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Preface
Months ago, in 2013, I was contacted by Packt Publishing professionals with the 
mission of writing a book about parallel programming using the Python language. 
I had never thought of writing a book before and had no idea of the work that was 
about to come; how complex it would be to conceive this piece of work and how it 
would feel to fit it into my work schedule within my current job. Although I thought 
about the idea for over a couple of days, I ended up accepting the mission and said 
to myself that it will be a great deal of personal learning and a perfect chance to 
disseminate my knowledge of Python to a worldwide audience, and thus, hopefully 
leave a worthy legacy along my journey in this life.

The first part of this work is to outline its topics. It is not easy to please everybody; 
however, I believe I have achieved a good balance in the topics proposed in this mini 
book, in which I intended to introduce Python parallel programming combining 
theory and practice. I have taken a risk in this work. I have used a new format to show 
how problems can be solved, in which examples are defined in the first chapters and 
then solved by using the tools presented along the length of the book. I think this is an 
interesting format as it allows the reader to analyze and question the different modules 
that Python offers.

All chapters combine a bit of theory, thereby building the context that will provide 
you with some basic knowledge to follow the practical bits of the text. I truly hope 
this book will be useful for those adventuring into the world of Python parallel 
programming, for I have tried to focus on quality writing.
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What this book covers
Chapter 1, Contextualizing Parallel, Concurrent, and Distributed Programming, covers 
the concepts, advantages, disadvantages, and implications of parallel programming 
models. In addition, this chapter exposes some Python libraries to implement  
parallel solutions.

Chapter 2, Designing Parallel Algorithms, introduces a discussion about some 
techniques to design parallel algorithms.

Chapter 3, Identifying a Parallelizable Problem, introduces some examples of problems, 
and analyzes if these problems can be divided into parallel pieces.

Chapter 4, Using the threading and concurrent.futures Modules, explains how to 
implement each problem presented in Chapter 3, Identifying a Parallelizable Problem, 
using the threading and concurrent.futures modules.

Chapter 5, Using Multiprocessing and ProcessPoolExecutor, covers how to implement 
each problem presented in Chapter 3, Identifying a Parallelizable Problem, using 
multiprocessing and ProcessPoolExecutor.

Chapter 6, Utilizing Parallel Python, covers how to implement each problem presented 
in Chapter 3, Identifying a Parallelizable Problem, using the parallel Python module.

Chapter 7, Distributing Tasks with Celery, explains how to implement each problem 
presented in Chapter 3, Identifying a Parallelizable Problem, using the Celery distributed 
task queue.

Chapter 8, Doing Things Asynchronously, explains how to use the asyncio module  
and concepts about asynchronous programming.

What you need for this book
Previous knowledge of Python programming is necessary as a Python tutorial will 
not be included in this book. Knowledge of concurrence and parallel programming  
is welcome since this book is designed for developers who are getting started in  
this category of software development. In regards to software, it is necessary to 
obtain the following:

•	 Python 3.3 and Python 3.4 (still under development) are required for  
Chapter 8, Doing Things Asynchronously

•	 Any code editor of the reader's choice is required
•	 Parallel Python module 1.6.4 should be installed
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•	 Celery framework 3.1 is required for Chapter 5, Using Multiprocessing and 
ProcessPoolExecutor

•	 Any operating system of the reader's choice is required

Who this book is for
This book is a compact discussion about parallel programming using Python.  
It provides tools for beginner and intermediate Python developers. This book is  
for those who are willing to get a general view of developing parallel/concurrent 
software using Python, and to learn different Python alternatives. By the end of  
this book, you will have enlarged your toolbox with the information presented in  
the chapters.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "In order to exemplify the use of the 
multiprocessing.Pipe object, we will implement a Python program that creates 
two processes, A and B."

A block of code is set as follows:

def producer_task(conn):
    value = random.randint(1, 10)
    conn.send(value)
    print('Value [%d] sent by PID [%d]' % (value, os.getpid()))
    conn.close()

Any command-line input or output is written as follows:

$celery –A tasks –Q sqrt_queue,fibo_queue,webcrawler_queue worker 
--loglevel=info

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Contextualizing  
Parallel, Concurrent, and 
Distributed Programming

Parallel programming can be defined as a model that aims to create programs that are 
compatible with environments prepared to execute code instructions simultaneously. 
It has not been too long since techniques of parallelism began to be used to develop 
software. Some years ago, processors had a single Arithmetic Logic Unit (ALU) 
among other components, which could only execute one instruction at a time during a 
time space. For years, only a clock that measured in hertz to determine the number of 
instructions a processor could process within a given interval of time was taken into 
consideration. The more the number of clocks, the more the instructions potentially 
executed in terms of KHz (thousands of operations per second), MHz (millions of 
operations per second), and the current GHz (billions of operations per second).

Summing up, the more instructions per cycle given to the processor, the faster the 
execution. During the '80s, a revolutionary processor came to life, Intel 80386, which 
allowed the execution of tasks in a pre-emptive manner, that is, it was possible 
to periodically interrupt the execution of a program to provide processor time to 
another program; this meant pseudo-parallelism based on time-slicing.

In the late '80s, there came Intel 80486 that implemented a pipelining system, which 
in practice, divided the stage of execution into distinct substages. In practical terms, 
in a cycle of the processor, we could have different instructions being carried out 
simultaneously in each substage.

All the advances mentioned in the preceding section resulted in several improvements 
in performance, but it was not enough, as we were faced with a delicate issue that 
would end up as the so-called Moore's law (http://www.mooreslaw.org/).
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The quest for high taxes of clock ended up colliding with physical limitations; 
processors would consume more energy, thereby generating more heat. Moreover, 
there was another as important issue: the market for portable computers was speeding 
up in the '90s. So, it was extremely important to have processors that could make the 
batteries of these pieces of equipment last long enough away from the plug. Several 
technologies and families of processors from different manufacturers were born. As 
regards servers and mainframes, Intel® deserves to be highlighted with its family 
of products Core®, which allowed to trick the operating system by simulating the 
existence of more than one processor even though there was a single physical chip.

In the Core® family, the processor got severe internal changes and featured 
components called core, which had their own ALU and caches L2 and L3,  
among other elements to carry out instructions. Those cores, also known as  
logical processors, allowed us to parallel the execution of different parts of  
the same program, or even different programs, simultaneously. The age core  
enabled lower energy use with power processing superior to its predecessors.  
As cores work in parallel, simulating independent processors, we can have a  
multi-core chip and an inferior clock, thereby getting superior performance  
compared to a single-core chip with higher clock, depending on the task.

So much evolution has, of course, changed the way we approach software designing. 
Today, we must think of parallelism to design systems that make rational use of 
resources without wasting them, thereby providing a better experience to the user 
and saving energy not only in personal computers, but also at processing centers. 
More than ever, parallel programming is in the developers' daily lives  
and, apparently, it will never go back.

This chapter covers the following topics:

•	 Why use parallel programming?
•	 Introducing the common forms of parallelization
•	 Communicating in parallel programming
•	 Identifying parallel programming problems
•	 Discovering Python's programming tools
•	 Taking care of Python Global Interpreter Lock (GIL)
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Why use parallel programming?
Since computing systems have evolved, they have started to provide mechanisms 
that allow us to run independent pieces of a specific program in parallel with one 
another, thus enhancing the response and the general performance. Moreover,  
we can easily verify that the machines are equipped with more processors and  
these with plenty of more cores. So, why not take advantage of this architecture?

Parallel programming is a reality in all contexts of system development, from smart 
phones and tablets, to heavy duty computing in research centers. A solid basis in 
parallel programming will allow a developer to optimize the performance of an 
application. This results in enhancement of user experience as well as consumption 
of computing resources, thereby taking up less processing time for  
the accomplishment of complex tasks.

As an example of parallelism, let us picture a scenario in which an application that, 
amongst other tasks, selects information from a database, and this database has 
considerable size. Consider as well, the application being sequential, in which tasks 
must be run one after another in a logical sequence. When a user requests data, the 
rest of the system will be blocked until the data return is not concluded. However, 
making use of parallel programming, we will be allowed to create a new worker that 
which will seek information in this database without blocking other functions in  
the application, thus enhancing its use.

Exploring common forms of parallelization
There is a certain confusion when we try to define the main forms of paralleling 
systems. It is common to find quotations on parallel and concurrent systems as if 
both meant the same thing. Nevertheless, there are slight differences between them.

Within concurrent programming, we have a scenario in which a program dispatches 
several workers and these workers dispute to use the CPU to run a task. The stage at 
which the dispute takes place is controlled by the CPU scheduler, whose function is to 
define which worker is apt for using the resource at a specific moment. In most cases, 
the CPU scheduler runs the task of raking processes so fast that we might get the 
impression of pseudo-parallelism. Therefore, concurrent programming is  
an abstraction from parallel programming.

Concurrent systems dispute over the same CPU to run tasks.
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The following diagram shows a concurrent program scheme:

Scheduler CPU

Process01

Process02

Concurrent
Program

Process
Queue

Concurrent programming scheme.

Parallel programming can be defined as an approach in which program data creates 
workers to run specific tasks simultaneously in a multicore environment without the 
need for concurrency amongst them to access a CPU.

Parallel systems run tasks simultaneously.

The following figure shows the concept of parallel systems:

CPU01

PROCESS01

CPU02

PROCESS02

CPU03

PROCESS03

CPU04

PROCESS04

PARALLEL PROGRAM

Parallel programming scheme.

Distributed programming aims at the possibility of sharing the processing by 
exchanging data through messages between machines (nodes) of computing,  
which are physically separated.

Distributed programming is becoming more and more popular for many reasons; 
they are explored as follows:
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•	 Fault-tolerance: As the system is decentralized, we can distribute the 
processing to different machines in a network, and thus perform individual 
maintenance of specific machines without affecting the functioning of the 
system as a whole.

•	 Horizontal scalability: We can increase the capacity of processing in 
distributed systems in general. We can link new equipment with no need to 
abort applications being executed. We can say that it is cheaper and simpler 
compared to vertical scalability.

•	 Cloud computing: With the reduction in hardware costs, we need the growth 
of this type of business where we can obtaining huge machine parks acting in a 
cooperative way and running programs in a transparent way for their users.

Distributed systems run tasks within physically-separated nodes.

The following figure shows a distributed system scheme:

MessageNode3

Node4

Node3

Node4

Node3

Node4

Network

Distributed programming scheme.

Communicating in parallel programming
In parallel programming, the workers that are sent to perform a task often need to 
establish communication so that there can be cooperation in tackling a problem. 
In most cases, this communication is established in such a way that data can be 
exchanged amongst workers. There are two forms of communication that are more 
widely known when it comes to parallel programming: shared state and message 
passing. In the following sections, a brief description of both will be presented.



Contextualizing Parallel, Concurrent, and Distributed Programming

[ 12 ]

Understanding shared state
One the most well-known forms of communication amongst workers is shared state. 
Shared state seems straightforward to use but has many pitfalls because an invalid 
operation made to the shared resource by one of the processes will affect all of the 
others, thereby producing bad results. It also makes it impossible for the program  
to be distributed between multiple machines for obvious reasons.

Illustrating this, we will make use of a real-world case. Suppose you are a customer 
of a specific bank, and this bank has only one cashier. When you go to the bank, you 
must head to a queue and wait for your chance. Once in the queue, you notice that 
only one customer can make use of the cashier at a time, and it would be impossible 
for the cashier to attend two customers simultaneously without potentially making 
errors. Computing provides means to access data in a controlled way, and there are 
several techniques, such as mutex.

Mutex can be understood as a special process variable that indicates the level of 
availability to access data. That is, in our real-life example, the customer has a 
number, and at a specific moment, this number will be activated and the cashier  
will be available for this customer exclusively. At the end of the process, this 
customer will free the cashier for the next customer, and so on.

There are cases in which data has a constant value in a variable while 
the program is running, and the data is shared only for reading 
purposes. So, access control is not necessary because it will never 
present integrity problems.

Understanding message passing
Message passing is used when we aim to avoid data access control and synchronizing 
problems originating from shared state. Message passing consists of a mechanism for 
message exchange in running processes. It is very commonly used whenever we are 
developing programs with distributed architecture, where the message exchanges 
within the network they are placed are necessary. Languages such as Erlang, for 
instance, use this model to implement communication in its parallel architecture. Once 
data is copied at each message exchange, it is impossible that problems occur in terms 
of concurrence of access. Although memory use seems to be higher than in shared 
memory state, there are advantages to the use of this model. They are as follows:

•	 Absence of data access concurrence
•	 Messages can be exchange locally (various processes) or in  

distributed environments
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•	 This makes it less likely that scalability issues occur and enables 
interoperability of different systems

•	 In general, it is easy to maintain according to programmers

Identifying parallel programming 
problems
There are classic problems that brave keyboard warriors can face while battling in 
the lands where parallel programming ghosts dwell. Many of these problems occur 
more often when inexperienced programmers make use of workers combined with 
shared state. Some of these issues will be described in the following sections.

Deadlock
Deadlock is a situation in which two or more workers keep indefinitely waiting for 
the freeing of a resource, which is blocked by a worker of the same group for some 
reason. For a better understanding, we will use another real-life case. Imagine the 
bank whose entrance has a rotating door. Customer A heads to the side, which will 
allow him to enter the bank, while customer B tries to exit the bank by using the 
entrance side of this rotating door so that both customers would be stuck forcing  
the door but heading nowhere. This situation would be hilarious in real life but 
tragic in programming.

Deadlock is a phenomenon in which processes wait for a condition 
to free their tasks, but this condition will never occur.

Starvation
This is the issue whose side effects are caused by unfair raking of one or more processes 
that take much more time to run a task. Imagine a group of processes, A, which runs 
heavy tasks and has data processor priority. Now, imagine that a process A with high 
priority constantly consumes the CPU, while a lower priority process B never gets the 
chance. Hence, one can say that process B is starving for CPU cycles.

Starvation is caused by badly adjusted policies of process ranking.



Contextualizing Parallel, Concurrent, and Distributed Programming

[ 14 ]

Race conditions
When the result of a process depends on a sequence of facts, and this sequence  
is broken due to the lack of synchronizing mechanisms, we face race conditions. 
They result from problems that are extremely difficult to filter in larger systems.  
For instance, a couple has a joint account; the initial balance before operations is 
$100. The following table shows the regular case, in which there are mechanisms  
of protection and the sequence of expected facts, as well as the result:

Husband Wife Account balance (dollars)
100

Read balance 100
Adds 20 100
Concludes operation 120

Read balance 120
Withdraws 10 120
Concludes operation 110

Presents baking operations without the chance of race conditions occurrence

In the following table, the problematic scenario is presented. Suppose that the 
account does not have mechanisms of synchronization and the order of operations  
is not as expected.

Husband Wife Account balance (dollars)
100

Read balance 100
Withdraws 100 100

Reads balance 100
Withdraws 10 100

Concludes operation 
updating balance

0

Concludes operation 
updating balance

90

Analogy to balance the problem in a joint account and race conditions

There is a noticeable inconsistency in the final result due to the unexpected lack 
of synchronization in the operations sequence. One of the parallel programming 
characteristics is non-determinism. It is impossible to foresee the moment at which 
two workers will be running, or even which of them will run first. Therefore, 
synchronization mechanisms are essential.
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Non-determinism, if combined with lack of synchronization 
mechanisms, may lead to race condition issues.

Discovering Python's parallel 
programming tools
The Python language, created by Guido Van Rossum, is a multi-paradigm, multi-
purpose language. It has been widely accepted worldwide due to its powerful 
simplicity and easy maintenance. It is also known as the language that has batteries 
included. There is a wide range of modules to make its use smoother. Within 
parallel programming, Python has built-in and external modules that simplify 
implementation. This work is based on Python 3.x.

