answer is easy; we need an asyncio.Future object, and then we refactor our example.

[93]

Doing Things Asynchronously

First, let us create a function that will create an asyncio.Future object to return
itto yield from presentin the sleep coro coroutine. The sleep func function
is as follows:

def sleep func(seconds) :
f = asyncio.Future()
time.sleep (seconds)
f.set _result ("Future done!")
return f

Notice that the sleep func function, as it ends, executes f.set result ("Future
done! ") placing a dummy result in future cause as this computing does not generate a
concrete result; it is only a sleep function. Then, an asyncio.Future object is returned,
which is expected by yield fromto resume the sleep coro coroutine. The following
screenshot illustrates the output of the modified asyncio_task_sample.py program:

yipman@foshan:~/Documents/packpub_chapter@8_codes$ python3.4 asyncio_task_sample.py
[Task-A] coroutine will sleep for 10 second(s)...

[Task-A] done!

[Task-B] coroutine will sleep for 1 second(s)...

[Task-B] done!

[Task-C] coroutine will sleep for 1 second(s)...
[Task-C] done!
yipman@foshan:~/Documents/packpub_chapter@8_codess |

asyncio_task_sample.py with time.sleep

Now all the dispatched tasks execute without errors. But, wait! There is still something
wrong with the output shown in the previous screenshot. Notice that the sequence

of execution has something weird within, as Task-A sleeps for 10 seconds and ends
before the beginning of the two following tasks that sleep only for 1 second. That is,
our event loop is being blocked by the tasks. This is a consequence of using a library
or module that does not work asynchronously with asyncio.

A way to solve this problem is delegating a blocking task to ThreadPoolExecutor
(remember this works well if the processing is I/ O bound; if it is CPU-bound, use
ProcessPoolExecutor. For our comfort, asyncio supports this mechanism in a
very simple way. Let us again refactor our asyncio_task_sample.py code in order
to provide execution to the tasks without blocking the event loop.

Firstly, we must remove the sleep func function as it is no longer necessary. A call
to time.sleep will be done by the BaseEventLoop.run_in_executor method. Let's
then refactor our sleep coro coroutine in the following way:

@asyncio.coroutine
def sleep coro(name, loop, seconds=1):
future = loop.run_in executor (None, time.sleep, seconds)

[94]

Chapter 8

print (" [$s] coroutine will sleep for %d second(s).." %
(name, seconds))
yield from future

)

print (" [$s] done!" % name)

It is noticeable that the coroutine receives a new argument that will be the event loop
we created in the main block so that ThreadPoolExecutor is used to respond to the
same with the results of executions.

After that, we have the following line:

future = loop.run in executor (None, time.sleep, seconds)

In the previous line, a call to the BaseEventLoop.run_in_ executor function

was made, and the first argument for it was an executor (https://docs.python.
org/3.4/library/concurrent.futures.html#concurrent.futures. Executor).
If it passes None, it will use ThreadPoolExecutor as default. The second argument
is a callback function, in this case, the time.sleep function that represents our
computing to be accomplished, and finally we can pass the callback arguments.

Notice that the BaseEventLoop.run_in_ executor method returns an asyncio.
Future object. However, it is enough to make a call yield from passing the returned
future, and our coroutine is ready.

Remember, we need to alter the main block of the program, passing the event loop
to sleep coro:

if name == '_ main_ ':
loop = asyncio.get event loop()

tasks = [asyncio.Task(sleep coro('Task-A', loop, 10)),
asyncio.Task (sleep coro('Task-B', loop)),
asyncio.Task (sleep coro('Task-C', loop))]

loop.run_until_ complete (asyncio.gather (*tasks))
loop.close()

[95]

Doing Things Asynchronously

Let us see the refactored code execution shown in the following screenshot:

yipman@foshan:~/Documents/packpub_chapter08_codes$ python3.4 asyncio_task_sample.py
[Task-A] coroutine will sleep for 10 second(s)...

[Task-B] coroutine will sleep for 1 second(s)...

[Task-C] coroutine will sleep for 1 second(s)...

[Task-B] done!
[Task-C] done!
[Task-A] done!
yipman@foshan:~/Documents/packpub_chapter08_codess ||

We got it! The result is consistent, and the event loop is not blocked by the execution
of the time.sleep function.

Summary

In this chapter, we have learned about asynchronous, blocking, and nonblocking
programming. We have made use of some basic mechanisms of asyncio in order
to see the nuts and bolts of this mechanism's behavior in some situations.