The Python threading module
The Python threading module offers a layer of abstraction to the module _thread, 
which is a lower-level module. It provides functions that help the programmer 
during the hard task of developing parallel systems based on threads. The threading 
module's official papers can be found at http://docs.python.org/3/library/
threading.html?highlight=threading#module-threadin.

The Python multiprocessing module
The multiprocessing module aims at providing a simple API for the use of parallelism 
based on processes. This module is similar to the threading module, which simplifies 
alternations between the processes without major difficulties. The approach that is 
based on processes is very popular within the Python users' community as it is an 
alternative to answering questions on the use of CPU-Bound threads and GIL  
present in Python. The multiprocessing module's official papers can be found at 
http://docs.python.org/3/library/multiprocessing.html?highlight=multi
processing#multiprocessing.
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The parallel Python module
The parallel Python module is external and offers a rich API for the creation of parallel 
and distributed systems making use of the processes approach. This module promises 
to be light and easy to install, and integrates with other Python programs. The parallel 
Python module can be found at http://parallelpython.com. Among some of the 
features, we may highlight the following:

•	 Automatic detection of the optimal configuration
•	 The fact that a number of worker processes can be changed during runtime
•	 Dynamic load balance
•	 Fault tolerance
•	 Auto-discovery of computational resources

Celery – a distributed task queue
Celery is an excellent Python module that's used to create distributed systems and has 
excellent documentation. It makes use of at least three different types of approach to 
run tasks in concurrent form—multiprocessing, Eventlet, and Gevent. This work will, 
however, concentrate efforts on the use of the multiprocessing approach. Also, the 
link between one and another is a configuration issue, and it remains as a study so  
that the reader is able to establish comparisons with his/her own experiments.

The Celery module can be obtained on the official project page at  
http://celeryproject.org.

Taking care of Python GIL
GIL is a mechanism that is used in implementing standard Python, known as 
CPython, to avoid bytecodes that are executed simultaneously by different threads. 
The existence of GIL in Python is a reason for fiery discussion amongst users of 
this language. GIL was chosen to protect the internal memory used by the CPython 
interpreter, which does not implement mechanisms of synchronization for the 
concurrent access by threads. In any case, GIL results in a problem when we decide 
to use threads, and these tend to be CPU-bound. I/O Threads, for example, are out of 
GIL's scope. Maybe the mechanism brings more benefits to the evolution of Python 
than harm to it. Evidently, we could not consider only speed as a single argument to 
determine whether something is good or not.
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There are cases in which the approach to the use of processes for tasks sided  
with message passing brings better relations among maintainability, scalability,  
and performance. Even so, there are cases in which there will be a real need for 
threads, which would be subdued to GIL. In these cases, what could be done  
is write such pieces of code as extensions in C language, and embed them into  
the Python program. Thus, there are alternatives; it is up to the developer to  
analyze the real necessity. So, there comes the question: is GIL, in a general way,  
a villain? It is important to remember that, the PyPy team is working on an STM  
implementation in order to remove GIL from Python. For more details about the 
project, visit http://pypy.org/tmdonate.html.

Summary
In this chapter, we learned some parallel programming concepts, and learned 
about some models, their advantages, and disadvantages. Some of the problems 
and potential issues when thinking of parallelism have been presented in a brief 
explanations. We also had a short introduction to some Python modules, built-in and 
external, which makes a developer's life easier when building up parallel systems.

In the next chapter, we will be studying some techniques to design parallel algorithms.





Designing Parallel Algorithms
While developing parallel systems, several aspects must be observed before you  
start with the lines of code. Outlining the problem and the way it will be paralleled 
from the beginning are essential in order to obtain success along the task. In this 
chapter, we'll approach some technical aspects to achieve solutions.

This chapter covers the following topics:

•	 The divide and conquer technique
•	 Data decomposition
•	 Decomposing tasks with pipeline
•	 Processing and mapping

The divide and conquer technique
When you face a complex issue, the first thing to be done is to decompose the problem 
in order to identify parts of it that may be handled independently. In general, the 
parallelizable parts in a solution are in pieces that can be divided and distributed  
for them to be processed by different workers. The technique of dividing and 
conquering involves splitting the domain recursively until an indivisible unit of  
the complete issue is found and solved. The sort algorithms, such as merge sort  
and quick sort, can be resolved by using this approach. 
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The following diagram shows the application of a merge sort in a vector of six 
elements, making the divide and conquer technique visible:

1 3 4 5 12 20

1 4

3 5 12 20

5 3 20 12 14 1

INPUT} } }
20 12

5 3

12 20

3 5

14 1
1 14

Merge sort (divide and conquer)

Using data decomposition
One of the ways to parallelize a problem is through data decomposition. Imagine  
a situation in which the task is to multiply a 2 x 2 matrix, which we will call Matrix 
A, by a scalar value of 4. In a sequential system, we will perform each multiplication 
operation one after the other, generating the final result at the end of all the 
instructions. Depending on the size of Matrix A, the sequential solution of the 
problem may be time consuming. However, when decomposition of data is applied, 
we can picture a scenario in which Matrix A is broken into pieces, and these pieces 
are associated with the workers that process the received data in a parallel way. 
The following diagram illustrates the concept of data decomposition applied to the 
example of a 2 x 2 matrix multiplied by a scalar value:

INPUT DATA Computing results

SCALAR }MATRIX A

2  4

3  5
4.[ [

DATA DECOMPOSITION
(EACH WORKER GETS

A DATA CHUNK
TO PROCESS)

Workerø2Workerø1

Workerø4Workerø3

2.4   4.4

4.3   5.4[ [
workerø2workerø1

workerø4workerø3

[ [8     16

12    20

Data decomposition in a matrix example
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The matrix problem presented in the preceding diagram had a certain symmetry 
where each necessary operation to get to the final result was executed by a single 
worker, and each worker executed the same number of operations to resolve the 
problem. Nevertheless, in real world, there is an asymmetry of the relation between 
the number of workers and the quantity of data that is decomposed, and this directly 
affects the performance of the solution. Finally, the results generated by each worker 
must be correlated in a way that the end of the program's output makes sense. In order 
to establish this correlation, workers must establish communication among them by 
means of using a message exchanging pattern or even a shared state standard.

The granularity choice of data decomposition might affect the 
performance of a solution.

Decomposing tasks with pipeline
The pipeline technique is used to organize tasks that must be executed in a 
collaborative way to resolve a problem. Pipeline breaks large tasks into smaller 
independent tasks that run in a parallel manner. The pipeline model could be 
compared to an assembly line at a vehicle factory where the chassis is the raw 
material, the input. As the raw material goes through different stages of production, 
several workers perform different actions one after another until the end of the 
process so that we can have a car ready. This model is very similar to the sequential 
paradigm of development; tasks are executed on data one after another, and 
normally, a task gets an input, which is the result of the previous task. So what 
differentiates this model from the sequential technique? Each stage of the pipeline 
technique possesses its own workers that act in a parallel way on the problem.

An example in the context of computing could be one in which a system processes 
images in batches and persists data that is extracted into a database. We will have  
the following sequence of facts:

•	 Input images are received and lined in parallel to be processed at the  
second stage

•	 Images are parsed and useful information is sent to the third stage
•	 Filters are applied onto images in parallel during the third stage
•	 Data that results from the third stage is persisted in the database

Each stage of the pipeline technique acts in an isolated way with 
its own workers. However, it establishes mechanisms of data 
communication so that there is an exchange of information.
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The following diagram illustrates the pipeline concept:
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The pipeline technique

Processing and mapping
The number of workers is not always large enough to resolve a specific problem  
in a single step. Therefore, the decomposition techniques presented in the previous 
sections are necessary. However, decomposition techniques should not be applied 
arbitrarily; there are factors that can influence the performance of the solution.  
After decomposing data or tasks, the question we ought to ask is, "How do we divide  
the processing load among workers to obtain good performance?" This is not an  
easy question to answer, as it all depends on the problem under study.

Basically, we could mention two important steps when defining process mapping:

•	 Identifying independent tasks
•	 Identifying tasks that require data exchange

Identifying independent tasks
Identifying independent tasks in a system allows us to distribute the tasks among 
different workers, as these tasks do not need constant communication. As there 
is no need for a data location, tasks can be executed in different workers without 
impacting other task executions.

Identifying the tasks that require data 
exchange
Grouping the tasks that establish constant communication in a single worker can 
enhance the performance. This is true when there is a large load of data communication 
as it may help reduce the overhead in exchange of the information within the tasks.
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Load balance
A relevant characteristic in a parallel solution is the way work units are distributed 
over different computing resources. The more we distribute tasks to different 
workers, the more we increase the granularity of the communication. On the other 
hand, the more tasks we group in a single worker, the more we reduce the overhead 
associated with communication. Still, we can increase idling, that is, idle computing 
power. Idleness is not nice in parallel programming. Moreover, the increase of 
location reduces the flexibility of the solution concerning the capacity to expand the 
computing power by simply adding up more equipment. Within an architecture 
based on messages (low data location), it is simple to add more machines to the 
cluster or grid, which increases its processing power without even interrupting  
the running of the system.

Summary
In this chapter, we discussed some ways to create parallel solutions. Your focus 
should be on the importance of dividing the processing load among different 
workers, considering the location and not the data.

In the next chapter, we will study how to identify a parallelizable problem.





Identifying a  
Parallelizable Problem

The previous chapter presented some of the different ways in which we can think 
about a problem in terms of parallelism. Now we will analyze some specific problems 
that will be useful in guiding us throughout the implementation.

This chapter covers the following topics:

•	 Obtaining the highest Fibonacci value for multiple inputs
•	 Crawling the Web

Obtaining the highest Fibonacci value for 
multiple inputs
It is known that the Fibonacci sequence is defined as follows:

F n( ) =
0, = 0;
1

if n
, = 1;

( -1) + ( -2) >1;
if n

F n F n if n
{

In practical terms, calculating the Fibonacci value for the terms 0 to 10, the result 
would be 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55.
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An example of Python code to calculate Fibonacci returning the highest value using 
the iterative method is as follows:

def fibonacci(input):
    a, b = 0, 1
    foritem in range(input):
        a, b = b, a + b
    return a

The Fibonacci function calculates the highest Fibonacci value for a specific piece 
of input data. Let us picture a hypothetical scenario in which it is necessary to 
calculate Fibonacci values, and this website will receive several inputs from a user. 
Suppose the user provides an array of values as input, so making these calculations 
sequentially would be interesting. But, what if 1 million users are connected at the 
same time to make requests? In this case, some users would have to wait for quite  
a long time until they are answered.

Let's think only within the context of the Python Fibonacci function presented in 
the preceding code. How could we draw it so as to make use of parallelism where 
there is an array of data input? The previous chapter displayed several techniques; 
we could use one of them in this case—data decomposition. We could decompose 
the array in units and dispatch a task associated with each unit to be executed by a 
worker. The following diagram depicts the suggested solution:

{USER’S INPUT}

3

4

5

6

PARALLEL EXECUTION

{WORKERS AND TASKS}

WORKERØ1

WORKERØ2

WORKERØ3

WORKERØ4

fib(3)

fib(4)

fib(5)

fib(6)

Parallel Fibonacci for multiples inputs.

As a suggestion to the reader, complete the exercise of implementing 
the use of a mechanism to cache computed values in order to avoid 
wasting CPU time. We recommend something like memcached 
(http://memcached.org/).
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Crawling the Web
Another problem to be studied throughout this book is the implementation of a 
parallel Web crawler. A Web crawler consists of a computer program that browses 
the Web to search for information on pages. The scenario to be analyzed is a problem 
in which a sequential Web crawler is fed by a variable number of Uniform Resource 
Locators (URLs), and it has to search all the links within each URL provided. 
Imagining that the number of input URLs may be relatively large, we could plan  
a solution looking for parallelism in the following way:

1.	 Group all the input URLs in a data structure.
2.	 Associate data URLs with tasks that will execute the crawling by obtaining 

information from each URL.
3.	 Dispatch the tasks for execution in parallel workers.
4.	 The result from the previous stage must be passed to the next stage, which 

will improve raw collected data, thereby saving them and relating them to 
the original URLs.

As we can observe in the numbered steps for a proposed solution, there is a 
combination of the following two methods:

•	 Data decomposition: This occurs when we divide and associate URLs  
to tasks

•	 Task decomposition with pipeline: This contains a pipeline of three stages 
and occurs when we chain the task of receiving, collecting, and organizing 
the results of crawling

The following diagram shows the solution scheme:
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Parallel Web crawler
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Summary
In this chapter, we learned about common problems and potential solutions involving 
parallelism. The problems presented will be shown using different parallel Python 
libraries for the implementation of solutions.

In the next chapter, we will focus on solutions involving threads while using 
the threading module, solutions involving the use of processes with the 
multiprocessing module, and so on.



Using the threading and 
concurrent.futures Modules

In the previous chapter, we presented some potential problems that may be solved 
with parallelism. In this chapter, we will analyze the implementation of the solutions 
of each problem using the threading module from the Python language.

This chapter covers the following topics:

•	 Defining threads
•	 Choosing between threading and _thread
•	 Using threading to obtain the Fibonacci series term for multiple inputs
•	 Crawling the Web using the concurrent.futures module

Defining threads
Threads are different execution lines in a process. Let us picture a program as if it 
was a hive, and there is a process of collecting pollen inside this hive. This collection 
process is carried out by several worker bees who work simultaneously in order to 
solve the problem of lack of pollen. The worker bees play the role of threads, acting 
inside a process and sharing resources to perform their tasks.

Threads belong to the same process and share the same memory space. Hence, the 
developer's task is to control and access these areas of memory.
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Advantages and disadvantages of using 
threads
Some advantages and disadvantages have to be taken into account when deciding  
on the use of threads, and it depends on the language and operating system used  
to implement a solution.

The advantages of using threads are as follows:

•	 The speed of communication of the threads in the same process, data 
location, and shared information is fast

•	 The creation of threads is less costly than the creation of a process,  
as it is not necessary to copy all the information contained in the context  
of the main process

•	 Making the best use of data locality by optimizing memory access through 
the processor cache memory

The disadvantages of using threads are as follows:

•	 Data sharing allows swift communication. However, it also allows the 
introduction of difficult-to-solve errors by inexperienced developers.

•	 Data sharing limits the flexibility of the solution. Migrating to a distributed 
architecture, for instance, may cause a real headache. In general, they limit 
the scalability of algorithms.

Within the Python programming language, the use of CPU-bound 
threads may harm performance of the application due to GIL.

Understanding different kinds of threads
There are two types of threads, kernel and user. The kernel threads are the threads 
that are created and managed by the operating system. The exchange of context, 
scheduling, and concluding are all managed by the kernel of the current operating 
system. For the user threads, these states are controlled by the package developer.

We can quote some advantages of each type of thread.

The advantages of the kernel threads are as follows:

•	 One kernel thread is referenced to one process. So if a kernel thread blocks, 
others can still run.
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•	 The kernel threads can run on different CPUs.

The disadvantages of the kernel threads are as follows:

•	 The creation and synchronization routines are too expensive
•	 The implementation is platform dependent

The advantages of the user threads are as follows:

•	 The user thread has low cost for creation and synchronization
•	 The user thread is platform independent

The disadvantages of the user threads are as follows:

•	 All the user threads inside a process are related to only one kernel thread.  
So, if one user thread blocks, all the other user threads can't run.

•	 The user threads can't run on different CPUs.

Defining the states of a thread
There are five possible states in a thread's life span. They are as follows:

•	 Creation: This is the main process that creates a thread, and after its creation, 
it is sent to a line of threads ready for execution

•	 Execution: At this stage, the thread makes use of the CPU
•	 Ready: At this stage, the thread is in a line of threads ready for execution  

and bound to be executed
•	 Blocked: At this stage, the thread is blocked to wait for an I/O operation  

to happen, for example, and it does not make use of the CPU at this stage
•	 Concluded: At this stage, free resources are to be used in an execution and 

end the life span of the thread
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Choosing between threading and _thread
The Python language offers two modules to support implementation for systems 
based on threads: the _thread module (this Python module offers an API of lower 
level for the use of threads; its documents can be found at http://docs.python.
org/3.3/library/_thread.html) and the threading module (this Python module 
offers an API of higher level for the use of threads; its documents can be found 
at http://docs.python.org/3.3/library/threading.html). The threading 
module offers a friendly interface for the _thread module, making its use more 
convenient. The choice is up to the developer. If the developer finds it easy to use 
threads at a lower level, implementing their own thread pool and cuddling with 
locks and other primitive features, he/she would rather use _thread. Otherwise, 
threading is the most sensible choice.

Using threading to obtain the Fibonacci 
series term with multiple inputs
Now it is time for the truth. The mission is to parallelize the execution of the terms  
of the Fibonacci series when multiple input values are given. For didactical purposes, 
we will fix the input values in the four elements and the four threads to process each 
element, simulating a perfect symmetry among workers and tasks to be executed. 
The algorithm will work as follows:

1.	 First, a list will store the four values to be calculated and the values will be 
sent into a structure that allows synchronized access of threads.

2.	 After the values are sent to the synchronized structure, the threads that 
calculate the Fibonacci series need to be advised that the values are ready 
to be processed. For this, we will use a thread synchronization mechanism 
called Condition. (The Condition mechanism is one of the Python objects 
that offer data access synchronization mechanisms shared among threads; 
you can learn more at http://docs.python.org/3/library/threading.
html#threading.Condition.)

3.	 After each thread finishes their Fibonacci series calculation, the results will  
be saved in a dictionary.

So, now we will present the code and comment on the interesting aspects.
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At the beginning of the code, we have the additional support to Unicode and  
the import of the logging, threading, and Queue modules. In addition, we have 
defined the main data structures to be used in our example. A dictionary, which  
we will call fibo_dict, will store each integer (provided as an input) as a key, and 
its respective key values will be the Fibonacci series values calculated. We have also 
declared a Queue module present in the queue module, which will be the container 
of our shared data among threads that calculate the Fibonacci series and the thread 
that inserts elements in the Queue object. We will call this queue as shared_queue. 
Finally, we define the last data structure—a Python list object with four elements 
that simulates the set of values received by the program. The code is as follows:

#coding: utf-8

import logging, threading

from queue import Queue

logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(message)s')

ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
ch.setFormatter(formatter)
logger.addHandler(ch)

fibo_dict = {}
shared_queue = Queue()
input_list = [3, 10, 5, 7]

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In the following line of code, we will define an object from the threading module 
called Condition. This object aims to synchronize the access to resources according 
to a specific condition.

queue_condition = threading.Condition()

The idea of using the Condition object is to control the creation of a queue and the 
processing that takes place in it.
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The next piece of code is a definition of the function to be executed by several 
threads. We will call it fibonacci_task. The fibonacci_task function receives 
the condition object as an argument that will control the fibonacci_task access 
to shared_queue. Inside the function, we made use of the with statement (for 
more information on the with statement, refer to http://docs.python.org/3/
reference/compound_stmts.html#with) to simplify the managing of the content. 
Without the with statement, we would have to explicitly acquire the lock and release 
it. With the with statement, we can acquire the lock at the beginning and release it 
at the exit of the internal block. The following step in the fibonacci_task function 
is to make a logical evaluation, telling the current thread, "while shared_queue is 
empty, wait." This is the main use of the wait() method of the condition object. 
The thread will wait until it gets notified that shared_queue is free to process.  
Once we have the condition satisfied, the current thread will obtain an element in 
shared_queue, which right away calculates the Fibonacci series value and generates 
an entry in the fibo_dict dictionary. In the end, we make a call to the task_done() 
method, which aims to inform that a certain queued task has been extracted and 
executed. The code is as follows:

def fibonacci_task(condition):
    with condition:
        while shared_queue.empty():
            logger.info("[%s] - waiting for elements in queue.."
                % threading.current_thread().name)
            condition.wait()
        else:
            value = shared_queue.get()
            a, b = 0, 1
            for item in range(value):
                a, b = b, a + b
                fibo_dict[value] = a
        shared_queue.task_done()
        logger.debug("[%s] fibonacci of key [%d] with  
            result [%d]" %
            (threading.current_thread().name, value,  
                fibo_dict[value]))

The second function that we defined is the queue_task function that will be  
executed by the thread responsible for populating shared_queue with elements to  
be processed. We can notice the acquisition of condition received as an argument  
to access shared_queue. For each item present in input_list, the thread inserts  
them in shared_queue.
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After it inserts all the elements into shared_queue, the function notifies the threads 
responsible for calculating the Fibonacci series that the queue is ready to be used.  
This is done by using condition.notifyAll() as follows:

def queue_task(condition):
    logging.debug('Starting queue_task...')
    with condition:
        for item in input_list:
            shared_queue.put(item)
        logging.debug("Notifying fibonacci_task threads  
            that the queue is ready to consume..")
        condition.notifyAll()

In the next piece of code, we created a set of four threads that will wait for the 
preparing condition from shared_queue. We then highlight the constructor of the 
thread class that allows us to define the function. The thread will execute using the 
target argument, and the arguments this function receives in args are as follows:

threads = [threading.Thread(
    daemon=True, target=fibonacci_task,
args=(queue_condition,)) for i in range(4)]

Then, we started the execution of the threads created to calculate the Fibonacci series 
by using the following code:

[thread.start() for thread in threads]

In the next step, we created a thread that will populate shared_queue and start its 
execution. The code is as follows:

prod = threading.Thread(name='queue_task_thread', daemon=True,  
    target=queue_task, args=(queue_condition,))
prod.start()

And finally, we called the join() method to all the threads that calculate the Fibonacci 
series. The aim of this call is to make the main thread wait for the execution of the 
Fibonacci series from these threads so that it will not end the main flux of the program 
before the end of their process. Refer to the following code:

[thread.join() for thread in threads]
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As a result of the execution of this program, we have the following output:

The parallel_fibonacci.py output

Notice that at first the fibonacci_task threads are created and initialized, and then 
they enter the waiting state. In the meantime, queue_task is created and populates 
shared_queue. In the end, queue_task notifies the fibonacci_task threads that 
they can execute their tasks.

Notice that the order in which the fibonacci_task threads execute does not follow 
a sequential logic, and the order may vary for each execution. This is a characteristic 
of the use of threads: non-determinism.

Crawling the Web using the concurrent.
futures module
The following section will make use of our code by implementing the parallel 
Web crawler. In this scheme, we will use a very interesting Python resource, 
ThreadPoolExecutor, which is featured in the concurrent.futures module. In the 
previous example, in which we analyzed parallel_fibonacci.py, quite primitive 
forms of threads were used. Also, at a specific moment, we had to create and initialize 
more than one thread manually. In larger programs, it is very difficult to manage this 
kind of situation. In such case, there are mechanisms that allow a thread pool. A thread 
pool is nothing but a structure that keeps several threads, which are previously created, 
to be used in a certain process. It aims to reuse threads, thus avoiding unnecessary 
creation of threads—which is costly.

Basically, as mentioned in the previous chapter, we will have an algorithm that will 
execute some tasks in stages, and these tasks depend on each other. Here, we will 
study the code for our parallel Web crawler.
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After importing some modules and setting up the logging file, we have created a 
regular expression using a built-in module called re (complete documentation on 
this module can be found at http://docs.python.org/3/howto/regex.html).  
We will use it to filter links in the pages that are returned from the crawling stage. 
The code is as follows:

html_link_regex = \
re.compile('<a\s(?:.*?\s)*?href=[\'"](.*?)[\'"].*?>')

Following the sequence, we have populated a synchronized queue so that it simulates 
certain input data. Then, we will declare a dictionary instance, which we will call 
result_dict. In this, we will correlate the URLs and their respective links as a list 
structure. The code is as follows:

urls = queue.Queue()
urls.put('http://www.google.com')
urls.put('http://br.bing.com/')
urls.put('https://duckduckgo.com/')
urls.put('https://github.com/')
urls.put('http://br.search.yahoo.com/')

result_dict = {}

In the following piece of code, a function called group_urls_task is defined to 
extract URLs from the synchronized queue to populate result_dict. We can see 
that the URLs are keys of result_dict. Another detail that we can observe is that 
the get()function was used with two arguments. The first argument is True to 
block the access to a synchronized queue. The second argument is a timeout of 
0.05 to avoid this waiting getting too long in case of nonexistence of elements in 
the synchronized queue. In some cases, you do not want to spend too much time 
blocked in waiting for elements. The code is as follows:

def group_urls_task(urls):
    try:
        url = urls.get(True, 0.05)
        result_dict[url] = None
        logger.info("[%s] putting url [%s] in dictionary..." % (
            threading.current_thread().name, url))
    except queue.Empty:
        logging.error('Nothing to be done, queue is empty')
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Now, we have the task that is responsible for accomplishing the crawling stage  
for each URL sent as an argument for the crawl_task function. Basically, the crawling 
stage is completed by obtaining all the links inside the page pointed by URL received. 
A tuple returned by crawling contains the first element as a URL received by the 
crawl_task function. As the second step, the list of links gets extracted. The requests 
module (the official documentation about the request module can be found at 
https://pypi.python.org/pypi/requests) was used to obtain the web pages  
from URLs. The code is as follows:

def crawl_task(url):
    links = []
    try:
        request_data = requests.get(url)
        logger.info("[%s] crawling url [%s] ..." % (
            threading.current_thread().name, url))
        links = html_link_regex.findall(request_data.text)
    except:
        logger.error(sys.exc_info()[0])
        raise
    finally:
        return (url, links)

Analyzing the code further, we will see the creation of an ThreadPoolExecutor 
object (more information about the ThreadPoolExecutor object can be found at 
http://docs.python.org/3.3/library/concurrent.futures.html#concurrent.
futures.ThreadPoolExecutor) featured in the concurrent.futures module. In 
the constructor of this ThreadPoolExecutor object, we are able to define a parameter 
called max_workers. This parameter defines the number of threads in the thread 
pool attached to the executor. Within the stage of removal of the URLs from the 
synchronized queue and insertion of keys into result_dict, the choice was between 
using three worker threads. The quantity will vary according to the problem. After 
defining ThreadPoolExecutor and making use of the with statement to guarantee 
ending routines, these routines will be executed in the output of the scope of the with 
statement. In the ThreadPoolExecutor object's scope, we iterate it in the synchronized 
queue and dispatch it to execute a reference for the queue containing URLs by means 
of the submit method. Summing up, the submit method schedules a callable for 
the execution and returns a Future object containing the scheduling created for the 
execution. The submit method receives a callable and its arguments; in our case, 
the callable is the task group_urls_task and the argument is a reference to our 
synchronized queue. After these arguments are called, worker threads defined in the 
pool will execute the bookings in a parallel, asynchronous way. The code is as follows:

with concurrent.futures.ThreadPoolExecutor(max_workers=3) as\
    group_link_threads:
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    for i in range(urls.qsize()):
        group_link_threads.submit(group_urls_task, urls)

After the previous code, we created another ThreadPoolExecutor; but this time, we 
want to execute the crawling stage by using the keys generated by group_urls_task 
in the previous stage. This time, there is a difference in the following line:

future_tasks = {crawler_link_threads.submit(crawl_task, url): url  
    for url in result_dict.keys()}

We have mapped a temporary dictionary called future_tasks. It will contain the 
bookings made by submit, passing by each URL featured in result_dict. That 
is, for each key, we create an entry in future_tasks. After mapping, we need to 
collect the results from the bookings as they are executed using a loop, which seeks 
completed entries in future_tasks using the concurrent.futures.as_completed 
(fs, timeout=None) method. This call returns an iterator for instances of the 
Future object. So, we can iterate in each result processed by the bookings that  
have been dispatched. At the end of ThreadPoolExecutor, for the crawling threads, 
we use the result() method from the Future object. In the case of the crawling 
stage, it returns the resulting tuple. In this way, we generate the final entries in 
future_tasks as shown in the following screenshot:

Crawling the Web in a parallel way

Once again, we can notice the order of the thread execution in each pool does not 
present a logical order, which is a consequence of non-determinism. The important 
thing is the printed items from result_dict showing the final result.
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Summary
In this chapter, we have focused on a theoretical notion of the use of threads. We have 
implemented the examples that had been proposed in the previous chapter, making 
use of the threading module and concurrent.futures. In this way, we illustrated 
the module's mechanisms and flexibility.

In the next chapter, we will focus on how to solve these two problems using 
multiprocessing and ProcessPoolExecutor.



Using Multiprocessing and 
ProcessPoolExecutor

In the previous chapter, we studied how to use the threading module to solve  
two case problems. Throughout this present chapter, we will study how to use  
the multiprocessing module, which implements a similar interface to that of 
threading. However, here we will use the processes paradigm.

This chapter covers the following topics:

•	 Understanding the concept of a process
•	 Understanding multiprocessing communication
•	 Using multiprocessing to obtain Fibonacci series terms with multiple inputs
•	 Crawling the Web using ProcessPoolExecutor

Understanding the concept of a process
We must understand processes in operating systems as containers for programs in 
execution and their resources. All that is referring to a program in execution can be 
managed by means of the process it represents—its data area, its child processes,  
its estates, as well as its communication with other processes.
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Understanding the process model
Processes have associated information and resources that allow their manipulation  
and control. The operating system has a structure called the Process Control Block 
(PCB), which stores information referring to processes. For instance, the PCB might 
store the following information:

•	 Process ID: This is the unique integer value (unsigned) and which identifies  
a process within the operational system

•	 Program counter: This contains the address of the next program instruction 
to be executed

•	 I/O information: This is a list of open files and devices associated with  
the process

•	 Memory allocation: This stores information about the memory space used  
by and reserved for the process and the tables of paging

•	 CPU scheduling: This stores information about the priority of the process  
and points to the staggering queues

•	 Priority: This defines the priority that the process will have in the acquisition 
of the CPU

•	 Current state: This states whether the process is ready, waiting, or running
•	 CPU registry: This stores stack pointers and other information

Defining the states of a process
Processes possess three states that cross their life cycle; they are as follows:

•	 Running: The process is making use of the CPU
•	 Ready: The process that was waiting in the processes queue is now ready  

to use the CPU
•	 Waiting: The process is waiting for some I/O operation related to the task  

it was executing

Implementing multiprocessing 
communication
The multiprocessing module (http://docs.python.org/3/library/
multiprocessing.html) allows two ways of communication among processes,  
both based on the message passing paradigm. As seen previously, the message  
passing paradigm is based on the lack of synchronizing mechanisms as copies  
of data are exchanged among processes.
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Using multiprocessing.Pipe
A pipe consists of a mechanism that establishes communication between two endpoints 
(two processes in communication). It is a way to create a channel so as to exchange 
messages among processes.

The official Python documentation recommends the use of a pipe for 
every two endpoints since there is no guarantee of reading safety by 
another endpoint simultaneously.

In order to exemplify the use of the multiprocessing.Pipe object, we will implement 
a Python program that creates two processes, A and B. Process A sends a random 
integer value in intervals from 1 to 10 to process B, and process B will display it on  
the screen. Now, let us check the program point by point.

Some essential modules have been imported to implement our example, as follows:

import os, random
from multiprocessing import Process, Pipe

The os module allows us to obtain the PID of the process, which executes a certain 
point of the program by using os.getpid() (http://docs.python.org/3.3/
library/os.html). The os.getpid() call will return in a transparent form in our 
example. It will return the PID of the respective processes responsible for running 
tasks producer_task and consumer_task.