The asyncio module is an attempt to reboot the support to asynchronous
programming in Python. Guido Van Rossum was extremely successful in

exploring alternatives and thinking of something that could be used as a basis to
these alternatives offering a clear API. The yield fromsyntax was born to enhance
the expressivity of some programs that use coroutines, relieving the burden on the
developer of writing callbacks to treat the ending of events, although it is possible
to use callbacks. The asyncio module, beyond other advantages, has the capacity of
integrating with other applications, as in the Tornado web server, for instance, that
already has a support branch to event loop in asyncio.

We come to the end of this book, which was indeed challenging to write, and I hope
this content can be useful for you. Some tools were left out, such as IPython, mpi4py,
Greenlets, Eventlets, and others.

Based on the content offered in this book, you can conduct your own analysis and
tests between the examples presented along the different chapters to compare the
different tools. The fact in relation to using two main examples along most chapters,
was intended to demonstrate that Python allows us to easily change the tools used
to solve a problem without changing the core of the solution.

[96]

Chapter 8

We have learned a bit of Global Interpreter Lock (GIL) and some workarounds to
skip GIL's side effects. It is believed that the main Python implementation (CPython)
won't solve the questions related to GIL; only the future can reveal that. GIL is a
difficult and recurrent topic in the Python community. On the other hand, we have
the PyPy implementation, which brought JIT and other performance improvements
along. Nowadays, the PyPy team is working on experimental uses of Software
Transactional Memory (STM) into PyPy, aiming to remove GIL.

[97]

Symbols

_thread module
and threading module, selecting
between 32
URL 32

A

apply_async() method 69
apply() method 70
arguments, Server class

ncpus 58

ppservers 58
arguments, submit method

args 58

callback 58

func 58

modules 58
Arithmetic Logic Unit (ALU) 7
Asgard-desktop 61
asynchronous operations 86
asyncio

about 89

asyncio.Task class, using 92

coroutine and asyncio.Future,

using 90, 91
coroutine, defining 90

incompatible library, using with 93-95

URL 89

using 89, 90
asyncio.Future object

and coroutine, using 91
asyncio.Task class

using 92
AsyncResult class 78

Index

B

BaseEventLoop.run_in_executor method 94
BaseEventLoop.run_until_complete
function 92
blocking operations 86
broker
about 70
RabbitMQ 70
Redis 70

C

callback function 87
Celery
about 67
used, for creating distributed
Web crawler 81-83
used, for obtaining Fibonacci
series term 76-78
using 68
Celery architecture
about 68
broker 70
result backends 71
tasks, working with 69, 70
workers 70
Celery module
about 16
URL 16
client components 69
client machine, Celery
setting up 71-73
concurrent.futures module
used, for Web crawler 36-39
concurrent programming 9

Condition mechanism 32 Eventlet

conn.send(value) 43 URL 89
consumer_task function 46 event loop
core 8 about 87
coroutine using 89
about 89 event loop implementation, applications
and asyncio.Future, using 90, 91 asyncio 89
and futures 90 Eventlet 89
countdown parameter 69 Gevent 89
cpu_count function 45 Tornado web server 89
CPU registry 42 Twisted 89
CPU scheduler 9 expires parameter 69
CPU scheduling 42
CPython 16 F

crawl_task function 48, 81
current_process function 45
current state 42

feeder thread 45
fibo_dict variable 47
Fibonacci function 26

D Fibonacci sequence
defining 25
data decomposition Fibonacci series term
using 20, 21 computing, multiprocessing used 45-47
data exchange tasks obtaining, Celery used 76-78
identifying 22 obtaining, threading module used 32-35
data_queue variable 47 Fibonacci series term, on SMP architecture
deadlock 13 calculating, Parallel Python (PP)
delay(arg, kwarg=value) method 69 used 59-61
distributed programming 10 fibonacci_task function 34
distributed Web crawler file descriptors
creating, Celery used 81-83 about 54
making, Parallel Python (PP) URL 54
used 61-65 First-In, First-Out (FIFO) 54
divide and conquer technique 19 futures
about 90
E and coroutines 90

future_tasks 39
environment, Celery

client machine, setting up 71-73 G
server machine, setting up 73
setting up 71 get() function 78
epoll() function Gevent
about 88 URL 89
Edge-triggered 88 GIL 16,17
Level-triggered 88 group_urls_task function 37, 48

epoll_wait() function 88

[100]

H

highest Fibonacci value
calculating, example 26
obtaining, for multiple inputs 25, 26