In the next part of the program, we will define the producer_task function, which, 
among other things, will generate a random number using the random.randint(1, 
10) call. The key point of this function is called conn.send(value), which uses a 
connection object generated by Pipe in the flux of the main program that has been 
sent as an argument to the function. Observe the full body of the producer_task 
function as follows:

def producer_task(conn):
    value = random.randint(1, 10)
    conn.send(value)
    print('Value [%d] sent by PID [%d]' % (value, os.getpid()))
    conn.close()

Never forget to always call the close() method of a Pipe 
connection which sends data through the send method. This is 
important to finalize resources associated with the channel of 
communication when this is no longer being used.
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The task to be executed by the consumer process is quite simple, and its only goal  
is to print the received value on screen, informing the PID of the consuming process. 
To obtain the sent value from a channel of communication, we used the conn.
recv() call (http://docs.python.org/dev/library/multiprocessing.
html#multiprocessing.Connection.recv). The implementation of the  
consumer_task function ended up like the following:

def consumer_task(conn):
    print('Value [%d] received by PID [%d]' % (conn.recv(),
    os.getpid()))

The final part of our little example realizes a call to the Pipe()object by creating two 
connection objects that will be used by the consumer and producer processes. After 
this call, the producer and consumer processes are created, sending the consumer_
task and producer_task functions as target functions respectively, as we may 
observe in the following full code:

if __name__ == '__main__':
    producer_conn, consumer_conn = Pipe()
    consumer = Process(target=consumer_task,args=(consumer_conn,))
    producer = Process(target=producer_task,args=(producer_conn,))
    
    consumer.start()
    producer.start()
    
    consumer.join()
    producer.join()

After defining the processes, it is time to make a call to the start() method to 
initiate the execution and the join() method so that the main process waits for the 
execution of the producer and consumer processes.

In the following screenshot, we can see the output of the multiprocessing_pipe.py 
program:

Output from multiprocessing_pipe.py
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Understanding multiprocessing.Queue
In the previous section, we analyzed the concept of a pipe to establish communication 
among processes by creating a communication channel. Now, we will be analyzing 
how to effectively establish this communication, making use of the Queue object,  
which is implemented in the multiprocessing module. The available interfaces  
for multiprocessing.Queue are quite similar to queue.Queue. However, the internal 
implementation uses different mechanisms, such as an internal thread called feeder 
thread, which transfers data from the data buffer of the queue to the pipes associated 
with the destination processes. Both the Pipe and Queue mechanisms make use  
of the message passing paradigm, which spares users from the need to use 
synchronization mechanisms.

Although the user of multiprocessing.Queue does not need to 
use synchronization mechanisms, such as Locks for instance, but 
internally, these mechanisms are used to transport data among buffers 
and pipes in order to accomplish communication.

Using multiprocessing to compute 
Fibonacci series terms with multiple 
inputs
Let's implement the case study of processing a Fibonacci series for multiple inputs 
using the processes approach instead of threads.

The multiprocessing_fibonacci.py code makes use of the multiprocessing 
module, and in order to run, it imports some essential modules as we can observe  
in the following code:

import sys, time, random, re, requests
import concurrent.futures
from multiprocessing import, cpu_count, current_process, Manager

Some imports have been mentioned in the previous chapters; nevertheless, some  
of the following imports do deserve special attention:

•	 cpu_count: This is a function that permits obtaining the quantity of CPUs  
in a machine

•	 current_process: This is a function that allows obtaining information on 
the current process, for example, its name
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•	 Manager: This is a type of object that allows sharing Python objects  
among different processes by means of proxies (for more information,  
see http://docs.python.org/3/library/multiprocessing.html)

Following the code, we can notice that the first function will behave differently;  
it will generate random values in an interval from 1 to 20 during 0-14 iterations. 
These values will be inserted as keys in fibo_dict, a dictionary generated by a 
Manager object.

It is more common to use the message passing approach. However, 
in some cases, we need to share a piece of data among different 
processes as we can see on our fibo_dict dictionary.

Let's now check the producer_task method, as follows:

def producer_task(q, fibo_dict):
    for i in range(15):
        value = random.randint(1, 20)
        fibo_dict[value] = None

        logger.info("Producer [%s] putting value [%d] into
            queue.. " % (current_process().name, value))
        q.put(value)

The next step is to define the function that will calculate the Fibonacci series term 
for each key in fibo_dict. It is noticeable that the only difference in relation to the 
function presented in the previous chapter is the use of fibo_dict as an argument  
to enable its use by different processes.

Let us check the consumer_task function, as follows:

def consumer_task(q, fibo_dict):
    while not q.empty():
        value = q.get(True, 0.05)
        a, b = 0, 1
        for item in range(value):
            a, b = b, a + b
            fibo_dict[value] = a
        logger.info("consumer [%s] getting value [%d] from
            queue..." % (current_process().name, value))
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Going further with the code, we enter the main block of the program. In this main 
block, some of the following variables are defined:

•	 data_queue: This contains multiprocessing.Queue that is processed safely 
by the standard

•	 number_of_cpus: This contains the value returned by the multiprocessing.
cpu_count function as explained earlier

•	 fibo_dict: This is a dictionary generated by the Manager object, where the 
final results of the process will be inserted

Further in the code, we have created a process called producer to populate  
data_queue with random values using the producer_task function, as follows:

producer = Process(target=producer_task, args=(data_queue,
    fibo_dict))
producer.start()
producer.join()

We can observe that the signature on the initializer of the Process class is the  
same as the one used on the Thread class, which is present in the threading  
package. It receives a target function to be executed in parallel by the workers  
and the arguments for this function. Then, we started the process execution and  
made a call to the join() method so that the main process goes on only after the 
conclusion of the producer process.

In the next chunk, we defined a list called consumer_list, which will store a list 
of consumers with their processes already initialized. The reason for creating this 
list is to call join() only after the beginning of the processes of all the workers. If 
the join() function was called for each item in the loop, then only the first worker 
would perform the job as the next iteration would be blocked waiting for the current 
worker to end, and finally there would be nothing else to be processed by the next 
worker; the following code represents this scenario:

consumer_list = []
for i in range(number_of_cpus):
    consumer = Process(target=consumer_task, args=(data_queue,
        fibo_dict))
    consumer.start()
    consumer_list.append(consumer)
    
[consumer.join() for consumer in consumer_list]
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Eventually, we presented the result iterating in fibo_dict, as shown in the 
following screenshot:

Output from multiprocessing_fibonacci.py

Crawling the Web using 
ProcessPoolExecutor
Just as the concurrent.futures module offers ThreadPoolExecutor, which facilitates 
the creation and manipulation of multiple threads, processes belong to the class of 
ProcessPoolExecutor. The ProcessPoolExecutor class, which also featured in the 
concurrent.futures pack, was used to implement our parallel Web crawler. In order 
to implement this case study, we have created a Python module named process_
pool_executor_web_crawler.py.

The code initiates with the imports known from the previous examples, such as  
requests, the Manager module, and so on. In relation to the definition of the tasks, 
and referring to the use of threads, little has changed compared to the example from 
the previous chapter, except that now we send data to be manipulated by means of 
function arguments; refer to the following signatures:

The group_urls_task function is defined as follows:

def group_urls_task(urls, result_dict, html_link_regex)

The crawl_task function is defined as follows:

def crawl_task(url, html_link_regex)
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Let's now look at a chunk of the code where there are subtle but relevant changes. 
Entering the main chunk, we declared an object of the type Manager, which will now 
allow the sharing of the queue and not only the dictionary containing the process 
result. To define this queue named urls containing the URLs that need to be crawled, 
we will use the Manager.Queue object. For the result_dictionary, we will use the 
Manager.dict object aiming to use a dictionary managed by proxies.  
The following chunk of code illustrates these definitions:

if __name__ == '__main__':
    manager = Manager()
    urls = manager.Queue()
    urls.put('http://www.google.com')
    urls.put('http://br.bing.com/')
    urls.put('https://duckduckgo.com/')
    urls.put('https://github.com/')
    urls.put('http://br.search.yahoo.com/')
    result_dict = manager.dict()

Then, we defined the regular expression to be used in the crawler stage, and we 
obtained the number of processors in the machine that run the program as shown  
in the following code

html_link_regex = \
    re.compile('<a\s(?:.*?\s)*?href=[\'"](.*?)[\'"].*?>')
    
number_of_cpus = cpu_count()

In the final chunk, we can notice the consistency in the APIs that are in the 
concurrent.futures module. The following chunk is exactly the one used in our 
example using ThreadPoolExecutor, as mentioned in the previous chapter. However, 
it is enough to change the class to ProcessPoolExecutor by altering the internal 
behavior and tackling the GIL issue for CPU-bound processes without breaking the 
code. Check the following chunks; both create ProcessPoolExecutor with workers 
with limits equal to the number of processors in the machine. The first executor is for 
grouping the URLs in the dictionary with the standard None value.  
The second executor proceeds with the crawling stage.

The following is the chunk of code for executor 1:

with concurrent.futures.ProcessPoolExecutor(
    max_workers=number_of_cpus) as group_link_processes:
        for i in range(urls.qsize()):
            group_link_processes.submit(group_urls_task, urls,
                result_dict, html_link_regex)
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The following is the chunk of code for executor 2:

with concurrent.futures.ProcessPoolExecutor(
    max_workers=number_of_cpus) as crawler_link_processes:
        future_tasks = {crawler_link_processes.submit(crawl_task,
            url, html_link_regex):
            url for url in result_dict.keys()}
        for future in concurrent.futures.as_completed(
            future_tasks):
            result_dict[future.result()[0]] = future.result()[1]

Keying from the multithreaded paradigm to multiprocess using 
concurrent.futures is somewhat simpler.

We can check the program output process_pool_executor_web_crawler.py as 
shown in the following screenshot:

Output from process_pool_executor_web_crawler.py
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Summary
In this chapter, we observed the general concepts about processes and implemented 
case studies using the multiple processes approach to compute the Fibonacci series 
terms and the Web crawler in a parallel way.

In the next chapter, we will look at multiple processes using the parallel Python 
module, which is not a built-in module within Python. We will learn about the 
concept of inter-process communication and how to use pipes to communicate 
between processes.





Utilizing Parallel Python
In the previous chapter, we learned how to use the multiprocessing and 
ProcessPoolExecutor modules to solve two case problems. This chapter  
will present named pipes and how to use Parallel Python (PP) to perform  
parallel tasks with processes.

In this chapter, we will cover the following topics:

•	 Understanding interprocess communication
•	 Discovering PP
•	 Using PP to calculate the Fibonacci series on SMP architecture
•	 Using PP to make a distributed Web crawler

Understanding interprocess 
communication
Interprocess communication (IPC) consists of mechanisms that allow the exchange 
of information among processes.

There are several means to implement IPC, and in general, they depend on the 
chosen architecture for the runtime environment. In some cases, for example, where 
processes run on the same machine, we could use various types of communication, 
such as shared memory, message queues, and pipes. When processes are physically 
distributed in clusters, for instance, we could use sockets and Remote Procedure 
Call (RPC).
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In Chapter 5, Using Multiprocessing and ProcessPoolExecutor, we verified the use  
of regular pipes among other things. We also studied the communication among 
processes that have a common parent process. But, sometimes it is necessary to 
perform communication between unrelated processes (processes with different 
parent processes). We might ask ourselves if the communication between unrelated 
processes could be done through their addressing space. Nevertheless, a process 
never accesses the addressing space from another process. Thus, we must use 
mechanisms called named pipes.

Exploring named pipes
Within the POSIX systems, such as Linux, we should keep in mind that everything, 
absolutely everything, can be summed up to files. For each task we perform, there is 
a file somewhere, and we can also find a file descriptor attached to it, which allows 
us to manipulate these files.

File descriptors are mechanisms that allow the user programs to access 
files for read/write operations. Normally, a file is referenced by a 
unique file descriptor. More information about the file descriptors can 
be found at http://publib.boulder.ibm.com/infocenter/
pseries/v5r3/index.jsp?topic=/com.ibm.aix.genprogc/
doc/genprogc/fdescript.htm.

Named pipes are nothing but mechanisms that allow IPC communication through 
the use of file descriptors associated with special files that implement, for instance, 
a First-In, First-Out (FIFO) scheme for writing and reading the data. Named pipes 
differ from regular pipes by the method with which they manage information.  
While the named pipes make use of the file descriptors and special files in a file 
system, regular pipes are created in memory.

Using named pipes with Python
The use of named pipes in Python is quite simple, and we will illustrate this by 
implementing two programs performing unidirectional communication. The first 
program is named write_to_named_pipe.py, and its function is to write a message 
in the pipe with 22 bytes, informing a string and PID of the process that generated  
it. The second program is called read_from_named_pipe.py, and it will perform  
the reading of the information and will show the message content, adding its PID.

At the end of the execution, the read_from_named_pipe.py process will show  
I pid [<The PID of reader process>] received a message => Hello from pid  
[the PID of writer process].
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To illustrate the interdependency between writing and reading the processes in a 
named pipe, we will execute the reader and writer in two distinct consoles. But before 
checking the result, let's analyze the codes for both programs.

Writing in a named pipe
In Python, named pipes are implemented through the system calls. In the following 
code, we will explain the functioning of the write_to_named_pipe.py program line 
by line.

We start with the input of the os module, which will provide access to the system 
calls we will use the following line of code:

import os

According to the code, we will explain the __main__ chunk that creates the named 
pipe and a special file, FIFO, which stores messages. The first line of the __main__ 
chunk defines the label we will give to our named pipe, as follows:

named_pipe = "my_pipe"

Then, we verify that our named pipe already exists. In the case that it does not,  
we will create it by means of the system call, mkfifo, as follows:

if not os.path.exists(named_pipe):
    os.mkfifo(named_pipe)

The mkfifo call creates a special file that implements a FIFO mechanism for the 
writing and reading of messages through a named pipe.

Now, we call our write_message function to pass the named_pipe argument  
and a Hello from pid [%d] message. This function will write the message in  
a file managed by the named pipe received as an argument. The definition of  
the write_message function can be seen as follows:

def write_message(input_pipe, message):
    fd = os.open(input_pipe, os.O_WRONLY)
    os.write(fd, (message % str(os.getpid())))
    os.close(fd)

We can observe that in the first line of the function, we have a call to a system 
call, open, which, in the event of its success, returns a file descriptor that allows 
us to manage the writing and reading of data in the FIFO file. Notice that we can 
control the opening mode of our FIFO file by using flags. As for the write_message 
function, it is interesting to only write data in it. Refer to the following code:

fd = os.open(input_pipe, os.O_WRONLY)
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After the successful opening of the named pipe, we write the message in the channel 
informed by the PID of the writer process as follows:

os.write(fd, (message % os.getpid()))

At the end, it is important to close the communication channel using the close  
call as follows. In this way, the communication and freeing the computer resources 
are involved:

os.close(fd)

Reading named pipes
To read our named pipe, we have implemented a Python program called read_from_
pipe.py, which uses the os module to manipulate the named pipes. The main chunk, 
which triggers the process, is simple. We define a label to the named pipe we will use. 
In this case, the same named pipe is used in the writing program as follows:

named_pipe = "my_pipe"

Then, we call the read_message function, which will read the content written by 
write_to_named_pipe.py. The definition of the read_message function can be seen 
as follows:

def read_message(input_type):
    fd = os.open(input_pipe, os_RONLY)
    message = (
        "I pid [%d] received a message => %s"
            % (os.getpid(), os.read(fd, 22))
    os.close(fd)
    return message

The open call needs no introduction. The new thing here is our read call, which 
performs the reading of a quantity in bytes. In our case, it is 22 bytes if a file descriptor 
is given. After the message is read, it is returned by the function. At the end, the close 
call must be executed to close the communication channel.

The validity of the open file descriptor was verified. It is up to the user 
to deal with the exceptions related to the use of file descriptors and 
named pipes.
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As a result, we have the following screenshot illustrating the execution of the  
write_to_named_pipe and read_from_named_pipe programs:

Result from write_to_named_pipe.py and read_from_named_pipe.py

Discovering PP
The previous section introduced a low-level mechanism to establish communication 
among the processes using system calls directly. This was necessary to contextualize 
the communication between processes in the Linux and Unix environments. Now, 
we will use a Python module, PP, to establish IPC communication not only among 
local processes, but also physically distributed throughout a computer network.

The available PP module documentation is not extensive. We can find the documents 
and FAQs at http://www.parallelpython.com/component/option,com_smf/. 
The API provides a wide notion of how this tool should be used; it is simple  
and straightforward.

The most important advantage of using PP is the abstraction that this module 
provides. Some important features of PP are as follows:

•	 Automatic detection of number of processors to improve load balance
•	 Many processors allocated can be changed at runtime
•	 Load balance at runtime
•	 Auto-discovery resources throughout the network

The PP module implements the execution of parallel code in two ways. The first 
way considers the SMP architecture, where there are multiple processors/cores in 
the same machine. The second alternative would be distributing the tasks through 
machines in a network, configuring, and thus forming a cluster. In both cases, the 
exchange of information among the processes receives a call of abstraction, which 
allows us not to worry about details such as pipes and sockets. We simply exchange 
the information through arguments and function returns using callbacks. Refer to  
the following example.
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There is a class, called Server, present in the API of PP, which we can use to 
encapsulate and dispatch tasks among local and remote processes. There are  
some important arguments in the initializer (__init__) from the Server class.  
The most relevant arguments are as follows:

•	 ncpus: This argument allows us to define the number of worker processes, 
which will execute tasks. If a value is not informed, it will automatically 
detect how many processors/cores the machine has and create a total of 
worker processes based on this to optimize the use of resources.

•	 ppservers: This argument represents a tuple containing names or IP 
addresses of machines that we call Parallel Python Execution Servers 
(PPES). A PPES consists of a network machine that has the ppserver.
py utility running and waiting for tasks to be executed. There are other 
arguments that can be visualized at http://www.parallelpython.com/
content/view/15/30/.
An instance of the Server class has, among several methods, the submit 
method that allows us to dispatch tasks to their destinations. The submit 
function has the following signature:

submit(self, func, args=(), depfuncs=(), modules=(),  
    callback=None, callbackargs=(), group='default',  
        globals=None)

Among the main arguments of the submit method, we could highlight the  
following parameters:

•	 func: This function is executed by the local processes or remote servers.
•	 args: This function executes the necessary arguments for the func function.
•	 modules: This function executes the modules that the remote code or process 

needs to import for the execution of func. For example, if the dispatched 
function uses the time module, in the tuple modules, a string with this 
module name has to be passed as modules=('time', ).

•	 callback: This is a function we will make use of later on. It is very 
interesting when we need to manipulate results of the process from the 
function dispatched in the func argument. The return of the dispatched 
function is sent as an argument to callback.

Other arguments will be featured as we analyze the code for the next sections.
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Using PP to calculate the Fibonacci 
series term on SMP architecture
Time to get into action! Let's solve our case study involving the Fibonacci series for 
multiple inputs using PP in the SMP architecture. I am using a notebook armed with 
a two-core processor and four threads.

We will import only two modules for this implementation, os and pp. The os module 
will be used only to obtain a PID of the processes in execution. We will have a list 
called input_list with the values to be calculated and a dictionary to group the 
results, which we will call result_dict. Then, we go to the chunk of code as follows:

import os, pp
input_list = [4, 3, 8, 6, 10]
result_dict = {}

Then, we define a function called fibo_task, which will be executed by parallel 
processes. It will be our func argument passed by the submit method of the Server 
class. The function does not feature major changes in relation to previous chapters, 
except that the return is now done by using a tuple to encapsulate the value received 
in the argument and a message containing a PID and a calculated Fibonacci term. 
Take a look at the following complete function:

def fibo_task(value):
    a, b = 0, 1 
    for item in range(value): 
        a, b = b, a + b 
    message = "the fibonacci calculated by pid %d was %d" \ 
        % (os.getpid(), a) 
    return (value, message)

The next step is to define our callback function, which we will call aggregate_
results. The callback function will be called as soon as the fibo_task function 
returns the result of its execution. Its implementation is quite simple and only shows 
a status message, generating afterwards an input in result_dict, containing as 
a key the value passed to the fibo_dict function, and as a result, the message 
returned by the process that calculated the Fibonacci term. The following code is the 
complete implementation of the aggregate_results function:

def aggregate_results(result):
    print "Computing results with PID [%d]" % os.getpid()
result_dict[result[0]] = result[1]



Utilizing Parallel Python

[ 60 ]

Now, we have two functions to be defined. We have to create an instance of the 
Server class to dispatch the tasks. The following line of code creates an instance  
of Server:

job_server = pp.Server()

In the preceding example, we used standard values for arguments. In the next 
section, we will make use of some available arguments.

Now that we have an instance of the Server class, let's iterate each value of our 
input_list, dispatching the fibo_task function through the submit call, passing as 
arguments to the input value in the args tuple the module that needs to be imported 
so that the function is executed correctly and callback registers aggregate_results. 
Refer to the following chunk of code:

for item in input_list:
    job_server.submit(fibo_task, (item,), modules=('os',),  
        callback=aggregate_results)

Finally, we have to wait till the end of all the dispatched tasks. Therefore, we can use 
the wait method of the Server class as follows:

job_server.wait()

There is another way to obtain the return of an executed function 
beyond using a callback function. The submit method returns an 
object type, pp._Task, which contains the result of the execution 
when the execution finishes.

In the end, we will iterate the results of the printing entries through our dictionary  
as follows:

print "Main process PID [%d]" % os.getpid() 
for key, value in result_dict.items():
    print "For input %d, %s" % (key, value)
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The following screenshot illustrates the output of the program:

Result from fibonacci_pp_smp.py

Using PP to make a distributed Web 
crawler
Now that we have executed the codes in parallel using PP to dispatch the local 
processes, it is time to verify that the code is executed in a distributed way.  
For this, we will use the following three different machines:

•	 Iceman-Thinkad-X220: Ubuntu 13.10
•	 Iceman-Q47OC-500P4C: Ubuntu 12.04 LTS
•	 Asgard-desktop: Elementary OS

The idea is to dispatch the executions to the three machines listed using PP. For this, 
we will make use of a case study of the Web crawler. In the code of web_crawler_
pp_cluster.py, for each URL informed in the input_list, we will dispatch a 
local or remote process for execution, and at the end of each execution, a callback 
function will group the URLs and their first three links found.

Let us analyze the code step by step to understand how to get to a solution to this 
problem. First, we will import the necessary modules and define the data structures 
to be used. As in the previous section, we will create an input_list and a dictionary 
that will contain the final results of processing. Refer to the following code:

import os, re, requests, pp

url_list = ['http://www.google.com/','http://gizmodo.uol.com.br/',
    'https://github.com/', 'http://br.search.yahoo.com/',
    'http://www.python.org/','http://www.python.org/psf/']

result_dict = {}
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Now, our aggregate_results function, which will be our callback again, changes 
little in relation to the example presented for the Fibonacci term. We only changed 
the format of the message to be inserted in the dictionary and also the fact that the 
return to this callback will be a tuple containing the PID of the process that executed 
it, the hostname where it was executed, and the first three links found. Refer to the 
aggregate_results function as follows:

def aggregate_results(result):
    print "Computing results in main process PID [%d]" %
        os.getpid()
    message = "PID %d in hostname [%s] the following links were "\
        "found: %s" % (result[2], result[3], result[1])
    result_dict[result[0]] = message

The next step is to define the crawl_task function, which will be dispatched by an 
instance of the Server class. The function is similar to the one presented in previous 
chapters, aiming to gather existing links in the page shown by the URL received as an 
argument. The only difference is that the return is a tuple. Refer to the following code:

def crawl_task(url):
    html_link_regex = \
    re.compile('<a\s(?:.*?\s)*?href=[\'"](.*?)[\'"].*?>')
    
    request_data = requests.get(url)
    links = html_link_regex.findall(request_data.text)[:3]
    return (url, links, os.getpid(), os.uname()[1])

After the main and callback functions are written, we must create an instance of the 
Server class to distribute the executions in the machines through the network. For 
this, we will work on some arguments in the initializer of the Server class. The first 
argument receives a tuple with the IP addresses or hostnames of the machines that 
will execute tasks. In our case, beyond the local machine, we will inform the  
two others presented previously. Let us define the tuple as follows:

ppservers = ("192.168.25.21", "192.168.25.9")

In case you do not want to inform and wish to autodiscover 
the machines available to receive tasks, use the * string in the 
ppservers tuple.

Define the tuple identifying the servers. We will create an instance of Server  
as follows:

job_dispatcher = pp.Server(ncpus=1, ppservers=ppservers,
    socket_timeout=60000)
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It is noticeable that there are some changes in relation to the previous example.  
First, we have passed the value 1 to the ncpus argument. This will cause PP to create 
a single local process, and if necessary, dispatch other tasks to remote machines. The 
second argument defined was the tuple of the servers we created in the previous 
step. Finally, we defined a timeout for the socket(s) used in the communication with 
a pretty high value only for the purposes of testing. The goal is to avoid the closing 
of the channel by timeout.

After an instance of the Server class is created, it is time to dispatch our functions 
for execution. Let us iterate in each URL and pass them to the submit method of the 
Server instance as follows:

for url in url_list:
    job_dispatcher.submit(crawl_task, (url,),
        modules=('os', 're', 'requests',),
            callback=aggregate_results)

The significant change in relation to the previous example, where a Fibonacci series 
was calculated, is the sending of the necessary modules for execution.

You must be thinking why the PP module has not been passed in 
the tuple module. It is simple; the PP execution environment already 
makes this import for us. After all, it needs to do this in remote nodes.

To finalize our parallel and distributed Web crawlers, we have to wait till the end of 
the executions to show their outputs. Notice that by the end, there is a new element 
in the print_stats method of the Server class, which shows some interesting 
statistics of the executions as follows:

job_dispatcher.wait()

print "\nMain process PID [%d]\n" % os.getpid() 
for key, value in result_dict.items():
    print "** For url %s, %s\n" % (key, value)
    job_dispatcher.print_stats()

Before executing the program, we need to initialize the ppserver.py utility in  
the remote machines; ppserver.py –a –d is the command used here for this,  
where –a is the option for autodiscovery, allowing the server to be found by clients 
who do not specify the IP address. The other argument is –d, which shows the 
information on how the activities of the server are performing by means of a log.
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Let us visualize the output in the following order:

•	 First, the following screenshot shows the stages in the main node, which 
creates and distributes tasks:

Creating and distributing tasks

•	 Then, the ppservers.py server is initialized and the processing tasks are 
seen in the following screenshots (Output from ppserver.py at iceman-Q47OC-
500P4C and Output from ppserver.py at asgard-desktop).

•	 In the preceding screenshot, it is noticeable that the statistics bring about 
interesting information, such as the quantity of tasks that have been distributed 
among different destinations, the timing of each task, and the total in each 
destination. Another relevant point in the preceding screenshot is the fact that 
the callback functions are only executed in the main process, the ones in the 
dispatching tasks. So, it is important to keep in mind that you should not make 
the callback tasks excessively heavy, as they may consume too many resources 
from the main node; it obviously depends on the specifics of each case.

•	 The following screenshot shows the output in the DEBUG mode of the 
ppserver.py server executing in host iceman-Q47OC-500P4C:
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Output from ppserver.py at iceman-Q47OC-500P4C

•	 The following screenshot shows the output in the DEBUG mode of the 
ppserver.py server executing in the asgard-desktop host:

Output from ppserver.py at asgard-desktop
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Summary
We studied the use of a low-level resource to establish communication among 
processes with no relation between them. Further, we have taken a look at using  
the PP module, which helps us abstract the communication among the local 
processes, including distributed processes. PP is a convenient tool for building 
simple, small, parallel, and distributed Python applications.

In the next chapter, we will learn how to use a module called Celery for the 
execution of tasks in a parallel and distributed way.



Distributing Tasks with Celery
In the previous chapter, we learned about using parallel Python. We saw the 
implementation of case studies, including Fibonacci series terms and Web crawler 
using the parallel Python module. We learned how to establish communication 
among processes using pipes and how to distribute processes among different 
machines in a network. In this chapter, we will study how to distribute tasks among 
different machines in a network by using the Celery framework.

In this chapter, we will cover the following topics:

•	 Understanding Celery
•	 Understanding Celery's architecture
•	 Setting up the environment
•	 Dispatching a simple task
•	 Using Celery to obtain a Fibonacci series term
•	 Using Celery to make a distributed Web crawler

Understanding Celery
Celery is a framework that offers mechanisms to lessen difficulties while creating 
distributed systems. The Celery framework works with the concept of distribution 
of work units (tasks) by exchanging messages among the machines that are 
interconnected as a network, or local workers. A task is the key concept in Celery; 
any sort of job we must distribute has to be encapsulated in a task beforehand.
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Why use Celery?
We could justify the use of Celery by listing some of its positive points:

•	 It distributes tasks in a transparent way among workers that are spread  
over the Internet, or local workers

•	 It changes, in a simple way, the concurrence of workers through setup 
(processes, threads, Gevent, Eventlet)

•	 It supports synchronous, asynchronous, periodic, and scheduled tasks
•	 It re-executes tasks in case of errors

It is common for some developers to claim that synchronous tasks 
are the same as real-time tasks. This is an unnecessary confusion 
as the concepts are totally different. For a real-time task, we should 
understand that the task has a window of time in which it has to be 
executed. In case it does not happen, then this task will be aborted or 
paused for further execution, while a synchronous task returns the 
result when it's done.

Understanding Celery's architecture
Celery has an architecture based on pluggable components and a mechanism of 
message exchange that uses a protocol according to a selected message transport 
(broker). This is illustrated in the following diagram:

Sending
messages

(tasks)

Sending
messages

(tasks)

Message transport (broker)

Task queue X

Task queue Y

Task queue N

Store task
results

Read task
results

Getting
tasks to
perform

Getting
tasks to
perform

Workers A

Workers B

Client
A

Client
B

Backend
results

The Celery architecture

Now, let us go through each item within Celery's architecture in detail.
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Working with tasks
The client components, as presented in the previous diagram, have the function of 
creating and dispatching tasks to the brokers.

We will now analyze a code example that demonstrates the definition of a task 
by using the @app.task decorator, which is accessible through an instance of 
Celery application that, for now, will be called app. The following code example 
demonstrates a simple Hello World app:

@app.task
def hello_world():
    return "Hello I'm a celery task"

Any callable can be a task.

As we mentioned earlier, there are several types of tasks: synchronous, asynchronous, 
periodic, and scheduled. When we perform a task call, it returns an instance of type 
AsyncResult. The AsyncResult object is an object that allows the task status to be 
checked, its ending, and obviously, its return when it exists. However, to make use  
of this mechanism, another component, the result backend, has to be active. This will  
be explained further in this chapter. To dispatch a task, we should make use of some  
of the following methods of the task:

•	 delay(arg, kwarg=value): This is a shortcut to call the apply_async 
method.

•	 apply_async((arg,), {'kwarg': value}): This allows the setting up  
of a series of interesting parameters for the execution of the task. Some of 
them are as follows:

°° countdown: This represents the number of seconds available in 
the future so that the task execution is started. The default task is 
executed immediately.