Iceman-Q470C-500P4C 61
Iceman-Thinkad-X220 61
incompatible library

using, with asyncio 93-95
independent tasks

identifying 22
interprocess communication (IPC) 53
I/O information 42

J

join() method 44

K

kernel thread
about 30
advantages 30
disadvantages 31

L

link_error parameter 70
link parameter 70
load balance 23

logical processors. See core

manage_crawl_task function 82
manage_fibo_task function 78
Manager object 46
max_workers parameter 38
Memcached

URL 26
memory allocation 42
merge sort 19
message passing

about 12

advantages 12,13
message transport. See broker
Moore's law

URL 7

multiprocessing communication

implementing 42

multiprocessing.Pipe, using 43, 44

multiprocessing.Queue 45
multiprocessing module

about 15

URL 15, 42

used, to compute Fibonacci series 45-47

multiprocessing.Pipe

using 43, 44
multiprocessing.Queue 45
mutex 12

N

named pipes

about 54

reading 56

using, with Python 54

writing in 55
ncpus argument 58
non-blocking operations 86
non-determinism 15
number_of cpus variable 47

(0

os.getpid() 43
os module
URL 43

P

parallel programming
about 7-10
advantages 10, 11
example 9
message passing 11, 12
need for 9
shared state 11,12

parallel programming, problems

deadlock 13

[101]

identifying 13
race conditions 14
starvation 13

Parallel Python Execution Server. See PPES

parallel Python module
about 16
URL 16
Parallel Python (PP)
about 53
discovering 57
URL, for arguments 58
URL, for documentation 57
used, for calculating Fibonacci series
term on SMP architecture 59-61
used, for making distributed
Web crawler 61-65
parallel systems
about 10
forms 9
pipeline
tasks, decomposing with 21
poll() function
features 87
polling functions
about 87
epoll() 88
kqueue 88
poll() 87
select() 87
PPES 58
ppservers argument 58
priority 42
process 41
Process Control Block (PCB)
about 42
CPU registry 42
CPU scheduling 42
current state 42
I/0O information 42
memory allocation 42
priority 42
process ID 42
program counter 42
process ID 42
process mapping
data exchange tasks, identifying 22

defining 22
independent tasks, identifying 22
load balance 23
ProcessPoolExecutor class
used, for Web crawler 48-50
process states
ready 42
running 42
waiting 42
producer_task function 43
producer_task method 46
program counter 42
proposed solution, Web crawler 27
Python
named pipes, using with 54
Python, parallel programming tools
multiprocessing module 15
parallel Python module 16
threading module 15

Q

queue parameter 69

queues
fibo_queue 79
specifying, for task types 79, 80
sqrt_queue 79
webcrawler_queue 79

quick sort 19

R

race conditions 14
ready() method 78
readiness notification scheme 87
regular expression
URL 37
Remote Procedure Call. See RPC
request module
URL 38
request object 77
resource descriptor 87
result backend 71
retry parameter 69
RPC 53

[102]

S ThreadPoolExecutor object

URL 38
select() function threads
disadvantages 87 advantages 30
serializer parameter 70 defining 29
server machine, Celery disadvantages 30
setting up 73 thread states
set_result method 91 blocked 31
shared_queue 33 concluded 31
shared state 12 creation 31
sleep_func function 94 defining 31
sockets 53 execution 31
Software Transactional Memory (STM) 97 ready 31
solution scheme 27 thread types
start() method 44 kernel thread 30
starvation 13 user thread 30
submit method 38 Tornado web server
URL 88, 89
T Twisted
URL 89
task_dispatcher.py module 77
task_done() method 34 U
task execution parameters
countdown 69 Uniform Resource Locators (URLs) 27
expires 69 user thread
link 70 about 30
link_error 70 advantages 31
queue 69 disadvantages 31
retry 69
serializer 70 W
task methods
apply() method 70 Web crawler
apply_async() method 69 about 27
delay(arg, kwarg=value) method 69 concurrent.futures module, used for 36-39
tasks ProcessPoolExecutor, used for 48-50
decomposing, with pipeline 21 with statement
dispatching 73-76 URL 34
working with 69 workers
tasks class 90 about 70
task types concurrency mode 70
queues, defining by 79, 80 remote control 70
threading module revoking tasks 71
about 15
and _thread module, selecting between 32
URL 15, 32

used, to obtain Fibonacci series with
multiples inputs 32-35

[103]

open source

community experience distilled

PUBLISHING

Thank you for buying
Parallel Programming with Python

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Python High Performance
Programming

Python High Performance
Programming
ISBN: 978-1-78328-845-8 Paperback: 108 pages

Boost the performance of your Python programs
using advanced techniques

1. Identify the bottlenecks in your applications and
solve them using the best profiling techniques.

2. Write efficient numerical code in NumPy
and Cython.

3. Adapt your programs to run on multiple
processors with parallel programming.

OpenCL Parallel Programming
Development Cookbook

OpenCL Parallel Programming

Development Cookbook
ISBN: 978-1-84969-452-0 Paperback: 302 pages

Accelerate your applications and understand
high-performance computing with over
50 OpenCL recipes

1. Learn about parallel programming development
in OpenCL and also the various techniques
involved in writing high-performing code.