°° expires: This represents the period of time or date after which  
a certain task will no longer be executed.

°° retry: In the case of a failure in the connection or sending of  
a task, this parameter has to be resent.

°° queue: This is a line to which the task has to be referred.
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°° serializer: This represents a data format for the serialization of 
tasks in disk, and some examples include json, yaml, and others.

°° link: This links one or more tasks to be executed in case the sent task 
is executed successfully.

°° link_error: This links one or more tasks to be executed in the case 
of a failure in the execution of the task.

•	 apply((arg,), {'kwarg': value}): This executes a task in the local 
process in a synchronous way, thereby blocking up to the point a result  
is ready.

Celery also provides mechanisms to accompany the status of a task, 
which is quite useful to track and map the real status of processing. 
More information about the task status built-in is available at 
http://celery.readthedocs.org/en/latest/reference/
celery.states.html.

Discovering message transport (broker)
A broker is definitely a key component in Celery. Through it, we get to send and 
receive messages and communicate with workers. Celery supports a large number 
of brokers. However, to some of these, not all Celery mechanisms are implemented. 
The most complete in terms of functionality are RabbitMQ and Redis. In this book, 
we will use Redis as a broker as well as result backend. A broker has the function 
of providing a means of communication between client applications that send tasks 
and workers that will execute them. This is done by using task queues. We can have 
several network machines with brokers waiting to receive messages to be consumed 
by workers.

Understanding workers
Workers are responsible for executing the tasks they have received. Celery displays 
a series of mechanisms so that we can find the best way to control how workers will 
behave. We can define the mechanisms as follows:

•	 Concurrency mode: This is the mode with which workers will perform,  
for instance, processes, threads, Eventlet, and Gevent

•	 Remote control: Using this mechanism, we can send messages directly to  
a specific worker or a list of them through a high priority queue aiming to 
alter their behavior, including runtime
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•	 Revoking tasks: Using this mechanism, we can instruct one or more workers 
to ignore the execution of one or more tasks

Many more features can be set up and even altered in runtime if necessary. For 
instance, the number of tasks a worker executes per period of time, from which 
queue the workers will consume the most time, and and so on. More information  
about workers is available at http://docs.celeryproject.org/en/latest/
userguide/workers.html#remote-control.

Understanding result backends
The result backend component has the role of storing the status and result of the 
task to return to the client application. From the result backend supported by Celery, 
we can highlight RabbitMQ, Redis, MongoDB, Memcached, among others. Each result 
backend listed previously has strong and weak points. Refer to http://docs.
celeryproject.org/en/latest/userguide/tasks.html#task-result-backends 
for further information.

Now, we have a general idea of the Celery architecture and its components. So,  
let us set up a developing environment that will be used to implement our case studies.

Setting up the environment
In this section, we will set up two machines in Linux. The first one, hostname 
foshan, will perform the client role, where app Celery will dispatch the tasks to  
be executed. The other machine, hostname Phoenix, will perform the role of a broker, 
result backend, and the queues consumed by workers.

Setting up the client machine
Let us start the setup of the client machine. In this machine, we will set up a virtual 
environment with Python 3.3, using the tool pyvenv. The goal of pyvenv is to not 
pollute Python present in the operating system with additional modules, but to 
separate the developing environments necessary for each project. We will execute  
the following command to create our virtual environment:

$pyvenv celery_env
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The preceding line creates a directory called celery_env in the current path,  
which contains all the structures necessary to isolate the developing environment  
in Python. The following screenshot illustrates the structure created in the  
celery_env directory:

Structure of a virtual Python environment

After the creation of this virtual environment, we can start our work and install the 
packages to be used. However, first of all, we need to activate it. For this, we will 
execute the following command from the root of celery_env:

$source bin/activate

A change in the prompt of the command, such as celery_env on the left of the 
prompt, which will indicate that they are now in an activated environment. All you 
do in terms of installing packages and Python will result in changes in this directory 
but not in the system.

Using a --system-site-packages flag, we can create virtual 
environments that have access to site-packages present in Python 
that is installed in the system. However, this is not recommended.

Now, we have a virtual environment and starting off from the point from where  
you already installed setuptools or pip, we will install the necessary packages for 
our client. Let's install the Celery framework with the following command:

$pip install celery

The following screenshot shows the installed framework v3.1.9, which will be used 
in this book:

The Celery framework
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Now, we need to install the support to Redis in our Celery so that our Client 
transmits messages through our broker. We use the following command for  
this purpose:

$pip install celery[redis]

We have now got the infrastructure of our client completed. Before coding,  
we must set up our server where the brokers and workers will remain.

Setting up the server machine
To set up the server machine, we will start by installing Redis, which will be our 
broker and result backend. We will do this using the following command:

$sudo apt-get install redis-server

To start Redis, just execute the following command:

$redis-server

If it was successful, an output similar to the following screenshot will be exhibited:

Redis server running

Dispatching a simple task
At this point, we have a ready environment. Let's test it by sending a task that will 
calculate the square root of a value and return a result.

First, we must define our task module tasks.py inside the server. Let's check 
the description of the tasks.py module. In the following chunk of code, we have 
imports necessary for our function that will calculate the square root:

from math import sqrt
from celery import Celery
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Now, let's create the following instance of Celery, which will represent our  
client application:

app = Celery('tasks', broker='redis://192.168.25.21:6379/0')

We have created an instance of Celery that will control some aspects of our application. 
Notice that in its initializer, we informed the name of the module in which definitions 
of the task are present and we stated the address of the broker as a second argument.

Then, we have to set up our result backend, which will also be in Redis, as follows:

app.config.CELERY_RESULT_BACKEND = 'redis://192.168.25.21:6379/0'

With the basics ready, let's define our task with the @app.task decorator:

@app.task
def square_root(value):
    return sqrt(value)

At this point, since we have our tasks.py module defined, we need to initiate 
our workers inside the server, where Redis and Celery (with support to Redis) are 
installed. For this, we have created a separated directory to keep it organized; we will 
call it 8397_07_broker. We will copy our tasks.py module inside this directory and 
run the following command from it:

$celery –A tasks worker –-loglevel=INFO

The preceding command initiates a Celery server, and by means of the -A parameter 
informs where the instance of application Celery is defined, and the implementation 
of the tasks. The following screenshot shows part of the Celery application initialized 
beside the server:

Celery server side started
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Now, we have a Celery server waiting to receive tasks and send them to workers. 
The next step is to create an application on the client side to call tasks.

It is important not to skip this stage as the following sections will make 
use of the structure created previously.

In the machine that represents the client, we have our virtual environment  
celery_env already set up, remember? So, now it is simpler to create a step-by-step 
module task_dispatcher.py, as follows:

1.	 We import the logging module to exhibit information referring to the 
execution of the program and the Celery class inside the celery module,  
as follows:
import logging
from celery import Celery

2.	 The next step is to create an instance of the Celery class informing the 
module containing the tasks and then the broker, as done in the server side. 
This is done with the following code:

#logger configuration...
app = Celery('tasks',  
  broker='redis://192.168.25.21:6379/0')
app.conf.CELERY_RESULT_BACKEND =  
  'redis://192.168.25.21:6397/0'

A result backend was supposed to be set up directly on the initialization 
of a Celery instance; however, the setup was ignored by the framework 
during the experiment.
There are more elegant ways of setting up a Celery app—by creating 
a Python module and inserting it in the command line. We will do it 
directly in the code to keep the simplicity of the examples.

As we are going to reuse this module to implement calls to tasks in future  
sections of this chapter, let us create a function to encapsulate the sending  
of the sqrt_task(value) task. We will create the manage_sqrt_task(value) 
function as follows:

def manage_sqrt_task(value):
    result = app.send_task('tasks.sqrt_task', args=(value,))
    logging.info(result.get())
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We can notice in the preceding chunk that the client application does not need 
to recognize the implementation of the side server. By means of send_task that 
is inside the Celery class, we can invoke tasks only by informing a string in the 
<module.task> format and passing arguments in tuple format. Finally, we exhibit 
the result in the log.

In the __main__ block, we executed the call to the manage_sqrt_task(value) 
function by passing the input value as 4:

if __name__ == '__main__':
    manage_sqrt_task(4)

The following screenshot shows the result of the execution of file task_
dispatcher.py:

sqrt_task in the Celery server

In client side, the result is obtained through a call to the get() method, which is 
featured in the AsyncResult instance returned by send_task(). We can check the 
result in the following screenshot:

sqrt_task result in client side

Using Celery to obtain a Fibonacci  
series term
Let us again go and distribute our multiple inputs in order to calculate the nth 
Fibonacci term, each of them in a distributed way. The function that calculates 
Fibonacci will change a little in relation to the previous chapters. The changes  
are small; now we have the @app.task decorator and a small change in the  
return message.

In the tasks.py module (created previously), which is in the server machine  
where also the broker is, we will stop the execution of Celery (Ctrl + C) and add  
the fibo_task task. This is done by using the following code:

@app.task
def fibo_task(value):
    a, b = 0,1
    for item in range(value):
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        a, b = b, a + b
    message = "The Fibonacci calculated with task id %s" \
        " was %d" % (fibo_task.request.id, a)
    Return (value, message)

A point to observe is that we obtain the ID of the task with the <task.request.id> 
call. The request object is an object in the task class, which provides a context to  
the execution of the task. The context gives us information, for instance, the ID of  
the task.

After adding the new task to the tasks.py module, let us initiate Celery again and 
the result is shown in the following screenshot:

fibo_task loaded

Now that we have our fibo_task task loaded in the Celery server, we will implement 
the call to this function in the client side.

In the task_dispatcher.py module featured in the client machine, we will declare 
our input_list in order to test it, as follows:

input_list = [4, 3, 8, 6, 10]

As we did in the sqrt_task task created in the previous section, we will create a 
method to organize our calls without polluting the __main__ block. We will name 
this function manage_fibo_task. Check out the following implementation:

def manage_fibo_task(value_list):
    async_result_dict = {x: app.send_task('tasks.fibo_task',
        args=(x,)) for x in value_list}

    for key, value in async_result_dict.items():
        logger.info("Value [%d] -> %s" % (key, value.get()[1]))
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In the manage_fibo_task function, we created a dictionary called async_result_
dict, populating the same pair of key values. key is the item passed as an argument 
to obtain the umpteenth term of Fibonacci and value is the instance of AsyncResult 
returned from the call to the send_task method. With this method, we can monitor 
the status and result of a task.

Finally, we iterated the dictionary exhibiting the input values and their respective 
umpteenth obtained terms of Fibonacci. The get() function of the AsyncResult 
class allows us to obtain the processing results.

It is possible to notice that the get() function might not return an immediate result 
as the processing will still be taking place. A call to the get()method in the client 
side can block the processing that comes after the call. It is a good idea to unite the 
call to the ready() method, permitting to check whether a result is ready to  
be obtained.

So, our result exhibition loop could be something similar to the following code:

for key, value in async_result_dict.items():
    if value.ready():
        logger.info("Value [%d] -> %s" % (key,
            value.get()[1]))
    else:
        logger.info("Task [%s] is not ready" % value.task_id)

Depending on the type of task to be executed, there may be a considerable delay in the 
result. Therefore, by calling get() without considering the return status, we can block the 
code running at the point where the get() function was called. To tackle this, we should 
define an argument called timeout in the get(timeout=x) method. So, by minimizing 
this blocking, we can prevent tasks from having problems in returning results, which would 
impact the running of the execution for an indefinite time.

Finally, we added a call to the manage_fibo_task function, passing as argument to 
our input_list. The code is as follows:

if __name__ == '__main__':
    #manage_sqrt_task(4)
    manage_fibo_task(input_list)
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When we execute the code in task_dispatcher.py, the following output server can 
be visualized in the side:

The server side for fibo_task

In the client side, we have the following output:

The client side for fibo_task

Defining queues by task types
The task that is responsible for calculating Fibonacci was implemented and is running. 
We can see that all tasks are being sent to a default queue of Celery. However, there 
are ways to route a task to different queues; let us refactor our architecture in server 
side and implement what is known as routing task from the client side. We will specify 
queues for each type of task.

At the moment we start the Celery server in the server side, we will establish  
three different queues. These will now be seen and consumed by the workers.  
The queues are fibo_queue for Fibonacci tasks, sqrt_queue for square root tasks, 
and webcrawler_queue for the Web crawler ones. However, what is the advantage 
of having task fluxes separated? Let's observe them as follows:

•	 It groups tasks of the same type to make their monitoring easier
•	 It defines workers dedicated to consume a specific queue, thereby  

enhancing performance
•	 It distributes queues with heavier tasks to brokers allocated in machines  

with better performance
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The preceding points are not going to be explained in this book,  
but we can make a load balance by initializing the Celery servers 
and even distributing brokers with dedicated queues in a network.  
I recommend that you  try this cluster style using Celery.

To set up the queues in the server, we only need to initiate Celery with the  
following command:

$celery –A tasks –Q sqrt_queue,fibo_queue,webcrawler_queue worker 

--loglevel=info

The following screenshot shows the active files in server:

Different queues in the Celery server

Before moving to the next example, let us route the sending of the existing tasks  
to their queues. In the server side, in the task_dispatcher.py module, we will  
alter the send_task calls so that the next time the tasks are dispatched, they will  
be directed to distinct queues. We will now alter the sqrt_task call as follows:

app.send_task('tasks.sqrt_task', args=(value,),  
  queue='sqrt_queue', routing_key='sqrt_queue')

Then, we will alter the fibo_task call as follows:

app.send_task('tasks.fibo_task', args=(x,), queue='fibo_queue',  
  routing_key='fibo_queue')

If you have an interest in monitoring queues, checking the quantity of 
tasks addressed to them, and other things, the Celery documentation 
provides a great deal of information at http://celery.
readthedocs.org/en/latest/userguide/monitoring.html.
In any case, while using Redis, its own utility redis-cli can be a tool.
As queues and tasks, workers can also be monitored and adjusted. 
More information is available at http://celery.readthedocs.
org/en/latest/userguide/monitoring.html#workers.
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Using Celery to make a distributed  
Web crawler
We will now move on to adapting our Web crawler to Celery. We already have 
webcrawler_queue, which is responsible for encapsulating web-type hcrawler 
tasks. However, in the server side, we will create our crawl_task task inside the 
tasks.py module.

First, we will add our imports to the re and requests modules, which are the 
modules for regular expression and the HTTP library respectively. The code is  
as follows:

import re
import requests

Then, we will define our regular expression, which we studied in the previous 
chapters, as follows:

hTML_link_regex = re.compile(
    '<a\s(?:.*?\s)*?href=[\'"](.*?)[\'"].*?>')

Now, we will place our crawl_task function in the Web crawler, add the  
@app.task decorator, and change the return message a bit, as follows:

@app.task
def crawl_task(url):
    request_data = requests.get(url)
    links = html_link_regex.findall(request_data.text)
    message = "The task %s found the following links %s.."\
    Return message

Notice that the list of links found won't necessarily match the following screenshot:

 crawl_task added to the Celery server

Let's then scroll up Celery again and see. At this point, with our new task  
loaded, it is time to implement the task called crawl_task in the client side  
in the task_dispatcher.py module.
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First, we need a list of links that will be our data input; we will call it url_list.  
The code to do this is as follows:

url_list = ['http://www.google.com',
            'http://br.bing.com',
            'http://duckduckgo.com',
            'http://github.com',
            'http://br.search.yahoo.com']

We will create, as we did in other tasks, a manage_crawl_task function containing 
the logic of the crawl_task call in order to organize the __main__ block. The code  
is as follows:

def manage_crawl_task(url_list):
    async_result_dict = {url: app.send_task('tasks.crawl_task',
args=(url,), queue='webcrawler_queue', 
routing_key='webcrawler_queue') for url in url_list}

    for key, value in async_result_dict.items():
        if value.ready():
            logger.info("%s -> %s" % (key, value.get()))
        else:
            logger.info("The task [%s] is not ready" %
value.task_id)

As in manage_fibo_task we have created in the previous function, a dictionary 
containing the current URL as key, and an object (AsyncResult) as a value is passed  
to the function. After that, we checked the task status and have taken the result to the 
tasks that are concluded.

Now, we can insert the call of the function in the __main__ block to test its 
functioning. The code is as follows:

if __main__ == '__main__':
    #manage_sqrt_task(4)
    #manage_fibo_task(input_list)
    manage_crawl_task(url_list)
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While running our task_dispatcher.py code, we have the following output  
on the server side:

 crawl_task on the server side

Finally, we have the execution output in the client side, as shown in the  
following screenshot:

crawl_task on the client side

Celery is a great tool that offers a good range of resources. We explored the basic 
resources that we consider necessary for this chapter. Yet, there is a lot more to  
explore and we recommend that you experiment with it in a real-life project.
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Summary
In this chapter, we discussed the Celery distributed task queue. We also visualized its 
architecture, analyzed its key components, and saw how to set up an environment to 
build basic applications with Celery. It is possible to write a book only about Celery, 
and I hope that I have been fair and just while choosing the topics throughout.

In the next chapter, we will study the asyncio module as well as learn how to 
execute processing in an asynchronous way. We will also have a brief introduction  
to coroutines, and learn how to use them with asyncio.



Doing Things Asynchronously
In the previous chapter, we learned how to distribute tasks using the Celery 
framework and parallelize computing in different machines linked by a network. 
Now, we are going to explore asynchronous programming, event loop, and coroutines, 
which are resources featured in the asyncio module available in Python Version 3.4. 
We are also going to learn to make use of those in combination with executors.

In this chapter, we will cover:

•	 Blocking, nonblocking, and asynchronous operations
•	 Understanding event loop
•	 Using asyncio

Understanding blocking, nonblocking, 
and asynchronous operations
Understanding the different approaches to task execution is extremely important 
to model and conceive a scalable solution. Knowing when to use asynchronous, 
blocking, and nonblocking operations can make an enormous difference in the 
response time of a system.
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Understanding blocking operations
In the case of a blocking operation, we can use the example of attending a customer 
at a bank counter. When the customer's number is called for attendance, all the 
attention of the cashier is focused on this specific customer. Until the necessity 
of the current customer is achieved, the cashier can't attend another customer 
simultaneously. Now, with this in mind, imagine a bank agency with only two 
cashiers and an influx of 100 customers per hour; we have then a flow problem.  
This case illustrates the blocking of processing, when a task needs to wait for  
another to end, blocking the access to resources.

In the blocking of processing, the solicitor blocks the result until its 
solicitation is fulfilled.

Understanding nonblocking operations
It is easy to confuse nonblocking operations with asynchronous operations; however, 
they are different concepts that work really well in unison being often used this way. 
Let us again use a real-world scenery to illustrate this situation. Back to the bank 
environment, imagine that among the clients waiting to be attended, there is a client 
X who needs to withdraw a benefit, but benefits are not available at the moment. The 
cashier, instead of blocking the attendance to other clients until the benefit withdrawal 
is available, simply signalizes to client X to return at another moment or another date.

A non-blocking operator is one that, at a minimal blocking sign, 
returns a control code or exception that tells the solicitor to retry later.

Understanding asynchronous operations
Back to the bank agency example, imagine that each cashier has 10 assistants to 
execute tasks that take longer; now consider our agency has two cashiers, each one 
with 10 assistants. As clients arrive, if client X has a solicitation that could block the 
queue for an unlimited amount of time, this solicitation is dispatched to an assistant 
that will do the job in the background and will approach the client X directly when 
his or her answer is ready, thus freeing the cashier to process the request from the 
following client without having to wait for the previous accomplishment.
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Asynchronous operations notify the end of solicitations by means of 
callbacks, coroutines, and other mechanisms.
A callback function is a function that is called when a certain condition 
occurs. It is commonly used to handle results from asynchronous 
processing.

Understanding event loop
In order to understand the concept of event loop, we need to understand the 
elements that form its inner structure.

We will use the term resource descriptor to refer to the socket descriptor as well  
as file descriptor.

Polling functions
The polling technique is implemented by different operating systems aiming to 
monitor the status of one or more resource descriptors. Systems implement this 
technique by means of functions. Polling functions form the basis of event loops.  
We can often find these models being referred to as readiness notification scheme 
due to the fact that the polling function notifies the one interested in the event,  
that the resource descriptor is ready for interaction; the one interested, however, 
might/might not accomplish the desired operation.

In terms of Linux, for instance, we have the following polling functions:

•	 select(): This POSIX implementation presents some disadvantages,  
which are as follows:

°° Limitation in the number of resource descriptors to be monitored
°° Complexity O(n), where n represents the number of connected 

clients, which makes it unviable for servers to attend multiple  
clients simultaneously

•	 poll(): This is an enhancement in response to select(), with the  
following features:

°° Allows a larger range of resource descriptors to be monitored
°° Complexity O(n) as select()
°° Allows a larger variety of types of monitored events
°° Reuses entry data in its call, in contrast to select()
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•	 epoll(): This is a powerful implementation to Linux and has the attractive 
feature of constant complexity O(1). The epoll() function offers two  
behaviors to monitor events through the epoll_wait() call (http://
refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-
Core-generic/libc-epoll-wait-1.html). To define these two behaviors, 
let's imagine a scenery where we have a producer writing data in a socket  
(that has an associated socket descriptor) and a consumer waiting to 
accomplish the reading of data:

°° Level-triggered: When the consumer accomplishes a call to  
epoll_wait(), it will get the status of that resource descriptor 
immediately returned to the solicited event, indicating the  
possibility (or not) of executing the reading operation (in our case). 
So, level-triggered behavior is directly related to the status of the 
event and not the event itself.

°° Edge-triggered: A call to epoll_wait() will return only when the 
writing event in the socket is concluded and data is available. So, 
in edge-triggered behavior the focus is the event itself having taken 
place and not the possibility of executing any event.

On other platforms, there are also polling functions available, such as 
kqueue for BSD and Mac OS X.
Polling functions are useful to create applications with a single thread 
that can manage multiple operations in concurrent way. Tornado web 
server (http://www.tornadoweb.org/en/stable/overview.
html), for example, was written using non-blocking I/O, and as a 
polling function, it supports epoll and kqueue for Linux and BSD/
Mac OS X, respectively.

Polling functions work in the following steps:

1.	 A poller object is created.
2.	 We can register or not one or more resource descriptors in poller.
3.	 The polling function is executed in the created poller object.

Poller is an interface that provides abstraction to the use of 
polling functions.
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Using event loops
We can define event loops as abstractions that ease up using polling functions to 
monitor events. Internally, event loops make use of poller objects, taking away the 
responsibility of the programmer to control the tasks of addition, removal, and 
control of events.

Loops of events, in general, make use of callback functions to treat the occurrence  
of an event; for example, given a resource descriptor A, when a writing event 
happens in A, there will be a callback function for it. Some examples of applications 
that implement event loop in Python are listed as follows:

•	 Tornado web server (http://www.tornadoweb.org/en/stable/): This has 
a strong point—it uses epoll as the polling function if the environment is 
Linux and has kqueue support in case of BSD or Mac OS X

•	 Twisted (https://twistedmatrix.com/trac/): This is a popular framework 
of Python applications and offers an implementation of the event loop

•	 asyncio (https://docs.python.org/3.4/library/asyncio.html): 
This module written by Guido Van Rossum, among others, offers an 
implementation of an event loop. It is featured in Python 3.4

•	 Gevent (http://www.gevent.org/): This provides an event loop based  
on libev

•	 Eventlet (https://pypi.python.org/pypi/eventlet): This implements an 
event loop based on libevent

Using asyncio
We can define asyncio as a module that came to reboot asynchronous programming 
in Python. The asyncio module allows the implementation of asynchronous 
programming using a combination of the following elements:

•	 Event loop: This was already defined in the previous section. The asyncio 
module allows an event loop per process.

•	 Coroutines: As mentioned in the official documentation of asyncio, "A 
coroutine is a generator that follows certain conventions." Its most interesting 
feature is that it can be suspended during execution to wait for external 
processing (some routine in I/O) and return from the point it had stopped 
when the external processing is done.
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•	 Futures: The asyncio module defines its own object Future. Futures 
represent a processing that has still not been accomplished.

•	 Tasks: This is a subclass of asyncio.Future to encapsulate and  
manage coroutines.

Beyond these mechanisms, asyncio provides a series of other features for 
the developing of applications, such as transports and protocols, which allow 
communication by means of channels using TCP, SSL, UDP, and pipes, among 
other things. More information on asyncio is available at https://docs.python.
org/3.4/library/asyncio.html.

Understanding coroutines and futures
To be able to define a coroutine in asyncio, we use the @asyncio.coroutine 
decorator, and we must make use of the yield from syntax to suspend the coroutine 
in order to execute an operation I/O or another computing that might block the 
event loop where the coroutine will execute. But how does this mechanism of 
suspension and resumption work? Coroutines work together with the asyncio.
Future objects. We can summarize the operation as follows:

•	 Coroutine is initialized, and an asyncio.Future object is instanced 
internally or passed as an argument to coroutine.

•	 On reaching the point of the coroutine where there is use of yield from, 
the coroutine is then suspended to wait for computing evoked in yield 
from. The yield from instance waits for the yield from <coroutine or 
asyncio.Future or asyncio.Task> construction.

•	 When the evoked computing in yield from ends, the coroutine executes the 
set_result(<result>) method of the asyncio.Future object related to the 
coroutine, telling the event loop that coroutine can be resumed.

When we use the asyncio.Task object to encapsulate a coroutine, 
we do not need to explicit the use of a asyncio.Future object, as the 
asyncio.Task object is already a subclass of asyncio.Future.

Using coroutine and asyncio.Future
Let us verify some example code using coroutine and the asyncio.Future object:

import asyncio

@asyncio.coroutine
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def sleep_coroutine(f):
    yield from asyncio.sleep(2)
    f.set_result("Done!")

In the preceding chunk, we defined our coroutine named sleep_coroutine, which 
receives an object asyncio.Future as an argument. In the sequence, our coroutine 
will be suspended for the execution of asyncio.sleep(2), which will sleep for 2 
seconds; we must observe that the asyncio.sleep function is already compatible 
with asyncio. Therefore, it returns as future; however, due to didactic reasons, 
we included our asyncio.Future object passed as an argument to illustrate how 
the resumption could be done in a coroutine explicitly via asyncio.Future.set_
result(<result>).

Eventually, we had our main block, where we created our asyncio.Future object 
and in line loop = asyncio.get_event_loop(), we created an instance of the  
event loop from asyncio to execute our coroutine, as shown in the following code:

if __name__ == '__main__':
    future = asyncio.Future()
    loop = asyncio.get_event_loop()
    loop.run_until_complete(sleep_coroutine(future))

Tasks and coroutines only execute when the event loop 
is in execution.

In the final line, loop.run_until_complete(sleep_coroutine(future)), we ask  
our event loop to run until our coroutine has finished its execution. This is done 
through the BaseEventLoop.run_until_complete method presented in the 
BaseEventLoop class.

The magic to resume a coroutine in asyncio is in the set_result 
method of asyncio.Future object. All the coroutines to be 
resumed need to wait for asyncio.Future to execute the set_
result method. So, the event loop of asyncio will know that 
computing has ended and it can resume the coroutine.
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Using asyncio.Task
As mentioned before, the asyncio.Task class is a subclass of asyncio.Future  
and aims at managing a coroutine. Let us check an example code named  
asyncio_task_sample.py, where more than one object of asyncio.Task  
will be created and dispatched for execution in an event loop of asyncio:

import asyncio

@asyncio.coroutine
def sleep_coro(name, seconds=1):
    print("[%s] coroutine will sleep for %d second(s)…"
         % (name, seconds))
    yield yfrom asyncio.sleep(seconds)
    print("[%s] done!" % name)

Our coroutine, called sleep_coro, will receive two arguments: name, which will 
function as an identifier of our coroutine, and seconds with standard value 1,  
which will indicate for how many seconds the coroutine will be suspended.

Moving on to the main block, we defined a list containing three objects of type 
asyncio.Task named Task-A, which will sleep for 10 seconds, and Task-B and 
Task-C, which will sleep for 1 second each. See the following code:

if __name__ == '__main__':
    tasks = [asyncio.Task(sleep_coro('Task-A', 10)),
                asyncio.Task(sleep_coro('Task-B')),
                asyncio.Task(sleep_coro('Task-C'))]
    loop.run_until_complete(asyncio.gather(*tasks))

Still in the main block, we define our event loop making use of the BaseEventLoop.
run_until_complete function; however, this one receives no more than one 
coroutine as argument, but a call to asyncio.gather (refer to https://docs.
python.org/3.4/library/asyncio-task.html#task-functions for more 
information), which is the function that returns as future attaching the results  
of the list of coroutines or futures received as arguments. The output of the  
asyncio_task_sample.py program is shown in the following screenshot:

asyncio_task_sample.py output
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It is noticeable that the output of the program presents the tasks being performed in 
the order they are declared; however, none of them can block the event loop. This is 
due to the fact that Task-B and Task-C sleep less and end before Task-A that sleeps 
10 times more and is dispatched first. A scene where Task-A blocks an event loop  
is catastrophic.

Using an incompatible library with asyncio
The asyncio module is still recent within the Python community. Some libraries  
are still not fully compatible. Let us refactor our previous section example  
asyncio_task_sample.py and alter the function from asyncio.sleep to time.
sleep in the time module that does not return as a future and check its behavior. 
We altered the yield from asyncio.sleep(seconds) line to yield from time.
sleep(seconds).We obviously need to import the time module to make use of  
the new sleep. Running the example, notice the new behavior in the output shown  
in the following screenshot:

asyncio_task_sample.py output using time.sleep

We can notice that the coroutines are initialized normally, but an error occurs as the 
yield from syntax waits for a coroutine or asyncio.Future, and time.sleep does 
not generate anything at its end. So, how should we  proceed in these cases? The 
answer is easy; we need an asyncio.Future object, and then we refactor our example.
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First, let us create a function that will create an asyncio.Future object to return  
it to yield from present in the sleep_coro coroutine. The sleep_func function  
is as follows:

def sleep_func(seconds):
    f = asyncio.Future()
    time.sleep(seconds)
    f.set_result("Future done!")
    return f

Notice that the sleep_func function, as it ends, executes f.set_result("Future 
done!") placing a dummy result in future cause as this computing does not generate a 
concrete result; it is only a sleep function. Then, an asyncio.Future object is returned, 
which is expected by yield from to resume the sleep_coro coroutine. The following 
screenshot illustrates the output of the modified asyncio_task_sample.py program:

asyncio_task_sample.py with time.sleep

Now all the dispatched tasks execute without errors. But, wait! There is still something 
wrong with the output shown in the previous screenshot. Notice that the sequence 
of execution has something weird within, as Task-A sleeps for 10 seconds and ends 
before the beginning of the two following tasks that sleep only for 1 second. That is, 
our event loop is being blocked by the tasks. This is a consequence of using a library  
or module that does not work asynchronously with asyncio.

A way to solve this problem is delegating a blocking task to ThreadPoolExecutor 
(remember this works well if the processing is I/O bound; if it is CPU-bound, use 
ProcessPoolExecutor. For our comfort, asyncio supports this mechanism in a  
very simple way. Let us again refactor our asyncio_task_sample.py code in order  
to provide execution to the tasks without blocking the event loop.