2. Find out more about data-parallel or
task-parallel development and also
about the combination of both.

3. Understand and exploit the underlying
hardware features like processor registers
and caches that run potentially tens of
thousands of threads across the processors.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Python Network
Programming Cookbook

Python Network Programming

Cookbook
ISBN: 978-1-84951-346-3 Paperback: 234 pages

Over 70 detailed recipes to develop practical
solutions for a wide range of real-world network
programming tasks

1. Demonstrates how to write various besopke
client/server networking applications
using standard and popular third-party
Python libraries.

2. Learn how to develop client programs for
networking protocols such as HTTP/HTTPS,
SMTP, POP3, FTP, CGI, XML-RPC, SOAP,
and REST.

Parallel Processing
with Gearman

Instant Parallel Processing

with Gearman
ISBN: 978-1-78328-407-8 Paperback: 58 pages

Learn how to use Gearman to build scalable
distributed application

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Build a cluster of managers, workers, and
clients using Gearman to scale your application.

3. Understand how to reduce single-points-of-
failure in your distributed applications.

4. Build clients and workers to process data in the
background and provide real-time updates to
your frontend.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Contextualizing
Parallel, Concurrent, and Distributed Programming
	Why use parallel programming?
	Exploring common forms of parallelization
	Communicating in parallel programming
	Understanding shared state
	Understanding message passing

	Identifying parallel programming problems
	Deadlock
	Starvation
	Race conditions

	Discovering Python's parallel programming tools
	The Python threading module
	The Python multiprocessing module
	The parallel Python module
	Celery – a distributed task queue

	Taking care of Python GIL
	Summary

	Chapter 2: Designing Parallel Algorithms
	The divide and conquer technique
	Using data decomposition
	Decomposing tasks with pipeline
	Processing and mapping
	Identifying independent tasks
	Identifying the tasks that require data exchange
	Load balance

	Summary

	Chapter 3: Identifying a
Parallelizable Problem
	Obtaining the highest Fibonacci value for multiple inputs
	Crawling the Web
	Summary

	Chapter 4: Using the threading and concurrent.futures Modules
	Defining threads
	Advantages and disadvantages of using threads
	Understanding different kinds of threads
	Defining the states of a thread
	Choosing between threading and _thread

	Using threading to obtain the Fibonacci series term with multiple inputs
	Crawling the Web using the concurrent.futures module
	Summary

	Chapter 5: Using Multiprocessing and ProcessPoolExecutor
	Understanding the concept of a process
	Understanding the process model
	Defining the states of a process

	Implementing multiprocessing communication
	Using multiprocessing.Pipe
	Understanding multiprocessing.Queue

	Using multiprocessing to compute Fibonacci series terms with multiple inputs
	Crawling the Web using ProcessPoolExecutor
	Summary

	Chapter 6: Utilizing Parallel Python
	Understanding interprocess communication
	Exploring named pipes
	Using named pipes with Python
	Writing in a named pipe
	Reading named pipes

	Discovering PP
	Using PP to calculate the Fibonacci series term on SMP architecture
	Using PP to make a distributed Web crawler
	Summary

	Chapter 7: Distributing Tasks with Celery
	Understanding Celery
	Why use Celery?

	Understanding Celery's architecture
	Working with tasks
	Discovering message transport (broker)
	Understanding workers
	Understanding result backends

	Setting up the environment
	Setting up the client machine
	Setting up the server machine

	Dispatching a simple task
	Using Celery to obtain a Fibonacci series term
	Defining queues by task types
	Using Celery to make a distributed Web crawler
	Summary

	Chapter 8: Doing Things Asynchronously
	Understanding blocking, nonblocking, and asynchronous operations
	Understanding blocking operations
	Understanding nonblocking operations
	Understanding asynchronous operations

	Understanding event loop
	Polling functions
	Using event loops

	Using asyncio
	Understanding coroutines and futures
	Using coroutine and asyncio.Future
	Using asyncio.Task
	Using an incompatible library with asyncio

	Summary

	Index