Firstly, we must remove the sleep_func function as it is no longer necessary. A call 
to time.sleep will be done by the BaseEventLoop.run_in_executor method. Let's 
then refactor our sleep_coro coroutine in the following way:

@asyncio.coroutine
def sleep_coro(name, loop, seconds=1):
    future = loop.run_in_executor(None, time.sleep, seconds)
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    print("[%s] coroutine will sleep for %d second(s)…" %
        (name, seconds))
    yield from future
    print("[%s] done!" % name)

It is noticeable that the coroutine receives a new argument that will be the event loop 
we created in the main block so that ThreadPoolExecutor is used to respond to the 
same with the results of executions.

After that, we have the following line:

future = loop.run_in_executor(None, time.sleep, seconds)

In the previous line, a call to the BaseEventLoop.run_in_executor function 
was made, and the first argument for it was an executor (https://docs.python.
org/3.4/library/concurrent.futures.html#concurrent.futures.Executor). 
If it passes None, it will use ThreadPoolExecutor as default. The second argument 
is a callback function, in this case, the time.sleep function that represents our 
computing to be accomplished, and finally we can pass the callback arguments.

Notice that the BaseEventLoop.run_in_executor method returns an asyncio.
Future object. However, it is enough to make a call yield from passing the returned 
future, and our coroutine is ready.

Remember, we need to alter the main block of the program, passing the event loop  
to sleep_coro:

if__name__ == '__main__':
    loop = asyncio.get_event_loop()
    
    tasks = [asyncio.Task(sleep_coro('Task-A', loop, 10)),
                asyncio.Task(sleep_coro('Task-B', loop)),
                asyncio.Task(sleep_coro('Task-C', loop))]
    
    loop.run_until_complete(asyncio.gather(*tasks))
    loop.close()
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Let us see the refactored code execution shown in the following screenshot:

We got it! The result is consistent, and the event loop is not blocked by the execution 
of the time.sleep function.

Summary
In this chapter, we have learned about asynchronous, blocking, and nonblocking 
programming. We have made use of some basic mechanisms of asyncio in order  
to see the nuts and bolts of this mechanism's behavior in some situations.

The asyncio module is an attempt to reboot the support to asynchronous 
programming in Python. Guido Van Rossum was extremely successful in  
exploring alternatives and thinking of something that could be used as a basis to 
these alternatives offering a clear API. The yield from syntax was born to enhance 
the expressivity of some programs that use coroutines, relieving the burden on the 
developer of writing callbacks to treat the ending of events, although it is possible 
to use callbacks. The asyncio module, beyond other advantages, has the capacity of 
integrating with other applications, as in the Tornado web server, for instance, that 
already has a support branch to event loop in asyncio.

We come to the end of this book, which was indeed challenging to write, and I hope 
this content can be useful for you. Some tools were left out, such as IPython, mpi4py, 
Greenlets, Eventlets, and others.

Based on the content offered in this book, you can conduct your own analysis and 
tests between the examples presented along the different chapters to compare the 
different tools. The fact in relation to using two main examples along most chapters, 
was intended to demonstrate that Python allows us to easily change the tools used  
to solve a problem without changing the core of the solution.
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We have learned a bit of Global Interpreter Lock (GIL) and some workarounds to 
skip GIL's side effects. It is believed that the main Python implementation (CPython) 
won't solve the questions related to GIL; only the future can reveal that. GIL is a 
difficult and recurrent topic in the Python community. On the other hand, we have 
the PyPy implementation, which brought JIT and other performance improvements 
along. Nowadays, the PyPy team is working on experimental uses of Software 
Transactional Memory (STM) into PyPy, aiming to remove GIL.





Index
Symbols
_thread module

and threading module, selecting 
between  32

URL  32

A
apply_async() method  69
apply() method  70
arguments, Server class

ncpus  58
ppservers  58

arguments, submit method
args  58
callback  58
func  58
modules  58

Arithmetic Logic Unit (ALU)  7
Asgard-desktop  61
asynchronous operations  86
asyncio

about  89
asyncio.Task class, using  92
coroutine and asyncio.Future, 

using  90, 91
coroutine, defining  90
incompatible library, using with  93-95
URL  89
using  89, 90

asyncio.Future object
and coroutine, using  91

asyncio.Task class
using  92

AsyncResult class  78

B
BaseEventLoop.run_in_executor method  94
BaseEventLoop.run_until_complete  

function  92
blocking operations  86
broker

about  70
RabbitMQ  70
Redis  70

C
callback function  87
Celery

about  67
used, for creating distributed 

Web crawler  81-83
used, for obtaining Fibonacci 

series term  76-78
using  68

Celery architecture
about  68
broker  70
result backends  71
tasks, working with  69, 70
workers  70

Celery module
about  16
URL  16

client components  69
client machine, Celery

setting up  71-73
concurrent.futures module

used, for Web crawler  36-39
concurrent programming  9



[ 100 ]

Condition mechanism  32
conn.send(value)  43
consumer_task function  46
core  8
coroutine

about  89
and asyncio.Future, using  90, 91
and futures  90

countdown parameter  69
cpu_count function  45
CPU registry  42
CPU scheduler  9
CPU scheduling  42
CPython  16
crawl_task function  48, 81
current_process function  45
current state  42

D
data decomposition

using  20, 21
data exchange tasks

identifying  22
data_queue variable  47
deadlock  13
delay(arg, kwarg=value) method  69
distributed programming  10
distributed Web crawler

creating, Celery used  81-83
making, Parallel Python (PP) 

used  61-65
divide and conquer technique  19

E
environment, Celery

client machine, setting up  71-73
server machine, setting up  73
setting up  71

epoll() function
about  88
Edge-triggered  88
Level-triggered  88

epoll_wait() function  88

Eventlet
URL  89

event loop
about  87
using  89

event loop implementation, applications
asyncio  89
Eventlet  89
Gevent  89
Tornado web server  89
Twisted  89

expires parameter  69

F
feeder thread  45
fibo_dict variable  47
Fibonacci function  26
Fibonacci sequence

defining  25
Fibonacci series term

computing, multiprocessing used  45-47
obtaining, Celery used  76-78
obtaining, threading module used  32-35

Fibonacci series term, on SMP architecture
calculating, Parallel Python (PP) 

used  59-61
fibonacci_task function  34
file descriptors

about  54
URL  54

First-In, First-Out (FIFO)  54
futures

about  90
and coroutines  90

future_tasks  39

G
get() function  78
Gevent

URL  89
GIL  16, 17
group_urls_task function  37, 48



[ 101 ]

H
highest Fibonacci value

calculating, example  26
obtaining, for multiple inputs  25, 26

I
Iceman-Q47OC-500P4C  61
Iceman-Thinkad-X220  61
incompatible library

using, with asyncio  93-95
independent tasks

identifying  22
interprocess communication (IPC)  53
I/O information  42

J
join() method  44

K
kernel thread

about  30
advantages  30
disadvantages  31

L
link_error parameter  70
link parameter  70
load balance  23
logical processors. See  core

M
manage_crawl_task function  82
manage_fibo_task function  78
Manager object  46
max_workers parameter  38
Memcached

URL  26
memory allocation  42
merge sort  19
message passing

about  12

advantages  12, 13
message transport. See  broker
Moore's law

URL  7
multiprocessing communication

implementing  42
multiprocessing.Pipe, using  43, 44
multiprocessing.Queue  45

multiprocessing module
about  15
URL  15, 42
used, to compute Fibonacci series  45-47

multiprocessing.Pipe
using  43, 44

multiprocessing.Queue  45
mutex  12

N
named pipes

about  54
reading  56
using, with Python  54
writing in  55

ncpus argument  58
non-blocking operations  86
non-determinism  15
number_of_cpus variable  47

O
os.getpid()  43
os module

URL  43

P
parallel programming

about  7-10
advantages  10, 11
example  9
message passing  11, 12
need for  9
shared state  11, 12

parallel programming, problems
deadlock  13



[ 102 ]

identifying  13
race conditions  14
starvation  13

Parallel Python Execution Server. See  PPES
parallel Python module

about  16
URL  16

Parallel Python (PP)
about  53
discovering  57
URL, for arguments  58
URL, for documentation  57
used, for calculating Fibonacci series 

term on SMP architecture  59-61
used, for making distributed 

Web crawler  61-65
parallel systems

about  10
forms  9

pipeline
tasks, decomposing with  21

poll() function
features  87

polling functions
about  87
epoll()  88
kqueue  88
poll()  87
select()  87

PPES  58
ppservers argument  58
priority  42
process  41
Process Control Block (PCB)

about  42
CPU registry  42
CPU scheduling  42
current state  42
I/O information  42
memory allocation  42
priority  42
process ID  42
program counter  42

process ID  42
process mapping

data exchange tasks, identifying  22

defining  22
independent tasks, identifying  22
load balance  23

ProcessPoolExecutor class
used, for Web crawler  48-50

process states
ready  42
running  42
waiting  42

producer_task function  43
producer_task method  46
program counter  42
proposed solution, Web crawler  27
Python

named pipes, using with  54
Python, parallel programming tools

multiprocessing module  15
parallel Python module  16
threading module  15

Q
queue parameter  69
queues

fibo_queue  79
specifying, for task types  79, 80
sqrt_queue  79
webcrawler_queue  79

quick sort  19

R
race conditions  14
ready() method  78
readiness notification scheme  87
regular expression

URL  37
Remote Procedure Call. See  RPC
request module

URL  38
request object  77
resource descriptor  87
result backend  71
retry parameter  69
RPC  53



[ 103 ]

S
select() function

disadvantages  87
serializer parameter  70
server machine, Celery

setting up  73
set_result method  91
shared_queue  33
shared state  12
sleep_func function  94
sockets  53
Software Transactional Memory (STM)  97
solution scheme  27
start() method  44
starvation  13
submit method  38

T
task_dispatcher.py module  77
task_done() method  34
task execution parameters

countdown  69
expires  69
link  70
link_error  70
queue  69
retry  69
serializer  70

task methods
apply() method  70
apply_async() method  69
delay(arg, kwarg=value) method  69

tasks
decomposing, with pipeline  21
dispatching  73-76
working with  69

tasks class  90
task types

queues, defining by  79, 80
threading module

about  15
and _thread module, selecting between  32
URL  15, 32
used, to obtain Fibonacci series with  

multiples inputs  32-35

ThreadPoolExecutor object
URL  38

threads
advantages  30
defining  29
disadvantages  30

thread states
blocked  31
concluded  31
creation  31
defining  31
execution  31
ready  31

thread types
kernel thread  30
user thread  30

Tornado web server
URL  88, 89

Twisted
URL  89

U
Uniform Resource Locators (URLs)  27
user thread

about  30
advantages  31
disadvantages  31

W
Web crawler

about  27
concurrent.futures module, used for  36-39
ProcessPoolExecutor, used for  48-50

with statement
URL  34

workers
about  70
concurrency mode  70
remote control  70
revoking tasks  71





Thank you for buying  
Parallel Programming with Python

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around Open Source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Python High Performance 
Programming
ISBN: 978-1-78328-845-8              Paperback: 108 pages

Boost the performance of your Python programs 
using advanced techniques

1.	 Identify the bottlenecks in your applications and 
solve them using the best profiling techniques.

2.	 Write efficient numerical code in NumPy  
and Cython.

3.	 Adapt your programs to run on multiple 
processors with parallel programming.

OpenCL Parallel Programming 
Development Cookbook
ISBN: 978-1-84969-452-0             Paperback: 302  pages

Accelerate your applications and understand  
high-performance computing with over  
50 OpenCL recipes

1.	 Learn about parallel programming development 
in OpenCL and also the various techniques 
involved in writing high-performing code.

2.	 Find out more about data-parallel or  
task-parallel development and also  
about the combination of both.

3.	 Understand and exploit the underlying 
hardware features like processor registers  
and caches that run potentially tens of  
thousands of threads across the processors.

Please check www.PacktPub.com for information on our titles



Python Network Programming 
Cookbook
ISBN: 978-1-84951-346-3            Paperback: 234  pages

Over 70 detailed recipes to develop practical  
solutions for a wide range of real-world network 
programming tasks

1.	 Demonstrates how to write various besopke 
client/server networking applications  
using standard and popular third-party  
Python libraries.

2.	 Learn how to develop client programs for 
networking protocols such as HTTP/HTTPS, 
SMTP, POP3, FTP, CGI, XML-RPC, SOAP,  
and REST.

Instant Parallel Processing  
with Gearman
ISBN: 978-1-78328-407-8             Paperback: 58 pages

Learn how to use Gearman to build scalable 
distributed application

1.	 Learn something new in an Instant! A short, fast, 
focused guide delivering immediate results.

2.	 Build a cluster of managers, workers, and 
clients using Gearman to scale your application.

3.	 Understand how to reduce single-points-of-
failure in your distributed applications.

4.	 Build clients and workers to process data in the 
background and provide real-time updates to 
your frontend.

 
Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Contextualizing 
Parallel, Concurrent, and Distributed Programming
	Why use parallel programming?
	Exploring common forms of parallelization
	Communicating in parallel programming
	Understanding shared state
	Understanding message passing

	Identifying parallel programming problems
	Deadlock
	Starvation
	Race conditions

	Discovering Python's parallel programming tools
	The Python threading module
	The Python multiprocessing module
	The parallel Python module
	Celery – a distributed task queue

	Taking care of Python GIL
	Summary

	Chapter 2: Designing Parallel Algorithms
	The divide and conquer technique
	Using data decomposition
	Decomposing tasks with pipeline
	Processing and mapping
	Identifying independent tasks
	Identifying the tasks that require data exchange
	Load balance

	Summary

	Chapter 3: Identifying a 
Parallelizable Problem
	Obtaining the highest Fibonacci value for multiple inputs
	Crawling the Web
	Summary

	Chapter 4: Using the threading and concurrent.futures Modules
	Defining threads
	Advantages and disadvantages of using threads
	Understanding different kinds of threads
	Defining the states of a thread
	Choosing between threading and _thread

	Using threading to obtain the Fibonacci series term with multiple inputs
	Crawling the Web using the concurrent.futures module
	Summary

	Chapter 5: Using Multiprocessing and ProcessPoolExecutor
	Understanding the concept of a process
	Understanding the process model
	Defining the states of a process


	Implementing multiprocessing communication
	Using multiprocessing.Pipe
	Understanding multiprocessing.Queue

	Using multiprocessing to compute Fibonacci series terms with multiple inputs
	Crawling the Web using ProcessPoolExecutor
	Summary

	Chapter 6: Utilizing Parallel Python
	Understanding interprocess communication
	Exploring named pipes
	Using named pipes with Python
	Writing in a named pipe
	Reading named pipes


	Discovering PP
	Using PP to calculate the Fibonacci series term on SMP architecture
	Using PP to make a distributed Web crawler
	Summary

	Chapter 7: Distributing Tasks with Celery
	Understanding Celery
	Why use Celery?

	Understanding Celery's architecture
	Working with tasks
	Discovering message transport (broker)
	Understanding workers
	Understanding result backends

	Setting up the environment
	Setting up the client machine
	Setting up the server machine

	Dispatching a simple task
	Using Celery to obtain a Fibonacci series term
	Defining queues by task types
	Using Celery to make a distributed Web crawler
	Summary

	Chapter 8: Doing Things Asynchronously
	Understanding blocking, nonblocking, and asynchronous operations
	Understanding blocking operations
	Understanding nonblocking operations
	Understanding asynchronous operations

	Understanding event loop
	Polling functions
	Using event loops

	Using asyncio
	Understanding coroutines and futures
	Using coroutine and asyncio.Future
	Using asyncio.Task
	Using an incompatible library with asyncio


	Summary

	Index



